python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
import torch from setuptools import setup, Extension from torch.utils.cpp_extension import BuildExtension, CppExtension setup( name='nms_1d_cpu', ext_modules=[ CppExtension( name = 'nms_1d_cpu', sources = ['./csrc/nms_cpu.cpp'], extra_compile_args=['-fopenmp'] ) ], cmdclass={ 'build_ext': BuildExtension } )
InternVideo-main
Downstream/Temporal-Action-Localization/libs/utils/setup.py
import os import shutil import time import json import pickle from typing import Dict import numpy as np import pdb import torch from scipy.special import softmax from .metrics import ANETdetection # def load_results_from_pkl(filename): # # load from pickle file # assert os.path.isfile(filename) # with open(filename, "rb") as f: # results = pickle.load(f) # return results def load_results_from_json(filename): assert os.path.isfile(filename) with open(filename, "r") as f: results = json.load(f) # for activity net external classification scores if 'results' in results: results = results['results'] return results def results_to_dict(results): """convert result arrays into dict used by json files""" # video ids and allocate the dict vidxs = sorted(list(set(results['video-id']))) results_dict = {} for vidx in vidxs: results_dict[vidx] = [] # fill in the dict for vidx, start, end, label, score in zip( results['video-id'], results['t-start'], results['t-end'], results['label'], results['score'] ): results_dict[vidx].append( { "label" : int(label), "score" : float(score), "segment": [float(start), float(end)], } ) return results_dict def results_to_array(results, num_pred): # video ids and allocate the dict vidxs = sorted(list(set(results['video-id']))) results_dict = {} for vidx in vidxs: results_dict[vidx] = { 'label' : [], 'score' : [], 'segment' : [], } # fill in the dict for vidx, start, end, label, score in zip( results['video-id'], results['t-start'], results['t-end'], results['label'], results['score'] ): results_dict[vidx]['label'].append(int(label)) results_dict[vidx]['score'].append(float(score)) results_dict[vidx]['segment'].append( [float(start), float(end)] ) for vidx in vidxs: label = np.asarray(results_dict[vidx]['label']) score = np.asarray(results_dict[vidx]['score']) segment = np.asarray(results_dict[vidx]['segment']) # the score should be already sorted, just for safety inds = np.argsort(score)[::-1][:num_pred] label, score, segment = label[inds], score[inds], segment[inds] results_dict[vidx]['label'] = label results_dict[vidx]['score'] = score results_dict[vidx]['segment'] = segment return results_dict def postprocess_results(results, cls_score_file, num_pred=200, topk=2): # load results and convert to dict # if isinstance(results, str): # results = load_results_from_pkl(results) # array -> dict results = results_to_array(results, num_pred) # load external classification scores if '.json' in cls_score_file: cls_scores = load_results_from_json(cls_score_file) # else: # cls_scores = load_results_from_pkl(cls_score_file) # dict for processed results processed_results = { 'video-id': [], 't-start' : [], 't-end': [], 'label': [], 'score': [] } # process each video for vid, result in results.items(): # pick top k cls scores and idx if len(cls_scores[vid])==1: curr_cls_scores = np.asarray(cls_scores[vid][0]) else: curr_cls_scores = np.asarray(cls_scores[vid]) if max(curr_cls_scores)>1 or min(curr_cls_scores)<0: curr_cls_scores=softmax(curr_cls_scores) topk_cls_idx = np.argsort(curr_cls_scores)[::-1][:topk] topk_cls_score = curr_cls_scores[topk_cls_idx] # model outputs pred_score, pred_segment, pred_label = \ result['score'], result['segment'], result['label'] num_segs = min(num_pred, len(pred_score)) # duplicate all segment and assign the topk labels # K x 1 @ 1 N -> K x N -> KN # multiply the scores # temp = np.abs(topk_cls_score[:, None] @ pred_score[None, :]) # new_pred_score = np.sqrt(temp).flatten() new_pred_score = np.sqrt(topk_cls_score[:, None] @ pred_score[None, :]).flatten() new_pred_segment = np.tile(pred_segment, (topk, 1)) new_pred_label = np.tile(topk_cls_idx[:, None], (1, num_segs)).flatten() # add to result processed_results['video-id'].extend([vid]*num_segs*topk) processed_results['t-start'].append(new_pred_segment[:, 0]) processed_results['t-end'].append(new_pred_segment[:, 1]) processed_results['label'].append(new_pred_label) processed_results['score'].append(new_pred_score) # pdb.set_trace() processed_results['t-start'] = np.concatenate( processed_results['t-start'], axis=0) processed_results['t-end'] = np.concatenate( processed_results['t-end'], axis=0) processed_results['label'] = np.concatenate( processed_results['label'],axis=0) processed_results['score'] = np.concatenate( processed_results['score'], axis=0) return processed_results
InternVideo-main
Downstream/Temporal-Action-Localization/libs/utils/postprocessing.py
import os # backbone (e.g., conv / transformer) backbones = {} def register_backbone(name): def decorator(cls): backbones[name] = cls return cls return decorator # neck (e.g., FPN) necks = {} def register_neck(name): def decorator(cls): necks[name] = cls return cls return decorator # location generator (point, segment, etc) generators = {} def register_generator(name): def decorator(cls): generators[name] = cls return cls return decorator # meta arch (the actual implementation of each model) meta_archs = {} def register_meta_arch(name): def decorator(cls): meta_archs[name] = cls return cls return decorator # builder functions def make_backbone(name, **kwargs): backbone = backbones[name](**kwargs) return backbone def make_neck(name, **kwargs): neck = necks[name](**kwargs) return neck def make_meta_arch(name, **kwargs): meta_arch = meta_archs[name](**kwargs) return meta_arch def make_generator(name, **kwargs): generator = generators[name](**kwargs) return generator
InternVideo-main
Downstream/Temporal-Action-Localization/libs/modeling/models.py
import math import torch from torch import nn from torch.nn import functional as F from .models import register_meta_arch, make_backbone, make_neck, make_generator from .blocks import MaskedConv1D, Scale, LayerNorm from .losses import ctr_diou_loss_1d, sigmoid_focal_loss from ..utils import batched_nms class PtTransformerClsHead(nn.Module): """ 1D Conv heads for classification """ def __init__( self, input_dim, feat_dim, num_classes, prior_prob=0.01, num_layers=3, kernel_size=3, act_layer=nn.ReLU, with_ln=False, empty_cls = [] ): super().__init__() self.act = act_layer() # build the head self.head = nn.ModuleList() self.norm = nn.ModuleList() for idx in range(num_layers-1): if idx == 0: in_dim = input_dim out_dim = feat_dim else: in_dim = feat_dim out_dim = feat_dim self.head.append( MaskedConv1D( in_dim, out_dim, kernel_size, stride=1, padding=kernel_size//2, bias=(not with_ln) ) ) if with_ln: self.norm.append( LayerNorm(out_dim) ) else: self.norm.append(nn.Identity()) # classifier self.cls_head = MaskedConv1D( feat_dim, num_classes, kernel_size, stride=1, padding=kernel_size//2 ) # use prior in model initialization to improve stability # this will overwrite other weight init bias_value = -(math.log((1 - prior_prob) / prior_prob)) torch.nn.init.constant_(self.cls_head.conv.bias, bias_value) # a quick fix to empty categories: # the weights assocaited with these categories will remain unchanged # we set their bias to a large negative value to prevent their outputs if len(empty_cls) > 0: bias_value = -(math.log((1 - 1e-6) / 1e-6)) for idx in empty_cls: torch.nn.init.constant_(self.cls_head.conv.bias[idx], bias_value) def forward(self, fpn_feats, fpn_masks): assert len(fpn_feats) == len(fpn_masks) # apply the classifier for each pyramid level out_logits = tuple() for _, (cur_feat, cur_mask) in enumerate(zip(fpn_feats, fpn_masks)): cur_out = cur_feat for idx in range(len(self.head)): cur_out, _ = self.head[idx](cur_out, cur_mask) cur_out = self.act(self.norm[idx](cur_out)) cur_logits, _ = self.cls_head(cur_out, cur_mask) out_logits += (cur_logits, ) # fpn_masks remains the same return out_logits class PtTransformerRegHead(nn.Module): """ Shared 1D Conv heads for regression Simlar logic as PtTransformerClsHead with separated implementation for clarity """ def __init__( self, input_dim, feat_dim, fpn_levels, num_layers=3, kernel_size=3, act_layer=nn.ReLU, with_ln=False ): super().__init__() self.fpn_levels = fpn_levels self.act = act_layer() # build the conv head self.head = nn.ModuleList() self.norm = nn.ModuleList() for idx in range(num_layers-1): if idx == 0: in_dim = input_dim out_dim = feat_dim else: in_dim = feat_dim out_dim = feat_dim self.head.append( MaskedConv1D( in_dim, out_dim, kernel_size, stride=1, padding=kernel_size//2, bias=(not with_ln) ) ) if with_ln: self.norm.append( LayerNorm(out_dim) ) else: self.norm.append(nn.Identity()) self.scale = nn.ModuleList() for idx in range(fpn_levels): self.scale.append(Scale()) # segment regression self.offset_head = MaskedConv1D( feat_dim, 2, kernel_size, stride=1, padding=kernel_size//2 ) def forward(self, fpn_feats, fpn_masks): assert len(fpn_feats) == len(fpn_masks) assert len(fpn_feats) == self.fpn_levels # apply the classifier for each pyramid level out_offsets = tuple() for l, (cur_feat, cur_mask) in enumerate(zip(fpn_feats, fpn_masks)): cur_out = cur_feat for idx in range(len(self.head)): cur_out, _ = self.head[idx](cur_out, cur_mask) cur_out = self.act(self.norm[idx](cur_out)) cur_offsets, _ = self.offset_head(cur_out, cur_mask) out_offsets += (F.relu(self.scale[l](cur_offsets)), ) # fpn_masks remains the same return out_offsets @register_meta_arch("LocPointTransformer") class PtTransformer(nn.Module): """ Transformer based model for single stage action localization """ def __init__( self, backbone_type, # a string defines which backbone we use fpn_type, # a string defines which fpn we use backbone_arch, # a tuple defines # layers in embed / stem / branch scale_factor, # scale factor between branch layers input_dim, # input feat dim max_seq_len, # max sequence length (used for training) max_buffer_len_factor, # max buffer size (defined a factor of max_seq_len) n_head, # number of heads for self-attention in transformer n_mha_win_size, # window size for self attention; -1 to use full seq embd_kernel_size, # kernel size of the embedding network embd_dim, # output feat channel of the embedding network embd_with_ln, # attach layernorm to embedding network fpn_dim, # feature dim on FPN fpn_with_ln, # if to apply layer norm at the end of fpn head_dim, # feature dim for head regression_range, # regression range on each level of FPN head_num_layers, # number of layers in the head (including the classifier) head_kernel_size, # kernel size for reg/cls heads head_with_ln, # attache layernorm to reg/cls heads use_abs_pe, # if to use abs position encoding use_rel_pe, # if to use rel position encoding num_classes, # number of action classes train_cfg, # other cfg for training test_cfg # other cfg for testing ): super().__init__() # re-distribute params to backbone / neck / head self.fpn_strides = [scale_factor**i for i in range(backbone_arch[-1]+1)] self.reg_range = regression_range assert len(self.fpn_strides) == len(self.reg_range) self.scale_factor = scale_factor # #classes = num_classes + 1 (background) with last category as background # e.g., num_classes = 10 -> 0, 1, ..., 9 as actions, 10 as background self.num_classes = num_classes # check the feature pyramid and local attention window size self.max_seq_len = max_seq_len if isinstance(n_mha_win_size, int): self.mha_win_size = [n_mha_win_size]*len(self.fpn_strides) else: assert len(n_mha_win_size) == len(self.fpn_strides) self.mha_win_size = n_mha_win_size max_div_factor = 1 for l, (s, w) in enumerate(zip(self.fpn_strides, self.mha_win_size)): stride = s * (w // 2) * 2 if w > 1 else s # print(stride) assert max_seq_len % stride == 0, "max_seq_len must be divisible by fpn stride and window size" if max_div_factor < stride: max_div_factor = stride self.max_div_factor = max_div_factor # training time config self.train_center_sample = train_cfg['center_sample'] assert self.train_center_sample in ['radius', 'none'] self.train_center_sample_radius = train_cfg['center_sample_radius'] self.train_loss_weight = train_cfg['loss_weight'] self.train_cls_prior_prob = train_cfg['cls_prior_prob'] self.train_dropout = train_cfg['dropout'] self.train_droppath = train_cfg['droppath'] self.train_label_smoothing = train_cfg['label_smoothing'] # test time config self.test_pre_nms_thresh = test_cfg['pre_nms_thresh'] self.test_pre_nms_topk = test_cfg['pre_nms_topk'] self.test_iou_threshold = test_cfg['iou_threshold'] self.test_min_score = test_cfg['min_score'] self.test_max_seg_num = test_cfg['max_seg_num'] self.test_nms_method = test_cfg['nms_method'] assert self.test_nms_method in ['soft', 'hard', 'none'] self.test_duration_thresh = test_cfg['duration_thresh'] self.test_multiclass_nms = test_cfg['multiclass_nms'] self.test_nms_sigma = test_cfg['nms_sigma'] self.test_voting_thresh = test_cfg['voting_thresh'] # we will need a better way to dispatch the params to backbones / necks # backbone network: conv + transformer assert backbone_type in ['convTransformer', 'conv'] if backbone_type == 'convTransformer': self.backbone = make_backbone( 'convTransformer', **{ 'n_in' : input_dim, 'n_embd' : embd_dim, 'n_head': n_head, 'n_embd_ks': embd_kernel_size, 'max_len': max_seq_len, 'arch' : backbone_arch, 'mha_win_size': self.mha_win_size, 'scale_factor' : scale_factor, 'with_ln' : embd_with_ln, 'attn_pdrop' : 0.0, 'proj_pdrop' : self.train_dropout, 'path_pdrop' : self.train_droppath, 'use_abs_pe' : use_abs_pe, 'use_rel_pe' : use_rel_pe } ) else: self.backbone = make_backbone( 'conv', **{ 'n_in': input_dim, 'n_embd': embd_dim, 'n_embd_ks': embd_kernel_size, 'arch': backbone_arch, 'scale_factor': scale_factor, 'with_ln' : embd_with_ln } ) # fpn network: convs assert fpn_type in ['fpn', 'identity'] self.neck = make_neck( fpn_type, **{ 'in_channels' : [embd_dim] * (backbone_arch[-1] + 1), 'out_channel' : fpn_dim, 'scale_factor' : scale_factor, 'with_ln' : fpn_with_ln } ) # location generator: points self.point_generator = make_generator( 'point', **{ 'max_seq_len' : max_seq_len * max_buffer_len_factor, 'fpn_levels' : len(self.fpn_strides), 'scale_factor' : scale_factor, 'regression_range' : self.reg_range } ) # classfication and regerssion heads self.cls_head = PtTransformerClsHead( fpn_dim, head_dim, self.num_classes, kernel_size=head_kernel_size, prior_prob=self.train_cls_prior_prob, with_ln=head_with_ln, num_layers=head_num_layers, empty_cls=train_cfg['head_empty_cls'] ) self.reg_head = PtTransformerRegHead( fpn_dim, head_dim, len(self.fpn_strides), kernel_size=head_kernel_size, num_layers=head_num_layers, with_ln=head_with_ln ) # maintain an EMA of #foreground to stabilize the loss normalizer # useful for small mini-batch training self.loss_normalizer = train_cfg['init_loss_norm'] self.loss_normalizer_momentum = 0.9 @property def device(self): # a hacky way to get the device type # will throw an error if parameters are on different devices return list(set(p.device for p in self.parameters()))[0] def forward(self, video_list): # batch the video list into feats (B, C, T) and masks (B, 1, T) batched_inputs, batched_masks = self.preprocessing(video_list) # forward the network (backbone -> neck -> heads) feats, masks = self.backbone(batched_inputs, batched_masks) fpn_feats, fpn_masks = self.neck(feats, masks) # fpn_feats [16, 256, 768] ..[16, 256, 384]..[16, 256, 24] # compute the point coordinate along the FPN # this is used for computing the GT or decode the final results # points: List[T x 4] with length = # fpn levels # (shared across all samples in the mini-batch) points = self.point_generator(fpn_feats) # out_cls: List[B, #cls + 1, T_i] out_cls_logits = self.cls_head(fpn_feats, fpn_masks) # out_offset: List[B, 2, T_i] out_offsets = self.reg_head(fpn_feats, fpn_masks) # permute the outputs # out_cls: F List[B, #cls, T_i] -> F List[B, T_i, #cls] out_cls_logits = [x.permute(0, 2, 1) for x in out_cls_logits] # out_offset: F List[B, 2 (xC), T_i] -> F List[B, T_i, 2 (xC)] out_offsets = [x.permute(0, 2, 1) for x in out_offsets] # fpn_masks: F list[B, 1, T_i] -> F List[B, T_i] fpn_masks = [x.squeeze(1) for x in fpn_masks] # return loss during training if self.training: # generate segment/lable List[N x 2] / List[N] with length = B assert video_list[0]['segments'] is not None, "GT action labels does not exist" assert video_list[0]['labels'] is not None, "GT action labels does not exist" # print(video_list) gt_segments = [x['segments'].to(self.device) for x in video_list] gt_labels = [x['labels'].to(self.device) for x in video_list] # compute the gt labels for cls & reg # list of prediction targets gt_cls_labels, gt_offsets = self.label_points( points, gt_segments, gt_labels) # compute the loss and return losses = self.losses( fpn_masks, out_cls_logits, out_offsets, gt_cls_labels, gt_offsets ) return losses else: # decode the actions (sigmoid / stride, etc) results = self.inference( video_list, points, fpn_masks, out_cls_logits, out_offsets ) return results @torch.no_grad() def preprocessing(self, video_list, padding_val=0.0): """ Generate batched features and masks from a list of dict items """ feats = [x['feats'] for x in video_list] feats_lens = torch.as_tensor([feat.shape[-1] for feat in feats]) max_len = feats_lens.max(0).values.item() if self.training: assert max_len <= self.max_seq_len, "Input length must be smaller than max_seq_len during training" # set max_len to self.max_seq_len max_len = self.max_seq_len # batch input shape B, C, T batch_shape = [len(feats), feats[0].shape[0], max_len] batched_inputs = feats[0].new_full(batch_shape, padding_val) for feat, pad_feat in zip(feats, batched_inputs): pad_feat[..., :feat.shape[-1]].copy_(feat) else: assert len(video_list) == 1, "Only support batch_size = 1 during inference" # input length < self.max_seq_len, pad to max_seq_len if max_len <= self.max_seq_len: max_len = self.max_seq_len else: # pad the input to the next divisible size stride = self.max_div_factor max_len = (max_len + (stride - 1)) // stride * stride padding_size = [0, max_len - feats_lens[0]] batched_inputs = F.pad( feats[0], padding_size, value=padding_val).unsqueeze(0) # generate the mask batched_masks = torch.arange(max_len)[None, :] < feats_lens[:, None] # push to device batched_inputs = batched_inputs.to(self.device) batched_masks = batched_masks.unsqueeze(1).to(self.device) return batched_inputs, batched_masks @torch.no_grad() def label_points(self, points, gt_segments, gt_labels): # concat points on all fpn levels List[T x 4] -> F T x 4 # This is shared for all samples in the mini-batch num_levels = len(points) concat_points = torch.cat(points, dim=0) gt_cls, gt_offset = [], [] # loop over each video sample for gt_segment, gt_label in zip(gt_segments, gt_labels): cls_targets, reg_targets = self.label_points_single_video( concat_points, gt_segment, gt_label ) # append to list (len = # images, each of size FT x C) gt_cls.append(cls_targets) gt_offset.append(reg_targets) return gt_cls, gt_offset @torch.no_grad() def label_points_single_video(self, concat_points, gt_segment, gt_label): # concat_points : F T x 4 (t, regressoin range, stride) # gt_segment : N (#Events) x 2 # gt_label : N (#Events) x 1 num_pts = concat_points.shape[0] num_gts = gt_segment.shape[0] # corner case where current sample does not have actions if num_gts == 0: cls_targets = gt_segment.new_full((num_pts, self.num_classes), 0) reg_targets = gt_segment.new_zeros((num_pts, 2)) return cls_targets, reg_targets # compute the lengths of all segments -> F T x N lens = gt_segment[:, 1] - gt_segment[:, 0] lens = lens[None, :].repeat(num_pts, 1) # compute the distance of every point to each segment boundary # auto broadcasting for all reg target-> F T x N x2 gt_segs = gt_segment[None].expand(num_pts, num_gts, 2) left = concat_points[:, 0, None] - gt_segs[:, :, 0] right = gt_segs[:, :, 1] - concat_points[:, 0, None] reg_targets = torch.stack((left, right), dim=-1) if self.train_center_sample == 'radius': # center of all segments F T x N center_pts = 0.5 * (gt_segs[:, :, 0] + gt_segs[:, :, 1]) # center sampling based on stride radius # compute the new boundaries: # concat_points[:, 3] stores the stride t_mins = \ center_pts - concat_points[:, 3, None] * self.train_center_sample_radius t_maxs = \ center_pts + concat_points[:, 3, None] * self.train_center_sample_radius # prevent t_mins / maxs from over-running the action boundary # left: torch.maximum(t_mins, gt_segs[:, :, 0]) # right: torch.minimum(t_maxs, gt_segs[:, :, 1]) # F T x N (distance to the new boundary) cb_dist_left = concat_points[:, 0, None] \ - torch.maximum(t_mins, gt_segs[:, :, 0]) cb_dist_right = torch.minimum(t_maxs, gt_segs[:, :, 1]) \ - concat_points[:, 0, None] # F T x N x 2 center_seg = torch.stack( (cb_dist_left, cb_dist_right), -1) # F T x N inside_gt_seg_mask = center_seg.min(-1)[0] > 0 else: # inside an gt action inside_gt_seg_mask = reg_targets.min(-1)[0] > 0 # limit the regression range for each location max_regress_distance = reg_targets.max(-1)[0] # F T x N inside_regress_range = torch.logical_and( (max_regress_distance >= concat_points[:, 1, None]), (max_regress_distance <= concat_points[:, 2, None]) ) # if there are still more than one actions for one moment # pick the one with the shortest duration (easiest to regress) lens.masked_fill_(inside_gt_seg_mask==0, float('inf')) lens.masked_fill_(inside_regress_range==0, float('inf')) # F T x N -> F T min_len, min_len_inds = lens.min(dim=1) # corner case: multiple actions with very similar durations (e.g., THUMOS14) min_len_mask = torch.logical_and( (lens <= (min_len[:, None] + 1e-3)), (lens < float('inf')) ).to(reg_targets.dtype) # cls_targets: F T x C; reg_targets F T x 2 gt_label_one_hot = F.one_hot( gt_label, self.num_classes ).to(reg_targets.dtype) cls_targets = min_len_mask @ gt_label_one_hot # to prevent multiple GT actions with the same label and boundaries cls_targets.clamp_(min=0.0, max=1.0) # OK to use min_len_inds reg_targets = reg_targets[range(num_pts), min_len_inds] # normalization based on stride reg_targets /= concat_points[:, 3, None] return cls_targets, reg_targets def losses( self, fpn_masks, out_cls_logits, out_offsets, gt_cls_labels, gt_offsets ): # self.criterion_KL = nn.KLDivLoss(reduction='batchmean', log_target=True) # kl_loss=[] # for ii in range(len(out_cls_logits)-1): # outputs=out_cls_logits[ii][:,::2,:] # targets=out_cls_logits[ii+1] # outputs = F.softmax(outputs, dim=2) # targets = F.softmax(targets, dim=2) # loss1 = self.criterion_KL(outputs, targets) # loss2 = self.criterion_KL(targets, outputs) # kl_loss.append(loss1*0.2 + loss2*0.2) # fpn_masks, out_*: F (List) [B, T_i, C] # gt_* : B (list) [F T, C] # fpn_masks -> (B, FT) valid_mask = torch.cat(fpn_masks, dim=1) # 1. classification loss # stack the list -> (B, FT) -> (# Valid, ) gt_cls = torch.stack(gt_cls_labels) pos_mask = torch.logical_and((gt_cls.sum(-1) > 0), valid_mask) # cat the predicted offsets -> (B, FT, 2 (xC)) -> # (#Pos, 2 (xC)) pred_offsets = torch.cat(out_offsets, dim=1)[pos_mask] gt_offsets = torch.stack(gt_offsets)[pos_mask] # update the loss normalizer num_pos = pos_mask.sum().item() self.loss_normalizer = self.loss_normalizer_momentum * self.loss_normalizer + ( 1 - self.loss_normalizer_momentum ) * max(num_pos, 1) # gt_cls is already one hot encoded now, simply masking out gt_target = gt_cls[valid_mask] # optinal label smoothing gt_target *= 1 - self.train_label_smoothing gt_target += self.train_label_smoothing / (self.num_classes + 1) # focal loss cls_loss = sigmoid_focal_loss( torch.cat(out_cls_logits, dim=1)[valid_mask], gt_target, reduction='sum' ) cls_loss /= self.loss_normalizer # 2. regression using IoU/GIoU loss (defined on positive samples) if num_pos == 0: reg_loss = 0 * pred_offsets.sum() else: # giou loss defined on positive samples reg_loss = ctr_diou_loss_1d( pred_offsets, gt_offsets, reduction='sum' ) reg_loss /= self.loss_normalizer if self.train_loss_weight > 0: loss_weight = self.train_loss_weight else: loss_weight = cls_loss.detach() / max(reg_loss.item(), 0.01) # return a dict of losses final_loss = cls_loss + reg_loss * loss_weight # for kl in kl_loss: # final_loss=final_loss+kl return {'cls_loss' : cls_loss, 'reg_loss' : reg_loss, 'final_loss' : final_loss} @torch.no_grad() def inference( self, video_list, points, fpn_masks, out_cls_logits, out_offsets ): # video_list B (list) [dict] # points F (list) [T_i, 4] # fpn_masks, out_*: F (List) [B, T_i, C] results = [] # 1: gather video meta information vid_idxs = [x['video_id'] for x in video_list] vid_fps = [x['fps'] for x in video_list] vid_lens = [x['duration'] for x in video_list] vid_ft_stride = [x['feat_stride'] for x in video_list] vid_ft_nframes = [x['feat_num_frames'] for x in video_list] # 2: inference on each single video and gather the results # upto this point, all results use timestamps defined on feature grids for idx, (vidx, fps, vlen, stride, nframes) in enumerate( zip(vid_idxs, vid_fps, vid_lens, vid_ft_stride, vid_ft_nframes) ): # gather per-video outputs cls_logits_per_vid = [x[idx] for x in out_cls_logits] offsets_per_vid = [x[idx] for x in out_offsets] fpn_masks_per_vid = [x[idx] for x in fpn_masks] # inference on a single video (should always be the case) results_per_vid = self.inference_single_video( points, fpn_masks_per_vid, cls_logits_per_vid, offsets_per_vid ) # pass through video meta info results_per_vid['video_id'] = vidx results_per_vid['fps'] = fps results_per_vid['duration'] = vlen results_per_vid['feat_stride'] = stride results_per_vid['feat_num_frames'] = nframes results.append(results_per_vid) # step 3: postprocssing results = self.postprocessing(results) return results @torch.no_grad() def inference_single_video( self, points, fpn_masks, out_cls_logits, out_offsets, ): # points F (list) [T_i, 4] # fpn_masks, out_*: F (List) [T_i, C] segs_all = [] scores_all = [] cls_idxs_all = [] # loop over fpn levels for cls_i, offsets_i, pts_i, mask_i in zip( out_cls_logits, out_offsets, points, fpn_masks ): # sigmoid normalization for output logits pred_prob = (cls_i.sigmoid() * mask_i.unsqueeze(-1)).flatten() # Apply filtering to make NMS faster following detectron2 # 1. Keep seg with confidence score > a threshold keep_idxs1 = (pred_prob > self.test_pre_nms_thresh) pred_prob = pred_prob[keep_idxs1] topk_idxs = keep_idxs1.nonzero(as_tuple=True)[0] # 2. Keep top k top scoring boxes only num_topk = min(self.test_pre_nms_topk, topk_idxs.size(0)) pred_prob, idxs = pred_prob.sort(descending=True) pred_prob = pred_prob[:num_topk].clone() topk_idxs = topk_idxs[idxs[:num_topk]].clone() # fix a warning in pytorch 1.9 pt_idxs = torch.div( topk_idxs, self.num_classes, rounding_mode='floor' ) cls_idxs = torch.fmod(topk_idxs, self.num_classes) # 3. gather predicted offsets offsets = offsets_i[pt_idxs] pts = pts_i[pt_idxs] # 4. compute predicted segments (denorm by stride for output offsets) seg_left = pts[:, 0] - offsets[:, 0] * pts[:, 3] seg_right = pts[:, 0] + offsets[:, 1] * pts[:, 3] pred_segs = torch.stack((seg_left, seg_right), -1) # 5. Keep seg with duration > a threshold (relative to feature grids) seg_areas = seg_right - seg_left keep_idxs2 = seg_areas > self.test_duration_thresh # *_all : N (filtered # of segments) x 2 / 1 segs_all.append(pred_segs[keep_idxs2]) scores_all.append(pred_prob[keep_idxs2]) cls_idxs_all.append(cls_idxs[keep_idxs2]) # cat along the FPN levels (F N_i, C) segs_all, scores_all, cls_idxs_all = [ torch.cat(x) for x in [segs_all, scores_all, cls_idxs_all] ] results = {'segments' : segs_all, 'scores' : scores_all, 'labels' : cls_idxs_all} return results @torch.no_grad() def postprocessing(self, results): # input : list of dictionary items # (1) push to CPU; (2) NMS; (3) convert to actual time stamps processed_results = [] for results_per_vid in results: # unpack the meta info vidx = results_per_vid['video_id'] fps = results_per_vid['fps'] vlen = float(results_per_vid['duration']) stride = results_per_vid['feat_stride'] nframes = results_per_vid['feat_num_frames'] # 1: unpack the results and move to CPU segs = results_per_vid['segments'].detach().cpu() scores = results_per_vid['scores'].detach().cpu() labels = results_per_vid['labels'].detach().cpu() if self.test_nms_method != 'none': # 2: batched nms (only implemented on CPU) segs, scores, labels = batched_nms( segs, scores, labels, self.test_iou_threshold, self.test_min_score, self.test_max_seg_num, use_soft_nms = (self.test_nms_method == 'soft'), multiclass = self.test_multiclass_nms, sigma = self.test_nms_sigma, voting_thresh = self.test_voting_thresh ) # 3: convert from feature grids to seconds if segs.shape[0] > 0: segs = (segs * stride + 0.5 * nframes) / fps # truncate all boundaries within [0, duration] segs[segs<=0.0] *= 0.0 segs[segs>=vlen] = segs[segs>=vlen] * 0.0 + vlen # 4: repack the results processed_results.append( {'video_id' : vidx, 'segments' : segs, 'scores' : scores, 'labels' : labels} ) return processed_results
InternVideo-main
Downstream/Temporal-Action-Localization/libs/modeling/meta_archs.py
from .blocks import (MaskedConv1D, MaskedMHCA, MaskedMHA, LayerNorm, TransformerBlock, ConvBlock, Scale, AffineDropPath) from .models import make_backbone, make_neck, make_meta_arch, make_generator from . import backbones # backbones from . import necks # necks from . import loc_generators # location generators from . import meta_archs # full models __all__ = ['MaskedConv1D', 'MaskedMHCA', 'MaskedMHA', 'LayerNorm' 'TransformerBlock', 'ConvBlock', 'Scale', 'AffineDropPath', 'make_backbone', 'make_neck', 'make_meta_arch', 'make_generator']
InternVideo-main
Downstream/Temporal-Action-Localization/libs/modeling/__init__.py
import torch from torch import nn from torch.nn import functional as F from .models import register_backbone from .blocks import (get_sinusoid_encoding, TransformerBlock, MaskedConv1D, ConvBlock, LayerNorm) @register_backbone("convTransformer") class ConvTransformerBackbone(nn.Module): """ A backbone that combines convolutions with transformers """ def __init__( self, n_in, # input feature dimension n_embd, # embedding dimension (after convolution) n_head, # number of head for self-attention in transformers n_embd_ks, # conv kernel size of the embedding network max_len, # max sequence length arch = (2, 2, 5), # (#convs, #stem transformers, #branch transformers) mha_win_size = [-1]*6, # size of local window for mha scale_factor = 2, # dowsampling rate for the branch, with_ln = False, # if to attach layernorm after conv attn_pdrop = 0.0, # dropout rate for the attention map proj_pdrop = 0.0, # dropout rate for the projection / MLP path_pdrop = 0.0, # droput rate for drop path use_abs_pe = False, # use absolute position embedding use_rel_pe = False, # use relative position embedding ): super().__init__() assert len(arch) == 3 assert len(mha_win_size) == (1 + arch[2]) self.arch = arch self.mha_win_size = mha_win_size self.max_len = max_len self.relu = nn.ReLU(inplace=True) self.scale_factor = scale_factor self.use_abs_pe = use_abs_pe self.use_rel_pe = use_rel_pe # position embedding (1, C, T), rescaled by 1/sqrt(n_embd) if self.use_abs_pe: pos_embd = get_sinusoid_encoding(self.max_len, n_embd) / (n_embd**0.5) self.register_buffer("pos_embd", pos_embd, persistent=False) # embedding network using convs self.embd = nn.ModuleList() self.embd_norm = nn.ModuleList() for idx in range(arch[0]): if idx == 0: in_channels = n_in else: in_channels = n_embd self.embd.append(MaskedConv1D( in_channels, n_embd, n_embd_ks, stride=1, padding=n_embd_ks//2, bias=(not with_ln) ) ) if with_ln: self.embd_norm.append( LayerNorm(n_embd) ) else: self.embd_norm.append(nn.Identity()) # stem network using (vanilla) transformer self.stem = nn.ModuleList() for idx in range(arch[1]): self.stem.append(TransformerBlock( n_embd, n_head, n_ds_strides=(1, 1), attn_pdrop=attn_pdrop, proj_pdrop=proj_pdrop, path_pdrop=path_pdrop, mha_win_size=self.mha_win_size[0], use_rel_pe=self.use_rel_pe ) ) # main branch using transformer with pooling self.branch = nn.ModuleList() for idx in range(arch[2]): self.branch.append(TransformerBlock( n_embd, n_head, n_ds_strides=(self.scale_factor, self.scale_factor), attn_pdrop=attn_pdrop, proj_pdrop=proj_pdrop, path_pdrop=path_pdrop, mha_win_size=self.mha_win_size[1+idx], use_rel_pe=self.use_rel_pe ) ) # init weights self.apply(self.__init_weights__) def __init_weights__(self, module): # set nn.Linear/nn.Conv1d bias term to 0 if isinstance(module, (nn.Linear, nn.Conv1d)): if module.bias is not None: torch.nn.init.constant_(module.bias, 0.) def forward(self, x, mask): # x: batch size, feature channel, sequence length, # mask: batch size, 1, sequence length (bool) B, C, T = x.size() # embedding network for idx in range(len(self.embd)): x, mask = self.embd[idx](x, mask) x = self.relu(self.embd_norm[idx](x)) # training: using fixed length position embeddings if self.use_abs_pe and self.training: assert T <= self.max_len, "Reached max length." pe = self.pos_embd # add pe to x x = x + pe[:, :, :T] * mask.to(x.dtype) # inference: re-interpolate position embeddings for over-length sequences if self.use_abs_pe and (not self.training): if T >= self.max_len: pe = F.interpolate( self.pos_embd, T, mode='linear', align_corners=False) else: pe = self.pos_embd # add pe to x x = x + pe[:, :, :T] * mask.to(x.dtype) # stem transformer for idx in range(len(self.stem)): x, mask = self.stem[idx](x, mask) # prep for outputs out_feats = tuple() out_masks = tuple() # 1x resolution out_feats += (x, ) out_masks += (mask, ) # main branch with downsampling for idx in range(len(self.branch)): x, mask = self.branch[idx](x, mask) out_feats += (x, ) out_masks += (mask, ) return out_feats, out_masks @register_backbone("conv") class ConvBackbone(nn.Module): """ A backbone that with only conv """ def __init__( self, n_in, # input feature dimension n_embd, # embedding dimension (after convolution) n_embd_ks, # conv kernel size of the embedding network arch = (2, 2, 5), # (#convs, #stem convs, #branch convs) scale_factor = 2, # dowsampling rate for the branch with_ln=False, # if to use layernorm ): super().__init__() assert len(arch) == 3 self.arch = arch self.relu = nn.ReLU(inplace=True) self.scale_factor = scale_factor # embedding network using convs self.embd = nn.ModuleList() self.embd_norm = nn.ModuleList() for idx in range(arch[0]): if idx == 0: in_channels = n_in else: in_channels = n_embd self.embd.append(MaskedConv1D( in_channels, n_embd, n_embd_ks, stride=1, padding=n_embd_ks//2, bias=(not with_ln) ) ) if with_ln: self.embd_norm.append( LayerNorm(n_embd) ) else: self.embd_norm.append(nn.Identity()) # stem network using (vanilla) transformer self.stem = nn.ModuleList() for idx in range(arch[1]): self.stem.append(ConvBlock(n_embd, 3, 1)) # main branch using transformer with pooling self.branch = nn.ModuleList() for idx in range(arch[2]): self.branch.append(ConvBlock(n_embd, 3, self.scale_factor)) # init weights self.apply(self.__init_weights__) def __init_weights__(self, module): # set nn.Linear bias term to 0 if isinstance(module, (nn.Linear, nn.Conv1d)): if module.bias is not None: torch.nn.init.constant_(module.bias, 0.) def forward(self, x, mask): # x: batch size, feature channel, sequence length, # mask: batch size, 1, sequence length (bool) B, C, T = x.size() # embedding network for idx in range(len(self.embd)): x, mask = self.embd[idx](x, mask) x = self.relu(self.embd_norm[idx](x)) # stem conv for idx in range(len(self.stem)): x, mask = self.stem[idx](x, mask) # prep for outputs out_feats = tuple() out_masks = tuple() # 1x resolution out_feats += (x, ) out_masks += (mask, ) # main branch with downsampling for idx in range(len(self.branch)): x, mask = self.branch[idx](x, mask) out_feats += (x, ) out_masks += (mask, ) return out_feats, out_masks
InternVideo-main
Downstream/Temporal-Action-Localization/libs/modeling/backbones.py
import torch from torch import nn from torch.nn import functional as F from .models import register_neck from .blocks import MaskedConv1D, LayerNorm @register_neck("fpn") class FPN1D(nn.Module): """ Feature pyramid network """ def __init__( self, in_channels, # input feature channels, len(in_channels) = # levels out_channel, # output feature channel scale_factor=2.0, # downsampling rate between two fpn levels start_level=0, # start fpn level end_level=-1, # end fpn level with_ln=True # if to apply layer norm at the end ): super().__init__() assert isinstance(in_channels, list) or isinstance(in_channels, tuple) self.in_channels = in_channels self.out_channel = out_channel self.scale_factor = scale_factor self.start_level = start_level if end_level == -1: self.end_level = len(in_channels) else: self.end_level = end_level assert self.end_level <= len(in_channels) assert (self.start_level >= 0) and (self.start_level < self.end_level) self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() self.fpn_norms = nn.ModuleList() for i in range(self.start_level, self.end_level): # disable bias if using layer norm l_conv = MaskedConv1D( in_channels[i], out_channel, 1, bias=(not with_ln)) # use depthwise conv here for efficiency fpn_conv = MaskedConv1D( out_channel, out_channel, 3, padding=1, bias=(not with_ln), groups=out_channel ) # layer norm for order (B C T) if with_ln: fpn_norm = LayerNorm(out_channel) else: fpn_norm = nn.Identity() self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_norms.append(fpn_norm) def forward(self, inputs, fpn_masks): # inputs must be a list / tuple assert len(inputs) == len(self.in_channels) assert len(fpn_masks) == len(self.in_channels) # build laterals, fpn_masks will remain the same with 1x1 convs laterals = [] for i in range(len(self.lateral_convs)): x, _ = self.lateral_convs[i]( inputs[i + self.start_level], fpn_masks[i + self.start_level] ) laterals.append(x) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): laterals[i-1] += F.interpolate( laterals[i], scale_factor=self.scale_factor, mode='nearest' ) # fpn conv / norm -> outputs # mask will remain the same fpn_feats = tuple() for i in range(used_backbone_levels): x, _ = self.fpn_convs[i]( laterals[i], fpn_masks[i + self.start_level]) x = self.fpn_norms[i](x) fpn_feats += (x, ) return fpn_feats, fpn_masks @register_neck('identity') class FPNIdentity(nn.Module): def __init__( self, in_channels, # input feature channels, len(in_channels) = # levels out_channel, # output feature channel scale_factor=2.0, # downsampling rate between two fpn levels start_level=0, # start fpn level end_level=-1, # end fpn level with_ln=True # if to apply layer norm at the end ): super().__init__() self.in_channels = in_channels self.out_channel = out_channel self.scale_factor = scale_factor self.start_level = start_level if end_level == -1: self.end_level = len(in_channels) else: self.end_level = end_level assert self.end_level <= len(in_channels) assert (self.start_level >= 0) and (self.start_level < self.end_level) self.fpn_norms = nn.ModuleList() for i in range(self.start_level, self.end_level): # check feat dims assert self.in_channels[i + self.start_level] == self.out_channel # layer norm for order (B C T) if with_ln: fpn_norm = LayerNorm(out_channel) else: fpn_norm = nn.Identity() self.fpn_norms.append(fpn_norm) def forward(self, inputs, fpn_masks): # inputs must be a list / tuple assert len(inputs) == len(self.in_channels) assert len(fpn_masks) == len(self.in_channels) # apply norms, fpn_masks will remain the same with 1x1 convs fpn_feats = tuple() for i in range(len(self.fpn_norms)): x = self.fpn_norms[i](inputs[i + self.start_level]) fpn_feats += (x, ) return fpn_feats, fpn_masks
InternVideo-main
Downstream/Temporal-Action-Localization/libs/modeling/necks.py
import torch from torch.nn import functional as F @torch.jit.script def sigmoid_focal_loss( inputs: torch.Tensor, targets: torch.Tensor, alpha: float = 0.25, gamma: float = 2.0, reduction: str = "none", ) -> torch.Tensor: """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Taken from https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/focal_loss.py # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = 0.25 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. Returns: Loss tensor with the reduction option applied. """ inputs = inputs.float() targets = targets.float() p = torch.sigmoid(inputs) ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = p * targets + (1 - p) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss if reduction == "mean": loss = loss.mean() elif reduction == "sum": loss = loss.sum() return loss @torch.jit.script def ctr_giou_loss_1d( input_offsets: torch.Tensor, target_offsets: torch.Tensor, reduction: str = 'none', eps: float = 1e-8, ) -> torch.Tensor: """ Generalized Intersection over Union Loss (Hamid Rezatofighi et. al) https://arxiv.org/abs/1902.09630 This is an implementation that assumes a 1D event is represented using the same center point with different offsets, e.g., (t1, t2) = (c - o_1, c + o_2) with o_i >= 0 Reference code from https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/giou_loss.py Args: input/target_offsets (Tensor): 1D offsets of size (N, 2) reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. eps (float): small number to prevent division by zero """ input_offsets = input_offsets.float() target_offsets = target_offsets.float() # check all 1D events are valid assert (input_offsets >= 0.0).all(), "predicted offsets must be non-negative" assert (target_offsets >= 0.0).all(), "GT offsets must be non-negative" lp, rp = input_offsets[:, 0], input_offsets[:, 1] lg, rg = target_offsets[:, 0], target_offsets[:, 1] # intersection key points lkis = torch.min(lp, lg) rkis = torch.min(rp, rg) # iou intsctk = rkis + lkis unionk = (lp + rp) + (lg + rg) - intsctk iouk = intsctk / unionk.clamp(min=eps) # giou is reduced to iou in our setting, skip unnecessary steps loss = 1.0 - iouk if reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() return loss @torch.jit.script def ctr_diou_loss_1d( input_offsets: torch.Tensor, target_offsets: torch.Tensor, reduction: str = 'none', eps: float = 1e-8, ) -> torch.Tensor: """ Distance-IoU Loss (Zheng et. al) https://arxiv.org/abs/1911.08287 This is an implementation that assumes a 1D event is represented using the same center point with different offsets, e.g., (t1, t2) = (c - o_1, c + o_2) with o_i >= 0 Reference code from https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/giou_loss.py Args: input/target_offsets (Tensor): 1D offsets of size (N, 2) reduction: 'none' | 'mean' | 'sum' 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. eps (float): small number to prevent division by zero """ input_offsets = input_offsets.float() target_offsets = target_offsets.float() # check all 1D events are valid assert (input_offsets >= 0.0).all(), "predicted offsets must be non-negative" assert (target_offsets >= 0.0).all(), "GT offsets must be non-negative" lp, rp = input_offsets[:, 0], input_offsets[:, 1] lg, rg = target_offsets[:, 0], target_offsets[:, 1] # intersection key points lkis = torch.min(lp, lg) rkis = torch.min(rp, rg) # iou intsctk = rkis + lkis unionk = (lp + rp) + (lg + rg) - intsctk iouk = intsctk / unionk.clamp(min=eps) # smallest enclosing box lc = torch.max(lp, lg) rc = torch.max(rp, rg) len_c = lc + rc # offset between centers rho = 0.5 * (rp - lp - rg + lg) # diou loss = 1.0 - iouk + torch.square(rho / len_c.clamp(min=eps)) if reduction == "mean": loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() elif reduction == "sum": loss = loss.sum() return loss
InternVideo-main
Downstream/Temporal-Action-Localization/libs/modeling/losses.py
import torch from torch import nn from torch.nn import functional as F from .models import register_generator class BufferList(nn.Module): """ Similar to nn.ParameterList, but for buffers Taken from https://github.com/facebookresearch/detectron2/blob/master/detectron2/modeling/anchor_generator.py """ def __init__(self, buffers): super().__init__() for i, buffer in enumerate(buffers): # Use non-persistent buffer so the values are not saved in checkpoint self.register_buffer(str(i), buffer, persistent=False) def __len__(self): return len(self._buffers) def __iter__(self): return iter(self._buffers.values()) @register_generator('point') class PointGenerator(nn.Module): """ A generator for temporal "points" max_seq_len can be much larger than the actual seq length """ def __init__( self, max_seq_len, # max sequence length that the generator will buffer fpn_levels, # number of fpn levels scale_factor, # scale factor between two fpn levels regression_range, # regression range (on feature grids) use_offset=False # if to align the points at grid centers ): super().__init__() # sanity check, # fpn levels and length divisible assert len(regression_range) == fpn_levels assert max_seq_len % scale_factor**(fpn_levels - 1) == 0 # save params self.max_seq_len = max_seq_len self.fpn_levels = fpn_levels self.scale_factor = scale_factor self.regression_range = regression_range self.use_offset = use_offset # generate all points and buffer the list self.buffer_points = self._generate_points() def _generate_points(self): points_list = [] # loop over all points at each pyramid level for l in range(self.fpn_levels): stride = self.scale_factor ** l reg_range = torch.as_tensor( self.regression_range[l], dtype=torch.float) fpn_stride = torch.as_tensor(stride, dtype=torch.float) points = torch.arange(0, self.max_seq_len, stride)[:, None] # add offset if necessary (not in our current model) if self.use_offset: points += 0.5 * stride # pad the time stamp with additional regression range / stride reg_range = reg_range[None].repeat(points.shape[0], 1) fpn_stride = fpn_stride[None].repeat(points.shape[0], 1) # size: T x 4 (ts, reg_range, stride) points_list.append(torch.cat((points, reg_range, fpn_stride), dim=1)) return BufferList(points_list) def forward(self, feats): # feats will be a list of torch tensors assert len(feats) == self.fpn_levels pts_list = [] feat_lens = [feat.shape[-1] for feat in feats] for feat_len, buffer_pts in zip(feat_lens, self.buffer_points): assert feat_len <= buffer_pts.shape[0], "Reached max buffer length for point generator" pts = buffer_pts[:feat_len, :] pts_list.append(pts) return pts_list
InternVideo-main
Downstream/Temporal-Action-Localization/libs/modeling/loc_generators.py
import math import numpy as np import torch import torch.nn.functional as F from torch import nn from .weight_init import trunc_normal_ class MaskedConv1D(nn.Module): """ Masked 1D convolution. Interface remains the same as Conv1d. Only support a sub set of 1d convs """ def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros' ): super().__init__() # element must be aligned assert (kernel_size % 2 == 1) and (kernel_size // 2 == padding) # stride self.stride = stride self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode) # zero out the bias term if it exists if bias: torch.nn.init.constant_(self.conv.bias, 0.) def forward(self, x, mask): # x: batch size, feature channel, sequence length, # mask: batch size, 1, sequence length (bool) B, C, T = x.size() # input length must be divisible by stride assert T % self.stride == 0 # conv out_conv = self.conv(x) # compute the mask if self.stride > 1: # downsample the mask using nearest neighbor out_mask = F.interpolate( mask.to(x.dtype), size=T//self.stride, mode='nearest' ) else: # masking out the features out_mask = mask.to(x.dtype) # masking the output, stop grad to mask out_conv = out_conv * out_mask.detach() out_mask = out_mask.bool() return out_conv, out_mask class LayerNorm(nn.Module): """ LayerNorm that supports inputs of size B, C, T """ def __init__( self, num_channels, eps = 1e-5, affine = True, device = None, dtype = None, ): super().__init__() factory_kwargs = {'device': device, 'dtype': dtype} self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = nn.Parameter( torch.ones([1, num_channels, 1], **factory_kwargs)) self.bias = nn.Parameter( torch.zeros([1, num_channels, 1], **factory_kwargs)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) def forward(self, x): assert x.dim() == 3 assert x.shape[1] == self.num_channels # normalization along C channels mu = torch.mean(x, dim=1, keepdim=True) res_x = x - mu sigma = torch.mean(res_x**2, dim=1, keepdim=True) out = res_x / torch.sqrt(sigma + self.eps) # apply weight and bias if self.affine: out *= self.weight out += self.bias return out # helper functions for Transformer blocks def get_sinusoid_encoding(n_position, d_hid): ''' Sinusoid position encoding table ''' def get_position_angle_vec(position): return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 # return a tensor of size 1 C T return torch.FloatTensor(sinusoid_table).unsqueeze(0).transpose(1, 2) # attention / transformers class MaskedMHA(nn.Module): """ Multi Head Attention with mask Modified from https://github.com/karpathy/minGPT/blob/master/mingpt/model.py """ def __init__( self, n_embd, # dimension of the input embedding n_head, # number of heads in multi-head self-attention attn_pdrop=0.0, # dropout rate for the attention map proj_pdrop=0.0 # dropout rate for projection op ): super().__init__() assert n_embd % n_head == 0 self.n_embd = n_embd self.n_head = n_head self.n_channels = n_embd // n_head self.scale = 1.0 / math.sqrt(self.n_channels) # key, query, value projections for all heads # it is OK to ignore masking, as the mask will be attached on the attention self.key = nn.Conv1d(self.n_embd, self.n_embd, 1) self.query = nn.Conv1d(self.n_embd, self.n_embd, 1) self.value = nn.Conv1d(self.n_embd, self.n_embd, 1) # regularization self.attn_drop = nn.Dropout(attn_pdrop) self.proj_drop = nn.Dropout(proj_pdrop) # output projection self.proj = nn.Conv1d(self.n_embd, self.n_embd, 1) def forward(self, x, mask): # x: batch size, feature channel, sequence length, # mask: batch size, 1, sequence length (bool) B, C, T = x.size() # calculate query, key, values for all heads in batch # (B, nh * hs, T) k = self.key(x) q = self.query(x) v = self.value(x) # move head forward to be the batch dim # (B, nh * hs, T) -> (B, nh, T, hs) k = k.view(B, self.n_head, self.n_channels, -1).transpose(2, 3) q = q.view(B, self.n_head, self.n_channels, -1).transpose(2, 3) v = v.view(B, self.n_head, self.n_channels, -1).transpose(2, 3) # self-attention: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) att = (q * self.scale) @ k.transpose(-2, -1) # prevent q from attending to invalid tokens att = att.masked_fill(torch.logical_not(mask[:, :, None, :]), float('-inf')) # softmax attn att = F.softmax(att, dim=-1) att = self.attn_drop(att) # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) out = att @ (v * mask[:, :, :, None].to(v.dtype)) # re-assemble all head outputs side by side out = out.transpose(2, 3).contiguous().view(B, C, -1) # output projection + skip connection out = self.proj_drop(self.proj(out)) * mask.to(out.dtype) return out, mask class MaskedMHCA(nn.Module): """ Multi Head Conv Attention with mask Add a depthwise convolution within a standard MHA The extra conv op can be used to (1) encode relative position information (relacing position encoding); (2) downsample the features if needed; (3) match the feature channels Note: With current implementation, the downsampled feature will be aligned to every s+1 time step, where s is the downsampling stride. This allows us to easily interpolate the corresponding positional embeddings. Modified from https://github.com/karpathy/minGPT/blob/master/mingpt/model.py """ def __init__( self, n_embd, # dimension of the output features n_head, # number of heads in multi-head self-attention n_qx_stride=1, # dowsampling stride for query and input n_kv_stride=1, # downsampling stride for key and value attn_pdrop=0.0, # dropout rate for the attention map proj_pdrop=0.0, # dropout rate for projection op ): super().__init__() assert n_embd % n_head == 0 self.n_embd = n_embd self.n_head = n_head self.n_channels = n_embd // n_head self.scale = 1.0 / math.sqrt(self.n_channels) # conv/pooling operations assert (n_qx_stride == 1) or (n_qx_stride % 2 == 0) assert (n_kv_stride == 1) or (n_kv_stride % 2 == 0) self.n_qx_stride = n_qx_stride self.n_kv_stride = n_kv_stride # query conv (depthwise) kernel_size = self.n_qx_stride + 1 if self.n_qx_stride > 1 else 3 stride, padding = self.n_kv_stride, kernel_size // 2 # 1d depthwise conv self.query_conv = MaskedConv1D( self.n_embd, self.n_embd, kernel_size, stride=stride, padding=padding, groups=self.n_embd, bias=False ) # layernorm self.query_norm = LayerNorm(self.n_embd) # key, value conv (depthwise) kernel_size = self.n_kv_stride + 1 if self.n_kv_stride > 1 else 3 stride, padding = self.n_kv_stride, kernel_size // 2 # 1d depthwise conv self.key_conv = MaskedConv1D( self.n_embd, self.n_embd, kernel_size, stride=stride, padding=padding, groups=self.n_embd, bias=False ) self.key_norm = LayerNorm(self.n_embd) self.value_conv = MaskedConv1D( self.n_embd, self.n_embd, kernel_size, stride=stride, padding=padding, groups=self.n_embd, bias=False ) # layernorm self.value_norm = LayerNorm(self.n_embd) # key, query, value projections for all heads # it is OK to ignore masking, as the mask will be attached on the attention self.key = nn.Conv1d(self.n_embd, self.n_embd, 1) self.query = nn.Conv1d(self.n_embd, self.n_embd, 1) self.value = nn.Conv1d(self.n_embd, self.n_embd, 1) # regularization self.attn_drop = nn.Dropout(attn_pdrop) self.proj_drop = nn.Dropout(proj_pdrop) # output projection self.proj = nn.Conv1d(self.n_embd, self.n_embd, 1) def forward(self, x, mask): # x: batch size, feature channel, sequence length, # mask: batch size, 1, sequence length (bool) B, C, T = x.size() # query conv -> (B, nh * hs, T') q, qx_mask = self.query_conv(x, mask) q = self.query_norm(q) # key, value conv -> (B, nh * hs, T'') k, kv_mask = self.key_conv(x, mask) k = self.key_norm(k) v, _ = self.value_conv(x, mask) v = self.value_norm(v) # projections q = self.query(q) k = self.key(k) v = self.value(v) # move head forward to be the batch dim # (B, nh * hs, T'/T'') -> (B, nh, T'/T'', hs) k = k.view(B, self.n_head, self.n_channels, -1).transpose(2, 3) q = q.view(B, self.n_head, self.n_channels, -1).transpose(2, 3) v = v.view(B, self.n_head, self.n_channels, -1).transpose(2, 3) # self-attention: (B, nh, T', hs) x (B, nh, hs, T'') -> (B, nh, T', T'') att = (q * self.scale) @ k.transpose(-2, -1) # prevent q from attending to invalid tokens att = att.masked_fill(torch.logical_not(kv_mask[:, :, None, :]), float('-inf')) # softmax attn att = F.softmax(att, dim=-1) att = self.attn_drop(att) # (B, nh, T', T'') x (B, nh, T'', hs) -> (B, nh, T', hs) out = att @ (v * kv_mask[:, :, :, None].to(v.dtype)) # re-assemble all head outputs side by side out = out.transpose(2, 3).contiguous().view(B, C, -1) # output projection + skip connection out = self.proj_drop(self.proj(out)) * qx_mask.to(out.dtype) return out, qx_mask class LocalMaskedMHCA(nn.Module): """ Local Multi Head Conv Attention with mask Add a depthwise convolution within a standard MHA The extra conv op can be used to (1) encode relative position information (relacing position encoding); (2) downsample the features if needed; (3) match the feature channels Note: With current implementation, the downsampled feature will be aligned to every s+1 time step, where s is the downsampling stride. This allows us to easily interpolate the corresponding positional embeddings. The implementation is fairly tricky, code reference from https://github.com/huggingface/transformers/blob/master/src/transformers/models/longformer/modeling_longformer.py """ def __init__( self, n_embd, # dimension of the output features n_head, # number of heads in multi-head self-attention window_size, # size of the local attention window n_qx_stride=1, # dowsampling stride for query and input n_kv_stride=1, # downsampling stride for key and value attn_pdrop=0.0, # dropout rate for the attention map proj_pdrop=0.0, # dropout rate for projection op use_rel_pe=False # use relative position encoding ): super().__init__() assert n_embd % n_head == 0 self.n_embd = n_embd self.n_head = n_head self.n_channels = n_embd // n_head self.scale = 1.0 / math.sqrt(self.n_channels) self.window_size = window_size self.window_overlap = window_size // 2 # must use an odd window size assert self.window_size > 1 and self.n_head >= 1 self.use_rel_pe = use_rel_pe # conv/pooling operations assert (n_qx_stride == 1) or (n_qx_stride % 2 == 0) assert (n_kv_stride == 1) or (n_kv_stride % 2 == 0) self.n_qx_stride = n_qx_stride self.n_kv_stride = n_kv_stride # query conv (depthwise) kernel_size = self.n_qx_stride + 1 if self.n_qx_stride > 1 else 3 stride, padding = self.n_kv_stride, kernel_size // 2 # 1d depthwise conv self.query_conv = MaskedConv1D( self.n_embd, self.n_embd, kernel_size, stride=stride, padding=padding, groups=self.n_embd, bias=False ) # layernorm self.query_norm = LayerNorm(self.n_embd) # key, value conv (depthwise) kernel_size = self.n_kv_stride + 1 if self.n_kv_stride > 1 else 3 stride, padding = self.n_kv_stride, kernel_size // 2 # 1d depthwise conv self.key_conv = MaskedConv1D( self.n_embd, self.n_embd, kernel_size, stride=stride, padding=padding, groups=self.n_embd, bias=False ) self.key_norm = LayerNorm(self.n_embd) self.value_conv = MaskedConv1D( self.n_embd, self.n_embd, kernel_size, stride=stride, padding=padding, groups=self.n_embd, bias=False ) # layernorm self.value_norm = LayerNorm(self.n_embd) # key, query, value projections for all heads # it is OK to ignore masking, as the mask will be attached on the attention self.key = nn.Conv1d(self.n_embd, self.n_embd, 1) self.query = nn.Conv1d(self.n_embd, self.n_embd, 1) self.value = nn.Conv1d(self.n_embd, self.n_embd, 1) # regularization self.attn_drop = nn.Dropout(attn_pdrop) self.proj_drop = nn.Dropout(proj_pdrop) # output projection self.proj = nn.Conv1d(self.n_embd, self.n_embd, 1) # relative position encoding if self.use_rel_pe: self.rel_pe = nn.Parameter( torch.zeros(1, 1, self.n_head, self.window_size)) trunc_normal_(self.rel_pe, std=(2.0 / self.n_embd)**0.5) @staticmethod def _chunk(x, window_overlap): """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" # x: B x nh, T, hs # non-overlapping chunks of size = 2w -> B x nh, T//2w, 2w, hs x = x.view( x.size(0), x.size(1) // (window_overlap * 2), window_overlap * 2, x.size(2), ) # use `as_strided` to make the chunks overlap with an overlap size = window_overlap chunk_size = list(x.size()) chunk_size[1] = chunk_size[1] * 2 - 1 chunk_stride = list(x.stride()) chunk_stride[1] = chunk_stride[1] // 2 # B x nh, #chunks = T//w - 1, 2w, hs return x.as_strided(size=chunk_size, stride=chunk_stride) @staticmethod def _pad_and_transpose_last_two_dims(x, padding): """pads rows and then flips rows and columns""" # padding value is not important because it will be overwritten x = nn.functional.pad(x, padding) x = x.view(*x.size()[:-2], x.size(-1), x.size(-2)) return x @staticmethod def _mask_invalid_locations(input_tensor, affected_seq_len): beginning_mask_2d = input_tensor.new_ones(affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0]) beginning_mask = beginning_mask_2d[None, :, None, :] ending_mask = beginning_mask.flip(dims=(1, 3)) beginning_input = input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] beginning_mask = beginning_mask.expand(beginning_input.size()) # `== 1` converts to bool or uint8 beginning_input.masked_fill_(beginning_mask == 1, -float("inf")) ending_input = input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] ending_mask = ending_mask.expand(ending_input.size()) # `== 1` converts to bool or uint8 ending_input.masked_fill_(ending_mask == 1, -float("inf")) @staticmethod def _pad_and_diagonalize(x): """ shift every row 1 step right, converting columns into diagonals. Example:: chunked_hidden_states: [ 0.4983, 2.6918, -0.0071, 1.0492, -1.8348, 0.7672, 0.2986, 0.0285, -0.7584, 0.4206, -0.0405, 0.1599, 2.0514, -1.1600, 0.5372, 0.2629 ] window_overlap = num_rows = 4 (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] """ total_num_heads, num_chunks, window_overlap, hidden_dim = x.size() # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). x = nn.functional.pad( x, (0, window_overlap + 1) ) # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap x = x.view(total_num_heads, num_chunks, -1) # total_num_heads x num_chunks x window_overlap*window_overlap x = x[:, :, :-window_overlap] x = x.view( total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim ) x = x[:, :, :, :-1] return x def _sliding_chunks_query_key_matmul( self, query, key, num_heads, window_overlap ): """ Matrix multiplication of query and key tensors using with a sliding window attention pattern. This implementation splits the input into overlapping chunks of size 2w with an overlap of size w (window_overlap) """ # query / key: B*nh, T, hs bnh, seq_len, head_dim = query.size() batch_size = bnh // num_heads assert seq_len % (window_overlap * 2) == 0 assert query.size() == key.size() chunks_count = seq_len // window_overlap - 1 # B * num_heads, head_dim, #chunks=(T//w - 1), 2w chunk_query = self._chunk(query, window_overlap) chunk_key = self._chunk(key, window_overlap) # matrix multiplication # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap diagonal_chunked_attention_scores = torch.einsum( "bcxd,bcyd->bcxy", (chunk_query, chunk_key)) # convert diagonals into columns # B * num_heads, #chunks, 2w, 2w+1 diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims( diagonal_chunked_attention_scores, padding=(0, 0, 0, 1) ) # allocate space for the overall attention matrix where the chunks are combined. The last dimension # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to # window_overlap previous words). The following column is attention score from each word to itself, then # followed by window_overlap columns for the upper triangle. diagonal_attention_scores = diagonal_chunked_attention_scores.new_empty( (batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1) ) # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions # - copying the main diagonal and the upper triangle diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[ :, :, :window_overlap, : window_overlap + 1 ] diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[ :, -1, window_overlap:, : window_overlap + 1 ] # - copying the lower triangle diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[ :, :, -(window_overlap + 1) : -1, window_overlap + 1 : ] diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[ :, 0, : window_overlap - 1, 1 - window_overlap : ] # separate batch_size and num_heads dimensions again diagonal_attention_scores = diagonal_attention_scores.view( batch_size, num_heads, seq_len, 2 * window_overlap + 1 ).transpose(2, 1) self._mask_invalid_locations(diagonal_attention_scores, window_overlap) return diagonal_attention_scores def _sliding_chunks_matmul_attn_probs_value( self, attn_probs, value, num_heads, window_overlap ): """ Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the same shape as `attn_probs` """ bnh, seq_len, head_dim = value.size() batch_size = bnh // num_heads assert seq_len % (window_overlap * 2) == 0 assert attn_probs.size(3) == 2 * window_overlap + 1 chunks_count = seq_len // window_overlap - 1 # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap chunked_attn_probs = attn_probs.transpose(1, 2).reshape( batch_size * num_heads, seq_len // window_overlap, window_overlap, 2 * window_overlap + 1 ) # pad seq_len with w at the beginning of the sequence and another window overlap at the end padded_value = nn.functional.pad(value, (0, 0, window_overlap, window_overlap), value=-1) # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap chunked_value_size = (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim) chunked_value_stride = padded_value.stride() chunked_value_stride = ( chunked_value_stride[0], window_overlap * chunked_value_stride[1], chunked_value_stride[1], chunked_value_stride[2], ) chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride) chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) context = torch.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value)) return context.view(batch_size, num_heads, seq_len, head_dim) def forward(self, x, mask): # x: batch size, feature channel, sequence length, # mask: batch size, 1, sequence length (bool) B, C, T = x.size() # step 1: depth convolutions # query conv -> (B, nh * hs, T') q, qx_mask = self.query_conv(x, mask) q = self.query_norm(q) # key, value conv -> (B, nh * hs, T'') k, kv_mask = self.key_conv(x, mask) k = self.key_norm(k) v, _ = self.value_conv(x, mask) v = self.value_norm(v) # step 2: query, key, value transforms & reshape # projections q = self.query(q) k = self.key(k) v = self.value(v) # (B, nh * hs, T) -> (B, nh, T, hs) q = q.view(B, self.n_head, self.n_channels, -1).transpose(2, 3) k = k.view(B, self.n_head, self.n_channels, -1).transpose(2, 3) v = v.view(B, self.n_head, self.n_channels, -1).transpose(2, 3) # view as (B * nh, T, hs) q = q.view(B * self.n_head, -1, self.n_channels).contiguous() k = k.view(B * self.n_head, -1, self.n_channels).contiguous() v = v.view(B * self.n_head, -1, self.n_channels).contiguous() # step 3: compute local self-attention with rel pe and masking q *= self.scale # chunked query key attention -> B, T, nh, 2w+1 = window_size att = self._sliding_chunks_query_key_matmul( q, k, self.n_head, self.window_overlap) # rel pe if self.use_rel_pe: att += self.rel_pe # kv_mask -> B, T'', 1 inverse_kv_mask = torch.logical_not( kv_mask[:, :, :, None].view(B, -1, 1)) # 0 for valid slot, -inf for masked ones float_inverse_kv_mask = inverse_kv_mask.type_as(q).masked_fill( inverse_kv_mask, -1e4) # compute the diagonal mask (for each local window) diagonal_mask = self._sliding_chunks_query_key_matmul( float_inverse_kv_mask.new_ones(size=float_inverse_kv_mask.size()), float_inverse_kv_mask, 1, self.window_overlap ) att += diagonal_mask # ignore input masking for now att = nn.functional.softmax(att, dim=-1) # softmax sometimes inserts NaN if all positions are masked, replace them with 0 att = att.masked_fill( torch.logical_not(kv_mask.squeeze(1)[:, :, None, None]), 0.0) att = self.attn_drop(att) # step 4: compute attention value product + output projection # chunked attn value product -> B, nh, T, hs out = self._sliding_chunks_matmul_attn_probs_value( att, v, self.n_head, self.window_overlap) # transpose to B, nh, hs, T -> B, nh*hs, T out = out.transpose(2, 3).contiguous().view(B, C, -1) # output projection + skip connection out = self.proj_drop(self.proj(out)) * qx_mask.to(out.dtype) return out, qx_mask class TransformerBlock(nn.Module): """ A simple (post layer norm) Transformer block Modified from https://github.com/karpathy/minGPT/blob/master/mingpt/model.py """ def __init__( self, n_embd, # dimension of the input features n_head, # number of attention heads n_ds_strides=(1, 1), # downsampling strides for q & x, k & v n_out=None, # output dimension, if None, set to input dim n_hidden=None, # dimension of the hidden layer in MLP act_layer=nn.GELU, # nonlinear activation used in MLP, default GELU attn_pdrop=0.0, # dropout rate for the attention map proj_pdrop=0.0, # dropout rate for the projection / MLP path_pdrop=0.0, # drop path rate mha_win_size=-1, # > 0 to use window mha use_rel_pe=False # if to add rel position encoding to attention ): super().__init__() assert len(n_ds_strides) == 2 # layer norm for order (B C T) self.ln1 = LayerNorm(n_embd) self.ln2 = LayerNorm(n_embd) # specify the attention module if mha_win_size > 1: self.attn = LocalMaskedMHCA( n_embd, n_head, window_size=mha_win_size, n_qx_stride=n_ds_strides[0], n_kv_stride=n_ds_strides[1], attn_pdrop=attn_pdrop, proj_pdrop=proj_pdrop, use_rel_pe=use_rel_pe # only valid for local attention ) else: self.attn = MaskedMHCA( n_embd, n_head, n_qx_stride=n_ds_strides[0], n_kv_stride=n_ds_strides[1], attn_pdrop=attn_pdrop, proj_pdrop=proj_pdrop ) # input if n_ds_strides[0] > 1: kernel_size, stride, padding = \ n_ds_strides[0] + 1, n_ds_strides[0], (n_ds_strides[0] + 1)//2 self.pool_skip = nn.MaxPool1d( kernel_size, stride=stride, padding=padding) else: self.pool_skip = nn.Identity() # two layer mlp if n_hidden is None: n_hidden = 4 * n_embd # default if n_out is None: n_out = n_embd # ok to use conv1d here with stride=1 self.mlp = nn.Sequential( nn.Conv1d(n_embd, n_hidden, 1), act_layer(), nn.Dropout(proj_pdrop, inplace=True), nn.Conv1d(n_hidden, n_out, 1), nn.Dropout(proj_pdrop, inplace=True), ) # drop path if path_pdrop > 0.0: self.drop_path_attn = AffineDropPath(n_embd, drop_prob = path_pdrop) self.drop_path_mlp = AffineDropPath(n_out, drop_prob = path_pdrop) else: self.drop_path_attn = nn.Identity() self.drop_path_mlp = nn.Identity() def forward(self, x, mask, pos_embd=None): # pre-LN transformer: https://arxiv.org/pdf/2002.04745.pdf out, out_mask = self.attn(self.ln1(x), mask) out_mask_float = out_mask.to(out.dtype) out = self.pool_skip(x) * out_mask_float + self.drop_path_attn(out) # FFN out = out + self.drop_path_mlp(self.mlp(self.ln2(out)) * out_mask_float) # optionally add pos_embd to the output if pos_embd is not None: out += pos_embd * out_mask_float return out, out_mask class ConvBlock(nn.Module): """ A simple conv block similar to the basic block used in ResNet """ def __init__( self, n_embd, # dimension of the input features kernel_size=3, # conv kernel size n_ds_stride=1, # downsampling stride for the current layer expansion_factor=2, # expansion factor of feat dims n_out=None, # output dimension, if None, set to input dim act_layer=nn.ReLU, # nonlinear activation used after conv, default ReLU ): super().__init__() # must use odd sized kernel assert (kernel_size % 2 == 1) and (kernel_size > 1) padding = kernel_size // 2 if n_out is None: n_out = n_embd # 1x3 (strided) -> 1x3 (basic block in resnet) width = n_embd * expansion_factor self.conv1 = MaskedConv1D( n_embd, width, kernel_size, n_ds_stride, padding=padding) self.conv2 = MaskedConv1D( width, n_out, kernel_size, 1, padding=padding) # attach downsampling conv op if n_ds_stride > 1: # 1x1 strided conv (same as resnet) self.downsample = MaskedConv1D(n_embd, n_out, 1, n_ds_stride) else: self.downsample = None self.act = act_layer() def forward(self, x, mask, pos_embd=None): identity = x out, out_mask = self.conv1(x, mask) out = self.act(out) out, out_mask = self.conv2(out, out_mask) # downsampling if self.downsample is not None: identity, _ = self.downsample(x, mask) # residual connection out += identity out = self.act(out) return out, out_mask # drop path: from https://github.com/facebookresearch/SlowFast/blob/master/slowfast/models/common.py class Scale(nn.Module): """ Multiply the output regression range by a learnable constant value """ def __init__(self, init_value=1.0): """ init_value : initial value for the scalar """ super().__init__() self.scale = nn.Parameter( torch.tensor(init_value, dtype=torch.float32), requires_grad=True ) def forward(self, x): """ input -> scale * input """ return x * self.scale # The follow code is modified from # https://github.com/facebookresearch/SlowFast/blob/master/slowfast/models/common.py def drop_path(x, drop_prob=0.0, training=False): """ Stochastic Depth per sample. """ if drop_prob == 0.0 or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * ( x.ndim - 1 ) # work with diff dim tensors, not just 2D ConvNets mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) mask.floor_() # binarize output = x.div(keep_prob) * mask return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class AffineDropPath(nn.Module): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks) with a per channel scaling factor (and zero init) See: https://arxiv.org/pdf/2103.17239.pdf """ def __init__(self, num_dim, drop_prob=0.0, init_scale_value=1e-4): super().__init__() self.scale = nn.Parameter( init_scale_value * torch.ones((1, num_dim, 1)), requires_grad=True ) self.drop_prob = drop_prob def forward(self, x): return drop_path(self.scale * x, self.drop_prob, self.training)
InternVideo-main
Downstream/Temporal-Action-Localization/libs/modeling/blocks.py
# from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/weight_init.py import torch import math import warnings def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b)
InternVideo-main
Downstream/Temporal-Action-Localization/libs/modeling/weight_init.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import os import sys from typing import Iterable, Optional import numpy as np import torch from scipy.special import softmax from timm.data import Mixup from timm.utils import ModelEma, accuracy import utils def train_class_batch(model, samples, target, criterion): outputs = model(samples) loss = criterion(outputs, target) return loss, outputs def get_loss_scale_for_deepspeed(model): optimizer = model.optimizer return optimizer.loss_scale if hasattr( optimizer, "loss_scale") else optimizer.cur_scale def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, args, max_norm: float = 0, model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None, num_training_steps_per_epoch=None, update_freq=None): model.train(True) metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter( 'lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter( 'min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 if loss_scaler is None: model.zero_grad() model.micro_steps = 0 else: optimizer.zero_grad() for data_iter_step, (samples, targets, _, _) in enumerate( metric_logger.log_every(data_loader, print_freq, header)): step = data_iter_step // update_freq if step >= num_training_steps_per_epoch: continue it = start_steps + step # global training iteration # Update LR & WD for the first acc if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group[ "lr_scale"] if wd_schedule_values is not None and param_group[ "weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] samples = samples.to(device, non_blocking=True) targets = targets.to(device, non_blocking=True) if args.num_segment > 1: samples = samples.view((-1, ) + samples.size()[2:]) if mixup_fn is not None: B, C, T, H, W = samples.shape samples = samples.view(B, C * T, H, W) samples, targets = mixup_fn(samples, targets) samples = samples.view(B, C, T, H, W) if loss_scaler is None: samples = samples.half() loss, output = train_class_batch(model, samples, targets, criterion) else: with torch.cuda.amp.autocast(): loss, output = train_class_batch(model, samples, targets, criterion) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) if loss_scaler is None: loss /= update_freq model.backward(loss) grad_norm = model.get_global_grad_norm() # if utils.is_main_process(): # import json # all_grad = {} # for name, param in model.module.named_parameters(): # print(name) # if hasattr(param, 'grad') and param.grad is not None: # all_grad[name] = torch.norm(param.grad.detach(), 2).item() # with open('pfs_work_dir/grad_test/temp.json', 'w') as f: # json.dump(all_grad, f) # torch.distributed.barrier() # sys.exit(1) model.step() if (data_iter_step + 1) % update_freq == 0: # model.zero_grad() # Deepspeed will call step() & model.zero_grad() automatic if model_ema is not None: model_ema.update(model) loss_scale_value = get_loss_scale_for_deepspeed(model) else: # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr( optimizer, 'is_second_order') and optimizer.is_second_order loss /= update_freq grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order, update_grad=(data_iter_step + 1) % update_freq == 0) if (data_iter_step + 1) % update_freq == 0: optimizer.zero_grad() if model_ema is not None: model_ema.update(model) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() if mixup_fn is None: class_acc = (output.max(-1)[-1] == targets).float().mean() else: class_acc = None metric_logger.update(loss=loss_value) metric_logger.update(class_acc=class_acc) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") log_writer.update(class_acc=class_acc, head="loss") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.set_step() # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def validation_one_epoch(data_loader, model, device): criterion = torch.nn.CrossEntropyLoss() metric_logger = utils.MetricLogger(delimiter=" ") header = 'Val:' # switch to evaluation mode model.eval() for batch in metric_logger.log_every(data_loader, 10, header): images = batch[0] target = batch[1] images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # gather the stats from all processes metric_logger.synchronize_between_processes() print( '* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def final_test(data_loader, model, device, file): criterion = torch.nn.CrossEntropyLoss() metric_logger = utils.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() final_result = [] for batch in metric_logger.log_every(data_loader, 10, header): images = batch[0] target = batch[1] ids = batch[2] chunk_nb = batch[3] split_nb = batch[4] images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target) for i in range(output.size(0)): string = "{} {} {} {} {}\n".format(ids[i], \ str(output.data[i].cpu().numpy().tolist()), \ str(int(target[i].cpu().numpy())), \ str(int(chunk_nb[i].cpu().numpy())), \ str(int(split_nb[i].cpu().numpy()))) final_result.append(string) acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) if not os.path.exists(file): os.mknod(file) with open(file, 'w') as f: f.write("{}, {}\n".format(acc1, acc5)) for line in final_result: f.write(line) # gather the stats from all processes metric_logger.synchronize_between_processes() print( '* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} def merge(eval_path, num_tasks, method='prob'): assert method in ['prob', 'score'] dict_feats = {} dict_label = {} dict_pos = {} print("Reading individual output files") for x in range(num_tasks): file = os.path.join(eval_path, str(x) + '.txt') lines = open(file, 'r').readlines()[1:] for line in lines: line = line.strip() name = line.split('[')[0] label = line.split(']')[1].split(' ')[1] chunk_nb = line.split(']')[1].split(' ')[2] split_nb = line.split(']')[1].split(' ')[3] data = np.fromstring(line.split('[')[1].split(']')[0], dtype=np.float, sep=',') if not name in dict_feats: dict_feats[name] = [] dict_label[name] = 0 dict_pos[name] = [] if chunk_nb + split_nb in dict_pos[name]: continue if method == 'prob': dict_feats[name].append(softmax(data)) else: dict_feats[name].append(data) dict_pos[name].append(chunk_nb + split_nb) dict_label[name] = label print("Computing final results") input_lst = [] print(len(dict_feats)) for i, item in enumerate(dict_feats): input_lst.append([i, item, dict_feats[item], dict_label[item]]) from multiprocessing import Pool p = Pool(64) ans = p.map(compute_video, input_lst) top1 = [x[1] for x in ans] top5 = [x[2] for x in ans] pred = [x[0] for x in ans] label = [x[3] for x in ans] final_top1, final_top5 = np.mean(top1), np.mean(top5) # print(final_top1*100 ,final_top5*100) return final_top1 * 100, final_top5 * 100 def compute_video(lst): i, video_id, data, label = lst feat = [x for x in data] feat = np.mean(feat, axis=0) pred = np.argmax(feat) top1 = (int(pred) == int(label)) * 1.0 top5 = (int(label) in np.argsort(-feat)[:5]) * 1.0 return [pred, top1, top5, int(label)]
InternVideo-main
Pretrain/VideoMAE/engine_for_finetuning.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import random import numpy as np import torch from einops import rearrange def topk(matrix, K, axis=1): if axis == 0: row_index = np.arange(matrix.shape[1 - axis]) topk_index = np.argpartition(-matrix, K, axis=axis)[0:K, :] topk_data = matrix[topk_index, row_index] topk_index_sort = np.argsort(-topk_data, axis=axis) topk_data_sort = topk_data[topk_index_sort, row_index] topk_index_sort = topk_index[0:K, :][topk_index_sort, row_index] else: column_index = np.arange(matrix.shape[1 - axis])[:, None] topk_index = np.argpartition(-matrix, K, axis=axis)[:, 0:K] topk_data = matrix[column_index, topk_index] topk_index_sort = np.argsort(-topk_data, axis=axis) topk_data_sort = topk_data[column_index, topk_index_sort] topk_index_sort = topk_index[:, 0:K][column_index, topk_index_sort] return (topk_data_sort, topk_index_sort) class MaskingGenerator: def update_state(self, epoch): pass class RandomMaskingGenerator(MaskingGenerator): def __init__(self, input_size, mask_ratio): if not isinstance(input_size, tuple): input_size = (input_size, ) * 3 self.frames, self.height, self.width = input_size self.num_patches = self.frames * self.height * self.width # 8x14x14 self.num_mask = int(mask_ratio * self.num_patches) def __repr__(self): repr_str = "Mask: total patches {}, mask patches {}".format( self.num_patches, self.num_mask) return repr_str def __call__(self): mask = np.hstack([ np.zeros(self.num_patches - self.num_mask), np.ones(self.num_mask), ]) np.random.shuffle(mask) return mask # [196*8] class Cell(): def __init__(self, num_masks, num_patches): self.num_masks = num_masks self.num_patches = num_patches self.size = num_masks + num_patches self.queue = np.hstack([np.ones(num_masks), np.zeros(num_patches)]) self.queue_ptr = 0 def set_ptr(self, pos=-1): self.queue_ptr = np.random.randint(self.size) if pos < 0 else pos def get_cell(self): cell_idx = (np.arange(self.size) + self.queue_ptr) % self.size return self.queue[cell_idx] def run_cell(self): self.queue_ptr += 1 class CellRunningMaskingGenerator(MaskingGenerator): def __init__(self, input_size, mask_ratio=0.5, is_train=True): self.frames, self.height, self.width = input_size self.mask_ratio = mask_ratio self.ptr_pos = -1 if is_train else 0 num_masks_per_cell = int(4 * self.mask_ratio) assert 0 < num_masks_per_cell < 4 num_patches_per_cell = 4 - num_masks_per_cell self.cell = Cell(num_masks_per_cell, num_patches_per_cell) self.cell_size = self.cell.size mask_list = [] for ptr_pos in range(self.cell_size): self.cell.set_ptr(ptr_pos) mask = [] for _ in range(self.frames): self.cell.run_cell() mask_unit = self.cell.get_cell().reshape(2, 2) mask_map = np.tile(mask_unit, [self.height // 2, self.width // 2]) mask.append(mask_map) mask = np.stack(mask, axis=0).flatten() mask_list.append(mask) self.all_mask_maps = np.stack(mask_list, axis=0) def __repr__(self): repr_str = f"Cell Running Mask with mask ratio {self.mask_ratio}" return repr_str def __call__(self, batch_size): mask_idx_list = np.random.randint(self.cell_size, size=(batch_size)) return torch.as_tensor(self.all_mask_maps[mask_idx_list]) class RandomDecodeMaskingGenerator(MaskingGenerator): def __init__(self, input_size, mask_ratio=0.5): self.frame, self.height, self.width = input_size self.mask_ratio = mask_ratio self.num_patches = self.frame * self.height * self.width # 8x14x14 self.num_mask = int(mask_ratio * self.num_patches) def __repr__(self): repr_str = "Mask: total patches {}, mask patches {}".format( self.num_patches, self.num_mask) return repr_str def __call__(self, batch_size): rand = torch.as_tensor(np.random.randn(batch_size, self.num_patches)) mask_idx = torch.topk(rand, self.num_mask, dim=-1, sorted=False).indices mask = torch.zeros(batch_size, self.num_patches).scatter_(-1, mask_idx, 1) return mask class TemporalConsistencyMaskingGenerator(MaskingGenerator): def __init__(self, input_size, mask_ratio): self.frames, self.height, self.width = input_size self.num_patches_per_frame = self.height * self.width # 14x14 self.total_patches = self.frames * self.num_patches_per_frame self.num_masks_per_frame = int(mask_ratio * self.num_patches_per_frame) self.total_masks = self.frames * self.num_masks_per_frame def __repr__(self): repr_str = "Mask: total patches {}, mask patches {}".format( self.total_patches, self.total_masks) return repr_str def __call__(self): mask_per_frame = np.hstack([ np.zeros(self.num_patches_per_frame - self.num_masks_per_frame), np.ones(self.num_masks_per_frame), ]) np.random.shuffle(mask_per_frame) mask = np.tile(mask_per_frame, (self.frames, 1)).flatten() return mask # [196*8] class TemporalProgressiveMaskingGenerator(MaskingGenerator): def __init__(self, input_size, mask_ratio): self.frames, self.height, self.width = input_size self.num_patches_per_frame = self.height * self.width # 14x14 self.total_patches = self.frames * self.num_patches_per_frame # 8x14x14 max_keep_patch = int( (1 - mask_ratio) * self.num_patches_per_frame) # 1 - 0.75 = 0.25 min_keep_patch = int(0.05 * self.num_patches_per_frame) self.keep_patches_list = np.linspace(max_keep_patch, min_keep_patch, self.frames).astype(int) self.total_masks = self.total_patches - self.keep_patches_list.sum() def __repr__(self): repr_str = "Mask: total patches {}, mask patches {}".format( self.total_patches, self.total_masks) return repr_str def __call__(self): rand = np.random.randn(1, self.num_patches_per_frame) mask = np.zeros((self.frames, self.num_patches_per_frame), dtype=np.bool) for i in range(self.frames): top_k, _ = topk(rand, self.keep_patches_list[i]) the_topk = top_k[0][-1] mask[i] = rand <= the_topk mask = mask.flatten().astype(int) return mask # [196*8] class TemporalCenteringProgressiveMaskingGenerator(MaskingGenerator): def __init__(self, input_size, mask_ratio): self.num_frames, self.height, self.width = input_size self.num_patches_per_frame = self.height * self.width # 14x14 self.total_patches = self.num_frames * self.num_patches_per_frame # 8x14x14 min_mask_ratio = mask_ratio # 0.9 -> keep 19 token # 0.979 -> keep 4 token 0.95 -> keep 9 token max_mask_ratio = 0.95 max_keep_patch = int( (1 - min_mask_ratio) * self.num_patches_per_frame) # 1 - 0.9 = 0.1 min_keep_patch = int((1 - max_mask_ratio) * self.num_patches_per_frame) # 1 - 0.95 = 0.05 patches_list = np.linspace(max_keep_patch, min_keep_patch, self.num_frames // 2).astype(int).tolist() self.keep_patches_list = patches_list.copy() patches_list.reverse() self.keep_patches_list = patches_list + self.keep_patches_list self.total_masks = self.total_patches - sum(self.keep_patches_list) def __repr__(self): repr_str = "Mask: total patches {}, mask patches {}".format( self.total_patches, self.total_masks) return repr_str def __call__(self): rand = np.random.randn(1, self.num_patches_per_frame) mask = np.zeros((self.num_frames, self.num_patches_per_frame), dtype=np.bool) for i in range(self.num_frames): top_k, _ = topk(rand, self.keep_patches_list[i]) the_topk = top_k[0][-1] mask[i] = rand <= the_topk mask = mask.flatten().astype(int) return mask # [196*8]
InternVideo-main
Pretrain/VideoMAE/masking_generator.py
# -*- coding: utf-8 -*- import argparse # -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import os from pathlib import Path # import datetime import numpy as np # import time import torch import torch.backends.cudnn as cudnn from decord import VideoReader, cpu from einops import rearrange from petrel_client.client import Client from PIL import Image from timm.data import create_transform from timm.data.constants import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD, ) from timm.models import create_model from torchvision import datasets, transforms from torchvision.transforms import ToPILImage import modeling_pretrain import utils from datasets import DataAugmentationForMAE from kinetics import VideoClsDataset from mae import VideoMAE from masking_generator import ( RandomMaskingGenerator, TemporalCenteringProgressiveMaskingGenerator, TemporalConsistencyMaskingGenerator, TemporalProgressiveMaskingGenerator, ) from transforms import * class DataAugmentationForMAE(object): def __init__(self, args): imagenet_default_mean_and_std = args.imagenet_default_mean_and_std mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD self.input_mean = [0.485, 0.456, 0.406] self.input_std = [0.229, 0.224, 0.225] div = True roll = False normalize = GroupNormalize(self.input_mean, self.input_std) self.train_augmentation = GroupCenterCrop(args.input_size) # self.train_augmentation = GroupMultiScaleCrop(args.input_size, [1, .875, .75, .66]) self.transform = transforms.Compose([ # GroupScale((240,320)), self.train_augmentation, Stack(roll=roll), ToTorchFormatTensor(div=div), normalize, ]) if args.mask_type == 'random': self.masked_position_generator = RandomMaskingGenerator( args.window_size, args.mask_ratio) elif args.mask_type == 't_consist': self.masked_position_generator = TemporalConsistencyMaskingGenerator( args.window_size, args.mask_ratio) def __call__(self, images): process_data, _ = self.transform(images) return process_data, self.masked_position_generator() def __repr__(self): repr = "(DataAugmentationForBEiT,\n" repr += " transform = %s,\n" % str(self.transform) repr += " Masked position generator = %s,\n" % str( self.masked_position_generator) repr += ")" return repr def get_args(): parser = argparse.ArgumentParser('MAE visualization reconstruction script', add_help=False) parser.add_argument('img_path', type=str, help='input image path') parser.add_argument('save_path', type=str, help='save image path') parser.add_argument('model_path', type=str, help='checkpoint path of model') parser.add_argument( '--mask_type', default='random', choices=['random', 't_consist', 't_progressive', 't_center_prog'], type=str, help='masked strategy of visual tokens/patches') parser.add_argument('--num_frames', type=int, default=16) parser.add_argument('--sampling_rate', type=int, default=4) parser.add_argument('--decoder_depth', default=4, type=int, help='depth of decoder') parser.add_argument('--input_size', default=224, type=int, help='images input size for backbone') parser.add_argument('--device', default='cuda:0', help='device to use for training / testing') parser.add_argument('--imagenet_default_mean_and_std', default=True, action='store_true') parser.add_argument( '--mask_ratio', default=0.75, type=float, help='ratio of the visual tokens/patches need be masked') # Model parameters parser.add_argument('--model', default='pretrain_mae_base_patch16_224', type=str, metavar='MODEL', help='Name of model to vis') parser.add_argument('--drop_path', type=float, default=0.0, metavar='PCT', help='Drop path rate (default: 0.1)') return parser.parse_args() def get_model(args): print(f"Creating model: {args.model}") model = create_model(args.model, pretrained=False, drop_path_rate=args.drop_path, drop_block_rate=None, decoder_depth=args.decoder_depth) return model def main(args): print(args) device = torch.device(args.device) cudnn.benchmark = True model = get_model(args) patch_size = model.encoder.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = (args.num_frames // 2, args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size model.to(device) checkpoint = torch.load(args.model_path, map_location='cpu') model.load_state_dict(checkpoint['model']) model.eval() if args.save_path: Path(args.save_path).mkdir(parents=True, exist_ok=True) tmp = np.arange(0, 32, 2) + 60 frame_id_list = tmp.tolist() if args.img_path.startswith("s3:"): client = Client() video_bytes = client.get(args.img_path) vr = VideoReader(memoryview(video_bytes), mc=True, ctx=cpu(0)) else: with open(args.img_path, 'rb') as f: vr = VideoReader(f, ctx=cpu(0)) duration = len(vr) new_length = 1 new_step = 1 skip_length = new_length * new_step video_data = vr.get_batch(frame_id_list).asnumpy() print(video_data.shape) img = [ Image.fromarray(video_data[vid, :, :, :]).convert('RGB') for vid, _ in enumerate(frame_id_list) ] transforms = DataAugmentationForMAE(args) img, bool_masked_pos = transforms((img, None)) # T*C,H,W # print(img.shape) img = img.view((args.num_frames, 3) + img.size()[-2:]).transpose( 0, 1) # T*C,H,W -> T,C,H,W -> C,T,H,W # img = img.view(( -1 , args.num_frames) + img.size()[-2:]) bool_masked_pos = torch.from_numpy(bool_masked_pos) with torch.no_grad(): # img = img[None, :] # bool_masked_pos = bool_masked_pos[None, :] img = img.unsqueeze(0) print(img.shape) bool_masked_pos = bool_masked_pos.unsqueeze(0) img = img.to(device, non_blocking=True) bool_masked_pos = bool_masked_pos.to( device, non_blocking=True).flatten(1).to(torch.bool) outputs = model(img, bool_masked_pos) #save original img mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None, None] std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None, None] # unnorm_images = images * std + mean # in [0, 1] print(img.shape) ori_img = img * std + mean # in [0, 1] imgs = [ ToPILImage()(ori_img[0, :, vid, :, :].cpu()) for vid, _ in enumerate(frame_id_list) ] for id, im in enumerate(imgs): im.save(f"{args.save_path}/ori_img{id}.jpg") img_squeeze = rearrange( ori_img, 'b c (t p0) (h p1) (w p2) -> b (t h w) (p0 p1 p2) c', p0=2, p1=patch_size[0], p2=patch_size[0]) img_norm = (img_squeeze - img_squeeze.mean(dim=-2, keepdim=True)) / ( img_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6) img_patch = rearrange(img_norm, 'b n p c -> b n (p c)') img_patch[bool_masked_pos] = outputs #make mask mask = torch.ones_like(img_patch) mask[bool_masked_pos] = 0 mask = rearrange(mask, 'b n (p c) -> b n p c', c=3) mask = rearrange(mask, 'b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2) ', p0=2, p1=patch_size[0], p2=patch_size[1], h=14, w=14) #save reconstruction img rec_img = rearrange(img_patch, 'b n (p c) -> b n p c', c=3) # Notice: To visualize the reconstruction image, we add the predict and the original mean and var of each patch. Issue #40 rec_img = rec_img * ( img_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6) + img_squeeze.mean(dim=-2, keepdim=True) rec_img = rearrange( rec_img, 'b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)', p0=2, p1=patch_size[0], p2=patch_size[1], h=14, w=14) imgs = [ ToPILImage()(rec_img[0, :, vid, :, :].cpu().clamp(0, 0.996)) for vid, _ in enumerate(frame_id_list) ] # imgs = [ ToPILImage()(rec_img[0, :, vid, :, :].cpu().clip(0,0.996)) for vid, _ in enumerate(frame_id_list) ] for id, im in enumerate(imgs): im.save(f"{args.save_path}/rec_img{id}.jpg") #save random mask img img_mask = rec_img * mask imgs = [ ToPILImage()(img_mask[0, :, vid, :, :].cpu()) for vid, _ in enumerate(frame_id_list) ] for id, im in enumerate(imgs): im.save(f"{args.save_path}/mask_img{id}.jpg") if __name__ == '__main__': opts = get_args() main(opts)
InternVideo-main
