python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
import unittest import warnings from dataclasses import dataclass from transformers.convert_slow_tokenizer import SpmConverter from transformers.testing_utils import get_tests_dir @dataclass class FakeOriginalTokenizer: vocab_file: str class ConvertSlowTokenizerTest(unittest.TestCase): def test_spm_converter_bytefallback_warning(self): spm_model_file_without_bytefallback = get_tests_dir("fixtures/test_sentencepiece.model") spm_model_file_with_bytefallback = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") original_tokenizer_without_bytefallback = FakeOriginalTokenizer(vocab_file=spm_model_file_without_bytefallback) with warnings.catch_warnings(record=True) as w: _ = SpmConverter(original_tokenizer_without_bytefallback) self.assertEqual(len(w), 0) original_tokenizer_with_bytefallback = FakeOriginalTokenizer(vocab_file=spm_model_file_with_bytefallback) with warnings.catch_warnings(record=True) as w: _ = SpmConverter(original_tokenizer_with_bytefallback) self.assertEqual(len(w), 1) self.assertIn( "The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option" " which is not implemented in the fast tokenizers.", str(w[0].message), )
transformers-main
tests/utils/test_convert_slow_tokenizer.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers.activations_tf import get_tf_activation @require_tf class TestTFActivations(unittest.TestCase): def test_gelu_10(self): x = tf.constant([-100, -1.0, -0.1, 0, 0.1, 1.0, 100.0]) gelu = get_tf_activation("gelu") gelu10 = get_tf_activation("gelu_10") y_gelu = gelu(x) y_gelu_10 = gelu10(x) clipped_mask = tf.where(y_gelu_10 < 10.0, 1.0, 0.0) self.assertEqual(tf.math.reduce_max(y_gelu_10).numpy().item(), 10.0) self.assertTrue(np.allclose(y_gelu * clipped_mask, y_gelu_10 * clipped_mask)) def test_get_activation(self): get_tf_activation("gelu") get_tf_activation("gelu_10") get_tf_activation("gelu_fast") get_tf_activation("gelu_new") get_tf_activation("glu") get_tf_activation("mish") get_tf_activation("quick_gelu") get_tf_activation("relu") get_tf_activation("sigmoid") get_tf_activation("silu") get_tf_activation("swish") get_tf_activation("tanh") with self.assertRaises(KeyError): get_tf_activation("bogus") with self.assertRaises(KeyError): get_tf_activation(None)
transformers-main
tests/utils/test_activations_tf.py
transformers-main
tests/models/__init__.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch NLLB-MoE model. """ import copy import tempfile import unittest from transformers import NllbMoeConfig, is_torch_available, set_seed from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import NllbMoeForConditionalGeneration, NllbMoeModel, NllbTokenizer from transformers.models.nllb_moe.modeling_nllb_moe import NllbMoeDecoder, NllbMoeEncoder, NllbMoeTop2Router class NllbMoeModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, encoder_layerdrop=0.0, decoder_layerdrop=0.0, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, num_experts=4, encoder_sparse_step=2, decoder_sparse_step=1, expert_capacity=100, router_jitter_noise=0.0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.encoder_sparse_step = encoder_sparse_step self.decoder_sparse_step = decoder_sparse_step self.expert_capacity = expert_capacity self.router_jitter_noise = router_jitter_noise self.num_experts = num_experts def prepare_nllb_moe_inputs_dict( self, config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones( config.decoder_layers, config.decoder_attention_heads, device=torch_device ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input input_ids = input_ids.clamp(self.pad_token_id + 1) decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1) config = self.get_config() inputs_dict = self.prepare_nllb_moe_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return NllbMoeConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, encoder_layerdrop=self.encoder_layerdrop, decoder_layerdrop=self.decoder_layerdrop, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, expert_capacity=self.expert_capacity, router_jitter_noise=self.router_jitter_noise, decoder_sparse_step=self.decoder_sparse_step, encoder_sparse_step=self.encoder_sparse_step, num_experts=self.num_experts, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict @require_torch def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = NllbMoeModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = NllbMoeModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = NllbMoeEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = NllbMoeDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class NllbMoeModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (NllbMoeModel, NllbMoeForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (NllbMoeForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": NllbMoeForConditionalGeneration, "feature-extraction": NllbMoeModel, "summarization": NllbMoeForConditionalGeneration, "text2text-generation": NllbMoeForConditionalGeneration, "translation": NllbMoeForConditionalGeneration, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = False test_pruning = False test_missing_keys = True test_torchscript = False # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): # Saving the slow tokenizer after saving the fast tokenizer causes the loading of the later hanging forever. return True def setUp(self): self.model_tester = NllbMoeModelTester(self) self.config_tester = ConfigTester(self, config_class=NllbMoeConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() config.decoder_sparse_step = 0 self.model_tester.create_and_check_decoder_model_past_large_inputs(config, inputs_dict) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (NllbMoeModel, NllbMoeForConditionalGeneration): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = NllbMoeForConditionalGeneration(config).eval().to(torch_device) if torch_device == "cuda": model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) @require_torch @require_sentencepiece @require_tokenizers @slow class NllbMoeModelIntegrationTests(unittest.TestCase): @require_torch @cached_property def model_inputs(self): return { "input_ids": torch.LongTensor( [ [28768, 248, 6399, 9, 65972, 452, 1925, 629, 123543, 248075, 2, 256047], [117, 7027, 7195, 202, 44778, 248075, 2, 256047, 1, 1, 1, 1], ] ), "attention_mask": torch.Tensor( [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]] ), "decoder_input_ids": torch.LongTensor([[2, 256057], [2, 256057]]), } @cached_property def tokenizer(self): return NllbTokenizer.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts") @cached_property def big_model(self): return NllbMoeForConditionalGeneration.from_pretrained("facebook/nllb-moe-54b") def inference_no_head(self): model = NllbMoeModel.