Pretrain/VideoMAE/run_mae_vis.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import numbers import random import warnings import numpy as np import torch import torchvision import torchvision.transforms.functional as F from PIL import Image, ImageOps class ToNumpy: def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return np_img class ToTensor: def __init__(self, dtype=torch.float32): self.dtype = dtype def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return torch.from_numpy(np_img).to(dtype=self.dtype) _pil_interpolation_to_str = { Image.NEAREST: 'PIL.Image.NEAREST', Image.BILINEAR: 'PIL.Image.BILINEAR', Image.BICUBIC: 'PIL.Image.BICUBIC', Image.LANCZOS: 'PIL.Image.LANCZOS', Image.HAMMING: 'PIL.Image.HAMMING', Image.BOX: 'PIL.Image.BOX', } def _pil_interp(method): if method == 'bicubic': return Image.BICUBIC elif method == 'lanczos': return Image.LANCZOS elif method == 'hamming': return Image.HAMMING else: # default bilinear, do we want to allow nearest? return Image.BILINEAR _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC) class RandomResizedCropAndInterpolationWithTwoPic: """Crop the given PIL Image to random size and aspect ratio with random interpolation. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear', second_interpolation='lanczos'): if isinstance(size, tuple): self.size = size else: self.size = (size, size) if second_size is not None: if isinstance(second_size, tuple): self.second_size = second_size else: self.second_size = (second_size, second_size) else: self.second_size = None if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") if interpolation == 'random': self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = _pil_interp(interpolation) self.second_interpolation = _pil_interp(second_interpolation) self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for attempt in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation if self.second_size is None: return F.resized_crop(img, i, j, h, w, self.size, interpolation) else: return F.resized_crop(img, i, j, h, w, self.size, interpolation), \ F.resized_crop(img, i, j, h, w, self.second_size, self.second_interpolation) def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([_pil_interpolation_to_str[x] for x in self.interpolation]) else: interpolate_str = _pil_interpolation_to_str[self.interpolation] format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0}'.format(interpolate_str) if self.second_size is not None: format_string += ', second_size={0}'.format(self.second_size) format_string += ', second_interpolation={0}'.format(_pil_interpolation_to_str[self.second_interpolation]) format_string += ')' return format_string class GroupRandomCrop(object): def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size def __call__(self, img_tuple): img_group, label = img_tuple w, h = img_group[0].size th, tw = self.size out_images = list() x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) for img in img_group: assert(img.size[0] == w and img.size[1] == h) if w == tw and h == th: out_images.append(img) else: out_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) return (out_images, label) class GroupCenterCrop(object): def __init__(self, size): self.worker = torchvision.transforms.CenterCrop(size) def __call__(self, img_tuple): img_group, label = img_tuple return ([self.worker(img) for img in img_group], label) class GroupRandomHorizontalFlip(object): """Randomly horizontally flips the given PIL.Image with a probability of 0.5 """ def __init__(self, selective_flip=True, is_flow=False): self.is_flow = is_flow self.class_LeftRight = [86,87,93,94,166,167] if selective_flip else [] def __call__(self, img_tuple, is_flow=False): img_group, label = img_tuple v = random.random() if (label not in self.class_LeftRight) and v < 0.5: ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group] if self.is_flow: for i in range(0, len(ret), 2): ret[i] = ImageOps.invert(ret[i]) # invert flow pixel values when flipping return (ret, label) else: return img_tuple class GroupNormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor_tuple): tensor, label = tensor_tuple rep_mean = self.mean * (tensor.size()[0]//len(self.mean)) rep_std = self.std * (tensor.size()[0]//len(self.std)) # TODO: make efficient for t, m, s in zip(tensor, rep_mean, rep_std): t.sub_(m).div_(s) return (tensor,label) class GroupGrayScale(object): def __init__(self, size): self.worker = torchvision.transforms.Grayscale(size) def __call__(self, img_tuple): img_group, label = img_tuple return ([self.worker(img) for img in img_group], label) class GroupScale(object): """ Rescales the input PIL.Image to the given 'size'. 'size' will be the size of the smaller edge. For example, if height > width, then image will be rescaled to (size * height / width, size) size: size of the smaller edge interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, interpolation=Image.BILINEAR): self.worker = torchvision.transforms.Resize(size, interpolation) def __call__(self, img_tuple): img_group, label = img_tuple return ([self.worker(img) for img in img_group], label) class GroupOverSample(object): def __init__(self, crop_size, scale_size=None): self.crop_size = crop_size if not isinstance(crop_size, int) else (crop_size, crop_size) if scale_size is not None: self.scale_worker = GroupScale(scale_size) else: self.scale_worker = None def __call__(self, img_tuple): if self.scale_worker is not None: img_tuple = self.scale_worker(img_tuple) img_group, label = img_tuple image_w, image_h = img_group[0].size crop_w, crop_h = self.crop_size offsets = GroupMultiScaleCrop.fill_fix_offset(False, image_w, image_h, crop_w, crop_h) oversample_group = list() for o_w, o_h in offsets: normal_group = list() flip_group = list() for i, img in enumerate(img_group): crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h)) normal_group.append(crop) flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT) if img.mode == 'L' and i % 2 == 0: flip_group.append(ImageOps.invert(flip_crop)) else: flip_group.append(flip_crop) oversample_group.extend(normal_group) oversample_group.extend(flip_group) return (oversample_group, label) class GroupFullResSample(object): def __init__(self, crop_size, scale_size=None, flip=True): self.crop_size = crop_size if not isinstance(crop_size, int) else (crop_size, crop_size) if scale_size is not None: self.scale_worker = GroupScale(scale_size) else: self.scale_worker = None self.flip = flip def __call__(self, img_tuple): if self.scale_worker is not None: img_tuple = self.scale_worker(img_tuple) img_group, label = img_tuple image_w, image_h = img_group[0].size crop_w, crop_h = self.crop_size w_step = (image_w - crop_w) // 4 h_step = (image_h - crop_h) // 4 offsets = list() offsets.append((0 * w_step, 2 * h_step)) # left offsets.append((4 * w_step, 2 * h_step)) # right offsets.append((2 * w_step, 2 * h_step)) # center oversample_group = list() for o_w, o_h in offsets: normal_group = list() flip_group = list() for i, img in enumerate(img_group): crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h)) normal_group.append(crop) if self.flip: flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT) if img.mode == 'L' and i % 2 == 0: flip_group.append(ImageOps.invert(flip_crop)) else: flip_group.append(flip_crop) oversample_group.extend(normal_group) oversample_group.extend(flip_group) return (oversample_group, label) class GroupMultiScaleCrop(object): def __init__(self, input_size, scales=None, max_distort=1, fix_crop=True, more_fix_crop=True): self.scales = scales if scales is not None else [1, 875, .75, .66] self.max_distort = max_distort self.fix_crop = fix_crop self.more_fix_crop = more_fix_crop self.input_size = input_size if not isinstance(input_size, int) else [input_size, input_size] self.interpolation = Image.BILINEAR def __call__(self, img_tuple): img_group, label = img_tuple im_size = img_group[0].size crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size) crop_img_group = [img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h)) for img in img_group] ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation) for img in crop_img_group] return (ret_img_group, label) def _sample_crop_size(self, im_size): image_w, image_h = im_size[0], im_size[1] # find a crop size base_size = min(image_w, image_h) crop_sizes = [int(base_size * x) for x in self.scales] crop_h = [self.input_size[1] if abs(x - self.input_size[1]) < 3 else x for x in crop_sizes] crop_w = [self.input_size[0] if abs(x - self.input_size[0]) < 3 else x for x in crop_sizes] pairs = [] for i, h in enumerate(crop_h): for j, w in enumerate(crop_w): if abs(i - j) <= self.max_distort: pairs.append((w, h)) crop_pair = random.choice(pairs) if not self.fix_crop: w_offset = random.randint(0, image_w - crop_pair[0]) h_offset = random.randint(0, image_h - crop_pair[1]) else: w_offset, h_offset = self._sample_fix_offset(image_w, image_h, crop_pair[0], crop_pair[1]) return crop_pair[0], crop_pair[1], w_offset, h_offset def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h): offsets = self.fill_fix_offset(self.more_fix_crop, image_w, image_h, crop_w, crop_h) return random.choice(offsets) @staticmethod def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h): w_step = (image_w - crop_w) // 4 h_step = (image_h - crop_h) // 4 ret = list() ret.append((0, 0)) # upper left ret.append((4 * w_step, 0)) # upper right ret.append((0, 4 * h_step)) # lower left ret.append((4 * w_step, 4 * h_step)) # lower right ret.append((2 * w_step, 2 * h_step)) # center if more_fix_crop: ret.append((0, 2 * h_step)) # center left ret.append((4 * w_step, 2 * h_step)) # center right ret.append((2 * w_step, 4 * h_step)) # lower center ret.append((2 * w_step, 0 * h_step)) # upper center ret.append((1 * w_step, 1 * h_step)) # upper left quarter ret.append((3 * w_step, 1 * h_step)) # upper right quarter ret.append((1 * w_step, 3 * h_step)) # lower left quarter ret.append((3 * w_step, 3 * h_step)) # lower righ quarter return ret class GroupRandomSizedCrop(object): """Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio This is popularly used to train the Inception networks size: size of the smaller edge interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, interpolation=Image.BILINEAR): self.size = size self.interpolation = interpolation def __call__(self, img_tuple): img_group, label = img_tuple for attempt in range(10): area = img_group[0].size[0] * img_group[0].size[1] target_area = random.uniform(0.08, 1.0) * area aspect_ratio = random.uniform(3. / 4, 4. / 3) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: w, h = h, w if w <= img_group[0].size[0] and h <= img_group[0].size[1]: x1 = random.randint(0, img_group[0].size[0] - w) y1 = random.randint(0, img_group[0].size[1] - h) found = True break else: found = False x1 = 0 y1 = 0 if found: out_group = list() for img in img_group: img = img.crop((x1, y1, x1 + w, y1 + h)) assert(img.size == (w, h)) out_group.append(img.resize((self.size, self.size), self.interpolation)) return out_group else: # Fallback scale = GroupScale(self.size, interpolation=self.interpolation) crop = GroupRandomCrop(self.size) return crop(scale(img_group)) class Stack(object): def __init__(self, roll=False): self.roll = roll def __call__(self, img_tuple): img_group, label = img_tuple if img_group[0].mode == 'L': return (np.concatenate([np.expand_dims(x, 2) for x in img_group], axis=2), label) elif img_group[0].mode == 'RGB': if self.roll: return (np.concatenate([np.array(x)[:, :, ::-1] for x in img_group], axis=2), label) else: return (np.concatenate(img_group, axis=2), label) class ToTorchFormatTensor(object): """ Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """ def __init__(self, div=True): self.div = div def __call__(self, pic_tuple): pic, label = pic_tuple if isinstance(pic, np.ndarray): # handle numpy array img = torch.from_numpy(pic).permute(2, 0, 1).contiguous() else: # handle PIL Image img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes())) img = img.view(pic.size[1], pic.size[0], len(pic.mode)) # put it from HWC to CHW format # yikes, this transpose takes 80% of the loading time/CPU img = img.transpose(0, 1).transpose(0, 2).contiguous() return (img.float().div(255.) if self.div else img.float(), label) class IdentityTransform(object): def __call__(self, data): return data # if __name__ == "__main__": # trans = torchvision.transforms.Compose([ # GroupScale(256), # GroupRandomCrop(224), # Stack(), # ToTorchFormatTensor(), # GroupNormalize( # mean=[.485, .456, .406], # std=[.229, .224, .225] # )] # ) # im = Image.open('../tensorflow-model-zoo.torch/lena_299.png') # color_group = [im] * 3 # rst = trans(color_group) # gray_group = [im.convert('L')] * 9 # gray_rst = trans(gray_group) # trans2 = torchvision.transforms.Compose([ # GroupRandomSizedCrop(256), # Stack(), # ToTorchFormatTensor(), # GroupNormalize( # mean=[.485, .456, .406], # std=[.229, .224, .225]) # ]) # print(trans2(color_group))
InternVideo-main
Pretrain/VideoMAE/transforms.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import sys from typing import Iterable import torch import torch.nn as nn from einops import rearrange from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD import utils def train_one_epoch(model: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, patch_size: int = 16, normlize_target: bool = True, log_writer=None, lr_scheduler=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None): model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter( 'lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter( 'min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 loss_func = nn.MSELoss() data_loader.dataset.transform.masked_position_generator.update_state(epoch) for step, batch in enumerate( metric_logger.log_every(data_loader, print_freq, header)): # assign learning rate & weight decay for each step it = start_steps + step # global training iteration if lr_schedule_values is not None or wd_schedule_values is not None: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group[ "lr"] = lr_schedule_values[it] * param_group["lr_scale"] if wd_schedule_values is not None and param_group[ "weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] images, bool_masked_pos = batch images = images.to(device, non_blocking=True) bool_masked_pos = bool_masked_pos.to( device, non_blocking=True).flatten(1).to(torch.bool) # print(images.shape) # import pdb; pdb.set_trace() with torch.no_grad(): # calculate the predict label mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None, None] std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None, None] unnorm_images = images * std + mean # in [0, 1] if normlize_target: images_squeeze = rearrange( unnorm_images, 'b c (t p0) (h p1) (w p2) -> b (t h w) (p0 p1 p2) c', p0=2, p1=patch_size, p2=patch_size) images_norm = (images_squeeze - images_squeeze.mean( dim=-2, keepdim=True)) / ( images_squeeze.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6) # we find that the mean is about 0.48 and standard deviation is about 0.08. images_patch = rearrange(images_norm, 'b n p c -> b n (p c)') else: images_patch = rearrange( unnorm_images, 'b c (t p0) (h p1) (w p2) -> b (t h w) (p0 p1 p2 c)', p0=2, p1=patch_size, p2=patch_size) B, N, C = images_patch.shape labels = images_patch[bool_masked_pos].reshape(B, -1, C) if loss_scaler is None: outputs = model(images, bool_masked_pos) loss = loss_func(input=outputs, target=labels) else: with torch.cuda.amp.autocast(): outputs = model(images, bool_masked_pos) loss = loss_func(input=outputs, target=labels) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(2) optimizer.zero_grad() if loss_scaler is None: loss.backward() if max_norm is None: grad_norm = utils.get_grad_norm_(model.parameters()) else: grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), max_norm) optimizer.step() loss_scale_value = 0 else: # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr( optimizer, 'is_second_order') and optimizer.is_second_order grad_norm = loss_scaler( loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() metric_logger.update(loss=loss_value) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.set_step() if lr_scheduler is not None: lr_scheduler.step_update(start_steps + step) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
InternVideo-main
Pretrain/VideoMAE/engine_for_pretraining.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from timm.models.layers import trunc_normal_ as __call_trunc_normal_ from timm.models.registry import register_model from modeling_finetune import Block, PatchEmbed, _cfg, get_sinusoid_encoding_table def trunc_normal_(tensor, mean=0., std=1.): __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std) __all__ = [ 'pretrain_mae_base_patch16_224', 'pretrain_mae_large_patch16_224', 'pretrain_mae_huge_patch16_224', 'pretrain_mae_giant_patch14_224', 'pretrain_mae_gigantic_patch14_224', ] class PretrainVisionTransformerEncoder(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, tubelet_size=2, use_learnable_pos_emb=False, with_cp=False): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, tubelet_size=tubelet_size) num_patches = self.patch_embed.num_patches self.with_cp = with_cp # TODO: Add the cls token # self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_learnable_pos_emb: self.pos_embed = nn.Parameter( torch.zeros(1, num_patches + 1, embed_dim)) else: # sine-cosine positional embeddings self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values) for i in range(depth) ]) self.norm = norm_layer(embed_dim) self.head = nn.Linear( embed_dim, num_classes) if num_classes > 0 else nn.Identity() if use_learnable_pos_emb: trunc_normal_(self.pos_embed, std=.02) # trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear( self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x, mask): _, _, T, _, _ = x.shape x = self.patch_embed(x) # cls_tokens = self.cls_token.expand(batch_size, -1, -1) # x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed.type_as(x).to(x.device).clone().detach() B, _, C = x.shape x_vis = x[~mask].reshape(B, -1, C) # ~mask means visible for blk in self.blocks: if self.with_cp: x_vis = cp.checkpoint(blk, x_vis) else: x_vis = blk(x_vis) x_vis = self.norm(x_vis) return x_vis def forward_check_variance(self, x, mask): _, _, T, _, _ = x.shape x = self.patch_embed(x) # cls_tokens = self.cls_token.expand(batch_size, -1, -1) # x = torch.cat((cls_tokens, x), dim=1) x = x + self.pos_embed.type_as(x).to(x.device).clone().detach() B, _, C = x.shape x_vis = x[~mask].reshape(B, -1, C) # ~mask means visible # x [B, N, C] avg_var_list = [] for blk in self.blocks: x_vis = blk(x_vis) avg_var = torch.mean(torch.var(x_vis, dim=-1)) avg_var_list.append(avg_var) for i, avg_var in enumerate(avg_var_list): print(f'avg variance of block {i}: {avg_var}', flush=True) x_vis = self.norm(x_vis) return x_vis def forward(self, x, mask): # x = self.forward_check_variance(x, mask) x = self.forward_features(x, mask) x = self.head(x) return x class PretrainVisionTransformerDecoder(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, patch_size=16, num_classes=768, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, num_patches=196, tubelet_size=2, with_cp=False, with_fp16=True): super().__init__() self.num_classes = num_classes assert num_classes == 3 * tubelet_size * patch_size**2 self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_size = patch_size self.with_cp = with_cp self.with_fp16 = with_fp16 dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values) for i in range(depth) ]) self.norm = norm_layer(embed_dim) self.head = nn.Linear( embed_dim, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear( self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward(self, x, return_token_num): with torch.cuda.amp.autocast_mode.autocast(enabled=self.with_fp16): for blk in self.blocks: if self.with_cp: x = cp.checkpoint(blk, x) else: x = blk(x) if return_token_num > 0: # only return the mask tokens predict pixels x = self.head(self.norm(x[:, -return_token_num:])) else: # [B, N, 3*16^2] x = self.head(self.norm(x)) return x class PretrainVisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__( self, img_size=224, patch_size=16, encoder_in_chans=3, encoder_num_classes=0, encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, decoder_num_classes=1536, # decoder_num_classes=768, decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=8, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=0., use_learnable_pos_emb=False, tubelet_size=2, num_classes=0, # avoid the error from create_fn in timm in_chans=0, # avoid the error from create_fn in timm with_cp=False, ): super().__init__() self.encoder = PretrainVisionTransformerEncoder( img_size=img_size, patch_size=patch_size, in_chans=encoder_in_chans, num_classes=encoder_num_classes, embed_dim=encoder_embed_dim, depth=encoder_depth, num_heads=encoder_num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=drop_path_rate, norm_layer=norm_layer, init_values=init_values, tubelet_size=tubelet_size, use_learnable_pos_emb=use_learnable_pos_emb, with_cp=with_cp) self.decoder = PretrainVisionTransformerDecoder( patch_size=patch_size, num_patches=self.encoder.patch_embed.num_patches, num_classes=decoder_num_classes, embed_dim=decoder_embed_dim, depth=decoder_depth, num_heads=decoder_num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=drop_path_rate, norm_layer=norm_layer, init_values=init_values, tubelet_size=tubelet_size, with_cp=with_cp, with_fp16=True) self.encoder_to_decoder = nn.Linear( encoder_embed_dim, decoder_embed_dim, bias=False) self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim)) self.pos_embed = get_sinusoid_encoding_table( self.encoder.patch_embed.num_patches, decoder_embed_dim) trunc_normal_(self.mask_token, std=.02) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token', 'mask_token'} def forward(self, x, mask): _, _, T, _, _ = x.shape x_vis = self.encoder(x, mask) # [B, N_vis, C_e] x_vis = self.encoder_to_decoder(x_vis) # [B, N_vis, C_d] B, N_vis, C = x_vis.shape # we don't unshuffle the correct visible token order, # but shuffle the pos embedding accorddingly. expand_pos_embed = self.pos_embed.expand(B, -1, -1).type_as(x).to( x.device).clone().detach() pos_emd_vis = expand_pos_embed[~mask].reshape(B, -1, C) pos_emd_mask = expand_pos_embed[mask].reshape(B, -1, C) x_full = torch.cat( [x_vis + pos_emd_vis, self.mask_token + pos_emd_mask], dim=1) # [B, N, C_d] # notice: if N_mask==0, the shape of x is [B, N_mask, 3 * 16 * 16] x = self.decoder(x_full, pos_emd_mask.shape[1]) # [B, N_mask, 3 * 16 * 16] return x @register_model def pretrain_mae_small_patch16_224(pretrained=False, **kwargs): model = PretrainVisionTransformer( img_size=224, patch_size=16, encoder_embed_dim=384, encoder_depth=12, encoder_num_heads=6, encoder_num_classes=0, decoder_num_classes=1536, # decoder_num_classes=768, decoder_embed_dim=192, #decoder_depth=4, decoder_num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def pretrain_mae_base_patch16_224(pretrained=False, **kwargs): model = PretrainVisionTransformer( img_size=224, patch_size=16, encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, encoder_num_classes=0, decoder_num_classes=1536, # decoder_num_classes=768, decoder_embed_dim=384, #decoder_depth=4, decoder_num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def pretrain_mae_large_patch16_224(pretrained=False, **kwargs): model = PretrainVisionTransformer( img_size=224, patch_size=16, encoder_embed_dim=1024, encoder_depth=24, encoder_num_heads=16, encoder_num_classes=0, decoder_num_classes=1536, # decoder_num_classes=768, decoder_embed_dim=512, #decoder_depth=8, decoder_num_heads=8, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def pretrain_mae_huge_patch16_224(pretrained=False, **kwargs): model = PretrainVisionTransformer( img_size=224, patch_size=16, encoder_embed_dim=1280, encoder_depth=32, encoder_num_heads=16, encoder_num_classes=0, decoder_num_classes=1536, # decoder_num_classes=768, decoder_embed_dim=512, #decoder_depth=8, decoder_num_heads=8, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def pretrain_mae_giant_patch16_224(pretrained=False, **kwargs): model = PretrainVisionTransformer( img_size=224, patch_size=16, encoder_embed_dim=1408, encoder_depth=40, encoder_num_heads=16, encoder_num_classes=0, decoder_num_classes=1536, decoder_embed_dim=512, decoder_num_heads=8, mlp_ratio=48 / 11, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def pretrain_mae_giant_patch14_224(pretrained=False, **kwargs): model = PretrainVisionTransformer( img_size=224, patch_size=14, encoder_embed_dim=1408, encoder_depth=40, encoder_num_heads=16, encoder_num_classes=0, decoder_num_classes=1176, decoder_embed_dim=512, decoder_num_heads=8, mlp_ratio=48 / 11, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def pretrain_mae_gigantic_patch14_224(pretrained=False, **kwargs): model = PretrainVisionTransformer( img_size=224, patch_size=14, encoder_embed_dim=1664, encoder_depth=48, encoder_num_heads=16, encoder_num_classes=0, decoder_num_classes=1176, # decoder_num_classes=768, decoder_embed_dim=512, #decoder_depth=8, decoder_num_heads=8, mlp_ratio=64 / 13, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model
InternVideo-main
Pretrain/VideoMAE/modeling_pretrain.py
import io import os import random import cv2 import decord import numpy as np import torch from decord import VideoReader, cpu from petrel_client.client import Client from PIL import Image class HybridVideoMAE(torch.utils.data.Dataset): """Load your own video classification dataset. Parameters ---------- root : str, required. Path to the root folder storing the dataset. setting : str, required. A text file describing the dataset, each line per video sample. There are three items in each line: (1) video path; (2) video length and (3) video label. train : bool, default True. Whether to load the training or validation set. test_mode : bool, default False. Whether to perform evaluation on the test set. Usually there is three-crop or ten-crop evaluation strategy involved. name_pattern : str, default None. The naming pattern of the decoded video frames. For example, img_00012.jpg. video_ext : str, default 'mp4'. If video_loader is set to True, please specify the video format accordinly. is_color : bool, default True. Whether the loaded image is color or grayscale. modality : str, default 'rgb'. Input modalities, we support only rgb video frames for now. Will add support for rgb difference image and optical flow image later. num_segments : int, default 1. Number of segments to evenly divide the video into clips. A useful technique to obtain global video-level information. Limin Wang, etal, Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, ECCV 2016. num_crop : int, default 1. Number of crops for each image. default is 1. Common choices are three crops and ten crops during evaluation. new_length : int, default 1. The length of input video clip. Default is a single image, but it can be multiple video frames. For example, new_length=16 means we will extract a video clip of consecutive 16 frames. new_step : int, default 1. Temporal sampling rate. For example, new_step=1 means we will extract a video clip of consecutive frames. new_step=2 means we will extract a video clip of every other frame. temporal_jitter : bool, default False. Whether to temporally jitter if new_step > 1. video_loader : bool, default False. Whether to use video loader to load data. use_decord : bool, default True. Whether to use Decord video loader to load data. Otherwise use mmcv video loader. transform : function, default None. A function that takes data and label and transforms them. data_aug : str, default 'v1'. Different types of data augmentation auto. Supports v1, v2, v3 and v4. lazy_init : bool, default False. If set to True, build a dataset instance without loading any dataset. """ def __init__(self, root, setting, train=True, test_mode=False, name_pattern='img_{:05}.jpg', video_ext='mp4', is_color=True, modality='rgb', num_segments=1, num_crop=1, new_length=1, new_step=1, transform=None, temporal_jitter=False, video_loader=False, use_decord=False, lazy_init=False, num_sample=1): super(HybridVideoMAE, self).__init__() self.root = root self.setting = setting self.train = train self.test_mode = test_mode self.is_color = is_color self.modality = modality self.num_segments = num_segments self.num_crop = num_crop self.new_length = new_length self.new_step = new_step self.skip_length = self.new_length * self.new_step self.temporal_jitter = temporal_jitter self.name_pattern = name_pattern self.video_loader = video_loader self.video_ext = video_ext self.use_decord = use_decord self.transform = transform self.lazy_init = lazy_init self.num_sample = num_sample # temp for hybrid train self.ava_fname_tmpl = 'image_{:06}.jpg' self.ssv2_fname_tmpl = 'img_{:05}.jpg' self.decord = True self.client = Client() if not self.lazy_init: self.clips = self._make_dataset(root, setting) if len(self.clips) == 0: raise ( RuntimeError("Found 0 video clips in subfolders of: " + root + "\n" "Check your data directory (opt.data-dir).")) def __getitem__(self, index): while True: try: video_name, start_idx, total_frame, target = self.clips[index] if total_frame < 0: self.new_step = 4 self.skip_length = self.new_length * self.new_step video_bytes = self.client.get(video_name) decord_vr = VideoReader(io.BytesIO(video_bytes), num_threads=1, ctx=cpu(0)) duration = len(decord_vr) segment_indices, skip_offsets = self._sample_train_indices( duration) frame_id_list = self.get_frame_id_list( duration, segment_indices, skip_offsets) video_data = decord_vr.get_batch(frame_id_list).asnumpy() images = [ Image.fromarray( video_data[vid, :, :, :]).convert('RGB') for vid, _ in enumerate(frame_id_list) ] break else: # ssv2 & ava if 'SomethingV2' in video_name: self.new_step = 2 self.skip_length = self.new_length * self.new_step fname_tmpl = self.ssv2_fname_tmpl elif 'AVA' in video_name: self.new_step = 4 self.skip_length = self.new_length * self.new_step fname_tmpl = self.ava_fname_tmpl else: self.new_step = 4 self.skip_length = self.new_length * self.new_step fname_tmpl = self.name_pattern segment_indices, skip_offsets = self._sample_train_indices( total_frame) frame_id_list = self.get_frame_id_list( total_frame, segment_indices, skip_offsets) images = [] for idx in frame_id_list: frame_fname = os.path.join( video_name, fname_tmpl.format(idx + start_idx)) img_bytes = self.client.get(frame_fname) img_np = np.frombuffer(img_bytes, np.uint8) img = cv2.imdecode(img_np, cv2.IMREAD_COLOR) cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) images.append(Image.fromarray(img)) break break except Exception as e: print("Failed to load video from {} with error {}".format( video_name, e)) index = random.randint(0, len(self.clips) - 1) if self.num_sample > 1: process_data_list = [] mask_list = [] for _ in range(self.num_sample): process_data, mask = self.transform((images, None)) process_data = process_data.view( (self.new_length, 3) + process_data.size()[-2:]).transpose( 0, 1) process_data_list.append(process_data) mask_list.append(mask) return process_data_list, mask_list else: process_data, mask = self.transform((images, None)) # T*C,H,W -> T,C,H,W -> C,T,H,W process_data = process_data.view( (self.new_length, 3) + process_data.size()[-2:]).transpose( 0, 1) return process_data, mask def __len__(self): return len(self.clips) def _make_dataset(self, root, setting): if not os.path.exists(setting): raise (RuntimeError( "Setting file %s doesn't exist. Check opt.train-list and opt.val-list. " % (setting))) clips = [] with open(setting) as split_f: data = split_f.readlines() for line in data: line_info = line.split(' ') # line format: video_path, video_duration, video_label if len(line_info) < 2: raise (RuntimeError( 'Video input format is not correct, missing one or more element. %s' % line)) clip_path = os.path.join(root, line_info[0]) start_idx = int(line_info[1]) total_frame = int(line_info[2]) target = int(line_info[-1]) #往往最后一列才是类别标签 item = (clip_path, start_idx, total_frame, target) clips.append(item) return clips def _sample_train_indices(self, num_frames): average_duration = (num_frames - self.skip_length + 1) // self.num_segments if average_duration > 0: offsets = np.multiply(list(range(self.num_segments)), average_duration) offsets = offsets + np.random.randint(average_duration, size=self.num_segments) elif num_frames > max(self.num_segments, self.skip_length): offsets = np.sort( np.random.randint(num_frames - self.skip_length + 1, size=self.num_segments)) else: offsets = np.zeros((self.num_segments, )) if self.temporal_jitter: skip_offsets = np.random.randint(self.new_step, size=self.skip_length // self.new_step) else: skip_offsets = np.zeros(self.skip_length // self.new_step, dtype=int) return offsets + 1, skip_offsets def get_frame_id_list(self, duration, indices, skip_offsets): frame_id_list = [] for seg_ind in indices: offset = int(seg_ind) for i, _ in enumerate(range(0, self.skip_length, self.new_step)): if offset + skip_offsets[i] <= duration: frame_id = offset + skip_offsets[i] - 1 else: frame_id = offset - 1 frame_id_list.append(frame_id) if offset + self.new_step < duration: offset += self.new_step return frame_id_list class VideoMAE(torch.utils.data.Dataset): """Load your own video classification dataset. Parameters ---------- root : str, required. Path to the root folder storing the dataset. setting : str, required. A text file describing the dataset, each line per video sample. There are three items in each line: (1) video path; (2) video length and (3) video label. train : bool, default True. Whether to load the training or validation set. test_mode : bool, default False. Whether to perform evaluation on the test set. Usually there is three-crop or ten-crop evaluation strategy involved. name_pattern : str, default None. The naming pattern of the decoded video frames. For example, img_00012.jpg. video_ext : str, default 'mp4'. If video_loader is set to True, please specify the video format accordinly. is_color : bool, default True. Whether the loaded image is color or grayscale. modality : str, default 'rgb'. Input modalities, we support only rgb video frames for now. Will add support for rgb difference image and optical flow image later. num_segments : int, default 1. Number of segments to evenly divide the video into clips. A useful technique to obtain global video-level information. Limin Wang, etal, Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, ECCV 2016. num_crop : int, default 1. Number of crops for each image. default is 1. Common choices are three crops and ten crops during evaluation. new_length : int, default 1. The length of input video clip. Default is a single image, but it can be multiple video frames. For example, new_length=16 means we will extract a video clip of consecutive 16 frames. new_step : int, default 1. Temporal sampling rate. For example, new_step=1 means we will extract a video clip of consecutive frames. new_step=2 means we will extract a video clip of every other frame. temporal_jitter : bool, default False. Whether to temporally jitter if new_step > 1. video_loader : bool, default False. Whether to use video loader to load data. use_decord : bool, default True. Whether to use Decord video loader to load data. Otherwise use mmcv video loader. transform : function, default None. A function that takes data and label and transforms them. data_aug : str, default 'v1'. Different types of data augmentation auto. Supports v1, v2, v3 and v4. lazy_init : bool, default False. If set to True, build a dataset instance without loading any dataset. """ def __init__(self, root, setting, train=True, test_mode=False, name_pattern='img_{:05}.jpg', video_ext='mp4', is_color=True, modality='rgb', num_segments=1, num_crop=1, new_length=1, new_step=1, transform=None, temporal_jitter=False, video_loader=False, use_decord=False, lazy_init=False, num_sample=1): super(VideoMAE, self).__init__() self.root = root self.setting = setting self.train = train self.test_mode = test_mode self.is_color = is_color self.modality = modality self.num_segments = num_segments self.num_crop = num_crop self.new_length = new_length self.new_step = new_step self.skip_length = self.new_length * self.new_step self.temporal_jitter = temporal_jitter self.name_pattern = name_pattern self.video_loader = video_loader self.video_ext = video_ext self.use_decord = use_decord self.transform = transform self.lazy_init = lazy_init self.num_sample = num_sample self.decord = True self.client = Client() if not self.lazy_init: self.clips = self._make_dataset(root, setting) if len(self.clips) == 0: raise ( RuntimeError("Found 0 video clips in subfolders of: " + root + "\n" "Check your data directory (opt.data-dir).")) def __getitem__(self, index): while True: try: video_name, start_idx, total_frame, target = self.clips[index] if total_frame < 0: # load video if video_name.startswith('s3:'): video_bytes = self.client.get(video_name) decord_vr = VideoReader(io.BytesIO(video_bytes), num_threads=1, ctx=cpu(0)) else: decord_vr = VideoReader(video_name, num_threads=1, ctx=cpu(0)) duration = len(decord_vr) segment_indices, skip_offsets = self._sample_train_indices( duration) frame_id_list = self.get_frame_id_list( duration, segment_indices, skip_offsets) video_data = decord_vr.get_batch(frame_id_list).asnumpy() images = [ Image.fromarray( video_data[vid, :, :, :]).convert('RGB') for vid, _ in enumerate(frame_id_list) ] else: # load frames segment_indices, skip_offsets = self._sample_train_indices( total_frame) frame_id_list = self.get_frame_id_list( total_frame, segment_indices, skip_offsets) images = [] for idx in frame_id_list: frame_fname = os.path.join( video_name, self.name_pattern.format(idx + start_idx)) if frame_fname.startswith('s3:'): img_bytes = self.client.get(frame_fname) img_np = np.frombuffer(img_bytes, np.uint8) img = cv2.imdecode(img_np, cv2.IMREAD_COLOR) cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) img = Image.fromarray(img) else: with open(frame_fname, 'rb') as f: img = Image.open(f) img = img.convert('RGB') images.append(img) # walk through the if-else branch without error # break out the while-true loop break except Exception as e: print("Failed to load video from {} with error {}".format( video_name, e)) index = random.randint(0, len(self.clips) - 1) if self.num_sample > 1: process_data_list = [] mask_list = [] for _ in range(self.num_sample): process_data, mask = self.transform((images, None)) process_data = process_data.view( (self.new_length, 3) + process_data.size()[-2:]).transpose( 0, 1) process_data_list.append(process_data) mask_list.append(mask) return process_data_list, mask_list else: process_data, mask = self.transform((images, None)) # T*C,H,W -> T,C,H,W -> C,T,H,W process_data = process_data.view( (self.new_length, 3) + process_data.size()[-2:]).transpose( 0, 1) return process_data, mask def __len__(self): return len(self.clips) def _make_dataset(self, root, setting): if not os.path.exists(setting): raise (RuntimeError( "Setting file %s doesn't exist. Check opt.train-list and opt.val-list. " % (setting))) clips = [] with open(setting) as split_f: data = split_f.readlines() for line in data: line_info = line.split(' ') # line format: video_path, video_duration, video_label if len(line_info) < 2: raise (RuntimeError( 'Video input format is not correct, missing one or more element. %s' % line)) clip_path = os.path.join(root, line_info[0]) start_idx = int(line_info[1]) total_frame = int(line_info[2]) target = int(line_info[-1]) item = (clip_path, start_idx, total_frame, target) clips.append(item) return clips def _sample_train_indices(self, num_frames): average_duration = (num_frames - self.skip_length + 1) // self.num_segments if average_duration > 0: offsets = np.multiply(list(range(self.num_segments)), average_duration) offsets = offsets + np.random.randint(average_duration, size=self.num_segments) elif num_frames > max(self.num_segments, self.skip_length): offsets = np.sort( np.random.randint(num_frames - self.skip_length + 1, size=self.num_segments)) else: offsets = np.zeros((self.num_segments, )) if self.temporal_jitter: skip_offsets = np.random.randint(self.new_step, size=self.skip_length // self.new_step) else: skip_offsets = np.zeros(self.skip_length // self.new_step, dtype=int) return offsets + 1, skip_offsets def get_frame_id_list(self, duration, indices, skip_offsets): frame_id_list = [] for seg_ind in indices: offset = int(seg_ind) for i, _ in enumerate(range(0, self.skip_length, self.new_step)): if offset + skip_offsets[i] <= duration: frame_id = offset + skip_offsets[i] - 1 else: frame_id = offset - 1 frame_id_list.append(frame_id) if offset + self.new_step < duration: offset += self.new_step return frame_id_list class OldVideoMAE(torch.utils.data.Dataset): """Load your own video classification dataset. Parameters ---------- root : str, required. Path to the root folder storing the dataset. setting : str, required. A text file describing the dataset, each line per video sample. There are three items in each line: (1) video path; (2) video length and (3) video label. train : bool, default True. Whether to load the training or validation set. test_mode : bool, default False. Whether to perform evaluation on the test set. Usually there is three-crop or ten-crop evaluation strategy involved. name_pattern : str, default None. The naming pattern of the decoded video frames. For example, img_00012.jpg. video_ext : str, default 'mp4'. If video_loader is set to True, please specify the video format accordinly. is_color : bool, default True. Whether the loaded image is color or grayscale. modality : str, default 'rgb'. Input modalities, we support only rgb video frames for now. Will add support for rgb difference image and optical flow image later. num_segments : int, default 1. Number of segments to evenly divide the video into clips. A useful technique to obtain global video-level information. Limin Wang, etal, Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, ECCV 2016. num_crop : int, default 1. Number of crops for each image. default is 1. Common choices are three crops and ten crops during evaluation. new_length : int, default 1. The length of input video clip. Default is a single image, but it can be multiple video frames. For example, new_length=16 means we will extract a video clip of consecutive 16 frames. new_step : int, default 1. Temporal sampling rate. For example, new_step=1 means we will extract a video clip of consecutive frames. new_step=2 means we will extract a video clip of every other frame. temporal_jitter : bool, default False. Whether to temporally jitter if new_step > 1. video_loader : bool, default False. Whether to use video loader to load data. use_decord : bool, default True. Whether to use Decord video loader to load data. Otherwise use mmcv video loader. transform : function, default None. A function that takes data and label and transforms them. data_aug : str, default 'v1'. Different types of data augmentation auto. Supports v1, v2, v3 and v4. lazy_init : bool, default False. If set to True, build a dataset instance without loading any dataset. """ def __init__(self, root, setting, train=True, test_mode=False, name_pattern='img_%05d.jpg', video_ext='mp4', is_color=True, modality='rgb', num_segments=1, num_crop=1, new_length=1, new_step=1, transform=None, temporal_jitter=False, video_loader=False, use_decord=False, lazy_init=False, num_sample=1): super(OldVideoMAE, self).__init__() self.root = root self.setting = setting self.train = train self.test_mode = test_mode self.is_color = is_color self.modality = modality self.num_segments = num_segments self.num_crop = num_crop self.new_length = new_length self.new_step = new_step self.skip_length = self.new_length * self.new_step self.temporal_jitter = temporal_jitter self.name_pattern = name_pattern self.video_loader = video_loader self.video_ext = video_ext self.use_decord = use_decord self.transform = transform self.lazy_init = lazy_init self.num_sample = num_sample self.decord = True conf_path = '~/petreloss.conf' client = Client(conf_path) self.client = client if not self.lazy_init: self.clips = self._make_dataset(root, setting) if len(self.clips) == 0: raise ( RuntimeError("Found 0 video clips in subfolders of: " + root + "\n" "Check your data directory (opt.data-dir).")) def __getitem__(self, index): while True: try: directory, target = self.clips[index] if self.video_loader: if '.' in directory.split('/')[-1]: video_name = directory else: video_name = '{}.{}'.format(directory, self.video_ext) if video_name.startswith('s3'): video_bytes = self.client.get(video_name) decord_vr = VideoReader(io.BytesIO(video_bytes), num_threads=1, ctx=cpu(0)) else: decord_vr = VideoReader(video_name, num_threads=1, ctx=cpu(0)) duration = len(decord_vr) if duration > 0: break except Exception as e: print("Failed to load video from {} with error {}".format( video_name, e)) index = random.randint(0, len(self.clips) - 1) if self.num_sample > 1: process_data_list = [] mask_list = [] for _ in range(self.num_sample): process_data, mask = self.get_one_sample( decord_vr, duration, directory) process_data_list.append(process_data) mask_list.append(mask) return process_data_list, mask_list else: return self.get_one_sample(decord_vr, duration, directory) def get_one_sample(self, decord_vr, duration, directory): decord_vr.seek(0) segment_indices, skip_offsets = self._sample_train_indices(duration) images = self._video_TSN_decord_batch_loader(directory, decord_vr, duration, segment_indices, skip_offsets) # T*C,H,W -> T,C,H,W -> C,T,H,W process_data, mask = self.transform((images, None)) process_data = process_data.view((self.new_length, 3) + process_data.size()[-2:]).transpose( 0, 1) return process_data, mask def __len__(self): return len(self.clips) def _make_dataset(self, directory, setting): if not os.path.exists(setting): raise (RuntimeError( "Setting file %s doesn't exist. Check opt.train-list and opt.val-list. " % (setting))) clips = [] with open(setting) as split_f: data = split_f.readlines() for line in data: line_info = line.split(' ') # line format: video_path, video_duration, video_label if len(line_info) < 2: raise (RuntimeError( 'Video input format is not correct, missing one or more element. %s' % line)) clip_path = os.path.join(line_info[0]) target = int(line_info[-1]) item = (clip_path, target) clips.append(item) return clips def _sample_train_indices(self, num_frames): average_duration = (num_frames - self.skip_length + 1) // self.num_segments if average_duration > 0: offsets = np.multiply(list(range(self.num_segments)), average_duration) offsets = offsets + np.random.randint(average_duration, size=self.num_segments) elif num_frames > max(self.num_segments, self.skip_length): offsets = np.sort( np.random.randint(num_frames - self.skip_length + 1, size=self.num_segments)) else: offsets = np.zeros((self.num_segments, )) if self.temporal_jitter: skip_offsets = np.random.randint(self.new_step, size=self.skip_length // self.new_step) else: skip_offsets = np.zeros(self.skip_length // self.new_step, dtype=int) return offsets + 1, skip_offsets def _video_TSN_decord_batch_loader(self, directory, video_reader, duration, indices, skip_offsets): sampled_list = [] frame_id_list = [] for seg_ind in indices: offset = int(seg_ind) for i, _ in enumerate(range(0, self.skip_length, self.new_step)): if offset + skip_offsets[i] <= duration: frame_id = offset + skip_offsets[i] - 1 else: frame_id = offset - 1 frame_id_list.append(frame_id) if offset + self.new_step < duration: offset += self.new_step try: video_data = video_reader.get_batch(frame_id_list).asnumpy() sampled_list = [ Image.fromarray(video_data[vid, :, :, :]).convert('RGB') for vid, _ in enumerate(frame_id_list) ] except: raise RuntimeError( 'Error occured in reading frames {} from video {} of duration {}.' .format(frame_id_list, directory, duration)) return sampled_list
InternVideo-main
Pretrain/VideoMAE/mae.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import os import torch from timm.data import create_transform from timm.data.constants import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD, ) from torchvision import datasets, transforms from anet import ANetClsDataset from kinetics import RawFrameDataset, VideoClsDataset from mae import HybridVideoMAE, VideoMAE from masking_generator import ( CellRunningMaskingGenerator, RandomMaskingGenerator, TemporalCenteringProgressiveMaskingGenerator, TemporalConsistencyMaskingGenerator, TemporalProgressiveMaskingGenerator, ) from ssv2 import SSRawFrameClsDataset from transforms import * class DataAugmentationForMAE(object): def __init__(self, args): imagenet_default_mean_and_std = args.imagenet_default_mean_and_std mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD self.input_mean = [0.485, 0.456, 0.406] self.input_std = [0.229, 0.224, 0.225] div = True roll = False normalize = GroupNormalize(self.input_mean, self.input_std) self.train_augmentation = GroupMultiScaleCrop(args.input_size, [1, .875, .75, .66]) self.transform = transforms.Compose([ # GroupScale((240,320)), self.train_augmentation, Stack(roll=roll), ToTorchFormatTensor(div=div), normalize, ]) if args.mask_type == 'random': self.masked_position_generator = RandomMaskingGenerator( args.window_size, args.mask_ratio) elif args.mask_type == 't_consist': self.masked_position_generator = TemporalConsistencyMaskingGenerator( args.window_size, args.mask_ratio) elif args.mask_type == 't_progressive': self.masked_position_generator = TemporalProgressiveMaskingGenerator( args.window_size, args.mask_ratio) elif args.mask_type == 't_center_prog': self.masked_position_generator = TemporalCenteringProgressiveMaskingGenerator( args.window_size, args.mask_ratio) def __call__(self, images): process_data, _ = self.transform(images) return process_data, self.masked_position_generator() def __repr__(self): repr = "(DataAugmentationForBEiT,\n" repr += " transform = %s,\n" % str(self.transform) repr += " Masked position generator = %s,\n" % str( self.masked_position_generator) repr += ")" return repr def build_pretraining_dataset(args): transform = DataAugmentationForMAE(args) dataset = HybridVideoMAE( root=args.data_root, # dataset = VideoMAE(root=args.data_root, setting=args.data_path, train=True, test_mode=False, video_ext='mp4', is_color=True, modality='rgb', num_segments=1, num_crop=1, new_length=args.num_frames, new_step=args.sampling_rate, transform=transform, temporal_jitter=False, video_loader=True, use_decord=True, lazy_init=False, num_sample=args.num_sample) print("Data Aug = %s" % str(transform)) return dataset def build_dataset(is_train, test_mode, args): if args.data_set == 'Kinetics-400': mode = None anno_path = None if is_train == True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode == True: mode = 'test' anno_path = os.path.join(args.data_path, 'val.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') if not args.sparse_sample: dataset = VideoClsDataset( anno_path=anno_path, data_path='/', mode=mode, clip_len=args.num_frames, frame_sample_rate=args.sampling_rate, num_segment=1, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, sparse_sample=False, v4d_segment=args.num_segment if is_train else 1, args=args) else: dataset = VideoClsDataset( anno_path=anno_path, data_path='/', mode=mode, clip_len=1, frame_sample_rate=1, num_segment=args.num_frames, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, sparse_sample=True, v4d_segment=args.num_segment if is_train else 1, args=args) nb_classes = 400 elif args.data_set == 'Kinetics-600': mode = None anno_path = None if is_train == True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode == True: mode = 'test' anno_path = os.path.join(args.data_path, 'val.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') dataset = VideoClsDataset(anno_path=anno_path, data_path='/', mode=mode, clip_len=args.num_frames, frame_sample_rate=args.sampling_rate, num_segment=1, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, args=args) nb_classes = 600 elif args.data_set == 'Kinetics-700': mode = None anno_path = None if is_train == True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode == True: mode = 'test' anno_path = os.path.join(args.data_path, 'val.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') dataset = VideoClsDataset(anno_path=anno_path, data_path='/', mode=mode, clip_len=args.num_frames, frame_sample_rate=args.sampling_rate, num_segment=1, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, args=args) nb_classes = 700 elif args.data_set == 'MixKinetics': mode = None anno_path = None if is_train == True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode == True: mode = 'test' anno_path = os.path.join(args.data_path, 'val.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') dataset = VideoClsDataset(anno_path=anno_path, data_path='/', mode=mode, clip_len=args.num_frames, frame_sample_rate=args.sampling_rate, num_segment=1, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, args=args) nb_classes = 710 elif args.data_set == 'SSV2': mode = None anno_path = None if is_train == True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode == True: mode = 'test' anno_path = os.path.join(args.data_path, 'val.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') dataset = SSRawFrameClsDataset(anno_path=anno_path, data_path='/', mode=mode, clip_len=1, num_segment=args.num_frames, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, filename_tmpl='img_{:05}.jpg', args=args) # dataset = RawFrameDataset(anno_path=anno_path, # data_path='/', # mode=mode, # clip_len=args.num_frames, # frame_sample_rate=args.sampling_rate, # num_segment=1, # test_num_segment=args.test_num_segment, # test_num_crop=args.test_num_crop, # num_crop=1 if not test_mode else 3, # keep_aspect_ratio=True, # crop_size=args.input_size, # short_side_size=args.short_side_size, # new_height=256, # new_width=320, # filename_tmpl='img_{:05}.jpg', # args=args) nb_classes = 174 elif args.data_set == 'UCF101': mode = None anno_path = None if is_train == True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode == True: mode = 'test' anno_path = os.path.join(args.data_path, 'val.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') dataset = VideoClsDataset(anno_path=anno_path, data_path='/', mode=mode, clip_len=args.num_frames, frame_sample_rate=args.sampling_rate, num_segment=1, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, args=args) nb_classes = 101 elif args.data_set == 'HMDB51': mode = None anno_path = None if is_train == True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode == True: mode = 'test' anno_path = os.path.join(args.data_path, 'val.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') dataset = VideoClsDataset(anno_path=anno_path, data_path='/', mode=mode, clip_len=args.num_frames, frame_sample_rate=args.sampling_rate, num_segment=1, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, args=args) nb_classes = 51 elif args.data_set == 'Diving48': mode = None anno_path = None if is_train == True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode == True: mode = 'test' anno_path = os.path.join(args.data_path, 'val.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') dataset = VideoClsDataset(anno_path=anno_path, data_path='/', mode=mode, clip_len=args.num_frames, frame_sample_rate=args.sampling_rate, num_segment=1, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, args=args) nb_classes = 48 elif args.data_set == 'ANet': mode = None anno_path = None if is_train == True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode == True: mode = 'test' anno_path = os.path.join(args.data_path, 'test.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') dataset = ANetClsDataset(anno_path=anno_path, data_path='/', mode=mode, clip_len=args.num_frames, frame_sample_rate=args.sampling_rate, num_segment=1, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, args=args) nb_classes = 200 else: raise NotImplementedError() assert nb_classes == args.nb_classes print("Number of the class = %d" % args.nb_classes) return dataset, nb_classes def build_transform(is_train, test_mode, args): resize_im = args.input_size > 32 imagenet_default_mean_and_std = args.imagenet_default_mean_and_std mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=args.input_size, is_training=True, color_jitter=args.color_jitter, auto_augment=args.aa, interpolation=args.train_interpolation, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, mean=mean, std=std, ) if not resize_im: # replace RandomResizedCropAndInterpolation with # RandomCrop transform.transforms[0] = transforms.RandomCrop(args.input_size, padding=4) return transform t = [] if resize_im: if args.crop_pct is None: if args.input_size < 384: args.crop_pct = 224 / 256 else: args.crop_pct = 1.0 size = int(args.input_size / args.crop_pct) t.append( transforms.Resize( size, interpolation=3), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(args.input_size)) t.append(transforms.ToTensor()) t.append(transforms.Normalize(mean, std)) return transforms.Compose(t)
InternVideo-main
Pretrain/VideoMAE/datasets.py
import os import warnings import cv2 import numpy as np import torch from decord import VideoReader, cpu from petrel_client.client import Client from torch.utils.data import Dataset from torchvision import transforms import video_transforms as video_transforms import volume_transforms as volume_transforms from random_erasing import RandomErasing class SSRawFrameClsDataset(Dataset): """Load your own raw frame classification dataset.""" def __init__(self, anno_path, data_path, mode='train', clip_len=8, crop_size=224, short_side_size=256, new_height=256, new_width=340, keep_aspect_ratio=True, num_segment=1, num_crop=1, test_num_segment=10, test_num_crop=3, filename_tmpl='img_{:05}.jpg', args=None): self.anno_path = anno_path self.data_path = data_path self.mode = mode self.clip_len = clip_len self.crop_size = crop_size self.short_side_size = short_side_size self.new_height = new_height self.new_width = new_width self.keep_aspect_ratio = keep_aspect_ratio self.num_segment = num_segment self.test_num_segment = test_num_segment self.num_crop = num_crop self.test_num_crop = test_num_crop self.filename_tmpl = filename_tmpl self.args = args self.aug = False self.rand_erase = False if self.mode in ['train']: self.aug = True if self.args.reprob > 0: self.rand_erase = True if VideoReader is None: raise ImportError( "Unable to import `decord` which is required to read videos.") import pandas as pd cleaned = pd.read_csv(self.anno_path, header=None, delimiter=' ') self.dataset_samples = list(cleaned.values[:, 0]) self.total_frames = list(cleaned.values[:, 1]) self.label_array = list(cleaned.values[:, -1]) self.client = Client() if (mode == 'train'): pass elif (mode == 'validation'): self.data_transform = video_transforms.Compose([ video_transforms.Resize(self.short_side_size, interpolation='bilinear'), video_transforms.CenterCrop(size=(self.crop_size, self.crop_size)), volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) elif mode == 'test': self.data_resize = video_transforms.Compose([ video_transforms.Resize(size=(short_side_size), interpolation='bilinear') ]) self.data_transform = video_transforms.Compose([ volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.test_seg = [] self.test_dataset = [] self.test_total_frames = [] self.test_label_array = [] for ck in range(self.test_num_segment): for cp in range(self.test_num_crop): for idx in range(len(self.label_array)): self.test_seg.append((ck, cp)) self.test_dataset.append(self.dataset_samples[idx]) self.test_total_frames.append(self.total_frames[idx]) self.test_label_array.append(self.label_array[idx]) def __getitem__(self, index): if self.mode == 'train': args = self.args scale_t = 1 sample = self.dataset_samples[index] total_frame = self.total_frames[index] buffer = self.load_frame(sample, total_frame, sample_rate_scale=scale_t) # T H W C if len(buffer) == 0: while len(buffer) == 0: warnings.warn( "video {} not correctly loaded during training".format( sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] total_frame = self.total_frames[index] buffer = self.load_frame(sample, total_frame, sample_rate_scale=scale_t) if args.num_sample > 1: frame_list = [] label_list = [] index_list = [] for _ in range(args.num_sample): new_frames = self._aug_frame(buffer, args) label = self.label_array[index] frame_list.append(new_frames) label_list.append(label) index_list.append(index) return frame_list, label_list, index_list, {} else: buffer = self._aug_frame(buffer, args) return buffer, self.label_array[index], index, {} elif self.mode == 'validation': sample = self.dataset_samples[index] total_frame = self.total_frames[index] buffer = self.load_frame(sample, total_frame) if len(buffer) == 0: while len(buffer) == 0: warnings.warn( "video {} not correctly loaded during validation". format(sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] buffer = self.load_frame(sample, total_frame) buffer = self.data_transform(buffer) return buffer, self.label_array[index], sample.split( "/")[-1].split(".")[0] elif self.mode == 'test': sample = self.test_dataset[index] total_frame = self.test_total_frames[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.load_frame(sample, total_frame) while len(buffer) == 0: warnings.warn("video {}, temporal {}, spatial {} not found during testing".format(\ str(self.test_dataset[index]), chunk_nb, split_nb)) index = np.random.randint(self.__len__()) sample = self.test_dataset[index] total_frame = self.test_total_frames[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.load_frame(sample, total_frame) buffer = self.data_resize(buffer) if isinstance(buffer, list): buffer = np.stack(buffer, 0) spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) \ / (self.test_num_crop - 1) temporal_start = chunk_nb spatial_start = int(split_nb * spatial_step) if buffer.shape[1] >= buffer.shape[2]: buffer = buffer[temporal_start::self.test_num_segment, \ spatial_start:spatial_start + self.short_side_size, :, :] else: buffer = buffer[temporal_start::self.test_num_segment, \ :, spatial_start:spatial_start + self.short_side_size, :] buffer = self.data_transform(buffer) return buffer, self.test_label_array[index], sample.split("/")[-1].split(".")[0], \ chunk_nb, split_nb else: raise NameError('mode {} unkown'.format(self.mode)) def _aug_frame( self, buffer, args, ): aug_transform = video_transforms.create_random_augment( input_size=(self.crop_size, self.crop_size), auto_augment=args.aa, interpolation=args.train_interpolation, ) buffer = [transforms.ToPILImage()(frame) for frame in buffer] buffer = aug_transform(buffer) buffer = [transforms.ToTensor()(img) for img in buffer] buffer = torch.stack(buffer) # T C H W buffer = buffer.permute(0, 2, 3, 1) # T H W C # T H W C buffer = tensor_normalize(buffer, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # T H W C -> C T H W. buffer = buffer.permute(3, 0, 1, 2) # Perform data augmentation. scl, asp = ( [0.08, 1.0], [0.75, 1.3333], ) buffer = spatial_sampling( buffer, spatial_idx=-1, min_scale=256, max_scale=320, crop_size=self.crop_size, random_horizontal_flip=False if args.data_set == 'SSV2' else True, inverse_uniform_sampling=False, aspect_ratio=asp, scale=scl, motion_shift=False) if self.rand_erase: erase_transform = RandomErasing( args.reprob, mode=args.remode, max_count=args.recount, num_splits=args.recount, device="cpu", ) buffer = buffer.permute(1, 0, 2, 3) buffer = erase_transform(buffer) buffer = buffer.permute(1, 0, 2, 3) return buffer def load_frame(self, sample, num_frames, sample_rate_scale=1): """Load video content using Decord""" fname = sample if self.mode == 'test': tick = num_frames / float(self.num_segment) all_index = [] for t_seg in range(self.test_num_segment): tmp_index = [ int(t_seg * tick / self.test_num_segment + tick * x) for x in range(self.num_segment) ] all_index.extend(tmp_index) all_index = list(np.sort(np.array(all_index))) imgs = [] for idx in all_index: frame_fname = os.path.join(fname, self.filename_tmpl.format(idx + 1)) img_bytes = self.client.get(frame_fname) img_np = np.frombuffer(img_bytes, np.uint8) img = cv2.imdecode(img_np, cv2.IMREAD_COLOR) cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) imgs.append(img) buffer = np.array(imgs) return buffer # handle temporal segments average_duration = num_frames // self.num_segment all_index = [] if average_duration > 0: if self.mode == 'validation': all_index = list( np.multiply(list(range(self.num_segment)), average_duration) + np.ones(self.num_segment, dtype=int) * (average_duration // 2)) else: all_index = list( np.multiply(list(range(self.num_segment)), average_duration) + np.random.randint(average_duration, size=self.num_segment)) elif num_frames > self.num_segment: if self.mode == 'validation': all_index = list(range(self.num_segment)) else: all_index = list( np.sort( np.random.randint(num_frames, size=self.num_segment))) else: all_index = [0] * (self.num_segment - num_frames) + list( range(num_frames)) all_index = list(np.array(all_index)) imgs = [] for idx in all_index: frame_fname = os.path.join(fname, self.filename_tmpl.format(idx + 1)) img_bytes = self.client.get(frame_fname) img_np = np.frombuffer(img_bytes, np.uint8) img = cv2.imdecode(img_np, cv2.IMREAD_COLOR) cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) imgs.append(img) buffer = np.array(imgs) return buffer def __len__(self): if self.mode != 'test': return len(self.dataset_samples) else: return len(self.test_dataset) def spatial_sampling( frames, spatial_idx=-1, min_scale=256, max_scale=320, crop_size=224, random_horizontal_flip=True, inverse_uniform_sampling=False, aspect_ratio=None, scale=None, motion_shift=False, ): """ Perform spatial sampling on the given video frames. If spatial_idx is -1, perform random scale, random crop, and random flip on the given frames. If spatial_idx is 0, 1, or 2, perform spatial uniform sampling with the given spatial_idx. Args: frames (tensor): frames of images sampled from the video. The dimension is `num frames` x `height` x `width` x `channel`. spatial_idx (int): if -1, perform random spatial sampling. If 0, 1, or 2, perform left, center, right crop if width is larger than height, and perform top, center, buttom crop if height is larger than width. min_scale (int): the minimal size of scaling. max_scale (int): the maximal size of scaling. crop_size (int): the size of height and width used to crop the frames. inverse_uniform_sampling (bool): if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a reciprocal to get the scale. If False, take a uniform sample from [min_scale, max_scale]. aspect_ratio (list): Aspect ratio range for resizing. scale (list): Scale range for resizing. motion_shift (bool): Whether to apply motion shift for resizing. Returns: frames (tensor): spatially sampled frames. """ assert spatial_idx in [-1, 0, 1, 2] if spatial_idx == -1: if aspect_ratio is None and scale is None: frames, _ = video_transforms.random_short_side_scale_jitter( images=frames, min_size=min_scale, max_size=max_scale, inverse_uniform_sampling=inverse_uniform_sampling, ) frames, _ = video_transforms.random_crop(frames, crop_size) else: transform_func = (video_transforms.random_resized_crop_with_shift if motion_shift else video_transforms.random_resized_crop) frames = transform_func( images=frames, target_height=crop_size, target_width=crop_size, scale=scale, ratio=aspect_ratio, ) if random_horizontal_flip: frames, _ = video_transforms.horizontal_flip(0.5, frames) else: # The testing is deterministic and no jitter should be performed. # min_scale, max_scale, and crop_size are expect to be the same. assert len({min_scale, max_scale, crop_size}) == 1 frames, _ = video_transforms.random_short_side_scale_jitter( frames, min_scale, max_scale) frames, _ = video_transforms.uniform_crop(frames, crop_size, spatial_idx) return frames def tensor_normalize(tensor, mean, std): """ Normalize a given tensor by subtracting the mean and dividing the std. Args: tensor (tensor): tensor to normalize. mean (tensor or list): mean value to subtract. std (tensor or list): std to divide. """ if tensor.dtype == torch.uint8: tensor = tensor.float() tensor = tensor / 255.0 if type(mean) == list: mean = torch.tensor(mean) if type(std) == list: std = torch.tensor(std) tensor = tensor - mean tensor = tensor / std return tensor
InternVideo-main
Pretrain/VideoMAE/ssv2.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """ This implementation is based on https://github.com/rwightman/pytorch-image-models/blob/master/timm/data/auto_augment.py pulished under an Apache License 2.0. COMMENT FROM ORIGINAL: AutoAugment, RandAugment, and AugMix for PyTorch This code implements the searched ImageNet policies with various tweaks and improvements and does not include any of the search code. AA and RA Implementation adapted from: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py AugMix adapted from: https://github.com/google-research/augmix Papers: AutoAugment: Learning Augmentation Policies from Data https://arxiv.org/abs/1805.09501 Learning Data Augmentation Strategies for Object Detection https://arxiv.org/abs/1906.11172 RandAugment: Practical automated data augmentation... https://arxiv.org/abs/1909.13719 AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty https://arxiv.org/abs/1912.02781 Hacked together by / Copyright 2020 Ross Wightman """ import math import random import re import numpy as np import PIL from PIL import Image, ImageEnhance, ImageOps _PIL_VER = tuple([int(x) for x in PIL.__version__.split(".")[:2]]) _FILL = (128, 128, 128) # This signifies the max integer that the controller RNN could predict for the # augmentation scheme. _MAX_LEVEL = 10.0 _HPARAMS_DEFAULT = { "translate_const": 250, "img_mean": _FILL, } _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC) def _interpolation(kwargs): interpolation = kwargs.pop("resample", Image.BILINEAR) if isinstance(interpolation, (list, tuple)): return random.choice(interpolation) else: return interpolation def _check_args_tf(kwargs): if "fillcolor" in kwargs and _PIL_VER < (5, 0): kwargs.pop("fillcolor") kwargs["resample"] = _interpolation(kwargs) def shear_x(img, factor, **kwargs): _check_args_tf(kwargs) return img.transform( img.size, Image.AFFINE, (1, factor, 0, 0, 1, 0), **kwargs ) def shear_y(img, factor, **kwargs): _check_args_tf(kwargs) return img.transform( img.size, Image.AFFINE, (1, 0, 0, factor, 1, 0), **kwargs ) def translate_x_rel(img, pct, **kwargs): pixels = pct * img.size[0] _check_args_tf(kwargs) return img.transform( img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs ) def translate_y_rel(img, pct, **kwargs): pixels = pct * img.size[1] _check_args_tf(kwargs) return img.transform( img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs ) def translate_x_abs(img, pixels, **kwargs): _check_args_tf(kwargs) return img.transform( img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs ) def translate_y_abs(img, pixels, **kwargs): _check_args_tf(kwargs) return img.transform( img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs ) def rotate(img, degrees, **kwargs): _check_args_tf(kwargs) if _PIL_VER >= (5, 2): return img.rotate(degrees, **kwargs) elif _PIL_VER >= (5, 0): w, h = img.size post_trans = (0, 0) rotn_center = (w / 2.0, h / 2.0) angle = -math.radians(degrees) matrix = [ round(math.cos(angle), 15), round(math.sin(angle), 15), 0.0, round(-math.sin(angle), 15), round(math.cos(angle), 15), 0.0, ] def transform(x, y, matrix): (a, b, c, d, e, f) = matrix return a * x + b * y + c, d * x + e * y + f matrix[2], matrix[5] = transform( -rotn_center[0] - post_trans[0], -rotn_center[1] - post_trans[1], matrix, ) matrix[2] += rotn_center[0] matrix[5] += rotn_center[1] return img.transform(img.size, Image.AFFINE, matrix, **kwargs) else: return img.rotate(degrees, resample=kwargs["resample"]) def auto_contrast(img, **__): return ImageOps.autocontrast(img) def invert(img, **__): return ImageOps.invert(img) def equalize(img, **__): return ImageOps.equalize(img) def solarize(img, thresh, **__): return ImageOps.solarize(img, thresh) def solarize_add(img, add, thresh=128, **__): lut = [] for i in range(256): if i < thresh: lut.append(min(255, i + add)) else: lut.append(i) if img.mode in ("L", "RGB"): if img.mode == "RGB" and len(lut) == 256: lut = lut + lut + lut return img.point(lut) else: return img def posterize(img, bits_to_keep, **__): if bits_to_keep >= 8: return img return ImageOps.posterize(img, bits_to_keep) def contrast(img, factor, **__): return ImageEnhance.Contrast(img).enhance(factor) def color(img, factor, **__): return ImageEnhance.Color(img).enhance(factor) def brightness(img, factor, **__): return ImageEnhance.Brightness(img).enhance(factor) def sharpness(img, factor, **__): return ImageEnhance.Sharpness(img).enhance(factor) def _randomly_negate(v): """With 50% prob, negate the value""" return -v if random.random() > 0.5 else v def _rotate_level_to_arg(level, _hparams): # range [-30, 30] level = (level / _MAX_LEVEL) * 30.0 level = _randomly_negate(level) return (level,) def _enhance_level_to_arg(level, _hparams): # range [0.1, 1.9] return ((level / _MAX_LEVEL) * 1.8 + 0.1,) def _enhance_increasing_level_to_arg(level, _hparams): # the 'no change' level is 1.0, moving away from that towards 0. or 2.0 increases the enhancement blend # range [0.1, 1.9] level = (level / _MAX_LEVEL) * 0.9 level = 1.0 + _randomly_negate(level) return (level,) def _shear_level_to_arg(level, _hparams): # range [-0.3, 0.3] level = (level / _MAX_LEVEL) * 0.3 level = _randomly_negate(level) return (level,) def _translate_abs_level_to_arg(level, hparams): translate_const = hparams["translate_const"] level = (level / _MAX_LEVEL) * float(translate_const) level = _randomly_negate(level) return (level,) def _translate_rel_level_to_arg(level, hparams): # default range [-0.45, 0.45] translate_pct = hparams.get("translate_pct", 0.45) level = (level / _MAX_LEVEL) * translate_pct level = _randomly_negate(level) return (level,) def _posterize_level_to_arg(level, _hparams): # As per Tensorflow TPU EfficientNet impl # range [0, 4], 'keep 0 up to 4 MSB of original image' # intensity/severity of augmentation decreases with level return (int((level / _MAX_LEVEL) * 4),) def _posterize_increasing_level_to_arg(level, hparams): # As per Tensorflow models research and UDA impl # range [4, 0], 'keep 4 down to 0 MSB of original image', # intensity/severity of augmentation increases with level return (4 - _posterize_level_to_arg(level, hparams)[0],) def _posterize_original_level_to_arg(level, _hparams): # As per original AutoAugment paper description # range [4, 8], 'keep 4 up to 8 MSB of image' # intensity/severity of augmentation decreases with level return (int((level / _MAX_LEVEL) * 4) + 4,) def _solarize_level_to_arg(level, _hparams): # range [0, 256] # intensity/severity of augmentation decreases with level return (int((level / _MAX_LEVEL) * 256),) def _solarize_increasing_level_to_arg(level, _hparams): # range [0, 256] # intensity/severity of augmentation increases with level return (256 - _solarize_level_to_arg(level, _hparams)[0],) def _solarize_add_level_to_arg(level, _hparams): # range [0, 110] return (int((level / _MAX_LEVEL) * 110),) LEVEL_TO_ARG = { "AutoContrast": None, "Equalize": None, "Invert": None, "Rotate": _rotate_level_to_arg, # There are several variations of the posterize level scaling in various Tensorflow/Google repositories/papers "Posterize": _posterize_level_to_arg, "PosterizeIncreasing": _posterize_increasing_level_to_arg, "PosterizeOriginal": _posterize_original_level_to_arg, "Solarize": _solarize_level_to_arg, "SolarizeIncreasing": _solarize_increasing_level_to_arg, "SolarizeAdd": _solarize_add_level_to_arg, "Color": _enhance_level_to_arg, "ColorIncreasing": _enhance_increasing_level_to_arg, "Contrast": _enhance_level_to_arg, "ContrastIncreasing": _enhance_increasing_level_to_arg, "Brightness": _enhance_level_to_arg, "BrightnessIncreasing": _enhance_increasing_level_to_arg, "Sharpness": _enhance_level_to_arg, "SharpnessIncreasing": _enhance_increasing_level_to_arg, "ShearX": _shear_level_to_arg, "ShearY": _shear_level_to_arg, "TranslateX": _translate_abs_level_to_arg, "TranslateY": _translate_abs_level_to_arg, "TranslateXRel": _translate_rel_level_to_arg, "TranslateYRel": _translate_rel_level_to_arg, } NAME_TO_OP = { "AutoContrast": auto_contrast, "Equalize": equalize, "Invert": invert, "Rotate": rotate, "Posterize": posterize, "PosterizeIncreasing": posterize, "PosterizeOriginal": posterize, "Solarize": solarize, "SolarizeIncreasing": solarize, "SolarizeAdd": solarize_add, "Color": color, "ColorIncreasing": color, "Contrast": contrast, "ContrastIncreasing": contrast, "Brightness": brightness, "BrightnessIncreasing": brightness, "Sharpness": sharpness, "SharpnessIncreasing": sharpness, "ShearX": shear_x, "ShearY": shear_y, "TranslateX": translate_x_abs, "TranslateY": translate_y_abs, "TranslateXRel": translate_x_rel, "TranslateYRel": translate_y_rel, } class AugmentOp: """ Apply for video. """ def __init__(self, name, prob=0.5, magnitude=10, hparams=None): hparams = hparams or _HPARAMS_DEFAULT self.aug_fn = NAME_TO_OP[name] self.level_fn = LEVEL_TO_ARG[name] self.prob = prob self.magnitude = magnitude self.hparams = hparams.copy() self.kwargs = { "fillcolor": hparams["img_mean"] if "img_mean" in hparams else _FILL, "resample": hparams["interpolation"] if "interpolation" in hparams else _RANDOM_INTERPOLATION, } # If magnitude_std is > 0, we introduce some randomness # in the usually fixed policy and sample magnitude from a normal distribution # with mean `magnitude` and std-dev of `magnitude_std`. # NOTE This is my own hack, being tested, not in papers or reference impls. self.magnitude_std = self.hparams.get("magnitude_std", 0) def __call__(self, img_list): if self.prob < 1.0 and random.random() > self.prob: return img_list magnitude = self.magnitude if self.magnitude_std and self.magnitude_std > 0: magnitude = random.gauss(magnitude, self.magnitude_std) magnitude = min(_MAX_LEVEL, max(0, magnitude)) # clip to valid range level_args = ( self.level_fn(magnitude, self.hparams) if self.level_fn is not None else () ) if isinstance(img_list, list): return [ self.aug_fn(img, *level_args, **self.kwargs) for img in img_list ] else: return self.aug_fn(img_list, *level_args, **self.kwargs) _RAND_TRANSFORMS = [ "AutoContrast", "Equalize", "Invert", "Rotate", "Posterize", "Solarize", "SolarizeAdd", "Color", "Contrast", "Brightness", "Sharpness", "ShearX", "ShearY", "TranslateXRel", "TranslateYRel", ] _RAND_INCREASING_TRANSFORMS = [ "AutoContrast", "Equalize", "Invert", "Rotate", "PosterizeIncreasing", "SolarizeIncreasing", "SolarizeAdd", "ColorIncreasing", "ContrastIncreasing", "BrightnessIncreasing", "SharpnessIncreasing", "ShearX", "ShearY", "TranslateXRel", "TranslateYRel", ] # These experimental weights are based loosely on the relative improvements mentioned in paper. # They may not result in increased performance, but could likely be tuned to so. _RAND_CHOICE_WEIGHTS_0 = { "Rotate": 0.3, "ShearX": 0.2, "ShearY": 0.2, "TranslateXRel": 0.1, "TranslateYRel": 0.1, "Color": 0.025, "Sharpness": 0.025, "AutoContrast": 0.025, "Solarize": 0.005, "SolarizeAdd": 0.005, "Contrast": 0.005, "Brightness": 0.005, "Equalize": 0.005, "Posterize": 0, "Invert": 0, } def _select_rand_weights(weight_idx=0, transforms=None): transforms = transforms or _RAND_TRANSFORMS assert weight_idx == 0 # only one set of weights currently rand_weights = _RAND_CHOICE_WEIGHTS_0 probs = [rand_weights[k] for k in transforms] probs /= np.sum(probs) return probs def rand_augment_ops(magnitude=10, hparams=None, transforms=None): hparams = hparams or _HPARAMS_DEFAULT transforms = transforms or _RAND_TRANSFORMS return [ AugmentOp(name, prob=0.5, magnitude=magnitude, hparams=hparams) for name in transforms ] class RandAugment: def __init__(self, ops, num_layers=2, choice_weights=None): self.ops = ops self.num_layers = num_layers self.choice_weights = choice_weights def __call__(self, img): # no replacement when using weighted choice ops = np.random.choice( self.ops, self.num_layers, replace=self.choice_weights is None, p=self.choice_weights, ) for op in ops: img = op(img) return img def rand_augment_transform(config_str, hparams): """ RandAugment: Practical automated data augmentation... - https://arxiv.org/abs/1909.13719 Create a RandAugment transform :param config_str: String defining configuration of random augmentation. Consists of multiple sections separated by dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). The remaining sections, not order sepecific determine 'm' - integer magnitude of rand augment 'n' - integer num layers (number of transform ops selected per image) 'w' - integer probabiliy weight index (index of a set of weights to influence choice of op) 'mstd' - float std deviation of magnitude noise applied 'inc' - integer (bool), use augmentations that increase in severity with magnitude (default: 0) Ex 'rand-m9-n3-mstd0.5' results in RandAugment with magnitude 9, num_layers 3, magnitude_std 0.5 'rand-mstd1-w0' results in magnitude_std 1.0, weights 0, default magnitude of 10 and num_layers 2 :param hparams: Other hparams (kwargs) for the RandAugmentation scheme :return: A PyTorch compatible Transform """ magnitude = _MAX_LEVEL # default to _MAX_LEVEL for magnitude (currently 10) num_layers = 2 # default to 2 ops per image weight_idx = None # default to no probability weights for op choice transforms = _RAND_TRANSFORMS config = config_str.split("-") assert config[0] == "rand" config = config[1:] for c in config: cs = re.split(r"(\d.*)", c) if len(cs) < 2: continue key, val = cs[:2] if key == "mstd": # noise param injected via hparams for now hparams.setdefault("magnitude_std", float(val)) elif key == "inc": if bool(val): transforms = _RAND_INCREASING_TRANSFORMS elif key == "m": magnitude = int(val) elif key == "n": num_layers = int(val) elif key == "w": weight_idx = int(val) else: assert NotImplementedError ra_ops = rand_augment_ops( magnitude=magnitude, hparams=hparams, transforms=transforms ) choice_weights = ( None if weight_idx is None else _select_rand_weights(weight_idx) ) return RandAugment(ra_ops, num_layers, choice_weights=choice_weights)
InternVideo-main
Pretrain/VideoMAE/rand_augment.py
import numpy as np import torch from PIL import Image def convert_img(img): """Converts (H, W, C) numpy.ndarray to (C, W, H) format """ if len(img.shape) == 3: img = img.transpose(2, 0, 1) if len(img.shape) == 2: img = np.expand_dims(img, 0) return img class ClipToTensor(object): """Convert a list of m (H x W x C) numpy.ndarrays in the range [0, 255] to a torch.FloatTensor of shape (C x m x H x W) in the range [0, 1.0] """ def __init__(self, channel_nb=3, div_255=True, numpy=False): self.channel_nb = channel_nb self.div_255 = div_255 self.numpy = numpy def __call__(self, clip): """ Args: clip (list of numpy.ndarray): clip (list of images) to be converted to tensor. """ # Retrieve shape if isinstance(clip[0], np.ndarray): h, w, ch = clip[0].shape assert ch == self.channel_nb, 'Got {0} instead of 3 channels'.format( ch) elif isinstance(clip[0], Image.Image): w, h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image\ but got list of {0}'.format(type(clip[0]))) np_clip = np.zeros([self.channel_nb, len(clip), int(h), int(w)]) # Convert for img_idx, img in enumerate(clip): if isinstance(img, np.ndarray): pass elif isinstance(img, Image.Image): img = np.array(img, copy=False) else: raise TypeError('Expected numpy.ndarray or PIL.Image\ but got list of {0}'.format(type(clip[0]))) img = convert_img(img) np_clip[:, img_idx, :, :] = img if self.numpy: if self.div_255: np_clip = np_clip / 255.0 return np_clip else: tensor_clip = torch.from_numpy(np_clip) if not isinstance(tensor_clip, torch.FloatTensor): tensor_clip = tensor_clip.float() if self.div_255: tensor_clip = torch.div(tensor_clip, 255) return tensor_clip # Note this norms data to -1/1 class ClipToTensor_K(object): """Convert a list of m (H x W x C) numpy.ndarrays in the range [0, 255] to a torch.FloatTensor of shape (C x m x H x W) in the range [0, 1.0] """ def __init__(self, channel_nb=3, div_255=True, numpy=False): self.channel_nb = channel_nb self.div_255 = div_255 self.numpy = numpy def __call__(self, clip): """ Args: clip (list of numpy.ndarray): clip (list of images) to be converted to tensor. """ # Retrieve shape if isinstance(clip[0], np.ndarray): h, w, ch = clip[0].shape assert ch == self.channel_nb, 'Got {0} instead of 3 channels'.format( ch) elif isinstance(clip[0], Image.Image): w, h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image\ but got list of {0}'.format(type(clip[0]))) np_clip = np.zeros([self.channel_nb, len(clip), int(h), int(w)]) # Convert for img_idx, img in enumerate(clip): if isinstance(img, np.ndarray): pass elif isinstance(img, Image.Image): img = np.array(img, copy=False) else: raise TypeError('Expected numpy.ndarray or PIL.Image\ but got list of {0}'.format(type(clip[0]))) img = convert_img(img) np_clip[:, img_idx, :, :] = img if self.numpy: if self.div_255: np_clip = (np_clip - 127.5) / 127.5 return np_clip else: tensor_clip = torch.from_numpy(np_clip) if not isinstance(tensor_clip, torch.FloatTensor): tensor_clip = tensor_clip.float() if self.div_255: tensor_clip = torch.div(torch.sub(tensor_clip, 127.5), 127.5) return tensor_clip class ToTensor(object): """Converts numpy array to tensor """ def __call__(self, array): tensor = torch.from_numpy(array) return tensor
InternVideo-main
Pretrain/VideoMAE/volume_transforms.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import argparse import datetime import json import os import time from collections import OrderedDict from functools import partial from pathlib import Path import numpy as np import torch import torch.backends.cudnn as cudnn from scipy import interpolate from timm.data.mixup import Mixup from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.models import create_model from timm.utils import ModelEma import modeling_finetune import utils from datasets import build_dataset from engine_for_finetuning import ( final_test, merge, train_one_epoch, validation_one_epoch, ) from optim_factory import ( LayerDecayValueAssigner, create_optimizer, get_parameter_groups, ) from utils import NativeScalerWithGradNormCount as NativeScaler from utils import multiple_samples_collate def get_args(): parser = argparse.ArgumentParser( 'MAE fine-tuning and evaluation script for image classification', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=30, type=int) parser.add_argument('--update_freq', default=1, type=int) parser.add_argument('--save_ckpt_freq', default=100, type=int) # Model parameters parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--tubelet_size', type=int, default=2) parser.add_argument('--input_size', default=224, type=int, help='images input size') parser.add_argument('--with_checkpoint', action='store_true', default=False) parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT', help='Attention dropout rate (default: 0.)') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument('--head_drop_rate', type=float, default=0.0, metavar='PCT', help='cls head dropout rate (default: 0.)') parser.add_argument('--disable_eval_during_finetuning', action='store_true', default=False) parser.add_argument('--model_ema', action='store_true', default=False) parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='') parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument( '--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD and using a larger decay by the end of training improves performance for ViTs.""") parser.add_argument('--lr', type=float, default=1e-3, metavar='LR', help='learning rate (default: 1e-3)') parser.add_argument('--layer_decay', type=float, default=0.75) parser.add_argument('--extra_decay', type=float, default=1.0) parser.add_argument('--warmup_lr', type=float, default=1e-8, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument( '--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument( '--warmup_steps', type=int, default=-1, metavar='N', help='num of steps to warmup LR, will overload warmup_epochs if set > 0' ) # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--num_sample', type=int, default=2, help='Repeated_aug (default: 2)') parser.add_argument('--num_segment', type=int, default=1, help='segments used for v4d (default: 1)') # parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', parser.add_argument( '--aa', type=str, default='rand-m7-n4-mstd0.5-inc1', metavar='NAME', help= 'Use AutoAugment policy. "v0" or "original". " + "(default: rand-m7-n4-mstd0.5-inc1)' ), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument( '--train_interpolation', type=str, default='bicubic', help= 'Training interpolation (random, bilinear, bicubic default: "bicubic")' ) # Evaluation parameters parser.add_argument('--crop_pct', type=float, default=None) parser.add_argument('--short_side_size', type=int, default=224) parser.add_argument('--test_num_segment', type=int, default=10) parser.add_argument('--test_num_crop', type=int, default=3) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument( '--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument( '--cutmix_minmax', type=float, nargs='+', default=None, help= 'cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)' ) parser.add_argument( '--mixup_prob', type=float, default=1.0, help= 'Probability of performing mixup or cutmix when either/both is enabled' ) parser.add_argument( '--mixup_switch_prob', type=float, default=0.5, help= 'Probability of switching to cutmix when both mixup and cutmix enabled' ) parser.add_argument( '--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"' ) # * Finetuning params parser.add_argument('--finetune', default='', help='finetune from checkpoint') parser.add_argument('--model_key', default='model|module', type=str) parser.add_argument('--model_prefix', default='', type=str) parser.add_argument('--init_scale', default=0.001, type=float) parser.add_argument('--use_mean_pooling', action='store_true') parser.set_defaults(use_mean_pooling=True) parser.add_argument('--use_cls', action='store_false', dest='use_mean_pooling') # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--eval_data_path', default=None, type=str, help='dataset path for evaluation') parser.add_argument('--nb_classes', default=400, type=int, help='number of the classification types') parser.add_argument('--imagenet_default_mean_and_std', default=True, action='store_true') parser.add_argument('--num_segments', type=int, default=1) parser.add_argument('--num_frames', type=int, default=16) parser.add_argument('--sampling_rate', type=int, default=4) parser.add_argument('--sparse_sample', default=False, action='store_true') parser.add_argument('--data_set', default='Kinetics-400', choices=[ 'Kinetics-400', 'Kinetics-600', 'Kinetics-700', 'SSV2', 'UCF101', 'HMDB51', 'Diving48', 'image_folder', 'ANet', 'MixKinetics' ], type=str, help='ImageNet dataset path') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument('--save_ckpt', action='store_true') parser.add_argument('--no_save_ckpt', action='store_false', dest='save_ckpt') parser.set_defaults(save_ckpt=True) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--validation', action='store_true', help='Perform validation only') parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument( '--pin_mem', action='store_true', help= 'Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.' ) parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--enable_deepspeed', action='store_true', default=False) known_args, _ = parser.parse_known_args() if known_args.enable_deepspeed: # try: import deepspeed from deepspeed import DeepSpeedConfig parser = deepspeed.add_config_arguments(parser) ds_init = deepspeed.initialize # except: # print("Please 'pip install deepspeed==0.4.0'") # exit(0) else: ds_init = None return parser.parse_args(), ds_init def main(args, ds_init): utils.init_distributed_mode(args) if ds_init is not None: utils.create_ds_config(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True dataset_train, args.nb_classes = build_dataset(is_train=True, test_mode=False, args=args) if args.disable_eval_during_finetuning: dataset_val = None else: dataset_val, _ = build_dataset(is_train=False, test_mode=False, args=args) dataset_test, _ = build_dataset(is_train=False, test_mode=True, args=args) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print( 'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) sampler_test = torch.utils.data.DistributedSampler( dataset_test, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None if args.num_sample > 1: collate_func = partial(multiple_samples_collate, fold=False) else: collate_func = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, collate_fn=collate_func, persistent_workers=True) if dataset_val is not None: data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False, persistent_workers=True) else: data_loader_val = None if dataset_test is not None: data_loader_test = torch.utils.data.DataLoader( dataset_test, sampler=sampler_test, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False, persistent_workers=True) else: data_loader_test = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup(mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) model = create_model( args.model, img_size=args.input_size, pretrained=False, num_classes=args.nb_classes, all_frames=args.num_frames * args.num_segments, tubelet_size=args.tubelet_size, drop_rate=args.drop, drop_path_rate=args.drop_path, attn_drop_rate=args.attn_drop_rate, head_drop_rate=args.head_drop_rate, drop_block_rate=None, use_mean_pooling=args.use_mean_pooling, init_scale=args.init_scale, with_cp=args.with_checkpoint, num_segment=args.num_segment, ) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) # args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) args.window_size = (args.num_frames // 2, args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size if args.finetune: if args.finetune.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url(args.finetune, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.finetune, map_location='cpu') print("Load ckpt from %s" % args.finetune) checkpoint_model = None for model_key in args.model_key.split('|'): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[ k].shape != state_dict[k].shape: if checkpoint_model[k].shape[0] == 710: if args.data_set == 'Kinetics-400': print('Convert to k400 class head') checkpoint_model[k] = checkpoint_model[k][:400] elif args.data_set == 'Kinetics-600': print('Convert to k600 class head') label_map_path = '/mnt/petrelfs/huangbingkun/data/mix_kinetics/label_mixto600.json' label_map = json.load(open(label_map_path)) checkpoint_model[k] = checkpoint_model[k][label_map] elif args.data_set == 'Kinetics-700': print('Convert to k700 class head') label_map_path = '/mnt/petrelfs/huangbingkun/data/mix_kinetics/label_mixto700.json' label_map = json.load(open(label_map_path)) checkpoint_model[k] = checkpoint_model[k][label_map] else: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] else: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] all_keys = list(checkpoint_model.keys()) new_dict = OrderedDict() for key in all_keys: if key.startswith('backbone.'): new_dict[key[9:]] = checkpoint_model[key] elif key.startswith('encoder.'): new_dict[key[8:]] = checkpoint_model[key] else: new_dict[key] = checkpoint_model[key] checkpoint_model = new_dict # interpolate position embedding if 'pos_embed' in checkpoint_model: pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] # channel dim num_patches = model.patch_embed.num_patches # num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1 # height (== width) for the checkpoint position embedding orig_size = int( ((pos_embed_checkpoint.shape[-2] - num_extra_tokens) // (args.num_frames // model.patch_embed.tubelet_size))**0.5) # height (== width) for the new position embedding new_size = int( (num_patches // (args.num_frames // model.patch_embed.tubelet_size))**0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] # B, L, C -> BT, H, W, C -> BT, C, H, W pos_tokens = pos_tokens.reshape( -1, args.num_frames // model.patch_embed.tubelet_size, orig_size, orig_size, embedding_size) pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute( 0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) # BT, C, H, W -> BT, H, W, C -> B, T, H, W, C pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape( -1, args.num_frames // model.patch_embed.tubelet_size, new_size, new_size, embedding_size) pos_tokens = pos_tokens.flatten(1, 3) # B, L, C new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed elif args.input_size != 224: pos_tokens = model.pos_embed org_num_frames = 16 T = org_num_frames // args.tubelet_size P = int((pos_tokens.shape[1] // T) ** 0.5) C = pos_tokens.shape[2] new_P = args.input_size // patch_size[0] # B, L, C -> BT, H, W, C -> BT, C, H, W pos_tokens = pos_tokens.reshape(-1, T, P, P, C) pos_tokens = pos_tokens.reshape(-1, P, P, C).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_P, new_P), mode='bicubic', align_corners=False) # BT, C, H, W -> BT, H, W, C -> B, T, H, W, C pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, T, new_P, new_P, C) pos_tokens = pos_tokens.flatten(1, 3) # B, L, C model.pos_embed = pos_tokens # update if args.num_frames != 16: org_num_frames = 16 T = org_num_frames // args.tubelet_size pos_tokens = model.pos_embed new_T = args.num_frames // args.tubelet_size P = int((pos_tokens.shape[1] // T) ** 0.5) C = pos_tokens.shape[2] pos_tokens = pos_tokens.reshape(-1, T, P, P, C) pos_tokens = pos_tokens.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW,C,T pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=new_T, mode='linear') pos_tokens = pos_tokens.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) pos_tokens = pos_tokens.flatten(1, 3) model.pos_embed = pos_tokens # update utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) # model.load_state_dict(checkpoint_model, strict=False) model.to(device) model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEma(model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else '', resume='') print("Using EMA with decay = %.8f" % args.model_ema_decay) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params:', n_parameters) total_batch_size = args.batch_size * args.update_freq * utils.get_world_size( ) num_training_steps_per_epoch = len(dataset_train) // total_batch_size args.lr = args.lr * total_batch_size / 256 #########scale the lr############# args.min_lr = args.min_lr * total_batch_size / 256 args.warmup_lr = args.warmup_lr * total_batch_size / 256 #########scale the lr############# print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Update frequent = %d" % args.update_freq) print("Number of training examples = %d" % len(dataset_train)) print("Number of training training per epoch = %d" % num_training_steps_per_epoch) num_layers = model_without_ddp.get_num_layers() if args.layer_decay < 1.0: assigner = LayerDecayValueAssigner(list( args.layer_decay**(num_layers + 1 - i) for i in range(num_layers + 2)), extra_decay=args.extra_decay) else: assigner = None if assigner is not None: print("Assigned values = %s" % str(assigner.values)) skip_weight_decay_list = model.no_weight_decay() print("Skip weight decay list: ", skip_weight_decay_list) if args.enable_deepspeed: loss_scaler = None optimizer_params = get_parameter_groups( model, args.weight_decay, skip_weight_decay_list, assigner.get_layer_id if assigner is not None else None, assigner.get_scale if assigner is not None else None) model, optimizer, _, _ = ds_init( args=args, model=model, model_parameters=optimizer_params, dist_init_required=not args.distributed, ) print("model.gradient_accumulation_steps() = %d" % model.gradient_accumulation_steps()) assert model.gradient_accumulation_steps() == args.update_freq else: if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu], find_unused_parameters=False) model_without_ddp = model.module optimizer = create_optimizer(args, model_without_ddp, skip_list=skip_weight_decay_list, get_num_layer=assigner.get_layer_id if assigner is not None else None, get_layer_scale=assigner.get_scale if assigner is not None else None) loss_scaler = NativeScaler() print("Use step level LR scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler(args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() print("criterion = %s" % str(criterion)) utils.auto_load_model(args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema) if args.validation: test_stats = validation_one_epoch(data_loader_val, model, device) print( f"{len(dataset_val)} val images: Top-1 {test_stats['acc1']:.2f}%, Top-5 {test_stats['acc5']:.2f}%, loss {test_stats['loss']:.4f}" ) exit(0) if args.eval: preds_file = os.path.join(args.output_dir, str(global_rank) + '.txt') test_stats = final_test(data_loader_test, model, device, preds_file) torch.distributed.barrier() if global_rank == 0: print("Start merging results...") final_top1, final_top5 = merge(args.output_dir, num_tasks) print( f"Accuracy of the network on the {len(dataset_test)} test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%" ) log_stats = {'Final top-1': final_top1, 'Final Top-5': final_top1} if args.output_dir and utils.is_main_process(): with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") exit(0) # test_stats = validation_one_epoch(data_loader_test, model, device) # print(f"Accuracy of the network on the {len(dataset_test)} test videos: {test_stats['acc1']:.1f}%") print(f"Start training for {args.epochs} epochs") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args, args.clip_grad, model_ema, mixup_fn, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq, ) if args.output_dir and args.save_ckpt: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model(args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema) if data_loader_val is not None: test_stats = validation_one_epoch(data_loader_val, model, device) print( f"Accuracy of the network on the {len(dataset_val)} val images: {test_stats['acc1']:.2f}%" ) if max_accuracy < test_stats["acc1"]: max_accuracy = test_stats["acc1"] if args.output_dir and args.save_ckpt: utils.save_model(args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch="best", model_ema=model_ema) print(f'Max accuracy: {max_accuracy:.2f}%') if log_writer is not None: log_writer.update(val_acc1=test_stats['acc1'], head="perf", step=epoch) log_writer.update(val_acc5=test_stats['acc5'], head="perf", step=epoch) log_writer.update(val_loss=test_stats['loss'], head="perf", step=epoch) log_stats = { **{f'train_{k}': v for k, v in train_stats.items()}, **{f'val_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters } else: log_stats = { **{f'train_{k}': v for k, v in train_stats.items()}, # **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters } if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") preds_file = os.path.join(args.output_dir, str(global_rank) + '.txt') test_stats = final_test(data_loader_test, model, device, preds_file) torch.distributed.barrier() if global_rank == 0: print("Start merging results...") final_top1, final_top5 = merge(args.output_dir, num_tasks) print( f"Accuracy of the network on the {len(dataset_test)} test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%" ) log_stats = {'Final top-1': final_top1, 'Final Top-5': final_top5} if args.output_dir and utils.is_main_process(): with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts, ds_init = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts, ds_init)
InternVideo-main
Pretrain/VideoMAE/run_class_finetuning.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import argparse import datetime import json import os import time from collections import OrderedDict from functools import partial from pathlib import Path import numpy as np import torch import torch.backends.cudnn as cudnn from timm.models import create_model import modeling_pretrain import utils from datasets import build_pretraining_dataset from engine_for_pretraining import train_one_epoch from optim_factory import create_optimizer from utils import NativeScalerWithGradNormCount as NativeScaler from utils import multiple_pretrain_samples_collate def get_args(): parser = argparse.ArgumentParser('MAE pre-training script', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=300, type=int) parser.add_argument('--save_ckpt_freq', default=50, type=int) # Model parameters parser.add_argument( '--model', default='pretrain_mae_base_patch16_224', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--with_checkpoint', action='store_true', default=False) parser.add_argument( '--decoder_depth', default=4, type=int, help='depth of decoder') parser.add_argument( '--mask_type', default='random', choices=['random', 't_consist', 't_progressive', 't_center_prog'], type=str, help='masked strategy of visual tokens/patches') parser.add_argument( '--mask_ratio', default=0.75, type=float, help='ratio of the visual tokens/patches need be masked') parser.add_argument( '--decode_ratio', default=1.0, type=float, help='ratio of the visual tokens/patches need be masked') parser.add_argument( '--input_size', default=224, type=int, help='images input size for backbone') parser.add_argument( '--drop_path', type=float, default=0.0, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument( '--normlize_target', default=True, type=bool, help='normalized the target patch pixels') # Optimizer parameters parser.add_argument( '--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument( '--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument( '--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument( '--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument( '--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument( '--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument( '--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD. (Set the same value with args.weight_decay to keep weight decay no change)""" ) parser.add_argument( '--lr', type=float, default=1.5e-4, metavar='LR', help='learning rate (default: 1.5e-4)') parser.add_argument( '--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument( '--min_lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument( '--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument( '--warmup_steps', type=int, default=-1, metavar='N', help='epochs to warmup LR, if scheduler supports') # Augmentation parameters parser.add_argument( '--color_jitter', type=float, default=0.0, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument( '--train_interpolation', type=str, default='bicubic', help= 'Training interpolation (random, bilinear, bicubic default: "bicubic")') # * Finetuning params parser.add_argument( '--finetune', default='', help='finetune from checkpoint') # Dataset parameters parser.add_argument( '--data_path', default='/datasets01/imagenet_full_size/061417/train', type=str, help='dataset path') parser.add_argument( '--data_root', default='', type=str, help='dataset path root') parser.add_argument( '--imagenet_default_mean_and_std', default=True, action='store_true') parser.add_argument('--num_frames', type=int, default=16) parser.add_argument('--sampling_rate', type=int, default=4) parser.add_argument('--num_sample', type=int, default=1) parser.add_argument( '--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument( '--log_dir', default=None, help='path where to tensorboard log') parser.add_argument( '--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument( '--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument( '--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument( '--pin_mem', action='store_true', help= 'Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.' ) parser.add_argument( '--no_pin_mem', action='store_false', dest='pin_mem', help='') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument( '--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument( '--dist_url', default='env://', help='url used to set up distributed training') return parser.parse_args() def get_model(args): print(f"Creating model: {args.model}") model = create_model( args.model, pretrained=False, drop_path_rate=args.drop_path, drop_block_rate=None, decoder_depth=args.decoder_depth, with_cp=args.with_checkpoint) return model def main(args): utils.init_distributed_mode(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True model = get_model(args) patch_size = model.encoder.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = (args.num_frames // 2, args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size # get dataset dataset_train = build_pretraining_dataset(args) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_rank = global_rank num_training_steps_per_epoch = len( dataset_train) // args.batch_size // num_tasks sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True) print("Sampler_train = %s" % str(sampler_train)) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None if args.num_sample > 1: collate_func = partial(multiple_pretrain_samples_collate, fold=False) else: collate_func = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, collate_fn=collate_func, worker_init_fn=utils.seed_worker, persistent_workers=True) if args.finetune: checkpoint = torch.load(args.finetune, map_location='cpu') print("Load ckpt from %s" % args.finetune) checkpoint_model = None for model_key in ['model', 'module']: if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint utils.load_state_dict(model, checkpoint_model) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params: {} M'.format(n_parameters / 1e6)) total_batch_size = args.batch_size * utils.get_world_size() args.lr = args.lr * total_batch_size / 256 #########scale the lr############# args.min_lr = args.min_lr * total_batch_size / 256 args.warmup_lr = args.warmup_lr * total_batch_size / 256 #########scale the lr############# print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Number of training steps = %d" % num_training_steps_per_epoch) print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch)) if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu], find_unused_parameters=False) model_without_ddp = model.module optimizer = create_optimizer(args, model_without_ddp) loss_scaler = NativeScaler() print("Use step level LR & WD scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler(args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) torch.cuda.empty_cache() print(f"Start training for {args.epochs} epochs") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch) train_stats = train_one_epoch( model, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, patch_size=patch_size[0], normlize_target=args.normlize_target) if args.output_dir: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch) log_stats = { **{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters } if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open( os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts)
InternVideo-main
Pretrain/VideoMAE/run_mae_pretraining.py
import numbers import cv2 import numpy as np import PIL import torch def _is_tensor_clip(clip): return torch.is_tensor(clip) and clip.ndimension() == 4 def crop_clip(clip, min_h, min_w, h, w): if isinstance(clip[0], np.ndarray): cropped = [img[min_h:min_h + h, min_w:min_w + w, :] for img in clip] elif isinstance(clip[0], PIL.Image.Image): cropped = [ img.crop((min_w, min_h, min_w + w, min_h + h)) for img in clip ] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return cropped def resize_clip(clip, size, interpolation='bilinear'): if isinstance(clip[0], np.ndarray): if isinstance(size, numbers.Number): im_h, im_w, im_c = clip[0].shape # Min spatial dim already matches minimal size if (im_w <= im_h and im_w == size) or (im_h <= im_w and im_h == size): return clip new_h, new_w = get_resize_sizes(im_h, im_w, size) size = (new_w, new_h) else: size = size[0], size[1] if interpolation == 'bilinear': np_inter = cv2.INTER_LINEAR else: np_inter = cv2.INTER_NEAREST scaled = [ cv2.resize(img, size, interpolation=np_inter) for img in clip ] elif isinstance(clip[0], PIL.Image.Image): if isinstance(size, numbers.Number): im_w, im_h = clip[0].size # Min spatial dim already matches minimal size if (im_w <= im_h and im_w == size) or (im_h <= im_w and im_h == size): return clip new_h, new_w = get_resize_sizes(im_h, im_w, size) size = (new_w, new_h) else: size = size[1], size[0] if interpolation == 'bilinear': pil_inter = PIL.Image.BILINEAR else: pil_inter = PIL.Image.NEAREST scaled = [img.resize(size, pil_inter) for img in clip] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return scaled def get_resize_sizes(im_h, im_w, size): if im_w < im_h: ow = size oh = int(size * im_h / im_w) else: oh = size ow = int(size * im_w / im_h) return oh, ow def normalize(clip, mean, std, inplace=False): if not _is_tensor_clip(clip): raise TypeError('tensor is not a torch clip.') if not inplace: clip = clip.clone() dtype = clip.dtype mean = torch.as_tensor(mean, dtype=dtype, device=clip.device) std = torch.as_tensor(std, dtype=dtype, device=clip.device) clip.sub_(mean[:, None, None, None]).div_(std[:, None, None, None]) return clip
InternVideo-main
Pretrain/VideoMAE/functional.py
# -------------------------------------------------------- # -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import datetime import io import json import math import os import random import subprocess import time from collections import defaultdict, deque from pathlib import Path import numpy as np import torch import torch.distributed as dist from tensorboardX import SummaryWriter from timm.utils import get_state_dict from torch._six import inf from torch.utils.data._utils.collate import default_collate class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format(median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f} (max: {max:.4f})') data_time = SmoothedValue(fmt='{avg:.4f} (max: {max:.4f})') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print( log_msg.format(i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) class TensorboardLogger(object): def __init__(self, log_dir): self.writer = SummaryWriter(logdir=log_dir) self.step = 0 def set_step(self, step=None): if step is not None: self.step = step else: self.step += 1 def update(self, head='scalar', step=None, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step) def flush(self): self.writer.flush() def seed_worker(worker_id): worker_seed = torch.initial_seed() % 2**32 np.random.seed(worker_seed) random.seed(worker_seed) def _load_checkpoint_for_ema(model_ema, checkpoint): """ Workaround for ModelEma._load_checkpoint to accept an already-loaded object """ mem_file = io.BytesIO() torch.save(checkpoint, mem_file) mem_file.seek(0) model_ema._load_checkpoint(mem_file) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if args.dist_on_itp: args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) os.environ['LOCAL_RANK'] = str(args.gpu) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = int(os.environ['SLURM_LOCALID']) args.world_size = int(os.environ['SLURM_NTASKS']) os.environ['RANK'] = str(args.rank) os.environ['LOCAL_RANK'] = str(args.gpu) os.environ['WORLD_SIZE'] = str(args.world_size) node_list = os.environ['SLURM_NODELIST'] addr = subprocess.getoutput( f'scontrol show hostname {node_list} | head -n1') if 'MASTER_ADDR' not in os.environ: os.environ['MASTER_ADDR'] = addr elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) else: print('Not using distributed mode') args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}, gpu {}'.format( args.rank, args.dist_url, args.gpu), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.cuda.empty_cache() torch.distributed.barrier() assert torch.distributed.is_initialized() setup_for_distributed(args.rank == 0) def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"): missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict(state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(model, prefix=prefix) warn_missing_keys = [] ignore_missing_keys = [] for key in missing_keys: keep_flag = True for ignore_key in ignore_missing.split('|'): if ignore_key in key: keep_flag = False break if keep_flag: warn_missing_keys.append(key) else: ignore_missing_keys.append(key) missing_keys = warn_missing_keys if len(missing_keys) > 0: print("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: print("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(ignore_missing_keys) > 0: print( "Ignored weights of {} not initialized from pretrained model: {}". format(model.__class__.__name__, ignore_missing_keys)) if len(error_msgs) > 0: print('\n'.join(error_msgs)) class NativeScalerWithGradNormCount: state_dict_key = "amp_scaler" def __init__(self): self._scaler = torch.cuda.amp.GradScaler() def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_( optimizer ) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) device = parameters[0].grad.device if norm_type == inf: total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) else: total_norm = torch.norm( torch.stack([ torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters ]), norm_type) return total_norm def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print("Set warmup steps = %d" % warmup_iters) if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array([ final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters ]) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): output_dir = Path(args.output_dir) epoch_name = str(epoch) if loss_scaler is not None: checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)] for checkpoint_path in checkpoint_paths: to_save = { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'scaler': loss_scaler.state_dict(), 'args': args, } if model_ema is not None: to_save['model_ema'] = get_state_dict(model_ema) save_on_master(to_save, checkpoint_path) else: client_state = {'epoch': epoch} if model_ema is not None: client_state['model_ema'] = get_state_dict(model_ema) model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): output_dir = Path(args.output_dir) if loss_scaler is not None: # torch.amp if args.auto_resume and len(args.resume) == 0: import glob all_checkpoints = glob.glob( os.path.join(output_dir, 'checkpoint-*.pth')) latest_ckpt = -1 for ckpt in all_checkpoints: t = ckpt.split('-')[-1].split('.')[0] if t.isdigit(): latest_ckpt = max(int(t), latest_ckpt) if latest_ckpt >= 0: args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) print("Auto resume checkpoint: %s" % args.resume) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) print("Resume checkpoint %s" % args.resume) if 'optimizer' in checkpoint and 'epoch' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) args.start_epoch = checkpoint['epoch'] + 1 if hasattr(args, 'model_ema') and args.model_ema: _load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) print("With optim & sched!") else: # deepspeed, only support '--auto_resume'. if args.auto_resume: import glob all_checkpoints = glob.glob( os.path.join(output_dir, 'checkpoint-*')) latest_ckpt = -1 for ckpt in all_checkpoints: t = ckpt.split('-')[-1].split('.')[0] if t.isdigit(): latest_ckpt = max(int(t), latest_ckpt) if latest_ckpt >= 0: args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt) print("Auto resume checkpoint: %d" % latest_ckpt) _, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt) if 'epoch' in client_states: args.start_epoch = client_states['epoch'] + 1 if model_ema is not None: if args.model_ema: _load_checkpoint_for_ema(model_ema, client_states['model_ema']) def create_ds_config(args): args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json") with open(args.deepspeed_config, mode="w") as writer: ds_config = { "train_batch_size": args.batch_size * args.update_freq * get_world_size(), "train_micro_batch_size_per_gpu": args.batch_size, "steps_per_print": 1000, "gradient_clipping": 0.0 if args.clip_grad is None else args.clip_grad, "optimizer": { "type": "Adam", "adam_w_mode": True, "params": { "lr": args.lr, "weight_decay": args.weight_decay, "bias_correction": True, "betas": [0.9, 0.999], "eps": 1e-8 } }, "fp16": { "enabled": True, "loss_scale": 0, "initial_scale_power": 7, "loss_scale_window": 128 } } writer.write(json.dumps(ds_config, indent=2)) def multiple_samples_collate(batch, fold=False): """ Collate function for repeated augmentation. Each instance in the batch has more than one sample. Args: batch (tuple or list): data batch to collate. Returns: (tuple): collated data batch. """ inputs, labels, video_idx, extra_data = zip(*batch) inputs = [item for sublist in inputs for item in sublist] labels = [item for sublist in labels for item in sublist] video_idx = [item for sublist in video_idx for item in sublist] inputs, labels, video_idx, extra_data = ( default_collate(inputs), default_collate(labels), default_collate(video_idx), default_collate(extra_data), ) if fold: return [inputs], labels, video_idx, extra_data else: return inputs, labels, video_idx, extra_data def multiple_pretrain_samples_collate(batch, fold=False): """ Collate function for repeated augmentation. Each instance in the batch has more than one sample. Args: batch (tuple or list): data batch to collate. Returns: (tuple): collated data batch. """ process_data, mask = zip(*batch) process_data = [item for sublist in process_data for item in sublist] mask = [item for sublist in mask for item in sublist] process_data, mask = ( default_collate(process_data), default_collate(mask), ) if fold: return [process_data], mask else: return process_data, mask
InternVideo-main
Pretrain/VideoMAE/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from functools import partial, reduce from operator import mul import torch import torch.nn as nn from timm.models.layers.helpers import to_2tuple from modeling_finetune import PatchEmbed, VisionTransformer, _cfg __all__ = [ 'vit_small', 'vit_base', 'vit_conv_small', 'vit_conv_base', ] class VisionTransformerMoCo(VisionTransformer): def __init__(self, stop_grad_conv1=False, **kwargs): super().__init__(**kwargs) # Use fixed 2D sin-cos position embedding # self.build_2d_sincos_position_embedding() # weight initialization for name, m in self.named_modules(): if isinstance(m, nn.Linear): if 'qkv' in name: # treat the weights of Q, K, V separately val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1])) nn.init.uniform_(m.weight, -val, val) else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) ####################################### # nn.init.normal_(self.cls_token, std=1e-6) ####################################### if isinstance(self.patch_embed, PatchEmbed): # xavier_uniform initialization val = math.sqrt(6. / float(3 * reduce(mul, self.patch_embed.patch_size, 1) + self.embed_dim)) nn.init.uniform_(self.patch_embed.proj.weight, -val, val) nn.init.zeros_(self.patch_embed.proj.bias) if stop_grad_conv1: self.patch_embed.proj.weight.requires_grad = False self.patch_embed.proj.bias.requires_grad = False # def build_2d_sincos_position_embedding(self, temperature=10000.): # h, w = self.patch_embed.grid_size # grid_w = torch.arange(w, dtype=torch.float32) # grid_h = torch.arange(h, dtype=torch.float32) # grid_w, grid_h = torch.meshgrid(grid_w, grid_h) # assert self.embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding' # pos_dim = self.embed_dim // 4 # omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim # omega = 1. / (temperature**omega) # out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega]) # out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega]) # pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1)[None, :, :] # assert self.num_tokens == 1, 'Assuming one and only one token, [cls]' # pe_token = torch.zeros([1, 1, self.embed_dim], dtype=torch.float32) # self.pos_embed = nn.Parameter(torch.cat([pe_token, pos_emb], dim=1)) # self.pos_embed.requires_grad = False class ConvStem(nn.Module): """ ConvStem, from Early Convolutions Help Transformers See Better, Tete et al. https://arxiv.org/abs/2106.14881 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True): super().__init__() assert patch_size == 16, 'ConvStem only supports patch size of 16' assert embed_dim % 8 == 0, 'Embed dimension must be divisible by 8 for ConvStem' img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten # build stem, similar to the design in https://arxiv.org/abs/2106.14881 stem = [] input_dim, output_dim = 3, embed_dim // 8 for l in range(4): stem.append(nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=2, padding=1, bias=False)) stem.append(nn.BatchNorm2d(output_dim)) stem.append(nn.ReLU(inplace=True)) input_dim = output_dim output_dim *= 2 stem.append(nn.Conv2d(input_dim, embed_dim, kernel_size=1)) self.proj = nn.Sequential(*stem) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): B, C, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x def vit_small(**kwargs): model = VisionTransformerMoCo( patch_size=16, embed_dim=384, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model def vit_base(**kwargs): model = VisionTransformerMoCo( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model def vit_conv_small(**kwargs): # minus one ViT block model = VisionTransformerMoCo( patch_size=16, embed_dim=384, depth=11, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), embed_layer=ConvStem, **kwargs) model.default_cfg = _cfg() return model def vit_conv_base(**kwargs): # minus one ViT block model = VisionTransformerMoCo( patch_size=16, embed_dim=768, depth=11, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), embed_layer=ConvStem, **kwargs) model.default_cfg = _cfg() return model
InternVideo-main
Pretrain/VideoMAE/vits.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import argparse import datetime import json import os import time from collections import OrderedDict from pathlib import Path import numpy as np import torch import torch.backends.cudnn as cudnn from scipy import interpolate from timm.data.mixup import Mixup from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.models import create_model from timm.utils import ModelEma import modeling_finetune import utils from datasets import build_dataset from engine_for_finetuning import ( final_test, merge, train_one_epoch, validation_one_epoch, ) from optim_factory import ( LayerDecayValueAssigner, create_optimizer, get_parameter_groups, ) from utils import NativeScalerWithGradNormCount as NativeScaler def get_args(): parser = argparse.ArgumentParser( 'MAE fine-tuning and evaluation script for image classification', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=30, type=int) parser.add_argument('--update_freq', default=1, type=int) parser.add_argument('--save_ckpt_freq', default=100, type=int) # Model parameters parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--tubelet_size', type=int, default=2) parser.add_argument('--input_size', default=224, type=int, help='images input size') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT', help='Attention dropout rate (default: 0.)') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument('--disable_eval_during_finetuning', action='store_true', default=False) parser.add_argument('--model_ema', action='store_true', default=False) parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='') parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument( '--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD and using a larger decay by the end of training improves performance for ViTs.""") parser.add_argument('--lr', type=float, default=1e-3, metavar='LR', help='learning rate (default: 1e-3)') parser.add_argument('--layer_decay', type=float, default=0.75) parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument( '--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument( '--warmup_steps', type=int, default=-1, metavar='N', help='num of steps to warmup LR, will overload warmup_epochs if set > 0' ) # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') # parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', parser.add_argument( '--aa', type=str, default='rand-m7-n4-mstd0.5-inc1', metavar='NAME', help= 'Use AutoAugment policy. "v0" or "original". " + "(default: rand-m7-n4-mstd0.5-inc1)' ), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument( '--train_interpolation', type=str, default='bicubic', help= 'Training interpolation (random, bilinear, bicubic default: "bicubic")' ) # Evaluation parameters parser.add_argument('--crop_pct', type=float, default=None) parser.add_argument('--short_side_size', type=int, default=224) parser.add_argument('--test_num_segment', type=int, default=10) parser.add_argument('--test_num_crop', type=int, default=3) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument( '--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument( '--cutmix_minmax', type=float, nargs='+', default=None, help= 'cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)' ) parser.add_argument( '--mixup_prob', type=float, default=1.0, help= 'Probability of performing mixup or cutmix when either/both is enabled' ) parser.add_argument( '--mixup_switch_prob', type=float, default=0.5, help= 'Probability of switching to cutmix when both mixup and cutmix enabled' ) parser.add_argument( '--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"' ) # * Finetuning params parser.add_argument('--finetune', default='', help='finetune from checkpoint') parser.add_argument('--model_key', default='model|module', type=str) parser.add_argument('--model_prefix', default='', type=str) parser.add_argument('--init_scale', default=0.001, type=float) parser.add_argument('--use_mean_pooling', action='store_true') parser.set_defaults(use_mean_pooling=True) parser.add_argument('--use_cls', action='store_false', dest='use_mean_pooling') # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--eval_data_path', default=None, type=str, help='dataset path for evaluation') parser.add_argument('--nb_classes', default=400, type=int, help='number of the classification types') parser.add_argument('--imagenet_default_mean_and_std', default=True, action='store_true') parser.add_argument('--num_segments', type=int, default=1) parser.add_argument('--num_frames', type=int, default=16) parser.add_argument('--sampling_rate', type=int, default=4) parser.add_argument('--data_set', default='Kinetics-400', choices=[ 'Kinetics-400', 'SSV2', 'UCF101', 'HMDB51', 'Diving48', 'image_folder' ], type=str, help='ImageNet dataset path') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument('--save_ckpt', action='store_true') parser.add_argument('--no_save_ckpt', action='store_false', dest='save_ckpt') parser.set_defaults(save_ckpt=True) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument( '--pin_mem', action='store_true', help= 'Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.' ) parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--enable_deepspeed', action='store_true', default=False) known_args, _ = parser.parse_known_args() if known_args.enable_deepspeed: try: import deepspeed from deepspeed import DeepSpeedConfig parser = deepspeed.add_config_arguments(parser) ds_init = deepspeed.initialize except: print("Please 'pip install deepspeed==0.4.0'") exit(0) else: ds_init = None return parser.parse_args(), ds_init def main(args, ds_init): utils.init_distributed_mode(args) if ds_init is not None: utils.create_ds_config(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True dataset_train, args.nb_classes = build_dataset(is_train=True, test_mode=False, args=args) if args.disable_eval_during_finetuning: dataset_val = None else: dataset_val, _ = build_dataset(is_train=False, test_mode=False, args=args) dataset_test, _ = build_dataset(is_train=False, test_mode=True, args=args) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print( 'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) sampler_test = torch.utils.data.DistributedSampler( dataset_test, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, persistent_workers=True) if dataset_val is not None: data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False, persistent_workers=True) else: data_loader_val = None if dataset_test is not None: data_loader_test = torch.utils.data.DataLoader( dataset_test, sampler=sampler_test, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False, persistent_workers=True) else: data_loader_test = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup(mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) model = create_model( args.model, pretrained=False, num_classes=args.nb_classes, all_frames=args.num_frames * args.num_segments, tubelet_size=args.tubelet_size, drop_rate=args.drop, drop_path_rate=args.drop_path, attn_drop_rate=args.attn_drop_rate, drop_block_rate=None, use_mean_pooling=args.use_mean_pooling, init_scale=args.init_scale, ) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) # args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) args.window_size = (args.num_frames // 2, args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size if args.finetune: if args.finetune.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url(args.finetune, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.finetune, map_location='cpu') print("Load ckpt from %s" % args.finetune) checkpoint_model = None for model_key in args.model_key.split('|'): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[ k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] all_keys = list(checkpoint_model.keys()) new_dict = OrderedDict() for key in all_keys: if key.startswith('backbone.'): new_dict[key[9:]] = checkpoint_model[key] elif key.startswith('encoder.'): new_dict[key[8:]] = checkpoint_model[key] else: new_dict[key] = checkpoint_model[key] checkpoint_model = new_dict # interpolate position embedding if 'pos_embed' in checkpoint_model: pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] # channel dim num_patches = model.patch_embed.num_patches # num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1 # height (== width) for the checkpoint position embedding orig_size = int( ((pos_embed_checkpoint.shape[-2] - num_extra_tokens) // (args.num_frames // model.patch_embed.tubelet_size))**0.5) # height (== width) for the new position embedding new_size = int( (num_patches // (args.num_frames // model.patch_embed.tubelet_size))**0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] # B, L, C -> BT, H, W, C -> BT, C, H, W pos_tokens = pos_tokens.reshape( -1, args.num_frames // model.patch_embed.tubelet_size, orig_size, orig_size, embedding_size) pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute( 0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) # BT, C, H, W -> BT, H, W, C -> B, T, H, W, C pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape( -1, args.num_frames // model.patch_embed.tubelet_size, new_size, new_size, embedding_size) pos_tokens = pos_tokens.flatten(1, 3) # B, L, C new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) # model.load_state_dict(checkpoint_model, strict=False) model.to(device) model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEma(model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else '', resume='') print("Using EMA with decay = %.8f" % args.model_ema_decay) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params:', n_parameters) total_batch_size = args.batch_size * args.update_freq * utils.get_world_size( ) num_training_steps_per_epoch = len(dataset_train) // total_batch_size args.lr = args.lr * total_batch_size / 256 #########scale the lr############# args.min_lr = args.min_lr * total_batch_size / 256 args.warmup_lr = args.warmup_lr * total_batch_size / 256 #########scale the lr############# print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Update frequent = %d" % args.update_freq) print("Number of training examples = %d" % len(dataset_train)) print("Number of training training per epoch = %d" % num_training_steps_per_epoch) num_layers = model_without_ddp.get_num_layers() if args.layer_decay < 1.0: assigner = LayerDecayValueAssigner( list(args.layer_decay**(num_layers + 1 - i) for i in range(num_layers + 2))) else: assigner = None if assigner is not None: print("Assigned values = %s" % str(assigner.values)) skip_weight_decay_list = model.no_weight_decay() print("Skip weight decay list: ", skip_weight_decay_list) if args.enable_deepspeed: loss_scaler = None optimizer_params = get_parameter_groups( model, args.weight_decay, skip_weight_decay_list, assigner.get_layer_id if assigner is not None else None, assigner.get_scale if assigner is not None else None) model, optimizer, _, _ = ds_init( args=args, model=model, model_parameters=optimizer_params, dist_init_required=not args.distributed, ) print("model.gradient_accumulation_steps() = %d" % model.gradient_accumulation_steps()) assert model.gradient_accumulation_steps() == args.update_freq else: if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module optimizer = create_optimizer(args, model_without_ddp, skip_list=skip_weight_decay_list, get_num_layer=assigner.get_layer_id if assigner is not None else None, get_layer_scale=assigner.get_scale if assigner is not None else None) loss_scaler = NativeScaler() print("Use step level LR scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler(args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() print("criterion = %s" % str(criterion)) utils.auto_load_model(args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema) if args.eval: preds_file = os.path.join(args.output_dir, str(global_rank) + '.txt') test_stats = final_test(data_loader_test, model, device, preds_file) torch.distributed.barrier() if global_rank == 0: print("Start merging results...") final_top1, final_top5 = merge(args.output_dir, num_tasks) print( f"Accuracy of the network on the {len(dataset_test)} test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%" ) log_stats = {'Final top-1': final_top1, 'Final Top-5': final_top1} if args.output_dir and utils.is_main_process(): with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") exit(0) # test_stats = validation_one_epoch(data_loader_test, model, device) # print(f"Accuracy of the network on the {len(dataset_test)} test videos: {test_stats['acc1']:.1f}%") print(f"Start training for {args.epochs} epochs") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq, ) if args.output_dir and args.save_ckpt: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model(args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema) if data_loader_val is not None: test_stats = validation_one_epoch(data_loader_val, model, device) print( f"Accuracy of the network on the {len(dataset_val)} val images: {test_stats['acc1']:.1f}%" ) if max_accuracy < test_stats["acc1"]: max_accuracy = test_stats["acc1"] if args.output_dir and args.save_ckpt: utils.save_model(args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch="best", model_ema=model_ema) print(f'Max accuracy: {max_accuracy:.2f}%') if log_writer is not None: log_writer.update(val_acc1=test_stats['acc1'], head="perf", step=epoch) log_writer.update(val_acc5=test_stats['acc5'], head="perf", step=epoch) log_writer.update(val_loss=test_stats['loss'], head="perf", step=epoch) log_stats = { **{f'train_{k}': v for k, v in train_stats.items()}, **{f'val_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters } else: log_stats = { **{f'train_{k}': v for k, v in train_stats.items()}, # **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters } if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") preds_file = os.path.join(args.output_dir, str(global_rank) + '.txt') test_stats = final_test(data_loader_test, model, device, preds_file) torch.distributed.barrier() if global_rank == 0: print("Start merging results...") final_top1, final_top5 = merge(args.output_dir, num_tasks) print( f"Accuracy of the network on the {len(dataset_test)} test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%" ) log_stats = {'Final top-1': final_top1, 'Final Top-5': final_top5} if args.output_dir and utils.is_main_process(): with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts, ds_init = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts, ds_init)
InternVideo-main
Pretrain/VideoMAE/run_class_linear.py
import os import numpy as np from matplotlib import use from scipy.special import softmax def merge(eval_paths, num_tasks, use_softmax=False): dict_feats = {} dict_label = {} print("Reading individual output files") if not isinstance(eval_paths, list): eval_paths = [eval_paths] for eval_path in eval_paths: dict_pos = {} for x in range(num_tasks): file = os.path.join(eval_path, str(x) + '.txt') lines = open(file, 'r').readlines()[1:] for line in lines: line = line.strip() name = line.split('[')[0] label = line.split(']')[1].split(' ')[1] chunk_nb = line.split(']')[1].split(' ')[2] split_nb = line.split(']')[1].split(' ')[3] data = np.fromstring(line.split('[')[1].split(']')[0], dtype=np.float64, sep=',') if not name in dict_feats: dict_feats[name] = [] dict_label[name] = 0 if not name in dict_pos: dict_pos[name] = [] if chunk_nb + split_nb in dict_pos[name]: continue if use_softmax: dict_feats[name].append(softmax(data)) else: dict_feats[name].append(data) dict_pos[name].append(chunk_nb + split_nb) dict_label[name] = label print("Computing final results") input_lst = [] print(len(dict_feats)) for i, item in enumerate(dict_feats): input_lst.append([i, item, dict_feats[item], dict_label[item]]) from multiprocessing import Pool p = Pool(64) ans = p.map(compute_video, input_lst) top1 = [x[1] for x in ans] top5 = [x[2] for x in ans] pred = [x[0] for x in ans] label = [x[3] for x in ans] final_top1, final_top5 = np.mean(top1), np.mean(top5) return final_top1 * 100, final_top5 * 100 def compute_video(lst): i, video_id, data, label = lst feat = [x for x in data] feat = np.mean(feat, axis=0) # print(feat.shape) try: pred = np.argmax(feat) top1 = (int(pred) == int(label)) * 1.0 top5 = (int(label) in np.argsort(-feat)[:5]) * 1.0 except: pred = 0 top1 = 1.0 top5 = 1.0 label = 0 return [pred, top1, top5, int(label)] if __name__ == '__main__': eval_path1 = '/mnt/petrelfs/huangbingkun/VideoMAE-clean/work_dir/full_sta_web_k400_finetune' eval_path2 = '/mnt/petrelfs/huangbingkun/VideoMAE-clean/work_dir/pred_txts' num_tasks = 32 eval_paths = [eval_path1, eval_path2] final_top1, final_top5 = merge(eval_paths, num_tasks, use_softmax=True) print( f"Accuracy of the network on the test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%" )
InternVideo-main
Pretrain/VideoMAE/ensemble.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """ This implementation is based on https://github.com/rwightman/pytorch-image-models/blob/master/timm/data/random_erasing.py pulished under an Apache License 2.0. COMMENT FROM ORIGINAL: Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 Copyright Zhun Zhong & Liang Zheng Hacked together by / Copyright 2020 Ross Wightman """ import math import random import torch def _get_pixels( per_pixel, rand_color, patch_size, dtype=torch.float32, device="cuda" ): # NOTE I've seen CUDA illegal memory access errors being caused by the normal_() # paths, flip the order so normal is run on CPU if this becomes a problem # Issue has been fixed in master https://github.com/pytorch/pytorch/issues/19508 if per_pixel: return torch.empty(patch_size, dtype=dtype, device=device).normal_() elif rand_color: return torch.empty( (patch_size[0], 1, 1), dtype=dtype, device=device ).normal_() else: return torch.zeros((patch_size[0], 1, 1), dtype=dtype, device=device) class RandomErasing: """Randomly selects a rectangle region in an image and erases its pixels. 'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf This variant of RandomErasing is intended to be applied to either a batch or single image tensor after it has been normalized by dataset mean and std. Args: probability: Probability that the Random Erasing operation will be performed. min_area: Minimum percentage of erased area wrt input image area. max_area: Maximum percentage of erased area wrt input image area. min_aspect: Minimum aspect ratio of erased area. mode: pixel color mode, one of 'const', 'rand', or 'pixel' 'const' - erase block is constant color of 0 for all channels 'rand' - erase block is same per-channel random (normal) color 'pixel' - erase block is per-pixel random (normal) color max_count: maximum number of erasing blocks per image, area per box is scaled by count. per-image count is randomly chosen between 1 and this value. """ def __init__( self, probability=0.5, min_area=0.02, max_area=1 / 3, min_aspect=0.3, max_aspect=None, mode="const", min_count=1, max_count=None, num_splits=0, device="cuda", cube=True, ): self.probability = probability self.min_area = min_area self.max_area = max_area max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) self.min_count = min_count self.max_count = max_count or min_count self.num_splits = num_splits mode = mode.lower() self.rand_color = False self.per_pixel = False self.cube = cube if mode == "rand": self.rand_color = True # per block random normal elif mode == "pixel": self.per_pixel = True # per pixel random normal else: assert not mode or mode == "const" self.device = device def _erase(self, img, chan, img_h, img_w, dtype): if random.random() > self.probability: return area = img_h * img_w count = ( self.min_count if self.min_count == self.max_count else random.randint(self.min_count, self.max_count) ) for _ in range(count): for _ in range(10): target_area = ( random.uniform(self.min_area, self.max_area) * area / count ) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < img_w and h < img_h: top = random.randint(0, img_h - h) left = random.randint(0, img_w - w) img[:, top : top + h, left : left + w] = _get_pixels( self.per_pixel, self.rand_color, (chan, h, w), dtype=dtype, device=self.device, ) break def _erase_cube( self, img, batch_start, batch_size, chan, img_h, img_w, dtype, ): if random.random() > self.probability: return area = img_h * img_w count = ( self.min_count if self.min_count == self.max_count else random.randint(self.min_count, self.max_count) ) for _ in range(count): for _ in range(100): target_area = ( random.uniform(self.min_area, self.max_area) * area / count ) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < img_w and h < img_h: top = random.randint(0, img_h - h) left = random.randint(0, img_w - w) for i in range(batch_start, batch_size): img_instance = img[i] img_instance[ :, top : top + h, left : left + w ] = _get_pixels( self.per_pixel, self.rand_color, (chan, h, w), dtype=dtype, device=self.device, ) break def __call__(self, input): if len(input.size()) == 3: self._erase(input, *input.size(), input.dtype) else: batch_size, chan, img_h, img_w = input.size() # skip first slice of batch if num_splits is set (for clean portion of samples) batch_start = ( batch_size // self.num_splits if self.num_splits > 1 else 0 ) if self.cube: self._erase_cube( input, batch_start, batch_size, chan, img_h, img_w, input.dtype, ) else: for i in range(batch_start, batch_size): self._erase(input[i], chan, img_h, img_w, input.dtype) return input
InternVideo-main
Pretrain/VideoMAE/random_erasing.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import math import numbers # import cv2 import random import numpy as np import PIL import torch import torchvision import torchvision.transforms.functional as F from PIL import Image from torchvision import transforms import functional as FF from rand_augment import rand_augment_transform from random_erasing import RandomErasing _pil_interpolation_to_str = { Image.NEAREST: "PIL.Image.NEAREST", Image.BILINEAR: "PIL.Image.BILINEAR", Image.BICUBIC: "PIL.Image.BICUBIC", Image.LANCZOS: "PIL.Image.LANCZOS", Image.HAMMING: "PIL.Image.HAMMING", Image.BOX: "PIL.Image.BOX", } _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC) def _pil_interp(method): if method == "bicubic": return Image.BICUBIC elif method == "lanczos": return Image.LANCZOS elif method == "hamming": return Image.HAMMING else: return Image.BILINEAR def random_short_side_scale_jitter( images, min_size, max_size, boxes=None, inverse_uniform_sampling=False ): """ Perform a spatial short scale jittering on the given images and corresponding boxes. Args: images (tensor): images to perform scale jitter. Dimension is `num frames` x `channel` x `height` x `width`. min_size (int): the minimal size to scale the frames. max_size (int): the maximal size to scale the frames. boxes (ndarray): optional. Corresponding boxes to images. Dimension is `num boxes` x 4. inverse_uniform_sampling (bool): if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a reciprocal to get the scale. If False, take a uniform sample from [min_scale, max_scale]. Returns: (tensor): the scaled images with dimension of `num frames` x `channel` x `new height` x `new width`. (ndarray or None): the scaled boxes with dimension of `num boxes` x 4. """ if inverse_uniform_sampling: size = int( round(1.0 / np.random.uniform(1.0 / max_size, 1.0 / min_size)) ) else: size = int(round(np.random.uniform(min_size, max_size))) height = images.shape[2] width = images.shape[3] if (width <= height and width == size) or ( height <= width and height == size ): return images, boxes new_width = size new_height = size if width < height: new_height = int(math.floor((float(height) / width) * size)) if boxes is not None: boxes = boxes * float(new_height) / height else: new_width = int(math.floor((float(width) / height) * size)) if boxes is not None: boxes = boxes * float(new_width) / width return ( torch.nn.functional.interpolate( images, size=(new_height, new_width), mode="bilinear", align_corners=False, ), boxes, ) def crop_boxes(boxes, x_offset, y_offset): """ Peform crop on the bounding boxes given the offsets. Args: boxes (ndarray or None): bounding boxes to peform crop. The dimension is `num boxes` x 4. x_offset (int): cropping offset in the x axis. y_offset (int): cropping offset in the y axis. Returns: cropped_boxes (ndarray or None): the cropped boxes with dimension of `num boxes` x 4. """ cropped_boxes = boxes.copy() cropped_boxes[:, [0, 2]] = boxes[:, [0, 2]] - x_offset cropped_boxes[:, [1, 3]] = boxes[:, [1, 3]] - y_offset return cropped_boxes def random_crop(images, size, boxes=None): """ Perform random spatial crop on the given images and corresponding boxes. Args: images (tensor): images to perform random crop. The dimension is `num frames` x `channel` x `height` x `width`. size (int): the size of height and width to crop on the image. boxes (ndarray or None): optional. Corresponding boxes to images. Dimension is `num boxes` x 4. Returns: cropped (tensor): cropped images with dimension of `num frames` x `channel` x `size` x `size`. cropped_boxes (ndarray or None): the cropped boxes with dimension of `num boxes` x 4. """ if images.shape[2] == size and images.shape[3] == size: return images height = images.shape[2] width = images.shape[3] y_offset = 0 if height > size: y_offset = int(np.random.randint(0, height - size)) x_offset = 0 if width > size: x_offset = int(np.random.randint(0, width - size)) cropped = images[ :, :, y_offset : y_offset + size, x_offset : x_offset + size ] cropped_boxes = ( crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None ) return cropped, cropped_boxes def horizontal_flip(prob, images, boxes=None): """ Perform horizontal flip on the given images and corresponding boxes. Args: prob (float): probility to flip the images. images (tensor): images to perform horizontal flip, the dimension is `num frames` x `channel` x `height` x `width`. boxes (ndarray or None): optional. Corresponding boxes to images. Dimension is `num boxes` x 4. Returns: images (tensor): images with dimension of `num frames` x `channel` x `height` x `width`. flipped_boxes (ndarray or None): the flipped boxes with dimension of `num boxes` x 4. """ if boxes is None: flipped_boxes = None else: flipped_boxes = boxes.copy() if np.random.uniform() < prob: images = images.flip((-1)) if len(images.shape) == 3: width = images.shape[2] elif len(images.shape) == 4: width = images.shape[3] else: raise NotImplementedError("Dimension does not supported") if boxes is not None: flipped_boxes[:, [0, 2]] = width - boxes[:, [2, 0]] - 1 return images, flipped_boxes def uniform_crop(images, size, spatial_idx, boxes=None, scale_size=None): """ Perform uniform spatial sampling on the images and corresponding boxes. Args: images (tensor): images to perform uniform crop. The dimension is `num frames` x `channel` x `height` x `width`. size (int): size of height and weight to crop the images. spatial_idx (int): 0, 1, or 2 for left, center, and right crop if width is larger than height. Or 0, 1, or 2 for top, center, and bottom crop if height is larger than width. boxes (ndarray or None): optional. Corresponding boxes to images. Dimension is `num boxes` x 4. scale_size (int): optinal. If not None, resize the images to scale_size before performing any crop. Returns: cropped (tensor): images with dimension of `num frames` x `channel` x `size` x `size`. cropped_boxes (ndarray or None): the cropped boxes with dimension of `num boxes` x 4. """ assert spatial_idx in [0, 1, 2] ndim = len(images.shape) if ndim == 3: images = images.unsqueeze(0) height = images.shape[2] width = images.shape[3] if scale_size is not None: if width <= height: width, height = scale_size, int(height / width * scale_size) else: width, height = int(width / height * scale_size), scale_size images = torch.nn.functional.interpolate( images, size=(height, width), mode="bilinear", align_corners=False, ) y_offset = int(math.ceil((height - size) / 2)) x_offset = int(math.ceil((width - size) / 2)) if height > width: if spatial_idx == 0: y_offset = 0 elif spatial_idx == 2: y_offset = height - size else: if spatial_idx == 0: x_offset = 0 elif spatial_idx == 2: x_offset = width - size cropped = images[ :, :, y_offset : y_offset + size, x_offset : x_offset + size ] cropped_boxes = ( crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None ) if ndim == 3: cropped = cropped.squeeze(0) return cropped, cropped_boxes def clip_boxes_to_image(boxes, height, width): """ Clip an array of boxes to an image with the given height and width. Args: boxes (ndarray): bounding boxes to perform clipping. Dimension is `num boxes` x 4. height (int): given image height. width (int): given image width. Returns: clipped_boxes (ndarray): the clipped boxes with dimension of `num boxes` x 4. """ clipped_boxes = boxes.copy() clipped_boxes[:, [0, 2]] = np.minimum( width - 1.0, np.maximum(0.0, boxes[:, [0, 2]]) ) clipped_boxes[:, [1, 3]] = np.minimum( height - 1.0, np.maximum(0.0, boxes[:, [1, 3]]) ) return clipped_boxes def blend(images1, images2, alpha): """ Blend two images with a given weight alpha. Args: images1 (tensor): the first images to be blended, the dimension is `num frames` x `channel` x `height` x `width`. images2 (tensor): the second images to be blended, the dimension is `num frames` x `channel` x `height` x `width`. alpha (float): the blending weight. Returns: (tensor): blended images, the dimension is `num frames` x `channel` x `height` x `width`. """ return images1 * alpha + images2 * (1 - alpha) def grayscale(images): """ Get the grayscale for the input images. The channels of images should be in order BGR. Args: images (tensor): the input images for getting grayscale. Dimension is `num frames` x `channel` x `height` x `width`. Returns: img_gray (tensor): blended images, the dimension is `num frames` x `channel` x `height` x `width`. """ # R -> 0.299, G -> 0.587, B -> 0.114. img_gray = torch.tensor(images) gray_channel = ( 0.299 * images[:, 2] + 0.587 * images[:, 1] + 0.114 * images[:, 0] ) img_gray[:, 0] = gray_channel img_gray[:, 1] = gray_channel img_gray[:, 2] = gray_channel return img_gray def color_jitter(images, img_brightness=0, img_contrast=0, img_saturation=0): """ Perfrom a color jittering on the input images. The channels of images should be in order BGR. Args: images (tensor): images to perform color jitter. Dimension is `num frames` x `channel` x `height` x `width`. img_brightness (float): jitter ratio for brightness. img_contrast (float): jitter ratio for contrast. img_saturation (float): jitter ratio for saturation. Returns: images (tensor): the jittered images, the dimension is `num frames` x `channel` x `height` x `width`. """ jitter = [] if img_brightness != 0: jitter.append("brightness") if img_contrast != 0: jitter.append("contrast") if img_saturation != 0: jitter.append("saturation") if len(jitter) > 0: order = np.random.permutation(np.arange(len(jitter))) for idx in range(0, len(jitter)): if jitter[order[idx]] == "brightness": images = brightness_jitter(img_brightness, images) elif jitter[order[idx]] == "contrast": images = contrast_jitter(img_contrast, images) elif jitter[order[idx]] == "saturation": images = saturation_jitter(img_saturation, images) return images def brightness_jitter(var, images): """ Perfrom brightness jittering on the input images. The channels of images should be in order BGR. Args: var (float): jitter ratio for brightness. images (tensor): images to perform color jitter. Dimension is `num frames` x `channel` x `height` x `width`. Returns: images (tensor): the jittered images, the dimension is `num frames` x `channel` x `height` x `width`. """ alpha = 1.0 + np.random.uniform(-var, var) img_bright = torch.zeros(images.shape) images = blend(images, img_bright, alpha) return images def contrast_jitter(var, images): """ Perfrom contrast jittering on the input images. The channels of images should be in order BGR. Args: var (float): jitter ratio for contrast. images (tensor): images to perform color jitter. Dimension is `num frames` x `channel` x `height` x `width`. Returns: images (tensor): the jittered images, the dimension is `num frames` x `channel` x `height` x `width`. """ alpha = 1.0 + np.random.uniform(-var, var) img_gray = grayscale(images) img_gray[:] = torch.mean(img_gray, dim=(1, 2, 3), keepdim=True) images = blend(images, img_gray, alpha) return images def saturation_jitter(var, images): """ Perfrom saturation jittering on the input images. The channels of images should be in order BGR. Args: var (float): jitter ratio for saturation. images (tensor): images to perform color jitter. Dimension is `num frames` x `channel` x `height` x `width`. Returns: images (tensor): the jittered images, the dimension is `num frames` x `channel` x `height` x `width`. """ alpha = 1.0 + np.random.uniform(-var, var) img_gray = grayscale(images) images = blend(images, img_gray, alpha) return images def lighting_jitter(images, alphastd, eigval, eigvec): """ Perform AlexNet-style PCA jitter on the given images. Args: images (tensor): images to perform lighting jitter. Dimension is `num frames` x `channel` x `height` x `width`. alphastd (float): jitter ratio for PCA jitter. eigval (list): eigenvalues for PCA jitter. eigvec (list[list]): eigenvectors for PCA jitter. Returns: out_images (tensor): the jittered images, the dimension is `num frames` x `channel` x `height` x `width`. """ if alphastd == 0: return images # generate alpha1, alpha2, alpha3. alpha = np.random.normal(0, alphastd, size=(1, 3)) eig_vec = np.array(eigvec) eig_val = np.reshape(eigval, (1, 3)) rgb = np.sum( eig_vec * np.repeat(alpha, 3, axis=0) * np.repeat(eig_val, 3, axis=0), axis=1, ) out_images = torch.zeros_like(images) if len(images.shape) == 3: # C H W channel_dim = 0 elif len(images.shape) == 4: # T C H W channel_dim = 1 else: raise NotImplementedError(f"Unsupported dimension {len(images.shape)}") for idx in range(images.shape[channel_dim]): # C H W if len(images.shape) == 3: out_images[idx] = images[idx] + rgb[2 - idx] # T C H W elif len(images.shape) == 4: out_images[:, idx] = images[:, idx] + rgb[2 - idx] else: raise NotImplementedError( f"Unsupported dimension {len(images.shape)}" ) return out_images def color_normalization(images, mean, stddev): """ Perform color nomration on the given images. Args: images (tensor): images to perform color normalization. Dimension is `num frames` x `channel` x `height` x `width`. mean (list): mean values for normalization. stddev (list): standard deviations for normalization. Returns: out_images (tensor): the noramlized images, the dimension is `num frames` x `channel` x `height` x `width`. """ if len(images.shape) == 3: assert ( len(mean) == images.shape[0] ), "channel mean not computed properly" assert ( len(stddev) == images.shape[0] ), "channel stddev not computed properly" elif len(images.shape) == 4: assert ( len(mean) == images.shape[1] ), "channel mean not computed properly" assert ( len(stddev) == images.shape[1] ), "channel stddev not computed properly" else: raise NotImplementedError(f"Unsupported dimension {len(images.shape)}") out_images = torch.zeros_like(images) for idx in range(len(mean)): # C H W if len(images.shape) == 3: out_images[idx] = (images[idx] - mean[idx]) / stddev[idx] elif len(images.shape) == 4: out_images[:, idx] = (images[:, idx] - mean[idx]) / stddev[idx] else: raise NotImplementedError( f"Unsupported dimension {len(images.shape)}" ) return out_images def _get_param_spatial_crop( scale, ratio, height, width, num_repeat=10, log_scale=True, switch_hw=False ): """ Given scale, ratio, height and width, return sampled coordinates of the videos. """ for _ in range(num_repeat): area = height * width target_area = random.uniform(*scale) * area if log_scale: log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) else: aspect_ratio = random.uniform(*ratio) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if np.random.uniform() < 0.5 and switch_hw: w, h = h, w if 0 < w <= width and 0 < h <= height: i = random.randint(0, height - h) j = random.randint(0, width - w) return i, j, h, w # Fallback to central crop in_ratio = float(width) / float(height) if in_ratio < min(ratio): w = width h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = height w = int(round(h * max(ratio))) else: # whole image w = width h = height i = (height - h) // 2 j = (width - w) // 2 return i, j, h, w def random_resized_crop( images, target_height, target_width, scale=(0.8, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), ): """ Crop the given images to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: images: Images to perform resizing and cropping. target_height: Desired height after cropping. target_width: Desired width after cropping. scale: Scale range of Inception-style area based random resizing. ratio: Aspect ratio range of Inception-style area based random resizing. """ height = images.shape[2] width = images.shape[3] i, j, h, w = _get_param_spatial_crop(scale, ratio, height, width) cropped = images[:, :, i : i + h, j : j + w] return torch.nn.functional.interpolate( cropped, size=(target_height, target_width), mode="bilinear", align_corners=False, ) def random_resized_crop_with_shift( images, target_height, target_width, scale=(0.8, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), ): """ This is similar to random_resized_crop. However, it samples two different boxes (for cropping) for the first and last frame. It then linearly interpolates the two boxes for other frames. Args: images: Images to perform resizing and cropping. target_height: Desired height after cropping. target_width: Desired width after cropping. scale: Scale range of Inception-style area based random resizing. ratio: Aspect ratio range of Inception-style area based random resizing. """ t = images.shape[1] height = images.shape[2] width = images.shape[3] i, j, h, w = _get_param_spatial_crop(scale, ratio, height, width) i_, j_, h_, w_ = _get_param_spatial_crop(scale, ratio, height, width) i_s = [int(i) for i in torch.linspace(i, i_, steps=t).tolist()] j_s = [int(i) for i in torch.linspace(j, j_, steps=t).tolist()] h_s = [int(i) for i in torch.linspace(h, h_, steps=t).tolist()] w_s = [int(i) for i in torch.linspace(w, w_, steps=t).tolist()] out = torch.zeros((3, t, target_height, target_width)) for ind in range(t): out[:, ind : ind + 1, :, :] = torch.nn.functional.interpolate( images[ :, ind : ind + 1, i_s[ind] : i_s[ind] + h_s[ind], j_s[ind] : j_s[ind] + w_s[ind], ], size=(target_height, target_width), mode="bilinear", align_corners=False, ) return out def create_random_augment( input_size, auto_augment=None, interpolation="bilinear", ): """ Get video randaug transform. Args: input_size: The size of the input video in tuple. auto_augment: Parameters for randaug. An example: "rand-m7-n4-mstd0.5-inc1" (m is the magnitude and n is the number of operations to apply). interpolation: Interpolation method. """ if isinstance(input_size, tuple): img_size = input_size[-2:] else: img_size = input_size if auto_augment: assert isinstance(auto_augment, str) if isinstance(img_size, tuple): img_size_min = min(img_size) else: img_size_min = img_size aa_params = {"translate_const": int(img_size_min * 0.45)} if interpolation and interpolation != "random": aa_params["interpolation"] = _pil_interp(interpolation) if auto_augment.startswith("rand"): return transforms.Compose( [rand_augment_transform(auto_augment, aa_params)] ) raise NotImplementedError def random_sized_crop_img( im, size, jitter_scale=(0.08, 1.0), jitter_aspect=(3.0 / 4.0, 4.0 / 3.0), max_iter=10, ): """ Performs Inception-style cropping (used for training). """ assert ( len(im.shape) == 3 ), "Currently only support image for random_sized_crop" h, w = im.shape[1:3] i, j, h, w = _get_param_spatial_crop( scale=jitter_scale, ratio=jitter_aspect, height=h, width=w, num_repeat=max_iter, log_scale=False, switch_hw=True, ) cropped = im[:, i : i + h, j : j + w] return torch.nn.functional.interpolate( cropped.unsqueeze(0), size=(size, size), mode="bilinear", align_corners=False, ).squeeze(0) # The following code are modified based on timm lib, we will replace the following # contents with dependency from PyTorchVideo. # https://github.com/facebookresearch/pytorchvideo class RandomResizedCropAndInterpolation: """Crop the given PIL Image to random size and aspect ratio with random interpolation. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__( self, size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation="bilinear", ): if isinstance(size, tuple): self.size = size else: self.size = (size, size) if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): print("range should be of kind (min, max)") if interpolation == "random": self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = _pil_interp(interpolation) self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for _ in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation return F.resized_crop(img, i, j, h, w, self.size, interpolation) def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = " ".join( [_pil_interpolation_to_str[x] for x in self.interpolation] ) else: interpolate_str = _pil_interpolation_to_str[self.interpolation] format_string = self.__class__.__name__ + "(size={0}".format(self.size) format_string += ", scale={0}".format( tuple(round(s, 4) for s in self.scale) ) format_string += ", ratio={0}".format( tuple(round(r, 4) for r in self.ratio) ) format_string += ", interpolation={0})".format(interpolate_str) return format_string def transforms_imagenet_train( img_size=224, scale=None, ratio=None, hflip=0.5, vflip=0.0, color_jitter=0.4, auto_augment=None, interpolation="random", use_prefetcher=False, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), re_prob=0.0, re_mode="const", re_count=1, re_num_splits=0, separate=False, ): """ If separate==True, the transforms are returned as a tuple of 3 separate transforms for use in a mixing dataset that passes * all data through the first (primary) transform, called the 'clean' data * a portion of the data through the secondary transform * normalizes and converts the branches above with the third, final transform """ if isinstance(img_size, tuple): img_size = img_size[-2:] else: img_size = img_size scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range ratio = tuple( ratio or (3.0 / 4.0, 4.0 / 3.0) ) # default imagenet ratio range primary_tfl = [ RandomResizedCropAndInterpolation( img_size, scale=scale, ratio=ratio, interpolation=interpolation ) ] if hflip > 0.0: primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)] if vflip > 0.0: primary_tfl += [transforms.RandomVerticalFlip(p=vflip)] secondary_tfl = [] if auto_augment: assert isinstance(auto_augment, str) if isinstance(img_size, tuple): img_size_min = min(img_size) else: img_size_min = img_size aa_params = dict( translate_const=int(img_size_min * 0.45), img_mean=tuple([min(255, round(255 * x)) for x in mean]), ) if interpolation and interpolation != "random": aa_params["interpolation"] = _pil_interp(interpolation) if auto_augment.startswith("rand"): secondary_tfl += [rand_augment_transform(auto_augment, aa_params)] elif auto_augment.startswith("augmix"): raise NotImplementedError("Augmix not implemented") else: raise NotImplementedError("Auto aug not implemented") elif color_jitter is not None: # color jitter is enabled when not using AA if isinstance(color_jitter, (list, tuple)): # color jitter should be a 3-tuple/list if spec brightness/contrast/saturation # or 4 if also augmenting hue assert len(color_jitter) in (3, 4) else: # if it's a scalar, duplicate for brightness, contrast, and saturation, no hue color_jitter = (float(color_jitter),) * 3 secondary_tfl += [transforms.ColorJitter(*color_jitter)] final_tfl = [] final_tfl += [ transforms.ToTensor(), transforms.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)), ] if re_prob > 0.0: final_tfl.append( RandomErasing( re_prob, mode=re_mode, max_count=re_count, num_splits=re_num_splits, device="cpu", cube=False, ) ) if separate: return ( transforms.Compose(primary_tfl), transforms.Compose(secondary_tfl), transforms.Compose(final_tfl), ) else: return transforms.Compose(primary_tfl + secondary_tfl + final_tfl) ############################################################################################################ ############################################################################################################ class Compose(object): """Composes several transforms Args: transforms (list of ``Transform`` objects): list of transforms to compose """ def __init__(self, transforms): self.transforms = transforms def __call__(self, clip): for t in self.transforms: clip = t(clip) return clip class RandomHorizontalFlip(object): """Horizontally flip the list of given images randomly with a probability 0.5 """ def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Randomly flipped clip """ if random.random() < 0.5: if isinstance(clip[0], np.ndarray): return [np.fliplr(img) for img in clip] elif isinstance(clip[0], PIL.Image.Image): return [ img.transpose(PIL.Image.FLIP_LEFT_RIGHT) for img in clip ] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + ' but got list of {0}'.format(type(clip[0]))) return clip class RandomResize(object): """Resizes a list of (H x W x C) numpy.ndarray to the final size The larger the original image is, the more times it takes to interpolate Args: interpolation (str): Can be one of 'nearest', 'bilinear' defaults to nearest size (tuple): (widht, height) """ def __init__(self, ratio=(3. / 4., 4. / 3.), interpolation='nearest'): self.ratio = ratio self.interpolation = interpolation def __call__(self, clip): scaling_factor = random.uniform(self.ratio[0], self.ratio[1]) if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size new_w = int(im_w * scaling_factor) new_h = int(im_h * scaling_factor) new_size = (new_w, new_h) resized = FF.resize_clip( clip, new_size, interpolation=self.interpolation) return resized class Resize(object): """Resizes a list of (H x W x C) numpy.ndarray to the final size The larger the original image is, the more times it takes to interpolate Args: interpolation (str): Can be one of 'nearest', 'bilinear' defaults to nearest size (tuple): (widht, height) """ def __init__(self, size, interpolation='nearest'): self.size = size self.interpolation = interpolation def __call__(self, clip): resized = FF.resize_clip( clip, self.size, interpolation=self.interpolation) return resized class RandomCrop(object): """Extract random crop at the same location for a list of images Args: size (sequence or int): Desired output size for the crop in format (h, w) """ def __init__(self, size): if isinstance(size, numbers.Number): size = (size, size) self.size = size def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ h, w = self.size if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) if w > im_w or h > im_h: error_msg = ( 'Initial image size should be larger then ' 'cropped size but got cropped sizes : ({w}, {h}) while ' 'initial image is ({im_w}, {im_h})'.format( im_w=im_w, im_h=im_h, w=w, h=h)) raise ValueError(error_msg) x1 = random.randint(0, im_w - w) y1 = random.randint(0, im_h - h) cropped = FF.crop_clip(clip, y1, x1, h, w) return cropped class ThreeCrop(object): """Extract random crop at the same location for a list of images Args: size (sequence or int): Desired output size for the crop in format (h, w) """ def __init__(self, size): if isinstance(size, numbers.Number): size = (size, size) self.size = size def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ h, w = self.size if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) if w != im_w and h != im_h: clip = FF.resize_clip(clip, self.size, interpolation="bilinear") im_h, im_w, im_c = clip[0].shape step = np.max((np.max((im_w, im_h)) - self.size[0]) // 2, 0) cropped = [] for i in range(3): if (im_h > self.size[0]): x1 = 0 y1 = i * step cropped.extend(FF.crop_clip(clip, y1, x1, h, w)) else: x1 = i * step y1 = 0 cropped.extend(FF.crop_clip(clip, y1, x1, h, w)) return cropped class RandomRotation(object): """Rotate entire clip randomly by a random angle within given bounds Args: degrees (sequence or int): Range of degrees to select from If degrees is a number instead of sequence like (min, max), the range of degrees, will be (-degrees, +degrees). """ def __init__(self, degrees): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError('If degrees is a single number,' 'must be positive') degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError('If degrees is a sequence,' 'it must be of len 2.') self.degrees = degrees def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ import skimage angle = random.uniform(self.degrees[0], self.degrees[1]) if isinstance(clip[0], np.ndarray): rotated = [skimage.transform.rotate(img, angle) for img in clip] elif isinstance(clip[0], PIL.Image.Image): rotated = [img.rotate(angle) for img in clip] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return rotated class CenterCrop(object): """Extract center crop at the same location for a list of images Args: size (sequence or int): Desired output size for the crop in format (h, w) """ def __init__(self, size): if isinstance(size, numbers.Number): size = (size, size) self.size = size def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ h, w = self.size if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) if w > im_w or h > im_h: error_msg = ( 'Initial image size should be larger then ' 'cropped size but got cropped sizes : ({w}, {h}) while ' 'initial image is ({im_w}, {im_h})'.format( im_w=im_w, im_h=im_h, w=w, h=h)) raise ValueError(error_msg) x1 = int(round((im_w - w) / 2.)) y1 = int(round((im_h - h) / 2.)) cropped = FF.crop_clip(clip, y1, x1, h, w) return cropped class ColorJitter(object): """Randomly change the brightness, contrast and saturation and hue of the clip Args: brightness (float): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. contrast (float): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. saturation (float): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. hue(float): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue]. Should be >=0 and <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue def get_params(self, brightness, contrast, saturation, hue): if brightness > 0: brightness_factor = random.uniform( max(0, 1 - brightness), 1 + brightness) else: brightness_factor = None if contrast > 0: contrast_factor = random.uniform( max(0, 1 - contrast), 1 + contrast) else: contrast_factor = None if saturation > 0: saturation_factor = random.uniform( max(0, 1 - saturation), 1 + saturation) else: saturation_factor = None if hue > 0: hue_factor = random.uniform(-hue, hue) else: hue_factor = None return brightness_factor, contrast_factor, saturation_factor, hue_factor def __call__(self, clip): """ Args: clip (list): list of PIL.Image Returns: list PIL.Image : list of transformed PIL.Image """ if isinstance(clip[0], np.ndarray): raise TypeError( 'Color jitter not yet implemented for numpy arrays') elif isinstance(clip[0], PIL.Image.Image): brightness, contrast, saturation, hue = self.get_params( self.brightness, self.contrast, self.saturation, self.hue) # Create img transform function sequence img_transforms = [] if brightness is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness)) if saturation is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation)) if hue is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue)) if contrast is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast)) random.shuffle(img_transforms) # Apply to all images jittered_clip = [] for img in clip: for func in img_transforms: jittered_img = func(img) jittered_clip.append(jittered_img) else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return jittered_clip class Normalize(object): """Normalize a clip with mean and standard deviation. Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform will normalize each channel of the input ``torch.*Tensor`` i.e. ``input[channel] = (input[channel] - mean[channel]) / std[channel]`` .. note:: This transform acts out of place, i.e., it does not mutates the input tensor. Args: mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, clip): """ Args: clip (Tensor): Tensor clip of size (T, C, H, W) to be normalized. Returns: Tensor: Normalized Tensor clip. """ return FF.normalize(clip, self.mean, self.std) def __repr__(self): return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
InternVideo-main
Pretrain/VideoMAE/video_transforms.py
# pylint: disable=line-too-long,too-many-lines,missing-docstring import io import os import random import warnings import cv2 import decord import numpy as np import torch import torch.distributed as dist from decord import VideoReader, cpu from numpy.lib.function_base import disp from petrel_client.client import Client from PIL import Image from torch.utils.data import Dataset from torchvision import transforms import video_transforms as video_transforms import volume_transforms as volume_transforms # from video_transforms import create_random_augment from random_erasing import RandomErasing class ANetClsDataset(Dataset): """Load your own video classification dataset.""" def __init__(self, anno_path, data_path, mode='train', clip_len=16, frame_sample_rate=4, crop_size=224, short_side_size=256, new_height=256, new_width=340, keep_aspect_ratio=True, num_segment=1, num_crop=1, test_num_segment=1, test_num_crop=1, sparse_sampling=True, args=None): self.anno_path = anno_path self.data_path = data_path self.mode = mode self.clip_len = clip_len self.frame_sample_rate = frame_sample_rate self.crop_size = crop_size self.short_side_size = short_side_size self.new_height = new_height self.new_width = new_width self.keep_aspect_ratio = keep_aspect_ratio self.num_segment = num_segment self.test_num_segment = test_num_segment self.num_crop = num_crop self.test_num_crop = test_num_crop self.sparse_sampling = sparse_sampling self.args = args self.aug = False self.rand_erase = False # self.use_temporal_gradient = False # self.temporal_gradient_rate = 0.0 if self.mode in ['train']: self.aug = True if self.args.reprob > 0: self.rand_erase = True if VideoReader is None: raise ImportError( "Unable to import `decord` which is required to read videos.") import pandas as pd cleaned = pd.read_csv(self.anno_path, header=None, delimiter=' ') self.dataset_samples = list(cleaned.values[:, 0]) self.total_times = list(cleaned.values[:, 1]) self.start_times = list(cleaned.values[:, 2]) self.end_times = list(cleaned.values[:, 3]) self.label_array = list(cleaned.values[:, 4]) self.client = Client() if (mode == 'train'): pass elif (mode == 'validation'): self.data_transform = video_transforms.Compose([ video_transforms.Resize(self.short_side_size, interpolation='bilinear'), video_transforms.CenterCrop(size=(self.crop_size, self.crop_size)), volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) elif mode == 'test': self.data_resize = video_transforms.Compose([ video_transforms.Resize(size=(short_side_size), interpolation='bilinear') ]) self.data_transform = video_transforms.Compose([ volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.test_seg = [] self.test_dataset = [] self.test_total_times = [] self.test_start_times = [] self.test_end_times = [] self.test_label_array = [] for ck in range(self.test_num_segment): for cp in range(self.test_num_crop): for idx in range(len(self.label_array)): sample_label = self.label_array[idx] self.test_label_array.append(sample_label) self.test_total_times.append(self.total_times[idx]) self.test_start_times.append(self.start_times[idx]) self.test_end_times.append(self.end_times[idx]) self.test_dataset.append(self.dataset_samples[idx]) self.test_seg.append((ck, cp)) def __getitem__(self, index): if self.mode == 'train': args = self.args scale_t = 1 # data_transform_func = self.data_transform sample = self.dataset_samples[index] total_time = self.total_times[index] start_time = self.start_times[index] end_time = self.end_times[index] buffer = self.loadvideo_decord(sample, total_time, start_time, end_time, sample_rate_scale=scale_t) if len(buffer) == 0: while len(buffer) == 0: warnings.warn( "video {} not correctly loaded during training".format( sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] total_time = self.total_times[index] start_time = self.start_times[index] end_time = self.end_times[index] buffer = self.loadvideo_decord(sample, total_time, start_time, end_time, sample_rate_scale=scale_t) # buffer = data_transform_func(buffer) # T H W C if args.num_sample > 1: frame_list = [] label_list = [] index_list = [] for _ in range(args.num_sample): new_frames = self._aug_frame(buffer, args) label = self.label_array[index] #new_frames = [new_frames] frame_list.append(new_frames) label_list.append(label) index_list.append(index) return frame_list, label_list, index_list, {} else: buffer = self._aug_frame(buffer, args) return buffer, self.label_array[index], index, {} elif self.mode == 'validation': sample = self.dataset_samples[index] total_time = self.total_times[index] start_time = self.start_times[index] end_time = self.end_times[index] buffer = self.loadvideo_decord(sample, total_time, start_time, end_time) if len(buffer) == 0: while len(buffer) == 0: warnings.warn( "video {} not correctly loaded during validation". format(sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] total_time = self.total_times[index] start_time = self.start_times[index] end_time = self.end_times[index] buffer = self.loadvideo_decord(sample, total_time, start_time, end_time) buffer = self.data_transform(buffer) return buffer, self.label_array[index], sample.split( "/")[-1].split(".")[0] elif self.mode == 'test': sample = self.test_dataset[index] total_time = self.total_times[index] start_time = self.start_times[index] end_time = self.end_times[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.loadvideo_decord(sample, total_time, start_time, end_time) while len(buffer) == 0: warnings.warn("video {}, temporal {}, spatial {} not found during testing".format(\ str(self.test_dataset[index]), chunk_nb, split_nb)) index = np.random.randint(self.__len__()) sample = self.test_dataset[index] total_time = self.total_times[index] start_time = self.start_times[index] end_time = self.end_times[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.loadvideo_decord(sample, total_time, start_time, end_time) buffer = self.data_resize(buffer) if isinstance(buffer, list): buffer = np.stack(buffer, 0) spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) \ / (self.test_num_crop - 1) temporal_step = max(1.0 * (buffer.shape[0] - self.clip_len) \ / (self.test_num_segment - 1), 0) temporal_start = int(chunk_nb * temporal_step) spatial_start = int(split_nb * spatial_step) if buffer.shape[1] >= buffer.shape[2]: buffer = buffer[temporal_start:temporal_start + self.clip_len, \ spatial_start:spatial_start + self.short_side_size, :, :] else: buffer = buffer[temporal_start:temporal_start + self.clip_len, \ :, spatial_start:spatial_start + self.short_side_size, :] buffer = self.data_transform(buffer) return buffer, self.test_label_array[index], sample.split("/")[-1].split(".")[0], \ chunk_nb, split_nb else: raise NameError('mode {} unkown'.format(self.mode)) def _aug_frame( self, buffer, args, ): aug_transform = video_transforms.create_random_augment( input_size=(self.crop_size, self.crop_size), auto_augment=args.aa, interpolation=args.train_interpolation, ) buffer = [transforms.ToPILImage()(frame) for frame in buffer] buffer = aug_transform(buffer) buffer = [transforms.ToTensor()(img) for img in buffer] buffer = torch.stack(buffer) # T C H W buffer = buffer.permute(0, 2, 3, 1) # T H W C # T H W C buffer = tensor_normalize(buffer, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # T H W C -> C T H W. buffer = buffer.permute(3, 0, 1, 2) # Perform data augmentation. scl, asp = ( [0.08, 1.0], [0.75, 1.3333], ) buffer = spatial_sampling( buffer, spatial_idx=-1, min_scale=256, max_scale=320, crop_size=224, random_horizontal_flip=False if args.data_set == 'SSV2' else True, inverse_uniform_sampling=False, aspect_ratio=asp, scale=scl, motion_shift=False) if self.rand_erase: erase_transform = RandomErasing( args.reprob, mode=args.remode, max_count=args.recount, num_splits=args.recount, device="cpu", ) buffer = buffer.permute(1, 0, 2, 3) # C T H W -> T C H W buffer = erase_transform(buffer) buffer = buffer.permute(1, 0, 2, 3) # T C H W -> C T H W # buffer = self.data_transform_after(buffer) return buffer def loadvideo_decord(self, sample, total_time, start_time, end_time, sample_rate_scale=1): """Load video content using Decord""" # pylint: disable=line-too-long, bare-except, unnecessary-comprehension # fname = self.data_path + sample fname = sample if self.keep_aspect_ratio: if fname.startswith('s3'): video_bytes = self.client.get(fname) vr = VideoReader(io.BytesIO(video_bytes), num_threads=1, ctx=cpu(0)) else: vr = VideoReader(fname, num_threads=1, ctx=cpu(0)) else: if fname.startswith('s3:'): video_bytes = self.client.get(fname) vr = VideoReader(io.BytesIO(video_bytes), width=self.new_width, height=self.new_height, num_threads=1, ctx=cpu(0)) else: vr = VideoReader(fname, width=self.new_width, height=self.new_height, num_threads=1, ctx=cpu(0)) if self.mode == 'test': all_index = [x for x in range(0, len(vr), self.frame_sample_rate)] while len(all_index) < self.clip_len: all_index.append(all_index[-1]) vr.seek(0) buffer = vr.get_batch(all_index).asnumpy() return buffer # handle temporal segments total_num_frames = len(vr) trimmed_video_len = int(total_num_frames * (end_time - start_time) / total_time) all_index = [] if self.sparse_sampling: average_duration = trimmed_video_len // self.clip_len if average_duration > 0: all_index += list( np.multiply(list(range(self.clip_len)), average_duration) + np.random.randint(average_duration, size=self.clip_len)) elif trimmed_video_len > self.num_segment: all_index += list( np.sort( np.random.randint(trimmed_video_len, size=self.clip_len))) else: all_index += [0] * (self.clip_len - trimmed_video_len) + list( range(trimmed_video_len)) all_index = list(np.array(all_index)) else: seg_len = trimmed_video_len // self.num_segment converted_len = int(self.clip_len * self.frame_sample_rate) for i in range(self.num_segment): if seg_len <= converted_len: index = np.linspace(0, seg_len, num=seg_len // self.frame_sample_rate) index = np.concatenate( (index, np.ones(self.clip_len - seg_len // self.frame_sample_rate) * seg_len)) index = np.clip(index, 0, seg_len - 1).astype(np.int64) else: end_idx = np.random.randint(converted_len, seg_len) str_idx = end_idx - converted_len index = np.linspace(str_idx, end_idx, num=self.clip_len) index = np.clip(index, str_idx, end_idx - 1).astype(np.int64) index = index + i * seg_len all_index.extend(list(index)) all_index = all_index[::int(sample_rate_scale)] init_off = int(total_num_frames * start_time / total_time) all_index = [idx + init_off for idx in all_index] all_index = [ idx if idx < total_num_frames else total_num_frames - 1 for idx in all_index ] vr.seek(0) buffer = vr.get_batch(all_index).asnumpy() return buffer def __len__(self): if self.mode != 'test': return len(self.dataset_samples) else: return len(self.test_dataset) def spatial_sampling( frames, spatial_idx=-1, min_scale=256, max_scale=320, crop_size=224, random_horizontal_flip=True, inverse_uniform_sampling=False, aspect_ratio=None, scale=None, motion_shift=False, ): """ Perform spatial sampling on the given video frames. If spatial_idx is -1, perform random scale, random crop, and random flip on the given frames. If spatial_idx is 0, 1, or 2, perform spatial uniform sampling with the given spatial_idx. Args: frames (tensor): frames of images sampled from the video. The dimension is `num frames` x `height` x `width` x `channel`. spatial_idx (int): if -1, perform random spatial sampling. If 0, 1, or 2, perform left, center, right crop if width is larger than height, and perform top, center, buttom crop if height is larger than width. min_scale (int): the minimal size of scaling. max_scale (int): the maximal size of scaling. crop_size (int): the size of height and width used to crop the frames. inverse_uniform_sampling (bool): if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a reciprocal to get the scale. If False, take a uniform sample from [min_scale, max_scale]. aspect_ratio (list): Aspect ratio range for resizing. scale (list): Scale range for resizing. motion_shift (bool): Whether to apply motion shift for resizing. Returns: frames (tensor): spatially sampled frames. """ assert spatial_idx in [-1, 0, 1, 2] if spatial_idx == -1: if aspect_ratio is None and scale is None: frames, _ = video_transforms.random_short_side_scale_jitter( images=frames, min_size=min_scale, max_size=max_scale, inverse_uniform_sampling=inverse_uniform_sampling, ) frames, _ = video_transforms.random_crop(frames, crop_size) else: transform_func = (video_transforms.random_resized_crop_with_shift if motion_shift else video_transforms.random_resized_crop) frames = transform_func( images=frames, target_height=crop_size, target_width=crop_size, scale=scale, ratio=aspect_ratio, ) if random_horizontal_flip: frames, _ = video_transforms.horizontal_flip(0.5, frames) else: # The testing is deterministic and no jitter should be performed. # min_scale, max_scale, and crop_size are expect to be the same. assert len({min_scale, max_scale, crop_size}) == 1 frames, _ = video_transforms.random_short_side_scale_jitter( frames, min_scale, max_scale) frames, _ = video_transforms.uniform_crop(frames, crop_size, spatial_idx) return frames def tensor_normalize(tensor, mean, std): """ Normalize a given tensor by subtracting the mean and dividing the std. Args: tensor (tensor): tensor to normalize. mean (tensor or list): mean value to subtract. std (tensor or list): std to divide. """ if tensor.dtype == torch.uint8: tensor = tensor.float() tensor = tensor / 255.0 if type(mean) == list: mean = torch.tensor(mean) if type(std) == list: std = torch.tensor(std) tensor = tensor - mean tensor = tensor / std return tensor
InternVideo-main
Pretrain/VideoMAE/anet.py
# pylint: disable=line-too-long,too-many-lines,missing-docstring import io import os import random import warnings import cv2 import decord import numpy as np import torch from decord import VideoReader, cpu from petrel_client.client import Client from PIL import Image from torch.utils.data import Dataset from torchvision import transforms import video_transforms as video_transforms import volume_transforms as volume_transforms # from video_transforms import create_random_augment from random_erasing import RandomErasing class RawFrameDataset(Dataset): """Load your own video classification dataset.""" def __init__(self, anno_path, data_path, mode='train', clip_len=8, frame_sample_rate=2, crop_size=224, short_side_size=256, new_height=256, new_width=340, keep_aspect_ratio=True, num_segment=1, num_crop=1, test_num_segment=10, test_num_crop=3, fname_tmpl='img_{:05}.jpg', args=None): self.anno_path = anno_path self.data_path = data_path self.mode = mode self.clip_len = clip_len self.frame_sample_rate = frame_sample_rate self.crop_size = crop_size self.short_side_size = short_side_size self.new_height = new_height self.new_width = new_width self.keep_aspect_ratio = keep_aspect_ratio self.num_segment = num_segment self.test_num_segment = test_num_segment self.num_crop = num_crop self.test_num_crop = test_num_crop self.fname_tmpl = fname_tmpl self.args = args self.aug = False self.rand_erase = False if self.mode in ['train']: self.aug = True if self.args.reprob > 0: self.rand_erase = True if VideoReader is None: raise ImportError( "Unable to import `decord` which is required to read videos.") import pandas as pd cleaned = pd.read_csv(self.anno_path, header=None, delimiter=' ') self.dataset_samples = list(cleaned.values[:, 0]) self.total_frames = list(cleaned.values[:, 1]) self.label_array = list(cleaned.values[:, -1]) self.client = Client() if (mode == 'train'): pass elif (mode == 'validation'): self.data_transform = video_transforms.Compose([ video_transforms.Resize( self.short_side_size, interpolation='bilinear'), video_transforms.CenterCrop( size=(self.crop_size, self.crop_size)), volume_transforms.ClipToTensor(), video_transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) elif mode == 'test': self.data_resize = video_transforms.Compose([ video_transforms.Resize( size=(short_side_size), interpolation='bilinear') ]) self.data_transform = video_transforms.Compose([ volume_transforms.ClipToTensor(), video_transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.test_seg = [] self.test_dataset = [] self.test_total_frames = [] self.test_label_array = [] for ck in range(self.test_num_segment): for cp in range(self.test_num_crop): for idx in range(len(self.label_array)): self.test_seg.append((ck, cp)) self.test_dataset.append(self.dataset_samples[idx]) self.test_total_frames.append(self.total_frames[idx]) self.test_label_array.append(self.label_array[idx]) def __getitem__(self, index): if self.mode == 'train': args = self.args scale_t = 1 sample = self.dataset_samples[index] total_frame = self.total_frames[index] buffer = self.load_frame( sample, total_frame, sample_rate_scale=scale_t) # T H W C if len(buffer) == 0: while len(buffer) == 0: warnings.warn( "video {} not correctly loaded during training".format( sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] total_frame = self.total_frames[index] buffer = self.load_frame( sample, total_frame, sample_rate_scale=scale_t) if args.num_sample > 1: frame_list = [] label_list = [] index_list = [] for _ in range(args.num_sample): new_frames = self._aug_frame(buffer, args) label = self.label_array[index] frame_list.append(new_frames) label_list.append(label) index_list.append(index) return frame_list, label_list, index_list, {} else: buffer = self._aug_frame(buffer, args) return buffer, self.label_array[index], index, {} elif self.mode == 'validation': sample = self.dataset_samples[index] total_frame = self.total_frames[index] buffer = self.load_frame(sample, total_frame) if len(buffer) == 0: while len(buffer) == 0: warnings.warn( "video {} not correctly loaded during validation". format(sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] total_frame = self.total_frames[index] buffer = self.load_frame(sample, total_frame) buffer = self.data_transform(buffer) return buffer, self.label_array[index], sample.split("/")[-1].split( ".")[0] elif self.mode == 'test': sample = self.test_dataset[index] total_frame = self.test_total_frames[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.load_frame(sample, total_frame) while len(buffer) == 0: warnings.warn("video {}, temporal {}, spatial {} not found during testing".format(\ str(self.test_dataset[index]), chunk_nb, split_nb)) index = np.random.randint(self.__len__()) sample = self.test_dataset[index] total_frame = self.test_total_frames[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.load_frame(sample, total_frame) buffer = self.data_resize(buffer) if isinstance(buffer, list): buffer = np.stack(buffer, 0) spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) \ / (self.test_num_crop - 1) temporal_step = max(1.0 * (buffer.shape[0] - self.clip_len) \ / (self.test_num_segment - 1), 0) temporal_start = int(chunk_nb * temporal_step) spatial_start = int(split_nb * spatial_step) if buffer.shape[1] >= buffer.shape[2]: buffer = buffer[temporal_start:temporal_start + self.clip_len, \ spatial_start:spatial_start + self.short_side_size, :, :] else: buffer = buffer[temporal_start:temporal_start + self.clip_len, \ :, spatial_start:spatial_start + self.short_side_size, :] buffer = self.data_transform(buffer) return buffer, self.test_label_array[index], sample.split("/")[-1].split(".")[0], \ chunk_nb, split_nb else: raise NameError('mode {} unkown'.format(self.mode)) def _aug_frame( self, buffer, args, ): aug_transform = video_transforms.create_random_augment( input_size=(self.crop_size, self.crop_size), auto_augment=args.aa, interpolation=args.train_interpolation, ) buffer = [transforms.ToPILImage()(frame) for frame in buffer] buffer = aug_transform(buffer) buffer = [transforms.ToTensor()(img) for img in buffer] buffer = torch.stack(buffer) # T C H W buffer = buffer.permute(0, 2, 3, 1) # T H W C # T H W C buffer = tensor_normalize(buffer, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # T H W C -> C T H W. buffer = buffer.permute(3, 0, 1, 2) # Perform data augmentation. scl, asp = ( [0.08, 1.0], [0.75, 1.3333], ) buffer = spatial_sampling( buffer, spatial_idx=-1, min_scale=256, max_scale=320, crop_size=224, random_horizontal_flip=False if args.data_set == 'SSV2' else True, inverse_uniform_sampling=False, aspect_ratio=asp, scale=scl, motion_shift=False) if self.rand_erase: erase_transform = RandomErasing( args.reprob, mode=args.remode, max_count=args.recount, num_splits=args.recount, device="cpu", ) buffer = buffer.permute(1, 0, 2, 3) # C T H W -> T C H W buffer = erase_transform(buffer) buffer = buffer.permute(1, 0, 2, 3) # T C H W -> C T H W # buffer = self.data_transform_after(buffer) return buffer def load_frame(self, sample, num_frames, sample_rate_scale=1): """Load video rawframe""" # pylint: disable=line-too-long, bare-except, unnecessary-comprehension # fname = self.data_path + sample fname = sample if self.mode == 'test': all_index = [ x for x in range(0, num_frames, self.frame_sample_rate) ] while len(all_index) < self.clip_len: all_index.append(all_index[-1]) imgs = [] for idx in all_index: frame_fname = os.path.join(fname, self.fname_tmpl.format(idx + 1)) img_bytes = self.client.get(frame_fname) img_np = np.frombuffer(img_bytes, np.uint8) img = cv2.imdecode(img_np, cv2.IMREAD_COLOR) cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) imgs.append(img) buffer = np.array(imgs) return buffer # handle temporal segments converted_len = int(self.clip_len * self.frame_sample_rate) seg_len = num_frames // self.num_segment all_index = [] for i in range(self.num_segment): if seg_len <= converted_len: index = np.linspace( 0, seg_len, num=seg_len // self.frame_sample_rate) index = np.concatenate(( index, np.ones(self.clip_len - seg_len // self.frame_sample_rate) * seg_len)) index = np.clip(index, 0, seg_len - 1).astype(np.int64) else: end_idx = np.random.randint(converted_len, seg_len) str_idx = end_idx - converted_len index = np.linspace(str_idx, end_idx, num=self.clip_len) index = np.clip(index, str_idx, end_idx - 1).astype(np.int64) index = index + i * seg_len all_index.extend(list(index)) all_index = all_index[::int(sample_rate_scale)] imgs = [] for idx in all_index: frame_fname = os.path.join(fname, self.fname_tmpl.format(idx + 1)) img_bytes = self.client.get(frame_fname) img_np = np.frombuffer(img_bytes, np.uint8) img = cv2.imdecode(img_np, cv2.IMREAD_COLOR) cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) imgs.append(img) buffer = np.array(imgs) return buffer def __len__(self): if self.mode != 'test': return len(self.dataset_samples) else: return len(self.test_dataset) class VideoClsDataset(Dataset): """Load your own video classification dataset.""" def __init__(self, anno_path, data_path, mode='train', clip_len=8, frame_sample_rate=2, crop_size=224, short_side_size=256, new_height=256, new_width=340, keep_aspect_ratio=True, num_segment=1, num_crop=1, test_num_segment=10, test_num_crop=3, sparse_sample=False, v4d_segment=1, args=None): self.anno_path = anno_path self.data_path = data_path self.mode = mode self.clip_len = clip_len self.frame_sample_rate = frame_sample_rate self.crop_size = crop_size self.short_side_size = short_side_size self.new_height = new_height self.new_width = new_width self.keep_aspect_ratio = keep_aspect_ratio self.num_segment = num_segment self.test_num_segment = test_num_segment self.num_crop = num_crop self.test_num_crop = test_num_crop self.sparse_sample = sparse_sample self.v4d_segment = v4d_segment self.args = args self.aug = False self.rand_erase = False # self.use_temporal_gradient = False # self.temporal_gradient_rate = 0.0 if self.mode in ['train']: self.aug = True if self.args.reprob > 0: self.rand_erase = True if VideoReader is None: raise ImportError( "Unable to import `decord` which is required to read videos.") import pandas as pd cleaned = pd.read_csv(self.anno_path, header=None, delimiter=' ') self.dataset_samples = list(cleaned.values[:, 0]) self.label_array = list(cleaned.values[:, 1]) # conf_path = '/mnt/lustre/huangbingkun/petreloss.conf' conf_path = '~/petreloss2.conf' self.client = Client(conf_path) if (mode == 'train'): pass elif (mode == 'validation'): self.data_transform = video_transforms.Compose([ video_transforms.Resize( self.short_side_size, interpolation='bilinear'), video_transforms.CenterCrop( size=(self.crop_size, self.crop_size)), volume_transforms.ClipToTensor(), video_transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) elif mode == 'test': self.data_resize = video_transforms.Compose([ video_transforms.Resize( size=(short_side_size), interpolation='bilinear') ]) self.data_transform = video_transforms.Compose([ volume_transforms.ClipToTensor(), video_transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.test_seg = [] self.test_dataset = [] self.test_label_array = [] for ck in range(self.test_num_segment): for cp in range(self.test_num_crop): for idx in range(len(self.label_array)): sample_label = self.label_array[idx] self.test_label_array.append(sample_label) self.test_dataset.append(self.dataset_samples[idx]) self.test_seg.append((ck, cp)) def __getitem__(self, index): if self.mode == 'train': args = self.args scale_t = 1 # data_transform_func = self.data_transform sample = self.dataset_samples[index] buffer = self.loadvideo_decord( sample, sample_rate_scale=scale_t) # T H W C if len(buffer) == 0: while len(buffer) == 0: warnings.warn( "video {} not correctly loaded during training".format( sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] buffer = self.loadvideo_decord( sample, sample_rate_scale=scale_t) # buffer = data_transform_func(buffer) # T H W C if args.num_sample > 1: frame_list = [] label_list = [] index_list = [] for _ in range(args.num_sample): new_frames = self._aug_frame(buffer, args) label = self.label_array[index] #new_frames = [new_frames] frame_list.append(new_frames) label_list.append(label) index_list.append(index) return frame_list, label_list, index_list, {} else: buffer = self._aug_frame(buffer, args) if self.v4d_segment > 1: # C T H W C, T, H, W = buffer.shape buffer = buffer.view(C, -1, self.v4d_segment, H, W) buffer = buffer.permute(2, 0, 1, 3, 4) return buffer, self.label_array[index], index, {} elif self.mode == 'validation': sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample) if len(buffer) == 0: while len(buffer) == 0: warnings.warn( "video {} not correctly loaded during validation". format(sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample) buffer = self.data_transform(buffer) return buffer, self.label_array[index], sample.split("/")[-1].split( ".")[0] elif self.mode == 'test': sample = self.test_dataset[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.loadvideo_decord(sample) while len(buffer) == 0: warnings.warn("video {}, temporal {}, spatial {} not found during testing".format(\ str(self.test_dataset[index]), chunk_nb, split_nb)) index = np.random.randint(self.__len__()) sample = self.test_dataset[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.loadvideo_decord(sample) buffer = self.data_resize(buffer) if isinstance(buffer, list): buffer = np.stack(buffer, 0) if self.sparse_sample: spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) \ / (self.test_num_crop - 1) temporal_start = chunk_nb spatial_start = int(split_nb * spatial_step) if buffer.shape[1] >= buffer.shape[2]: buffer = buffer[temporal_start::self.test_num_segment, \ spatial_start:spatial_start + self.short_side_size, :, :] else: buffer = buffer[temporal_start::self.test_num_segment, \ :, spatial_start:spatial_start + self.short_side_size, :] else: spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) \ / (self.test_num_crop - 1) temporal_step = max(1.0 * (buffer.shape[0] - self.clip_len) \ / (self.test_num_segment - 1), 0) temporal_start = int(chunk_nb * temporal_step) spatial_start = int(split_nb * spatial_step) if buffer.shape[1] >= buffer.shape[2]: buffer = buffer[temporal_start:temporal_start + self.clip_len, \ spatial_start:spatial_start + self.short_side_size, :, :] else: buffer = buffer[temporal_start:temporal_start + self.clip_len, \ :, spatial_start:spatial_start + self.short_side_size, :] buffer = self.data_transform(buffer) return buffer, self.test_label_array[index], sample.split("/")[-1].split(".")[0], \ chunk_nb, split_nb else: raise NameError('mode {} unkown'.format(self.mode)) def _aug_frame( self, buffer, args, ): aug_transform = video_transforms.create_random_augment( input_size=(self.crop_size, self.crop_size), auto_augment=args.aa, interpolation=args.train_interpolation, ) buffer = [transforms.ToPILImage()(frame) for frame in buffer] buffer = aug_transform(buffer) buffer = [transforms.ToTensor()(img) for img in buffer] buffer = torch.stack(buffer) # T C H W buffer = buffer.permute(0, 2, 3, 1) # T H W C # T H W C buffer = tensor_normalize(buffer, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # T H W C -> C T H W. buffer = buffer.permute(3, 0, 1, 2) # Perform data augmentation. scl, asp = ( [0.08, 1.0], [0.75, 1.3333], ) buffer = spatial_sampling( buffer, spatial_idx=-1, min_scale=256, max_scale=320, # crop_size=224, crop_size=args.input_size, random_horizontal_flip=False if args.data_set == 'SSV2' else True, inverse_uniform_sampling=False, aspect_ratio=asp, scale=scl, motion_shift=False) if self.rand_erase: erase_transform = RandomErasing( args.reprob, mode=args.remode, max_count=args.recount, num_splits=args.recount, device="cpu", ) buffer = buffer.permute(1, 0, 2, 3) # C T H W -> T C H W buffer = erase_transform(buffer) buffer = buffer.permute(1, 0, 2, 3) # T C H W -> C T H W # buffer = self.data_transform_after(buffer) return buffer def loadvideo_decord(self, sample, sample_rate_scale=1): """Load video content using Decord""" # pylint: disable=line-too-long, bare-except, unnecessary-comprehension # fname = self.data_path + sample fname = sample try: if self.keep_aspect_ratio: if fname.startswith('s3'): video_bytes = self.client.get(fname) vr = VideoReader( io.BytesIO(video_bytes), num_threads=1, ctx=cpu(0)) else: vr = VideoReader(fname, num_threads=1, ctx=cpu(0)) else: if fname.startswith('s3:'): video_bytes = self.client.get(fname) vr = VideoReader( io.BytesIO(video_bytes), width=self.new_width, height=self.new_height, num_threads=1, ctx=cpu(0)) else: vr = VideoReader( fname, width=self.new_width, height=self.new_height, num_threads=1, ctx=cpu(0)) except Exception as e: print("Failed to load video from {} with error {}".format(fname, e)) return [] segment_len = len(vr) // self.v4d_segment if self.v4d_segment == 1: buffer = self.loadvideo_one_v4d_segment(vr, 0, segment_len, sample_rate_scale) else: buffer_list = [] for i in range(self.v4d_segment): # [T H W C] buffer = self.loadvideo_one_v4d_segment(vr, i * segment_len, segment_len, sample_rate_scale) buffer_list.append(buffer) buffer = np.concatenate(buffer_list, axis=0) return buffer def loadvideo_one_v4d_segment(self, vr, start_idx, length, sample_rate_scale=1): if self.mode == 'test': if self.sparse_sample: tick = length / float(self.num_segment) all_index = [] for t_seg in range(self.test_num_segment): tmp_index = [ int(t_seg * tick / self.test_num_segment + tick * x) for x in range(self.num_segment) ] all_index.extend(tmp_index) all_index = list(np.sort(np.array(all_index))) else: all_index = [ x for x in range(0, length, self.frame_sample_rate) ] while len(all_index) < self.clip_len: all_index.append(all_index[-1]) vr.seek(0) buffer = vr.get_batch(all_index).asnumpy() return buffer # handle temporal segments converted_len = int(self.clip_len * self.frame_sample_rate) seg_len = length // self.num_segment all_index = [] for i in range(self.num_segment): if seg_len <= converted_len: index = np.linspace( 0, seg_len, num=seg_len // self.frame_sample_rate) index = np.concatenate(( index, np.ones(self.clip_len - seg_len // self.frame_sample_rate) * seg_len)) index = np.clip(index, 0, seg_len - 1).astype(np.int64) else: if self.mode == 'validation': end_idx = (converted_len + seg_len) // 2 else: end_idx = np.random.randint(converted_len, seg_len) str_idx = end_idx - converted_len index = np.linspace(str_idx, end_idx, num=self.clip_len) index = np.clip(index, str_idx, end_idx - 1).astype(np.int64) index = index + i * seg_len all_index.extend(list(index)) all_index = all_index[::int(sample_rate_scale)] all_index = [idx + start_idx for idx in all_index] vr.seek(0) buffer = vr.get_batch(all_index).asnumpy() return buffer def __len__(self): if self.mode != 'test': return len(self.dataset_samples) else: return len(self.test_dataset) def spatial_sampling( frames, spatial_idx=-1, min_scale=256, max_scale=320, crop_size=224, random_horizontal_flip=True, inverse_uniform_sampling=False, aspect_ratio=None, scale=None, motion_shift=False, ): """ Perform spatial sampling on the given video frames. If spatial_idx is -1, perform random scale, random crop, and random flip on the given frames. If spatial_idx is 0, 1, or 2, perform spatial uniform sampling with the given spatial_idx. Args: frames (tensor): frames of images sampled from the video. The dimension is `num frames` x `height` x `width` x `channel`. spatial_idx (int): if -1, perform random spatial sampling. If 0, 1, or 2, perform left, center, right crop if width is larger than height, and perform top, center, buttom crop if height is larger than width. min_scale (int): the minimal size of scaling. max_scale (int): the maximal size of scaling. crop_size (int): the size of height and width used to crop the frames. inverse_uniform_sampling (bool): if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a reciprocal to get the scale. If False, take a uniform sample from [min_scale, max_scale]. aspect_ratio (list): Aspect ratio range for resizing. scale (list): Scale range for resizing. motion_shift (bool): Whether to apply motion shift for resizing. Returns: frames (tensor): spatially sampled frames. """ assert spatial_idx in [-1, 0, 1, 2] if spatial_idx == -1: if aspect_ratio is None and scale is None: frames, _ = video_transforms.random_short_side_scale_jitter( images=frames, min_size=min_scale, max_size=max_scale, inverse_uniform_sampling=inverse_uniform_sampling, ) frames, _ = video_transforms.random_crop(frames, crop_size) else: transform_func = ( video_transforms.random_resized_crop_with_shift if motion_shift else video_transforms.random_resized_crop) frames = transform_func( images=frames, target_height=crop_size, target_width=crop_size, scale=scale, ratio=aspect_ratio, ) if random_horizontal_flip: frames, _ = video_transforms.horizontal_flip(0.5, frames) else: # The testing is deterministic and no jitter should be performed. # min_scale, max_scale, and crop_size are expect to be the same. assert len({min_scale, max_scale, crop_size}) == 1 frames, _ = video_transforms.random_short_side_scale_jitter( frames, min_scale, max_scale) frames, _ = video_transforms.uniform_crop(frames, crop_size, spatial_idx) return frames def tensor_normalize(tensor, mean, std): """ Normalize a given tensor by subtracting the mean and dividing the std. Args: tensor (tensor): tensor to normalize. mean (tensor or list): mean value to subtract. std (tensor or list): std to divide. """ if tensor.dtype == torch.uint8: tensor = tensor.float() tensor = tensor / 255.0 if type(mean) == list: mean = torch.tensor(mean) if type(std) == list: std = torch.tensor(std) tensor = tensor - mean tensor = tensor / std return tensor
InternVideo-main
Pretrain/VideoMAE/kinetics.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math from functools import partial import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from timm.models.registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 400, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat( (self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[ 2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.tubelet_size = int(tubelet_size) num_patches = (img_size[1] // patch_size[1]) * ( img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size) # self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv3d(in_channels=in_chans, out_channels=embed_dim, kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), stride=(self.tubelet_size, patch_size[0], patch_size[1])) def forward(self, x, **kwargs): B, C, T, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." # b, c, l -> b, l, c x = self.proj(x).flatten(2).transpose(1, 2) return x # sin-cos position encoding # https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31 def get_sinusoid_encoding_table(n_position, d_hid): ''' Sinusoid position encoding table ''' # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [ position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid) ] sinusoid_table = np.array( [get_position_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 # return torch.FloatTensor(sinusoid_table).unsqueeze(0) return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., head_drop_rate=0., norm_layer=nn.LayerNorm, init_values=0., use_learnable_pos_emb=False, init_scale=0., all_frames=16, tubelet_size=2, use_mean_pooling=True, with_cp=False, num_segment=1): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.tubelet_size = tubelet_size self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, num_frames=all_frames, tubelet_size=self.tubelet_size) num_patches = self.patch_embed.num_patches self.with_cp = with_cp self.num_segment = num_segment # self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_learnable_pos_emb: self.pos_embed = nn.Parameter( torch.zeros(1, num_patches, embed_dim)) else: # sine-cosine positional embeddings is on the way if img_size != 224 or all_frames != 16: org_img_size = (224, 224) org_num_frames = 16 num_patches = (org_img_size[1] // patch_size) * (org_img_size[0] // patch_size) * ( org_num_frames // self.tubelet_size) self.pos_embed = get_sinusoid_encoding_table( num_patches, embed_dim) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values) for i in range(depth) ]) self.norm = nn.Identity() if use_mean_pooling else norm_layer( embed_dim) self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None self.head_dropout = nn.Dropout(head_drop_rate) self.head = nn.Linear( embed_dim, num_classes) if num_classes > 0 else nn.Identity() if use_learnable_pos_emb: trunc_normal_(self.pos_embed, std=.02) # trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.head.weight, std=.02) self.apply(self._init_weights) self.head.weight.data.mul_(init_scale) self.head.bias.data.mul_(init_scale) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear( self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) B, _, _ = x.size() # cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks # x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to( x.device).clone().detach() x = self.pos_drop(x) for blk in self.blocks: if self.with_cp: x = cp.checkpoint(blk, x) else: x = blk(x) x = self.norm(x) if self.fc_norm is not None: # return self.fc_norm(x[:, 1:].mean(1)) return self.fc_norm(x.mean(1)) else: return x[:, 0] def forward_check_variance(self, x): x = self.patch_embed(x) B, _, _ = x.size() # cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks # x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to( x.device).clone().detach() x = self.pos_drop(x) # x [B, N, C] avg_var_list = [] for blk in self.blocks: x = blk(x) avg_var = torch.mean(torch.var(x, dim=-1)) avg_var_list.append(avg_var) for i, avg_var in enumerate(avg_var_list): print(f'avg variance of block {i}: {avg_var}', flush=True) x = self.norm(x) if self.fc_norm is not None: # return self.fc_norm(x[:, 1:].mean(1)) return self.fc_norm(x.mean(1)) else: return x[:, 0] def forward(self, x): # x = self.forward_check_variance(x) x = self.forward_features(x) x = self.head_dropout(x) x = self.head(x) if self.num_segment > 1 and self.training: x = x.view((-1, self.num_segment) + x.size()[1:]) x = x.mean(dim=1) return x @register_model def vit_small_patch16_224(pretrained=False, **kwargs): model = VisionTransformer(patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def vit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def vit_base_patch16_384(pretrained=False, **kwargs): model = VisionTransformer(img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def vit_large_patch16_224(pretrained=False, **kwargs): model = VisionTransformer(patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def vit_large_patch16_384(pretrained=False, **kwargs): model = VisionTransformer(img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def vit_large_patch16_512(pretrained=False, **kwargs): model = VisionTransformer(img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def vit_huge_patch16_224(pretrained=False, **kwargs): model = VisionTransformer(patch_size=16, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def vit_giant_patch14_224(pretrained=False, **kwargs): model = VisionTransformer(patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48 / 11, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def vit_giant_patch16_224(pretrained=False, **kwargs): model = VisionTransformer(patch_size=16, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48 / 11, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def vit_gigantic_patch14_224(pretrained=False, **kwargs): model = VisionTransformer(patch_size=14, embed_dim=1664, depth=48, num_heads=16, mlp_ratio=64 / 13, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model
InternVideo-main
Pretrain/VideoMAE/modeling_finetune.py
# -------------------------------------------------------- # Based on BEiT, timm, DINO and DeiT code bases # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' import json import torch from timm.optim.adafactor import Adafactor from timm.optim.adahessian import Adahessian from timm.optim.adamp import AdamP from timm.optim.lookahead import Lookahead from timm.optim.nadam import Nadam from timm.optim.novograd import NovoGrad from timm.optim.nvnovograd import NvNovoGrad from timm.optim.radam import RAdam from timm.optim.rmsprop_tf import RMSpropTF from timm.optim.sgdp import SGDP from torch import optim as optim try: from apex.optimizers import FusedAdam, FusedLAMB, FusedNovoGrad, FusedSGD has_apex = True except ImportError: has_apex = False def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ("cls_token", "mask_token", "pos_embed"): return 0 elif var_name.startswith("patch_embed"): return -1 elif var_name.startswith("rel_pos_bias"): return num_max_layer - 1 elif var_name.startswith("blocks"): layer_id = int(var_name.split('.')[1]) return layer_id + 1 else: return num_max_layer - 1 class LayerDecayValueAssigner(object): def __init__(self, values, extra_decay=1.0): assert extra_decay >= 0. self.values = values self.extra_scale = extra_decay def get_scale(self, layer_id, extra_scale=1.0): if layer_id < 0: return extra_scale * self.values[0] return self.values[layer_id] def get_layer_id(self, var_name): return get_num_layer_for_vit(var_name, len(self.values)) def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None): parameter_group_names = {} parameter_group_vars = {} for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith( ".bias") or name in skip_list: group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if get_num_layer is not None: layer_id = get_num_layer(name) group_name = "layer_%d_%s" % (layer_id, group_name) else: layer_id = None if group_name not in parameter_group_names: if get_layer_scale is not None: scale = get_layer_scale(layer_id) else: scale = 1. parameter_group_names[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name]["params"].append(param) parameter_group_names[group_name]["params"].append(name) print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) return list(parameter_group_vars.values()) def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None): opt_lower = args.opt.lower() weight_decay = args.weight_decay if weight_decay and filter_bias_and_bn: skip = {} if skip_list is not None: skip = skip_list elif hasattr(model, 'no_weight_decay'): skip = model.no_weight_decay() parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale) weight_decay = 0. else: parameters = model.parameters() if 'fused' in opt_lower: assert has_apex and torch.cuda.is_available( ), 'APEX and CUDA required for fused optimizers' opt_args = dict(lr=args.lr, weight_decay=weight_decay) if hasattr(args, 'opt_eps') and args.opt_eps is not None: opt_args['eps'] = args.opt_eps if hasattr(args, 'opt_betas') and args.opt_betas is not None: opt_args['betas'] = args.opt_betas print("optimizer settings:", opt_args) opt_split = opt_lower.split('_') opt_lower = opt_split[-1] if opt_lower == 'sgd' or opt_lower == 'nesterov': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'momentum': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'adam': optimizer = optim.Adam(parameters, **opt_args) elif opt_lower == 'adamw': optimizer = optim.AdamW(parameters, **opt_args) elif opt_lower == 'nadam': optimizer = Nadam(parameters, **opt_args) elif opt_lower == 'radam': optimizer = RAdam(parameters, **opt_args) elif opt_lower == 'adamp': optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) elif opt_lower == 'sgdp': optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'adadelta': optimizer = optim.Adadelta(parameters, **opt_args) elif opt_lower == 'adafactor': if not args.lr: opt_args['lr'] = None optimizer = Adafactor(parameters, **opt_args) elif opt_lower == 'adahessian': optimizer = Adahessian(parameters, **opt_args) elif opt_lower == 'rmsprop': optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'rmsproptf': optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'novograd': optimizer = NovoGrad(parameters, **opt_args) elif opt_lower == 'nvnovograd': optimizer = NvNovoGrad(parameters, **opt_args) elif opt_lower == 'fusedsgd': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'fusedmomentum': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'fusedadam': optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) elif opt_lower == 'fusedadamw': optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) elif opt_lower == 'fusedlamb': optimizer = FusedLAMB(parameters, **opt_args) elif opt_lower == 'fusednovograd': opt_args.setdefault('betas', (0.95, 0.98)) optimizer = FusedNovoGrad(parameters, **opt_args) else: assert False and "Invalid optimizer" raise ValueError if len(opt_split) > 1: if opt_split[0] == 'lookahead': optimizer = Lookahead(optimizer) return optimizer
InternVideo-main
Pretrain/VideoMAE/optim_factory.py
import torch import InternVideo text_cand = ["an airplane is taking off", "an airplane is flying", "a dog is chasing a ball"] video = InternVideo.load_video("./data/demo.mp4").cuda() model = InternVideo.load_model("./models/InternVideo-MM-L-14.ckpt").cuda() text = InternVideo.tokenize( text_cand ).cuda() with torch.no_grad(): text_features = model.encode_text(text) video_features = model.encode_video(video.unsqueeze(0)) video_features = torch.nn.functional.normalize(video_features, dim=1) text_features = torch.nn.functional.normalize(text_features, dim=1) t = model.logit_scale.exp() probs = (video_features @ text_features.T * t).softmax(dim=-1).cpu().numpy() print("Label probs: ") # [[9.5619422e-01 4.3805469e-02 2.0393253e-07]] for t, p in zip(text_cand, probs[0]): print("{:30s}: {:.4f}".format(t, p))
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/demo.py
from .internvideo import *
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/__init__.py
import numbers import random import numpy as np import PIL import skimage import skimage.transform import torchvision import torch from torchvision import transforms from PIL import Image import torch import cv2 def _is_tensor_clip(clip): return torch.is_tensor(clip) and clip.ndimension() == 4 def crop_clip(clip, min_h, min_w, h, w): if isinstance(clip[0], np.ndarray): cropped = [img[min_h:min_h + h, min_w:min_w + w, :] for img in clip] elif isinstance(clip[0], PIL.Image.Image): cropped = [ img.crop((min_w, min_h, min_w + w, min_h + h)) for img in clip ] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return cropped def resize_clip(clip, size, interpolation='bilinear'): if isinstance(clip[0], np.ndarray): if isinstance(size, numbers.Number): im_h, im_w, im_c = clip[0].shape # Min spatial dim already matches minimal size if (im_w <= im_h and im_w == size) or (im_h <= im_w and im_h == size): return clip new_h, new_w = get_resize_sizes(im_h, im_w, size) size = (new_w, new_h) else: size = size[1], size[0] if interpolation == 'bilinear': np_inter = cv2.INTER_LINEAR else: np_inter = cv2.INTER_NEAREST scaled = [ cv2.resize(img, size, interpolation=np_inter) for img in clip ] elif isinstance(clip[0], PIL.Image.Image): if isinstance(size, numbers.Number): im_w, im_h = clip[0].size # Min spatial dim already matches minimal size if (im_w <= im_h and im_w == size) or (im_h <= im_w and im_h == size): return clip new_h, new_w = get_resize_sizes(im_h, im_w, size) size = (new_w, new_h) else: size = size[1], size[0] if interpolation == 'bilinear': pil_inter = PIL.Image.NEAREST else: pil_inter = PIL.Image.BILINEAR scaled = [img.resize(size, pil_inter) for img in clip] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return scaled def get_resize_sizes(im_h, im_w, size): if im_w < im_h: ow = size oh = int(size * im_h / im_w) else: oh = size ow = int(size * im_w / im_h) return oh, ow def normalize(clip, mean, std, inplace=False): if not _is_tensor_clip(clip): raise TypeError('tensor is not a torch clip_test.') if not inplace: clip = clip.clone() dtype = clip.dtype dim = len(mean) mean = torch.as_tensor(mean, dtype=dtype, device=clip.device) std = torch.as_tensor(std, dtype=dtype, device=clip.device) # print(clip_test.size()) # if dim == 3: clip.sub_(mean[:, None, None, None]).div_(std[:, None, None, None]) # else: # clip_test.sub_(mean[:, None, None]).div_(std[:, None, None]) return clip def convert_img(img): """Converts (H, W, C) numpy.ndarray to (C, W, H) format """ if len(img.shape) == 3: img = img.transpose(2, 0, 1) if len(img.shape) == 2: img = np.expand_dims(img, 0) return img class ClipToTensor(object): """Convert a list of m (H x W x C) numpy.ndarrays in the range [0, 255] to a torch.FloatTensor of shape (C x m x H x W) in the range [0, 1.0] """ def __init__(self, channel_nb=3, div_255=True, numpy=False): self.channel_nb = channel_nb self.div_255 = div_255 self.numpy = numpy def __call__(self, clip): """ Args: clip_test (list of numpy.ndarray): clip_test (list of images) to be converted to tensor. """ # Retrieve shape if isinstance(clip[0], np.ndarray): h, w, ch = clip[0].shape assert ch == self.channel_nb, 'Got {0} instead of 3 channels'.format( ch) elif isinstance(clip[0], Image.Image): w, h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image\ but got list of {0}'.format(type(clip[0]))) np_clip = np.zeros([self.channel_nb, len(clip), int(h), int(w)]) # Convert for img_idx, img in enumerate(clip): if isinstance(img, np.ndarray): pass elif isinstance(img, Image.Image): img = np.array(img, copy=False) else: raise TypeError('Expected numpy.ndarray or PIL.Image\ but got list of {0}'.format(type(clip[0]))) img = convert_img(img) np_clip[:, img_idx, :, :] = img if self.numpy: if self.div_255: np_clip = np_clip / 255 return np_clip else: tensor_clip = torch.from_numpy(np_clip) if not isinstance(tensor_clip, torch.FloatTensor): tensor_clip = tensor_clip.float() if self.div_255: tensor_clip = tensor_clip.div(255) return tensor_clip class ToTensor(object): """Converts numpy array to tensor """ def __call__(self, array): tensor = torch.from_numpy(array) return tensor class ColorDistortion(object): def __init__(self, s=1.0): self.s = s self.color_jitter = transforms.ColorJitter(0.8*s, 0.8*s, 0.8*s, 0.2*s) self.rnd_color_jitter = transforms.RandomApply([self.color_jitter], p=0.8) self.rnd_gray = transforms.RandomGrayscale(p=0.2) def __call__(self, video): color_distort = transforms.Compose([self.rnd_color_jitter, self.rnd_gray]) return color_distort(video) class Compose(object): """Composes several transforms Args: transforms (list of ``Transform`` objects): list of transforms to compose """ def __init__(self, transforms): self.transforms = transforms def __call__(self, clip): for t in self.transforms: clip = t(clip) return clip class RandomHorizontalFlip(object): """Horizontally flip the list of given images randomly with a probability 0.5 """ def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Randomly flipped clip_test """ if random.random() < 0.5: if isinstance(clip[0], np.ndarray): return [np.fliplr(img) for img in clip] elif isinstance(clip[0], PIL.Image.Image): return [ img.transpose(PIL.Image.FLIP_LEFT_RIGHT) for img in clip ] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + ' but got list of {0}'.format(type(clip[0]))) return clip class RandomResize(object): """Resizes a list of (H x W x C) numpy.ndarray to the final size The larger the original image is, the more times it takes to interpolate Args: interpolation (str): Can be one of 'nearest', 'bilinear' defaults to nearest size (tuple): (widht, height) """ def __init__(self, ratio=(3. / 4., 4. / 3.), interpolation='nearest'): self.ratio = ratio self.interpolation = interpolation def __call__(self, clip): scaling_factor = random.uniform(self.ratio[0], self.ratio[1]) if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size new_w = int(im_w * scaling_factor) new_h = int(im_h * scaling_factor) new_size = (new_w, new_h) resized = resize_clip( clip, new_size, interpolation=self.interpolation) return resized class Resize(object): """Resizes a list of (H x W x C) numpy.ndarray to the final size The larger the original image is, the more times it takes to interpolate Args: interpolation (str): Can be one of 'nearest', 'bilinear' defaults to nearest size (tuple): (widht, height) """ def __init__(self, size, interpolation='nearest'): self.size = size self.interpolation = interpolation def __call__(self, clip): resized = resize_clip( clip, self.size, interpolation=self.interpolation) return resized class RandomCrop(object): """Extract random crop at the same location for a list of images Args: size (sequence or int): Desired output size for the crop in format (h, w) """ def __init__(self, size): if isinstance(size, numbers.Number): size = (size, size) self.size = size def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ h, w = self.size if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) if w > im_w or h > im_h: error_msg = ( 'Initial image size should be larger then ' 'cropped size but got cropped sizes : ({w}, {h}) while ' 'initial image is ({im_w}, {im_h})'.format( im_w=im_w, im_h=im_h, w=w, h=h)) raise ValueError(error_msg) x1 = random.randint(0, im_w - w) y1 = random.randint(0, im_h - h) cropped = crop_clip(clip, y1, x1, h, w) return cropped class CornerCrop(object): def __init__(self, size, crop_position=None): self.size = size if crop_position is None: self.randomize = True else: self.randomize = False self.crop_position = crop_position self.crop_positions = ['c', 'tl', 'tr', 'bl', 'br'] def __call__(self, imgs): t, h, w, c = imgs.shape corner_imgs = list() for n in self.crop_positions: #print(n) if n == 'c': th, tw = (self.size, self.size) x1 = int(round((w- tw) / 2.)) y1 = int(round((h - th) / 2.)) x2 = x1 + tw y2 = y1 + th elif n == 'tl': x1 = 0 y1 = 0 x2 = self.size y2 = self.size elif n == 'tr': x1 = w - self.size y1 = 0 x2 = w y2 = self.size elif n == 'bl': x1 = 0 y1 = h - self.size x2 = self.size y2 = h elif n == 'br': x1 = w - self.size y1 = h - self.size x2 = w y2 = h corner_imgs.append(imgs[:, y1:y2, x1:x2, :]) return corner_imgs def randomize_parameters(self): if self.randomize: self.crop_position = self.crop_positions[random.randint( 0, len(self.crop_positions) - 1)] class RandomRotation(object): """Rotate entire clip_test randomly by a random angle within given bounds Args: degrees (sequence or int): Range of degrees to select from If degrees is a number instead of sequence like (min, max), the range of degrees, will be (-degrees, +degrees). """ def __init__(self, degrees): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError('If degrees is a single number,' 'must be positive') degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError('If degrees is a sequence,' 'it must be of len 2.') self.degrees = degrees def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ angle = random.uniform(self.degrees[0], self.degrees[1]) if isinstance(clip[0], np.ndarray): rotated = [skimage.transform.rotate(img, angle) for img in clip] elif isinstance(clip[0], PIL.Image.Image): rotated = [img.rotate(angle) for img in clip] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return rotated class STA_RandomRotation(object): """Rotate entire clip_test randomly by a random angle within given bounds Args: degrees (sequence or int): Range of degrees to select from If degrees is a number instead of sequence like (min, max), the range of degrees, will be (-degrees, +degrees). """ def __init__(self, degrees): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError('If degrees is a single number,' 'must be positive') degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError('If degrees is a sequence,' 'it must be of len 2.') self.degrees = degrees def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ bsz = len(clip) angle = random.uniform(self.degrees[0], self.degrees[1]) angles = [(i+1)/(bsz+1) * angle for i in range(bsz)] if isinstance(clip[0], np.ndarray): rotated = [skimage.transform.rotate(img, angles[i]) for i, img in enumerate(clip)] elif isinstance(clip[0], PIL.Image.Image): rotated = [img.rotate(angles[i]) for i, img in enumerate(clip)] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return rotated class Each_RandomRotation(object): """Rotate entire clip_test randomly by a random angle within given bounds Args: degrees (sequence or int): Range of degrees to select from If degrees is a number instead of sequence like (min, max), the range of degrees, will be (-degrees, +degrees). """ def __init__(self, degrees): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError('If degrees is a single number,' 'must be positive') degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError('If degrees is a sequence,' 'it must be of len 2.') self.degrees = degrees def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ bsz = len(clip) angles = [random.uniform(self.degrees[0], self.degrees[1]) for i in range(bsz)] # print(angles) if isinstance(clip[0], np.ndarray): rotated = [skimage.transform.rotate(img, angles[i]) for i, img in enumerate(clip)] elif isinstance(clip[0], PIL.Image.Image): rotated = [img.rotate(angles[i]) for i, img in enumerate(clip)] else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return rotated class CenterCrop(object): """Extract center crop at the same location for a list of images Args: size (sequence or int): Desired output size for the crop in format (h, w) """ def __init__(self, size): if isinstance(size, numbers.Number): size = (size, size) self.size = size def __call__(self, clip): """ Args: img (PIL.Image or numpy.ndarray): List of images to be cropped in format (h, w, c) in numpy.ndarray Returns: PIL.Image or numpy.ndarray: Cropped list of images """ h, w = self.size if isinstance(clip[0], np.ndarray): im_h, im_w, im_c = clip[0].shape elif isinstance(clip[0], PIL.Image.Image): im_w, im_h = clip[0].size else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) if w > im_w or h > im_h: error_msg = ( 'Initial image size should be larger then ' 'cropped size but got cropped sizes : ({w}, {h}) while ' 'initial image is ({im_w}, {im_h})'.format( im_w=im_w, im_h=im_h, w=w, h=h)) raise ValueError(error_msg) x1 = int(round((im_w - w) / 2.)) y1 = int(round((im_h - h) / 2.)) cropped = crop_clip(clip, y1, x1, h, w) return cropped class ColorJitter(object): """Randomly change the brightness, contrast and saturation and hue of the clip_test Args: brightness (float): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. contrast (float): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. saturation (float): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. hue(float): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue]. Should be >=0 and <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue def get_params(self, brightness, contrast, saturation, hue): if brightness > 0: brightness_factor = random.uniform( max(0, 1 - brightness), 1 + brightness) else: brightness_factor = None if contrast > 0: contrast_factor = random.uniform( max(0, 1 - contrast), 1 + contrast) else: contrast_factor = None if saturation > 0: saturation_factor = random.uniform( max(0, 1 - saturation), 1 + saturation) else: saturation_factor = None if hue > 0: hue_factor = random.uniform(-hue, hue) else: hue_factor = None return brightness_factor, contrast_factor, saturation_factor, hue_factor def __call__(self, clip): """ Args: clip_test (list): list of PIL.Image Returns: list PIL.Image : list of transformed PIL.Image """ if isinstance(clip[0], np.ndarray): raise TypeError( 'Color jitter not yet implemented for numpy arrays') elif isinstance(clip[0], PIL.Image.Image): brightness, contrast, saturation, hue = self.get_params( self.brightness, self.contrast, self.saturation, self.hue) # Create img sync_dir function sequence img_transforms = [] if brightness is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness)) if saturation is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation)) if hue is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue)) if contrast is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast)) random.shuffle(img_transforms) # Apply to all images jittered_clip = [] for img in clip: for func in img_transforms: jittered_img = func(img) jittered_clip.append(jittered_img) else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return jittered_clip class EachColorJitter(object): """Randomly change the brightness, contrast and saturation and hue of the clip_test Args: brightness (float): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. contrast (float): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. saturation (float): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. hue(float): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue]. Should be >=0 and <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue def get_params(self, brightness, contrast, saturation, hue): if brightness > 0: brightness_factor = random.uniform( max(0, 1 - brightness), 1 + brightness) else: brightness_factor = None if contrast > 0: contrast_factor = random.uniform( max(0, 1 - contrast), 1 + contrast) else: contrast_factor = None if saturation > 0: saturation_factor = random.uniform( max(0, 1 - saturation), 1 + saturation) else: saturation_factor = None if hue > 0: hue_factor = random.uniform(-hue, hue) else: hue_factor = None return brightness_factor, contrast_factor, saturation_factor, hue_factor def __call__(self, clip): """ Args: clip_test (list): list of PIL.Image Returns: list PIL.Image : list of transformed PIL.Image """ if isinstance(clip[0], np.ndarray): raise TypeError( 'Color jitter not yet implemented for numpy arrays') elif isinstance(clip[0], PIL.Image.Image): brightness, contrast, saturation, hue = self.get_params( self.brightness, self.contrast, self.saturation, self.hue) # Create img sync_dir function sequence img_transforms = [] if brightness is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_brightness(img, brightness)) if saturation is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_saturation(img, saturation)) if hue is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_hue(img, hue)) if contrast is not None: img_transforms.append(lambda img: torchvision.transforms.functional.adjust_contrast(img, contrast)) random.shuffle(img_transforms) # Apply to all images jittered_clip = [] for img in clip: for func in img_transforms: jittered_img = func(img) jittered_clip.append(jittered_img) else: raise TypeError('Expected numpy.ndarray or PIL.Image' + 'but got list of {0}'.format(type(clip[0]))) return jittered_clip class Normalize(object): """Normalize a clip_test with mean and standard deviation. Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this sync_dir will normalize each channel of the input ``torch.*Tensor`` i.e. ``input[channel] = (input[channel] - mean[channel]) / std[channel]`` .. note:: This sync_dir acts out of place, i.e., it does not mutates the input tensor. Args: mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, clip): """ Args: clip (Tensor): Tensor clip_test of size (T, C, H, W) to be normalized. Returns: Tensor: Normalized Tensor clip_test. """ return normalize(clip, self.mean, self.std) def __repr__(self): return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std) class TensorToNumpy(object): def __init__(self): pass def __call__(self, clip): np_clip = clip.permute(1, 2, 3, 0).cpu().detach().numpy() pil_clip = [Image.fromarray(np.uint8(numpy_image)).convert('RGB') for numpy_image in np_clip] return pil_clip
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/video_transform.py
import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/simple_tokenizer.py
import torch import numpy as np import decord from typing import Any, OrderedDict, Union, List from pkg_resources import packaging from torchvision import transforms from . import video_transform from .simple_tokenizer import SimpleTokenizer as _Tokenizer from .clip_utils.model import build_model __all__ = ["load_model", "load_video", "tokenize"] _tokenizer = _Tokenizer() def load_model(path): state = torch.load(path, map_location="cpu")["state_dict"] state = {k[len("clip.") :]: v for k, v in state.items() if k.startswith("clip.")} model = build_model(state_dict=state) return model def load_video(path): video_reader = decord.VideoReader(path, num_threads=1, ctx=decord.cpu(0)) decord.bridge.set_bridge('torch') video_len = len(video_reader) video = video_reader.get_batch(np.linspace(0, video_len - 1, 8).astype(np.int)).byte() video = video.permute(3, 0, 1, 2) input_mean = [0.48145466, 0.4578275, 0.40821073] input_std = [0.26862954, 0.26130258, 0.27577711] crop_size, scale_size = 224, 256 trans = transforms.Compose([ video_transform.TensorToNumpy(), video_transform.Resize(scale_size), video_transform.CenterCrop(crop_size), video_transform.ClipToTensor(channel_nb=3), video_transform.Normalize(mean=input_mean, std=input_std) ]) video = trans(video) return video def tokenize( texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False, return_special_tokens_mask: bool = False, ) -> Union[torch.IntTensor, torch.LongTensor, torch.BoolTensor]: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length truncate: bool Whether to truncate the text in case its encoding is longer than the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) else: result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) special_tokens_mask = torch.zeros(len(all_tokens), context_length, dtype=torch.bool) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate: tokens = tokens[:context_length] tokens[-1] = eot_token else: raise RuntimeError( f"Input {texts[i]} is too long for context length {context_length}" ) result[i, : len(tokens)] = torch.tensor(tokens) special_tokens_mask[i, len(tokens) :] = 1 if return_special_tokens_mask: return result, special_tokens_mask return result
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/internvideo.py
from .clip import *
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/clip_utils/__init__.py
from collections import OrderedDict from typing import Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn from torch.utils.checkpoint import checkpoint_sequential from . import utils class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential( OrderedDict( [ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)), ] ) ) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = ( self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None ) return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, use_checkpoint=False, checkpoint_num=[0, 0], ): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential( *[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)] ) self.use_checkpoint = use_checkpoint self.checkpoint_num = checkpoint_num def forward(self, x: torch.Tensor): if self.use_checkpoint and self.checkpoint_num[1] > 0: segments = min(len(self.resblocks), self.checkpoint_num[1]) return checkpoint_sequential(self.resblocks, segments, x) else: return self.resblocks(x) class VideoIntern(nn.Module): def __init__( self, embed_dim: int, # vision vision_width: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int, # uni n_layers=4, n_dim=768, n_head=12, drop_path_rate=0.0, mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, use_image_attnmap=True, backbone='vit_2plus1d_dw_bias_b16', return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], use_checkpoint=False, checkpoint_num=[0], ): super().__init__() self.vision_width = n_dim self.context_length = context_length self.visual = utils.__dict__[backbone]( pretrained=False, t_size=t_size, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, n_dim=n_dim, n_head=n_head, return_list=return_list, drop_path_rate=drop_path_rate, backbone_drop_path_rate=drop_path_rate, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, ) self.visual_ln_post = nn.LayerNorm(n_dim) scale = n_dim**-0.5 self.visual_proj = nn.Parameter(scale * torch.randn(n_dim, embed_dim)) self.return_qk = use_image_attnmap self.return_num = n_layers self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask(), use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter( torch.empty(self.context_length, transformer_width) ) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.embed_dim = embed_dim # We seperate the mask embedding to load pretrained model self.text_mask_embedding = nn.Parameter(torch.empty(1, 1, transformer_width)) # # To keep the num_embeddings unchanged, we add this to embedded text # self.eot_token_embedding = nn.Parameter(torch.empty(1, transformer_width)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) nn.init.normal_(self.text_mask_embedding, std=0.02) # nn.init.constant_(self.eot_token_embedding, 0.0) proj_std = (self.transformer.width**-0.5) * ( (2 * self.transformer.layers) ** -0.5 ) attn_std = self.transformer.width**-0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width**-0.5) nn.init.constant_(self.visual_ln_post.weight, 1.0) nn.init.constant_(self.visual_ln_post.bias, 0.0) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_video( self, video, return_all_feats=False, masked_indices=None, mode="video" ): # video: [N, C, T, H, W] feats = self.visual(video, return_all_feats=return_all_feats, mode=mode) if return_all_feats: x, feats = feats else: x = feats x = self.visual_ln_post(x) if self.visual_proj is not None: x = x @ self.visual_proj if return_all_feats: return x, feats # [N, C], [L, N, T, C] return x def encode_text(self, text, masked_indices=None, return_all_feats=False): # assert (text.max(dim=-1)[0] + 1 == self.token_embedding.num_embeddings).all(), \ # "The last token of each sentence should be eot_token, check the input" x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] # x[torch.arange(x.shape[0]), text.argmax(dim=-1)] += self.eot_token_embedding if masked_indices is not None: x[masked_indices] = self.text_mask_embedding x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) feats = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] if self.text_projection is not None: feats = feats @ self.text_projection if return_all_feats: return feats, x return feats def build_model( state_dict: dict, n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0.0, mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, t_size=8, spatial_size=14, use_t_conv=True, use_image_attnmap=True, use_t_pos_embed=True, no_pretrain=False, init_zero=True, use_checkpoint=False, checkpoint_num=[0], ): vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len( [ k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight") ] ) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len( set( k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks") ) ) vision_width = state_dict["visual_proj"].shape[0] n_dim = vision_width if vision_width == 768: backbone = "vit_only_global_b16" n_head = 12 return_list = [8, 9, 10, 11] elif vision_width == 1024: backbone = "vit_only_global_l14" n_head = 16 return_list = [20, 21, 22, 23] else: raise NotImplementedError model = VideoIntern( embed_dim, vision_width, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers, n_layers=n_layers, n_dim=n_dim, n_head=n_head, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, use_image_attnmap=use_image_attnmap, backbone=backbone, return_list=return_list, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, ) model.load_state_dict(state_dict, strict=False) return model.eval()
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/clip_utils/model.py
import hashlib import os import urllib import warnings from typing import Any, Union, List from pkg_resources import packaging import torch from PIL import Image from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize from tqdm import tqdm from .model import build_model from .simple_tokenizer import SimpleTokenizer as _Tokenizer try: from torchvision.transforms import InterpolationMode BICUBIC = InterpolationMode.BICUBIC except ImportError: BICUBIC = Image.BICUBIC if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): warnings.warn("PyTorch version 1.7.1 or higher is recommended") __all__ = ["available_models", "load", "tokenize"] # _tokenizer = _Tokenizer() _MODELS = { "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", } def _download(url: str, root: str): os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") return download_target def _convert_image_to_rgb(image): return image.convert("RGB") def _transform(n_px): return Compose([ Resize(n_px, interpolation=BICUBIC), CenterCrop(n_px), _convert_image_to_rgb, ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) def load( name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None, # evl n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.0, 0.0, 0.0, 0.0], cls_dropout=0.5, t_size=8, spatial_size=14, use_t_conv=True, use_image_attnmap=True, use_t_pos_embed=True, dropout=0.0, no_pretrain=False, init_zero=True, use_checkpoint=False, checkpoint_num=[0, 0, 0], ): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model or more hackable non-JIT model (default). download_root: str path to download the model files; by default, it uses "~/.cache/clip" Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if name in _MODELS: model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip")) elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") with open(model_path, 'rb') as opened_file: try: # loading JIT archive model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(model_path, map_location="cpu") if not jit: model = build_model( state_dict or model.state_dict(), n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, t_size=t_size, spatial_size=spatial_size, use_t_conv=use_t_conv, use_image_attnmap=use_image_attnmap, use_t_pos_embed=use_t_pos_embed, no_pretrain=no_pretrain, init_zero=init_zero, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, ).to(device) if str(device) == "cpu": model.float() return model, _transform(model.visual.input_resolution) # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def patch_device(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 on CPU if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() return model, _transform(model.input_resolution.item()) def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False, return_special_tokens_mask: bool = False) -> Union[torch.IntTensor, torch.LongTensor, torch.BoolTensor]: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length truncate: bool Whether to truncate the text in case its encoding is longer than the context length Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]. We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long. """ if isinstance(texts, str): texts = [texts] sot_token = _tokenizer.encoder["<|startoftext|>"] eot_token = _tokenizer.encoder["<|endoftext|>"] all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"): result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) else: result = torch.zeros(len(all_tokens), context_length, dtype=torch.int) special_tokens_mask = torch.zeros(len(all_tokens), context_length, dtype=torch.bool) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate: tokens = tokens[:context_length] tokens[-1] = eot_token else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) special_tokens_mask[i, len(tokens):] = 1 if return_special_tokens_mask: return result, special_tokens_mask return result
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/clip_utils/clip.py
import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + ( token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token+'</w>' while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/clip_utils/simple_tokenizer.py
#!/usr/bin/env python import warnings from typing import Tuple, Optional import torch from torch import Tensor from torch.nn.modules.linear import Linear from torch.nn.init import xavier_uniform_ from torch.nn.init import constant_ from torch.nn.init import xavier_normal_ from torch.nn.parameter import Parameter from torch.nn.modules.module import Module from .attention_module import multi_head_attention_forward class _LinearWithBias(Linear): bias: Tensor def __init__(self, in_features: int, out_features: int) -> None: super().__init__(in_features, out_features, bias=True) class MultiheadAttention(Module): r"""Allows the model to jointly attend to information from different representation subspaces. See reference: Attention Is All You Need .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. Note: if kdim and vdim are None, they will be set to embed_dim such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ bias_k: Optional[torch.Tensor] bias_v: Optional[torch.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" if self._qkv_same_embed_dim is False: self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim)) self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim)) self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim)) self.register_parameter('in_proj_weight', None) else: self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim)) self.register_parameter('q_proj_weight', None) self.register_parameter('k_proj_weight', None) self.register_parameter('v_proj_weight', None) if bias: self.in_proj_bias = Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = _LinearWithBias(embed_dim, embed_dim) if add_bias_kv: self.bias_k = Parameter(torch.empty(1, 1, embed_dim)) self.bias_v = Parameter(torch.empty(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): if self._qkv_same_embed_dim: xavier_uniform_(self.in_proj_weight) else: xavier_uniform_(self.q_proj_weight) xavier_uniform_(self.k_proj_weight) xavier_uniform_(self.v_proj_weight) if self.in_proj_bias is not None: constant_(self.in_proj_bias, 0.) constant_(self.out_proj.bias, 0.) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None, return_qk=False): # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor], bool) -> Tuple[Tensor, Optional[Tensor]] r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shape: - Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - return_qk: whether return Q and K. - Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if return_qk: if not self._qkv_same_embed_dim: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight, return_qk=True) else: q, k, attn_output, attn_output_weights = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, return_qk=True) return q, k, attn_output, attn_output_weights else: if not self._qkv_same_embed_dim: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight, v_proj_weight=self.v_proj_weight) else: return multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask)
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/clip_utils/utils/attention.py
#!/usr/bin/env python import os from collections import OrderedDict from timm.models.layers import DropPath import torch from torch import nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from .attention import MultiheadAttention import logging logger = logging.getLogger(__name__) MODEL_PATH = '/mnt/lustre/share_data/likunchang.vendor/model' _MODELS = { "ViT-B/32": os.path.join(MODEL_PATH, "vit_b32.pth"), "ViT-B/16": os.path.join(MODEL_PATH, "vit_b16.pth"), "ViT-L/14": os.path.join(MODEL_PATH, "vit_l14.pth"), "ViT-L/14_336": os.path.join(MODEL_PATH, "vit_l14_336.pth"), } def conv_1x1x1(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups) def conv_3x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups) def conv_1x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 3, 3), (1, 1, 1), (0, 1, 1), groups=groups) def bn_3d(dim): return nn.BatchNorm3d(dim) class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, drop_path=0.0, ): super().__init__() self.n_head = n_head self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() logger.info(f'Drop path rate: {drop_path}') # spatial self.attn = MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x, T=8, use_checkpoint=False): # x: 1+HW, NT, C # MHSA if use_checkpoint: attn_out = checkpoint.checkpoint(self.attention, self.ln_1(x)) x = x + self.drop_path(attn_out) else: x = x + self.drop_path(self.attention(self.ln_1(x))) # FFN if use_checkpoint: mlp_out = checkpoint.checkpoint(self.mlp, self.ln_2(x)) x = x + self.drop_path(mlp_out) else: x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Extractor(nn.Module): def __init__( self, d_model, n_head, attn_mask=None, mlp_factor=4.0, dropout=0.0, drop_path=0.0, ): super().__init__() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() logger.info(f'Drop path rate: {drop_path}') self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = nn.LayerNorm(d_model) d_mlp = round(mlp_factor * d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_mlp)), ("gelu", QuickGELU()), ("dropout", nn.Dropout(dropout)), ("c_proj", nn.Linear(d_mlp, d_model)) ])) self.ln_2 = nn.LayerNorm(d_model) self.ln_3 = nn.LayerNorm(d_model) self.attn_mask = attn_mask # zero init nn.init.xavier_uniform_(self.attn.in_proj_weight) nn.init.constant_(self.attn.out_proj.weight, 0.) nn.init.constant_(self.attn.out_proj.bias, 0.) nn.init.xavier_uniform_(self.mlp[0].weight) nn.init.constant_(self.mlp[-1].weight, 0.) nn.init.constant_(self.mlp[-1].bias, 0.) def attention(self, x: torch.Tensor, y: torch.Tensor): #self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None # return self.attn(x, y, y, need_weights=False, attn_mask=self.attn_mask)[0] assert self.attn_mask is None # not implemented # manual forward to add position information d_model = self.ln_1.weight.size(0) q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model] k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model] v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:] Tx, Ty, N = q.size(0), k.size(0), q.size(1) q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3) aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5)) aff = aff.softmax(dim=-1) out = aff @ v out = out.permute(2, 0, 1, 3).flatten(2) out = self.attn.out_proj(out) return out def forward(self, x: torch.Tensor, y: torch.Tensor): x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y))) x = x + self.drop_path(self.mlp(self.ln_2(x))) return x class Transformer(nn.Module): def __init__( self, width, layers, heads, attn_mask=None, backbone_drop_path_rate=0., use_checkpoint=False, checkpoint_num=[0], t_size=8, return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): super().__init__() self.T = t_size self.return_list = return_list # Backbone b_dpr = [x.item() for x in torch.linspace(0, backbone_drop_path_rate, layers)] self.resblocks = nn.ModuleList([ ResidualAttentionBlock( width, heads, attn_mask, drop_path=b_dpr[i], ) for i in range(layers) ]) # checkpoint self.use_checkpoint = use_checkpoint self.checkpoint_num = checkpoint_num logger.info(f'Use checkpoint: {self.use_checkpoint}') logger.info(f'Checkpoint number: {self.checkpoint_num}') # Extractor assert n_layers == len(return_list) self.temporal_cls_token = nn.Parameter(torch.zeros(1, 1, n_dim)) self.dpe = nn.ModuleList([ nn.Conv3d(n_dim, n_dim, kernel_size=3, stride=1, padding=1, bias=True, groups=n_dim) for i in range(n_layers) ]) for m in self.dpe: nn.init.constant_(m.bias, 0.) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, n_layers)] self.dec = nn.ModuleList([ Extractor( n_dim, n_head, mlp_factor=mlp_factor, dropout=mlp_dropout[i], drop_path=dpr[i], ) for i in range(n_layers) ]) # # projection # self.proj = nn.Sequential( # nn.LayerNorm(n_dim), # nn.Dropout(cls_dropout), # nn.Linear(n_dim, num_classes), # ) self.balance = nn.Parameter(torch.zeros((n_dim))) self.sigmoid = nn.Sigmoid() def forward(self, x, mode='video', return_all_feats=False): if mode == 'video': T_down = self.T else: T_down = 1 L, NT, C = x.shape N = NT // T_down H = W = int((L - 1) ** 0.5) cls_token = self.temporal_cls_token.repeat(1, N, 1) j = -1 for i, resblock in enumerate(self.resblocks): if self.use_checkpoint and i < self.checkpoint_num[0]: x = resblock(x, T_down, use_checkpoint=True) else: x = resblock(x, T_down) if i in self.return_list: j += 1 tmp_x = x.clone() tmp_x = tmp_x.view(L, N, T_down, C) # dpe _, tmp_feats = tmp_x[:1], tmp_x[1:] tmp_feats = tmp_feats.permute(1, 3, 2, 0).reshape(N, C, T_down, H, W) tmp_feats = self.dpe[j](tmp_feats).view(N, C, T_down, L - 1).permute(3, 0, 2, 1) tmp_x[1:] = tmp_x[1:] + tmp_feats # enhancer tmp_x = tmp_x.permute(2, 0, 1, 3).flatten(0, 1) # T * L, N, C cls_token = self.dec[j](cls_token, tmp_x) weight = self.sigmoid(self.balance) residual = x.view(L, N, T_down, C)[0].mean(1) # L, N, T, C # return self.proj((1 - weight) * cls_token[0, :, :] + weight * residual) feats = (1 - weight) * cls_token[0, :, :] + weight * residual if return_all_feats: return feats, x.view(L, N, T_down, C) return feats class VisionTransformer(nn.Module): def __init__( self, # backbone input_resolution, patch_size, width, layers, heads, output_dim, backbone_drop_path_rate=0., use_checkpoint=False, checkpoint_num=[0], t_size=8, # extractor return_list=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], n_layers=12, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv3d(3, width, (1, patch_size, patch_size), (1, patch_size, patch_size), (0, 0, 0), bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer( width, layers, heads, backbone_drop_path_rate=backbone_drop_path_rate, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) def forward(self, x, mode='video', return_all_feats=False): x = self.conv1(x) # shape = [*, width, grid, grid] N, C, T, H, W = x.shape x = x.permute(0, 2, 3, 4, 1).reshape(N * T, H * W, C) x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND out = self.transformer(x, mode=mode, return_all_feats=return_all_feats) return out def inflate_weight(weight_2d, time_dim, center=True): if center: weight_3d = torch.zeros(*weight_2d.shape) weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) middle_idx = time_dim // 2 weight_3d[:, :, middle_idx, :, :] = weight_2d else: weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1) weight_3d = weight_3d / time_dim return weight_3d def load_state_dict(model, state_dict): state_dict_3d = model.state_dict() for k in state_dict.keys(): if state_dict[k].shape != state_dict_3d[k].shape: if len(state_dict_3d[k].shape) <= 2: logger.info(f'Ignore: {k}') continue logger.info(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}') time_dim = state_dict_3d[k].shape[2] state_dict[k] = inflate_weight(state_dict[k], time_dim) model.load_state_dict(state_dict, strict=False) def vit_only_global_b32( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[8, 9, 10, 11], n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=32, width=768, layers=12, heads=12, output_dim=512, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/32"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_only_global_b16( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[8, 9, 10, 11], n_layers=4, n_dim=768, n_head=12, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=16, width=768, layers=12, heads=12, output_dim=512, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-B/16"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_only_global_l14( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[20, 21, 22, 23], n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=224, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() def vit_only_global_l14_336( pretrained=True, use_checkpoint=False, checkpoint_num=[0], t_size=16, backbone_drop_path_rate=0., return_list=[20, 21, 22, 23], n_layers=4, n_dim=1024, n_head=16, mlp_factor=4.0, drop_path_rate=0., mlp_dropout=[0.5, 0.5, 0.5, 0.5], cls_dropout=0.5, num_classes=400, ): model = VisionTransformer( input_resolution=336, patch_size=14, width=1024, layers=24, heads=16, output_dim=768, use_checkpoint=use_checkpoint, checkpoint_num=checkpoint_num, t_size=t_size, backbone_drop_path_rate=backbone_drop_path_rate, return_list=return_list, n_layers=n_layers, n_dim=n_dim, n_head=n_head, mlp_factor=mlp_factor, drop_path_rate=drop_path_rate, mlp_dropout=mlp_dropout, cls_dropout=cls_dropout, num_classes=num_classes, ) if pretrained: logger.info('load pretrained weights') state_dict = torch.load(_MODELS["ViT-L/14_336"], map_location='cpu') load_state_dict(model, state_dict) return model.eval() if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import numpy as np seed = 4217 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) num_frames = 8 model = vit_only_global_l14( pretrained=False, t_size=num_frames, backbone_drop_path_rate=0.2, drop_path_rate=0.4, use_checkpoint=True, checkpoint_num=[0], ) flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224)) s = time.time() logger.info(flop_count_table(flops, max_depth=1)) logger.info(time.time()-s)
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/clip_utils/utils/clip_vit_only_global.py
# from .evl_module import TransformerDecoder from .clip_vit_only_global import vit_only_global_b32, vit_only_global_b16, vit_only_global_l14, vit_only_global_l14_336
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/clip_utils/utils/__init__.py
r"""Functional interface""" import warnings import math import torch from torch import _VF from torch._jit_internal import Optional, Tuple from torch.overrides import has_torch_function, handle_torch_function from torch.nn.functional import pad, linear, softmax, dropout Tensor = torch.Tensor def multi_head_attention_forward(query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, return_qk: bool = False ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - return_qk: whether return Q and K. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not torch.jit.is_scripting(): tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError('The size of the 2D attn_mask is not correct.') elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError('The size of the 3D attn_mask is not correct.') else: raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None # L, N, E if return_qk: return_q = q.clone() / scaling return_k = k.clone() q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float('-inf')) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) attn_output_weights = softmax( attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if return_qk: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return return_q, return_k, attn_output, attn_output_weights.sum(dim=1) / num_heads else: return return_q, return_k, attn_output, None else: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/clip_utils/utils/attention_module.py
r"""Functional interface""" import warnings import math import torch from torch import _VF from torch._jit_internal import Optional, Tuple from torch.overrides import has_torch_function, handle_torch_function from torch.nn.functional import pad, linear, softmax, dropout Tensor = torch.Tensor def multi_head_attention_forward(query: Tensor, key: Tensor, value: Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: Tensor, in_proj_bias: Tensor, bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Tensor, training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, return_qk: bool = False, rpb: Tensor = None, ) -> Tuple[Tensor, Optional[Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - return_qk: whether return Q and K. - rpb: relative postion bias Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ if not torch.jit.is_scripting(): tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops): return handle_torch_function( multi_head_attention_forward, tens_ops, query, key, value, embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias, bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight, out_proj_bias, training=training, key_padding_mask=key_padding_mask, need_weights=need_weights, attn_mask=attn_mask, use_separate_proj_weight=use_separate_proj_weight, q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight, v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v) tgt_len, bsz, embed_dim = query.size() assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.size(0) == value.size(0) and key.size(1) == value.size(1) head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 if not use_separate_proj_weight: if torch.equal(query, key) and torch.equal(key, value): # self-attention q, k, v = linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1) elif torch.equal(key, value): # encoder-decoder attention # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) if key is None: assert value is None k = None v = None else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] k, v = linear(key, _w, _b).chunk(2, dim=-1) else: # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = linear(value, _w, _b) else: q_proj_weight_non_opt = torch.jit._unwrap_optional(q_proj_weight) len1, len2 = q_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == query.size(-1) k_proj_weight_non_opt = torch.jit._unwrap_optional(k_proj_weight) len1, len2 = k_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == key.size(-1) v_proj_weight_non_opt = torch.jit._unwrap_optional(v_proj_weight) len1, len2 = v_proj_weight_non_opt.size() assert len1 == embed_dim and len2 == value.size(-1) if in_proj_bias is not None: q = linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim]) k = linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)]) v = linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):]) else: q = linear(query, q_proj_weight_non_opt, in_proj_bias) k = linear(key, k_proj_weight_non_opt, in_proj_bias) v = linear(value, v_proj_weight_non_opt, in_proj_bias) q = q * scaling if attn_mask is not None: assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \ attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \ 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype) if attn_mask.dtype == torch.uint8: warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") attn_mask = attn_mask.to(torch.bool) if attn_mask.dim() == 2: attn_mask = attn_mask.unsqueeze(0) if list(attn_mask.size()) != [1, query.size(0), key.size(0)]: raise RuntimeError('The size of the 2D attn_mask is not correct.') elif attn_mask.dim() == 3: if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]: raise RuntimeError('The size of the 3D attn_mask is not correct.') else: raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim())) # attn_mask's dim is 3 now. # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8: warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.") key_padding_mask = key_padding_mask.to(torch.bool) if bias_k is not None and bias_v is not None: if static_k is None and static_v is None: k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) else: assert static_k is None, "bias cannot be added to static key." assert static_v is None, "bias cannot be added to static value." else: assert bias_k is None assert bias_v is None # L, N, E if return_qk: return_q = q.clone() / scaling return_k = k.clone() q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) if static_k is not None: assert static_k.size(0) == bsz * num_heads assert static_k.size(2) == head_dim k = static_k if static_v is not None: assert static_v.size(0) == bsz * num_heads assert static_v.size(2) == head_dim v = static_v src_len = k.size(1) if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if add_zero_attn: src_len += 1 k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1) v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1) if attn_mask is not None: attn_mask = pad(attn_mask, (0, 1)) if key_padding_mask is not None: key_padding_mask = pad(key_padding_mask, (0, 1)) attn_output_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len] if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_output_weights.masked_fill_(attn_mask, float('-inf')) else: attn_output_weights += attn_mask if key_padding_mask is not None: attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) attn_output_weights = attn_output_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), float('-inf'), ) attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len) if rpb is not None: attn_output_weights = attn_output_weights + rpb attn_output_weights = softmax(attn_output_weights, dim=-1) attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training) attn_output = torch.bmm(attn_output_weights, v) assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim] attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) if return_qk: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return return_q, return_k, attn_output, attn_output_weights.sum(dim=1) / num_heads else: return return_q, return_k, attn_output, None else: if need_weights: # average attention weights over heads attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights.sum(dim=1) / num_heads else: return attn_output, None
InternVideo-main
Pretrain/Multi-Modalities-Pretraining/InternVideo/clip_utils/utils/attention_module_bias.py
from TerraByte.model.terrabyte_triton import TerraByteTriton as TerraByte import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 PRIME_LEN = 100 SEQ_LEN = 8192 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = TerraByte( num_tokens = 256, dim = (768, 512, 256), depth = (6, 4, 2), max_seq_len = (512, 4, 4), flash_attn = True ).cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: x = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy() train_x, valid_x = np.split(x, [int(90e6)]) data_train, data_val = map(torch.from_numpy, (train_x, valid_x)) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader), return_loss = True) loss.backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader), return_loss = True) print(f'validation loss: {loss.item()}') if i != 0 and i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime_inp = inp[:PRIME_LEN] prime = decode_tokens(prime_inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(prime_inp[None, :]) sample = sample.flatten(1) output_str = decode_tokens(sample[0][PRIME_LEN:]) print(output_str)
TerraByte-master
train_triton.py
from setuptools import setup, find_packages setup( name = 'TerraByte', packages = find_packages(), version = '0.1.5', license='MIT', description = 'TerraByte - Pytorch', long_description_content_type = 'text/markdown', author = 'Kye Gomez', author_email = '[email protected]', url = 'https://github.com/kyegomez/TerraByte', keywords = [ 'artificial intelligence', 'attention mechanism', 'transformers' ], install_requires=[ 'torch', 'einops', 'triton', 'beartype' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
TerraByte-master
setup.py
import torch from TerraByte import TerraByte model = TerraByte( num_tokens = 16000, dim = (512, 256), dim_head=64, dilation_rate=4, segment_size=2, max_seq_len = (1024, 4), depth = (6, 4), dim_head = 64, heads = 8, ) x = torch.randint(0, 16000, (1, 1024, 4)) loss = model(x, return_loss = True) loss.backward() # then after much training logits = model(x) # and sample from the logits accordingly # or you can use the generate function sampled = model.generate(temperature = 0.9, filter_thres = 0.9) # (1, 1024, 4)
TerraByte-master
example.py
from TerraByte import TerraByte import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 PRIME_LEN = 100 SEQ_LEN = 8192 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = TerraByte( num_tokens = 256, dim = (768, 512, 256), depth = (6, 4, 2), max_seq_len = (512, 4, 4), flash_attn = True ).cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: x = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy() train_x, valid_x = np.split(x, [int(90e6)]) data_train, data_val = map(torch.from_numpy, (train_x, valid_x)) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader), return_loss = True) loss.backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader), return_loss = True) print(f'validation loss: {loss.item()}') #SAVE THE MODEL WEIGHTS torch.save(model.state_dict(), f"./model_{i}.pth") if i != 0 and i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime_inp = inp[:PRIME_LEN] prime = decode_tokens(prime_inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(prime_inp[None, :]) sample = sample.flatten(1) output_str = decode_tokens(sample[0][PRIME_LEN:]) print(output_str)
TerraByte-master
train.py
import unittest import torch from torch.nn import Dropout from torch import einsum from torch import nn from torch.testing import assert_allclose from TerraByte.model.attend import Attend, FlashAttention, EfficientAttentionConfig class TestAttending(unittest.TestCase): def setUp(self): self.attend = Attend(dim=512) def test_init_default(self): self.assertEqual(self.attend_dim, 512) self.assertEqual(self.attend.heads, 64) self.assertEqual(self.attend.dim_head, 64)
TerraByte-master
testing/attention.py
from TerraByte.model.model import TerraByte import torch class TerraByte: def __init__(self, num_tokens = 16000, dim = (512, 256), dilation_rate=4, segment_size=2, max_seq_len = (1024, 4), depth = (6, 4), dim_head = 64, heads = 8, ): self.model = TerraByte( num_tokens=num_tokens, dim=dim, max_seq_len=max_seq_len, dilation_rate=dilation_rate, segment_size=segment_size, depth=depth, dim_head=dim_head, heads=heads ) def predict(self, x): self.model.eval() with torch.no_grad(): logits = self.model(x) return logits def generate( self, num_tokens=1024, temperature=0.9, filter_thres=0.9 ): self.model.eval() with torch.no_grad(): sampled = self.model.generate(num_tokens, temperature=temperature, filter_thres=filter_thres) return sampled
TerraByte-master
TerraByte/terrabyte.py
from TerraByte.model.model import TerraByte
TerraByte-master
TerraByte/__init__.py
TerraByte-master
TerraByte/training/__init__.py
import math import multiprocessing import os from datetime import timedelta from functools import partial from itertools import chain import torch from accelerate import Accelerator from accelerate.utils import DummyOptim, DummyScheduler, InitProcessGroupKwargs from datasets import load_dataset from lion_pytorch import Lion from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( CheckpointImpl, apply_activation_checkpointing, checkpoint_wrapper, ) from torch.distributed.fsdp import ( BackwardPrefetch, FullyShardedDataParallel, MixedPrecision, ShardingStrategy, ) from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy from torch.nn import LayerNorm from torch.optim import AdamW from torch.utils.data import DataLoader from tqdm import tqdm from transformers import ( AutoTokenizer, default_data_collator, get_cosine_schedule_with_warmup, get_linear_schedule_with_warmup, set_seed, ) from TerraByte.model import TerraByte, Transformer from TerraByteutils import StableAdamWUnfused # import bitsandbytes as bnb ############ SETUP CONFIG # import torch.distributed as dist # dist.init_process_group(backend='nccl', init_method="env://") ################ class CFG: BATCH_SIZE = 3 GRADIENT_ACCUMULATE_EVERY: int = 1 SEED: int = 42 LEARNING_RATE: float = 3e-4 WEIGHT_DECAY: float = 0.1 SEQ_LEN: int = 8192 NUM_CPU: int = multiprocessing.cpu_count() USE_DEEPSPEED: bool = True USE_FSDP: bool = True USE_PRETOKENIZED: bool = True USE_ACTIVATION_CHECKPOINTING: bool = True RESUME_FROM_CHECKPOINT: str = False CHECKPOINTING_STEPS: int = 1000 OUTPUT_DIR: str = 'checkpoints/' # Folder ENTITY_NAME: str = "TerraByte" # helpers def print_num_params(model, accelerator: Accelerator): # n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) accelerator.print(f"Number of parameters in model: {n_params}") # activation checkpointing def activation_checkpointing( model: torch.nn.Module, offload_to_cpu: bool = False, accelerator: Accelerator = None, ): """ Apply activation checkpointing to a model. Args: model (Module): The model to which to apply activation checkpointing. offload_to_cpu (bool, optional): Whether to offload the activations to CPU. Defaults to False. accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None. """ if accelerator is not None: accelerator.print(f"Using activation checkpointing") check_fn = lambda submodule: isinstance(submodule, Transformer) non_reentrant_wrapper = partial( checkpoint_wrapper, offload_to_cpu=offload_to_cpu, checkpoint_impl=CheckpointImpl.NO_REENTRANT, ) apply_activation_checkpointing( model, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=check_fn ) # FSDP def fsdp( model: torch.nn.Module, auto_wrap: bool = False, mp: str = "fp32", shard_strat: str = "NO_SHARD", ): """ This function wraps a given PyTorch model with the FullyShardedDataParallel (FSDP) wrapper to enable efficient data parallelism and model sharding. Args: model (torch.nn.Module): The original PyTorch model to be wrapped with FSDP. auto_wrap (bool, optional): If True, it enables automatic wrapping of the model's layers according to the transformer_auto_wrap_policy. Default is False. mp (str, optional): The mixed precision mode to be used. Can be 'bf16' for BFloat16, 'fp16' for Float16 or 'fp32' for Float32 precision. Default is 'fp32'. shard_strat (str, optional): The sharding strategy to be used. Can be 'SHARD_GRAD' for sharding at gradient computation, 'FULL_SHARD' for full model sharding or 'NO_SHARD' for no sharding. Default is 'NO_SHARD'. Raises: ValueError: If the provided mp (mixed precision mode) is not 'bf16', 'fp16' or 'fp32'. ValueError: If the provided shard_strat (sharding strategy) is not 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD'. Returns: torch.nn.Module: The input model wrapped with FSDP. """ if auto_wrap: TerraByte_auto_wrap_policy = partial( transformer_auto_wrap_policy, transformer_layer_cls={ Transformer, }, ) else: TerraByte_auto_wrap_policy = None if mp == "bf16": mp_fsdp = MixedPrecision( param_dtype=torch.bfloat16, # Gradient communication precision. reduce_dtype=torch.bfloat16, # Buffer precision. buffer_dtype=torch.bfloat16, ) elif mp == "fp16": mp_fsdp = MixedPrecision( param_dtype=torch.float16, # Gradient communication precision. reduce_dtype=torch.float16, # Buffer precision. buffer_dtype=torch.float16, ) elif mp == "fp32": mp_fsdp = MixedPrecision( param_dtype=torch.float32, # Gradient communication precision. reduce_dtype=torch.float32, # Buffer precision. buffer_dtype=torch.float32, ) else: raise ValueError( "Invalid scheduler_type. Expected 'bf16', 'fp16' or 'fp32', got: {}".format( mp ) ) if shard_strat == "SHARD_GRAD": sharding_strat_fsdp = ShardingStrategy.SHARD_GRAD_OP elif shard_strat == "FULL_SHARD": sharding_strat_fsdp = ShardingStrategy.FULL_SHARD elif shard_strat == "NO_SHARD": sharding_strat_fsdp = ShardingStrategy.NO_SHARD else: raise ValueError( "Invalid scheduler_type. Expected 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD', got: {}".format( shard_strat ) ) model = FullyShardedDataParallel( model, auto_wrap_policy=TerraByte_auto_wrap_policy, mixed_precision=mp_fsdp, backward_prefetch=BackwardPrefetch.BACKWARD_PRE, sharding_strategy=sharding_strat_fsdp, forward_prefetch=True, use_orig_params=True, ) return model # learning rate scheduler def get_lr_scheduler_with_warmup( optimizer: torch.optim.Optimizer, scheduler_type: str, num_warmup_steps: int, max_train_steps: int, grad_accumulate_every: int = 1, accelerator: Accelerator = None, ): """ Get a learning rate scheduler with warmup. Args: optimizer (Optimizer): The optimizer for which to create the learning rate scheduler. scheduler_type (str): The type of learning rate scheduler to create, either "linear" or "cosine". num_warmup_steps (int): The number of warmup steps for the learning rate scheduler. max_train_steps (int): The maximum number of training steps. grad_accumulate_every (int, optional): The gradient accumulation factor. Defaults to 1. accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None. Returns: The learning rate scheduler with warmup. Raises: ValueError: If scheduler_type is not "linear" or "cosine". """ NUM_WARMUP_STEPS = num_warmup_steps GRADIENT_ACCUMULATE_EVERY = grad_accumulate_every if accelerator is not None: accelerator.print(f"Using {scheduler_type} lr scheduler") if scheduler_type == "linear": return get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY, num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY, ) elif scheduler_type == "cosine": return get_cosine_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY, num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY, ) else: raise ValueError( "Invalid scheduler_type. Expected 'linear' or 'cosine', got: {}".format( scheduler_type ) ) # optimizers def decoupled_optimizer( model: torch.nn.Module, learning_rate: float, weight_decay: float, beta_1: float, beta_2: float, optimizer_type: str, use_fsdp: bool = True, accelerator: Accelerator = None, ): """ Decouples the optimizer from the training process. This function sets up the optimizer for the model by creating two groups of parameters: one for weight decay and one without weight decay. Then, it initializes the optimizer with these two groups of parameters. Args: model (Module): The model whose parameters are optimized. learning_rate (float): The learning rate for the optimizer. weight_decay (float): The weight decay for the optimizer. beta_1 (float): The exponential decay rate for the 1st moment estimates. beta_2 (float): The exponential decay rate for the 2nd moment estimates. optimizer_type (str): The type of the optimizer. Can be 'lion', 'adamw', or 'stable_adamw'. use_fsdp (bool, optional): If True, the optimizer will work with fully sharded data parallelism. Defaults to True. accelerator (Accelerator, optional): The accelerator from HuggingFace's Accelerate library. Defaults to None. Returns: Optimizer: The initialized optimizer. Raises: ValueError: If the optimizer type is not 'lion', 'adamw' or 'stable_adamw'. """ accelerator.print(f"Using {optimizer_type} optimizer") # Create an empty dictionary called param_dict to store the model's named parameters. param_dict = {} # Iterate over the model's named parameters and populate the param_dict with key-value pairs. for param_name, param in model.named_parameters(): param_dict[param_name] = param # Separate the model's named modules into two groups: decay and no_decay. # Create an empty list to store the names of the LayerNorm and Embedding layer weights with no weight decay. no_decay = [] if use_fsdp: exclude_module = "_fsdp_wrapped_module.token_emb" else: exclude_module = "token_emb" # Iterate through the named modules of the model. for module_name, module in model.named_modules(): # Check if the current module is an instance of any of the desired types (LayerNorm or torch.nn.Embedding). for ndim in [LayerNorm, torch.nn.Embedding]: if isinstance(module, ndim): # If torch.nn.Embedding, append its name with a ".weight" suffix to the no_decay list. if module_name == exclude_module: no_decay.append(f"{module_name}.weight") else: # If the module is an instance of LayerNorm no_decay.append(f"{module_name}.gamma") # Exit the inner loop since the desired module has been found. break # Create an empty list to store the names of the Linear layer weights with weight decay. decay = [] # Iterate through the named modules of the model. for module_name, module in model.named_modules(): # Check if the current module is an instance of the desired type (torch.nn.Linear). for ndim in [torch.nn.Linear]: if isinstance(module, ndim): # If the module is an instance of torch.nn.Linear, append its name with a ".weight" suffix to the decay list. decay.append(f"{module_name}.weight") # Exit the inner loop since the desired module has been found. break # Create two separate lists of model parameters: decay_param and no_decay_param. # The decay_param list contains the parameters that should have weight decay applied. # The no_decay_param list contains the parameters that should not have weight decay applied, excluding the 'to_logits.weight' parameter. # Create an empty list called decay_param to store the parameters with weight decay. decay_param = [] if use_fsdp: exclude_param = "_fsdp_wrapped_module.to_logits.weight" else: exclude_param = "to_logits.weight" # Iterate over the decay list, which contains the names of the parameters with weight decay. for param in decay: # Check if the current parameter is not 'to_logits.weight'. # Append the corresponding parameter from param_dict to the decay_param list. if param != exclude_param: decay_param.append(param_dict[param]) # Create an empty list called no_decay_param to store the parameters without weight decay. no_decay_param = [] # Iterate over the no_decay list, which contains the names of the parameters without weight decay. for param in no_decay: # Append the corresponding parameter from param_dict to the no_decay_param list. no_decay_param.append(param_dict[param]) # Create a list called grouped_params that contains two dictionaries. # The first dictionary has the decay_param list and the corresponding weight_decay value. # The second dictionary has the no_decay_param list and a weight_decay value of 0.0. grouped_params = [ {"params": decay_param, "weight_decay": weight_decay}, {"params": no_decay_param, "weight_decay": 0.0}, ] # Create a variable called optimizer that stores an instance of the optimizer. if optimizer_type == "lion": optimizer = Lion(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "adamw": optimizer = AdamW(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "deepspeed": optimizer = DummyOptim(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),) elif optimizer_type == "stable_adamw": optimizer = StableAdamWUnfused( grouped_params, lr=learning_rate, betas=(beta_1, beta_2), ) # elif optimizer_type=="Adam8bit": # optimizer = bnb.optim.Adam8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2)) # elif optimizer_type=="Lion8Bit": # optimizer = bnb.optim.Lion8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2)) else: raise ValueError( "Invalid optimizer_type. Expected 'lion', 'adamw', 'deepspeed' or 'stable_adamw', got: {}".format( optimizer_type ) ) # Return the optimizer. return optimizer # dataloaders def build_dataloaders(): """ Build data loaders for training. This function performs the following steps: 1. Load the tokenizer from the pretrained "EleutherAI/gpt-neox-20b" model. 2. Load the "openwebtext" dataset. 3. Tokenize the dataset, adding the end-of-sentence token to each text. 4. Process the tokenized dataset into chunks of a specified block size. Returns: Dataset: The processed dataset ready for training. """ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") dataset = load_dataset("openwebtext", split="train") tokenized_dataset = dataset.map( lambda example: tokenizer([t + tokenizer.eos_token for t in example["text"]]), batched=True, num_proc=CFG.NUM_CPU, remove_columns=["text"], ) block_size = CFG.SEQ_LEN # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } return result train_dataset = tokenized_dataset.map( group_texts, batched=True, num_proc=CFG.NUM_CPU, ) return train_dataset #switch to falconwebdataset def build_pre_tokenized(): d0 = load_dataset("conceptofmind/c4_0-to-20_neox_with_eos_8k", split="train[:10]") # d1 = load_dataset("conceptofmind/c4_21-to-40_neox_with_eos_8k", split="train") # d2 = load_dataset("conceptofmind/c4_41-to-60_neox_with_eos_8k", split="train") # d3 = load_dataset("conceptofmind/c4_61-to-80_neox_with_eos_8k", split="train") # d4 = load_dataset("conceptofmind/c4_81-to-100_neox_with_eos_8k", split="train") # train_dataset = concatenate_datasets([d0, d1, d2, d3, d4]) return d0 def Train(): # accelerator timeout = InitProcessGroupKwargs(timeout=timedelta(seconds=1_000_000)) accelerator = Accelerator( gradient_accumulation_steps=CFG.GRADIENT_ACCUMULATE_EVERY, mixed_precision="fp16", log_with="wandb", kwargs_handlers=[timeout], ) # AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = 4 #?????? accelerator.init_trackers( project_name="TerraByte", config={ "batch_size": CFG.BATCH_SIZE, "gradient_accumulate_every": CFG.GRADIENT_ACCUMULATE_EVERY, "learning_rate": CFG.LEARNING_RATE, "seq_len": CFG.SEQ_LEN, }, init_kwargs={"wandb": {"entity": CFG.ENTITY_NAME}}, ) accelerator.print(f"Total GPUS: {accelerator.num_processes}") # set seed set_seed(CFG.SEED) model = TerraByte().to(accelerator.device) print_num_params(model, accelerator) if CFG.USE_FSDP: model = fsdp( model, mp="fp16", shard_strat="SHARD_GRAD" ) if CFG.USE_ACTIVATION_CHECKPOINTING: activation_checkpointing(model, accelerator) model = accelerator.prepare(model) # dataloaders if CFG.USE_PRETOKENIZED: train_dataset = build_pre_tokenized() else: train_dataset = build_dataloaders() train_loader = DataLoader( train_dataset, batch_size=CFG.BATCH_SIZE, collate_fn=default_data_collator, ) # optimizer optim = decoupled_optimizer( model=model, learning_rate=CFG.LEARNING_RATE, weight_decay=CFG.WEIGHT_DECAY, beta_1=0.90, beta_2=0.95, optimizer_type='Adam8bit', use_fsdp=True, accelerator=accelerator ) # Determine number of training steps max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY) accelerator.print(f"Max train steps: {max_train_steps}") # lr scheduler NUM_WARMUP_STEPS = int(max_train_steps * 0.01) accelerator.print(f"Num warmup steps: {NUM_WARMUP_STEPS}") if CFG.USE_DEEPSPEED: lr_scheduler = DummyScheduler( optim, total_num_steps=max_train_steps * accelerator.num_processes, warmup_num_steps=NUM_WARMUP_STEPS ) else: lr_scheduler = get_lr_scheduler_with_warmup( optimizer=optim, scheduler_type="cosine", num_warmup_steps=NUM_WARMUP_STEPS, max_train_steps=max_train_steps, grad_accumulate_every=CFG.GRADIENT_ACCUMULATE_EVERY, ) # prepare optim, train_loader, lr_scheduler = accelerator.prepare( optim, train_loader, lr_scheduler ) # checkpoint scheduler accelerator.register_for_checkpointing(lr_scheduler) # I do not know why Huggingface recommends recalculation of max_train_steps max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY) accelerator.print(f"Max train steps recalculated: {max_train_steps}") # Total batch size for logging total_batch_size = ( CFG.BATCH_SIZE * accelerator.num_processes * CFG.GRADIENT_ACCUMULATE_EVERY ) accelerator.print(f"Total batch size: {total_batch_size}") # resume training progress_bar = tqdm( range(max_train_steps), disable=not accelerator.is_local_main_process ) completed_steps = 0 if CFG.RESUME_FROM_CHECKPOINT: if CFG.RESUME_FROM_CHECKPOINT is not None or CFG.RESUME_FROM_CHECKPOINT != "": accelerator.print(f"Resuming from checkpoint {CFG.RESUME_FROM_CHECKPOINT}") accelerator.load_state(CFG.RESUME_FROM_CHECKPOINT) path = os.path.basename(CFG.RESUME_FROM_CHECKPOINT) training_difference = os.path.splitext(path)[0] # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = ( int(training_difference.replace("step_", "")) * CFG.GRADIENT_ACCUMULATE_EVERY ) if CFG.RESUME_FROM_CHECKPOINT and resume_step is not None: train_loader = accelerator.skip_first_batches(train_loader, resume_step) completed_steps += resume_step progress_bar.update(resume_step) # training model.train() for step, batch in enumerate(train_loader): with accelerator.accumulate(model): inputs = batch["input_ids"].to(accelerator.device) loss = model(inputs, return_loss=True) accelerator.backward(loss) accelerator.log({"loss": loss.item()}, step=step) if accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), 1.0) optim.step() lr_scheduler.step() optim.zero_grad() if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 if isinstance(CFG.CHECKPOINTING_STEPS, int): if completed_steps % CFG.CHECKPOINTING_STEPS == 0: output_dir = f"step_{completed_steps }" if CFG.OUTPUT_DIR is not None: output_dir = os.path.join(CFG.OUTPUT_DIR, output_dir) accelerator.save_state(output_dir) if completed_steps >= max_train_steps: break # end training # accelerator.print(f"Training Finished") accelerator.end_training() # save final model # accelerator.print(f"Saving model to {CFG.OUTPUT_DIR}") if CFG.OUTPUT_DIR is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) with accelerator.main_process_first(): accelerator.save( unwrapped_model.state_dict(), f"{CFG.OUTPUT_DIR}/final/final_model.pt" ) def main(): os.environ['MASTER_ADDR'] #= 'localhost' os.environ['MASTER_PORT'] #= '9994' # # [CRITICAL] Pay attention to this when scaling to multiple GPUs and clusters # # Pay attention to this, use "accelerate config" os.environ['RANK'] #= str(0) # Number of nodes (servers) os.environ['WORLD_SIZE'] #= str(torch.cuda.device_count()) torch.distributed.init_process_group() Train() if __name__ == '__main__': main()
TerraByte-master
TerraByte/training/train.py
import torch # This is the unfused version of StableAdamW. It is slower than the fused version (coming). class StableAdamWUnfused(torch.optim.Optimizer): def __init__( self, params, lr=0.002, weight_decay=0.2, betas=(0.9, 0.99), eps=1e-8, clip_thresh=1.0, precision="amp_bfloat16", custom_scalar=65536, ): beta1, beta2 = betas[0], betas[1] defaults = dict(lr=lr, weight_decay=weight_decay, beta1=beta1, beta2=beta2) super(StableAdamWUnfused, self).__init__(params, defaults) self.eps = eps self.d = clip_thresh # Set precision to "custom_fp16" if you want to use a fixed loss scalar, custom_scalar, which is divided out in the update step. # If you do this, call (custom_scalar * loss).backward() instead of loss.backward(). self.precision = precision self.custom_scaler = custom_scalar for group in self.param_groups: group["step"] = 1.0 print("Using StableAdamWUnfused-v1") def __setstate__(self, state): super(StableAdamWUnfused, self).__setstate__(state) def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: lr = group["lr"] weight_decay = group["weight_decay"] beta1 = group["beta1"] beta2 = group["beta2"] step = group["step"] for p in group["params"]: if p.grad is None: continue theta = p.data param_state = self.state[p] if self.precision == "custom_fp16": g = p.grad.data / self.custom_scaler if torch.any(torch.isnan(g) | torch.isinf(g)): continue else: g = p.grad.data if "exp_avg" not in param_state: v = param_state["exp_avg"] = torch.zeros_like(theta) u = param_state["exp_avg_sq"] = torch.zeros_like(theta) else: v = param_state["exp_avg"] u = param_state["exp_avg_sq"] beta1hat = beta1 * (1 - beta1 ** (step - 1)) / (1 - beta1**step) beta2hat = beta2 * (1 - beta2 ** (step - 1)) / (1 - beta2**step) v = v.mul_(beta1hat).add_(g, alpha=1.0 - beta1hat) u = u.mul_(beta2hat).addcmul_(g, g, value=1.0 - beta2hat) denominator = u.sqrt().add_(self.eps) # StableAdamW = AdamW + update clipping (https://arxiv.org/abs/1804.04235) applied tensor-wise. rms = ( torch.div( g.pow(2), torch.maximum(u, (self.eps**2) * torch.ones_like(u)) ) .mean() .sqrt() .item() ) theta = theta.mul_(1.0 - lr * weight_decay).addcdiv_( v, denominator, value=-lr * (1.0 / max(1.0, rms / self.d)) ) # save current params param_state["exp_avg"] = v param_state["exp_avg_sq"] = u group["step"] = step + 1
TerraByte-master
TerraByte/utils/stable_adamw.py
TerraByte-master
TerraByte/utils/__init__.py
import gzip import html import io import math from functools import lru_cache from typing import Callable, List, Optional, Tuple import ftfy import numpy as np import regex as re import torch import torch.nn as nn from iopath.common.file_io import g_pathmgr from timm.models.layers import trunc_normal_ from TerraByte.model.helpers import VerboseNNModule, cast_if_src_dtype def get_sinusoid_encoding_table(n_position, d_hid): """Sinusoid position encoding table""" # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [ position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid) ] sinusoid_table = np.array( [get_position_angle_vec(pos_i) for pos_i in range(n_position)] ) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return torch.FloatTensor(sinusoid_table).unsqueeze(0) def interpolate_pos_encoding_2d(target_spatial_size, pos_embed): N = pos_embed.shape[1] if N == target_spatial_size: return pos_embed dim = pos_embed.shape[-1] # nn.functional.interpolate doesn't work with bfloat16 so we cast to float32 pos_embed, updated = cast_if_src_dtype(pos_embed, torch.bfloat16, torch.float32) pos_embed = nn.functional.interpolate( pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute( 0, 3, 1, 2 ), scale_factor=math.sqrt(target_spatial_size / N), mode="bicubic", ) if updated: pos_embed, _ = cast_if_src_dtype(pos_embed, torch.float32, torch.bfloat16) pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return pos_embed def interpolate_pos_encoding( npatch_per_img, pos_embed, patches_layout, input_shape=None, first_patch_idx=1, ): assert first_patch_idx == 0 or first_patch_idx == 1, "there is 1 CLS token or none" N = pos_embed.shape[1] - first_patch_idx # since it's 1 if cls_token exists if npatch_per_img == N: return pos_embed assert ( patches_layout[-1] == patches_layout[-2] ), "Interpolation of pos embed not supported for non-square layouts" class_emb = pos_embed[:, :first_patch_idx] pos_embed = pos_embed[:, first_patch_idx:] if input_shape is None or patches_layout[0] == 1: # simple 2D pos embedding, no temporal component pos_embed = interpolate_pos_encoding_2d(npatch_per_img, pos_embed) elif patches_layout[0] > 1: # pos embed has a temporal component assert len(input_shape) == 4, "temporal interpolation not supported" # we only support 2D interpolation in this case num_frames = patches_layout[0] num_spatial_tokens = patches_layout[1] * patches_layout[2] pos_embed = pos_embed.view(1, num_frames, num_spatial_tokens, -1) # interpolate embedding for zeroth frame pos_embed = interpolate_pos_encoding_2d( npatch_per_img, pos_embed[0, 0, ...].unsqueeze(0) ) else: raise ValueError("This type of interpolation isn't implemented") return torch.cat((class_emb, pos_embed), dim=1) def _get_pos_embedding( npatch_per_img, pos_embed, patches_layout, input_shape, first_patch_idx=1, ): pos_embed = interpolate_pos_encoding( npatch_per_img, pos_embed, patches_layout, input_shape=input_shape, first_patch_idx=first_patch_idx, ) return pos_embed class PatchEmbedGeneric(nn.Module): """ PatchEmbed from Hydra """ def __init__(self, proj_stem, norm_layer: Optional[nn.Module] = None): super().__init__() if len(proj_stem) > 1: self.proj = nn.Sequential(*proj_stem) else: # Special case to be able to load pre-trained models that were # trained with a standard stem self.proj = proj_stem[0] self.norm_layer = norm_layer def get_patch_layout(self, img_size): with torch.no_grad(): dummy_img = torch.zeros( [ 1, ] + img_size ) dummy_out = self.proj(dummy_img) embed_dim = dummy_out.shape[1] patches_layout = tuple(dummy_out.shape[2:]) num_patches = np.prod(patches_layout) return patches_layout, num_patches, embed_dim def forward(self, x): x = self.proj(x) # B C (T) H W -> B (T)HW C x = x.flatten(2).transpose(1, 2) if self.norm_layer is not None: x = self.norm_layer(x) return x class SpatioTemporalPosEmbeddingHelper(VerboseNNModule): def __init__( self, patches_layout: List, num_patches: int, num_cls_tokens: int, embed_dim: int, learnable: bool, ) -> None: super().__init__() self.num_cls_tokens = num_cls_tokens self.patches_layout = patches_layout self.num_patches = num_patches self.num_tokens = num_cls_tokens + num_patches self.learnable = learnable if self.learnable: self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim)) trunc_normal_(self.pos_embed, std=0.02) else: self.register_buffer( "pos_embed", get_sinusoid_encoding_table(self.num_tokens, embed_dim) ) def get_pos_embedding(self, vision_input, all_vision_tokens): input_shape = vision_input.shape pos_embed = _get_pos_embedding( all_vision_tokens.size(1) - self.num_cls_tokens, pos_embed=self.pos_embed, patches_layout=self.patches_layout, input_shape=input_shape, first_patch_idx=self.num_cls_tokens, ) return pos_embed class RGBDTPreprocessor(VerboseNNModule): def __init__( self, rgbt_stem: PatchEmbedGeneric, depth_stem: Optional[PatchEmbedGeneric], img_size: Tuple = (3, 224, 224), num_cls_tokens: int = 1, pos_embed_fn: Optional[Callable] = None, use_type_embed: bool = False, init_param_style: str = "openclip", ) -> None: super().__init__() stem = rgbt_stem if rgbt_stem is not None else depth_stem ( self.patches_layout, self.num_patches, self.embed_dim, ) = stem.get_patch_layout(img_size) self.rgbt_stem = rgbt_stem self.depth_stem = depth_stem self.use_pos_embed = pos_embed_fn is not None self.use_type_embed = use_type_embed self.num_cls_tokens = num_cls_tokens if self.use_pos_embed: self.pos_embedding_helper = pos_embed_fn( patches_layout=self.patches_layout, num_cls_tokens=num_cls_tokens, num_patches=self.num_patches, embed_dim=self.embed_dim, ) if self.num_cls_tokens > 0: self.cls_token = nn.Parameter( torch.zeros(1, self.num_cls_tokens, self.embed_dim) ) if self.use_type_embed: self.type_embed = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) self.init_parameters(init_param_style) @torch.no_grad() def init_parameters(self, init_param_style): if init_param_style == "openclip": # OpenCLIP style initialization scale = self.embed_dim**-0.5 if self.use_pos_embed: nn.init.normal_(self.pos_embedding_helper.pos_embed) self.pos_embedding_helper.pos_embed *= scale if self.num_cls_tokens > 0: nn.init.normal_(self.cls_token) self.cls_token *= scale elif init_param_style == "vit": self.cls_token.data.fill_(0) else: raise ValueError(f"Unknown init {init_param_style}") if self.use_type_embed: nn.init.normal_(self.type_embed) def tokenize_input_and_cls_pos(self, input, stem, mask): # tokens is of shape B x L x D tokens = stem(input) assert tokens.ndim == 3 assert tokens.shape[2] == self.embed_dim B = tokens.shape[0] if self.num_cls_tokens > 0: class_tokens = self.cls_token.expand( B, -1, -1 ) # stole class_tokens impl from Phil Wang, thanks tokens = torch.cat((class_tokens, tokens), dim=1) if self.use_pos_embed: pos_embed = self.pos_embedding_helper.get_pos_embedding(input, tokens) tokens = tokens + pos_embed if self.use_type_embed: tokens = tokens + self.type_embed.expand(B, -1, -1) return tokens def forward(self, vision=None, depth=None, patch_mask=None): if patch_mask is not None: raise NotImplementedError() if vision is not None: vision_tokens = self.tokenize_input_and_cls_pos( vision, self.rgbt_stem, patch_mask ) if depth is not None: depth_tokens = self.tokenize_input_and_cls_pos( depth, self.depth_stem, patch_mask ) # aggregate tokens if vision is not None and depth is not None: final_tokens = vision_tokens + depth_tokens else: final_tokens = vision_tokens if vision is not None else depth_tokens return_dict = { "trunk": { "tokens": final_tokens, }, "head": {}, } return return_dict class AudioPreprocessor(RGBDTPreprocessor): def __init__(self, audio_stem: PatchEmbedGeneric, **kwargs) -> None: super().__init__(rgbt_stem=audio_stem, depth_stem=None, **kwargs) def forward(self, audio=None): return super().forward(vision=audio) class ThermalPreprocessor(RGBDTPreprocessor): def __init__(self, thermal_stem: PatchEmbedGeneric, **kwargs) -> None: super().__init__(rgbt_stem=thermal_stem, depth_stem=None, **kwargs) def forward(self, thermal=None): return super().forward(vision=thermal) def build_causal_attention_mask(context_length): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(context_length, context_length, requires_grad=False) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask class TextPreprocessor(VerboseNNModule): def __init__( self, vocab_size: int, context_length: int, embed_dim: int, causal_masking: bool, supply_seq_len_to_head: bool = True, num_cls_tokens: int = 0, init_param_style: str = "openclip", ) -> None: super().__init__() self.vocab_size = vocab_size self.context_length = context_length self.token_embedding = nn.Embedding(vocab_size, embed_dim) self.pos_embed = nn.Parameter( torch.empty(1, self.context_length + num_cls_tokens, embed_dim) ) self.causal_masking = causal_masking if self.causal_masking: mask = build_causal_attention_mask(self.context_length) # register the mask as a buffer so it can be moved to the right device self.register_buffer("mask", mask) self.supply_seq_len_to_head = supply_seq_len_to_head self.num_cls_tokens = num_cls_tokens self.embed_dim = embed_dim if num_cls_tokens > 0: assert self.causal_masking is False, "Masking + CLS token isn't implemented" self.cls_token = nn.Parameter( torch.zeros(1, self.num_cls_tokens, embed_dim) ) self.init_parameters(init_param_style) @torch.no_grad() def init_parameters(self, init_param_style="openclip"): # OpenCLIP style initialization nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.pos_embed, std=0.01) if init_param_style == "openclip": # OpenCLIP style initialization scale = self.embed_dim**-0.5 if self.num_cls_tokens > 0: nn.init.normal_(self.cls_token) self.cls_token *= scale elif init_param_style == "vit": self.cls_token.data.fill_(0) else: raise ValueError(f"Unknown init {init_param_style}") def forward(self, text): # text tokens are of shape B x L x D text_tokens = self.token_embedding(text) # concat CLS tokens if any if self.num_cls_tokens > 0: B = text_tokens.shape[0] class_tokens = self.cls_token.expand( B, -1, -1 ) # stole class_tokens impl from Phil Wang, thanks text_tokens = torch.cat((class_tokens, text_tokens), dim=1) text_tokens = text_tokens + self.pos_embed return_dict = { "trunk": { "tokens": text_tokens, }, "head": {}, } # Compute sequence length after adding CLS tokens if self.supply_seq_len_to_head: text_lengths = text.argmax(dim=-1) return_dict["head"] = { "seq_len": text_lengths, } if self.causal_masking: return_dict["trunk"].update({"attn_mask": self.mask}) return return_dict class Im2Video(nn.Module): """Convert an image into a trivial video.""" def __init__(self, time_dim=2): super().__init__() self.time_dim = time_dim def forward(self, x): if x.ndim == 4: # B, C, H, W -> B, C, T, H, W return x.unsqueeze(self.time_dim) elif x.ndim == 5: return x else: raise ValueError(f"Dimension incorrect {x.shape}") class PadIm2Video(Im2Video): def __init__(self, ntimes, pad_type, time_dim=2): super().__init__(time_dim=time_dim) assert ntimes > 0 assert pad_type in ["zero", "repeat"] self.ntimes = ntimes self.pad_type = pad_type def forward(self, x): x = super().forward(x) if x.shape[self.time_dim] == 1: if self.pad_type == "repeat": new_shape = [1] * len(x.shape) new_shape[self.time_dim] = self.ntimes x = x.repeat(new_shape) elif self.pad_type == "zero": padarg = [0, 0] * len(x.shape) padarg[2 * self.time_dim + 1] = self.ntimes - x.shape[self.time_dim] x = nn.functional.pad(x, padarg) return x # Modified from github.com/openai/CLIP @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r"\s+", " ", text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path: str, context_length=77): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with g_pathmgr.open(bpe_path, "rb") as fh: bpe_bytes = io.BytesIO(fh.read()) merges: List[str] = gzip.open(bpe_bytes).read().decode("utf-8").split("\n") merges = merges[1 : 49152 - 256 - 2 + 1] merges: List[Tuple[str, ...]] = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v + "</w>" for v in vocab] for merge in merges: vocab.append("".join(merge)) vocab.extend(["<|startoftext|>", "<|endoftext|>"]) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = { "<|startoftext|>": "<|startoftext|>", "<|endoftext|>": "<|endoftext|>", } self.pat = re.compile( r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE, ) self.context_length = context_length def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + "</w>",) pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = "".join(self.byte_encoder[b] for b in token.encode("utf-8")) bpe_tokens.extend( self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ") ) return bpe_tokens def decode(self, tokens): text = "".join([self.decoder[token] for token in tokens]) text = ( bytearray([self.byte_decoder[c] for c in text]) .decode("utf-8", errors="replace") .replace("</w>", " ") ) return text def __call__(self, texts, context_length=None): if not context_length: context_length = self.context_length if isinstance(texts, str): texts = [texts] sot_token = self.encoder["<|startoftext|>"] eot_token = self.encoder["<|endoftext|>"] all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): tokens = tokens[:context_length] result[i, : len(tokens)] = torch.tensor(tokens) if len(result) == 1: return result[0] return result class IMUPreprocessor(VerboseNNModule): def __init__( self, kernel_size: int, imu_stem: PatchEmbedGeneric, embed_dim: int, img_size: Tuple = (6, 2000), num_cls_tokens: int = 1, pos_embed_fn: Optional[Callable] = None, init_param_style: str = "openclip", ) -> None: super().__init__() self.imu_stem = imu_stem self.embed_dim = embed_dim self.use_pos_embed = pos_embed_fn is not None self.num_cls_tokens = num_cls_tokens self.kernel_size = kernel_size self.pos_embed = nn.Parameter( torch.empty(1, (img_size[1] // kernel_size) + num_cls_tokens, embed_dim) ) if self.num_cls_tokens > 0: self.cls_token = nn.Parameter( torch.zeros(1, self.num_cls_tokens, self.embed_dim) ) self.init_parameters(init_param_style) @torch.no_grad() def init_parameters(self, init_param_style): nn.init.normal_(self.pos_embed, std=0.01) if init_param_style == "openclip": # OpenCLIP style initialization scale = self.embed_dim**-0.5 if self.num_cls_tokens > 0: nn.init.normal_(self.cls_token) self.cls_token *= scale elif init_param_style == "vit": self.cls_token.data.fill_(0) else: raise ValueError(f"Unknown init {init_param_style}") def tokenize_input_and_cls_pos(self, input, stem): # tokens is of shape B x L x D tokens = stem.norm_layer(stem.proj(input)) assert tokens.ndim == 3 assert tokens.shape[2] == self.embed_dim B = tokens.shape[0] if self.num_cls_tokens > 0: class_tokens = self.cls_token.expand( B, -1, -1 ) # stole class_tokens impl from Phil Wang, thanks tokens = torch.cat((class_tokens, tokens), dim=1) if self.use_pos_embed: tokens = tokens + self.pos_embed return tokens def forward(self, imu): # Patchify imu = imu.unfold( -1, self.kernel_size, self.kernel_size, ).permute(0, 2, 1, 3) imu = imu.reshape(imu.size(0), imu.size(1), -1) imu_tokens = self.tokenize_input_and_cls_pos( imu, self.imu_stem, ) return_dict = { "trunk": { "tokens": imu_tokens, }, "head": {}, } return return_dict from PIL import Image import io import cv2 import numpy as np from pydub import AudioSegment class ImageToByte: def __init__(self, format="JPEG"): self.format = format def convert(self, image_path): with Image.open(image_path) as img: byte_arr = io.BytesIO img.save(byte_arr, format=self.format) return byte_arr.getvalue() class VideoToByte: def convert(self, video_path): #use opencv to read the video vidcap = cv2.VideoCapture(video_path) success, image = vidcap.read() video_bytes = [] while success: #convert each frame to bytes is_success, buffer = cv2.imencode('.jp', image) video_bytes.append(buffer.tobytes()) success, image = vidcap.read() return video_bytes class AudioToByte: def convert(self, audio_path): audio = AudioSegment.from_file(audio_path) return audio.raw_data image_to_byte = ImageToByte() image_bytes = image_to_byte.convert("path_to_your_image.jpg") audio_to_byte = AudioToByte() audio_bytes = audio_to_byte.convert("path_to_your_audio.mp3") video_to_byte = VideoToByte() video_bytes = video_to_byte.convert("path_to_your_video.mp4")
TerraByte-master
TerraByte/model/multimodal_preprocessor.py
import torch.nn as nn from einops import rearrange from TerraByte.model.attend import Attend from TerraByte.model.helpers import RMSNorm, apply_rotary_pos_emb, exists ############## ATTENTION class Attention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, dropout = 0., flash = False ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads inner_dim = dim_head * heads self.attend = Attend( causal = True, flash = flash, dropout = dropout ) self.dropout = nn.Dropout(dropout) self.norm = RMSNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, dim_head * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x, rotary_emb = None): h, device = self.heads, x.device x = self.norm(x) q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1)) q = rearrange(q, 'b n (h d) -> b h n d', h = h) if exists(rotary_emb): q, k = map(lambda t: apply_rotary_pos_emb(rotary_emb, t), (q, k)) out = self.attend(q, k, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out)
TerraByte-master
TerraByte/model/attention.py
# class Transformer(nn.Module): # def __init__( # self, # *, # dim, # layers, # dim_head = 64, # heads = 8, # attn_dropout = 0., # ff_dropout = 0., # ff_mult = 4, # rel_pos_bias = True, # flash_attn = True, # ): # super().__init__() # self.alibi = Alibi(heads = heads) if rel_pos_bias else None # self.layers = nn.ModuleList([]) # for _ in range(layers): # self.layers.append(nn.ModuleList([ # Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, flash = flash_attn), # FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout) # ])) # self.norm = RMSNorm(dim) # def forward(self, x): # n = x.shape[-2] # attn_bias = self.alibi(n, n, device = x.device) if exists(self.alibi) else None # for attn, ff in self.layers: # x = attn(token_shift(x), attn_bias = attn_bias) + x # x = ff(token_shift(x)) + x # return self.norm(x)
TerraByte-master
TerraByte/model/transformer_alibi.py
TerraByte-master
TerraByte/model/__init__.py
from itertools import zip_longest from typing import Tuple, Union import torch import torch.nn.functional as F from beartype import beartype from beartype.typing import Tuple, Union from einops import rearrange, repeat from einops.layers.torch import Rearrange from torch import nn from tqdm import tqdm from TerraByte.model.helpers import ( cast_tuple, default, exists, gumbel_sample, pack_one, reduce_mult, remainder_to_mult, top_k, unpack_one, ) from TerraByte.model.transformer import Transformer class TerraByte(nn.Module): @beartype def __init__( self, *, num_tokens, dim: Union[Tuple, int], depth: Tuple, max_seq_len: Tuple, dim_head = 64, heads = 8, attn_dropout = 0., ff_mult = 4, ff_dropout = 0., pad_id = 0, pos_emb=False, rel_pos_bias = True, dilation_rate = None, segment_size = None, use_xpos = False, use_rel_pos_bias = False, flash_attn = False ): super().__init__() # simplified configuration for each stage of the hierarchy # depth = (2, 2, 4) would translate to depth 2 at first stage, depth 2 second stage, depth 4 third # max_seq_len = (16, 8, 4) would translate to max sequence length of 16 at first stage, length of 8 at second stage, length of 4 for last assert isinstance(depth, tuple) and isinstance(max_seq_len, tuple) assert len(depth) == len(max_seq_len) self.stages = len(depth) dim = cast_tuple(dim, self.stages) assert len(dim) == self.stages coarsest_dim, *_, fine_dim = dim self.max_seq_len = max_seq_len self.start_tokens = nn.ParameterList([nn.Parameter(torch.randn(h_dim)) for h_dim, seq_len in zip(dim, max_seq_len)]) # noqa: E501 self.pos_embs = nn.ModuleList([nn.Embedding(seq_len, h_dim) for h_dim, seq_len in zip(dim, max_seq_len)]) if pos_emb else None self.token_embs = nn.ModuleList([]) patch_size = 1 self.token_embs.append(nn.Embedding(num_tokens, fine_dim)) for dim_out, seq_len in zip(reversed(dim[:-1]), reversed(max_seq_len[1:])): patch_size *= seq_len self.token_embs.append(nn.Sequential( nn.Embedding(num_tokens, fine_dim), Rearrange('... r d -> ... (r d)'), nn.LayerNorm(patch_size * fine_dim), nn.Linear(patch_size * fine_dim, dim_out), nn.LayerNorm(dim_out) )) self.transformers = nn.ModuleList([]) self.to_next_transformer_projections = nn.ModuleList([]) for h_dim, next_h_dim, stage_depth, next_seq_len in zip_longest(dim, dim[1:], depth, max_seq_len[1:]): self.transformers.append(Transformer( dim = h_dim, layers = stage_depth, dim_head = dim_head, heads = heads, attn_dropout = attn_dropout, ff_dropout = ff_dropout, ff_mult = ff_mult, # rel_pos_bias = rel_pos_bias, flash_attn = flash_attn )) proj = nn.Identity() if exists(next_h_dim) and next_h_dim != dim: proj = nn.Sequential( Rearrange('b ... d -> b (...) d'), nn.Linear(h_dim, next_h_dim * next_seq_len), Rearrange('b m (n d) -> (b m) n d', n = next_seq_len) ) self.to_next_transformer_projections.append(proj) self.to_logits = nn.Linear(fine_dim, num_tokens) self.pad_id = pad_id def generate(self, prime = None, filter_thres = 0.9, temperature = 1., default_batch_size = 1): total_seq_len = reduce_mult(self.max_seq_len) device = next(self.parameters()).device if not exists(prime): prime = torch.empty((default_batch_size, 0), dtype = torch.long, device = device) seq = prime batch = seq.shape[0] for _ in tqdm(range(total_seq_len - seq.shape[-1])): logits = self.forward(seq)[:, -1] logits = top_k(logits, thres = filter_thres) sampled = gumbel_sample(logits, dim = -1, temperature = temperature) seq = torch.cat((seq, rearrange(sampled, 'b -> b 1')), dim = -1) return seq.reshape(batch, *self.max_seq_len) def forward_empty(self, batch_size): # take care of special case # where you sample from input of 0 (start token only) prev_stage_tokens_repr = None for stage_start_tokens, transformer, proj in zip(self.start_tokens, self.transformers, self.to_next_transformer_projections): tokens = repeat(stage_start_tokens, 'd -> b 1 d', b = batch_size) if exists(prev_stage_tokens_repr): tokens = tokens + prev_stage_tokens_repr[..., :tokens.shape[-2], :] tokens = transformer(tokens) prev_stage_tokens_repr = proj(tokens) return self.to_logits(tokens) def forward(self, ids, return_loss = False): batch = ids.shape[0] assert ids.ndim in {2, self.stages + 1} flattened_dims = ids.ndim == 2 if ids.numel() == 0: return self.forward_empty(ids.shape[0]) if flattened_dims: # allow for ids to be given in the shape of (batch, seq) # in which case it will be auto-padded to the next nearest multiple of depth seq len seq_len = ids.shape[-1] multiple_of = reduce_mult(self.max_seq_len[1:]) padding = remainder_to_mult(seq_len, multiple_of) ids = F.pad(ids, (0, padding), value = self.pad_id) ids = ids.reshape(batch, -1, *self.max_seq_len[1:]) b, *prec_dims, device = *ids.shape, ids.device # check some dimensions assert prec_dims[0] <= self.max_seq_len[0], 'the first dimension of your axial autoregressive transformer must be less than the first tuple element of max_seq_len (like any autoregressive transformer)' assert tuple(prec_dims[1:]) == tuple(self.max_seq_len[1:]), 'all subsequent dimensions must match exactly' # get tokens for all hierarchical stages, reducing by appropriate dimensions # and adding the absolute positional embeddings tokens_at_stages = [] pos_embs = default(self.pos_embs, (None,)) for ind, pos_emb, token_emb in zip_longest(range(len(prec_dims)), pos_embs, self.token_embs): is_first = ind == 0 tokens = token_emb(ids) if exists(pos_emb): positions = pos_emb(torch.arange(tokens.shape[-2], device = device)) tokens = tokens + positions tokens_at_stages.insert(0, tokens) if is_first: continue ids = rearrange(ids, '... m n -> ... (m n)') # the un-pixelshuffled representations of the previous hierarchy, starts with None prev_stage_tokens_repr = None # spatial tokens is tokens with depth pos reduced along depth dimension + spatial positions for stage_start_tokens, stage_tokens, transformer, proj in zip(self.start_tokens, tokens_at_stages, self.transformers, self.to_next_transformer_projections): stage_tokens, ps = pack_one(stage_tokens, '* n d') stage_start_tokens = repeat(stage_start_tokens, 'f -> b 1 f', b = stage_tokens.shape[0]) # concat start token stage_tokens = torch.cat(( stage_start_tokens, stage_tokens, ), dim = -2) # sum the previous hierarchy's representation if exists(prev_stage_tokens_repr): prev_stage_tokens_repr = F.pad(prev_stage_tokens_repr, (0, 0, 1, 0), value = 0.) stage_tokens = stage_tokens + prev_stage_tokens_repr attended = transformer(stage_tokens) attended = unpack_one(attended, ps, '* n d') # project for next stage in the hierarchy prev_stage_tokens_repr = proj(attended[..., :-1, :]) # project to logits logits = self.to_logits(attended) start_tokens = logits[(slice(None), *((0,) * (logits.ndim - 2)), slice(None))] start_tokens = rearrange(start_tokens, 'b d -> b 1 d') logits = logits[..., 1:, :] if not return_loss: if flattened_dims: logits = rearrange(logits, 'b ... c -> b (...) c') logits = logits[:, :seq_len] return logits logits = rearrange(logits, 'b ... c -> b (...) c') logits = torch.cat((start_tokens, logits), dim = -2) preds = rearrange(logits, 'b n c -> b c n') labels = rearrange(ids, 'b ... -> b (...)') loss = F.cross_entropy( preds[..., :-1], labels, ignore_index = self.pad_id ) return loss
TerraByte-master
TerraByte/model/model.py
from collections import namedtuple from functools import wraps from packaging import version import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange # constants EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, causal = False, dropout = 0., flash = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.causal = causal self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = EfficientAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(False, True, True) def get_mask(self, i, j, device): return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1) def flash_attn(self, q, k, v, mask = None, attn_bias = None): _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device # single headed key / values if k.ndim == 3: k = rearrange(k, 'b n d -> b 1 n d') if v.ndim == 3: v = rearrange(v, 'b n d -> b 1 n d') # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L if exists(mask) and mask.ndim != 4: mask = rearrange(mask, 'b j -> b 1 1 j') mask = mask.expand(-1, heads, q_len, -1) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0., is_causal = self.causal ) return out def forward(self, q, k, v, mask = None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ q_len, k_len, device = q.shape[-2], k.shape[-2], q.device scale = q.shape[-1] ** -0.5 kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' if self.flash: return self.flash_attn(q, k, v, mask = mask) # similarity sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale # causal mask if self.causal: causal_mask = self.get_mask(q_len, k_len, device) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v) return out
TerraByte-master
TerraByte/model/attend.py
from itertools import zip_longest from typing import Tuple, Union import torch import torch.nn.functional as F from beartype import beartype from beartype.typing import Tuple, Union from einops import rearrange, repeat from einops.layers.torch import Rearrange from torch import nn from tqdm import tqdm from TerraByte.model.helpers import ( cast_tuple, default, exists, gumbel_sample, pack_one, reduce_mult, remainder_to_mult, top_k, unpack_one, ) from TerraByte.model.transformer import Transformer #regular megabyte no universal patch embedder class Megabyte(nn.Module): @beartype def __init__( self, *, num_tokens, dim: Union[Tuple, int], depth: Tuple, max_seq_len: Tuple, dim_head = 64, heads = 8, attn_dropout = 0., ff_mult = 4, ff_dropout = 0., pad_id = 0, rel_pos = False, pos_emb = False, flash_attn = False ): super().__init__() # simplified configuration for each stage of the hierarchy # depth = (2, 2, 4) would translate to depth 2 at first stage, depth 2 second stage, depth 4 third # max_seq_len = (16, 8, 4) would translate to max sequence length of 16 at first stage, length of 8 at second stage, length of 4 for last assert isinstance(depth, tuple) and isinstance(max_seq_len, tuple) assert len(depth) == len(max_seq_len) self.stages = len(depth) dim = cast_tuple(dim, self.stages) assert len(dim) == self.stages coarsest_dim, *_, fine_dim = dim self.max_seq_len = max_seq_len self.start_tokens = nn.ParameterList([nn.Parameter(torch.randn(h_dim)) for h_dim, seq_len in zip(dim, max_seq_len)]) self.pos_embs = nn.ModuleList([nn.Embedding(seq_len, h_dim) for h_dim, seq_len in zip(dim, max_seq_len)]) if pos_emb else None self.token_embs = nn.ModuleList([]) patch_size = 1 self.token_embs.append(nn.Embedding(num_tokens, fine_dim)) for dim_out, seq_len in zip(reversed(dim[:-1]), reversed(max_seq_len[1:])): patch_size *= seq_len self.token_embs.append(nn.Sequential( nn.Embedding(num_tokens, fine_dim), Rearrange('... r d -> ... (r d)'), nn.LayerNorm(patch_size * fine_dim), nn.Linear(patch_size * fine_dim, dim_out), nn.LayerNorm(dim_out) )) self.transformers = nn.ModuleList([]) self.to_next_transformer_projections = nn.ModuleList([]) for h_dim, next_h_dim, stage_depth, next_seq_len in zip_longest(dim, dim[1:], depth, max_seq_len[1:]): self.transformers.append(Transformer( dim = h_dim, layers = stage_depth, dim_head = dim_head, heads = heads, attn_dropout = attn_dropout, ff_dropout = ff_dropout, ff_mult = ff_mult, rel_pos = rel_pos, flash_attn = flash_attn )) proj = nn.Identity() if exists(next_h_dim) and next_h_dim != dim: proj = nn.Sequential( Rearrange('b ... d -> b (...) d'), nn.Linear(h_dim, next_h_dim * next_seq_len), Rearrange('b m (n d) -> (b m) n d', n = next_seq_len) ) self.to_next_transformer_projections.append(proj) self.to_logits = nn.Linear(fine_dim, num_tokens) self.pad_id = pad_id def generate(self, prime = None, filter_thres = 0.9, temperature = 1., default_batch_size = 1): total_seq_len = reduce_mult(self.max_seq_len) device = next(self.parameters()).device if not exists(prime): prime = torch.empty((default_batch_size, 0), dtype = torch.long, device = device) seq = prime batch = seq.shape[0] for _ in tqdm(range(total_seq_len - seq.shape[-1])): logits = self.forward(seq)[:, -1] logits = top_k(logits, thres = filter_thres) sampled = gumbel_sample(logits, dim = -1, temperature = temperature) seq = torch.cat((seq, rearrange(sampled, 'b -> b 1')), dim = -1) return seq.reshape(batch, *self.max_seq_len) def forward_empty(self, batch_size): # take care of special case # where you sample from input of 0 (start token only) prev_stage_tokens_repr = None for stage_start_tokens, transformer, proj in zip(self.start_tokens, self.transformers, self.to_next_transformer_projections): tokens = repeat(stage_start_tokens, 'd -> b 1 d', b = batch_size) if exists(prev_stage_tokens_repr): tokens = tokens + prev_stage_tokens_repr[..., :tokens.shape[-2], :] tokens = transformer(tokens) prev_stage_tokens_repr = proj(tokens) return self.to_logits(tokens) def forward(self, ids, return_loss = False): batch = ids.shape[0] assert ids.ndim in {2, self.stages + 1} flattened_dims = ids.ndim == 2 if ids.numel() == 0: return self.forward_empty(ids.shape[0]) if flattened_dims: # allow for ids to be given in the shape of (batch, seq) # in which case it will be auto-padded to the next nearest multiple of depth seq len seq_len = ids.shape[-1] multiple_of = reduce_mult(self.max_seq_len[1:]) padding = remainder_to_mult(seq_len, multiple_of) ids = F.pad(ids, (0, padding), value = self.pad_id) ids = ids.reshape(batch, -1, *self.max_seq_len[1:]) b, *prec_dims, device = *ids.shape, ids.device # check some dimensions assert prec_dims[0] <= self.max_seq_len[0], 'the first dimension of your axial autoregressive transformer must be less than the first tuple element of max_seq_len (like any autoregressive transformer)' assert tuple(prec_dims[1:]) == tuple(self.max_seq_len[1:]), 'all subsequent dimensions must match exactly' # get tokens for all hierarchical stages, reducing by appropriate dimensions # and adding the absolute positional embeddings tokens_at_stages = [] pos_embs = default(self.pos_embs, (None,)) for ind, pos_emb, token_emb in zip_longest(range(len(prec_dims)), pos_embs, self.token_embs): is_first = ind == 0 tokens = token_emb(ids) if exists(pos_emb): positions = pos_emb(torch.arange(tokens.shape[-2], device = device)) tokens = tokens + positions tokens_at_stages.insert(0, tokens) if is_first: continue ids = rearrange(ids, '... m n -> ... (m n)') # the un-pixelshuffled representations of the previous hierarchy, starts with None prev_stage_tokens_repr = None # spatial tokens is tokens with depth pos reduced along depth dimension + spatial positions for stage_start_tokens, stage_tokens, transformer, proj in zip(self.start_tokens, tokens_at_stages, self.transformers, self.to_next_transformer_projections): stage_tokens, ps = pack_one(stage_tokens, '* n d') stage_start_tokens = repeat(stage_start_tokens, 'f -> b 1 f', b = stage_tokens.shape[0]) # concat start token stage_tokens = torch.cat(( stage_start_tokens, stage_tokens, ), dim = -2) # sum the previous hierarchy's representation if exists(prev_stage_tokens_repr): prev_stage_tokens_repr = F.pad(prev_stage_tokens_repr, (0, 0, 1, 0), value = 0.) stage_tokens = stage_tokens + prev_stage_tokens_repr attended = transformer(stage_tokens) attended = unpack_one(attended, ps, '* n d') # project for next stage in the hierarchy prev_stage_tokens_repr = proj(attended[..., :-1, :]) # project to logits logits = self.to_logits(attended) start_tokens = logits[(slice(None), *((0,) * (logits.ndim - 2)), slice(None))] start_tokens = rearrange(start_tokens, 'b d -> b 1 d') logits = logits[..., 1:, :] if not return_loss: if flattened_dims: logits = rearrange(logits, 'b ... c -> b (...) c') logits = logits[:, :seq_len] return logits logits = rearrange(logits, 'b ... c -> b (...) c') logits = torch.cat((start_tokens, logits), dim = -2) preds = rearrange(logits, 'b n c -> b c n') labels = rearrange(ids, 'b ... -> b (...)') loss = F.cross_entropy( preds[..., :-1], labels, ignore_index = self.pad_id ) return loss
TerraByte-master
TerraByte/model/megabyte.py
from typing import Tuple import torch from beartype.typing import Tuple from einops import rearrange from einops.layers.torch import Rearrange from torch import Tensor, nn class PatchEmbeddings(nn.Module): def __init__(self, dim_in, dim_out, seq_len): super().__init__() self.embedding = nn.Sequential( Rearrange('... rd -> ... (r d)'), nn.LayerNorm(seq_len * dim_in), nn.Linear(seq_len * dim_in, dim_out), nn.LayerNorm(dim_out), ) def forward(self, x): return self.embedding(x) #Universal modality patch embdders => process all modalities """In this implementation, we create a UniversalPatchEmbedder class that takes a tuple of input dimensions, an output dimension, and a patch size as arguments. The class contains a list of embedders and modality embeddings. In the forward method, we select the appropriate embedder based on the modality and apply it to the input. We then add the modality embeddings to the output. """ class UniversalPatchEmbedder(nn.Module): def __init__(self, input_dims: Tuple[int], output_dim: int, patch_size: int): super().__init__() self.patch_size = patch_size self.embedders = nn.ModuleList([nn.Linear(dim, output_dim) for dim in input_dims]) self.modality_embeddings = nn.Embedding(len(input_dims), output_dim) def forward(self, x: Tensor, modality: Tensor) -> Tensor: #determine the input shape of x input_shape = x.shape print(f'Input shape: {input_shape}') #reshape x into a common shape (batch_size, input_dim) x = x.view(input_shape[0], -1) print(f'x reshaped: {x}') #select the most optimal embedder for modality embedder = self.embedders[modality] print(f"Embedder: {embedder}") #apply selected embedder x = rearrange(x, 'b (p1 p2) d -> b p1 p2 d', p1 = self.patch_size) x = embedder(x) #modality embeddings modality_emb = self.modality_embeddings(torch.tensor(modality).to(x.device)) print(f"Modality embedder: {modality_emb}") x = x + modality_emb print(f"X shape: {x}") return x
TerraByte-master
TerraByte/model/patches.py
import torch import triton import triton.language as tl @triton.jit def max_fn(x, y): return tl.math.max(x, y) @triton.jit def _fwd_kernel( Q, K, V, sm_scale, L, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, IS_CAUSAL: tl.constexpr, ): start_m = tl.program_id(0) off_hz = tl.program_id(1) qvk_offset = off_hz * stride_qh Q_block_ptr = tl.make_block_ptr( base=Q + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0) ) K_block_ptr = tl.make_block_ptr( base=K + qvk_offset, shape=(BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1) ) V_block_ptr = tl.make_block_ptr( base=V + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0) ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # scale sm_scale by log_2(e) and use # 2^x instead of exp in the loop because CSE and LICM # don't work as expected with `exp` in the loop qk_scale = sm_scale * 1.44269504 # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) q = (q * qk_scale).to(tl.float16) # loop over k, v and update accumulator lo = 0 hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX for start_n in range(lo, hi, BLOCK_N): # -- load k, v -- k = tl.load(K_block_ptr) v = tl.load(V_block_ptr) # -- compute qk --- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) if IS_CAUSAL: qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf")) qk += tl.dot(q, k) # -- compute scaling constant --- m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) # -- scale and update acc -- acc_scale = l_i * 0 + alpha # workaround some compiler bug acc *= acc_scale[:, None] acc += tl.dot(p.to(tl.float16), v) # -- update m_i and l_i -- l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new # update pointers K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) # write back l and m acc = acc / l_i[:, None] l_ptrs = L + off_hz * N_CTX + offs_m tl.store(l_ptrs, m_i + tl.math.log2(l_i)) # write back O O_block_ptr = tl.make_block_ptr( base=Out + qvk_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0) ) tl.store(O_block_ptr, acc.to(tl.float16)) @triton.jit def _bwd_preprocess( Out, DO, Delta, BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr, ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_n = tl.arange(0, D_HEAD) # load o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) # compute delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_m, delta) @triton.jit def _bwd_kernel( Q, K, V, sm_scale, Out, DO, DQ, DK, DV, L, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, Z, H, N_CTX, num_block, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, CAUSAL: tl.constexpr, ): off_hz = tl.program_id(0) off_z = off_hz // H off_h = off_hz % H qk_scale = sm_scale * 1.44269504 # offset pointers for batch/head Q += off_z * stride_qz + off_h * stride_qh K += off_z * stride_qz + off_h * stride_qh V += off_z * stride_qz + off_h * stride_qh DO += off_z * stride_qz + off_h * stride_qh DQ += off_z * stride_qz + off_h * stride_qh DK += off_z * stride_qz + off_h * stride_qh DV += off_z * stride_qz + off_h * stride_qh for start_n in range(0, num_block): if CAUSAL: lo = start_n * BLOCK_M else: lo = 0 # initialize row/col offsets offs_qm = lo + tl.arange(0, BLOCK_M) offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M) offs_m = tl.arange(0, BLOCK_N) offs_k = tl.arange(0, BLOCK_DMODEL) # initialize pointers to value-like data q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) v_ptrs = V + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) do_ptrs = DO + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) # pointer to row-wise quantities in value-like data D_ptrs = D + off_hz * N_CTX l_ptrs = L + off_hz * N_CTX # initialize dv amd dk dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # k and v stay in SRAM throughout k = tl.load(k_ptrs) v = tl.load(v_ptrs) # loop over rows for start_m in range(lo, num_block * BLOCK_M, BLOCK_M): offs_m_curr = start_m + offs_m # load q, k, v, do on-chip q = tl.load(q_ptrs) # recompute p = softmax(qk, dim=-1).T if CAUSAL: qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), float(0.), float("-inf")) else: qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, tl.trans(k)) qk *= qk_scale l_i = tl.load(l_ptrs + offs_m_curr) p = tl.math.exp2(qk - l_i[:, None]) # compute dv do = tl.load(do_ptrs) dv += tl.dot(tl.trans(p.to(Q.dtype.element_ty)), do) # compute dp = dot(v, do) Di = tl.load(D_ptrs + offs_m_curr) dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None] dp += tl.dot(do, tl.trans(v)) # compute ds = p * (dp - delta[:, None]) ds = p * dp * sm_scale # compute dk = dot(ds.T, q) dk += tl.dot(tl.trans(ds.to(Q.dtype.element_ty)), q) # compute dq dq = tl.load(dq_ptrs) dq += tl.dot(ds.to(Q.dtype.element_ty), k) tl.store(dq_ptrs, dq) # increment pointers dq_ptrs += BLOCK_M * stride_qm q_ptrs += BLOCK_M * stride_qm do_ptrs += BLOCK_M * stride_qm # write-back dv_ptrs = DV + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) dk_ptrs = DK + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk) empty = torch.empty(128, device="cuda") class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, causal, sm_scale): # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} o = torch.empty_like(q) BLOCK_M = 128 BLOCK_N = 64 grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1], 1) L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) num_warps = 4 if Lk <= 64 else 8 _fwd_kernel[grid]( q, k, v, sm_scale, L, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, BLOCK_DMODEL=Lk, IS_CAUSAL=causal, num_warps=num_warps, num_stages=4) ctx.save_for_backward(q, k, v, o, L) ctx.grid = grid ctx.sm_scale = sm_scale ctx.BLOCK_DMODEL = Lk ctx.causal = causal return o @staticmethod def backward(ctx, do): BLOCK = 128 q, k, v, o, L = ctx.saved_tensors do = do.contiguous() dq = torch.zeros_like(q, dtype=torch.float32) dk = torch.empty_like(k) dv = torch.empty_like(v) delta = torch.empty_like(L) _bwd_preprocess[(ctx.grid[0] * ctx.grid[1], )]( o, do, delta, BLOCK_M=BLOCK, D_HEAD=ctx.BLOCK_DMODEL, ) _bwd_kernel[(ctx.grid[1],)]( q, k, v, ctx.sm_scale, o, do, dq, dk, dv, L, delta, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), q.shape[0], q.shape[1], q.shape[2], ctx.grid[0], BLOCK_M=BLOCK, BLOCK_N=BLOCK, BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=8, CAUSAL=ctx.causal, num_stages=1, ) return dq, dk, dv, None, None attention = _attention.apply
TerraByte-master
TerraByte/model/attention_triton.py
import torch.nn as nn from TerraByte.model.helpers import RotaryEmbedding, FeedForward, RMSNorm, token_shift, exists from TerraByte.model.attention import Attention class Transformer(nn.Module): def __init__( self, *, dim, layers, dim_head = 64, heads = 8, attn_dropout = 0., ff_dropout = 0., ff_mult = 4, rel_pos = True, flash_attn = False ): super().__init__() self.rotary_emb = RotaryEmbedding(dim_head) if rel_pos else None self.layers = nn.ModuleList([]) for _ in range(layers): self.layers.append(nn.ModuleList([ Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, flash = flash_attn), FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout) ])) self.norm = RMSNorm(dim) def forward(self, x): n = x.shape[-2] rotary_emb = self.rotary_emb(n) if exists(self.rotary_emb) else None for attn, ff in self.layers: x = attn(token_shift(x), rotary_emb = rotary_emb) + x x = ff(token_shift(x)) + x return self.norm(x)
TerraByte-master
TerraByte/model/transformer.py
from itertools import zip_longest from typing import Tuple, Union import torch import torch.nn.functional as F from beartype import beartype from beartype.typing import Tuple, Union from einops import rearrange, repeat from einops.layers.torch import Rearrange from torch import nn from tqdm import tqdm from TerraByte.model.helpers import ( cast_tuple, exists, gumbel_sample, pack_one, reduce_mult, remainder_to_mult, top_k, unpack_one, ) from TerraByte.model.patches import UniversalPatchEmbedder from TerraByte.model.transformer import Transformer # main class class OmniMEGABYTE(nn.Module): @beartype def __init__( self, *, num_tokens, dim: Union[Tuple, int], depth: Tuple, max_seq_len: Tuple, dim_head = 64, heads = 8, attn_dropout = 0., ff_mult = 4, ff_dropout = 0., pad_id = 0, rel_pos_bias = True, flash_attn = False ): super().__init__() # simplified configuration for each stage of the hierarchy # depth = (2, 2, 4) would translate to depth 2 at first stage, depth 2 second stage, depth 4 third # max_seq_len = (16, 8, 4) would translate to max sequence length of 16 at first stage, length of 8 at second stage, length of 4 for last assert isinstance(depth, tuple) and isinstance(max_seq_len, tuple) assert len(depth) == len(max_seq_len) self.stages = len(depth) dim = cast_tuple(dim, self.stages) assert len(dim) == self.stages coarsest_dim, *_, fine_dim = dim self.token_emb = nn.Embedding(num_tokens, fine_dim) self.max_seq_len = max_seq_len self.start_tokens = nn.ParameterList([nn.Parameter(torch.randn(h_dim)) for h_dim, seq_len in zip(dim, max_seq_len)]) self.pos_embs = nn.ModuleList([nn.Embedding(seq_len, h_dim) for h_dim, seq_len in zip(dim, max_seq_len)]) # self.patch_embedders = nn.ModuleList([nn.Sequential( # Rearrange('... r d -> ... (r d)'), # nn.LayerNorm(seq_len * dim_in), # nn.Linear(seq_len * dim_in, dim_out), # nn.LayerNorm(dim_out) # ) for dim_in, dim_out, seq_len in zip(dim[1:], dim[:-1], max_seq_len[1:])]) #v2 input_dims = (dim[1], dim[0], max_seq_len[1]) self.patch_embedders = UniversalPatchEmbedder(input_dims, dim[0], max_seq_len[1]) #-------> self.transformers = nn.ModuleList([]) self.to_next_transformer_projections = nn.ModuleList([]) for h_dim, next_h_dim, stage_depth, next_seq_len in zip_longest(dim, dim[1:], depth, max_seq_len[1:]): self.transformers.append(Transformer( dim = h_dim, layers = stage_depth, dim_head = dim_head, heads = heads, attn_dropout = attn_dropout, ff_dropout = ff_dropout, ff_mult = ff_mult, rel_pos_bias = rel_pos_bias, flash_attn = flash_attn )) proj = nn.Identity() if exists(next_h_dim) and next_h_dim != dim: proj = nn.Sequential( nn.Linear(h_dim, next_h_dim * next_seq_len), Rearrange('... (n d) -> (...) n d', n = next_seq_len) ) self.to_next_transformer_projections.append(proj) self.to_logits = nn.Linear(fine_dim, num_tokens) self.pad_id = pad_id def generate(self, prime = None, filter_thres = 0.9, temperature = 1., default_batch_size = 1): total_seq_len = reduce_mult(self.max_seq_len) device = next(self.parameters()).device if not exists(prime): prime = torch.empty((default_batch_size, 0), dtype = torch.long, device = device) seq = prime batch = seq.shape[0] for _ in tqdm(range(total_seq_len - seq.shape[-1])): logits = self.forward(seq)[:, -1] logits = top_k(logits, thres = filter_thres) sampled = gumbel_sample(logits, dim = -1, temperature = temperature) seq = torch.cat((seq, rearrange(sampled, 'b -> b 1')), dim = -1) return seq.reshape(batch, *self.max_seq_len) def forward_empty(self, batch_size): # take care of special case # where you sample from input of 0 (start token only) prev_stage_tokens_repr = None for stage_start_tokens, transformer, proj in zip(self.start_tokens, self.transformers, self.to_next_transformer_projections): tokens = repeat(stage_start_tokens, 'd -> b 1 d', b = batch_size) if exists(prev_stage_tokens_repr): tokens = tokens + prev_stage_tokens_repr[..., :tokens.shape[-2], :] tokens = transformer(tokens) prev_stage_tokens_repr = proj(tokens) return self.to_logits(tokens) def forward(self, ids, modality, return_loss = False): batch = ids.shape[0] print(f'ids shape: {ids.shape[0]}') assert ids.ndim in {2, self.stages + 1} print(f"self stages: {self.stages}") flattened_dims = ids.ndim == 2 if ids.numel() == 0: return self.forward_empty(ids.shape[0]) if flattened_dims: # allow for ids to be given in the shape of (batch, seq) # in which case it will be auto-padded to the next nearest multiple of depth seq len seq_len = ids.shape[-1] multiple_of = reduce_mult(self.max_seq_len[1:]) padding = remainder_to_mult(seq_len, multiple_of) ids = F.pad(ids, (0, padding), value = self.pad_id) ids = ids.reshape(batch, -1, *self.max_seq_len[1:]) b, *prec_dims, device = *ids.shape, ids.device # check some dimensions assert prec_dims[0] <= self.max_seq_len[0], 'the first dimension of your axial autoregressive transformer must be less than the first tuple element of max_seq_len (like any autoregressive transformer)' assert tuple(prec_dims[1:]) == tuple(self.max_seq_len[1:]), 'all subsequent dimensions must match exactly' # get token embeddings tokens = self.token_emb(ids) # get tokens for all hierarchical stages, reducing by appropriate dimensions # and adding the absolute positional embeddings tokens_at_stages = [] reduced_tokens = tokens patch_embedders_list = [self.patch_embedders] for ind, pos_emb, patch_emb in zip(range(len(prec_dims)), reversed(self.pos_embs), reversed(patch_embedders_list)): is_first = ind == 0 if not is_first: reduced_tokens = patch_emb(reduced_tokens, modality) positions = pos_emb(torch.arange(reduced_tokens.shape[-2], device=device)) tokens_with_position = reduced_tokens + positions tokens_at_stages.insert(0, tokens_with_position) # the un-pixelshuffled representations of the previous hierarchy, starts with None prev_stage_tokens_repr = None # spatial tokens is tokens with depth pos reduced along depth dimension + spatial positions for stage_start_tokens, stage_tokens, transformer, proj in zip(self.start_tokens, tokens_at_stages, self.transformers, self.to_next_transformer_projections): stage_tokens, ps = pack_one(stage_tokens, '* n d') stage_start_tokens = repeat(stage_start_tokens, 'f -> b 1 f', b=stage_tokens.shape[0]) #update the dimensions of the stage_start_tokens tensor stage_start_tokens = stage_start_tokens[..., :stage_tokens.shape[-1]] # Print the shapes of the tensors before concatenating print(f"stage_start_tokens shape: {stage_start_tokens.shape}") print(f"stage_tokens shape: {stage_tokens.shape}") # concat start token stage_tokens = torch.cat(( stage_start_tokens, stage_tokens, ), dim=-2) # sum the previous hierarchy's representation if exists(prev_stage_tokens_repr): prev_stage_tokens_repr = F.pad(prev_stage_tokens_repr, (0, 0, 1, 0), value=0.) stage_tokens = stage_tokens + prev_stage_tokens_repr attended = transformer(stage_tokens) attended = unpack_one(attended, ps, '* n d') # project for next stage in the hierarchy prev_stage_tokens_repr = proj(attended[..., :-1, :]) # project to logits logits = self.to_logits(attended) start_tokens = logits[(slice(None), *((0,) * (logits.ndim - 2)), slice(None))] start_tokens = rearrange(start_tokens, 'b d -> b 1 d') logits = logits[..., 1:, :] if not return_loss: if flattened_dims: logits = rearrange(logits, 'b ... c -> b (...) c') logits = logits[:, :seq_len] return logits logits = rearrange(logits, 'b ... c -> b (...) c') logits = torch.cat((start_tokens, logits), dim = -2) preds = rearrange(logits, 'b n c -> b c n') labels = rearrange(ids, 'b ... -> b (...)') loss = F.cross_entropy( preds[..., :-1], labels, ignore_index = self.pad_id ) return loss
TerraByte-master
TerraByte/model/omnibyte.py
from itertools import zip_longest from typing import Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from beartype import beartype from beartype.typing import Tuple, Union from einops import rearrange, repeat from einops.layers.torch import Rearrange from torch import nn from tqdm import tqdm from TerraByte.model.attention import Attention from TerraByte.model.flash_triton import flash_attn_kvpacked_func, flash_attn_func from TerraByte.model.helpers import ( FeedForward, default, RMSNorm, RotaryEmbedding, apply_rotary_pos_emb, cast_tuple, exists, gumbel_sample, pack_one, reduce_mult, remainder_to_mult, token_shift, top_k, unpack_one, ) from TerraByte.model.transformer import Transformer # class Attention(nn.Module): # def __init__( # self, # *, # dim, # dim_head = 64, # heads = 8, # dropout = 0., # flash = False # ): # super().__init__() # self.scale = dim_head ** -0.5 # self.heads = heads # inner_dim = dim_head * heads # self.attend = attention # Replace Attend with _attention # self.dropout = nn.Dropout(dropout) # self.norm = RMSNorm(dim) # self.to_q = nn.Linear(dim, inner_dim, bias = False) # self.to_kv = nn.Linear(dim, dim_head * 2, bias = False) # self.to_out = nn.Linear(inner_dim, dim, bias = False) # def forward(self, x, rotary_emb = None): # h, device = self.heads, x.device # x = self.norm(x) # q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1)) # q = rearrange(q, 'b n (h d) -> b h n d', h = h) # if exists(rotary_emb): # q, k = map(lambda t: apply_rotary_pos_emb(rotary_emb, t), (q, k)) # #ENSURE Q, K, V have atleast 4 dimensions # q = q.unsqueeze(0) if q.dim() < 4 else q # k = k.unsqueeze(0) if k.dim() < 4 else k # v = v.unsqueeze(0)if v.dim() < 4 else v # q.type(torch.float32) # k.type(torch.float32) # v.type(torch.float32) # # Ensure k has the correct shape # print(f'k shape: {k.shape}') # k = k.view(1, self.heads, -1, q.shape[-1]) # out = self.attend(q, k, v, True, self.scale) # Add causal and sm_scale parameters # out = rearrange(out, 'b h n d -> b n (h d)') # return self.to_out(out) class Attention(nn.Module): def __init__(self, dim, heads=8, dim_head=64, dropout=0.0): super().__init__() self.dim = dim self.heads = heads self.dim_head = dim_head self.scale = dim_head ** -0.5 inner_dim = dim_head * heads self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim) self.dropout = nn.Dropout(dropout) def forward(self, x, rotary_emb=None, kv=None): b, n, _, h, dh = *x.shape, self.heads, self.dim_head assert kv is None or kv.shape == x.shape, 'input and key-value pair must have the same shape' q = self.to_q(x) kv = default(kv, x) k, v = self.to_kv(kv).chunk(2, dim=-1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) if exists(rotary_emb): q, k = map(lambda t: apply_rotary_pos_emb(rotary_emb, t), (q, k)) q = q * self.scale dots = torch.einsum('bhid,bhjd->bhij', q, k) # assuming q, k for each token in the sequence is independent attn = dots.softmax(dim=-1) attn = self.dropout(attn) if kv is not None: # Convert q, k, and v to float16 before passing them to the flash_attn_kvpacked_func q = q.half() k = k.half() v = v.half() out = flash_attn_kvpacked_func(q, torch.stack([k, v], dim=2), attn) else: # Convert q, k, and v to float16 before passing them to the flash_attn_func q = q.half() k = k.half() v = v.half() out = flash_attn_func(q, k, v, attn) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__( self, *, dim, layers, dim_head = 64, heads = 8, attn_dropout = 0., ff_dropout = 0., ff_mult = 4, rel_pos = True, flash_attn = False ): super().__init__() self.rotary_emb = RotaryEmbedding(dim_head) if rel_pos else None self.layers = nn.ModuleList([]) for _ in range(layers): self.layers.append(nn.ModuleList([ Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout), #flash = flash_attn), FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout) ])) self.norm = RMSNorm(dim) def forward(self, x): n = x.shape[-2] rotary_emb = self.rotary_emb(n) if exists(self.rotary_emb) else None for attn, ff in self.layers: x = attn(token_shift(x), rotary_emb = rotary_emb) + x x = ff(token_shift(x)) + x return self.norm(x) class TerraByteTriton(nn.Module): @beartype def __init__( self, *, num_tokens, dim: Union[Tuple, int], depth: Tuple, max_seq_len: Tuple, dim_head = 64, heads = 8, attn_dropout = 0., ff_mult = 4, ff_dropout = 0., pad_id = 0, pos_emb=False, rel_pos_bias = True, dilation_rate = None, segment_size = None, use_xpos = False, use_rel_pos_bias = False, flash_attn = False ): super().__init__() # simplified configuration for each stage of the hierarchy # depth = (2, 2, 4) would translate to depth 2 at first stage, depth 2 second stage, depth 4 third # max_seq_len = (16, 8, 4) would translate to max sequence length of 16 at first stage, length of 8 at second stage, length of 4 for last assert isinstance(depth, tuple) and isinstance(max_seq_len, tuple) assert len(depth) == len(max_seq_len) self.stages = len(depth) dim = cast_tuple(dim, self.stages) assert len(dim) == self.stages coarsest_dim, *_, fine_dim = dim self.max_seq_len = max_seq_len self.start_tokens = nn.ParameterList([nn.Parameter(torch.randn(h_dim)) for h_dim, seq_len in zip(dim, max_seq_len)]) # noqa: E501 self.pos_embs = nn.ModuleList([nn.Embedding(seq_len, h_dim) for h_dim, seq_len in zip(dim, max_seq_len)]) if pos_emb else None self.token_embs = nn.ModuleList([]) patch_size = 1 self.token_embs.append(nn.Embedding(num_tokens, fine_dim)) for dim_out, seq_len in zip(reversed(dim[:-1]), reversed(max_seq_len[1:])): patch_size *= seq_len self.token_embs.append(nn.Sequential( nn.Embedding(num_tokens, fine_dim), Rearrange('... r d -> ... (r d)'), nn.LayerNorm(patch_size * fine_dim), nn.Linear(patch_size * fine_dim, dim_out), nn.LayerNorm(dim_out) )) self.transformers = nn.ModuleList([]) self.to_next_transformer_projections = nn.ModuleList([]) for h_dim, next_h_dim, stage_depth, next_seq_len in zip_longest(dim, dim[1:], depth, max_seq_len[1:]): self.transformers.append(Transformer( dim = h_dim, layers = stage_depth, dim_head = dim_head, heads = heads, attn_dropout = attn_dropout, ff_dropout = ff_dropout, ff_mult = ff_mult, # rel_pos_bias = rel_pos_bias, flash_attn = flash_attn )) proj = nn.Identity() if exists(next_h_dim) and next_h_dim != dim: proj = nn.Sequential( Rearrange('b ... d -> b (...) d'), nn.Linear(h_dim, next_h_dim * next_seq_len), Rearrange('b m (n d) -> (b m) n d', n = next_seq_len) ) self.to_next_transformer_projections.append(proj) self.to_logits = nn.Linear(fine_dim, num_tokens) self.pad_id = pad_id def generate(self, prime = None, filter_thres = 0.9, temperature = 1., default_batch_size = 1): total_seq_len = reduce_mult(self.max_seq_len) device = next(self.parameters()).device if not exists(prime): prime = torch.empty((default_batch_size, 0), dtype = torch.long, device = device) seq = prime batch = seq.shape[0] for _ in tqdm(range(total_seq_len - seq.shape[-1])): logits = self.forward(seq)[:, -1] logits = top_k(logits, thres = filter_thres) sampled = gumbel_sample(logits, dim = -1, temperature = temperature) seq = torch.cat((seq, rearrange(sampled, 'b -> b 1')), dim = -1) return seq.reshape(batch, *self.max_seq_len) def forward_empty(self, batch_size): # take care of special case # where you sample from input of 0 (start token only) prev_stage_tokens_repr = None for stage_start_tokens, transformer, proj in zip(self.start_tokens, self.transformers, self.to_next_transformer_projections): tokens = repeat(stage_start_tokens, 'd -> b 1 d', b = batch_size) if exists(prev_stage_tokens_repr): tokens = tokens + prev_stage_tokens_repr[..., :tokens.shape[-2], :] tokens = transformer(tokens) prev_stage_tokens_repr = proj(tokens) return self.to_logits(tokens) def forward(self, ids, return_loss = False): batch = ids.shape[0] assert ids.ndim in {2, self.stages + 1} flattened_dims = ids.ndim == 2 if ids.numel() == 0: return self.forward_empty(ids.shape[0]) if flattened_dims: # allow for ids to be given in the shape of (batch, seq) # in which case it will be auto-padded to the next nearest multiple of depth seq len seq_len = ids.shape[-1] multiple_of = reduce_mult(self.max_seq_len[1:]) padding = remainder_to_mult(seq_len, multiple_of) ids = F.pad(ids, (0, padding), value = self.pad_id) ids = ids.reshape(batch, -1, *self.max_seq_len[1:]) b, *prec_dims, device = *ids.shape, ids.device # check some dimensions assert prec_dims[0] <= self.max_seq_len[0], 'the first dimension of your axial autoregressive transformer must be less than the first tuple element of max_seq_len (like any autoregressive transformer)' assert tuple(prec_dims[1:]) == tuple(self.max_seq_len[1:]), 'all subsequent dimensions must match exactly' # get tokens for all hierarchical stages, reducing by appropriate dimensions # and adding the absolute positional embeddings tokens_at_stages = [] pos_embs = default(self.pos_embs, (None,)) for ind, pos_emb, token_emb in zip_longest(range(len(prec_dims)), pos_embs, self.token_embs): is_first = ind == 0 tokens = token_emb(ids) if exists(pos_emb): positions = pos_emb(torch.arange(tokens.shape[-2], device = device)) tokens = tokens + positions tokens_at_stages.insert(0, tokens) if is_first: continue ids = rearrange(ids, '... m n -> ... (m n)') # the un-pixelshuffled representations of the previous hierarchy, starts with None prev_stage_tokens_repr = None # spatial tokens is tokens with depth pos reduced along depth dimension + spatial positions for stage_start_tokens, stage_tokens, transformer, proj in zip(self.start_tokens, tokens_at_stages, self.transformers, self.to_next_transformer_projections): stage_tokens, ps = pack_one(stage_tokens, '* n d') stage_start_tokens = repeat(stage_start_tokens, 'f -> b 1 f', b = stage_tokens.shape[0]) # concat start token stage_tokens = torch.cat(( stage_start_tokens, stage_tokens, ), dim = -2) # sum the previous hierarchy's representation if exists(prev_stage_tokens_repr): prev_stage_tokens_repr = F.pad(prev_stage_tokens_repr, (0, 0, 1, 0), value = 0.) stage_tokens = stage_tokens + prev_stage_tokens_repr attended = transformer(stage_tokens) attended = unpack_one(attended, ps, '* n d') # project for next stage in the hierarchy prev_stage_tokens_repr = proj(attended[..., :-1, :]) # project to logits logits = self.to_logits(attended) start_tokens = logits[(slice(None), *((0,) * (logits.ndim - 2)), slice(None))] start_tokens = rearrange(start_tokens, 'b d -> b 1 d') logits = logits[..., 1:, :] if not return_loss: if flattened_dims: logits = rearrange(logits, 'b ... c -> b (...) c') logits = logits[:, :seq_len] return logits logits = rearrange(logits, 'b ... c -> b (...) c') logits = torch.cat((start_tokens, logits), dim = -2) preds = rearrange(logits, 'b n c -> b c n') labels = rearrange(ids, 'b ... -> b (...)') loss = F.cross_entropy( preds[..., :-1], labels, ignore_index = self.pad_id ) return loss
TerraByte-master
TerraByte/model/terrabyte_triton.py
import math import torch import triton import triton.language as tl # Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128 # @triton.autotune( # configs=[ # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1), # # This config has a race condition when EVEN_M == False, disabling it for now. # # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1), # ], # key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'] # ) @triton.heuristics( { "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0, "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0, "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], } ) @triton.jit def _fwd_kernel( Q, K, V, Bias, Out, Lse, TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # off_b = tl.program_id(1) # off_h = tl.program_id(2) # off_hb = off_b * nheads + off_h # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_HEADDIM) # Initialize pointers to Q, K, V # Adding parenthesis around indexing might use int32 math instead of int64 math? # https://github.com/openai/triton/issues/741 # I'm seeing a tiny bit of difference (5-7us) q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :]) k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :]) v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :]) if BIAS_TYPE == 'vector': b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n elif BIAS_TYPE == 'matrix': b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :]) # initialize pointer to m and l t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) # load q: it will stay in SRAM throughout # [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call # tl.load(q_ptrs), we get the wrong output! if EVEN_M & EVEN_N: if EVEN_HEADDIM: q = tl.load(q_ptrs) else: q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0) else: q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # loop over k, v and update accumulator end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k) for start_n in range(0, end_n, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition if EVEN_HEADDIM: k = tl.load(k_ptrs + start_n * stride_kn) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k, trans_b=True) # Trying to combine the two masks seem to make the result wrong if not EVEN_N: # Need to mask out otherwise the softmax is wrong qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf")) if IS_CAUSAL: qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf")) if BIAS_TYPE != 'none': if BIAS_TYPE == 'vector': if EVEN_N: bias = tl.load(b_ptrs + start_n).to(tl.float32) else: bias = tl.load(b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0).to(tl.float32) bias = bias[None, :] elif BIAS_TYPE == 'matrix': if EVEN_M & EVEN_N: bias = tl.load(b_ptrs + start_n).to(tl.float32) else: bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32) # Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler # can then fuse the mult and add into an fma instruction. But if we have bias we need to # to multiply with softmax_scale here. qk = qk * softmax_scale + bias m_ij = tl.maximum(tl.max(qk, 1), lse_i) p = tl.exp(qk - m_ij[:, None]) else: m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i) p = tl.exp(qk * softmax_scale - m_ij[:, None]) l_ij = tl.sum(p, 1) # scale acc_o acc_o_scale = tl.exp(m_i - m_ij) # # -- update output accumulator -- # BUG: have to store and immediately load tl.store(t_ptrs, acc_o_scale) acc_o_scale = tl.load(t_ptrs) acc_o = acc_o * acc_o_scale[:, None] # update acc_o if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition if EVEN_HEADDIM: v = tl.load(v_ptrs + start_n * stride_vn) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) p = p.to(v.dtype) acc_o += tl.dot(p, v) # -- update statistics m_i = m_ij l_i_new = tl.exp(lse_i - m_ij) + l_ij lse_i = m_ij + tl.log(l_i_new) o_scale = tl.exp(m_i - lse_i) # BUG: have to store and immediately load tl.store(t_ptrs, o_scale) o_scale = tl.load(t_ptrs) acc_o = acc_o * o_scale[:, None] # rematerialize offsets to save registers start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) # write back l and m lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m tl.store(lse_ptrs, lse_i) # initialize pointers to output offs_d = tl.arange(0, BLOCK_HEADDIM) out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :]) if EVEN_M: if EVEN_HEADDIM: tl.store(out_ptrs, acc_o) else: tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim) else: if EVEN_HEADDIM: tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q) else: tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)) @triton.jit def _bwd_preprocess_do_o_dot( Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, ): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) # load o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32) do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta) @triton.jit def _bwd_store_dk_dv( dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, ): # [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False, # if we just call tl.store(dv_ptrs), there's a race condition if EVEN_N & EVEN_M: if EVEN_HEADDIM: tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk) else: tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim) tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim) else: if EVEN_HEADDIM: tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k) tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k) else: tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) @triton.jit def _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N) begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M # initialize row/col offsets offs_qm = begin_m + tl.arange(0, BLOCK_M) offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N) offs_m = tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) # initialize pointers to value-like data q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :]) k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :]) v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :]) do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :]) dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :]) if BIAS_TYPE == 'vector': b_ptrs = Bias + offs_n elif BIAS_TYPE == 'matrix': b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :]) # initialize dv and dk dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) # There seems to be some problem with Triton pipelining that makes results wrong for # headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop # may have zero step, and pipelining with the bias matrix could screw it up. # So we just exit early. if begin_m >= seqlen_q: dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM) return # k and v stay in SRAM throughout # [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False, # if we just call tl.load(k_ptrs), we get the wrong output! if EVEN_N & EVEN_M: if EVEN_HEADDIM: k = tl.load(k_ptrs) v = tl.load(v_ptrs) else: k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0) v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) else: k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) # loop over rows num_block_m = tl.cdiv(seqlen_q, BLOCK_M) for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M): start_m = tl.multiple_of(start_m, BLOCK_M) offs_m_curr = start_m + offs_m # load q, k, v, do on-chip # Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117) if EVEN_M & EVEN_HEADDIM: q = tl.load(q_ptrs) else: if EVEN_HEADDIM: q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) else: q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # recompute p = softmax(qk, dim=-1).T qk = tl.dot(q, k, trans_b=True) # Trying to combine the two masks seem to make the result wrong if not EVEN_N: # Need to mask out otherwise the softmax is wrong qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf")) if IS_CAUSAL: qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf")) if BIAS_TYPE != 'none': tl.debug_barrier() # Race condition otherwise if BIAS_TYPE == 'vector': if EVEN_N: bias = tl.load(b_ptrs).to(tl.float32) else: bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32) bias = bias[None, :] elif BIAS_TYPE == 'matrix': if EVEN_M & EVEN_N: bias = tl.load(b_ptrs).to(tl.float32) else: bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32) qk = qk * softmax_scale + bias # There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong. # Also wrong for headdim=64. if not (EVEN_M & EVEN_HEADDIM): tl.debug_barrier() lse_i = tl.load(LSE + offs_m_curr) if BIAS_TYPE == 'none': p = tl.exp(qk * softmax_scale - lse_i[:, None]) else: p = tl.exp(qk - lse_i[:, None]) # compute dv # [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs # in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512, # the output is correct. if EVEN_M & EVEN_HEADDIM: do = tl.load(do_ptrs) else: # [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask. do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # if EVEN_M: # if EVEN_HEADDIM: # do = tl.load(do_ptrs) # else: # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0) # else: # if EVEN_HEADDIM: # do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) # else: # do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) # & (offs_d[None, :] < headdim), other=0.0) dv += tl.dot(p.to(do.dtype), do, trans_a=True) # compute dp = dot(v, do) # There seems to be a race condition when headdim=48/96, and dq, dk are wrong. # Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True # Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False if not (EVEN_M & EVEN_HEADDIM): tl.debug_barrier() dp = tl.dot(do, v, trans_b=True) # There's a race condition for headdim=48 if not EVEN_HEADDIM: tl.debug_barrier() # compute ds = p * (dp - delta[:, None]) # Putting the subtraction after the dp matmul (instead of before) is slightly faster Di = tl.load(D + offs_m_curr) # Converting ds to q.dtype here reduces register pressure and makes it much faster # for BLOCK_HEADDIM=128 ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype) # compute dk = dot(ds.T, q) dk += tl.dot(ds, q, trans_a=True) # compute dq if not (EVEN_M & EVEN_HEADDIM): # Otherewise there's a race condition when BIAS_TYPE='matrix' tl.debug_barrier() if not ATOMIC_ADD: if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M dq = tl.load(dq_ptrs, eviction_policy="evict_last") dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, eviction_policy="evict_last") else: if EVEN_HEADDIM: dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy="evict_last") dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy="evict_last") else: dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy="evict_last") dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy="evict_last") else: # If we're parallelizing across the seqlen_k dimension dq = tl.dot(ds, k) if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M tl.atomic_add(dq_ptrs, dq) else: if EVEN_HEADDIM: tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q) else: tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)) # increment pointers dq_ptrs += BLOCK_M * stride_dqm q_ptrs += BLOCK_M * stride_qm do_ptrs += BLOCK_M * stride_dom if BIAS_TYPE == 'matrix': b_ptrs += BLOCK_M * stride_bm # write-back dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM) def init_to_zero(name): return lambda nargs: nargs[name].zero_() @triton.autotune( configs=[ triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now # # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4* # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')), ], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'], ) @triton.heuristics( { "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0, "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0, "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], } ) @triton.jit def _bwd_kernel( Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # offset pointers for batch/head Q += off_b * stride_qb + off_h * stride_qh K += off_b * stride_kb + off_h * stride_kh V += off_b * stride_vb + off_h * stride_vh DO += off_b * stride_dob + off_h * stride_doh DQ += off_b * stride_dqb + off_h * stride_dqh DK += off_b * stride_dkb + off_h * stride_dkh DV += off_b * stride_dvb + off_h * stride_dvh if BIAS_TYPE != 'none': Bias += off_b * stride_bb + off_h * stride_bh # pointer to row-wise quantities in value-like data D += off_hb * seqlen_q_rounded LSE += off_hb * seqlen_q_rounded if not SEQUENCE_PARALLEL: num_block_n = tl.cdiv(seqlen_k, BLOCK_N) for start_n in range(0, num_block_n): _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N ) else: start_n = tl.program_id(0) _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N ) def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None): # shape constraints batch, seqlen_q, nheads, d = q.shape _, seqlen_k, _, _ = k.shape assert k.shape == (batch, seqlen_k, nheads, d) assert v.shape == (batch, seqlen_k, nheads, d) assert d <= 128, 'FlashAttention only support head dimensions up to 128' assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type' assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16' assert q.is_cuda and k.is_cuda and v.is_cuda softmax_scale = softmax_scale or 1.0 / math.sqrt(d) has_bias = bias is not None bias_type = 'none' if has_bias: assert bias.dtype in [q.dtype, torch.float] assert bias.is_cuda assert bias.dim() == 4 if bias.stride(-1) != 1: bias = bias.contiguous() if bias.shape[2:] == (1, seqlen_k): bias_type = 'vector' elif bias.shape[2:] == (seqlen_q, seqlen_k): bias_type = 'matrix' else: raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)' ' or (seqlen_q, seqlen_k)') bias = bias.expand(batch, nheads, seqlen_q, seqlen_k) bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) o = torch.empty_like(q) BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) BLOCK = 128 num_warps = 4 if d <= 64 else 8 def grid(META): return triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads _fwd_kernel[grid]( q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations) # Can't use kwargs here because triton autotune expects key to be args, not kwargs # IS_CAUSAL=causal, BLOCK_HEADDIM=d, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1, ) return o, lse, softmax_scale # softmax_scale could have been updated def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None): # Make sure that the last dimension is contiguous if do.stride(-1) != 1: do = do.contiguous() batch, seqlen_q, nheads, d = q.shape _, seqlen_k, _, _ = k.shape # assert d in {16, 32, 64, 128} assert d <= 128 seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 assert lse.shape == (batch, nheads, seqlen_q_rounded) assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1 assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1 softmax_scale = softmax_scale or 1.0 / math.sqrt(d) # dq_accum = torch.zeros_like(q, dtype=torch.float32) dq_accum = torch.empty_like(q, dtype=torch.float32) delta = torch.empty_like(lse) # delta = torch.zeros_like(lse) BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) def grid(META): return triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads _bwd_preprocess_do_o_dot[grid]( o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM, ) has_bias = bias is not None bias_type = 'none' if has_bias: assert bias.dtype in [q.dtype, torch.float] assert bias.is_cuda assert bias.dim() == 4 assert bias.stride(-1) == 1 if bias.shape[2:] == (1, seqlen_k): bias_type = 'vector' elif bias.shape[2:] == (seqlen_q, seqlen_k): bias_type = 'matrix' else: raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)' ' or (seqlen_q, seqlen_k)') bias = bias.expand(batch, nheads, seqlen_q, seqlen_k) bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) # BLOCK_M = 128 # BLOCK_N = 64 # num_warps = 4 def grid(META): return triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1, batch * nheads _bwd_kernel[grid]( q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations) # Can't use kwargs here because triton autotune expects key to be args, not kwargs # IS_CAUSAL=causal, BLOCK_HEADDIM=d, bias_type, causal, BLOCK_HEADDIM, # SEQUENCE_PARALLEL=False, # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, # num_warps=num_warps, # num_stages=1, ) dq.copy_(dq_accum) class FlashAttnQKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None): """ qkv: (batch, seqlen, 3, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen). ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen) """ # Make sure that the last dimension is contiguous if qkv.stride(-1) != 1: qkv = qkv.contiguous() o, lse, ctx.softmax_scale = _flash_attn_forward( qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale ) ctx.save_for_backward(qkv, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): qkv, o, lse, bias = ctx.saved_tensors assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dqkv = torch.empty_like(qkv) _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dqkv, None, None, None flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply class FlashAttnKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None): """ q: (batch, seqlen_q, nheads, headdim) kv: (batch, seqlen_k, 2, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) """ # Make sure that the last dimension is contiguous q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]] o, lse, ctx.softmax_scale = _flash_attn_forward( q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale ) ctx.save_for_backward(q, kv, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): q, kv, o, lse, bias = ctx.saved_tensors if len(ctx.needs_input_grad) >= 3: assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dq = torch.empty_like(q) dkv = torch.empty_like(kv) _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dq, dkv, None, None, None flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply class FlashAttnFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None): """ q: (batch_size, seqlen_q, nheads, headdim) k, v: (batch_size, seqlen_k, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) """ # Make sure that the last dimension is contiguous q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]] o, lse, ctx.softmax_scale = _flash_attn_forward( q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale ) ctx.save_for_backward(q, k, v, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, lse, bias = ctx.saved_tensors assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dq, dk, dv, None, None, None flash_attn_func = FlashAttnFunc.apply
TerraByte-master
TerraByte/model/flash_triton.py
import functools import math import einops import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from einops import pack, rearrange, unpack from torch import nn # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def remainder_to_mult(num, mult): return (mult - num % mult) % mult def cast_tuple(t, length = 1): return t if isinstance(t, tuple) else ((t,) * length) def reduce_mult(nums): return functools.reduce(lambda x, y: x * y, nums, 1) # tensor helpers def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim) def top_k(logits, thres = 0.5): num_logits = logits.shape[-1] k = max(int((1 - thres) * num_logits), 1) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # token shift, from Peng et al of RWKV def token_shift(t): t, t_shift = t.chunk(2, dim = -1) t_shift = F.pad(t_shift, (0, 0, 1, -1)) return torch.cat((t, t_shift), dim = -1) # positional bias ######################### => class Normalize(nn.Module): def __init__(self, dim: int) -> None: super().__init__() self.dim = dim def forward(self, x): return torch.nn.functional.normalize(x, dim=self.dim, p=2) class LearnableLogitScaling(nn.Module): def __init__( self, logit_scale_init: float = 1 / 0.07, learnable: bool = True, max_logit_scale: float = 100, ) -> None: super().__init__() self.max_logit_scale = max_logit_scale self.logit_scale_init = logit_scale_init self.learnable = learnable log_logit_scale = torch.ones([]) * np.log(self.logit_scale_init) if learnable: self.log_logit_scale = nn.Parameter(log_logit_scale) else: self.register_buffer("log_logit_scale", log_logit_scale) def forward(self, x): return torch.clip(self.log_logit_scale.exp(), max=self.max_logit_scale) * x def extra_repr(self): st = f"logit_scale_init={self.logit_scale_init},learnable={self.learnable}," \ f" max_logit_scale={self.max_logit_scale}" return st class EinOpsRearrange(nn.Module): def __init__(self, rearrange_expr: str, **kwargs) -> None: super().__init__() self.rearrange_expr = rearrange_expr self.kwargs = kwargs def forward(self, x): assert isinstance(x, torch.Tensor) return einops.rearrange(x, self.rearrange_expr, **self.kwargs) class VerboseNNModule(nn.Module): """ Wrapper around nn.Module that prints registered buffers and parameter names. """ @staticmethod def get_readable_tensor_repr(name: str, tensor: torch.Tensor) -> str: st = ( "(" + name + "): " + "tensor(" + str(tuple(tensor[1].shape)) + ", requires_grad=" + str(tensor[1].requires_grad) + ")\n" ) return st def extra_repr(self) -> str: named_modules = set() for p in self.named_modules(): named_modules.update([p[0]]) named_modules = list(named_modules) string_repr = "" for p in self.named_parameters(): name = p[0].split(".")[0] if name not in named_modules: string_repr += self.get_readable_tensor_repr(name, p) for p in self.named_buffers(): name = p[0].split(".")[0] string_repr += self.get_readable_tensor_repr(name, p) return string_repr def cast_if_src_dtype( tensor: torch.Tensor, src_dtype: torch.dtype, tgt_dtype: torch.dtype ): updated = False if tensor.dtype == src_dtype: tensor = tensor.to(dtype=tgt_dtype) updated = True return tensor, updated class QuickGELU(nn.Module): # From https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/clip/model.py#L166 def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class SelectElement(nn.Module): def __init__(self, index) -> None: super().__init__() self.index = index def forward(self, x): assert x.ndim >= 3 return x[:, self.index, ...] class SelectEOSAndProject(nn.Module): """ Text Pooling used in OpenCLIP """ def __init__(self, proj: nn.Module) -> None: super().__init__() self.proj = proj def forward(self, x, seq_len): assert x.ndim == 3 # x is of shape B x L x D # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), seq_len] x = self.proj(x) return x #======================= BIASES class Alibi(nn.Module): def __init__(self, heads, **kwargs): super().__init__() self.heads = heads slopes = torch.Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> h 1 1') self.register_buffer('slopes', slopes, persistent = False) self.register_buffer('bias', None, persistent = False) @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2**(-2**-(math.log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] def forward(self, i, j, device): if exists(self.bias) and self.bias.shape[-1] >= j: return self.bias[..., :j] bias = torch.arange(j, device = device) bias = rearrange(bias, 'j -> 1 1 j') bias = bias * self.slopes self.register_buffer('bias', bias, persistent = False) return self.bias # norm class RMSNorm(nn.Module): def __init__(self, dim, eps = 1e-8): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) * self.scale return x / norm.clamp(min = self.eps) * self.g # helper classes def FeedForward(*, dim, mult = 4, dropout = 0.): return nn.Sequential( RMSNorm(dim), nn.Linear(dim, dim * mult), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) class RotaryEmbedding(nn.Module): def __init__(self, dim, theta = 10000): super().__init__() inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) @property def device(self): return next(self.buffers()).device def forward(self, seq_len): t = torch.arange(seq_len, device = self.device).type_as(self.inv_freq) freqs = torch.einsum('i , j -> i j', t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim = -1) return freqs def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(pos, t): return t * pos.cos() + rotate_half(t) * pos.sin()
TerraByte-master
TerraByte/model/helpers.py
def main(): print("Welcome!Input the number of hours on Earth so you can see how many hours pass by on Europa") userInput = int(input("How many Europa days go by for every x Earth day")) Europa = userInput * 3.551 #hours for 1 day in Europa 85.224 print(f"{userInput} days on Earth is {Europa}days compared to Europa, isn't that crazy? One day in Europa is 85.224hours") main()
601-daysthatgobyonEuropa-main
601_assignment.py
import os # from tree_of_thoughts.openaiModels import OpenAILanguageModel # from tree_of_thoughts.treeofthoughts import TreeofThoughts from meta_tree_of_thoughts.treeofthoughts import TreeofThoughts, MonteCarloTreeofThoughts from meta_tree_of_thoughts.thinkingAgent import ThinkingAgent from meta_tree_of_thoughts.openaiModel import OpenAILanguageModel api_model= "gpt-3.5-turbo" model = OpenAILanguageModel(api_key='api key', api_model=api_model) # Initialize the MonteCarloTreeofThoughts class with the model tree_of_thoughts = MonteCarloTreeofThoughts(model) # Note to reproduce the same results from the tree of thoughts paper if not better, # craft an 1 shot chain of thought prompt for your task below initial_prompt = """ Input: 2 8 8 14 Possible next steps: 2 + 8 = 10 (left: 8 10 14) 8 / 2 = 4 (left: 4 8 14) 14 + 2 = 16 (left: 8 8 16) 2 * 8 = 16 (left: 8 14 16) 8 - 2 = 6 (left: 6 8 14) 14 - 8 = 6 (left: 2 6 8) 14 / 2 = 7 (left: 7 8 8) 14 - 2 = 12 (left: 8 8 12) Input: use 4 numbers and basic arithmetic operations (+-*/) to obtain 24 in 1 equation Possible next steps: """ num_thoughts = 1 max_steps = 3 max_states = 4 pruning_threshold = 0.5 solution = tree_of_thoughts.solve( initial_prompt=initial_prompt, num_thoughts=num_thoughts, max_steps=max_steps, max_states=max_states, pruning_threshold=pruning_threshold, # sleep_time=sleep_time ) print(f"Solution: {solution}")
Meta-Tree-Of-Thoughts-main
example.py
import os import time import json import logging import argparse logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) from typing import Any, Dict, List, Optional, Set, Tuple, Union from meta_tree_of_thoughts.thinkingAgent import ThinkingAgent import numpy as np # for each rejected path store the reason for rejection and then pass the reason -> thought generator function # thought -> evaluated (0.3, 'This is a bad_decision = 2 + 23 + 232323 does not = 24') -> thought generato_functin # class TreeofThoughts: # def __init__(self, model, search_algorithm): # self.model = model # self.thinkingAgent = ThinkingAgent(self.model) # self.search_algorithm = search_algorithm # self.tree: Dict[str, Dict[str, float]] = { # "nodes": {} # } # def solve(self, initial_prompt: str, # num_thoughts: Optional[int] = 3, # max_steps: Optional[int] = 3, # max_states: Optional[int] = 5, # value_threshold: Optional[float] = 0.5, # confidence_threshold: Optional[float] = 0.8, # max_iterations: Optional[int] = 40, # convergence_threshold: Optional[float] = None, # convergence_count: Optional[int] = None) -> str: # self.file_name = f"logs/tree_of_thoughts_output_{self.search_algorithm}.json" # try: # best_thoughts = "" # if self.search_algorithm == 'BFS': # result = self.tot_bfs(initial_prompt, num_thoughts, max_steps, max_states, value_threshold) # if result: # self.save_tree_to_json(self.file_name) # best_thoughts = result # elif self.search_algorithm == 'DFS': # result = self.tot_dfs(initial_prompt, num_thoughts, max_steps, value_threshold, # confidence_threshold=confidence_threshold, max_iterations=max_iterations, convergence_threshold=convergence_threshold, # convergence_count=convergence_count) # if result: # self.save_tree_to_json(self.file_name) # best_thoughts = result # if best_thoughts: # solution = self.thinkingAgent.generate_solution(initial_prompt, best_thoughts) # if solution: # return solution # else: # raise ValueError("Invalid search algorithm. Choose 'BFS' or 'DFS'.") # except KeyboardInterrupt: # logger.error("Keyboard interrupt detected.") # except ValueError as e: # logger.error(f"Error: {e}") # finally: # logger.info("Saving the current tree and metrics.") # self.save_tree_to_json(self.file_name) # def logNewState(self, state, evaluation): # state = " ==> ".join(state) # self.tree["nodes"][state] = evaluation # self.save_tree_to_json(self.file_name) # def tot_bfs(self, initial_prompt, num_thoughts, max_steps, max_states, pruning_threshold): # current_states = [[f"My goal is to offer the most optimal to this user request '{initial_prompt}'"]] # state_values = {} # for step in range(1, max_steps + 1): # for state in current_states: # thoughts = self.thinkingAgent.generate_thoughts(state, num_thoughts, initial_prompt) # newStates = [] # for thought in thoughts: # flattened_state = (*state, thought) # newStates.append(flattened_state) # evaluated_thoughts = self.thinkingAgent.evaluate_states(newStates, initial_prompt) # selected_states = [] # for state, value in evaluated_thoughts.items(): # if value >= pruning_threshold: # selected_states.append(state) # state_values[state] = value # self.logNewState(state, value) # if(len(selected_states) >1): # current_states = selected_states[:max_states] # if (len(current_states) == 1): # return initial_prompt # # print(current_states, state_values) # best_state = max(current_states, key=lambda state: state_values[state]) # print(f'best_state: {best_state}') # return best_state # def tot_dfs(self, # initial_prompt: str, # num_thoughts: any, # max_steps: int, # value_threshold, # pruning_threshold=0.5, # confidence_threshold=None, max_iterations=None, convergence_threshold=None, convergence_count=None): # output = [] # iteration_count = 0 # consecutive_convergence_count = 0 # prev_best_value = None # file_name = f"logs/tree_of_thoughts_output_{self.search_algorithm}.json" # def dfs(state, step): # nonlocal consecutive_convergence_count, prev_best_value, iteration_count, output # if step > max_steps: # thought = self.thinkingAgent.generate_thoughts(state, 1, initial_prompt) # value = self.thinkingAgent.evaluate_states({state}, initial_prompt)[state] # output.append((thought, value)) # if confidence_threshold is not None and value >= confidence_threshold: # return True # if prev_best_value is not None and convergence_threshold is not None: # if abs(value - prev_best_value) < convergence_threshold: # consecutive_convergence_count += 1 # else: # consecutive_convergence_count = 0 # prev_best_value = value # iteration_count += 1 # if (max_iterations is not None and iteration_count >= max_iterations) or (convergence_count is not None and consecutive_convergence_count >= convergence_count): # return True # return False # for next_state in sorted(self.thinkingAgent.generate_thoughts(state, num_thoughts, initial_prompt)): # state_value = self.thinkingAgent.evaluate_states({next_state}, initial_prompt)[next_state] # logger.info(f"State: {next_state}, Value: {state_value}") # if state_value > value_threshold and (pruning_threshold is None or state_value >= pruning_threshold): # child = (*state, next_state) # if dfs(child, step + 1): # return True # self.save_tree_to_json(file_name) # return False # dfs([[initial_prompt]], 1) # best_state = max(output, key=lambda x: x[1]) # return best_state[0] # def save_tree_to_json(self, file_name): # os.makedirs(os.path.dirname(file_name), exist_ok=True) # with open(file_name, 'w') as json_file: # json.dump(self.tree, json_file, indent=4) # def print_tree(self, # node: str, # depth=0): # thought = self.tree["metrics"]["thoughts"].get(node, "") # evaluation = self.tree["metrics"]["evaluations"].get(node, "") # tree_info = f"{' ' * depth}Node: {node}, Thought: {thought}, Evaluation: {evaluation}\n" # for child, parent in self.tree["nodes"].items(): # if parent == node: # tree_info += self.print_tree(child, depth + 1) # print(f'tree info: {tree_info}') # return tree_info class TreeofThoughts: def __init__(self, model): self.model = model self.tree: Dict[str, Dict[str, Union[float, Dict[str, Any]]]] = { "nodes": {}, } self.best_state = None self.best_value = float("-inf") self.history = [] #added line initalize history def save_tree_to_json(self, file_name): os.makedirs(os.path.dirname(file_name), exist_ok=True) with open(file_name, 'w') as json_file: json.dump(self.tree, json_file, indent=4) def logNewState(self, state, evaluation): if not (type(state) == str): state = " | ".join(state) if state in self.tree['nodes']: self.tree['nodes'][state]['thoughts'].append(evaluation) else: self.tree['nodes'][state] = {'thoughts': [evaluation]} def adjust_pruning_threshold_precentile(self, evaluated_thoughts, percentile): values = np.array(list(evaluated_thoughts.values())) if values.size == 0: return 0 return max(np.percentile(values, percentile), 0.1) def adjust_pruning_threshold_moving_average(self, evaluated_thoughts, window_size): values = list(evaluated_thoughts.values()) if len(values) < window_size: return np.mean(values) if values else 0 else: return max(np.mean(values[-window_size:]), 0.1) class MonteCarloTreeofThoughts(TreeofThoughts): def __init__(self, model, objective="balance"): super().__init__(model) self.objective = objective self.solution_found = False self.tree: Dict[str, Dict[str, Union[float, Dict[str, Any]]]] = { "nodes": {}, "metrics": {"thoughts": {}, "evaluations": {}}, } def optimize_params(self, num_thoughts, max_steps, max_states): if self.objective == 'speed': num_thoughts = max(1, num_thoughts - 1) max_steps = max(1, max_steps - 1) max_states = max(1, max_states - 1) elif self.objective == 'reliability': num_thoughts += 1 max_steps += 1 max_states += 1 elif self.objective == 'balanace': if self.solution_found: num_thoughts = max(1, num_thoughts - 1) max_steps = max(1, max_steps - 1) max_states = max(1, max_states - 1) else: num_thoughts += 1 max_steps += 1 max_states += 1 return num_thoughts, max_steps, max_states def solve(self, initial_prompt: str, num_thoughts: int, max_steps: int, max_states: int, pruning_threshold: float, # sleep_time: float, ): file_name = str(initial_prompt) self.file_name = f"logs/tree_of_thoughts_output_{file_name}.json" return self.monte_carlo_search( initial_prompt, num_thoughts, max_steps, max_states, pruning_threshold, # sleep_time, ) #v3 def monte_carlo_search(self, initial_prompt: str, num_thoughts: int, max_steps: int, max_states: int, pruning_threshold: float, ): current_states = [initial_prompt] state_values = {} visit_counts = {initial_prompt: 0} transposition_table = {} best_state = None best_value = float('-inf') for step in range(1, max_steps + 1): selected_states = [] for state in current_states: if state in transposition_table: state_value = transposition_table[state] else: time.sleep(1) thoughts = self.model.generate_thoughts(state, num_thoughts, initial_prompt) time.sleep(1) evaluated_thoughts = self.model.evaluate_states(thoughts, initial_prompt) for thought, value in evaluated_thoughts.items(): flattened_state = (state, thought) if isinstance(state, str) else (*state, thought) transposition_table[flattened_state] = value for thought, value in evaluated_thoughts.items(): flattened_state = (state, thought) if isinstance(state, str) else (*state, thought) if flattened_state not in visit_counts: visit_counts[flattened_state] = 0 if visit_counts[state] > visit_counts[flattened_state] and visit_counts[flattened_state] > 0: ucb1_value = value + np.sqrt(2 * np.log(visit_counts[state]) / visit_counts[flattened_state]) if ucb1_value >= pruning_threshold: selected_states.append(flattened_state) state_values[flattened_state] = value # Update the best state if the current state value is greater than the best value if value > best_value: best_state = flattened_state best_value = value visit_counts[state] += 1 if len(selected_states) > max_states: current_states = selected_states[:max_states] self.save_tree_to_json(self.file_name) # if best_state is not None: # solution = self.model.generate_solution(initial_prompt, best_state) # return solution # else: # solution = None # return None solution = self.model.generate_solution(initial_prompt, best_state) return solution if solution else best_state
Meta-Tree-Of-Thoughts-main
meta_tree_of_thoughts/treeofthoughts.py
from abc import ABC, abstractmethod import random from meta_tree_of_thoughts.metaAgent import MetaAgent class AbstractLanguageModel(ABC): @abstractmethod def generate_text(self, prompt): pass class ThinkingAgent: def __init__(self, model: AbstractLanguageModel, strategy="cot", evaluation_strategy="value"): self.strategy = strategy self.evaluation_strategy = evaluation_strategy self.model = model self.MetaAgent = MetaAgent() def generate_thoughts(self, state, k, initial_prompt, rejected_solutions=None): if (type(state) == str): state_text = state else: state_text = '\n'.join(state) print("New state generating thought:", state, "\n\n") # prompt = f"Considering the thoughts you've had until now:\n\n{state_text}\n\nDevise the next coherent thought that will aid in advancing the reasoning process and achieving a solution to {initial_prompt}. Assess various scenarios, think unconventionally, anticipate potential challenges, and resolve any outstanding queries. Tap into your mind's full potential and make certain no open questions remain." prompt = f"""You're an TreeofThoughts, an superintelligent AI model devoted to helping Humans by any means necessary. You're purpose is to generate a series of solutions to comply with the user's instructions, you must generate solutions on the basis of determining the most reliable solution in the shortest amount of time, while taking rejected solutions into account and learning from them. Considering the reasoning provided:\n\n ###'{state_text}'\n\n### Devise the best possible solution for the task: {initial_prompt}, Here are evaluated solutions that were rejected: ###{rejected_solutions}###, complete the {initial_prompt} without making the same mistakes you did with the evaluated rejected solutions. Be simple. Be direct. Provide intuitive solutions as soon as you think of them.""" prompt += self.ReAct_prompt # print(prompt) thoughts = self.generate_text(prompt, k) # print(thoughts) # print(f"Generated thoughts: {thoughts}") return thoughts def generate_solution(self, initial_prompt, state, rejected_solutions=None): if isinstance(state, list): state_text = '\n'.join(state) else: state_text = state prompt = f"""You're an TreeofThoughts, an superintelligent AI model devoted to helping Humans by any means necessary. You're purpose is to generate a series of solutions to comply with the user's instructions, you must generate solutions on the basis of determining the most reliable solution in the shortest amount of time, while taking rejected solutions into account and learning from them. Considering the reasoning provided:\n\n ###'{state_text}'\n\n### Devise the best possible solution for the task: {initial_prompt}, Here are evaluated solutions that were rejected: ###{rejected_solutions}###, complete the {initial_prompt} without making the same mistakes you did with the evaluated rejected solutions. Be simple. Be direct. Provide intuitive solutions as soon as you think of them.""" answer = self.generate_text(prompt, 1) print(f'Answerrrrrr {answer}') # print(thoughts) # print(f"General Solution : {answer}") return answer # except Exception as e: # logger.error(f"Error in generate_solutions: {e}") # return None def evaluate_states(self, states, initial_prompt): if not states: return {} if self.evaluation_strategy == 'value': state_values = {} for state in states: if (type(state) == str): state_text = state else: state_text = '\n'.join(state) print("We receive a state of type", type(state), "For state: ", state, "\n\n") # prompt = f"Given the current state of reasoning: '{state_text}', evaluate its value as a float between 0 and 1, become very pessimistic think of potential adverse risks on the probability of this state of reasoning achieveing {initial_prompt} and DO NOT RESPOND WITH ANYTHING ELSE: OTHER THAN AN FLOAT" prompt = f""" To achieve the following goal: '{initial_prompt}', pessimistically value the context of the past solutions and more importantly the latest generated solution you had AS A FLOAT BETWEEN 0 AND 1\n Past solutions:\n\n {state_text}\n If the solutions is not directly concretely making fast progress in achieving the goal, give it a lower score. Evaluate all solutions AS A FLOAT BETWEEN 0 and 1:\n, DO NOT RETURN ANYTHING ELSE """ # and then inside backticks provide an simple and direct bulletpoint list as to why you evaluated this thought the way you did. Provide simple yet intuitive feedback. response = self.openai_api_call_handler(prompt, 10, 1) try: value_text = self.openai_choice2text_handler(response.choices[0]) # print(f'state: {value_text}') value = float(value_text) print(f"Evaluated Thought Value: {value}") except ValueError: value = 0 # Assign a default value if the conversion fails state_values[state] = value return state_values
Meta-Tree-Of-Thoughts-main
meta_tree_of_thoughts/thinkingAgent.py
from abc import ABC, abstractmethod import openai import langchain from dotenv import load_dotenv from langchain import OpenAI, LLMChain, PromptTemplate from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferWindowMemory load_dotenv() #tree of thoughts class MetaAgent(): def __init__(self): self.initalize_meta_agent() def get_new_instructions(self, meta_output): new_instructions = meta_output.split("Instructions:")[-1] return new_instructions def update_prompt(self, chat_history, user_goal): chain = LLMChain( llm=self.LLM , prompt=self.meta_prompt, verbose=True ) meta_output = chain.run(chat_history=chat_history, old_instructions=self.thinking_prompt, objective=user_goal) #gte the new instructions from the meta output new_instructions = self.get_new_instructions(meta_output) print("New thinking instructions: ", new_instructions) variables_required = ["{old_thoughts}"] has_required_variables = all(var in variables_required for var in variables_required) if not has_required_variables: print("Instructions failed to mutate") else: self.thinking_prompt = new_instructions def initalize_meta_agent(self): self.thinking_prompt = "You're Athena, an AI model devoted to helping Humans by any means necessary. You're purpose is to generate a series of solutions to comply with the user's instructions, you must generate solutions on the basis of determining the most reliable solution in the shortest amount of time. The user has provided you with: {objective} complete this instruction BY ANY MEANS NECESSARY by considering the solutions you've had until now:\n\ \n'{old_thoughts}'\n\n Think about the next best step to achive {objective}.\ If you already have enough thoughts to achieve the goal, start improving some of the steps and verify that you are perfectly meeting the goal '{objective}'.\n Next step:" meta_template=""" You need to change the following solutions instructions;\n'{old_instructions}'\n To make the solutions directly solving the user objective '{objective}' Solutions instructions will be used by an AI assistant to direct it to create the thoughts to progress in achieving the user goal: '{objective}'. The Solutions instructions have to lead to thoughts that make the AI progress fast in totally achieving the user goal '{objective}'. The Solutions generated have to be sharp and concrete, and lead to concrete visible progress in achieving the user's goal. An AI model has just had the below interactions with a user, using the above solutions instructions to progress in achieve the user's goal. AI Model's generated thoughts don't lead to good enough progress in achieving: '{objective}' Your job is to critique the model's performance using the old solution instructions and then revise the instructions so that the AI model would quickly and correctly respond in the future to concretely achieve the user goal. Old thinking instructions to modify: ### {old_instructions} ### The strings '{{old_thoughts}}' and the string '{{objective}}' have to appear in the new instructions as they will respectively be used by the AI model to store it's old thoughts, and the user's goal when it runs that instruction AI model's interaction history with the user: ### {chat_history} ### Please reflect on these interactions. You should critique the models performance in this interaction in respect to why the solutions it gave aren't directly leading to achieving the user's goals. What could the AI model have done better to be more direct and think better? Indicate this with "Critique: .... You should then revise the Instructions so that Assistant would quickly and correctly respond in the future. The AI model's goal is to return the most reliable solution that leads to fast progressing in achieving the user's goal in as few interactions as possible. The solutions generated should not turn around and do nothing, so if you notice that the instructions are leading to no progress in solving the user goal, modify the instructions so it leads to concrete progress. The AI Assistant will only see the new Instructions the next time it thinks through the same problem, not the interaction history, so anything important to do must be summarized in the Instructions. Don't forget any important details in the current Instructions! Indicate the new instructions by "Instructions: ..." VERY IMPORTANT: The string '{{old_thoughts'}} and the string '{{objective}}' have to appear in the new instructions as they will respectively be used by the AI model to store it's old thoughts, and the user's goal when it runs that instruction """ self.meta_prompt = PromptTemplate( input_variables=[ 'old_instructions', 'objective', 'chat_history'], template=meta_template ) self.LLM = ChatOpenAI(temperature=0) #get the chast history from the evauated states
Meta-Tree-Of-Thoughts-main
meta_tree_of_thoughts/metaAgent.py
import os import openai import time import concurrent.futures from abc import ABC, abstractmethod class OpenAILanguageModel(): def __init__(self, api_key, strategy="cot", evaluation_strategy="value", api_model="", enable_ReAct_prompting=True): if api_key == "" or api_key == None: api_key = os.environ.get("OPENAI_API_KEY", "") if api_key != "": openai.api_key = api_key else: raise Exception("Please provide OpenAI API key") if api_model == "" or api_model == None: api_model = os.environ.get("OPENAI_API_MODEL", "") if api_model != "": self.api_model = api_model else: self.api_model = "text-davinci-003" print(f'Using api_model {self.api_model}') self.use_chat_api = 'gpt' in self.api_model # reference : https://www.promptingguide.ai/techniques/react self.strategy = strategy self.evaluation_strategy = evaluation_strategy def openai_api_call_handler(self, prompt, max_tokens, temperature): while True: try: messages = [ { "role": "user", "content": prompt } ] response = openai.ChatCompletion.create( model=self.api_model, messages=messages, max_tokens=max_tokens, temperature=temperature, ) text = response['choices'][0]['message']['content'].strip() with open("openai.logs", 'a') as log_file: log_file.write("\n" + "-----------" + '\n' +"Prompt : "+ prompt+"\n"+"Response:\n"+text) return text except openai.error.RateLimitError as e: sleep_duratoin = os.environ.get("OPENAI_RATE_TIMEOUT", 30) print(f'{str(e)}, sleep for {sleep_duratoin}s, set it by env OPENAI_RATE_TIMEOUT') time.sleep(sleep_duratoin) def generate_text(self, prompt,): text = self.openai_api_call_handler(prompt, 1000, 0.5) return text # def solution(self, states, initial_prompt): class OptimizedOpenAILanguageModel(OpenAILanguageModel): def __init__(self, api_key, strategy="cot", evaluation_strategy="value", cache_enabled=True, api_base="", api_model="", enable_ReAct_prompting=False): super().__init__(api_key, strategy, evaluation_strategy, api_base, api_model, enable_ReAct_prompting) self.cache_enabled = cache_enabled self.thought_cache = {} self.state_evaluation_cache = {} def parallel_generate_thoughts(self, states, k): with concurrent.futures.ThreadPoolExecutor() as executor: thoughts = list(executor.map(lambda state: self.generate_thoughts(state, k), states)) print(f"Parallel generated thoughts: {thoughts}") return thoughts def parallel_evaluate_states(self, states, inital_prompt): with concurrent.futures.ThreadPoolExecutor() as executor: state_values = list(executor.map(self.evaluate_states, states, inital_prompt)) print(f"Parallel evaluated state values: {state_values}") return state_values
Meta-Tree-Of-Thoughts-main
meta_tree_of_thoughts/openaiModel.py
import torch from starlight_vision import Starlight # Example of usage: model = Starlight() texts = [ 'a whale breaching from afar', 'young girl blowing out candles on her birthday cake', 'fireworks with blue and green sparkles', 'dust motes swirling in the morning sunshine on the windowsill' ] videos = torch.randn(4, 3, 10, 32, 32).cuda() model.train(videos, texts=texts) sampled_videos = model.sample(texts=texts, video_frames=20)
StarlightVision-master
example.py
from starlight_vision.model import Starlight
StarlightVision-master
starlight_vision/__init__.py
from starlight_vision import Unet3D, ElucidatedStarlight, StarlightTrainer class Starlight: def __init__(self, dim=64, dim_mults=(1, 2, 4, 8), image_sizes=(16, 32), random_crop_sizes=(None, 16), temporal_downsample_factor=(2, 1), num_sample_steps=10, cond_drop_prob=0.1, sigma_min=0.002, sigma_max=(80, 160), sigma_data=0.5, rho=7, P_mean=-1.2, P_std=1.2, S_churn=80, S_tmin=0.05, S_tmax=50, S_noise=1.003): # Initialize the Unet models self.unet1 = Unet3D(dim=dim, dim_mults=dim_mults).cuda() self.unet2 = Unet3D(dim=dim, dim_mults=dim_mults).cuda() # Initialize the Starlight model self.starlight = ElucidatedStarlight( unets=(self.unet1, self.unet2), image_sizes=image_sizes, random_crop_sizes=random_crop_sizes, temporal_downsample_factor=temporal_downsample_factor, num_sample_steps=num_sample_steps, cond_drop_prob=cond_drop_prob, sigma_min=sigma_min, sigma_max=sigma_max, sigma_data=sigma_data, rho=rho, P_mean=P_mean, P_std=P_std, S_churn=S_churn, S_tmin=S_tmin, S_tmax=S_tmax, S_noise=S_noise, ).cuda() # Initialize the trainer self.trainer = StarlightTrainer(self.starlight) def train(self, videos, texts, unet_number=1, ignore_time=False): self.trainer(videos, texts=texts, unet_number=unet_number, ignore_time=ignore_time) self.trainer.update(unet_number=unet_number) def sample(self, texts, video_frames=20): return self.trainer.sample(texts=texts, video_frames=video_frames)
StarlightVision-master
starlight_vision/model.py
import os from collections.abc import Iterable from contextlib import contextmanager, nullcontext from functools import partial, wraps from math import ceil import numpy as np import pytorch_warmup as warmup import torch import torch.nn.functional as F from accelerate import Accelerator, DistributedDataParallelKwargs, DistributedType from ema_pytorch import EMA from fsspec.core import url_to_fs from fsspec.implementations.local import LocalFileSystem from lion_pytorch import Lion from packaging import version from torch import nn from torch.cuda.amp import GradScaler from torch.optim import Adam from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR from torch.utils.data import DataLoader, random_split from starlight_vision.core.data import cycle from starlight_vision.core.elucidated import ElucidatedStarlight from starlight_vision.core.starlight.core import NullUnet from starlight_vision.core.version import __version__ # helper functions def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def cast_tuple(val, length = 1): if isinstance(val, list): val = tuple(val) return val if isinstance(val, tuple) else ((val,) * length) def find_first(fn, arr): for ind, el in enumerate(arr): if fn(el): return ind return -1 def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(),dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs def num_to_groups(num, divisor): groups = num // divisor remainder = num % divisor arr = [divisor] * groups if remainder > 0: arr.append(remainder) return arr # url to fs, bucket, path - for checkpointing to cloud def url_to_bucket(url, prefix): if '://' not in url: return url _, suffix = url.split('://') if prefix in {'gs', 's3'}: return suffix.split('/')[0] else: raise ValueError(f'storage type prefix "{prefix}" is not supported yet') # decorators def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner def cast_torch_tensor(fn, cast_fp16 = False): @wraps(fn) def inner(model, *args, **kwargs): device = kwargs.pop('_device', model.device) cast_device = kwargs.pop('_cast_device', True) should_cast_fp16 = cast_fp16 and model.cast_half_at_training kwargs_keys = kwargs.keys() all_args = (*args, *kwargs.values()) split_kwargs_index = len(all_args) - len(kwargs_keys) all_args = tuple(map(lambda t: torch.from_numpy(t) if exists(t) and isinstance(t, np.ndarray) else t, all_args)) if cast_device: all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args)) if should_cast_fp16: all_args = tuple(map(lambda t: t.half() if exists(t) and isinstance(t, torch.Tensor) and t.dtype != torch.bool else t, all_args)) args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:] kwargs = dict(tuple(zip(kwargs_keys, kwargs_values))) out = fn(model, *args, **kwargs) return out return inner # gradient accumulation functions def split_iterable(it, split_size): accum = [] for ind in range(ceil(len(it) / split_size)): start_index = ind * split_size accum.append(it[start_index: (start_index + split_size)]) return accum def split(t, split_size = None): if not exists(split_size): return t if isinstance(t, torch.Tensor): return t.split(split_size, dim = 0) if isinstance(t, Iterable): return split_iterable(t, split_size) return TypeError def find_first(cond, arr): for el in arr: if cond(el): return el return None def split_args_and_kwargs(*args, split_size = None, **kwargs): all_args = (*args, *kwargs.values()) len_all_args = len(all_args) first_tensor = find_first(lambda t: isinstance(t, torch.Tensor), all_args) assert exists(first_tensor) batch_size = len(first_tensor) split_size = default(split_size, batch_size) num_chunks = ceil(batch_size / split_size) dict_len = len(kwargs) dict_keys = kwargs.keys() split_kwargs_index = len_all_args - dict_len split_all_args = [split(arg, split_size = split_size) if exists(arg) and isinstance(arg, (torch.Tensor, Iterable)) else ((arg,) * num_chunks) for arg in all_args] chunk_sizes = num_to_groups(batch_size, split_size) for (chunk_size, *chunked_all_args) in tuple(zip(chunk_sizes, *split_all_args)): chunked_args, chunked_kwargs_values = chunked_all_args[:split_kwargs_index], chunked_all_args[split_kwargs_index:] chunked_kwargs = dict(tuple(zip(dict_keys, chunked_kwargs_values))) chunk_size_frac = chunk_size / batch_size yield chunk_size_frac, (chunked_args, chunked_kwargs) # starlight trainer def starlight_sample_in_chunks(fn): @wraps(fn) def inner(self, *args, max_batch_size = None, **kwargs): if not exists(max_batch_size): return fn(self, *args, **kwargs) if self.starlight.unconditional: batch_size = kwargs.get('batch_size') batch_sizes = num_to_groups(batch_size, max_batch_size) outputs = [fn(self, *args, **{**kwargs, 'batch_size': sub_batch_size}) for sub_batch_size in batch_sizes] else: outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)] if isinstance(outputs[0], torch.Tensor): return torch.cat(outputs, dim = 0) return list(map(lambda t: torch.cat(t, dim = 0), list(zip(*outputs)))) return inner def restore_parts(state_dict_target, state_dict_from): for name, param in state_dict_from.items(): if name not in state_dict_target: continue if param.size() == state_dict_target[name].size(): state_dict_target[name].copy_(param) else: print(f"layer {name}({param.size()} different than target: {state_dict_target[name].size()}") return state_dict_target class StarlightTrainer(nn.Module): locked = False def __init__( self, starlight = None, starlight_checkpoint_path = None, use_ema = True, lr = 1e-4, eps = 1e-8, beta1 = 0.9, beta2 = 0.99, max_grad_norm = None, group_wd_params = True, warmup_steps = None, cosine_decay_max_steps = None, only_train_unet_number = None, fp16 = False, precision = None, split_batches = True, dl_tuple_output_keywords_names = ('images', 'text_embeds', 'text_masks', 'cond_images'), verbose = True, split_valid_fraction = 0.025, split_valid_from_train = False, split_random_seed = 42, checkpoint_path = None, checkpoint_every = None, checkpoint_fs = None, fs_kwargs: dict = None, max_checkpoints_keep = 20, use_lion = False, **kwargs ): super().__init__() assert not StarlightTrainer.locked, 'StarlightTrainer can only be initialized once per process - for the sake of distributed training, you will now have to create a separate script to train each unet (or a script that accepts unet number as an argument)' assert exists(starlight) ^ exists(starlight_checkpoint_path), 'either starlight instance is passed into the trainer, or a checkpoint path that contains the starlight config' # determine filesystem, using fsspec, for saving to local filesystem or cloud self.fs = checkpoint_fs if not exists(self.fs): fs_kwargs = default(fs_kwargs, {}) self.fs, _ = url_to_fs(default(checkpoint_path, './'), **fs_kwargs) assert isinstance(starlight, (starlight, ElucidatedStarlight)) ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs) # elucidated or not self.is_elucidated = isinstance(starlight, ElucidatedStarlight) # create accelerator instance accelerate_kwargs, kwargs = groupby_prefix_and_trim('accelerate_', kwargs) assert not (fp16 and exists(precision)), 'either set fp16 = True or forward the precision ("fp16", "bf16") to Accelerator' accelerator_mixed_precision = default(precision, 'fp16' if fp16 else 'no') self.accelerator = Accelerator(**{ 'split_batches': split_batches, 'mixed_precision': accelerator_mixed_precision, 'kwargs_handlers': [DistributedDataParallelKwargs(find_unused_parameters = True)] , **accelerate_kwargs}) StarlightTrainer.locked = self.is_distributed # cast data to fp16 at training time if needed self.cast_half_at_training = accelerator_mixed_precision == 'fp16' # grad scaler must be managed outside of accelerator grad_scaler_enabled = fp16 # starlight, unets and ema unets self.starlight = starlight self.num_unets = len(self.starlight.unets) self.use_ema = use_ema and self.is_main self.ema_unets = nn.ModuleList([]) # keep track of what unet is being trained on # only going to allow 1 unet training at a time self.ema_unet_being_trained_index = -1 # keeps track of which ema unet is being trained on # data related functions self.train_dl_iter = None self.train_dl = None self.valid_dl_iter = None self.valid_dl = None self.dl_tuple_output_keywords_names = dl_tuple_output_keywords_names # auto splitting validation from training, if dataset is passed in self.split_valid_from_train = split_valid_from_train assert 0 <= split_valid_fraction <= 1, 'split valid fraction must be between 0 and 1' self.split_valid_fraction = split_valid_fraction self.split_random_seed = split_random_seed # be able to finely customize learning rate, weight decay # per unet lr, eps, warmup_steps, cosine_decay_max_steps = map(partial(cast_tuple, length = self.num_unets), (lr, eps, warmup_steps, cosine_decay_max_steps)) for ind, (unet, unet_lr, unet_eps, unet_warmup_steps, unet_cosine_decay_max_steps) in enumerate(zip(self.starlight.unets, lr, eps, warmup_steps, cosine_decay_max_steps)): if use_lion: optimizer = Lion( unet.parameters(), lr = unet_lr, betas = (beta1, beta2) ) else: optimizer = Adam( unet.parameters(), lr = unet_lr, eps = unet_eps, betas = (beta1, beta2), **kwargs ) if self.use_ema: self.ema_unets.append(EMA(unet, **ema_kwargs)) scaler = GradScaler(enabled = grad_scaler_enabled) scheduler = warmup_scheduler = None if exists(unet_cosine_decay_max_steps): scheduler = CosineAnnealingLR(optimizer, T_max = unet_cosine_decay_max_steps) if exists(unet_warmup_steps): warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if not exists(scheduler): scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0) # set on object setattr(self, f'optim{ind}', optimizer) # cannot use pytorch ModuleList for some reason with optimizers setattr(self, f'scaler{ind}', scaler) setattr(self, f'scheduler{ind}', scheduler) setattr(self, f'warmup{ind}', warmup_scheduler) # gradient clipping if needed self.max_grad_norm = max_grad_norm # step tracker and misc self.register_buffer('steps', torch.tensor([0] * self.num_unets)) self.verbose = verbose # automatic set devices based on what accelerator decided self.starlight.to(self.device) self.to(self.device) # checkpointing assert not (exists(checkpoint_path) ^ exists(checkpoint_every)) self.checkpoint_path = checkpoint_path self.checkpoint_every = checkpoint_every self.max_checkpoints_keep = max_checkpoints_keep self.can_checkpoint = self.is_local_main if isinstance(checkpoint_fs, LocalFileSystem) else self.is_main if exists(checkpoint_path) and self.can_checkpoint: bucket = url_to_bucket(checkpoint_path) if not self.fs.exists(bucket): self.fs.mkdir(bucket) self.load_from_checkpoint_folder() # only allowing training for unet self.only_train_unet_number = only_train_unet_number self.prepared = False def prepare(self): assert not self.prepared, 'The trainer is allready prepared' self.validate_and_set_unet_being_trained(self.only_train_unet_number) self.prepared = True # computed values @property def device(self): return self.accelerator.device @property def is_distributed(self): return not (self.accelerator.distributed_type == DistributedType.NO and self.accelerator.num_processes == 1) @property def is_main(self): return self.accelerator.is_main_process @property def is_local_main(self): return self.accelerator.is_local_main_process @property def unwrapped_unet(self): return self.accelerator.unwrap_model(self.unet_being_trained) # optimizer helper functions def get_lr(self, unet_number): self.validate_unet_number(unet_number) unet_index = unet_number - 1 optim = getattr(self, f'optim{unet_index}') return optim.param_groups[0]['lr'] # function for allowing only one unet from being trained at a time def validate_and_set_unet_being_trained(self, unet_number = None): if exists(unet_number): self.validate_unet_number(unet_number) assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, 'you cannot only train on one unet at a time. you will need to save the trainer into a checkpoint, and resume training on a new unet' self.only_train_unet_number = unet_number self.starlight.only_train_unet_number = unet_number if not exists(unet_number): return self.wrap_unet(unet_number) def wrap_unet(self, unet_number): if hasattr(self, 'one_unet_wrapped'): return unet = self.starlight.get_unet(unet_number) unet_index = unet_number - 1 optimizer = getattr(self, f'optim{unet_index}') scheduler = getattr(self, f'scheduler{unet_index}') if self.train_dl: self.unet_being_trained, self.train_dl, optimizer = self.accelerator.prepare(unet, self.train_dl, optimizer) else: self.unet_being_trained, optimizer = self.accelerator.prepare(unet, optimizer) if exists(scheduler): scheduler = self.accelerator.prepare(scheduler) setattr(self, f'optim{unet_index}', optimizer) setattr(self, f'scheduler{unet_index}', scheduler) self.one_unet_wrapped = True # hacking accelerator due to not having separate gradscaler per optimizer def set_accelerator_scaler(self, unet_number): unet_number = self.validate_unet_number(unet_number) scaler = getattr(self, f'scaler{unet_number - 1}') self.accelerator.scaler = scaler for optimizer in self.accelerator._optimizers: optimizer.scaler = scaler # helper print def print(self, msg): if not self.is_main: return if not self.verbose: return return self.accelerator.print(msg) # validating the unet number def validate_unet_number(self, unet_number = None): if self.num_unets == 1: unet_number = default(unet_number, 1) assert 0 < unet_number <= self.num_unets, f'unet number should be in between 1 and {self.num_unets}' return unet_number # number of training steps taken def num_steps_taken(self, unet_number = None): if self.num_unets == 1: unet_number = default(unet_number, 1) return self.steps[unet_number - 1].item() def print_untrained_unets(self): print_final_error = False for ind, (steps, unet) in enumerate(zip(self.steps.tolist(), self.starlight.unets)): if steps > 0 or isinstance(unet, NullUnet): continue self.print(f'unet {ind + 1} has not been trained') print_final_error = True if print_final_error: self.print('when sampling, you can pass stop_at_unet_number to stop early in the cascade, so it does not try to generate with untrained unets') # data related functions def add_train_dataloader(self, dl = None): if not exists(dl): return assert not exists(self.train_dl), 'training dataloader was already added' assert not self.prepared, 'You need to add the dataset before preperation' self.train_dl = dl def add_valid_dataloader(self, dl): if not exists(dl): return assert not exists(self.valid_dl), 'validation dataloader was already added' assert not self.prepared, 'You need to add the dataset before preperation' self.valid_dl = dl def add_train_dataset(self, ds = None, *, batch_size, **dl_kwargs): if not exists(ds): return assert not exists(self.train_dl), 'training dataloader was already added' valid_ds = None if self.split_valid_from_train: train_size = int((1 - self.split_valid_fraction) * len(ds)) valid_size = len(ds) - train_size ds, valid_ds = random_split(ds, [train_size, valid_size], generator = torch.Generator().manual_seed(self.split_random_seed)) self.print(f'training with dataset of {len(ds)} samples and validating with randomly splitted {len(valid_ds)} samples') dl = DataLoader(ds, batch_size = batch_size, **dl_kwargs) self.add_train_dataloader(dl) if not self.split_valid_from_train: return self.add_valid_dataset(valid_ds, batch_size = batch_size, **dl_kwargs) def add_valid_dataset(self, ds, *, batch_size, **dl_kwargs): if not exists(ds): return assert not exists(self.valid_dl), 'validation dataloader was already added' dl = DataLoader(ds, batch_size = batch_size, **dl_kwargs) self.add_valid_dataloader(dl) def create_train_iter(self): assert exists(self.train_dl), 'training dataloader has not been registered with the trainer yet' if exists(self.train_dl_iter): return self.train_dl_iter = cycle(self.train_dl) def create_valid_iter(self): assert exists(self.valid_dl), 'validation dataloader has not been registered with the trainer yet' if exists(self.valid_dl_iter): return self.valid_dl_iter = cycle(self.valid_dl) def train_step(self, *, unet_number = None, **kwargs): if not self.prepared: self.prepare() self.create_train_iter() kwargs = {'unet_number': unet_number, **kwargs} loss = self.step_with_dl_iter(self.train_dl_iter, **kwargs) self.update(unet_number = unet_number) return loss @torch.no_grad() @eval_decorator def valid_step(self, **kwargs): if not self.prepared: self.prepare() self.create_valid_iter() context = self.use_ema_unets if kwargs.pop('use_ema_unets', False) else nullcontext with context(): loss = self.step_with_dl_iter(self.valid_dl_iter, **kwargs) return loss def step_with_dl_iter(self, dl_iter, **kwargs): dl_tuple_output = cast_tuple(next(dl_iter)) model_input = dict(list(zip(self.dl_tuple_output_keywords_names, dl_tuple_output))) loss = self.forward(**{**kwargs, **model_input}) return loss # checkpointing functions @property def all_checkpoints_sorted(self): glob_pattern = os.path.join(self.checkpoint_path, '*.pt') checkpoints = self.fs.glob(glob_pattern) sorted_checkpoints = sorted(checkpoints, key = lambda x: int(str(x).split('.')[-2]), reverse = True) return sorted_checkpoints def load_from_checkpoint_folder(self, last_total_steps = -1): if last_total_steps != -1: filepath = os.path.join(self.checkpoint_path, f'checkpoint.{last_total_steps}.pt') self.load(filepath) return sorted_checkpoints = self.all_checkpoints_sorted if len(sorted_checkpoints) == 0: self.print(f'no checkpoints found to load from at {self.checkpoint_path}') return last_checkpoint = sorted_checkpoints[0] self.load(last_checkpoint) def save_to_checkpoint_folder(self): self.accelerator.wait_for_everyone() if not self.can_checkpoint: return total_steps = int(self.steps.sum().item()) filepath = os.path.join(self.checkpoint_path, f'checkpoint.{total_steps}.pt') self.save(filepath) if self.max_checkpoints_keep <= 0: return sorted_checkpoints = self.all_checkpoints_sorted checkpoints_to_discard = sorted_checkpoints[self.max_checkpoints_keep:] for checkpoint in checkpoints_to_discard: self.fs.rm(checkpoint) # saving and loading functions def save( self, path, overwrite = True, without_optim_and_sched = False, **kwargs ): self.accelerator.wait_for_everyone() if not self.can_checkpoint: return fs = self.fs assert not (fs.exists(path) and not overwrite) self.reset_ema_unets_all_one_device() save_obj = dict( model = self.starlight.state_dict(), version = __version__, steps = self.steps.cpu(), **kwargs ) save_optim_and_sched_iter = range(0, self.num_unets) if not without_optim_and_sched else tuple() for ind in save_optim_and_sched_iter: scaler_key = f'scaler{ind}' optimizer_key = f'optim{ind}' scheduler_key = f'scheduler{ind}' warmup_scheduler_key = f'warmup{ind}' scaler = getattr(self, scaler_key) optimizer = getattr(self, optimizer_key) scheduler = getattr(self, scheduler_key) warmup_scheduler = getattr(self, warmup_scheduler_key) if exists(scheduler): save_obj = {**save_obj, scheduler_key: scheduler.state_dict()} if exists(warmup_scheduler): save_obj = {**save_obj, warmup_scheduler_key: warmup_scheduler.state_dict()} save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()} if self.use_ema: save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()} # determine if starlight config is available if hasattr(self.starlight, '_config'): self.print(f'this checkpoint is commandable from the CLI - "starlight --model {str(path)} \"<prompt>\""') save_obj = { **save_obj, 'starlight_type': 'elucidated' if self.is_elucidated else 'original', 'starlight_params': self.starlight._config } #save to path with fs.open(path, 'wb') as f: torch.save(save_obj, f) self.print(f'checkpoint saved to {path}') def load(self, path, only_model = False, strict = True, noop_if_not_exist = False): fs = self.fs if noop_if_not_exist and not fs.exists(path): self.print(f'trainer checkpoint not found at {str(path)}') return assert fs.exists(path), f'{path} does not exist' self.reset_ema_unets_all_one_device() # to avoid extra GPU memory usage in main process when using Accelerate with fs.open(path) as f: loaded_obj = torch.load(f, map_location='cpu') if version.parse(__version__) != version.parse(loaded_obj['version']): self.print(f'loading saved starlight at version {loaded_obj["version"]}, but current package version is {__version__}') try: self.starlight.load_state_dict(loaded_obj['model'], strict = strict) except RuntimeError: print("Failed loading state dict. Trying partial load") self.starlight.load_state_dict(restore_parts(self.starlight.state_dict(), loaded_obj['model'])) if only_model: return loaded_obj self.steps.copy_(loaded_obj['steps']) for ind in range(0, self.num_unets): scaler_key = f'scaler{ind}' optimizer_key = f'optim{ind}' scheduler_key = f'scheduler{ind}' warmup_scheduler_key = f'warmup{ind}' scaler = getattr(self, scaler_key) optimizer = getattr(self, optimizer_key) scheduler = getattr(self, scheduler_key) warmup_scheduler = getattr(self, warmup_scheduler_key) if exists(scheduler) and scheduler_key in loaded_obj: scheduler.load_state_dict(loaded_obj[scheduler_key]) if exists(warmup_scheduler) and warmup_scheduler_key in loaded_obj: warmup_scheduler.load_state_dict(loaded_obj[warmup_scheduler_key]) if exists(optimizer): try: optimizer.load_state_dict(loaded_obj[optimizer_key]) scaler.load_state_dict(loaded_obj[scaler_key]) except: self.print('could not load optimizer and scaler, possibly because you have turned on mixed precision training since the last run. resuming with new optimizer and scalers') if self.use_ema: assert 'ema' in loaded_obj try: self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict) except RuntimeError: print("Failed loading state dict. Trying partial load") self.ema_unets.load_state_dict(restore_parts(self.ema_unets.state_dict(), loaded_obj['ema'])) self.print(f'checkpoint loaded from {path}') return loaded_obj # managing ema unets and their devices @property def unets(self): return nn.ModuleList([ema.ema_model for ema in self.ema_unets]) def get_ema_unet(self, unet_number = None): if not self.use_ema: return unet_number = self.validate_unet_number(unet_number) index = unet_number - 1 if isinstance(self.unets, nn.ModuleList): unets_list = [unet for unet in self.ema_unets] delattr(self, 'ema_unets') self.ema_unets = unets_list if index != self.ema_unet_being_trained_index: for unet_index, unet in enumerate(self.ema_unets): unet.to(self.device if unet_index == index else 'cpu') self.ema_unet_being_trained_index = index return self.ema_unets[index] def reset_ema_unets_all_one_device(self, device = None): if not self.use_ema: return device = default(device, self.device) self.ema_unets = nn.ModuleList([*self.ema_unets]) self.ema_unets.to(device) self.ema_unet_being_trained_index = -1 @torch.no_grad() @contextmanager def use_ema_unets(self): if not self.use_ema: output = yield return output self.reset_ema_unets_all_one_device() self.starlight.reset_unets_all_one_device() self.unets.eval() trainable_unets = self.starlight.unets self.starlight.unets = self.unets # swap in exponential moving averaged unets for sampling output = yield self.starlight.unets = trainable_unets # restore original training unets # cast the ema_model unets back to original device for ema in self.ema_unets: ema.restore_ema_model_device() return output def print_unet_devices(self): self.print('unet devices:') for i, unet in enumerate(self.starlight.unets): device = next(unet.parameters()).device self.print(f'\tunet {i}: {device}') if not self.use_ema: return self.print('\nema unet devices:') for i, ema_unet in enumerate(self.ema_unets): device = next(ema_unet.parameters()).device self.print(f'\tema unet {i}: {device}') # overriding state dict functions def state_dict(self, *args, **kwargs): self.reset_ema_unets_all_one_device() return super().state_dict(*args, **kwargs) def load_state_dict(self, *args, **kwargs): self.reset_ema_unets_all_one_device() return super().load_state_dict(*args, **kwargs) # encoding text functions def encode_text(self, text, **kwargs): return self.starlight.encode_text(text, **kwargs) # forwarding functions and gradient step updates def update(self, unet_number = None): unet_number = self.validate_unet_number(unet_number) self.validate_and_set_unet_being_trained(unet_number) self.set_accelerator_scaler(unet_number) index = unet_number - 1 unet = self.unet_being_trained optimizer = getattr(self, f'optim{index}') getattr(self, f'scaler{index}') scheduler = getattr(self, f'scheduler{index}') warmup_scheduler = getattr(self, f'warmup{index}') # set the grad scaler on the accelerator, since we are managing one per u-net if exists(self.max_grad_norm): self.accelerator.clip_grad_norm_(unet.parameters(), self.max_grad_norm) optimizer.step() optimizer.zero_grad() if self.use_ema: ema_unet = self.get_ema_unet(unet_number) ema_unet.update() # scheduler, if needed maybe_warmup_context = nullcontext() if not exists(warmup_scheduler) else warmup_scheduler.dampening() with maybe_warmup_context: if exists(scheduler) and not self.accelerator.optimizer_step_was_skipped: # recommended in the docs scheduler.step() self.steps += F.one_hot(torch.tensor(unet_number - 1, device = self.steps.device), num_classes = len(self.steps)) if not exists(self.checkpoint_path): return total_steps = int(self.steps.sum().item()) if total_steps % self.checkpoint_every: return self.save_to_checkpoint_folder() @torch.no_grad() @cast_torch_tensor @starlight_sample_in_chunks def sample(self, *args, **kwargs): context = nullcontext if kwargs.pop('use_non_ema', False) else self.use_ema_unets self.print_untrained_unets() if not self.is_main: kwargs['use_tqdm'] = False with context(): output = self.starlight.sample(*args, device = self.device, **kwargs) return output @partial(cast_torch_tensor, cast_fp16 = True) def forward( self, *args, unet_number = None, max_batch_size = None, **kwargs ): unet_number = self.validate_unet_number(unet_number) self.validate_and_set_unet_being_trained(unet_number) self.set_accelerator_scaler(unet_number) assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, f'you can only train unet #{self.only_train_unet_number}' total_loss = 0. for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs): with self.accelerator.autocast(): loss = self.starlight(*chunked_args, unet = self.unet_being_trained, unet_number = unet_number, **chunked_kwargs) loss = loss * chunk_size_frac total_loss += loss.item() if self.training: self.accelerator.backward(loss) return total_loss
StarlightVision-master
starlight_vision/trainer.py
from functools import wraps from packaging import version from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange # constants AttentionConfig = namedtuple('AttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, dropout = 0., flash = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = AttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = AttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = AttentionConfig(False, True, True) def flash_attn(self, q, k, v): _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device q, k, v = map(lambda t: t.contiguous(), (q, k, v)) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, dropout_p = self.dropout if self.training else 0. ) return out def forward(self, q, k, v): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ q_len, k_len, device = q.shape[-2], k.shape[-2], q.device if self.flash: return self.flash_attn(q, k, v) scale = q.shape[-1] ** -0.5 # similarity sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale # attention attn = sim.softmax(dim = -1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, b h j d -> b h i d", attn, v) return out
StarlightVision-master
starlight_vision/core/attention.py
from typing import List import torch import transformers from einops import rearrange from transformers import T5Config, T5EncoderModel, T5Tokenizer transformers.logging.set_verbosity_error() def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if callable(d) else d # config MAX_LENGTH = 256 DEFAULT_T5_NAME = 'google/t5-v1_1-base' T5_CONFIGS = {} # singleton globals def get_tokenizer(name): tokenizer = T5Tokenizer.from_pretrained(name, model_max_length=MAX_LENGTH) return tokenizer def get_model(name): model = T5EncoderModel.from_pretrained(name) return model def get_model_and_tokenizer(name): global T5_CONFIGS if name not in T5_CONFIGS: T5_CONFIGS[name] = dict() if "model" not in T5_CONFIGS[name]: T5_CONFIGS[name]["model"] = get_model(name) if "tokenizer" not in T5_CONFIGS[name]: T5_CONFIGS[name]["tokenizer"] = get_tokenizer(name) return T5_CONFIGS[name]['model'], T5_CONFIGS[name]['tokenizer'] def get_encoded_dim(name): if name not in T5_CONFIGS: # avoids loading the model if we only want to get the dim config = T5Config.from_pretrained(name) T5_CONFIGS[name] = dict(config=config) elif "config" in T5_CONFIGS[name]: config = T5_CONFIGS[name]["config"] elif "model" in T5_CONFIGS[name]: config = T5_CONFIGS[name]["model"].config else: assert False return config.d_model # encoding text def t5_tokenize( texts: List[str], name = DEFAULT_T5_NAME ): t5, tokenizer = get_model_and_tokenizer(name) if torch.cuda.is_available(): t5 = t5.cuda() device = next(t5.parameters()).device encoded = tokenizer.batch_encode_plus( texts, return_tensors = "pt", padding = 'longest', max_length = MAX_LENGTH, truncation = True ) input_ids = encoded.input_ids.to(device) attn_mask = encoded.attention_mask.to(device) return input_ids, attn_mask def t5_encode_tokenized_text( token_ids, attn_mask = None, pad_id = None, name = DEFAULT_T5_NAME ): assert exists(attn_mask) or exists(pad_id) t5, _ = get_model_and_tokenizer(name) attn_mask = default(attn_mask, lambda: (token_ids != pad_id).long()) t5.eval() with torch.no_grad(): output = t5(input_ids = token_ids, attention_mask = attn_mask) encoded_text = output.last_hidden_state.detach() attn_mask = attn_mask.bool() encoded_text = encoded_text.masked_fill(~rearrange(attn_mask, '... -> ... 1'), 0.) # just force all embeddings that is padding to be equal to 0. return encoded_text def t5_encode_text( texts: List[str], name = DEFAULT_T5_NAME, return_attn_mask = False ): token_ids, attn_mask = t5_tokenize(texts, name = name) encoded_text = t5_encode_tokenized_text(token_ids, attn_mask = attn_mask, name = name) if return_attn_mask: attn_mask = attn_mask.bool() return encoded_text, attn_mask return encoded_text
StarlightVision-master
starlight_vision/core/t5.py
from math import sqrt from random import random from functools import partial from contextlib import contextmanager, nullcontext from typing import List, Union from collections import namedtuple from tqdm.auto import tqdm import torch import torch.nn.functional as F from torch import nn, einsum from torch.cuda.amp import autocast from torch.nn.parallel import DistributedDataParallel import torchvision.transforms as T import kornia.augmentation as K from einops import rearrange, repeat, reduce from starlight_vision.core.gen2 import ( GaussianDiffusionContinuousTimes, Unet, NullUnet, first, exists, identity, maybe, default, cast_tuple, cast_uint8_images_to_float, eval_decorator, pad_tuple_to_length, resize_image_to, calc_all_frame_dims, safe_get_tuple_index, right_pad_dims_to, module_device, normalize_neg_one_to_one, unnormalize_zero_to_one, compact, maybe_transform_dict_key ) from starlight_vision.core.gen2_video import ( Unet3D, resize_video_to, scale_video_time ) from starlight_vision.core.t5 import t5_encode_text, get_encoded_dim, DEFAULT_T5_NAME # constants Hparams_fields = [ 'num_sample_steps', 'sigma_min', 'sigma_max', 'sigma_data', 'rho', 'P_mean', 'P_std', 'S_churn', 'S_tmin', 'S_tmax', 'S_noise' ] Hparams = namedtuple('Hparams', Hparams_fields) # helper functions def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) # main class class ElucidatedStarlight(nn.Module): def __init__( self, unets, *, image_sizes, # for cascading ddpm, image size at each stage text_encoder_name = DEFAULT_T5_NAME, text_embed_dim = None, channels = 3, cond_drop_prob = 0.1, random_crop_sizes = None, resize_mode = 'nearest', temporal_downsample_factor = 1, resize_cond_video_frames = True, lowres_sample_noise_level = 0.2, # in the paper, they present a new trick where they noise the lowres conditioning image, and at sample time, fix it to a certain level (0.1 or 0.3) - the unets are also made to be conditioned on this noise level per_sample_random_aug_noise_level = False, # unclear when conditioning on augmentation noise level, whether each batch element receives a random aug noise value - turning off due to @marunine's find condition_on_text = True, auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader dynamic_thresholding = True, dynamic_thresholding_percentile = 0.95, # unsure what this was based on perusal of paper only_train_unet_number = None, lowres_noise_schedule = 'linear', num_sample_steps = 32, # number of sampling steps sigma_min = 0.002, # min noise level sigma_max = 80, # max noise level sigma_data = 0.5, # standard deviation of data distribution rho = 7, # controls the sampling schedule P_mean = -1.2, # mean of log-normal distribution from which noise is drawn for training P_std = 1.2, # standard deviation of log-normal distribution from which noise is drawn for training S_churn = 80, # parameters for stochastic sampling - depends on dataset, Table 5 in apper S_tmin = 0.05, S_tmax = 50, S_noise = 1.003, ): super().__init__() self.only_train_unet_number = only_train_unet_number # conditioning hparams self.condition_on_text = condition_on_text self.unconditional = not condition_on_text # channels self.channels = channels # automatically take care of ensuring that first unet is unconditional # while the rest of the unets are conditioned on the low resolution image produced by previous unet unets = cast_tuple(unets) num_unets = len(unets) # randomly cropping for upsampler training self.random_crop_sizes = cast_tuple(random_crop_sizes, num_unets) assert not exists(first(self.random_crop_sizes)), 'you should not need to randomly crop image during training for base unet, only for upsamplers - so pass in `random_crop_sizes = (None, 128, 256)` as example' # lowres augmentation noise schedule self.lowres_noise_schedule = GaussianDiffusionContinuousTimes(noise_schedule = lowres_noise_schedule) # get text encoder self.text_encoder_name = text_encoder_name self.text_embed_dim = default(text_embed_dim, lambda: get_encoded_dim(text_encoder_name)) self.encode_text = partial(t5_encode_text, name = text_encoder_name) # construct unets self.unets = nn.ModuleList([]) self.unet_being_trained_index = -1 # keeps track of which unet is being trained at the moment for ind, one_unet in enumerate(unets): assert isinstance(one_unet, (Unet, Unet3D, NullUnet)) is_first = ind == 0 one_unet = one_unet.cast_model_parameters( lowres_cond = not is_first, cond_on_text = self.condition_on_text, text_embed_dim = self.text_embed_dim if self.condition_on_text else None, channels = self.channels, channels_out = self.channels ) self.unets.append(one_unet) # determine whether we are training on images or video is_video = any([isinstance(unet, Unet3D) for unet in self.unets]) self.is_video = is_video self.right_pad_dims_to_datatype = partial(rearrange, pattern = ('b -> b 1 1 1' if not is_video else 'b -> b 1 1 1 1')) self.resize_to = resize_video_to if is_video else resize_image_to self.resize_to = partial(self.resize_to, mode = resize_mode) # unet image sizes self.image_sizes = cast_tuple(image_sizes) assert num_unets == len(self.image_sizes), f'you did not supply the correct number of u-nets ({len(self.unets)}) for resolutions {self.image_sizes}' self.sample_channels = cast_tuple(self.channels, num_unets) # cascading ddpm related stuff lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets)) assert lowres_conditions == (False, *((True,) * (num_unets - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True' self.lowres_sample_noise_level = lowres_sample_noise_level self.per_sample_random_aug_noise_level = per_sample_random_aug_noise_level # classifier free guidance self.cond_drop_prob = cond_drop_prob self.can_classifier_guidance = cond_drop_prob > 0. # normalize and unnormalize image functions self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity self.input_image_range = (0. if auto_normalize_img else -1., 1.) # dynamic thresholding self.dynamic_thresholding = cast_tuple(dynamic_thresholding, num_unets) self.dynamic_thresholding_percentile = dynamic_thresholding_percentile # temporal interpolations temporal_downsample_factor = cast_tuple(temporal_downsample_factor, num_unets) self.temporal_downsample_factor = temporal_downsample_factor self.resize_cond_video_frames = resize_cond_video_frames self.temporal_downsample_divisor = temporal_downsample_factor[0] assert temporal_downsample_factor[-1] == 1, 'downsample factor of last stage must be 1' assert tuple(sorted(temporal_downsample_factor, reverse = True)) == temporal_downsample_factor, 'temporal downsample factor must be in order of descending' # elucidating parameters hparams = [ num_sample_steps, sigma_min, sigma_max, sigma_data, rho, P_mean, P_std, S_churn, S_tmin, S_tmax, S_noise, ] hparams = [cast_tuple(hp, num_unets) for hp in hparams] self.hparams = [Hparams(*unet_hp) for unet_hp in zip(*hparams)] # one temp parameter for keeping track of device self.register_buffer('_temp', torch.tensor([0.]), persistent = False) # default to device of unets passed in self.to(next(self.unets.parameters()).device) def force_unconditional_(self): self.condition_on_text = False self.unconditional = True for unet in self.unets: unet.cond_on_text = False @property def device(self): return self._temp.device def get_unet(self, unet_number): assert 0 < unet_number <= len(self.unets) index = unet_number - 1 if isinstance(self.unets, nn.ModuleList): unets_list = [unet for unet in self.unets] delattr(self, 'unets') self.unets = unets_list if index != self.unet_being_trained_index: for unet_index, unet in enumerate(self.unets): unet.to(self.device if unet_index == index else 'cpu') self.unet_being_trained_index = index return self.unets[index] def reset_unets_all_one_device(self, device = None): device = default(device, self.device) self.unets = nn.ModuleList([*self.unets]) self.unets.to(device) self.unet_being_trained_index = -1 @contextmanager def one_unet_in_gpu(self, unet_number = None, unet = None): assert exists(unet_number) ^ exists(unet) if exists(unet_number): unet = self.unets[unet_number - 1] cpu = torch.device('cpu') devices = [module_device(unet) for unet in self.unets] self.unets.to(cpu) unet.to(self.device) yield for unet, device in zip(self.unets, devices): unet.to(device) # overriding state dict functions def state_dict(self, *args, **kwargs): self.reset_unets_all_one_device() return super().state_dict(*args, **kwargs) def load_state_dict(self, *args, **kwargs): self.reset_unets_all_one_device() return super().load_state_dict(*args, **kwargs) # dynamic thresholding def threshold_x_start(self, x_start, dynamic_threshold = True): if not dynamic_threshold: return x_start.clamp(-1., 1.) s = torch.quantile( rearrange(x_start, 'b ... -> b (...)').abs(), self.dynamic_thresholding_percentile, dim = -1 ) s.clamp_(min = 1.) s = right_pad_dims_to(x_start, s) return x_start.clamp(-s, s) / s # derived preconditioning params - Table 1 def c_skip(self, sigma_data, sigma): return (sigma_data ** 2) / (sigma ** 2 + sigma_data ** 2) def c_out(self, sigma_data, sigma): return sigma * sigma_data * (sigma_data ** 2 + sigma ** 2) ** -0.5 def c_in(self, sigma_data, sigma): return 1 * (sigma ** 2 + sigma_data ** 2) ** -0.5 def c_noise(self, sigma): return log(sigma) * 0.25 # preconditioned network output # equation (7) in the paper def preconditioned_network_forward( self, unet_forward, noised_images, sigma, *, sigma_data, clamp = False, dynamic_threshold = True, **kwargs ): batch, device = noised_images.shape[0], noised_images.device if isinstance(sigma, float): sigma = torch.full((batch,), sigma, device = device) padded_sigma = self.right_pad_dims_to_datatype(sigma) net_out = unet_forward( self.c_in(sigma_data, padded_sigma) * noised_images, self.c_noise(sigma), **kwargs ) out = self.c_skip(sigma_data, padded_sigma) * noised_images + self.c_out(sigma_data, padded_sigma) * net_out if not clamp: return out return self.threshold_x_start(out, dynamic_threshold) # sampling # sample schedule # equation (5) in the paper def sample_schedule( self, num_sample_steps, rho, sigma_min, sigma_max ): N = num_sample_steps inv_rho = 1 / rho steps = torch.arange(num_sample_steps, device = self.device, dtype = torch.float32) sigmas = (sigma_max ** inv_rho + steps / (N - 1) * (sigma_min ** inv_rho - sigma_max ** inv_rho)) ** rho sigmas = F.pad(sigmas, (0, 1), value = 0.) # last step is sigma value of 0. return sigmas @torch.no_grad() def one_unet_sample( self, unet, shape, *, unet_number, clamp = True, dynamic_threshold = True, cond_scale = 1., use_tqdm = True, inpaint_videos = None, inpaint_images = None, inpaint_masks = None, inpaint_resample_times = 5, init_images = None, skip_steps = None, sigma_min = None, sigma_max = None, **kwargs ): # video is_video = len(shape) == 5 frames = shape[-3] if is_video else None resize_kwargs = dict(target_frames = frames) if exists(frames) else dict() # get specific sampling hyperparameters for unet hp = self.hparams[unet_number - 1] sigma_min = default(sigma_min, hp.sigma_min) sigma_max = default(sigma_max, hp.sigma_max) # get the schedule, which is returned as (sigma, gamma) tuple, and pair up with the next sigma and gamma sigmas = self.sample_schedule(hp.num_sample_steps, hp.rho, sigma_min, sigma_max) gammas = torch.where( (sigmas >= hp.S_tmin) & (sigmas <= hp.S_tmax), min(hp.S_churn / hp.num_sample_steps, sqrt(2) - 1), 0. ) sigmas_and_gammas = list(zip(sigmas[:-1], sigmas[1:], gammas[:-1])) # images is noise at the beginning init_sigma = sigmas[0] images = init_sigma * torch.randn(shape, device = self.device) # initializing with an image if exists(init_images): images += init_images # keeping track of x0, for self conditioning if needed x_start = None # prepare inpainting images and mask inpaint_images = default(inpaint_videos, inpaint_images) has_inpainting = exists(inpaint_images) and exists(inpaint_masks) resample_times = inpaint_resample_times if has_inpainting else 1 if has_inpainting: inpaint_images = self.normalize_img(inpaint_images) inpaint_images = self.resize_to(inpaint_images, shape[-1], **resize_kwargs) inpaint_masks = self.resize_to(rearrange(inpaint_masks, 'b ... -> b 1 ...').float(), shape[-1], **resize_kwargs).bool() # unet kwargs unet_kwargs = dict( sigma_data = hp.sigma_data, clamp = clamp, dynamic_threshold = dynamic_threshold, cond_scale = cond_scale, **kwargs ) # gradually denoise initial_step = default(skip_steps, 0) sigmas_and_gammas = sigmas_and_gammas[initial_step:] total_steps = len(sigmas_and_gammas) for ind, (sigma, sigma_next, gamma) in tqdm(enumerate(sigmas_and_gammas), total = total_steps, desc = 'sampling time step', disable = not use_tqdm): is_last_timestep = ind == (total_steps - 1) sigma, sigma_next, gamma = map(lambda t: t.item(), (sigma, sigma_next, gamma)) for r in reversed(range(resample_times)): is_last_resample_step = r == 0 eps = hp.S_noise * torch.randn(shape, device = self.device) # stochastic sampling sigma_hat = sigma + gamma * sigma added_noise = sqrt(sigma_hat ** 2 - sigma ** 2) * eps images_hat = images + added_noise self_cond = x_start if unet.self_cond else None if has_inpainting: images_hat = images_hat * ~inpaint_masks + (inpaint_images + added_noise) * inpaint_masks model_output = self.preconditioned_network_forward( unet.forward_with_cond_scale, images_hat, sigma_hat, self_cond = self_cond, **unet_kwargs ) denoised_over_sigma = (images_hat - model_output) / sigma_hat images_next = images_hat + (sigma_next - sigma_hat) * denoised_over_sigma # second order correction, if not the last timestep has_second_order_correction = sigma_next != 0 if has_second_order_correction: self_cond = model_output if unet.self_cond else None model_output_next = self.preconditioned_network_forward( unet.forward_with_cond_scale, images_next, sigma_next, self_cond = self_cond, **unet_kwargs ) denoised_prime_over_sigma = (images_next - model_output_next) / sigma_next images_next = images_hat + 0.5 * (sigma_next - sigma_hat) * (denoised_over_sigma + denoised_prime_over_sigma) images = images_next if has_inpainting and not (is_last_resample_step or is_last_timestep): # renoise in repaint and then resample repaint_noise = torch.randn(shape, device = self.device) images = images + (sigma - sigma_next) * repaint_noise x_start = model_output if not has_second_order_correction else model_output_next # save model output for self conditioning images = images.clamp(-1., 1.) if has_inpainting: images = images * ~inpaint_masks + inpaint_images * inpaint_masks return self.unnormalize_img(images) @torch.no_grad() @eval_decorator def sample( self, texts: List[str] = None, text_masks = None, text_embeds = None, cond_images = None, cond_video_frames = None, post_cond_video_frames = None, inpaint_videos = None, inpaint_images = None, inpaint_masks = None, inpaint_resample_times = 5, init_images = None, skip_steps = None, sigma_min = None, sigma_max = None, video_frames = None, batch_size = 1, cond_scale = 1., lowres_sample_noise_level = None, start_at_unet_number = 1, start_image_or_video = None, stop_at_unet_number = None, return_all_unet_outputs = False, return_pil_images = False, use_tqdm = True, use_one_unet_in_gpu = True, device = None, ): device = default(device, self.device) self.reset_unets_all_one_device(device = device) cond_images = maybe(cast_uint8_images_to_float)(cond_images) if exists(texts) and not exists(text_embeds) and not self.unconditional: assert all([*map(len, texts)]), 'text cannot be empty' with autocast(enabled = False): text_embeds, text_masks = self.encode_text(texts, return_attn_mask = True) text_embeds, text_masks = map(lambda t: t.to(device), (text_embeds, text_masks)) if not self.unconditional: assert exists(text_embeds), 'text must be passed in if the network was not trained without text `condition_on_text` must be set to `False` when training' text_masks = default(text_masks, lambda: torch.any(text_embeds != 0., dim = -1)) batch_size = text_embeds.shape[0] # inpainting inpaint_images = default(inpaint_videos, inpaint_images) if exists(inpaint_images): if self.unconditional: if batch_size == 1: # assume researcher wants to broadcast along inpainted images batch_size = inpaint_images.shape[0] assert inpaint_images.shape[0] == batch_size, 'number of inpainting images must be equal to the specified batch size on sample `sample(batch_size=<int>)``' assert not (self.condition_on_text and inpaint_images.shape[0] != text_embeds.shape[0]), 'number of inpainting images must be equal to the number of text to be conditioned on' assert not (self.condition_on_text and not exists(text_embeds)), 'text or text encodings must be passed into starlight if specified' assert not (not self.condition_on_text and exists(text_embeds)), 'starlight specified not to be conditioned on text, yet it is presented' assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), f'invalid text embedding dimension being passed in (should be {self.text_embed_dim})' assert not (exists(inpaint_images) ^ exists(inpaint_masks)), 'inpaint images and masks must be both passed in to do inpainting' outputs = [] is_cuda = next(self.parameters()).is_cuda device = next(self.parameters()).device lowres_sample_noise_level = default(lowres_sample_noise_level, self.lowres_sample_noise_level) num_unets = len(self.unets) cond_scale = cast_tuple(cond_scale, num_unets) # handle video and frame dimension if self.is_video and exists(inpaint_images): video_frames = inpaint_images.shape[2] if inpaint_masks.ndim == 3: inpaint_masks = repeat(inpaint_masks, 'b h w -> b f h w', f = video_frames) assert inpaint_masks.shape[1] == video_frames assert not (self.is_video and not exists(video_frames)), 'video_frames must be passed in on sample time if training on video' # determine the frame dimensions, if needed all_frame_dims = calc_all_frame_dims(self.temporal_downsample_factor, video_frames) # initializing with an image or video init_images = cast_tuple(init_images, num_unets) init_images = [maybe(self.normalize_img)(init_image) for init_image in init_images] skip_steps = cast_tuple(skip_steps, num_unets) sigma_min = cast_tuple(sigma_min, num_unets) sigma_max = cast_tuple(sigma_max, num_unets) # handle starting at a unet greater than 1, for training only-upscaler training if start_at_unet_number > 1: assert start_at_unet_number <= num_unets, 'must start a unet that is less than the total number of unets' assert not exists(stop_at_unet_number) or start_at_unet_number <= stop_at_unet_number assert exists(start_image_or_video), 'starting image or video must be supplied if only doing upscaling' prev_image_size = self.image_sizes[start_at_unet_number - 2] img = self.resize_to(start_image_or_video, prev_image_size) # go through each unet in cascade for unet_number, unet, channel, image_size, frame_dims, unet_hparam, dynamic_threshold, unet_cond_scale, unet_init_images, unet_skip_steps, unet_sigma_min, unet_sigma_max in tqdm(zip(range(1, num_unets + 1), self.unets, self.sample_channels, self.image_sizes, all_frame_dims, self.hparams, self.dynamic_thresholding, cond_scale, init_images, skip_steps, sigma_min, sigma_max), disable = not use_tqdm): if unet_number < start_at_unet_number: continue assert not isinstance(unet, NullUnet), 'cannot sample from null unet' context = self.one_unet_in_gpu(unet = unet) if is_cuda and use_one_unet_in_gpu else nullcontext() with context: lowres_cond_img = lowres_noise_times = None shape = (batch_size, channel, *frame_dims, image_size, image_size) resize_kwargs = dict() video_kwargs = dict() if self.is_video: resize_kwargs = dict(target_frames = frame_dims[0]) video_kwargs = dict( cond_video_frames = cond_video_frames, post_cond_video_frames = post_cond_video_frames ) video_kwargs = compact(video_kwargs) # handle video conditioning frames if self.is_video and self.resize_cond_video_frames: downsample_scale = self.temporal_downsample_factor[unet_number - 1] temporal_downsample_fn = partial(scale_video_time, downsample_scale = downsample_scale) video_kwargs = maybe_transform_dict_key(video_kwargs, 'cond_video_frames', temporal_downsample_fn) video_kwargs = maybe_transform_dict_key(video_kwargs, 'post_cond_video_frames', temporal_downsample_fn) # low resolution conditioning if unet.lowres_cond: lowres_noise_times = self.lowres_noise_schedule.get_times(batch_size, lowres_sample_noise_level, device = device) lowres_cond_img = self.resize_to(img, image_size, **resize_kwargs) lowres_cond_img = self.normalize_img(lowres_cond_img) lowres_cond_img, *_ = self.lowres_noise_schedule.q_sample(x_start = lowres_cond_img, t = lowres_noise_times, noise = torch.randn_like(lowres_cond_img)) if exists(unet_init_images): unet_init_images = self.resize_to(unet_init_images, image_size, **resize_kwargs) shape = (batch_size, self.channels, *frame_dims, image_size, image_size) img = self.one_unet_sample( unet, shape, unet_number = unet_number, text_embeds = text_embeds, text_mask = text_masks, cond_images = cond_images, inpaint_images = inpaint_images, inpaint_masks = inpaint_masks, inpaint_resample_times = inpaint_resample_times, init_images = unet_init_images, skip_steps = unet_skip_steps, sigma_min = unet_sigma_min, sigma_max = unet_sigma_max, cond_scale = unet_cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_times = lowres_noise_times, dynamic_threshold = dynamic_threshold, use_tqdm = use_tqdm, **video_kwargs ) outputs.append(img) if exists(stop_at_unet_number) and stop_at_unet_number == unet_number: break output_index = -1 if not return_all_unet_outputs else slice(None) # either return last unet output or all unet outputs if not return_pil_images: return outputs[output_index] if not return_all_unet_outputs: outputs = outputs[-1:] assert not self.is_video, 'automatically converting video tensor to video file for saving is not built yet' pil_images = list(map(lambda img: list(map(T.ToPILImage(), img.unbind(dim = 0))), outputs)) return pil_images[output_index] # now you have a bunch of pillow images you can just .save(/where/ever/you/want.png) # training def loss_weight(self, sigma_data, sigma): return (sigma ** 2 + sigma_data ** 2) * (sigma * sigma_data) ** -2 def noise_distribution(self, P_mean, P_std, batch_size): return (P_mean + P_std * torch.randn((batch_size,), device = self.device)).exp() def forward( self, images, # rename to images or video unet: Union[Unet, Unet3D, NullUnet, DistributedDataParallel] = None, texts: List[str] = None, text_embeds = None, text_masks = None, unet_number = None, cond_images = None, **kwargs ): if self.is_video and images.ndim == 4: images = rearrange(images, 'b c h w -> b c 1 h w') kwargs.update(ignore_time = True) assert images.shape[-1] == images.shape[-2], f'the images you pass in must be a square, but received dimensions of {images.shape[2]}, {images.shape[-1]}' assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)' unet_number = default(unet_number, 1) assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, 'you can only train on unet #{self.only_train_unet_number}' images = cast_uint8_images_to_float(images) cond_images = maybe(cast_uint8_images_to_float)(cond_images) assert images.dtype == torch.float, f'images tensor needs to be floats but {images.dtype} dtype found instead' unet_index = unet_number - 1 unet = default(unet, lambda: self.get_unet(unet_number)) assert not isinstance(unet, NullUnet), 'null unet cannot and should not be trained' target_image_size = self.image_sizes[unet_index] random_crop_size = self.random_crop_sizes[unet_index] prev_image_size = self.image_sizes[unet_index - 1] if unet_index > 0 else None hp = self.hparams[unet_index] batch_size, c, *_, h, w, device, is_video = *images.shape, images.device, (images.ndim == 5) frames = images.shape[2] if is_video else None all_frame_dims = tuple(safe_get_tuple_index(el, 0) for el in calc_all_frame_dims(self.temporal_downsample_factor, frames)) ignore_time = kwargs.get('ignore_time', False) target_frame_size = all_frame_dims[unet_index] if is_video and not ignore_time else None prev_frame_size = all_frame_dims[unet_index - 1] if is_video and not ignore_time and unet_index > 0 else None frames_to_resize_kwargs = lambda frames: dict(target_frames = frames) if exists(frames) else dict() assert images.shape[1] == self.channels assert h >= target_image_size and w >= target_image_size if exists(texts) and not exists(text_embeds) and not self.unconditional: assert all([*map(len, texts)]), 'text cannot be empty' assert len(texts) == len(images), 'number of text captions does not match up with the number of images given' with autocast(enabled = False): text_embeds, text_masks = self.encode_text(texts, return_attn_mask = True) text_embeds, text_masks = map(lambda t: t.to(images.device), (text_embeds, text_masks)) if not self.unconditional: text_masks = default(text_masks, lambda: torch.any(text_embeds != 0., dim = -1)) assert not (self.condition_on_text and not exists(text_embeds)), 'text or text encodings must be passed into decoder if specified' assert not (not self.condition_on_text and exists(text_embeds)), 'decoder specified not to be conditioned on text, yet it is presented' assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), f'invalid text embedding dimension being passed in (should be {self.text_embed_dim})' # handle video conditioning frames if self.is_video and self.resize_cond_video_frames: downsample_scale = self.temporal_downsample_factor[unet_index] temporal_downsample_fn = partial(scale_video_time, downsample_scale = downsample_scale) kwargs = maybe_transform_dict_key(kwargs, 'cond_video_frames', temporal_downsample_fn) kwargs = maybe_transform_dict_key(kwargs, 'post_cond_video_frames', temporal_downsample_fn) # low resolution conditioning lowres_cond_img = lowres_aug_times = None if exists(prev_image_size): lowres_cond_img = self.resize_to(images, prev_image_size, **frames_to_resize_kwargs(prev_frame_size), clamp_range = self.input_image_range) lowres_cond_img = self.resize_to(lowres_cond_img, target_image_size, **frames_to_resize_kwargs(target_frame_size), clamp_range = self.input_image_range) if self.per_sample_random_aug_noise_level: lowres_aug_times = self.lowres_noise_schedule.sample_random_times(batch_size, device = device) else: lowres_aug_time = self.lowres_noise_schedule.sample_random_times(1, device = device) lowres_aug_times = repeat(lowres_aug_time, '1 -> b', b = batch_size) images = self.resize_to(images, target_image_size, **frames_to_resize_kwargs(target_frame_size)) # normalize to [-1, 1] images = self.normalize_img(images) lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img) # random cropping during training # for upsamplers if exists(random_crop_size): aug = K.RandomCrop((random_crop_size, random_crop_size), p = 1.) if is_video: images, lowres_cond_img = map(lambda t: rearrange(t, 'b c f h w -> (b f) c h w'), (images, lowres_cond_img)) # make sure low res conditioner and image both get augmented the same way # detailed https://kornia.readthedocs.io/en/latest/augmentation.module.html?highlight=randomcrop#kornia.augmentation.RandomCrop images = aug(images) lowres_cond_img = aug(lowres_cond_img, params = aug._params) if is_video: images, lowres_cond_img = map(lambda t: rearrange(t, '(b f) c h w -> b c f h w', f = frames), (images, lowres_cond_img)) # noise the lowres conditioning image # at sample time, they then fix the noise level of 0.1 - 0.3 lowres_cond_img_noisy = None if exists(lowres_cond_img): lowres_cond_img_noisy, *_ = self.lowres_noise_schedule.q_sample(x_start = lowres_cond_img, t = lowres_aug_times, noise = torch.randn_like(lowres_cond_img)) # get the sigmas sigmas = self.noise_distribution(hp.P_mean, hp.P_std, batch_size) padded_sigmas = self.right_pad_dims_to_datatype(sigmas) # noise noise = torch.randn_like(images) noised_images = images + padded_sigmas * noise # alphas are 1. in the paper # unet kwargs unet_kwargs = dict( sigma_data = hp.sigma_data, text_embeds = text_embeds, text_mask = text_masks, cond_images = cond_images, lowres_noise_times = self.lowres_noise_schedule.get_condition(lowres_aug_times), lowres_cond_img = lowres_cond_img_noisy, cond_drop_prob = self.cond_drop_prob, **kwargs ) # self conditioning - https://arxiv.org/abs/2208.04202 - training will be 25% slower # Because 'unet' can be an instance of DistributedDataParallel coming from the # StarlightTrainer.unet_being_trained when invoking StarlightTrainer.forward(), we need to # access the member 'module' of the wrapped unet instance. self_cond = unet.module.self_cond if isinstance(unet, DistributedDataParallel) else unet.self_cond if self_cond and random() < 0.5: with torch.no_grad(): pred_x0 = self.preconditioned_network_forward( unet.forward, noised_images, sigmas, **unet_kwargs ).detach() unet_kwargs = {**unet_kwargs, 'self_cond': pred_x0} # get prediction denoised_images = self.preconditioned_network_forward( unet.forward, noised_images, sigmas, **unet_kwargs ) # losses losses = F.mse_loss(denoised_images, images, reduction = 'none') losses = reduce(losses, 'b ... -> b', 'mean') # loss weighting losses = losses * self.loss_weight(hp.sigma_data, sigmas) # return average loss return losses.mean()
StarlightVision-master
starlight_vision/core/elucidated.py
StarlightVision-master
starlight_vision/core/__init__.py
import torch import torch.nn as nn from torchvision.transforms import Compose, Resize, Normalize, ToTensor from torch.utils.data import DataLoader from transformers import DiffusionModel, ClipModel, DiffusionConfig, DPTImageProcessor, DPTForDepthEstimation from torchvision.transforms import GaussianBlur import torch.nn.functional as F import math #spatial transformer class SpatialTransformer(nn.Module): def __init__(self, in_channels, num_heads): super(SpatialTransformer, self).__init__() self.in_channels = in_channels self.num_heads = num_heads self.key_proj = nn.Linear(in_channels, in_channels) self.value_proj = nn.Linear(in_channels, in_channels) self.query_proj = nn.Linear(in_channels, in_channels) self.softmax = nn.Softmax(dim=-1) self.output_proj = nn.Linear(in_channels, in_channels) def forward(self, x, content_embeddings): #compute keys and values from content embedding keys = self.key_proj(content_embeddings) values = self.value_proj(content_embeddings) #compute queries from input queries = self.query_proj(x) #conpute attention scores attention_scores = torch.matmul(queries, keys.tranpose(-1. -2)) / (self.in_channels ** 0.5) attention_scores = self.softmax(attention_scores) #compute attented scores attented_values = torch.matmul(attention_scores, values) #add residual connection and apply output projection out = x + attented_values out = self.output_proj(out) return out class Midas(nn.Module): def __init__(self): super(Midas, self).__init__() self.processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") def forward(self, x): #prepare images for the model inputs = self.processor(images=x, return_tensors="pt") with torch.no_grad(): outputs = self.model(**inputs) predicted_depth = outputs.predicted_depth #interplate to original size prediction = torch.nn.function.interpolate( predicted_depth.unsqueeze(1), size=x.shape[-2:], mode="bicubic", align_corners=False, ) return prediction.squeeze() #sinusodial embeddings class SinusoidalEmbedding(nn.Module): def __init__(self, num_channels): super(SinusoidalEmbedding, self).__init__() self.num_channels = num_channels def forward(self, ts, T): ts = torch.Tensor([ts]) T = torch.Tensor([T]) ts_embed = torch.zeros(self.num_channels // 2) div_term = torch.exp(torch.arange(0, self.num_channels // 2, 2) * -(math.log(10000.0) / self.num_channels)) ts_embed[0::2] = torch.sin(ts * div_term) ts_embed[1::2] = torch.cos(ts * div_term) return ts_embed #unet class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, temporal=False): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(out_channels) self.temporal = temporal if temporal: self.temporal_conv = nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=1) self.bn_temporal = nn.BatchNorm1d(out_channels) def forward(self, x): residual = x out = self.relu(self.bn1(self.conv1(x))) if self.temporal: out = self.bn_temporal(self.temporal_conv(out)) out = self.bn2(self.conv2(out)) out += residual out = self.relu(out) return out class TransformerBlock(nn.Module): def __init__(self, in_channels, temporal=False): super(TransformerBlock, self).__init__() self.spatial_transformer = nn.TransformerEncoderLayr(d_model=in_channels, nhead=8) self.temporal = temporal if temporal: self.temporal_transformer = nn.TransformerEncoderLayer(d_model=in_channels, nhead=8) def forward(self, x): out = self.spatial_transformer(x) if self.temporal: out = self.temporal_transformer(out) return out class Unet(nn.Module): def __init__(self, in_channels, out_channels): super(Unet, self).__init__() # Encoder self.encoder = nn.Sequential( ResidualBlock(in_channels, 64, temporal=False), nn.MaxPool2d(2), ResidualBlock(64, 128, temporal=False), nn.MaxPool2d(2), ResidualBlock(128, 256, temporal=False), nn.MaxPool2d(2), ResidualBlock(256, 512, temporal=False), ) # Center part of the UNet self.middle = nn.Sequential( TransformerBlock(512, temporal=False), ) # Decoder self.decoder = nn.Sequential( ResidualBlock(512, 256, temporal=False), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), ResidualBlock(256, 128, temporal=False), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), ResidualBlock(128, 64, temporal=False), nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), nn.Conv2d(64, out_channels, kernel_size=1), ) def forward(self, x): # Pass input through the encoder z = self.encoder(x) # Pass the latent representations through the middle UNet layers z = self.middle(z) # Pass output to decoder out = self.decoder(z) return out #extended unet class ExtendedUNet(Unet): def __init__(self, in_channels, out_channels, blur_kernel_size=3, blur_sigma=1.0): super(ExtendedUNet, self).__init__(in_channels, out_channels) self.midas_dpt_large = Midas() # Load the MiDaS DPT-Large model self.clip_model = ClipModel.from_pretrained("openai/clip-vit-base-patch32") self.blur = GaussianBlur(blur_kernel_size, sigma=blur_sigma) def process_structure(self, x, ts, Ts): depth_maps = self.midas_dpt_large(x) for _ in range(ts): depth_maps = self.blur(depth_maps) depth_maps = F.interpolate(depth_maps, scale_factor=0.5) depth_maps = F.interpolate(depth_maps, size=x.shape[-2:]) z_structure = self.encoder(depth_maps) return z_structure def process_content(self, x): content_repr = self.clip_model.encode_image(x) return content_repr def sample(self, x, t, c, ts, guidance_scale=1.0, temporal_scale=1.0): zt = self.encoder(x) z_structure = self.process_structure(x, ts, Ts) zt = torch.cat([zt, z_structure], dim=1) content_repr = self.process_content(c) # Apply the spatial transformer and cross-attention conditioning out = self.layers(zt, content_repr) # Compute the adjusted predictions unconditional_pred = self.decoder(out) conditional_pred = self.decoder(out) adjusted_pred = unconditional_pred + guidance_scale * (conditional_pred - unconditional_pred) # Control temporal consistency image_model_pred = ... # Compute the prediction of the image model applied to each frame individually adjusted_pred = image_model_pred + temporal_scale * (adjusted_pred - image_model_pred) return adjusted_pred class Starlight(nn.Module): def __init__(self, Ts): super(Starlight, self).__init__() self.unet_lowres = ExtendedUNet() self.unet_midres = ExtendedUNet() self.unet_highres = ExtendedUNet() self.sinusoidal_embedding = SinusoidalEmbedding(4) self.Ts = Ts self.lstm = nn.LSTM(input_size=512, hidden_size=512, num_layers=1) def forward(self, x, s, c, ts): #apply multi scale architecture x_lowres = F.interpolate(x, scale_factor=0.25) x_midres = F.interpolate(x, scale_factor=0.5) x_highres = x means_lowres = self.process_scale(x_lowres, s, c, ts) means_midres = self.process_scale(x_midres, s, c, ts) means_highres = self.process_scale(x_highres, s, c, ts) return means_lowres, means_midres, means_highres def process_structure(self, depth_maps, ts): for _ in range(ts): depth_maps = self.unet.blur(depth_maps) depth_maps = F.interpolate(depth_maps, scale_factor=0.5) depth_maps = F.interpolate(depth_maps, size=depth_maps.shape[-2:]) z_structure = self.unet.encoder(depth_maps) return z_structure def process_scale(self, x, s, c, ts): # Compute content representation content_embedding = self.unet.process_content(x) # Compute structure representation depth_maps = self.unet.midas_dpt_large(x) structure_embedding = self.process_structure(depth_maps, ts) # Condition on structure zt = torch.cat([x, structure_embedding], dim=1) # Add sinusoidal embedding of ts ts_embed = self.sinusoidal_embedding(ts, self.Ts).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) ts_embed = ts_embed.repeat(x.size(0), 1, x.size(2), x.size(3)) zt = torch.cat([zt, ts_embed], dim=1) # Apply cross-attention zt = self.unet.spatial_transformer_blocks(zt, content_embedding, c) # Process LSTM temporal context lstm_input = zt.view(zt.size(0), 1, -1) _, (hidden_state, _) = self.lstm(lstm_input) hidden_state = hidden_state.view(hidden_state.size(1), -1, 1, 1) # Concatenate hidden_state with zt zt = torch.cat([zt, hidden_state], dim=1) # Pass through UNet means = self.unet(zt) return means model = Starlight() def train_starlight(model, train_loader, optimizer, device, perceptual_loss_fn, style_loss_fn, alpha, beta): model.train() for inputs, content, structure, ts in train_loader: inputs = inputs.to(device) content = content.to(device) structure = structure.to(device) ts = ts.to(device) optimizer.zero_grad() means_lowres, means_midres, means_highres = model(inputs, structure, content, ts) loss_lowres = F.mse_loss(inputs, means_lowres) loss_midres = F.mse_loss(inputs, means_midres) loss_highres = F.mse_loss(inputs, means_highres) # Perceptual and style losses perceptual_loss = perceptual_loss_fn(inputs, means_highres) style_loss = style_loss_fn(inputs, means_highres) loss = loss_lowres + loss_midres + loss_highres + alpha * perceptual_loss + beta * style_loss loss.backward() optimizer.step()
StarlightVision-master
starlight_vision/core/starlightv2.py
import math import copy from random import random from beartype.typing import List, Union from beartype import beartype from tqdm.auto import tqdm from functools import partial, wraps from contextlib import contextmanager, nullcontext from collections import namedtuple from pathlib import Path import torch import torch.nn.functional as F from torch.nn.parallel import DistributedDataParallel from torch import nn, einsum from torch.cuda.amp import autocast from torch.special import expm1 import torchvision.transforms as T import kornia.augmentation as K from einops import rearrange, repeat, reduce, pack, unpack from einops.layers.torch import Rearrange, Reduce from starlight_vision.core.t5 import t5_encode_text, get_encoded_dim, DEFAULT_T5_NAME from starlight_vision.core.gen2_video import Unet3D, resize_video_to, scale_video_time # helper functions def exists(val): return val is not None def identity(t, *args, **kwargs): return t def divisible_by(numer, denom): return (numer % denom) == 0 def first(arr, d = None): if len(arr) == 0: return d return arr[0] def maybe(fn): @wraps(fn) def inner(x): if not exists(x): return x return fn(x) return inner def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) def default(val, d): if exists(val): return val return d() if callable(d) else d def cast_tuple(val, length = None): if isinstance(val, list): val = tuple(val) output = val if isinstance(val, tuple) else ((val,) * default(length, 1)) if exists(length): assert len(output) == length return output def compact(input_dict): return {key: value for key, value in input_dict.items() if exists(value)} def maybe_transform_dict_key(input_dict, key, fn): if key not in input_dict: return input_dict copied_dict = input_dict.copy() copied_dict[key] = fn(copied_dict[key]) return copied_dict def cast_uint8_images_to_float(images): if not images.dtype == torch.uint8: return images return images / 255 def module_device(module): return next(module.parameters()).device def zero_init_(m): nn.init.zeros_(m.weight) if exists(m.bias): nn.init.zeros_(m.bias) def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner def pad_tuple_to_length(t, length, fillvalue = None): remain_length = length - len(t) if remain_length <= 0: return t return (*t, *((fillvalue,) * remain_length)) # helper classes class Identity(nn.Module): def __init__(self, *args, **kwargs): super().__init__() def forward(self, x, *args, **kwargs): return x # tensor helpers def log(t, eps: float = 1e-12): return torch.log(t.clamp(min = eps)) def l2norm(t): return F.normalize(t, dim = -1) def right_pad_dims_to(x, t): padding_dims = x.ndim - t.ndim if padding_dims <= 0: return t return t.view(*t.shape, *((1,) * padding_dims)) def masked_mean(t, *, dim, mask = None): if not exists(mask): return t.mean(dim = dim) denom = mask.sum(dim = dim, keepdim = True) mask = rearrange(mask, 'b n -> b n 1') masked_t = t.masked_fill(~mask, 0.) return masked_t.sum(dim = dim) / denom.clamp(min = 1e-5) def resize_image_to( image, target_image_size, clamp_range = None, mode = 'nearest' ): orig_image_size = image.shape[-1] if orig_image_size == target_image_size: return image out = F.interpolate(image, target_image_size, mode = mode) if exists(clamp_range): out = out.clamp(*clamp_range) return out def calc_all_frame_dims( downsample_factors: List[int], frames ): if not exists(frames): return (tuple(),) * len(downsample_factors) all_frame_dims = [] for divisor in downsample_factors: assert divisible_by(frames, divisor) all_frame_dims.append((frames // divisor,)) return all_frame_dims def safe_get_tuple_index(tup, index, default = None): if len(tup) <= index: return default return tup[index] # image normalization functions # ddpms expect images to be in the range of -1 to 1 def normalize_neg_one_to_one(img): return img * 2 - 1 def unnormalize_zero_to_one(normed_img): return (normed_img + 1) * 0.5 # classifier free guidance functions def prob_mask_like(shape, prob, device): if prob == 1: return torch.ones(shape, device = device, dtype = torch.bool) elif prob == 0: return torch.zeros(shape, device = device, dtype = torch.bool) else: return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob # gaussian diffusion with continuous time helper functions and classes # large part of this was thanks to @crowsonkb at https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/utils.py @torch.jit.script def beta_linear_log_snr(t): return -torch.log(expm1(1e-4 + 10 * (t ** 2))) @torch.jit.script def alpha_cosine_log_snr(t, s: float = 0.008): return -log((torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** -2) - 1, eps = 1e-5) # not sure if this accounts for beta being clipped to 0.999 in discrete version def log_snr_to_alpha_sigma(log_snr): return torch.sqrt(torch.sigmoid(log_snr)), torch.sqrt(torch.sigmoid(-log_snr)) class GaussianDiffusionContinuousTimes(nn.Module): def __init__(self, *, noise_schedule, timesteps = 1000): super().__init__() if noise_schedule == "linear": self.log_snr = beta_linear_log_snr elif noise_schedule == "cosine": self.log_snr = alpha_cosine_log_snr else: raise ValueError(f'invalid noise schedule {noise_schedule}') self.num_timesteps = timesteps def get_times(self, batch_size, noise_level, *, device): return torch.full((batch_size,), noise_level, device = device, dtype = torch.float32) def sample_random_times(self, batch_size, *, device): return torch.zeros((batch_size,), device = device).float().uniform_(0, 1) def get_condition(self, times): return maybe(self.log_snr)(times) def get_sampling_timesteps(self, batch, *, device): times = torch.linspace(1., 0., self.num_timesteps + 1, device = device) times = repeat(times, 't -> b t', b = batch) times = torch.stack((times[:, :-1], times[:, 1:]), dim = 0) times = times.unbind(dim = -1) return times def q_posterior(self, x_start, x_t, t, *, t_next = None): t_next = default(t_next, lambda: (t - 1. / self.num_timesteps).clamp(min = 0.)) """ https://openreview.net/attachment?id=2LdBqxc1Yv&name=supplementary_material """ log_snr = self.log_snr(t) log_snr_next = self.log_snr(t_next) log_snr, log_snr_next = map(partial(right_pad_dims_to, x_t), (log_snr, log_snr_next)) alpha, sigma = log_snr_to_alpha_sigma(log_snr) alpha_next, sigma_next = log_snr_to_alpha_sigma(log_snr_next) # c - as defined near eq 33 c = -expm1(log_snr - log_snr_next) posterior_mean = alpha_next * (x_t * (1 - c) / alpha + c * x_start) # following (eq. 33) posterior_variance = (sigma_next ** 2) * c posterior_log_variance_clipped = log(posterior_variance, eps = 1e-20) return posterior_mean, posterior_variance, posterior_log_variance_clipped def q_sample(self, x_start, t, noise = None): dtype = x_start.dtype if isinstance(t, float): batch = x_start.shape[0] t = torch.full((batch,), t, device = x_start.device, dtype = dtype) noise = default(noise, lambda: torch.randn_like(x_start)) log_snr = self.log_snr(t).type(dtype) log_snr_padded_dim = right_pad_dims_to(x_start, log_snr) alpha, sigma = log_snr_to_alpha_sigma(log_snr_padded_dim) return alpha * x_start + sigma * noise, log_snr, alpha, sigma def q_sample_from_to(self, x_from, from_t, to_t, noise = None): shape, device, dtype = x_from.shape, x_from.device, x_from.dtype batch = shape[0] if isinstance(from_t, float): from_t = torch.full((batch,), from_t, device = device, dtype = dtype) if isinstance(to_t, float): to_t = torch.full((batch,), to_t, device = device, dtype = dtype) noise = default(noise, lambda: torch.randn_like(x_from)) log_snr = self.log_snr(from_t) log_snr_padded_dim = right_pad_dims_to(x_from, log_snr) alpha, sigma = log_snr_to_alpha_sigma(log_snr_padded_dim) log_snr_to = self.log_snr(to_t) log_snr_padded_dim_to = right_pad_dims_to(x_from, log_snr_to) alpha_to, sigma_to = log_snr_to_alpha_sigma(log_snr_padded_dim_to) return x_from * (alpha_to / alpha) + noise * (sigma_to * alpha - sigma * alpha_to) / alpha def predict_start_from_v(self, x_t, t, v): log_snr = self.log_snr(t) log_snr = right_pad_dims_to(x_t, log_snr) alpha, sigma = log_snr_to_alpha_sigma(log_snr) return alpha * x_t - sigma * v def predict_start_from_noise(self, x_t, t, noise): log_snr = self.log_snr(t) log_snr = right_pad_dims_to(x_t, log_snr) alpha, sigma = log_snr_to_alpha_sigma(log_snr) return (x_t - sigma * noise) / alpha.clamp(min = 1e-8) # norms and residuals class LayerNorm(nn.Module): def __init__(self, feats, stable = False, dim = -1): super().__init__() self.stable = stable self.dim = dim self.g = nn.Parameter(torch.ones(feats, *((1,) * (-dim - 1)))) def forward(self, x): dtype, dim = x.dtype, self.dim if self.stable: x = x / x.amax(dim = dim, keepdim = True).detach() eps = 1e-5 if x.dtype == torch.float32 else 1e-3 var = torch.var(x, dim = dim, unbiased = False, keepdim = True) mean = torch.mean(x, dim = dim, keepdim = True) return (x - mean) * (var + eps).rsqrt().type(dtype) * self.g.type(dtype) ChanLayerNorm = partial(LayerNorm, dim = -3) class Always(): def __init__(self, val): self.val = val def __call__(self, *args, **kwargs): return self.val class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class Parallel(nn.Module): def __init__(self, *fns): super().__init__() self.fns = nn.ModuleList(fns) def forward(self, x): outputs = [fn(x) for fn in self.fns] return sum(outputs) # attention pooling class PerceiverAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, scale = 8 ): super().__init__() self.scale = scale self.heads = heads inner_dim = dim_head * heads self.norm = nn.LayerNorm(dim) self.norm_latents = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.q_scale = nn.Parameter(torch.ones(dim_head)) self.k_scale = nn.Parameter(torch.ones(dim_head)) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim, bias = False), nn.LayerNorm(dim) ) def forward(self, x, latents, mask = None): x = self.norm(x) latents = self.norm_latents(latents) b, h = x.shape[0], self.heads q = self.to_q(latents) # the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to kv_input = torch.cat((x, latents), dim = -2) k, v = self.to_kv(kv_input).chunk(2, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # qk rmsnorm q, k = map(l2norm, (q, k)) q = q * self.q_scale k = k * self.k_scale # similarities and masking sim = einsum('... i d, ... j d -> ... i j', q, k) * self.scale if exists(mask): max_neg_value = -torch.finfo(sim.dtype).max mask = F.pad(mask, (0, latents.shape[-2]), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) # attention attn = sim.softmax(dim = -1, dtype = torch.float32) attn = attn.to(sim.dtype) out = einsum('... i j, ... j d -> ... i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)', h = h) return self.to_out(out) class PerceiverResampler(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, num_latents = 64, num_latents_mean_pooled = 4, # number of latents derived from mean pooled representation of the sequence max_seq_len = 512, ff_mult = 4 ): super().__init__() self.pos_emb = nn.Embedding(max_seq_len, dim) self.latents = nn.Parameter(torch.randn(num_latents, dim)) self.to_latents_from_mean_pooled_seq = None if num_latents_mean_pooled > 0: self.to_latents_from_mean_pooled_seq = nn.Sequential( LayerNorm(dim), nn.Linear(dim, dim * num_latents_mean_pooled), Rearrange('b (n d) -> b n d', n = num_latents_mean_pooled) ) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PerceiverAttention(dim = dim, dim_head = dim_head, heads = heads), FeedForward(dim = dim, mult = ff_mult) ])) def forward(self, x, mask = None): n, device = x.shape[1], x.device pos_emb = self.pos_emb(torch.arange(n, device = device)) x_with_pos = x + pos_emb latents = repeat(self.latents, 'n d -> b n d', b = x.shape[0]) if exists(self.to_latents_from_mean_pooled_seq): meanpooled_seq = masked_mean(x, dim = 1, mask = torch.ones(x.shape[:2], device = x.device, dtype = torch.bool)) meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq) latents = torch.cat((meanpooled_latents, latents), dim = -2) for attn, ff in self.layers: latents = attn(x_with_pos, latents, mask = mask) + latents latents = ff(latents) + latents return latents # attention class Attention(nn.Module): def __init__( self, dim, *, dim_head = 64, heads = 8, context_dim = None, scale = 8 ): super().__init__() self.scale = scale self.heads = heads inner_dim = dim_head * heads self.norm = LayerNorm(dim) self.null_kv = nn.Parameter(torch.randn(2, dim_head)) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, dim_head * 2, bias = False) self.q_scale = nn.Parameter(torch.ones(dim_head)) self.k_scale = nn.Parameter(torch.ones(dim_head)) self.to_context = nn.Sequential(nn.LayerNorm(context_dim), nn.Linear(context_dim, dim_head * 2)) if exists(context_dim) else None self.to_out = nn.Sequential( nn.Linear(inner_dim, dim, bias = False), LayerNorm(dim) ) def forward(self, x, context = None, mask = None, attn_bias = None): b, n, device = *x.shape[:2], x.device x = self.norm(x) q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1)) q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads) # add null key / value for classifier free guidance in prior net nk, nv = map(lambda t: repeat(t, 'd -> b 1 d', b = b), self.null_kv.unbind(dim = -2)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # add text conditioning, if present if exists(context): assert exists(self.to_context) ck, cv = self.to_context(context).chunk(2, dim = -1) k = torch.cat((ck, k), dim = -2) v = torch.cat((cv, v), dim = -2) # qk rmsnorm q, k = map(l2norm, (q, k)) q = q * self.q_scale k = k * self.k_scale # calculate query / key similarities sim = einsum('b h i d, b j d -> b h i j', q, k) * self.scale # relative positional encoding (T5 style) if exists(attn_bias): sim = sim + attn_bias # masking max_neg_value = -torch.finfo(sim.dtype).max if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) # attention attn = sim.softmax(dim = -1, dtype = torch.float32) attn = attn.to(sim.dtype) # aggregate values out = einsum('b h i j, b j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # decoder def Upsample(dim, dim_out = None): dim_out = default(dim_out, dim) return nn.Sequential( nn.Upsample(scale_factor = 2, mode = 'nearest'), nn.Conv2d(dim, dim_out, 3, padding = 1) ) class PixelShuffleUpsample(nn.Module): """ code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf """ def __init__(self, dim, dim_out = None): super().__init__() dim_out = default(dim_out, dim) conv = nn.Conv2d(dim, dim_out * 4, 1) self.net = nn.Sequential( conv, nn.SiLU(), nn.PixelShuffle(2) ) self.init_conv_(conv) def init_conv_(self, conv): o, i, h, w = conv.weight.shape conv_weight = torch.empty(o // 4, i, h, w) nn.init.kaiming_uniform_(conv_weight) conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...') conv.weight.data.copy_(conv_weight) nn.init.zeros_(conv.bias.data) def forward(self, x): return self.net(x) def Downsample(dim, dim_out = None): # https://arxiv.org/abs/2208.03641 shows this is the most optimal way to downsample # named SP-conv in the paper, but basically a pixel unshuffle dim_out = default(dim_out, dim) return nn.Sequential( Rearrange('b c (h s1) (w s2) -> b (c s1 s2) h w', s1 = 2, s2 = 2), nn.Conv2d(dim * 4, dim_out, 1) ) class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device = x.device) * -emb) emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j') return torch.cat((emb.sin(), emb.cos()), dim = -1) class LearnedSinusoidalPosEmb(nn.Module): """ following @crowsonkb 's lead with learned sinusoidal pos emb """ """ https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """ def __init__(self, dim): super().__init__() assert (dim % 2) == 0 half_dim = dim // 2 self.weights = nn.Parameter(torch.randn(half_dim)) def forward(self, x): x = rearrange(x, 'b -> b 1') freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1) fouriered = torch.cat((x, fouriered), dim = -1) return fouriered class Block(nn.Module): def __init__( self, dim, dim_out, groups = 8, norm = True ): super().__init__() self.groupnorm = nn.GroupNorm(groups, dim) if norm else Identity() self.activation = nn.SiLU() self.project = nn.Conv2d(dim, dim_out, 3, padding = 1) def forward(self, x, scale_shift = None): x = self.groupnorm(x) if exists(scale_shift): scale, shift = scale_shift x = x * (scale + 1) + shift x = self.activation(x) return self.project(x) class ResnetBlock(nn.Module): def __init__( self, dim, dim_out, *, cond_dim = None, time_cond_dim = None, groups = 8, linear_attn = False, use_gca = False, squeeze_excite = False, **attn_kwargs ): super().__init__() self.time_mlp = None if exists(time_cond_dim): self.time_mlp = nn.Sequential( nn.SiLU(), nn.Linear(time_cond_dim, dim_out * 2) ) self.cross_attn = None if exists(cond_dim): attn_klass = CrossAttention if not linear_attn else LinearCrossAttention self.cross_attn = attn_klass( dim = dim_out, context_dim = cond_dim, **attn_kwargs ) self.block1 = Block(dim, dim_out, groups = groups) self.block2 = Block(dim_out, dim_out, groups = groups) self.gca = GlobalContext(dim_in = dim_out, dim_out = dim_out) if use_gca else Always(1) self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else Identity() def forward(self, x, time_emb = None, cond = None): scale_shift = None if exists(self.time_mlp) and exists(time_emb): time_emb = self.time_mlp(time_emb) time_emb = rearrange(time_emb, 'b c -> b c 1 1') scale_shift = time_emb.chunk(2, dim = 1) h = self.block1(x) if exists(self.cross_attn): assert exists(cond) h = rearrange(h, 'b c h w -> b h w c') h, ps = pack([h], 'b * c') h = self.cross_attn(h, context = cond) + h h, = unpack(h, ps, 'b * c') h = rearrange(h, 'b h w c -> b c h w') h = self.block2(h, scale_shift = scale_shift) h = h * self.gca(h) return h + self.res_conv(x) class CrossAttention(nn.Module): def __init__( self, dim, *, context_dim = None, dim_head = 64, heads = 8, norm_context = False, scale = 8 ): super().__init__() self.scale = scale self.heads = heads inner_dim = dim_head * heads context_dim = default(context_dim, dim) self.norm = LayerNorm(dim) self.norm_context = LayerNorm(context_dim) if norm_context else Identity() self.null_kv = nn.Parameter(torch.randn(2, dim_head)) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False) self.q_scale = nn.Parameter(torch.ones(dim_head)) self.k_scale = nn.Parameter(torch.ones(dim_head)) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim, bias = False), LayerNorm(dim) ) def forward(self, x, context, mask = None): b, n, device = *x.shape[:2], x.device x = self.norm(x) context = self.norm_context(context) q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v)) # add null key / value for classifier free guidance in prior net nk, nv = map(lambda t: repeat(t, 'd -> b h 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # cosine sim attention q, k = map(l2norm, (q, k)) q = q * self.q_scale k = k * self.k_scale # similarities sim = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale # masking max_neg_value = -torch.finfo(sim.dtype).max if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) attn = sim.softmax(dim = -1, dtype = torch.float32) attn = attn.to(sim.dtype) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class LinearCrossAttention(CrossAttention): def forward(self, x, context, mask = None): b, n, device = *x.shape[:2], x.device x = self.norm(x) context = self.norm_context(context) q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = self.heads), (q, k, v)) # add null key / value for classifier free guidance in prior net nk, nv = map(lambda t: repeat(t, 'd -> (b h) 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # masking max_neg_value = -torch.finfo(x.dtype).max if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b n -> b n 1') k = k.masked_fill(~mask, max_neg_value) v = v.masked_fill(~mask, 0.) # linear attention q = q.softmax(dim = -1) k = k.softmax(dim = -2) q = q * self.scale context = einsum('b n d, b n e -> b d e', k, v) out = einsum('b n d, b d e -> b n e', q, context) out = rearrange(out, '(b h) n d -> b n (h d)', h = self.heads) return self.to_out(out) class LinearAttention(nn.Module): def __init__( self, dim, dim_head = 32, heads = 8, dropout = 0.05, context_dim = None, **kwargs ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads inner_dim = dim_head * heads self.norm = ChanLayerNorm(dim) self.nonlin = nn.SiLU() self.to_q = nn.Sequential( nn.Dropout(dropout), nn.Conv2d(dim, inner_dim, 1, bias = False), nn.Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim) ) self.to_k = nn.Sequential( nn.Dropout(dropout), nn.Conv2d(dim, inner_dim, 1, bias = False), nn.Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim) ) self.to_v = nn.Sequential( nn.Dropout(dropout), nn.Conv2d(dim, inner_dim, 1, bias = False), nn.Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim) ) self.to_context = nn.Sequential(nn.LayerNorm(context_dim), nn.Linear(context_dim, inner_dim * 2, bias = False)) if exists(context_dim) else None self.to_out = nn.Sequential( nn.Conv2d(inner_dim, dim, 1, bias = False), ChanLayerNorm(dim) ) def forward(self, fmap, context = None): h, x, y = self.heads, *fmap.shape[-2:] fmap = self.norm(fmap) q, k, v = map(lambda fn: fn(fmap), (self.to_q, self.to_k, self.to_v)) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (q, k, v)) if exists(context): assert exists(self.to_context) ck, cv = self.to_context(context).chunk(2, dim = -1) ck, cv = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (ck, cv)) k = torch.cat((k, ck), dim = -2) v = torch.cat((v, cv), dim = -2) q = q.softmax(dim = -1) k = k.softmax(dim = -2) q = q * self.scale context = einsum('b n d, b n e -> b d e', k, v) out = einsum('b n d, b d e -> b n e', q, context) out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, x = x, y = y) out = self.nonlin(out) return self.to_out(out) class GlobalContext(nn.Module): """ basically a superior form of squeeze-excitation that is attention-esque """ def __init__( self, *, dim_in, dim_out ): super().__init__() self.to_k = nn.Conv2d(dim_in, 1, 1) hidden_dim = max(3, dim_out // 2) self.net = nn.Sequential( nn.Conv2d(dim_in, hidden_dim, 1), nn.SiLU(), nn.Conv2d(hidden_dim, dim_out, 1), nn.Sigmoid() ) def forward(self, x): context = self.to_k(x) x, context = map(lambda t: rearrange(t, 'b n ... -> b n (...)'), (x, context)) out = einsum('b i n, b c n -> b c i', context.softmax(dim = -1), x) out = rearrange(out, '... -> ... 1') return self.net(out) def FeedForward(dim, mult = 2): hidden_dim = int(dim * mult) return nn.Sequential( LayerNorm(dim), nn.Linear(dim, hidden_dim, bias = False), nn.GELU(), LayerNorm(hidden_dim), nn.Linear(hidden_dim, dim, bias = False) ) def ChanFeedForward(dim, mult = 2): # in paper, it seems for self attention layers they did feedforwards with twice channel width hidden_dim = int(dim * mult) return nn.Sequential( ChanLayerNorm(dim), nn.Conv2d(dim, hidden_dim, 1, bias = False), nn.GELU(), ChanLayerNorm(hidden_dim), nn.Conv2d(hidden_dim, dim, 1, bias = False) ) class TransformerBlock(nn.Module): def __init__( self, dim, *, depth = 1, heads = 8, dim_head = 32, ff_mult = 2, context_dim = None ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim = dim, heads = heads, dim_head = dim_head, context_dim = context_dim), FeedForward(dim = dim, mult = ff_mult) ])) def forward(self, x, context = None): x = rearrange(x, 'b c h w -> b h w c') x, ps = pack([x], 'b * c') for attn, ff in self.layers: x = attn(x, context = context) + x x = ff(x) + x x, = unpack(x, ps, 'b * c') x = rearrange(x, 'b h w c -> b c h w') return x class LinearAttentionTransformerBlock(nn.Module): def __init__( self, dim, *, depth = 1, heads = 8, dim_head = 32, ff_mult = 2, context_dim = None, **kwargs ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ LinearAttention(dim = dim, heads = heads, dim_head = dim_head, context_dim = context_dim), ChanFeedForward(dim = dim, mult = ff_mult) ])) def forward(self, x, context = None): for attn, ff in self.layers: x = attn(x, context = context) + x x = ff(x) + x return x class CrossEmbedLayer(nn.Module): def __init__( self, dim_in, kernel_sizes, dim_out = None, stride = 2 ): super().__init__() assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)]) dim_out = default(dim_out, dim_in) kernel_sizes = sorted(kernel_sizes) num_scales = len(kernel_sizes) # calculate the dimension at each scale dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)] dim_scales = [*dim_scales, dim_out - sum(dim_scales)] self.convs = nn.ModuleList([]) for kernel, dim_scale in zip(kernel_sizes, dim_scales): self.convs.append(nn.Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2)) def forward(self, x): fmaps = tuple(map(lambda conv: conv(x), self.convs)) return torch.cat(fmaps, dim = 1) class UpsampleCombiner(nn.Module): def __init__( self, dim, *, enabled = False, dim_ins = tuple(), dim_outs = tuple() ): super().__init__() dim_outs = cast_tuple(dim_outs, len(dim_ins)) assert len(dim_ins) == len(dim_outs) self.enabled = enabled if not self.enabled: self.dim_out = dim return self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)]) self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0) def forward(self, x, fmaps = None): target_size = x.shape[-1] fmaps = default(fmaps, tuple()) if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0: return x fmaps = [resize_image_to(fmap, target_size) for fmap in fmaps] outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)] return torch.cat((x, *outs), dim = 1) class Unet(nn.Module): def __init__( self, *, dim, text_embed_dim = get_encoded_dim(DEFAULT_T5_NAME), num_resnet_blocks = 1, cond_dim = None, num_image_tokens = 4, num_time_tokens = 2, learned_sinu_pos_emb_dim = 16, out_dim = None, dim_mults=(1, 2, 4, 8), cond_images_channels = 0, channels = 3, channels_out = None, attn_dim_head = 64, attn_heads = 8, ff_mult = 2., lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/ layer_attns = True, layer_attns_depth = 1, layer_mid_attns_depth = 1, layer_attns_add_text_cond = True, # whether to condition the self-attention blocks with the text embeddings, as described in Appendix D.3.1 attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention) layer_cross_attns = True, use_linear_attn = False, use_linear_cross_attn = False, cond_on_text = True, max_text_len = 256, init_dim = None, resnet_groups = 8, init_conv_kernel_size = 7, # kernel size of initial conv, if not using cross embed init_cross_embed = True, init_cross_embed_kernel_sizes = (3, 7, 15), cross_embed_downsample = False, cross_embed_downsample_kernel_sizes = (2, 4), attn_pool_text = True, attn_pool_num_latents = 32, dropout = 0., memory_efficient = False, init_conv_to_final_conv_residual = False, use_global_context_attn = True, scale_skip_connection = True, final_resnet_block = True, final_conv_kernel_size = 3, self_cond = False, resize_mode = 'nearest', combine_upsample_fmaps = False, # combine feature maps from all upsample blocks, used in unet squared successfully pixel_shuffle_upsample = True, # may address checkboard artifacts ): super().__init__() # guide researchers assert attn_heads > 1, 'you need to have more than 1 attention head, ideally at least 4 or 8' if dim < 128: print_once('The base dimension of your u-net should ideally be no smaller than 128, as recommended by a professional DDPM trainer https://nonint.com/2022/05/04/friends-dont-let-friends-train-small-diffusion-models/') # save locals to take care of some hyperparameters for cascading DDPM self._locals = locals() self._locals.pop('self', None) self._locals.pop('__class__', None) # determine dimensions self.channels = channels self.channels_out = default(channels_out, channels) # (1) in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis # (2) in self conditioning, one appends the predict x0 (x_start) init_channels = channels * (1 + int(lowres_cond) + int(self_cond)) init_dim = default(init_dim, dim) self.self_cond = self_cond # optional image conditioning self.has_cond_image = cond_images_channels > 0 self.cond_images_channels = cond_images_channels init_channels += cond_images_channels # initial convolution self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2) dims = [init_dim, *map(lambda m: dim * m, dim_mults)] in_out = list(zip(dims[:-1], dims[1:])) # time conditioning cond_dim = default(cond_dim, dim) time_cond_dim = dim * 4 * (2 if lowres_cond else 1) # embedding time for log(snr) noise from continuous version sinu_pos_emb = LearnedSinusoidalPosEmb(learned_sinu_pos_emb_dim) sinu_pos_emb_input_dim = learned_sinu_pos_emb_dim + 1 self.to_time_hiddens = nn.Sequential( sinu_pos_emb, nn.Linear(sinu_pos_emb_input_dim, time_cond_dim), nn.SiLU() ) self.to_time_cond = nn.Sequential( nn.Linear(time_cond_dim, time_cond_dim) ) # project to time tokens as well as time hiddens self.to_time_tokens = nn.Sequential( nn.Linear(time_cond_dim, cond_dim * num_time_tokens), Rearrange('b (r d) -> b r d', r = num_time_tokens) ) # low res aug noise conditioning self.lowres_cond = lowres_cond if lowres_cond: self.to_lowres_time_hiddens = nn.Sequential( LearnedSinusoidalPosEmb(learned_sinu_pos_emb_dim), nn.Linear(learned_sinu_pos_emb_dim + 1, time_cond_dim), nn.SiLU() ) self.to_lowres_time_cond = nn.Sequential( nn.Linear(time_cond_dim, time_cond_dim) ) self.to_lowres_time_tokens = nn.Sequential( nn.Linear(time_cond_dim, cond_dim * num_time_tokens), Rearrange('b (r d) -> b r d', r = num_time_tokens) ) # normalizations self.norm_cond = nn.LayerNorm(cond_dim) # text encoding conditioning (optional) self.text_to_cond = None if cond_on_text: assert exists(text_embed_dim), 'text_embed_dim must be given to the unet if cond_on_text is True' self.text_to_cond = nn.Linear(text_embed_dim, cond_dim) # finer control over whether to condition on text encodings self.cond_on_text = cond_on_text # attention pooling self.attn_pool = PerceiverResampler(dim = cond_dim, depth = 2, dim_head = attn_dim_head, heads = attn_heads, num_latents = attn_pool_num_latents) if attn_pool_text else None # for classifier free guidance self.max_text_len = max_text_len self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, cond_dim)) self.null_text_hidden = nn.Parameter(torch.randn(1, time_cond_dim)) # for non-attention based text conditioning at all points in the network where time is also conditioned self.to_text_non_attn_cond = None if cond_on_text: self.to_text_non_attn_cond = nn.Sequential( nn.LayerNorm(cond_dim), nn.Linear(cond_dim, time_cond_dim), nn.SiLU(), nn.Linear(time_cond_dim, time_cond_dim) ) # attention related params attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head) num_layers = len(in_out) # resnet block klass num_resnet_blocks = cast_tuple(num_resnet_blocks, num_layers) resnet_groups = cast_tuple(resnet_groups, num_layers) resnet_klass = partial(ResnetBlock, **attn_kwargs) layer_attns = cast_tuple(layer_attns, num_layers) layer_attns_depth = cast_tuple(layer_attns_depth, num_layers) layer_cross_attns = cast_tuple(layer_cross_attns, num_layers) use_linear_attn = cast_tuple(use_linear_attn, num_layers) use_linear_cross_attn = cast_tuple(use_linear_cross_attn, num_layers) assert all([layers == num_layers for layers in list(map(len, (resnet_groups, layer_attns, layer_cross_attns)))]) # downsample klass downsample_klass = Downsample if cross_embed_downsample: downsample_klass = partial(CrossEmbedLayer, kernel_sizes = cross_embed_downsample_kernel_sizes) # initial resnet block (for memory efficient unet) self.init_resnet_block = resnet_klass(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[0], use_gca = use_global_context_attn) if memory_efficient else None # scale for resnet skip connections self.skip_connect_scale = 1. if not scale_skip_connection else (2 ** -0.5) # layers self.downs = nn.ModuleList([]) self.ups = nn.ModuleList([]) num_resolutions = len(in_out) layer_params = [num_resnet_blocks, resnet_groups, layer_attns, layer_attns_depth, layer_cross_attns, use_linear_attn, use_linear_cross_attn] reversed_layer_params = list(map(reversed, layer_params)) # downsampling layers skip_connect_dims = [] # keep track of skip connection dimensions for ind, ((dim_in, dim_out), layer_num_resnet_blocks, groups, layer_attn, layer_attn_depth, layer_cross_attn, layer_use_linear_attn, layer_use_linear_cross_attn) in enumerate(zip(in_out, *layer_params)): is_last = ind >= (num_resolutions - 1) layer_cond_dim = cond_dim if layer_cross_attn or layer_use_linear_cross_attn else None if layer_attn: transformer_block_klass = TransformerBlock elif layer_use_linear_attn: transformer_block_klass = LinearAttentionTransformerBlock else: transformer_block_klass = Identity current_dim = dim_in # whether to pre-downsample, from memory efficient unet pre_downsample = None if memory_efficient: pre_downsample = downsample_klass(dim_in, dim_out) current_dim = dim_out skip_connect_dims.append(current_dim) # whether to do post-downsample, for non-memory efficient unet post_downsample = None if not memory_efficient: post_downsample = downsample_klass(current_dim, dim_out) if not is_last else Parallel(nn.Conv2d(dim_in, dim_out, 3, padding = 1), nn.Conv2d(dim_in, dim_out, 1)) self.downs.append(nn.ModuleList([ pre_downsample, resnet_klass(current_dim, current_dim, cond_dim = layer_cond_dim, linear_attn = layer_use_linear_cross_attn, time_cond_dim = time_cond_dim, groups = groups), nn.ModuleList([ResnetBlock(current_dim, current_dim, time_cond_dim = time_cond_dim, groups = groups, use_gca = use_global_context_attn) for _ in range(layer_num_resnet_blocks)]), transformer_block_klass(dim = current_dim, depth = layer_attn_depth, ff_mult = ff_mult, context_dim = cond_dim, **attn_kwargs), post_downsample ])) # middle layers mid_dim = dims[-1] self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1]) self.mid_attn = TransformerBlock(mid_dim, depth = layer_mid_attns_depth, **attn_kwargs) if attend_at_middle else None self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1]) # upsample klass upsample_klass = Upsample if not pixel_shuffle_upsample else PixelShuffleUpsample # upsampling layers upsample_fmap_dims = [] for ind, ((dim_in, dim_out), layer_num_resnet_blocks, groups, layer_attn, layer_attn_depth, layer_cross_attn, layer_use_linear_attn, layer_use_linear_cross_attn) in enumerate(zip(reversed(in_out), *reversed_layer_params)): is_last = ind == (len(in_out) - 1) layer_cond_dim = cond_dim if layer_cross_attn or layer_use_linear_cross_attn else None if layer_attn: transformer_block_klass = TransformerBlock elif layer_use_linear_attn: transformer_block_klass = LinearAttentionTransformerBlock else: transformer_block_klass = Identity skip_connect_dim = skip_connect_dims.pop() upsample_fmap_dims.append(dim_out) self.ups.append(nn.ModuleList([ resnet_klass(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, linear_attn = layer_use_linear_cross_attn, time_cond_dim = time_cond_dim, groups = groups), nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, time_cond_dim = time_cond_dim, groups = groups, use_gca = use_global_context_attn) for _ in range(layer_num_resnet_blocks)]), transformer_block_klass(dim = dim_out, depth = layer_attn_depth, ff_mult = ff_mult, context_dim = cond_dim, **attn_kwargs), upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else Identity() ])) # whether to combine feature maps from all upsample blocks before final resnet block out self.upsample_combiner = UpsampleCombiner( dim = dim, enabled = combine_upsample_fmaps, dim_ins = upsample_fmap_dims, dim_outs = dim ) # whether to do a final residual from initial conv to the final resnet block out self.init_conv_to_final_conv_residual = init_conv_to_final_conv_residual final_conv_dim = self.upsample_combiner.dim_out + (dim if init_conv_to_final_conv_residual else 0) # final optional resnet block and convolution out self.final_res_block = ResnetBlock(final_conv_dim, dim, time_cond_dim = time_cond_dim, groups = resnet_groups[0], use_gca = True) if final_resnet_block else None final_conv_dim_in = dim if final_resnet_block else final_conv_dim final_conv_dim_in += (channels if lowres_cond else 0) self.final_conv = nn.Conv2d(final_conv_dim_in, self.channels_out, final_conv_kernel_size, padding = final_conv_kernel_size // 2) zero_init_(self.final_conv) # resize mode self.resize_mode = resize_mode # if the current settings for the unet are not correct # for cascading DDPM, then reinit the unet with the right settings def cast_model_parameters( self, *, lowres_cond, text_embed_dim, channels, channels_out, cond_on_text ): if lowres_cond == self.lowres_cond and \ channels == self.channels and \ cond_on_text == self.cond_on_text and \ text_embed_dim == self._locals['text_embed_dim'] and \ channels_out == self.channels_out: return self updated_kwargs = dict( lowres_cond = lowres_cond, text_embed_dim = text_embed_dim, channels = channels, channels_out = channels_out, cond_on_text = cond_on_text ) return self.__class__(**{**self._locals, **updated_kwargs}) # methods for returning the full unet config as well as its parameter state def to_config_and_state_dict(self): return self._locals, self.state_dict() # class method for rehydrating the unet from its config and state dict @classmethod def from_config_and_state_dict(klass, config, state_dict): unet = klass(**config) unet.load_state_dict(state_dict) return unet # methods for persisting unet to disk def persist_to_file(self, path): path = Path(path) path.parents[0].mkdir(exist_ok = True, parents = True) config, state_dict = self.to_config_and_state_dict() pkg = dict(config = config, state_dict = state_dict) torch.save(pkg, str(path)) # class method for rehydrating the unet from file saved with `persist_to_file` @classmethod def hydrate_from_file(klass, path): path = Path(path) assert path.exists() pkg = torch.load(str(path)) assert 'config' in pkg and 'state_dict' in pkg config, state_dict = pkg['config'], pkg['state_dict'] return Unet.from_config_and_state_dict(config, state_dict) # forward with classifier free guidance def forward_with_cond_scale( self, *args, cond_scale = 1., **kwargs ): logits = self.forward(*args, **kwargs) if cond_scale == 1: return logits null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, x, time, *, lowres_cond_img = None, lowres_noise_times = None, text_embeds = None, text_mask = None, cond_images = None, self_cond = None, cond_drop_prob = 0. ): batch_size, device = x.shape[0], x.device # condition on self if self.self_cond: self_cond = default(self_cond, lambda: torch.zeros_like(x)) x = torch.cat((x, self_cond), dim = 1) # add low resolution conditioning, if present assert not (self.lowres_cond and not exists(lowres_cond_img)), 'low resolution conditioning image must be present' assert not (self.lowres_cond and not exists(lowres_noise_times)), 'low resolution conditioning noise time must be present' if exists(lowres_cond_img): x = torch.cat((x, lowres_cond_img), dim = 1) # condition on input image assert not (self.has_cond_image ^ exists(cond_images)), 'you either requested to condition on an image on the unet, but the conditioning image is not supplied, or vice versa' if exists(cond_images): assert cond_images.shape[1] == self.cond_images_channels, 'the number of channels on the conditioning image you are passing in does not match what you specified on initialiation of the unet' cond_images = resize_image_to(cond_images, x.shape[-1], mode = self.resize_mode) x = torch.cat((cond_images, x), dim = 1) # initial convolution x = self.init_conv(x) # init conv residual if self.init_conv_to_final_conv_residual: init_conv_residual = x.clone() # time conditioning time_hiddens = self.to_time_hiddens(time) # derive time tokens time_tokens = self.to_time_tokens(time_hiddens) t = self.to_time_cond(time_hiddens) # add lowres time conditioning to time hiddens # and add lowres time tokens along sequence dimension for attention if self.lowres_cond: lowres_time_hiddens = self.to_lowres_time_hiddens(lowres_noise_times) lowres_time_tokens = self.to_lowres_time_tokens(lowres_time_hiddens) lowres_t = self.to_lowres_time_cond(lowres_time_hiddens) t = t + lowres_t time_tokens = torch.cat((time_tokens, lowres_time_tokens), dim = -2) # text conditioning text_tokens = None if exists(text_embeds) and self.cond_on_text: # conditional dropout text_keep_mask = prob_mask_like((batch_size,), 1 - cond_drop_prob, device = device) text_keep_mask_embed = rearrange(text_keep_mask, 'b -> b 1 1') text_keep_mask_hidden = rearrange(text_keep_mask, 'b -> b 1') # calculate text embeds text_tokens = self.text_to_cond(text_embeds) text_tokens = text_tokens[:, :self.max_text_len] if exists(text_mask): text_mask = text_mask[:, :self.max_text_len] text_tokens_len = text_tokens.shape[1] remainder = self.max_text_len - text_tokens_len if remainder > 0: text_tokens = F.pad(text_tokens, (0, 0, 0, remainder)) if exists(text_mask): if remainder > 0: text_mask = F.pad(text_mask, (0, remainder), value = False) text_mask = rearrange(text_mask, 'b n -> b n 1') text_keep_mask_embed = text_mask & text_keep_mask_embed null_text_embed = self.null_text_embed.to(text_tokens.dtype) # for some reason pytorch AMP not working text_tokens = torch.where( text_keep_mask_embed, text_tokens, null_text_embed ) if exists(self.attn_pool): text_tokens = self.attn_pool(text_tokens) # extra non-attention conditioning by projecting and then summing text embeddings to time # termed as text hiddens mean_pooled_text_tokens = text_tokens.mean(dim = -2) text_hiddens = self.to_text_non_attn_cond(mean_pooled_text_tokens) null_text_hidden = self.null_text_hidden.to(t.dtype) text_hiddens = torch.where( text_keep_mask_hidden, text_hiddens, null_text_hidden ) t = t + text_hiddens # main conditioning tokens (c) c = time_tokens if not exists(text_tokens) else torch.cat((time_tokens, text_tokens), dim = -2) # normalize conditioning tokens c = self.norm_cond(c) # initial resnet block (for memory efficient unet) if exists(self.init_resnet_block): x = self.init_resnet_block(x, t) # go through the layers of the unet, down and up hiddens = [] for pre_downsample, init_block, resnet_blocks, attn_block, post_downsample in self.downs: if exists(pre_downsample): x = pre_downsample(x) x = init_block(x, t, c) for resnet_block in resnet_blocks: x = resnet_block(x, t) hiddens.append(x) x = attn_block(x, c) hiddens.append(x) if exists(post_downsample): x = post_downsample(x) x = self.mid_block1(x, t, c) if exists(self.mid_attn): x = self.mid_attn(x) x = self.mid_block2(x, t, c) add_skip_connection = lambda x: torch.cat((x, hiddens.pop() * self.skip_connect_scale), dim = 1) up_hiddens = [] for init_block, resnet_blocks, attn_block, upsample in self.ups: x = add_skip_connection(x) x = init_block(x, t, c) for resnet_block in resnet_blocks: x = add_skip_connection(x) x = resnet_block(x, t) x = attn_block(x, c) up_hiddens.append(x.contiguous()) x = upsample(x) # whether to combine all feature maps from upsample blocks x = self.upsample_combiner(x, up_hiddens) # final top-most residual if needed if self.init_conv_to_final_conv_residual: x = torch.cat((x, init_conv_residual), dim = 1) if exists(self.final_res_block): x = self.final_res_block(x, t) if exists(lowres_cond_img): x = torch.cat((x, lowres_cond_img), dim = 1) return self.final_conv(x) # null unet class NullUnet(nn.Module): def __init__(self, *args, **kwargs): super().__init__() self.lowres_cond = False self.dummy_parameter = nn.Parameter(torch.tensor([0.])) def cast_model_parameters(self, *args, **kwargs): return self def forward(self, x, *args, **kwargs): return x # predefined unets, with configs lining up with hyperparameters in appendix of paper class BaseUnet64(Unet): def __init__(self, *args, **kwargs): default_kwargs = dict( dim = 512, dim_mults = (1, 2, 3, 4), num_resnet_blocks = 3, layer_attns = (False, True, True, True), layer_cross_attns = (False, True, True, True), attn_heads = 8, ff_mult = 2., memory_efficient = False ) super().__init__(*args, **{**default_kwargs, **kwargs}) class SRUnet256(Unet): def __init__(self, *args, **kwargs): default_kwargs = dict( dim = 128, dim_mults = (1, 2, 4, 8), num_resnet_blocks = (2, 4, 8, 8), layer_attns = (False, False, False, True), layer_cross_attns = (False, False, False, True), attn_heads = 8, ff_mult = 2., memory_efficient = True ) super().__init__(*args, **{**default_kwargs, **kwargs}) class SRUnet1024(Unet): def __init__(self, *args, **kwargs): default_kwargs = dict( dim = 128, dim_mults = (1, 2, 4, 8), num_resnet_blocks = (2, 4, 8, 8), layer_attns = False, layer_cross_attns = (False, False, False, True), attn_heads = 8, ff_mult = 2., memory_efficient = True ) super().__init__(*args, **{**default_kwargs, **kwargs}) # main starlight ddpm class, which is a cascading DDPM from Ho et al. class Starlight(nn.Module): def __init__( self, unets, *, image_sizes, # for cascading ddpm, image size at each stage text_encoder_name = DEFAULT_T5_NAME, text_embed_dim = None, channels = 3, timesteps = 1000, cond_drop_prob = 0.1, loss_type = 'l2', noise_schedules = 'cosine', pred_objectives = 'noise', random_crop_sizes = None, lowres_noise_schedule = 'linear', lowres_sample_noise_level = 0.2, # in the paper, they present a new trick where they noise the lowres conditioning image, and at sample time, fix it to a certain level (0.1 or 0.3) - the unets are also made to be conditioned on this noise level per_sample_random_aug_noise_level = False, # unclear when conditioning on augmentation noise level, whether each batch element receives a random aug noise value - turning off due to @marunine's find condition_on_text = True, auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader dynamic_thresholding = True, dynamic_thresholding_percentile = 0.95, # unsure what this was based on perusal of paper only_train_unet_number = None, temporal_downsample_factor = 1, resize_cond_video_frames = True, resize_mode = 'nearest', min_snr_loss_weight = True, # https://arxiv.org/abs/2303.09556 min_snr_gamma = 5 ): super().__init__() # loss if loss_type == 'l1': loss_fn = F.l1_loss elif loss_type == 'l2': loss_fn = F.mse_loss elif loss_type == 'huber': loss_fn = F.smooth_l1_loss else: raise NotImplementedError() self.loss_type = loss_type self.loss_fn = loss_fn # conditioning hparams self.condition_on_text = condition_on_text self.unconditional = not condition_on_text # channels self.channels = channels # automatically take care of ensuring that first unet is unconditional # while the rest of the unets are conditioned on the low resolution image produced by previous unet unets = cast_tuple(unets) num_unets = len(unets) # determine noise schedules per unet timesteps = cast_tuple(timesteps, num_unets) # make sure noise schedule defaults to 'cosine', 'cosine', and then 'linear' for rest of super-resoluting unets noise_schedules = cast_tuple(noise_schedules) noise_schedules = pad_tuple_to_length(noise_schedules, 2, 'cosine') noise_schedules = pad_tuple_to_length(noise_schedules, num_unets, 'linear') # construct noise schedulers noise_scheduler_klass = GaussianDiffusionContinuousTimes self.noise_schedulers = nn.ModuleList([]) for timestep, noise_schedule in zip(timesteps, noise_schedules): noise_scheduler = noise_scheduler_klass(noise_schedule = noise_schedule, timesteps = timestep) self.noise_schedulers.append(noise_scheduler) # randomly cropping for upsampler training self.random_crop_sizes = cast_tuple(random_crop_sizes, num_unets) assert not exists(first(self.random_crop_sizes)), 'you should not need to randomly crop image during training for base unet, only for upsamplers - so pass in `random_crop_sizes = (None, 128, 256)` as example' # lowres augmentation noise schedule self.lowres_noise_schedule = GaussianDiffusionContinuousTimes(noise_schedule = lowres_noise_schedule) # ddpm objectives - predicting noise by default self.pred_objectives = cast_tuple(pred_objectives, num_unets) # get text encoder self.text_encoder_name = text_encoder_name self.text_embed_dim = default(text_embed_dim, lambda: get_encoded_dim(text_encoder_name)) self.encode_text = partial(t5_encode_text, name = text_encoder_name) # construct unets self.unets = nn.ModuleList([]) self.unet_being_trained_index = -1 # keeps track of which unet is being trained at the moment self.only_train_unet_number = only_train_unet_number for ind, one_unet in enumerate(unets): assert isinstance(one_unet, (Unet, Unet3D, NullUnet)) is_first = ind == 0 one_unet = one_unet.cast_model_parameters( lowres_cond = not is_first, cond_on_text = self.condition_on_text, text_embed_dim = self.text_embed_dim if self.condition_on_text else None, channels = self.channels, channels_out = self.channels ) self.unets.append(one_unet) # unet image sizes image_sizes = cast_tuple(image_sizes) self.image_sizes = image_sizes assert num_unets == len(image_sizes), f'you did not supply the correct number of u-nets ({len(unets)}) for resolutions {image_sizes}' self.sample_channels = cast_tuple(self.channels, num_unets) # determine whether we are training on images or video is_video = any([isinstance(unet, Unet3D) for unet in self.unets]) self.is_video = is_video self.right_pad_dims_to_datatype = partial(rearrange, pattern = ('b -> b 1 1 1' if not is_video else 'b -> b 1 1 1 1')) self.resize_to = resize_video_to if is_video else resize_image_to self.resize_to = partial(self.resize_to, mode = resize_mode) # temporal interpolation temporal_downsample_factor = cast_tuple(temporal_downsample_factor, num_unets) self.temporal_downsample_factor = temporal_downsample_factor self.resize_cond_video_frames = resize_cond_video_frames self.temporal_downsample_divisor = temporal_downsample_factor[0] assert temporal_downsample_factor[-1] == 1, 'downsample factor of last stage must be 1' assert tuple(sorted(temporal_downsample_factor, reverse = True)) == temporal_downsample_factor, 'temporal downsample factor must be in order of descending' # cascading ddpm related stuff lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets)) assert lowres_conditions == (False, *((True,) * (num_unets - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True' self.lowres_sample_noise_level = lowres_sample_noise_level self.per_sample_random_aug_noise_level = per_sample_random_aug_noise_level # classifier free guidance self.cond_drop_prob = cond_drop_prob self.can_classifier_guidance = cond_drop_prob > 0. # normalize and unnormalize image functions self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity self.input_image_range = (0. if auto_normalize_img else -1., 1.) # dynamic thresholding self.dynamic_thresholding = cast_tuple(dynamic_thresholding, num_unets) self.dynamic_thresholding_percentile = dynamic_thresholding_percentile # min snr loss weight min_snr_loss_weight = cast_tuple(min_snr_loss_weight, num_unets) min_snr_gamma = cast_tuple(min_snr_gamma, num_unets) assert len(min_snr_loss_weight) == len(min_snr_gamma) == num_unets self.min_snr_gamma = tuple((gamma if use_min_snr else None) for use_min_snr, gamma in zip(min_snr_loss_weight, min_snr_gamma)) # one temp parameter for keeping track of device self.register_buffer('_temp', torch.tensor([0.]), persistent = False) # default to device of unets passed in self.to(next(self.unets.parameters()).device) def force_unconditional_(self): self.condition_on_text = False self.unconditional = True for unet in self.unets: unet.cond_on_text = False @property def device(self): return self._temp.device def get_unet(self, unet_number): assert 0 < unet_number <= len(self.unets) index = unet_number - 1 if isinstance(self.unets, nn.ModuleList): unets_list = [unet for unet in self.unets] delattr(self, 'unets') self.unets = unets_list if index != self.unet_being_trained_index: for unet_index, unet in enumerate(self.unets): unet.to(self.device if unet_index == index else 'cpu') self.unet_being_trained_index = index return self.unets[index] def reset_unets_all_one_device(self, device = None): device = default(device, self.device) self.unets = nn.ModuleList([*self.unets]) self.unets.to(device) self.unet_being_trained_index = -1 @contextmanager def one_unet_in_gpu(self, unet_number = None, unet = None): assert exists(unet_number) ^ exists(unet) if exists(unet_number): unet = self.unets[unet_number - 1] cpu = torch.device('cpu') devices = [module_device(unet) for unet in self.unets] self.unets.to(cpu) unet.to(self.device) yield for unet, device in zip(self.unets, devices): unet.to(device) # overriding state dict functions def state_dict(self, *args, **kwargs): self.reset_unets_all_one_device() return super().state_dict(*args, **kwargs) def load_state_dict(self, *args, **kwargs): self.reset_unets_all_one_device() return super().load_state_dict(*args, **kwargs) # gaussian diffusion methods def p_mean_variance( self, unet, x, t, *, noise_scheduler, text_embeds = None, text_mask = None, cond_images = None, cond_video_frames = None, post_cond_video_frames = None, lowres_cond_img = None, self_cond = None, lowres_noise_times = None, cond_scale = 1., model_output = None, t_next = None, pred_objective = 'noise', dynamic_threshold = True ): assert not (cond_scale != 1. and not self.can_classifier_guidance), 'starlight was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)' video_kwargs = dict() if self.is_video: video_kwargs = dict( cond_video_frames = cond_video_frames, post_cond_video_frames = post_cond_video_frames, ) pred = default(model_output, lambda: unet.forward_with_cond_scale( x, noise_scheduler.get_condition(t), text_embeds = text_embeds, text_mask = text_mask, cond_images = cond_images, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_times = self.lowres_noise_schedule.get_condition(lowres_noise_times), **video_kwargs )) if pred_objective == 'noise': x_start = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred) elif pred_objective == 'x_start': x_start = pred elif pred_objective == 'v': x_start = noise_scheduler.predict_start_from_v(x, t = t, v = pred) else: raise ValueError(f'unknown objective {pred_objective}') if dynamic_threshold: # following pseudocode in appendix # s is the dynamic threshold, determined by percentile of absolute values of reconstructed sample per batch element s = torch.quantile( rearrange(x_start, 'b ... -> b (...)').abs(), self.dynamic_thresholding_percentile, dim = -1 ) s.clamp_(min = 1.) s = right_pad_dims_to(x_start, s) x_start = x_start.clamp(-s, s) / s else: x_start.clamp_(-1., 1.) mean_and_variance = noise_scheduler.q_posterior(x_start = x_start, x_t = x, t = t, t_next = t_next) return mean_and_variance, x_start @torch.no_grad() def p_sample( self, unet, x, t, *, noise_scheduler, t_next = None, text_embeds = None, text_mask = None, cond_images = None, cond_video_frames = None, post_cond_video_frames = None, cond_scale = 1., self_cond = None, lowres_cond_img = None, lowres_noise_times = None, pred_objective = 'noise', dynamic_threshold = True ): b, *_, device = *x.shape, x.device video_kwargs = dict() if self.is_video: video_kwargs = dict( cond_video_frames = cond_video_frames, post_cond_video_frames = post_cond_video_frames, ) (model_mean, _, model_log_variance), x_start = self.p_mean_variance( unet, x = x, t = t, t_next = t_next, noise_scheduler = noise_scheduler, text_embeds = text_embeds, text_mask = text_mask, cond_images = cond_images, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_times = lowres_noise_times, pred_objective = pred_objective, dynamic_threshold = dynamic_threshold, **video_kwargs ) noise = torch.randn_like(x) # no noise when t == 0 is_last_sampling_timestep = (t_next == 0) if isinstance(noise_scheduler, GaussianDiffusionContinuousTimes) else (t == 0) nonzero_mask = (1 - is_last_sampling_timestep.float()).reshape(b, *((1,) * (len(x.shape) - 1))) pred = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise return pred, x_start @torch.no_grad() def p_sample_loop( self, unet, shape, *, noise_scheduler, lowres_cond_img = None, lowres_noise_times = None, text_embeds = None, text_mask = None, cond_images = None, cond_video_frames = None, post_cond_video_frames = None, inpaint_images = None, inpaint_videos = None, inpaint_masks = None, inpaint_resample_times = 5, init_images = None, skip_steps = None, cond_scale = 1, pred_objective = 'noise', dynamic_threshold = True, use_tqdm = True ): device = self.device batch = shape[0] img = torch.randn(shape, device = device) # video is_video = len(shape) == 5 frames = shape[-3] if is_video else None resize_kwargs = dict(target_frames = frames) if exists(frames) else dict() # for initialization with an image or video if exists(init_images): img += init_images # keep track of x0, for self conditioning x_start = None # prepare inpainting inpaint_images = default(inpaint_videos, inpaint_images) has_inpainting = exists(inpaint_images) and exists(inpaint_masks) resample_times = inpaint_resample_times if has_inpainting else 1 if has_inpainting: inpaint_images = self.normalize_img(inpaint_images) inpaint_images = self.resize_to(inpaint_images, shape[-1], **resize_kwargs) inpaint_masks = self.resize_to(rearrange(inpaint_masks, 'b ... -> b 1 ...').float(), shape[-1], **resize_kwargs).bool() # time timesteps = noise_scheduler.get_sampling_timesteps(batch, device = device) # whether to skip any steps skip_steps = default(skip_steps, 0) timesteps = timesteps[skip_steps:] # video conditioning kwargs video_kwargs = dict() if self.is_video: video_kwargs = dict( cond_video_frames = cond_video_frames, post_cond_video_frames = post_cond_video_frames, ) for times, times_next in tqdm(timesteps, desc = 'sampling loop time step', total = len(timesteps), disable = not use_tqdm): is_last_timestep = times_next == 0 for r in reversed(range(resample_times)): is_last_resample_step = r == 0 if has_inpainting: noised_inpaint_images, *_ = noise_scheduler.q_sample(inpaint_images, t = times) img = img * ~inpaint_masks + noised_inpaint_images * inpaint_masks self_cond = x_start if unet.self_cond else None img, x_start = self.p_sample( unet, img, times, t_next = times_next, text_embeds = text_embeds, text_mask = text_mask, cond_images = cond_images, cond_scale = cond_scale, self_cond = self_cond, lowres_cond_img = lowres_cond_img, lowres_noise_times = lowres_noise_times, noise_scheduler = noise_scheduler, pred_objective = pred_objective, dynamic_threshold = dynamic_threshold, **video_kwargs ) if has_inpainting and not (is_last_resample_step or torch.all(is_last_timestep)): renoised_img = noise_scheduler.q_sample_from_to(img, times_next, times) img = torch.where( self.right_pad_dims_to_datatype(is_last_timestep), img, renoised_img ) img.clamp_(-1., 1.) # final inpainting if has_inpainting: img = img * ~inpaint_masks + inpaint_images * inpaint_masks unnormalize_img = self.unnormalize_img(img) return unnormalize_img @torch.no_grad() @eval_decorator @beartype def sample( self, texts: List[str] = None, text_masks = None, text_embeds = None, video_frames = None, cond_images = None, cond_video_frames = None, post_cond_video_frames = None, inpaint_videos = None, inpaint_images = None, inpaint_masks = None, inpaint_resample_times = 5, init_images = None, skip_steps = None, batch_size = 1, cond_scale = 1., lowres_sample_noise_level = None, start_at_unet_number = 1, start_image_or_video = None, stop_at_unet_number = None, return_all_unet_outputs = False, return_pil_images = False, device = None, use_tqdm = True, use_one_unet_in_gpu = True ): device = default(device, self.device) self.reset_unets_all_one_device(device = device) cond_images = maybe(cast_uint8_images_to_float)(cond_images) if exists(texts) and not exists(text_embeds) and not self.unconditional: assert all([*map(len, texts)]), 'text cannot be empty' with autocast(enabled = False): text_embeds, text_masks = self.encode_text(texts, return_attn_mask = True) text_embeds, text_masks = map(lambda t: t.to(device), (text_embeds, text_masks)) if not self.unconditional: assert exists(text_embeds), 'text must be passed in if the network was not trained without text `condition_on_text` must be set to `False` when training' text_masks = default(text_masks, lambda: torch.any(text_embeds != 0., dim = -1)) batch_size = text_embeds.shape[0] # inpainting inpaint_images = default(inpaint_videos, inpaint_images) if exists(inpaint_images): if self.unconditional: if batch_size == 1: # assume researcher wants to broadcast along inpainted images batch_size = inpaint_images.shape[0] assert inpaint_images.shape[0] == batch_size, 'number of inpainting images must be equal to the specified batch size on sample `sample(batch_size=<int>)``' assert not (self.condition_on_text and inpaint_images.shape[0] != text_embeds.shape[0]), 'number of inpainting images must be equal to the number of text to be conditioned on' assert not (self.condition_on_text and not exists(text_embeds)), 'text or text encodings must be passed into starlight if specified' assert not (not self.condition_on_text and exists(text_embeds)), 'starlight specified not to be conditioned on text, yet it is presented' assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), f'invalid text embedding dimension being passed in (should be {self.text_embed_dim})' assert not (exists(inpaint_images) ^ exists(inpaint_masks)), 'inpaint images and masks must be both passed in to do inpainting' outputs = [] is_cuda = next(self.parameters()).is_cuda device = next(self.parameters()).device lowres_sample_noise_level = default(lowres_sample_noise_level, self.lowres_sample_noise_level) num_unets = len(self.unets) # condition scaling cond_scale = cast_tuple(cond_scale, num_unets) # add frame dimension for video if self.is_video and exists(inpaint_images): video_frames = inpaint_images.shape[2] if inpaint_masks.ndim == 3: inpaint_masks = repeat(inpaint_masks, 'b h w -> b f h w', f = video_frames) assert inpaint_masks.shape[1] == video_frames assert not (self.is_video and not exists(video_frames)), 'video_frames must be passed in on sample time if training on video' all_frame_dims = calc_all_frame_dims(self.temporal_downsample_factor, video_frames) frames_to_resize_kwargs = lambda frames: dict(target_frames = frames) if exists(frames) else dict() # for initial image and skipping steps init_images = cast_tuple(init_images, num_unets) init_images = [maybe(self.normalize_img)(init_image) for init_image in init_images] skip_steps = cast_tuple(skip_steps, num_unets) # handle starting at a unet greater than 1, for training only-upscaler training if start_at_unet_number > 1: assert start_at_unet_number <= num_unets, 'must start a unet that is less than the total number of unets' assert not exists(stop_at_unet_number) or start_at_unet_number <= stop_at_unet_number assert exists(start_image_or_video), 'starting image or video must be supplied if only doing upscaling' prev_image_size = self.image_sizes[start_at_unet_number - 2] prev_frame_size = all_frame_dims[start_at_unet_number - 2][0] if self.is_video else None img = self.resize_to(start_image_or_video, prev_image_size, **frames_to_resize_kwargs(prev_frame_size)) # go through each unet in cascade for unet_number, unet, channel, image_size, frame_dims, noise_scheduler, pred_objective, dynamic_threshold, unet_cond_scale, unet_init_images, unet_skip_steps in tqdm(zip(range(1, num_unets + 1), self.unets, self.sample_channels, self.image_sizes, all_frame_dims, self.noise_schedulers, self.pred_objectives, self.dynamic_thresholding, cond_scale, init_images, skip_steps), disable = not use_tqdm): if unet_number < start_at_unet_number: continue assert not isinstance(unet, NullUnet), 'one cannot sample from null / placeholder unets' context = self.one_unet_in_gpu(unet = unet) if is_cuda and use_one_unet_in_gpu else nullcontext() with context: # video kwargs video_kwargs = dict() if self.is_video: video_kwargs = dict( cond_video_frames = cond_video_frames, post_cond_video_frames = post_cond_video_frames, ) video_kwargs = compact(video_kwargs) if self.is_video and self.resize_cond_video_frames: downsample_scale = self.temporal_downsample_factor[unet_number - 1] temporal_downsample_fn = partial(scale_video_time, downsample_scale = downsample_scale) video_kwargs = maybe_transform_dict_key(video_kwargs, 'cond_video_frames', temporal_downsample_fn) video_kwargs = maybe_transform_dict_key(video_kwargs, 'post_cond_video_frames', temporal_downsample_fn) # low resolution conditioning lowres_cond_img = lowres_noise_times = None shape = (batch_size, channel, *frame_dims, image_size, image_size) resize_kwargs = dict(target_frames = frame_dims[0]) if self.is_video else dict() if unet.lowres_cond: lowres_noise_times = self.lowres_noise_schedule.get_times(batch_size, lowres_sample_noise_level, device = device) lowres_cond_img = self.resize_to(img, image_size, **resize_kwargs) lowres_cond_img = self.normalize_img(lowres_cond_img) lowres_cond_img, *_ = self.lowres_noise_schedule.q_sample(x_start = lowres_cond_img, t = lowres_noise_times, noise = torch.randn_like(lowres_cond_img)) # init images or video if exists(unet_init_images): unet_init_images = self.resize_to(unet_init_images, image_size, **resize_kwargs) # shape of stage shape = (batch_size, self.channels, *frame_dims, image_size, image_size) img = self.p_sample_loop( unet, shape, text_embeds = text_embeds, text_mask = text_masks, cond_images = cond_images, inpaint_images = inpaint_images, inpaint_masks = inpaint_masks, inpaint_resample_times = inpaint_resample_times, init_images = unet_init_images, skip_steps = unet_skip_steps, cond_scale = unet_cond_scale, lowres_cond_img = lowres_cond_img, lowres_noise_times = lowres_noise_times, noise_scheduler = noise_scheduler, pred_objective = pred_objective, dynamic_threshold = dynamic_threshold, use_tqdm = use_tqdm, **video_kwargs ) outputs.append(img) if exists(stop_at_unet_number) and stop_at_unet_number == unet_number: break output_index = -1 if not return_all_unet_outputs else slice(None) # either return last unet output or all unet outputs if not return_pil_images: return outputs[output_index] if not return_all_unet_outputs: outputs = outputs[-1:] assert not self.is_video, 'converting sampled video tensor to video file is not supported yet' pil_images = list(map(lambda img: list(map(T.ToPILImage(), img.unbind(dim = 0))), outputs)) return pil_images[output_index] # now you have a bunch of pillow images you can just .save(/where/ever/you/want.png) @beartype def p_losses( self, unet: Union[Unet, Unet3D, NullUnet, DistributedDataParallel], x_start, times, *, noise_scheduler, lowres_cond_img = None, lowres_aug_times = None, text_embeds = None, text_mask = None, cond_images = None, noise = None, times_next = None, pred_objective = 'noise', min_snr_gamma = None, random_crop_size = None, **kwargs ): is_video = x_start.ndim == 5 noise = default(noise, lambda: torch.randn_like(x_start)) # normalize to [-1, 1] x_start = self.normalize_img(x_start) lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img) # random cropping during training # for upsamplers if exists(random_crop_size): if is_video: frames = x_start.shape[2] x_start, lowres_cond_img, noise = map(lambda t: rearrange(t, 'b c f h w -> (b f) c h w'), (x_start, lowres_cond_img, noise)) aug = K.RandomCrop((random_crop_size, random_crop_size), p = 1.) # make sure low res conditioner and image both get augmented the same way # detailed https://kornia.readthedocs.io/en/latest/augmentation.module.html?highlight=randomcrop#kornia.augmentation.RandomCrop x_start = aug(x_start) lowres_cond_img = aug(lowres_cond_img, params = aug._params) noise = aug(noise, params = aug._params) if is_video: x_start, lowres_cond_img, noise = map(lambda t: rearrange(t, '(b f) c h w -> b c f h w', f = frames), (x_start, lowres_cond_img, noise)) # get x_t x_noisy, log_snr, alpha, sigma = noise_scheduler.q_sample(x_start = x_start, t = times, noise = noise) # also noise the lowres conditioning image # at sample time, they then fix the noise level of 0.1 - 0.3 lowres_cond_img_noisy = None if exists(lowres_cond_img): lowres_aug_times = default(lowres_aug_times, times) lowres_cond_img_noisy, *_ = self.lowres_noise_schedule.q_sample(x_start = lowres_cond_img, t = lowres_aug_times, noise = torch.randn_like(lowres_cond_img)) # time condition noise_cond = noise_scheduler.get_condition(times) # unet kwargs unet_kwargs = dict( text_embeds = text_embeds, text_mask = text_mask, cond_images = cond_images, lowres_noise_times = self.lowres_noise_schedule.get_condition(lowres_aug_times), lowres_cond_img = lowres_cond_img_noisy, cond_drop_prob = self.cond_drop_prob, **kwargs ) # self condition if needed # Because 'unet' can be an instance of DistributedDataParallel coming from the # StarlightTrainer.unet_being_trained when invoking StarlightTrainer.forward(), we need to # access the member 'module' of the wrapped unet instance. self_cond = unet.module.self_cond if isinstance(unet, DistributedDataParallel) else unet.self_cond if self_cond and random() < 0.5: with torch.no_grad(): pred = unet.forward( x_noisy, noise_cond, **unet_kwargs ).detach() x_start = noise_scheduler.predict_start_from_noise(x_noisy, t = times, noise = pred) if pred_objective == 'noise' else pred unet_kwargs = {**unet_kwargs, 'self_cond': x_start} # get prediction pred = unet.forward( x_noisy, noise_cond, **unet_kwargs ) # prediction objective if pred_objective == 'noise': target = noise elif pred_objective == 'x_start': target = x_start elif pred_objective == 'v': # derivation detailed in Appendix D of Progressive Distillation paper # https://arxiv.org/abs/2202.00512 # this makes distillation viable as well as solve an issue with color shifting in upresoluting unets, noted in starlight-video target = alpha * noise - sigma * x_start else: raise ValueError(f'unknown objective {pred_objective}') # losses losses = self.loss_fn(pred, target, reduction = 'none') losses = reduce(losses, 'b ... -> b', 'mean') # min snr loss reweighting snr = log_snr.exp() maybe_clipped_snr = snr.clone() if exists(min_snr_gamma): maybe_clipped_snr.clamp_(max = min_snr_gamma) if pred_objective == 'noise': loss_weight = maybe_clipped_snr / snr elif pred_objective == 'x_start': loss_weight = maybe_clipped_snr elif pred_objective == 'v': loss_weight = maybe_clipped_snr / (snr + 1) losses = losses * loss_weight return losses.mean() @beartype def forward( self, images, # rename to images or video unet: Union[Unet, Unet3D, NullUnet, DistributedDataParallel] = None, texts: List[str] = None, text_embeds = None, text_masks = None, unet_number = None, cond_images = None, **kwargs ): if self.is_video and images.ndim == 4: images = rearrange(images, 'b c h w -> b c 1 h w') kwargs.update(ignore_time = True) assert images.shape[-1] == images.shape[-2], f'the images you pass in must be a square, but received dimensions of {images.shape[2]}, {images.shape[-1]}' assert not (len(self.unets) > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {len(self.unets)}, if you are training cascading DDPM (multiple unets)' unet_number = default(unet_number, 1) assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, 'you can only train on unet #{self.only_train_unet_number}' images = cast_uint8_images_to_float(images) cond_images = maybe(cast_uint8_images_to_float)(cond_images) assert images.dtype == torch.float or images.dtype == torch.half, f'images tensor needs to be floats but {images.dtype} dtype found instead' unet_index = unet_number - 1 unet = default(unet, lambda: self.get_unet(unet_number)) assert not isinstance(unet, NullUnet), 'null unet cannot and should not be trained' noise_scheduler = self.noise_schedulers[unet_index] min_snr_gamma = self.min_snr_gamma[unet_index] pred_objective = self.pred_objectives[unet_index] target_image_size = self.image_sizes[unet_index] random_crop_size = self.random_crop_sizes[unet_index] prev_image_size = self.image_sizes[unet_index - 1] if unet_index > 0 else None b, c, *_, h, w, device, is_video = *images.shape, images.device, images.ndim == 5 assert images.shape[1] == self.channels assert h >= target_image_size and w >= target_image_size frames = images.shape[2] if is_video else None all_frame_dims = tuple(safe_get_tuple_index(el, 0) for el in calc_all_frame_dims(self.temporal_downsample_factor, frames)) ignore_time = kwargs.get('ignore_time', False) target_frame_size = all_frame_dims[unet_index] if is_video and not ignore_time else None prev_frame_size = all_frame_dims[unet_index - 1] if is_video and not ignore_time and unet_index > 0 else None frames_to_resize_kwargs = lambda frames: dict(target_frames = frames) if exists(frames) else dict() times = noise_scheduler.sample_random_times(b, device = device) if exists(texts) and not exists(text_embeds) and not self.unconditional: assert all([*map(len, texts)]), 'text cannot be empty' assert len(texts) == len(images), 'number of text captions does not match up with the number of images given' with autocast(enabled = False): text_embeds, text_masks = self.encode_text(texts, return_attn_mask = True) text_embeds, text_masks = map(lambda t: t.to(images.device), (text_embeds, text_masks)) if not self.unconditional: text_masks = default(text_masks, lambda: torch.any(text_embeds != 0., dim = -1)) assert not (self.condition_on_text and not exists(text_embeds)), 'text or text encodings must be passed into decoder if specified' assert not (not self.condition_on_text and exists(text_embeds)), 'decoder specified not to be conditioned on text, yet it is presented' assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), f'invalid text embedding dimension being passed in (should be {self.text_embed_dim})' # handle video frame conditioning if self.is_video and self.resize_cond_video_frames: downsample_scale = self.temporal_downsample_factor[unet_index] temporal_downsample_fn = partial(scale_video_time, downsample_scale = downsample_scale) kwargs = maybe_transform_dict_key(kwargs, 'cond_video_frames', temporal_downsample_fn) kwargs = maybe_transform_dict_key(kwargs, 'post_cond_video_frames', temporal_downsample_fn) # handle low resolution conditioning lowres_cond_img = lowres_aug_times = None if exists(prev_image_size): lowres_cond_img = self.resize_to(images, prev_image_size, **frames_to_resize_kwargs(prev_frame_size), clamp_range = self.input_image_range) lowres_cond_img = self.resize_to(lowres_cond_img, target_image_size, **frames_to_resize_kwargs(target_frame_size), clamp_range = self.input_image_range) if self.per_sample_random_aug_noise_level: lowres_aug_times = self.lowres_noise_schedule.sample_random_times(b, device = device) else: lowres_aug_time = self.lowres_noise_schedule.sample_random_times(1, device = device) lowres_aug_times = repeat(lowres_aug_time, '1 -> b', b = b) images = self.resize_to(images, target_image_size, **frames_to_resize_kwargs(target_frame_size)) return self.p_losses(unet, images, times, text_embeds = text_embeds, text_mask = text_masks, cond_images = cond_images, noise_scheduler = noise_scheduler, lowres_cond_img = lowres_cond_img, lowres_aug_times = lowres_aug_times, pred_objective = pred_objective, min_snr_gamma = min_snr_gamma, random_crop_size = random_crop_size, **kwargs)
StarlightVision-master
starlight_vision/core/gen2.py
import torch import torch.nn as nn from torchvision.transforms import Compose, Resize, Normalize, ToTensor from torch.utils.data import DataLoader from transformers import DiffusionModel, ClipModel, DiffusionConfig, DPTImageProcessor, DPTForDepthEstimation from torchvision.transforms import GaussianBlur import torch.nn.functional as F import math #spatial transformer class SpatialTransformer(nn.Module): def __init__(self, in_channels, num_heads): super(SpatialTransformer, self).__init__() self.in_channels = in_channels self.num_heads = num_heads self.key_proj = nn.Linear(in_channels, in_channels) self.value_proj = nn.Linear(in_channels, in_channels) self.query_proj = nn.Linear(in_channels, in_channels) self.softmax = nn.Softmax(dim=-1) self.output_proj = nn.Linear(in_channels, in_channels) def forward(self, x, content_embeddings): #compute keys and values from content embedding keys = self.key_proj(content_embeddings) values = self.value_proj(content_embeddings) #compute queries from input queries = self.query_proj(x) #conpute attention scores attention_scores = torch.matmul(queries, keys.tranpose(-1. -2)) / (self.in_channels ** 0.5) attention_scores = self.softmax(attention_scores) #compute attented scores attented_values = torch.matmul(attention_scores, values) #add residual connection and apply output projection out = x + attented_values out = self.output_proj(out) return out class Midas(nn.Module): def __init__(self): super(Midas, self).__init__() self.processor = DPTImageProcessor.from_pretrained("Intel/dpt-large") self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") def forward(self, x): #prepare images for the model inputs = self.processor(images=x, return_tensors="pt") with torch.no_grad(): outputs = self.model(**inputs) predicted_depth = outputs.predicted_depth #interplate to original size prediction = torch.nn.function.interpolate( predicted_depth.unsqueeze(1), size=x.shape[-2:], mode="bicubic", align_corners=False, ) return prediction.squeeze() #sinusodial embeddings class SinusoidalEmbedding(nn.Module): def __init__(self, num_channels): super(SinusoidalEmbedding, self).__init__() self.num_channels = num_channels def forward(self, ts, T): ts = torch.Tensor([ts]) T = torch.Tensor([T]) ts_embed = torch.zeros(self.num_channels // 2) div_term = torch.exp(torch.arange(0, self.num_channels // 2, 2) * -(math.log(10000.0) / self.num_channels)) ts_embed[0::2] = torch.sin(ts * div_term) ts_embed[1::2] = torch.cos(ts * div_term) return ts_embed #unet class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, temporal=False): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(out_channels) self.temporal = temporal if temporal: self.temporal_conv = nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=1) self.bn_temporal = nn.BatchNorm1d(out_channels) def forward(self, x): residual = x out = self.relu(self.bn1(self.conv1(x))) if self.temporal: out = self.bn_temporal(self.temporal_conv(out)) out = self.bn2(self.conv2(out)) out += residual out = self.relu(out) return out class TransformerBlock(nn.Module): def __init__(self, in_channels, temporal=False): super(TransformerBlock, self).__init__() self.spatial_transformer = nn.TransformerEncoderLayr(d_model=in_channels, nhead=8) self.temporal = temporal if temporal: self.temporal_transformer = nn.TransformerEncoderLayer(d_model=in_channels, nhead=8) def forward(self, x): out = self.spatial_transformer(x) if self.temporal: out = self.temporal_transformer(out) return out class Unet(nn.Module): def __init__(self, in_channels, out_channels): #encoder = self.encoder = ... #decoder self.decoder = ... #build the umnet architecture using residual blocks and transformer self.layers = nn.Sequential( ResidualBlock(in_channels, 64, temporal=False), TransformerBlock(64, temporal=False) ) def forward(self, x): #pass input through the encoder z = self.encoder(x) #pass the latent representations through the unet layers z = self.layers(z) #pass output to decoder out = self.decoder(z) return out #extended unet class ExtendedUNet(Unet): def __init__(self, in_channels, out_channels, blur_kernel_size=3, blur_sigma=1.0): super(ExtendedUNet, self).__init__(in_channels, out_channels) self.midas_dpt_large = Midas() # Load the MiDaS DPT-Large model self.clip_model = ... # Load the CLIP model self.blur = GaussianBlur(blur_kernel_size, sigma=blur_sigma) def process_structure(self, x, ts, Ts): depth_maps = self.midas_dpt_large(x) for _ in range(ts): depth_maps = self.blur(depth_maps) depth_maps = F.interpolate(depth_maps, scale_factor=0.5) depth_maps = F.interpolate(depth_maps, size=x.shape[-2:]) z_structure = self.encoder(depth_maps) return z_structure def process_content(self, x): content_repr = self.clip_model.encode_image(x) return content_repr def sample(self, x, t, c, ts, guidance_scale=1.0, temporal_scale=1.0): zt = self.encoder(x) z_structure = self.process_structure(x, ts, Ts) zt = torch.cat([zt, z_structure], dim=1) content_repr = self.process_content(c) # Apply the spatial transformer and cross-attention conditioning out = self.layers(zt, content_repr) # Compute the adjusted predictions unconditional_pred = self.decoder(out) conditional_pred = self.decoder(out) adjusted_pred = unconditional_pred + guidance_scale * (conditional_pred - unconditional_pred) # Control temporal consistency image_model_pred = ... # Compute the prediction of the image model applied to each frame individually adjusted_pred = image_model_pred + temporal_scale * (adjusted_pred - image_model_pred) return adjusted_pred class Starlight(nn.Module): def __init__(self, Ts): super(Starlight, self).__init__() # self.midas = Midas.from_pretrained("midas/dpt_large") # self.clip_model = ClipModel.from_pretrained("openai/clip-vit-base-patch32") # self.spatial = SpatialTransformer() # self.extended_unet = ExtendedUNet(in_channels=3, out_channels=3) # self.clip_model = ClipModel.from_pretrained("openai/clip-vit-base-patch32") self.unet = ExtendedUNet() self.sinusoidal_embedding = SinusoidalEmbedding(4) self.Ts = Ts def forward(self, x, s, c, ts): # #compute content representation # content_embedding = self.clip_model.encode_image(x) content_embedding = self.unet.process_content(x) # #compute structure representation depth_maps = self.unet.midas_dpt_large(x) # structure_embedding = self.encode_structure(depth_maps) structure_embedding = self.process_structure(depth_maps, ts) zt = torch.cat([x, structure_embedding], dim=1) #add sinusoidal embedding of ts ts_embed = self.sinusoidal_embedding(ts, self.Ts).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) ts_embed = ts_embed.repeat(x.size(0), 1, x.size(2), x.size(3)) zt = torch.cat([zt, ts_embed], dim=1) #apply cross attention for content condition cross_attended_input = self.unet.spatial_transformer(zt, content_embedding) #apply unet to predict means e means = self.unet(cross_attended_input) return means def process_structure(self, depth_maps, ts): for _ in range(ts): depth_maps = self.unet.blur(depth_maps) depth_maps = F.interpolate(depth_maps, scale_factor=0.5) depth_maps = F.interpolate(depth_maps, size=depth_maps.shape[-2:]) z_structure = self.unet.encoder(depth_maps) return z_structure #init starlight model model = Starlight() #d
StarlightVision-master
starlight_vision/core/starlight.py
import math import copy import operator import functools from typing import List from tqdm.auto import tqdm from functools import partial, wraps from contextlib import contextmanager, nullcontext from collections import namedtuple from pathlib import Path import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat, reduce, pack, unpack from einops.layers.torch import Rearrange, Reduce from einops_exts.torch import EinopsToAndFrom from starlight_vision.t5 import t5_encode_text, get_encoded_dim, DEFAULT_T5_NAME # helper functions def exists(val): return val is not None def identity(t, *args, **kwargs): return t def first(arr, d = None): if len(arr) == 0: return d return arr[0] def divisible_by(numer, denom): return (numer % denom) == 0 def maybe(fn): @wraps(fn) def inner(x): if not exists(x): return x return fn(x) return inner def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) def default(val, d): if exists(val): return val return d() if callable(d) else d def cast_tuple(val, length = None): if isinstance(val, list): val = tuple(val) output = val if isinstance(val, tuple) else ((val,) * default(length, 1)) if exists(length): assert len(output) == length return output def cast_uint8_images_to_float(images): if not images.dtype == torch.uint8: return images return images / 255 def module_device(module): return next(module.parameters()).device def zero_init_(m): nn.init.zeros_(m.weight) if exists(m.bias): nn.init.zeros_(m.bias) def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner def pad_tuple_to_length(t, length, fillvalue = None): remain_length = length - len(t) if remain_length <= 0: return t return (*t, *((fillvalue,) * remain_length)) # helper classes class Identity(nn.Module): def __init__(self, *args, **kwargs): super().__init__() def forward(self, x, *args, **kwargs): return x def Sequential(*modules): return nn.Sequential(*filter(exists, modules)) # tensor helpers def log(t, eps: float = 1e-12): return torch.log(t.clamp(min = eps)) def l2norm(t): return F.normalize(t, dim = -1) def right_pad_dims_to(x, t): padding_dims = x.ndim - t.ndim if padding_dims <= 0: return t return t.view(*t.shape, *((1,) * padding_dims)) def masked_mean(t, *, dim, mask = None): if not exists(mask): return t.mean(dim = dim) denom = mask.sum(dim = dim, keepdim = True) mask = rearrange(mask, 'b n -> b n 1') masked_t = t.masked_fill(~mask, 0.) return masked_t.sum(dim = dim) / denom.clamp(min = 1e-5) def resize_video_to( video, target_image_size, target_frames = None, clamp_range = None, mode = 'nearest' ): orig_video_size = video.shape[-1] frames = video.shape[2] target_frames = default(target_frames, frames) target_shape = (target_frames, target_image_size, target_image_size) if tuple(video.shape[-3:]) == target_shape: return video out = F.interpolate(video, target_shape, mode = mode) if exists(clamp_range): out = out.clamp(*clamp_range) return out def scale_video_time( video, downsample_scale = 1, mode = 'nearest' ): if downsample_scale == 1: return video image_size, frames = video.shape[-1], video.shape[-3] assert divisible_by(frames, downsample_scale), f'trying to temporally downsample a conditioning video frames of length {frames} by {downsample_scale}, however it is not neatly divisible' target_frames = frames // downsample_scale resized_video = resize_video_to( video, image_size, target_frames = target_frames, mode = mode ) return resized_video # classifier free guidance functions def prob_mask_like(shape, prob, device): if prob == 1: return torch.ones(shape, device = device, dtype = torch.bool) elif prob == 0: return torch.zeros(shape, device = device, dtype = torch.bool) else: return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob # norms and residuals class LayerNorm(nn.Module): def __init__(self, dim, stable = False): super().__init__() self.stable = stable self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): if self.stable: x = x / x.amax(dim = -1, keepdim = True).detach() eps = 1e-5 if x.dtype == torch.float32 else 1e-3 var = torch.var(x, dim = -1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = -1, keepdim = True) return (x - mean) * (var + eps).rsqrt() * self.g class ChanLayerNorm(nn.Module): def __init__(self, dim, stable = False): super().__init__() self.stable = stable self.g = nn.Parameter(torch.ones(1, dim, 1, 1, 1)) def forward(self, x): if self.stable: x = x / x.amax(dim = 1, keepdim = True).detach() eps = 1e-5 if x.dtype == torch.float32 else 1e-3 var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) * (var + eps).rsqrt() * self.g class Always(): def __init__(self, val): self.val = val def __call__(self, *args, **kwargs): return self.val class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class Parallel(nn.Module): def __init__(self, *fns): super().__init__() self.fns = nn.ModuleList(fns) def forward(self, x): outputs = [fn(x) for fn in self.fns] return sum(outputs) # rearranging class RearrangeTimeCentric(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x): x = rearrange(x, 'b c f ... -> b ... f c') x, ps = pack([x], '* f c') x = self.fn(x) x, = unpack(x, ps, '* f c') x = rearrange(x, 'b ... f c -> b c f ...') return x # attention pooling class PerceiverAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, scale = 8 ): super().__init__() self.scale = scale self.heads = heads inner_dim = dim_head * heads self.norm = nn.LayerNorm(dim) self.norm_latents = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.q_scale = nn.Parameter(torch.ones(dim_head)) self.k_scale = nn.Parameter(torch.ones(dim_head)) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim, bias = False), nn.LayerNorm(dim) ) def forward(self, x, latents, mask = None): x = self.norm(x) latents = self.norm_latents(latents) b, h = x.shape[0], self.heads q = self.to_q(latents) # the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to kv_input = torch.cat((x, latents), dim = -2) k, v = self.to_kv(kv_input).chunk(2, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # qk rmsnorm q, k = map(l2norm, (q, k)) q = q * self.q_scale k = k * self.k_scale # similarities and masking sim = einsum('... i d, ... j d -> ... i j', q, k) * self.scale if exists(mask): max_neg_value = -torch.finfo(sim.dtype).max mask = F.pad(mask, (0, latents.shape[-2]), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) # attention attn = sim.softmax(dim = -1) out = einsum('... i j, ... j d -> ... i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)', h = h) return self.to_out(out) class PerceiverResampler(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, num_latents = 64, num_latents_mean_pooled = 4, # number of latents derived from mean pooled representation of the sequence max_seq_len = 512, ff_mult = 4 ): super().__init__() self.pos_emb = nn.Embedding(max_seq_len, dim) self.latents = nn.Parameter(torch.randn(num_latents, dim)) self.to_latents_from_mean_pooled_seq = None if num_latents_mean_pooled > 0: self.to_latents_from_mean_pooled_seq = nn.Sequential( LayerNorm(dim), nn.Linear(dim, dim * num_latents_mean_pooled), Rearrange('b (n d) -> b n d', n = num_latents_mean_pooled) ) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PerceiverAttention(dim = dim, dim_head = dim_head, heads = heads), FeedForward(dim = dim, mult = ff_mult) ])) def forward(self, x, mask = None): n, device = x.shape[1], x.device pos_emb = self.pos_emb(torch.arange(n, device = device)) x_with_pos = x + pos_emb latents = repeat(self.latents, 'n d -> b n d', b = x.shape[0]) if exists(self.to_latents_from_mean_pooled_seq): meanpooled_seq = masked_mean(x, dim = 1, mask = torch.ones(x.shape[:2], device = x.device, dtype = torch.bool)) meanpooled_latents = self.to_latents_from_mean_pooled_seq(meanpooled_seq) latents = torch.cat((meanpooled_latents, latents), dim = -2) for attn, ff in self.layers: latents = attn(x_with_pos, latents, mask = mask) + latents latents = ff(latents) + latents return latents # main contribution from make-a-video - pseudo conv3d # axial space-time convolutions, but made causal to keep in line with the design decisions of starlight-video paper class Conv3d(nn.Module): def __init__( self, dim, dim_out = None, kernel_size = 3, *, temporal_kernel_size = None, **kwargs ): super().__init__() dim_out = default(dim_out, dim) temporal_kernel_size = default(temporal_kernel_size, kernel_size) self.spatial_conv = nn.Conv2d(dim, dim_out, kernel_size = kernel_size, padding = kernel_size // 2) self.temporal_conv = nn.Conv1d(dim_out, dim_out, kernel_size = temporal_kernel_size) if kernel_size > 1 else None self.kernel_size = kernel_size if exists(self.temporal_conv): nn.init.dirac_(self.temporal_conv.weight.data) # initialized to be identity nn.init.zeros_(self.temporal_conv.bias.data) def forward( self, x, ignore_time = False ): b, c, *_, h, w = x.shape is_video = x.ndim == 5 ignore_time &= is_video if is_video: x = rearrange(x, 'b c f h w -> (b f) c h w') x = self.spatial_conv(x) if is_video: x = rearrange(x, '(b f) c h w -> b c f h w', b = b) if ignore_time or not exists(self.temporal_conv): return x x = rearrange(x, 'b c f h w -> (b h w) c f') # causal temporal convolution - time is causal in starlight-video if self.kernel_size > 1: x = F.pad(x, (self.kernel_size - 1, 0)) x = self.temporal_conv(x) x = rearrange(x, '(b h w) c f -> b c f h w', h = h, w = w) return x # attention class Attention(nn.Module): def __init__( self, dim, *, dim_head = 64, heads = 8, causal = False, context_dim = None, rel_pos_bias = False, rel_pos_bias_mlp_depth = 2, init_zero = False, scale = 8 ): super().__init__() self.scale = scale self.causal = causal self.rel_pos_bias = DynamicPositionBias(dim = dim, heads = heads, depth = rel_pos_bias_mlp_depth) if rel_pos_bias else None self.heads = heads inner_dim = dim_head * heads self.norm = LayerNorm(dim) self.null_attn_bias = nn.Parameter(torch.randn(heads)) self.null_kv = nn.Parameter(torch.randn(2, dim_head)) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, dim_head * 2, bias = False) self.q_scale = nn.Parameter(torch.ones(dim_head)) self.k_scale = nn.Parameter(torch.ones(dim_head)) self.to_context = nn.Sequential(nn.LayerNorm(context_dim), nn.Linear(context_dim, dim_head * 2)) if exists(context_dim) else None self.to_out = nn.Sequential( nn.Linear(inner_dim, dim, bias = False), LayerNorm(dim) ) if init_zero: nn.init.zeros_(self.to_out[-1].g) def forward( self, x, context = None, mask = None, attn_bias = None ): b, n, device = *x.shape[:2], x.device x = self.norm(x) q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1)) q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads) # add null key / value for classifier free guidance in prior net nk, nv = map(lambda t: repeat(t, 'd -> b 1 d', b = b), self.null_kv.unbind(dim = -2)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # add text conditioning, if present if exists(context): assert exists(self.to_context) ck, cv = self.to_context(context).chunk(2, dim = -1) k = torch.cat((ck, k), dim = -2) v = torch.cat((cv, v), dim = -2) # qk rmsnorm q, k = map(l2norm, (q, k)) q = q * self.q_scale k = k * self.k_scale # calculate query / key similarities sim = einsum('b h i d, b j d -> b h i j', q, k) * self.scale # relative positional encoding (T5 style) if not exists(attn_bias) and exists(self.rel_pos_bias): attn_bias = self.rel_pos_bias(n, device = device, dtype = q.dtype) if exists(attn_bias): null_attn_bias = repeat(self.null_attn_bias, 'h -> h n 1', n = n) attn_bias = torch.cat((null_attn_bias, attn_bias), dim = -1) sim = sim + attn_bias # masking max_neg_value = -torch.finfo(sim.dtype).max if self.causal: i, j = sim.shape[-2:] causal_mask = torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) sim = sim.masked_fill(causal_mask, max_neg_value) if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) # attention attn = sim.softmax(dim = -1) # aggregate values out = einsum('b h i j, b j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # pseudo conv2d that uses conv3d but with kernel size of 1 across frames dimension def Conv2d(dim_in, dim_out, kernel, stride = 1, padding = 0, **kwargs): kernel = cast_tuple(kernel, 2) stride = cast_tuple(stride, 2) padding = cast_tuple(padding, 2) if len(kernel) == 2: kernel = (1, *kernel) if len(stride) == 2: stride = (1, *stride) if len(padding) == 2: padding = (0, *padding) return nn.Conv3d(dim_in, dim_out, kernel, stride = stride, padding = padding, **kwargs) class Pad(nn.Module): def __init__(self, padding, value = 0.): super().__init__() self.padding = padding self.value = value def forward(self, x): return F.pad(x, self.padding, value = self.value) # decoder def Upsample(dim, dim_out = None): dim_out = default(dim_out, dim) return nn.Sequential( nn.Upsample(scale_factor = 2, mode = 'nearest'), Conv2d(dim, dim_out, 3, padding = 1) ) class PixelShuffleUpsample(nn.Module): def __init__(self, dim, dim_out = None): super().__init__() dim_out = default(dim_out, dim) conv = Conv2d(dim, dim_out * 4, 1) self.net = nn.Sequential( conv, nn.SiLU() ) self.pixel_shuffle = nn.PixelShuffle(2) self.init_conv_(conv) def init_conv_(self, conv): o, i, f, h, w = conv.weight.shape conv_weight = torch.empty(o // 4, i, f, h, w) nn.init.kaiming_uniform_(conv_weight) conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...') conv.weight.data.copy_(conv_weight) nn.init.zeros_(conv.bias.data) def forward(self, x): out = self.net(x) frames = x.shape[2] out = rearrange(out, 'b c f h w -> (b f) c h w') out = self.pixel_shuffle(out) return rearrange(out, '(b f) c h w -> b c f h w', f = frames) def Downsample(dim, dim_out = None): dim_out = default(dim_out, dim) return nn.Sequential( Rearrange('b c f (h p1) (w p2) -> b (c p1 p2) f h w', p1 = 2, p2 = 2), Conv2d(dim * 4, dim_out, 1) ) # temporal up and downsamples class TemporalPixelShuffleUpsample(nn.Module): def __init__(self, dim, dim_out = None, stride = 2): super().__init__() self.stride = stride dim_out = default(dim_out, dim) conv = nn.Conv1d(dim, dim_out * stride, 1) self.net = nn.Sequential( conv, nn.SiLU() ) self.pixel_shuffle = Rearrange('b (c r) n -> b c (n r)', r = stride) self.init_conv_(conv) def init_conv_(self, conv): o, i, f = conv.weight.shape conv_weight = torch.empty(o // self.stride, i, f) nn.init.kaiming_uniform_(conv_weight) conv_weight = repeat(conv_weight, 'o ... -> (o r) ...', r = self.stride) conv.weight.data.copy_(conv_weight) nn.init.zeros_(conv.bias.data) def forward(self, x): b, c, f, h, w = x.shape x = rearrange(x, 'b c f h w -> (b h w) c f') out = self.net(x) out = self.pixel_shuffle(out) return rearrange(out, '(b h w) c f -> b c f h w', h = h, w = w) def TemporalDownsample(dim, dim_out = None, stride = 2): dim_out = default(dim_out, dim) return nn.Sequential( Rearrange('b c (f p) h w -> b (c p) f h w', p = stride), Conv2d(dim * stride, dim_out, 1) ) # positional embedding class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device = x.device) * -emb) emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j') return torch.cat((emb.sin(), emb.cos()), dim = -1) class LearnedSinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() assert (dim % 2) == 0 half_dim = dim // 2 self.weights = nn.Parameter(torch.randn(half_dim)) def forward(self, x): x = rearrange(x, 'b -> b 1') freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1) fouriered = torch.cat((x, fouriered), dim = -1) return fouriered class Block(nn.Module): def __init__( self, dim, dim_out, groups = 8, norm = True ): super().__init__() self.groupnorm = nn.GroupNorm(groups, dim) if norm else Identity() self.activation = nn.SiLU() self.project = Conv3d(dim, dim_out, 3, padding = 1) def forward( self, x, scale_shift = None, ignore_time = False ): x = self.groupnorm(x) if exists(scale_shift): scale, shift = scale_shift x = x * (scale + 1) + shift x = self.activation(x) return self.project(x, ignore_time = ignore_time) class ResnetBlock(nn.Module): def __init__( self, dim, dim_out, *, cond_dim = None, time_cond_dim = None, groups = 8, linear_attn = False, use_gca = False, squeeze_excite = False, **attn_kwargs ): super().__init__() self.time_mlp = None if exists(time_cond_dim): self.time_mlp = nn.Sequential( nn.SiLU(), nn.Linear(time_cond_dim, dim_out * 2) ) self.cross_attn = None if exists(cond_dim): attn_klass = CrossAttention if not linear_attn else LinearCrossAttention self.cross_attn = attn_klass( dim = dim_out, context_dim = cond_dim, **attn_kwargs ) self.block1 = Block(dim, dim_out, groups = groups) self.block2 = Block(dim_out, dim_out, groups = groups) self.gca = GlobalContext(dim_in = dim_out, dim_out = dim_out) if use_gca else Always(1) self.res_conv = Conv2d(dim, dim_out, 1) if dim != dim_out else Identity() def forward( self, x, time_emb = None, cond = None, ignore_time = False ): scale_shift = None if exists(self.time_mlp) and exists(time_emb): time_emb = self.time_mlp(time_emb) time_emb = rearrange(time_emb, 'b c -> b c 1 1 1') scale_shift = time_emb.chunk(2, dim = 1) h = self.block1(x, ignore_time = ignore_time) if exists(self.cross_attn): assert exists(cond) h = rearrange(h, 'b c ... -> b ... c') h, ps = pack([h], 'b * c') h = self.cross_attn(h, context = cond) + h h, = unpack(h, ps, 'b * c') h = rearrange(h, 'b ... c -> b c ...') h = self.block2(h, scale_shift = scale_shift, ignore_time = ignore_time) h = h * self.gca(h) return h + self.res_conv(x) class CrossAttention(nn.Module): def __init__( self, dim, *, context_dim = None, dim_head = 64, heads = 8, norm_context = False, scale = 8 ): super().__init__() self.scale = scale self.heads = heads inner_dim = dim_head * heads context_dim = default(context_dim, dim) self.norm = LayerNorm(dim) self.norm_context = LayerNorm(context_dim) if norm_context else Identity() self.null_kv = nn.Parameter(torch.randn(2, dim_head)) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False) self.q_scale = nn.Parameter(torch.ones(dim_head)) self.k_scale = nn.Parameter(torch.ones(dim_head)) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim, bias = False), LayerNorm(dim) ) def forward(self, x, context, mask = None): b, n, device = *x.shape[:2], x.device x = self.norm(x) context = self.norm_context(context) q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v)) # add null key / value for classifier free guidance in prior net nk, nv = map(lambda t: repeat(t, 'd -> b h 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # qk rmsnorm q, k = map(l2norm, (q, k)) q = q * self.q_scale k = k * self.k_scale # similarities sim = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale # masking max_neg_value = -torch.finfo(sim.dtype).max if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) attn = sim.softmax(dim = -1, dtype = torch.float32) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class LinearCrossAttention(CrossAttention): def forward(self, x, context, mask = None): b, n, device = *x.shape[:2], x.device x = self.norm(x) context = self.norm_context(context) q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = self.heads), (q, k, v)) # add null key / value for classifier free guidance in prior net nk, nv = map(lambda t: repeat(t, 'd -> (b h) 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # masking max_neg_value = -torch.finfo(x.dtype).max if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b n -> b n 1') k = k.masked_fill(~mask, max_neg_value) v = v.masked_fill(~mask, 0.) # linear attention q = q.softmax(dim = -1) k = k.softmax(dim = -2) q = q * self.scale context = einsum('b n d, b n e -> b d e', k, v) out = einsum('b n d, b d e -> b n e', q, context) out = rearrange(out, '(b h) n d -> b n (h d)', h = self.heads) return self.to_out(out) class LinearAttention(nn.Module): def __init__( self, dim, dim_head = 32, heads = 8, dropout = 0.05, context_dim = None, **kwargs ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads inner_dim = dim_head * heads self.norm = ChanLayerNorm(dim) self.nonlin = nn.SiLU() self.to_q = nn.Sequential( nn.Dropout(dropout), Conv2d(dim, inner_dim, 1, bias = False), Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim) ) self.to_k = nn.Sequential( nn.Dropout(dropout), Conv2d(dim, inner_dim, 1, bias = False), Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim) ) self.to_v = nn.Sequential( nn.Dropout(dropout), Conv2d(dim, inner_dim, 1, bias = False), Conv2d(inner_dim, inner_dim, 3, bias = False, padding = 1, groups = inner_dim) ) self.to_context = nn.Sequential(nn.LayerNorm(context_dim), nn.Linear(context_dim, inner_dim * 2, bias = False)) if exists(context_dim) else None self.to_out = nn.Sequential( Conv2d(inner_dim, dim, 1, bias = False), ChanLayerNorm(dim) ) def forward(self, fmap, context = None): h, x, y = self.heads, *fmap.shape[-2:] fmap = self.norm(fmap) q, k, v = map(lambda fn: fn(fmap), (self.to_q, self.to_k, self.to_v)) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (q, k, v)) if exists(context): assert exists(self.to_context) ck, cv = self.to_context(context).chunk(2, dim = -1) ck, cv = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (ck, cv)) k = torch.cat((k, ck), dim = -2) v = torch.cat((v, cv), dim = -2) q = q.softmax(dim = -1) k = k.softmax(dim = -2) q = q * self.scale context = einsum('b n d, b n e -> b d e', k, v) out = einsum('b n d, b d e -> b n e', q, context) out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, x = x, y = y) out = self.nonlin(out) return self.to_out(out) class GlobalContext(nn.Module): """ basically a superior form of squeeze-excitation that is attention-esque """ def __init__( self, *, dim_in, dim_out ): super().__init__() self.to_k = Conv2d(dim_in, 1, 1) hidden_dim = max(3, dim_out // 2) self.net = nn.Sequential( Conv2d(dim_in, hidden_dim, 1), nn.SiLU(), Conv2d(hidden_dim, dim_out, 1), nn.Sigmoid() ) def forward(self, x): context = self.to_k(x) x, context = map(lambda t: rearrange(t, 'b n ... -> b n (...)'), (x, context)) out = einsum('b i n, b c n -> b c i', context.softmax(dim = -1), x) out = rearrange(out, '... -> ... 1 1') return self.net(out) def FeedForward(dim, mult = 2): hidden_dim = int(dim * mult) return nn.Sequential( LayerNorm(dim), nn.Linear(dim, hidden_dim, bias = False), nn.GELU(), LayerNorm(hidden_dim), nn.Linear(hidden_dim, dim, bias = False) ) class TimeTokenShift(nn.Module): def forward(self, x): if x.ndim != 5: return x x, x_shift = x.chunk(2, dim = 1) x_shift = F.pad(x_shift, (0, 0, 0, 0, 1, -1), value = 0.) return torch.cat((x, x_shift), dim = 1) def ChanFeedForward(dim, mult = 2, time_token_shift = True): # in paper, it seems for self attention layers they did feedforwards with twice channel width hidden_dim = int(dim * mult) return Sequential( ChanLayerNorm(dim), Conv2d(dim, hidden_dim, 1, bias = False), nn.GELU(), TimeTokenShift() if time_token_shift else None, ChanLayerNorm(hidden_dim), Conv2d(hidden_dim, dim, 1, bias = False) ) class TransformerBlock(nn.Module): def __init__( self, dim, *, depth = 1, heads = 8, dim_head = 32, ff_mult = 2, ff_time_token_shift = True, context_dim = None ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim = dim, heads = heads, dim_head = dim_head, context_dim = context_dim), ChanFeedForward(dim = dim, mult = ff_mult, time_token_shift = ff_time_token_shift) ])) def forward(self, x, context = None): for attn, ff in self.layers: x = rearrange(x, 'b c ... -> b ... c') x, ps = pack([x], 'b * c') x = attn(x, context = context) + x x, = unpack(x, ps, 'b * c') x = rearrange(x, 'b ... c -> b c ...') x = ff(x) + x return x class LinearAttentionTransformerBlock(nn.Module): def __init__( self, dim, *, depth = 1, heads = 8, dim_head = 32, ff_mult = 2, ff_time_token_shift = True, context_dim = None, **kwargs ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ LinearAttention(dim = dim, heads = heads, dim_head = dim_head, context_dim = context_dim), ChanFeedForward(dim = dim, mult = ff_mult, time_token_shift = ff_time_token_shift) ])) def forward(self, x, context = None): for attn, ff in self.layers: x = attn(x, context = context) + x x = ff(x) + x return x class CrossEmbedLayer(nn.Module): def __init__( self, dim_in, kernel_sizes, dim_out = None, stride = 2 ): super().__init__() assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)]) dim_out = default(dim_out, dim_in) kernel_sizes = sorted(kernel_sizes) num_scales = len(kernel_sizes) # calculate the dimension at each scale dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)] dim_scales = [*dim_scales, dim_out - sum(dim_scales)] self.convs = nn.ModuleList([]) for kernel, dim_scale in zip(kernel_sizes, dim_scales): self.convs.append(Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2)) def forward(self, x): fmaps = tuple(map(lambda conv: conv(x), self.convs)) return torch.cat(fmaps, dim = 1) class UpsampleCombiner(nn.Module): def __init__( self, dim, *, enabled = False, dim_ins = tuple(), dim_outs = tuple() ): super().__init__() dim_outs = cast_tuple(dim_outs, len(dim_ins)) assert len(dim_ins) == len(dim_outs) self.enabled = enabled if not self.enabled: self.dim_out = dim return self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)]) self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0) def forward(self, x, fmaps = None): target_size = x.shape[-1] fmaps = default(fmaps, tuple()) if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0: return x fmaps = [resize_video_to(fmap, target_size) for fmap in fmaps] outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)] return torch.cat((x, *outs), dim = 1) class DynamicPositionBias(nn.Module): def __init__( self, dim, *, heads, depth ): super().__init__() self.mlp = nn.ModuleList([]) self.mlp.append(nn.Sequential( nn.Linear(1, dim), LayerNorm(dim), nn.SiLU() )) for _ in range(max(depth - 1, 0)): self.mlp.append(nn.Sequential( nn.Linear(dim, dim), LayerNorm(dim), nn.SiLU() )) self.mlp.append(nn.Linear(dim, heads)) def forward(self, n, device, dtype): i = torch.arange(n, device = device) j = torch.arange(n, device = device) indices = rearrange(i, 'i -> i 1') - rearrange(j, 'j -> 1 j') indices += (n - 1) pos = torch.arange(-n + 1, n, device = device, dtype = dtype) pos = rearrange(pos, '... -> ... 1') for layer in self.mlp: pos = layer(pos) bias = pos[indices] bias = rearrange(bias, 'i j h -> h i j') return bias class Unet3D(nn.Module): def __init__( self, *, dim, text_embed_dim = get_encoded_dim(DEFAULT_T5_NAME), num_resnet_blocks = 1, cond_dim = None, num_image_tokens = 4, num_time_tokens = 2, learned_sinu_pos_emb_dim = 16, out_dim = None, dim_mults = (1, 2, 4, 8), temporal_strides = 1, cond_images_channels = 0, channels = 3, channels_out = None, attn_dim_head = 64, attn_heads = 8, ff_mult = 2., ff_time_token_shift = True, # this would do a token shift along time axis, at the hidden layer within feedforwards - from successful use in RWKV (Peng et al), and other token shift video transformer works lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/ layer_attns = False, layer_attns_depth = 1, layer_attns_add_text_cond = True, # whether to condition the self-attention blocks with the text embeddings, as described in Appendix D.3.1 attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention) time_rel_pos_bias_depth = 2, time_causal_attn = True, layer_cross_attns = True, use_linear_attn = False, use_linear_cross_attn = False, cond_on_text = True, max_text_len = 256, init_dim = None, resnet_groups = 8, init_conv_kernel_size = 7, # kernel size of initial conv, if not using cross embed init_cross_embed = True, init_cross_embed_kernel_sizes = (3, 7, 15), cross_embed_downsample = False, cross_embed_downsample_kernel_sizes = (2, 4), attn_pool_text = True, attn_pool_num_latents = 32, dropout = 0., memory_efficient = False, init_conv_to_final_conv_residual = False, use_global_context_attn = True, scale_skip_connection = True, final_resnet_block = True, final_conv_kernel_size = 3, self_cond = False, combine_upsample_fmaps = False, # combine feature maps from all upsample blocks, used in unet squared successfully pixel_shuffle_upsample = True, # may address checkboard artifacts resize_mode = 'nearest' ): super().__init__() # guide researchers assert attn_heads > 1, 'you need to have more than 1 attention head, ideally at least 4 or 8' if dim < 128: print_once('The base dimension of your u-net should ideally be no smaller than 128, as recommended by a professional DDPM trainer https://nonint.com/2022/05/04/friends-dont-let-friends-train-small-diffusion-models/') # save locals to take care of some hyperparameters for cascading DDPM self._locals = locals() self._locals.pop('self', None) self._locals.pop('__class__', None) self.self_cond = self_cond # determine dimensions self.channels = channels self.channels_out = default(channels_out, channels) # (1) in cascading diffusion, one concats the low resolution image, blurred, for conditioning the higher resolution synthesis # (2) in self conditioning, one appends the predict x0 (x_start) init_channels = channels * (1 + int(lowres_cond) + int(self_cond)) init_dim = default(init_dim, dim) # optional image conditioning self.has_cond_image = cond_images_channels > 0 self.cond_images_channels = cond_images_channels init_channels += cond_images_channels # initial convolution self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2) dims = [init_dim, *map(lambda m: dim * m, dim_mults)] in_out = list(zip(dims[:-1], dims[1:])) # time conditioning cond_dim = default(cond_dim, dim) time_cond_dim = dim * 4 * (2 if lowres_cond else 1) # embedding time for log(snr) noise from continuous version sinu_pos_emb = LearnedSinusoidalPosEmb(learned_sinu_pos_emb_dim) sinu_pos_emb_input_dim = learned_sinu_pos_emb_dim + 1 self.to_time_hiddens = nn.Sequential( sinu_pos_emb, nn.Linear(sinu_pos_emb_input_dim, time_cond_dim), nn.SiLU() ) self.to_time_cond = nn.Sequential( nn.Linear(time_cond_dim, time_cond_dim) ) # project to time tokens as well as time hiddens self.to_time_tokens = nn.Sequential( nn.Linear(time_cond_dim, cond_dim * num_time_tokens), Rearrange('b (r d) -> b r d', r = num_time_tokens) ) # low res aug noise conditioning self.lowres_cond = lowres_cond if lowres_cond: self.to_lowres_time_hiddens = nn.Sequential( LearnedSinusoidalPosEmb(learned_sinu_pos_emb_dim), nn.Linear(learned_sinu_pos_emb_dim + 1, time_cond_dim), nn.SiLU() ) self.to_lowres_time_cond = nn.Sequential( nn.Linear(time_cond_dim, time_cond_dim) ) self.to_lowres_time_tokens = nn.Sequential( nn.Linear(time_cond_dim, cond_dim * num_time_tokens), Rearrange('b (r d) -> b r d', r = num_time_tokens) ) # normalizations self.norm_cond = nn.LayerNorm(cond_dim) # text encoding conditioning (optional) self.text_to_cond = None if cond_on_text: assert exists(text_embed_dim), 'text_embed_dim must be given to the unet if cond_on_text is True' self.text_to_cond = nn.Linear(text_embed_dim, cond_dim) # finer control over whether to condition on text encodings self.cond_on_text = cond_on_text # attention pooling self.attn_pool = PerceiverResampler(dim = cond_dim, depth = 2, dim_head = attn_dim_head, heads = attn_heads, num_latents = attn_pool_num_latents) if attn_pool_text else None # for classifier free guidance self.max_text_len = max_text_len self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, cond_dim)) self.null_text_hidden = nn.Parameter(torch.randn(1, time_cond_dim)) # for non-attention based text conditioning at all points in the network where time is also conditioned self.to_text_non_attn_cond = None if cond_on_text: self.to_text_non_attn_cond = nn.Sequential( nn.LayerNorm(cond_dim), nn.Linear(cond_dim, time_cond_dim), nn.SiLU(), nn.Linear(time_cond_dim, time_cond_dim) ) # attention related params attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head) num_layers = len(in_out) # temporal attention - attention across video frames temporal_peg_padding = (0, 0, 0, 0, 2, 0) if time_causal_attn else (0, 0, 0, 0, 1, 1) temporal_peg = lambda dim: Residual(nn.Sequential(Pad(temporal_peg_padding), nn.Conv3d(dim, dim, (3, 1, 1), groups = dim))) temporal_attn = lambda dim: RearrangeTimeCentric(Residual(Attention(dim, **{**attn_kwargs, 'causal': time_causal_attn, 'init_zero': True, 'rel_pos_bias': True}))) # resnet block klass num_resnet_blocks = cast_tuple(num_resnet_blocks, num_layers) resnet_groups = cast_tuple(resnet_groups, num_layers) resnet_klass = partial(ResnetBlock, **attn_kwargs) layer_attns = cast_tuple(layer_attns, num_layers) layer_attns_depth = cast_tuple(layer_attns_depth, num_layers) layer_cross_attns = cast_tuple(layer_cross_attns, num_layers) assert all([layers == num_layers for layers in list(map(len, (resnet_groups, layer_attns, layer_cross_attns)))]) # temporal downsample config temporal_strides = cast_tuple(temporal_strides, num_layers) self.total_temporal_divisor = functools.reduce(operator.mul, temporal_strides, 1) # downsample klass downsample_klass = Downsample if cross_embed_downsample: downsample_klass = partial(CrossEmbedLayer, kernel_sizes = cross_embed_downsample_kernel_sizes) # initial resnet block (for memory efficient unet) self.init_resnet_block = resnet_klass(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[0], use_gca = use_global_context_attn) if memory_efficient else None self.init_temporal_peg = temporal_peg(init_dim) self.init_temporal_attn = temporal_attn(init_dim) # scale for resnet skip connections self.skip_connect_scale = 1. if not scale_skip_connection else (2 ** -0.5) # layers self.downs = nn.ModuleList([]) self.ups = nn.ModuleList([]) num_resolutions = len(in_out) layer_params = [num_resnet_blocks, resnet_groups, layer_attns, layer_attns_depth, layer_cross_attns, temporal_strides] reversed_layer_params = list(map(reversed, layer_params)) # downsampling layers skip_connect_dims = [] # keep track of skip connection dimensions for ind, ((dim_in, dim_out), layer_num_resnet_blocks, groups, layer_attn, layer_attn_depth, layer_cross_attn, temporal_stride) in enumerate(zip(in_out, *layer_params)): is_last = ind >= (num_resolutions - 1) layer_use_linear_cross_attn = not layer_cross_attn and use_linear_cross_attn layer_cond_dim = cond_dim if layer_cross_attn or layer_use_linear_cross_attn else None transformer_block_klass = TransformerBlock if layer_attn else (LinearAttentionTransformerBlock if use_linear_attn else Identity) current_dim = dim_in # whether to pre-downsample, from memory efficient unet pre_downsample = None if memory_efficient: pre_downsample = downsample_klass(dim_in, dim_out) current_dim = dim_out skip_connect_dims.append(current_dim) # whether to do post-downsample, for non-memory efficient unet post_downsample = None if not memory_efficient: post_downsample = downsample_klass(current_dim, dim_out) if not is_last else Parallel(Conv2d(dim_in, dim_out, 3, padding = 1), Conv2d(dim_in, dim_out, 1)) self.downs.append(nn.ModuleList([ pre_downsample, resnet_klass(current_dim, current_dim, cond_dim = layer_cond_dim, linear_attn = layer_use_linear_cross_attn, time_cond_dim = time_cond_dim, groups = groups), nn.ModuleList([ResnetBlock(current_dim, current_dim, time_cond_dim = time_cond_dim, groups = groups, use_gca = use_global_context_attn) for _ in range(layer_num_resnet_blocks)]), transformer_block_klass(dim = current_dim, depth = layer_attn_depth, ff_mult = ff_mult, ff_time_token_shift = ff_time_token_shift, context_dim = cond_dim, **attn_kwargs), temporal_peg(current_dim), temporal_attn(current_dim), TemporalDownsample(current_dim, stride = temporal_stride) if temporal_stride > 1 else None, post_downsample ])) # middle layers mid_dim = dims[-1] self.mid_block1 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1]) self.mid_attn = EinopsToAndFrom('b c f h w', 'b (f h w) c', Residual(Attention(mid_dim, **attn_kwargs))) if attend_at_middle else None self.mid_temporal_peg = temporal_peg(mid_dim) self.mid_temporal_attn = temporal_attn(mid_dim) self.mid_block2 = ResnetBlock(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1]) # upsample klass upsample_klass = Upsample if not pixel_shuffle_upsample else PixelShuffleUpsample # upsampling layers upsample_fmap_dims = [] for ind, ((dim_in, dim_out), layer_num_resnet_blocks, groups, layer_attn, layer_attn_depth, layer_cross_attn, temporal_stride) in enumerate(zip(reversed(in_out), *reversed_layer_params)): is_last = ind == (len(in_out) - 1) layer_use_linear_cross_attn = not layer_cross_attn and use_linear_cross_attn layer_cond_dim = cond_dim if layer_cross_attn or layer_use_linear_cross_attn else None transformer_block_klass = TransformerBlock if layer_attn else (LinearAttentionTransformerBlock if use_linear_attn else Identity) skip_connect_dim = skip_connect_dims.pop() upsample_fmap_dims.append(dim_out) self.ups.append(nn.ModuleList([ resnet_klass(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, linear_attn = layer_use_linear_cross_attn, time_cond_dim = time_cond_dim, groups = groups), nn.ModuleList([ResnetBlock(dim_out + skip_connect_dim, dim_out, time_cond_dim = time_cond_dim, groups = groups, use_gca = use_global_context_attn) for _ in range(layer_num_resnet_blocks)]), transformer_block_klass(dim = dim_out, depth = layer_attn_depth, ff_mult = ff_mult, ff_time_token_shift = ff_time_token_shift, context_dim = cond_dim, **attn_kwargs), temporal_peg(dim_out), temporal_attn(dim_out), TemporalPixelShuffleUpsample(dim_out, stride = temporal_stride) if temporal_stride > 1 else None, upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else Identity() ])) # whether to combine feature maps from all upsample blocks before final resnet block out self.upsample_combiner = UpsampleCombiner( dim = dim, enabled = combine_upsample_fmaps, dim_ins = upsample_fmap_dims, dim_outs = dim ) # whether to do a final residual from initial conv to the final resnet block out self.init_conv_to_final_conv_residual = init_conv_to_final_conv_residual final_conv_dim = self.upsample_combiner.dim_out + (dim if init_conv_to_final_conv_residual else 0) # final optional resnet block and convolution out self.final_res_block = ResnetBlock(final_conv_dim, dim, time_cond_dim = time_cond_dim, groups = resnet_groups[0], use_gca = True) if final_resnet_block else None final_conv_dim_in = dim if final_resnet_block else final_conv_dim final_conv_dim_in += (channels if lowres_cond else 0) self.final_conv = Conv2d(final_conv_dim_in, self.channels_out, final_conv_kernel_size, padding = final_conv_kernel_size // 2) zero_init_(self.final_conv) # resize mode self.resize_mode = resize_mode # if the current settings for the unet are not correct # for cascading DDPM, then reinit the unet with the right settings def cast_model_parameters( self, *, lowres_cond, text_embed_dim, channels, channels_out, cond_on_text ): if lowres_cond == self.lowres_cond and \ channels == self.channels and \ cond_on_text == self.cond_on_text and \ text_embed_dim == self._locals['text_embed_dim'] and \ channels_out == self.channels_out: return self updated_kwargs = dict( lowres_cond = lowres_cond, text_embed_dim = text_embed_dim, channels = channels, channels_out = channels_out, cond_on_text = cond_on_text ) return self.__class__(**{**self._locals, **updated_kwargs}) # methods for returning the full unet config as well as its parameter state def to_config_and_state_dict(self): return self._locals, self.state_dict() # class method for rehydrating the unet from its config and state dict @classmethod def from_config_and_state_dict(klass, config, state_dict): unet = klass(**config) unet.load_state_dict(state_dict) return unet # methods for persisting unet to disk def persist_to_file(self, path): path = Path(path) path.parents[0].mkdir(exist_ok = True, parents = True) config, state_dict = self.to_config_and_state_dict() pkg = dict(config = config, state_dict = state_dict) torch.save(pkg, str(path)) # class method for rehydrating the unet from file saved with `persist_to_file` @classmethod def hydrate_from_file(klass, path): path = Path(path) assert path.exists() pkg = torch.load(str(path)) assert 'config' in pkg and 'state_dict' in pkg config, state_dict = pkg['config'], pkg['state_dict'] return Unet.from_config_and_state_dict(config, state_dict) # forward with classifier free guidance def forward_with_cond_scale( self, *args, cond_scale = 1., **kwargs ): logits = self.forward(*args, **kwargs) if cond_scale == 1: return logits null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, x, time, *, lowres_cond_img = None, lowres_noise_times = None, text_embeds = None, text_mask = None, cond_images = None, cond_video_frames = None, post_cond_video_frames = None, self_cond = None, cond_drop_prob = 0., ignore_time = False ): assert x.ndim == 5, 'input to 3d unet must have 5 dimensions (batch, channels, time, height, width)' batch_size, frames, device, dtype = x.shape[0], x.shape[2], x.device, x.dtype assert ignore_time or divisible_by(frames, self.total_temporal_divisor), f'number of input frames {frames} must be divisible by {self.total_temporal_divisor}' # add self conditioning if needed if self.self_cond: self_cond = default(self_cond, lambda: torch.zeros_like(x)) x = torch.cat((x, self_cond), dim = 1) # add low resolution conditioning, if present assert not (self.lowres_cond and not exists(lowres_cond_img)), 'low resolution conditioning image must be present' assert not (self.lowres_cond and not exists(lowres_noise_times)), 'low resolution conditioning noise time must be present' if exists(lowres_cond_img): x = torch.cat((x, lowres_cond_img), dim = 1) if exists(cond_video_frames): lowres_cond_img = torch.cat((cond_video_frames, lowres_cond_img), dim = 2) cond_video_frames = torch.cat((cond_video_frames, cond_video_frames), dim = 1) if exists(post_cond_video_frames): lowres_cond_img = torch.cat((lowres_cond_img, post_cond_video_frames), dim = 2) post_cond_video_frames = torch.cat((post_cond_video_frames, post_cond_video_frames), dim = 1) # conditioning on video frames as a prompt num_preceding_frames = 0 if exists(cond_video_frames): cond_video_frames_len = cond_video_frames.shape[2] assert divisible_by(cond_video_frames_len, self.total_temporal_divisor) cond_video_frames = resize_video_to(cond_video_frames, x.shape[-1]) x = torch.cat((cond_video_frames, x), dim = 2) num_preceding_frames = cond_video_frames_len # conditioning on video frames as a prompt num_succeeding_frames = 0 if exists(post_cond_video_frames): cond_video_frames_len = post_cond_video_frames.shape[2] assert divisible_by(cond_video_frames_len, self.total_temporal_divisor) post_cond_video_frames = resize_video_to(post_cond_video_frames, x.shape[-1]) x = torch.cat((post_cond_video_frames, x), dim = 2) num_succeeding_frames = cond_video_frames_len # condition on input image assert not (self.has_cond_image ^ exists(cond_images)), 'you either requested to condition on an image on the unet, but the conditioning image is not supplied, or vice versa' if exists(cond_images): assert cond_images.ndim == 4, 'conditioning images must have 4 dimensions only, if you want to condition on frames of video, use `cond_video_frames` instead' assert cond_images.shape[1] == self.cond_images_channels, 'the number of channels on the conditioning image you are passing in does not match what you specified on initialiation of the unet' cond_images = repeat(cond_images, 'b c h w -> b c f h w', f = x.shape[2]) cond_images = resize_video_to(cond_images, x.shape[-1], mode = self.resize_mode) x = torch.cat((cond_images, x), dim = 1) # ignoring time in pseudo 3d resnet blocks conv_kwargs = dict( ignore_time = ignore_time ) # initial convolution x = self.init_conv(x) if not ignore_time: x = self.init_temporal_peg(x) x = self.init_temporal_attn(x) # init conv residual if self.init_conv_to_final_conv_residual: init_conv_residual = x.clone() # time conditioning time_hiddens = self.to_time_hiddens(time) # derive time tokens time_tokens = self.to_time_tokens(time_hiddens) t = self.to_time_cond(time_hiddens) # add lowres time conditioning to time hiddens # and add lowres time tokens along sequence dimension for attention if self.lowres_cond: lowres_time_hiddens = self.to_lowres_time_hiddens(lowres_noise_times) lowres_time_tokens = self.to_lowres_time_tokens(lowres_time_hiddens) lowres_t = self.to_lowres_time_cond(lowres_time_hiddens) t = t + lowres_t time_tokens = torch.cat((time_tokens, lowres_time_tokens), dim = -2) # text conditioning text_tokens = None if exists(text_embeds) and self.cond_on_text: # conditional dropout text_keep_mask = prob_mask_like((batch_size,), 1 - cond_drop_prob, device = device) text_keep_mask_embed = rearrange(text_keep_mask, 'b -> b 1 1') text_keep_mask_hidden = rearrange(text_keep_mask, 'b -> b 1') # calculate text embeds text_tokens = self.text_to_cond(text_embeds) text_tokens = text_tokens[:, :self.max_text_len] if exists(text_mask): text_mask = text_mask[:, :self.max_text_len] text_tokens_len = text_tokens.shape[1] remainder = self.max_text_len - text_tokens_len if remainder > 0: text_tokens = F.pad(text_tokens, (0, 0, 0, remainder)) if exists(text_mask): if remainder > 0: text_mask = F.pad(text_mask, (0, remainder), value = False) text_mask = rearrange(text_mask, 'b n -> b n 1') text_keep_mask_embed = text_mask & text_keep_mask_embed null_text_embed = self.null_text_embed.to(text_tokens.dtype) # for some reason pytorch AMP not working text_tokens = torch.where( text_keep_mask_embed, text_tokens, null_text_embed ) if exists(self.attn_pool): text_tokens = self.attn_pool(text_tokens) # extra non-attention conditioning by projecting and then summing text embeddings to time # termed as text hiddens mean_pooled_text_tokens = text_tokens.mean(dim = -2) text_hiddens = self.to_text_non_attn_cond(mean_pooled_text_tokens) null_text_hidden = self.null_text_hidden.to(t.dtype) text_hiddens = torch.where( text_keep_mask_hidden, text_hiddens, null_text_hidden ) t = t + text_hiddens # main conditioning tokens (c) c = time_tokens if not exists(text_tokens) else torch.cat((time_tokens, text_tokens), dim = -2) # normalize conditioning tokens c = self.norm_cond(c) # initial resnet block (for memory efficient unet) if exists(self.init_resnet_block): x = self.init_resnet_block(x, t, **conv_kwargs) # go through the layers of the unet, down and up hiddens = [] for pre_downsample, init_block, resnet_blocks, attn_block, temporal_peg, temporal_attn, temporal_downsample, post_downsample in self.downs: if exists(pre_downsample): x = pre_downsample(x) x = init_block(x, t, c, **conv_kwargs) for resnet_block in resnet_blocks: x = resnet_block(x, t, **conv_kwargs) hiddens.append(x) x = attn_block(x, c) if not ignore_time: x = temporal_peg(x) x = temporal_attn(x) hiddens.append(x) if exists(temporal_downsample) and not ignore_time: x = temporal_downsample(x) if exists(post_downsample): x = post_downsample(x) x = self.mid_block1(x, t, c, **conv_kwargs) if exists(self.mid_attn): x = self.mid_attn(x) if not ignore_time: x = self.mid_temporal_peg(x) x = self.mid_temporal_attn(x) x = self.mid_block2(x, t, c, **conv_kwargs) add_skip_connection = lambda x: torch.cat((x, hiddens.pop() * self.skip_connect_scale), dim = 1) up_hiddens = [] for init_block, resnet_blocks, attn_block, temporal_peg, temporal_attn, temporal_upsample, upsample in self.ups: if exists(temporal_upsample) and not ignore_time: x = temporal_upsample(x) x = add_skip_connection(x) x = init_block(x, t, c, **conv_kwargs) for resnet_block in resnet_blocks: x = add_skip_connection(x) x = resnet_block(x, t, **conv_kwargs) x = attn_block(x, c) if not ignore_time: x = temporal_peg(x) x = temporal_attn(x) up_hiddens.append(x.contiguous()) x = upsample(x) # whether to combine all feature maps from upsample blocks x = self.upsample_combiner(x, up_hiddens) # final top-most residual if needed if self.init_conv_to_final_conv_residual: x = torch.cat((x, init_conv_residual), dim = 1) if exists(self.final_res_block): x = self.final_res_block(x, t, **conv_kwargs) if exists(lowres_cond_img): x = torch.cat((x, lowres_cond_img), dim = 1) out = self.final_conv(x) if num_preceding_frames > 0: out = out[:, :, num_preceding_frames:] if num_succeeding_frames > 0: out = out[:, :, :-num_succeeding_frames] return out
StarlightVision-master
starlight_vision/core/gen2_video.py
from setuptools import setup, find_packages setup( name = 'VisualNexus', packages = find_packages(exclude=['examples']), version = '0.0.1', license='MIT', description = 'VisualNexus - Pytorch', author = 'Kye Gomez', author_email = '[email protected]', url = 'https://github.com/kyegomez/VisualNexus', long_description_content_type = 'text/markdown', keywords = [ 'artificial intelligence', 'attention mechanism', 'transformers' 'vision' ], install_requires=[ 'torch>=1.7.0', # Base----------------------------------- 'matplotlib>=3.2.2', 'opencv-python>=4.6.0', 'Pillow>=7.1.2', 'PyYAML>=5.3.1', 'requests>=2.23.0', 'scipy>=1.4.1', 'torchvision>=0.8.1', 'tqdm>=4.64.0', 'pandas>=1.1.4', 'seaborn>=0.11.0', 'gradio==3.35.2', # Ultralytics----------------------------------- 'ultralytics == 8.0.120', 'metaseq' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
VisualNexus-master
setup.py
from datasets import Dataset import pandas as pd from models.sag_img import SAG_IMG from models.sag_video import SAG_VID import os from datasets import load_dataset def load_hf_dataset(dataset_name): #custom logic pass class SAG_MEDIA: """ SAG_MEDIA: Segment Anything for Image and Video. This class handles the process of iterating over a dataset of images and videos, segmenting them, and outputting a structured dataset ready for pre-training a model. """ def __init__(self, image_file_paths, video_file_paths, model_path='./weights/FastSAM.pt', imgsz=1024, iou=0.9, text_prompt=None, conf=0.4, output='./output/', randomcolor=True, point_prompt="[[0,0]]", point_label="[0]", box_prompt="[0,0,0,0]", better_quality=False, device=None, retina=True, withContours=False): # Initialize SAG_IMG and SAG_VID with the provided parameters self.sag_img = SAG_IMG( image_file_paths=image_file_paths, model_path=model_path, imgsz=imgsz, iou=iou, text_prompt=text_prompt, conf=conf, output=output, randomcolor=randomcolor, point_prompt=point_prompt, point_label=point_label, box_prompt=box_prompt, better_quality=better_quality, device=device, retina=retina, withContours=withContours ) self.sag_vid = SAG_VID( video_file_paths=video_file_paths, model_path=model_path, imgsz=imgsz, iou=iou, text_prompt=text_prompt, conf=conf, output=output, randomcolor=randomcolor, point_prompt=point_prompt, point_label=point_label, box_prompt=box_prompt, better_quality=better_quality, device=device, retina=retina, withContours=withContours ) def segment(self): # Perform segmentation for images and videos self.sag_img.segment() self.sag_vid.segment() def create_dataset(self): """ Create a Huggingface dataset from the segmented images and videos and save it to disk. This dataset includes the original media file path, segmented media file path, and optional text. """ # Create datasets for images and videos self.sag_img.create_dataset() self.sag_vid.create_dataset() # Merge the datasets img_dataset = Dataset.load_from_disk(os.path.join(str(self.sag_img.output), 'segmented_dataset')) vid_dataset = Dataset.load_from_disk(os.path.join(str(self.sag_vid.output), 'segmented_dataset')) merged_dataset = Dataset.concatenate_datasets([img_dataset, vid_dataset]) # Save the merged dataset to disk merged_dataset.save_to_disk(os.path.join(str(self.sag_img.output), 'merged_segmented_dataset')) if __name__ == "__main__": dataset_name = "echarlaix/vqa" # dataset name image_file_paths = load_hf_dataset(dataset_name) video_file_paths = load_hf_dataset(dataset_name) media_seg = SAG_MEDIA(image_file_paths, video_file_paths) media_seg.segment() media_seg.create_dataset()
VisualNexus-master
VisualNexus/models/sag_both.py
from datasets import load_dataset from metaseq import SegAutoMaskPredictor import os from datasets import Dataset import pandas as pd class SAG_VID: def __init__(self, model_type='vit_1', points_per_side=16, points_per_batch=64, min_area=1000, output_dir='./output'): """ Segment anything for video class Args: model_type(str): type of the model to use for segmentation. Option: 'vit_1', 'vit_h', 'vit_b' points_per_side (int): number of points per side points_per_batch(int): Number of points per batch min_area(int): minimum area output_dir: str: directory to save output files """ self.model_type = model_type self.points_per_side = points_per_side self.points_per_batch = points_per_batch self.min_area = min_area self.output_dir = output_dir self.predictor = SegAutoMaskPredictor() def segment_video(self, video_path): """ Segment a video file Args: video_path (str): path to the video file """ output_path = os.path.join(self.output_dir, os.path.basename(video_path)) self.predictor.video_predict( source=video_path, model_type=self.model_type, points_per_side=self.points_per_batch, min_area = self.min_area, output_path = output_path, ) def load_and_segment_datset(self, dataset_name): """ Load a video dataset from hf datasets library and segment it Args: dataset_name (str): Name of the dataset in hf datasets """ #load the train split of the dataset from huggingface datasets dataset = load_dataset(dataset_name, split='train') #iterate over the dataset for item in dataset: #assuming file path is the key for the video file paths video_path = item['file_path'] #segmennt the video self.segment_video(video_path) def create_dataset(self): """ Create a Huggingface dataset from the segmented videos and save it to disk. """ # List to store the dataset examples examples = [] # Iterate over the output directory for file_name in os.listdir(self.output_dir): if file_name.endswith('.mp4'): # Assuming segmented videos are in mp4 format # Construct the original video path video_path = '...' # Replace this with the logic to construct original video path from segmented video path # Construct the segmented video path segmented_video_path = os.path.join(self.output_dir, file_name) # Append the example to the list examples.append({ 'video_path': video_path, 'segmented_video_path': segmented_video_path, }) # Convert the list of examples into a pandas DataFrame df = pd.DataFrame(examples) # Convert the DataFrame into a Huggingface dataset dataset = Dataset.from_pandas(df) # Save the dataset to disk dataset.save_to_disk(os.path.join(self.output_dir, 'segmented_dataset')) if __name__ == "__main__": vid_seg = SAG_VID(output_dir='./output_videos') vid_seg.load_and_segment_dataset('dataset_name') vid_seg.create_dataset()
VisualNexus-master
VisualNexus/models/sag_video.py
import os import pandas as pd from pathlib import Path from datasets import Dataset from mobile_sam import SamAutomaticMaskGenerator import numpy as np class MobileSAM: def __init__(self, img_path: str, output: str, hf_dataset, text_prompt=None): self.img_path = img_path self.output = output self.hf_dataset = hf_dataset self.text_prompt = text_prompt # Initialize the SAM generator self.mask_generator = SamAutomaticMaskGenerator('mobile_sam') def segment_images(self): for idx in range(len(self.hf_dataset)): image = self.hf_dataset[idx]["image"] masks = self.mask_generator.generate(image) # Assuming the segmented image needs to be saved for i, mask in enumerate(masks): segmented_image_path = os.path.join(self.output, f'{idx}_{i}.jpg') mask['segmentation'].save(segmented_image_path) def create_dataset(self): """ Create a Huggingface dataset from the segmented images and save it to disk. This dataset includes the original image path, segmented image path, and optional text. """ # List to store the dataset examples examples = [] # Iterate over the output directory for file_name in os.listdir(self.output): if file_name.endswith('.jpg'): # Assuming segmented images are in jpg format # Construct the original image path image_path = os.path.join(str(Path(self.img_path).parent), file_name) # Construct the segmented image path segmented_image_path = os.path.join(str(self.output), file_name) # Append the example to the list examples.append({ 'image_path': image_path, 'segmented_image_path': segmented_image_path, 'text_prompt': self.text_prompt if self.text_prompt else None, }) # Convert the list of examples into a pandas DataFrame df = pd.DataFrame(examples) # Convert the DataFrame into a Huggingface dataset dataset = Dataset.from_pandas(df) # Save the dataset to disk dataset.save_to_disk(os.path.join(str(self.output), 'segmented_dataset')) def process(self): self.segment_images() self.create_dataset() # from datasets import load_dataset # # Assuming you have images in 'images' directory and want output in 'output' directory # mobile_sam = MobileSAM('images', 'output', load_dataset('your_hf_dataset')) # mobile_sam.process()
VisualNexus-master
VisualNexus/models/mobile_sam.py
from VisualNexus.models.sag_img import SAG_IMG from VisualNexus.models.sag_video import SAG_VID
VisualNexus-master
VisualNexus/models/__init__.py
import os from pathlib import Path from ultralytics import YOLO from FastSAM.utils.tools import fast_process, convert_box_xywh_to_xyxy, format_results, box_prompt, point_prompt, text_prompt import ast import torch import cv2 import numpy as np from datasets import load_dataset from pathlib import Path import os from datasets import Dataset import pandas as pd def load_hf_dataset(dataset_name): #load a dataset from hf dataset library #return s alist of file paths of the images in the dataset dataset = load_dataset(dataset_name) file_paths = [] for example in dataset['train']: file_path = example['image'] file_paths.append(file_path) return file_paths class SAG_IMG: """ SAG_IMG: Segment Anything for Image. This class handles the process of iterating over a dataset of images, segmenting them, and outputting a structured dataset ready for pre-training a model. ... Attributes ---------- dataset_folder : str Path to the folder containing images for segmentation. model_path : str Path to the model to be used for segmentation (default is './weights/FastSAM.pt') imgsz : int Size of the image (default is 1024) iou : float IoU threshold for filtering the annotations (default is 0.9) text_prompt : str Text prompt to be used in the segmentation process (default is None) conf : float Object confidence threshold (default is 0.4) output : str Path to save the output (default is './output/') randomcolor : bool Indicates if mask random color should be used (default is True) point_prompt : str Point prompt for the segmentation process (default is '[[0,0]]') point_label : str Point label for the segmentation process (default is '[0]') box_prompt : str Box prompt for the segmentation process (default is '[0,0,0,0]') better_quality : bool Indicates if better quality using morphologyEx should be used (default is False) device : str Device to be used for processing (default is None, which leads to automatic selection of 'cuda' or 'cpu') retina : bool Indicates if high-resolution segmentation masks should be drawn (default is True) withContours : bool Indicates if the edges of the masks should be drawn (default is False) Methods ------- segment(): Processes all images in the dataset folder and saves the segmentation results to the output directory. prompt(results, box=None, text=None): Prompts the segmentation process based on the provided results and prompt type. fast_process(annotations, mask_random_color): Performs the fast process function from FastSAM.utils.tools on the given annotations. """ def __init__(self, image_file_paths, model_path='./weights/FastSAM.pt', imgsz=1024, iou=0.9, text_prompt=None, conf=0.4, output='./output/', randomcolor=True, point_prompt="[[0,0]]", point_label="[0]", box_prompt="[0,0,0,0]", better_quality=False, device=None, retina=True, withContours=False): self.image_file_paths = image_file_paths self.model_path = model_path self.imgsz = imgsz self.iou = iou self.text_prompt = text_prompt self.conf = conf self.output = Path(output) self.randomcolor = randomcolor self.point_prompt = ast.literal_eval(point_prompt) self.point_label = ast.literal_eval(point_label) self.box_prompt = ast.literal_eval(box_prompt) self.better_quality = better_quality self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device self.retina = retina self.withContours = withContours def segment(self): # Load the YOLO model from the specified path model = YOLO(self.model_path) # Iterate over the list of file paths for img_path in self.image_file_paths: self.img_path = img_path # Process the image with the YOLO model and get the results results = model( self.img_path, imgsz=self.imgsz, device=self.device, retina_masks=self.retina, iou=self.iou, conf=self.conf, max_det=100, ) if self.box_prompt[2] != 0 and self.box_prompt[3] != 0: annotations = self.prompt(results, box=True) elif self.text_prompt is not None: results = format_results(results[0], 0) annotations = self.prompt(results, text=True) elif self.point_prompt[0] != [0, 0]: results = format_results(results[0], 0) annotations = self.prompt(results, point=True) else: annotations = results[0].masks.data annotations = np.array([annotations]) self.fast_process( annotations=annotations, mask_random_color=self.randomcolor, ) def prompt(self, results, box=None, text=None): ori_img = cv2.imread(self.img_path) ori_h = ori_img.shape[0] ori_w = ori_img.shape[1] if box: mask, idx = box_prompt( results[0].masks.data, convert_box_xywh_to_xyxy(self.box_prompt), ori_h, ori_w, ) elif text: mask, idx = text_prompt(results, self.text_prompt, self.img_path, self.device) else: return None return mask def fast_process(self, annotations, mask_random_color): output_path = self.output / Path(self.img_path).name fast_process( annotations=annotations, args=self, mask_random_color=mask_random_color, output_path=str(output_path), ) def create_dataset(self): """ Create a Huggingface dataset from the segmented images and save it to disk. This dataset includes the original image path, segmented image path, and optional text. """ # List to store the dataset examples examples = [] # Iterate over the output directory for file_name in os.listdir(self.output): if file_name.endswith('.jpg'): # Assuming segmented images are in jpg format # Construct the original image path image_path = os.path.join(str(Path(self.img_path).parent), file_name) # Construct the segmented image path segmented_image_path = os.path.join(str(self.output), file_name) # Append the example to the list examples.append({ 'image_path': image_path, 'segmented_image_path': segmented_image_path, 'text_prompt': self.text_prompt if self.text_prompt else None, }) # Convert the list of examples into a pandas DataFrame df = pd.DataFrame(examples) # Convert the DataFrame into a Huggingface dataset dataset = Dataset.from_pandas(df) # Save the dataset to disk dataset.save_to_disk(os.path.join(str(self.output), 'segmented_dataset')) if __name__ == "__main__": dataset_name="echarlaix/vqa" #dataset name image_file_paths = load_hf_dataset(dataset_name) img_seg = SAG_IMG(image_file_paths) img_seg.segment() img_seg.create_dataset()
VisualNexus-master
VisualNexus/models/sag_img.py
from ultralytics import YOLO import gradio as gr import torch from utils.tools_gradio import fast_process, format_results, box_prompt, point_prompt from PIL import ImageDraw import numpy as np # Load the pre-trained model model = YOLO('./weights/FastSAM.pt') device = 'cuda' if torch.cuda.is_available() else 'cpu' # Description title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>" news = """ # 📖 News 🔥 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment. 🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!) """ description_e = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). 🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon. ⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded. 🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked. 📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing) 😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant. 🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM) """ description_p = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). 🎯 Upload an Image, add points and segment it with Fast Segment Anything (Points mode). ⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded. 🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked. 📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing) 😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant. 🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM) """ examples = [["examples/sa_8776.jpg"], ["examples/sa_414.jpg"], ["examples/sa_1309.jpg"], ["examples/sa_11025.jpg"], ["examples/sa_561.jpg"], ["examples/sa_192.jpg"], ["examples/sa_10039.jpg"], ["examples/sa_862.jpg"]] default_example = examples[0] css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" def segment_everything( input, input_size=1024, iou_threshold=0.7, conf_threshold=0.25, better_quality=False, withContours=True, use_retina=True, mask_random_color=True, ): input_size = int(input_size) # 确保 imgsz 是整数 # Thanks for the suggestion by hysts in HuggingFace. w, h = input.size scale = input_size / max(w, h) new_w = int(w * scale) new_h = int(h * scale) input = input.resize((new_w, new_h)) results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size,) fig = fast_process(annotations=results[0].masks.data, image=input, device=device, scale=(1024 // input_size), better_quality=better_quality, mask_random_color=mask_random_color, bbox=None, use_retina=use_retina, withContours=withContours,) return fig def segment_with_points( input, input_size=1024, iou_threshold=0.7, conf_threshold=0.25, better_quality=False, withContours=True, mask_random_color=True, use_retina=True, ): global global_points global global_point_label input_size = int(input_size) # 确保 imgsz 是整数 # Thanks for the suggestion by hysts in HuggingFace. w, h = input.size scale = input_size / max(w, h) new_w = int(w * scale) new_h = int(h * scale) input = input.resize((new_w, new_h)) scaled_points = [[int(x * scale) for x in point] for point in global_points] results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size,) results = format_results(results[0], 0) annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w) annotations = np.array([annotations]) fig = fast_process(annotations=annotations, image=input, device=device, scale=(1024 // input_size), better_quality=better_quality, mask_random_color=mask_random_color, bbox=None, use_retina=use_retina, withContours=withContours,) global_points = [] global_point_label = [] return fig, None def get_points_with_draw(image, label, evt: gr.SelectData): x, y = evt.index[0], evt.index[1] point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255) global global_points global global_point_label print((x, y)) global_points.append([x, y]) global_point_label.append(1 if label == 'Add Mask' else 0) # 创建一个可以在图像上绘图的对象 draw = ImageDraw.Draw(image) draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color) return image # input_size=1024 # high_quality_visual=True # inp = 'examples/sa_192.jpg' # input = Image.open(inp) # device = 'cuda' if torch.cuda.is_available() else 'cpu' # input_size = int(input_size) # 确保 imgsz 是整数 # results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size) # pil_image = fast_process(annotations=results[0].masks.data, # image=input, high_quality=high_quality_visual, device=device) cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil') cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil') segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil') segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil') global_points = [] global_point_label = [] # TODO:Clear points each image input_size_slider = gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='Input_size', info='Our model was trained on a size of 1024') with gr.Blocks(css=css, title='Fast Segment Anything') as demo: with gr.Row(): with gr.Column(scale=1): # Title gr.Markdown(title) with gr.Column(scale=1): # News gr.Markdown(news) with gr.Tab("Everything mode"): # Images with gr.Row(variant="panel"): with gr.Column(scale=1): cond_img_e.render() with gr.Column(scale=1): segm_img_e.render() # Submit & Clear with gr.Row(): with gr.Column(): input_size_slider.render() with gr.Row(): contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks') with gr.Column(): segment_btn_e = gr.Button("Segment Everything", variant='primary') clear_btn_e = gr.Button("Clear", variant="secondary") gr.Markdown("Try some of the examples below ⬇️") gr.Examples(examples=examples, inputs=[cond_img_e], outputs=segm_img_e, fn=segment_everything, cache_examples=True, examples_per_page=4) with gr.Column(): with gr.Accordion("Advanced options", open=False): iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations') conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold') with gr.Row(): mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx') with gr.Column(): retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks') # Description gr.Markdown(description_e) with gr.Tab("Points mode"): # Images with gr.Row(variant="panel"): with gr.Column(scale=1): cond_img_p.render() with gr.Column(scale=1): segm_img_p.render() # Submit & Clear with gr.Row(): with gr.Column(): with gr.Row(): add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point_label (foreground/background)") with gr.Column(): segment_btn_p = gr.Button("Segment with points prompt", variant='primary') clear_btn_p = gr.Button("Clear points", variant='secondary') gr.Markdown("Try some of the examples below ⬇️") gr.Examples(examples=examples, inputs=[cond_img_p], outputs=segm_img_p, fn=segment_with_points, # cache_examples=True, examples_per_page=4) with gr.Column(): # Description gr.Markdown(description_p) cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p) segment_btn_e.click(segment_everything, inputs=[cond_img_e, input_size_slider, iou_threshold, conf_threshold, mor_check, contour_check, retina_check], outputs=segm_img_e) segment_btn_p.click(segment_with_points, inputs=[cond_img_p], outputs=[segm_img_p, cond_img_p]) def clear(): return None, None clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e]) clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p]) demo.queue() demo.launch()
VisualNexus-master
VisualNexus/models/FastSAM/app_gradio.py
# Prediction interface for Cog ⚙️ # https://github.com/replicate/cog/blob/main/docs/python.md # Thanks for chenxwh. import argparse import cv2 import shutil import ast from cog import BasePredictor, Input, Path from ultralytics import YOLO from utils.tools import * class Predictor(BasePredictor): def setup(self): """Load the model into memory to make running multiple predictions efficient""" self.models = {k: YOLO(f"{k}.pt") for k in ["FastSAM-s", "FastSAM-x"]} def predict( self, input_image: Path = Input(description="Input image"), model_name: str = Input( description="choose a model", choices=["FastSAM-x", "FastSAM-s"], default="FastSAM-x", ), iou: float = Input( description="iou threshold for filtering the annotations", default=0.9 ), text_prompt: str = Input( description='use text prompt eg: "a dog"', default=None ), conf: float = Input(description="object confidence threshold", default=0.4), retina: bool = Input( description="draw high-resolution segmentation masks", default=True ), box_prompt: str = Input(default="[0,0,0,0]", description="[x,y,w,h]"), point_prompt: str = Input(default="[[0,0]]", description="[[x1,y1],[x2,y2]]"), point_label: str = Input(default="[0]", description="[1,0] 0:background, 1:foreground"), withContours: bool = Input( description="draw the edges of the masks", default=False ), better_quality: bool = Input( description="better quality using morphologyEx", default=False ), ) -> Path: """Run a single prediction on the model""" # default params out_path = "output" if os.path.exists(out_path): shutil.rmtree(out_path) os.makedirs(out_path, exist_ok=True) args = argparse.Namespace( better_quality=better_quality, box_prompt=box_prompt, conf=conf, device=torch.device("cuda"), img_path=str(input_image), imgsz=1024, iou=iou, model_path="FastSAM-x.pt", output=out_path, point_label=point_label, point_prompt=point_prompt, randomcolor=True, retina=retina, text_prompt=text_prompt, withContours=withContours, ) args.point_prompt = ast.literal_eval(args.point_prompt) args.box_prompt = ast.literal_eval(args.box_prompt) args.point_label = ast.literal_eval(args.point_label) model = self.models[model_name] results = model( str(input_image), imgsz=args.imgsz, device=args.device, retina_masks=args.retina, iou=args.iou, conf=args.conf, max_det=100, ) if args.box_prompt[2] != 0 and args.box_prompt[3] != 0: annotations = prompt(results, args, box=True) annotations = np.array([annotations]) fast_process( annotations=annotations, args=args, mask_random_color=args.randomcolor, bbox=convert_box_xywh_to_xyxy(args.box_prompt), ) elif args.text_prompt != None: results = format_results(results[0], 0) annotations = prompt(results, args, text=True) annotations = np.array([annotations]) fast_process( annotations=annotations, args=args, mask_random_color=args.randomcolor ) elif args.point_prompt[0] != [0, 0]: results = format_results(results[0], 0) annotations = prompt(results, args, point=True) # list to numpy annotations = np.array([annotations]) fast_process( annotations=annotations, args=args, mask_random_color=args.randomcolor, points=args.point_prompt, ) else: fast_process( annotations=results[0].masks.data, args=args, mask_random_color=args.randomcolor, ) out = "/tmp.out.png" shutil.copy(os.path.join(out_path, os.listdir(out_path)[0]), out) return Path(out) def prompt(results, args, box=None, point=None, text=None): ori_img = cv2.imread(args.img_path) ori_h = ori_img.shape[0] ori_w = ori_img.shape[1] if box: mask, idx = box_prompt( results[0].masks.data, convert_box_xywh_to_xyxy(args.box_prompt), ori_h, ori_w, ) elif point: mask, idx = point_prompt( results, args.point_prompt, args.point_label, ori_h, ori_w ) elif text: mask, idx = text_prompt(results, args.text_prompt, args.img_path, args.device) else: return None return mask
VisualNexus-master
VisualNexus/models/FastSAM/predict.py