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts").eval() with torch.no_grad(): output = model(**self.model_inputs) # fmt: off EXPECTED_ENCODER_STATE = torch.Tensor([ 0.3920, -0.1974, -0.0279, 0.3463, -0.8306, -1.0629, -0.4643, 2.0563, 1.1123, 0.3566, -0.9291, -0.3840, -0.2527, -0.9858, 1.5185, -1.1346, 0.0323, -0.9103, -0.3647, -0.4462, -0.9720, -0.3541, 0.1777, -0.4647, 1.6970, -0.9062, 0.2727, -1.0737, 0.8785, 0.4324]) EXPECTED_DECODER_STATE = torch.Tensor([-6.0425e-02, -2.0015e-01, 6.0575e-02, -8.6366e-01, -1.1310e+00, 6.8369e-01, 7.5615e-01, 7.3555e-01, 2.3071e-01, 1.5954e+00, -7.0728e-01, -2.2647e-01, -1.3292e+00, 4.8246e-01, -6.9153e-01, -1.8199e-02, -7.3664e-01, 1.5902e-03, 1.0760e-01, 1.0298e-01, -9.3933e-01, -4.6567e-01, 8.0417e-01, 1.5243e+00, 5.5844e-01, -9.9239e-02, 1.4885e+00, 7.1527e-02, -5.2612e-01, 9.4435e-02]) # fmt: on torch.testing.assert_allclose( output.encoder_last_hidden_state[1, 0, :30], EXPECTED_ENCODER_STATE, rtol=6e-3, atol=9e-3 ) torch.testing.assert_allclose( output.last_hidden_state[1, 0, :30], EXPECTED_DECODER_STATE, rtol=6e-3, atol=9e-3 ) def test_inference_logits(self): r""" Logits testing to check implementation consistency between `fairseq` implementation and `transformers` implementation of NLLB-MoE transformers. We only check the logits of the second sample of the batch, as it is padded. """ model = NllbMoeForConditionalGeneration.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts").eval() with torch.no_grad(): output = model(**self.model_inputs) # fmt: off EXPECTED_LOGTIS = torch.Tensor([-0.3059, 0.0000, 9.3029, 0.6456, -0.9148, 1.7836, 0.6478, 0.9438, -0.5272, -0.6617, -1.2717, 0.4564, 0.1345, -0.2301, -1.0140, 1.1427, -1.5535, 0.1337, 0.2082, -0.8112, -0.3842, -0.3377, 0.1256, 0.6450, -0.0452, 0.0219, 1.4274, -0.4991, -0.2063, -0.4409,]) # fmt: on torch.testing.assert_allclose(output.logits[1, 0, :30], EXPECTED_LOGTIS, rtol=6e-3, atol=9e-3) @unittest.skip("This requires 300GB of RAM") def test_large_logits(self): model = self.big_model with torch.no_grad(): output = model(**self.model_inputs) # fmt: off EXPECTED_ENCODER_STATE = torch.Tensor([ 0.1696, -0.0059, 0.0489, 0.0479, -0.4222, -0.2178, -0.1372, -0.0860, -0.4249, -0.0081, -0.1186, 0.6678, 0.0160, 0.4140, 0.1799, 0.0672, -0.4941, 0.0173, -0.0740, 0.0845, -0.2197, 0.4465, 0.2268, -0.1752, -0.0562, 0.1033, -0.0869, -0.5490, 0.0582, 0.2165]) EXPECTED_DECODER_STATE = torch.Tensor([ 0.0374, -0.1055, -0.1060, -0.1711, -0.0540, -0.1183, -0.0779, 0.0610, -0.0279, -0.0848, 0.0222, 0.0372, -0.0298, -0.0861, -0.0354, -0.0103, 0.0538, -0.0148, -0.0105, 0.0224, 0.0629, -0.0291, -0.0671, 0.0173, -0.0066, -0.0245, -0.0499, 0.0760, -0.0067, 0.0086]) EXPECTED_LOGTIS = torch.Tensor([ 0.3834, 0.2057, 4.5399, 0.8301, 0.4810, 0.9325, 0.9928, 0.9574, 0.5517, 0.9156, 0.2698, 0.6728, 0.7121, 0.3080, 0.4693, 0.5756, 1.0407, 0.2219, 0.3714, 0.5699, 0.5547, 0.8472, 0.3178, 0.1286, 0.1791, 0.9391, 0.5153, -0.2146, 0.1689, 0.6816]) # fmt: on torch.testing.assert_allclose( output.encoder_last_hidden_state[1, 0, :30], EXPECTED_ENCODER_STATE, rtol=6e-3, atol=9e-3 ) torch.testing.assert_allclose( output.last_hidden_state[1, 0, :30], EXPECTED_DECODER_STATE, rtol=6e-3, atol=9e-3 ) torch.testing.assert_allclose(output.logits[1, 0, :30], EXPECTED_LOGTIS, rtol=6e-3, atol=9e-3) @unittest.skip("This requires 300GB of RAM") def test_seq_to_seq_generation(self): model = self.big_model tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-moe-54b") # first 6 samples of load_dataset("facebook/flores", "eng_Latn-fra_Latn"), devtest. Truth are very similar to the fairseq translation files FIRST_6_FLORES_200 = [ 'We now have 4-month-old mice that are non-diabetic that used to be diabetic," he added.', "Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.", "Like some other experts, he is skeptical about whether diabetes can be cured, noting that these findings have no relevance to people who already have Type 1 diabetes.", "On Monday, Sara Danius, permanent secretary of the Nobel Committee for Literature at the Swedish Academy, publicly announced during a radio program on Sveriges Radio in Sweden the committee, unable to reach Bob Dylan directly about winning the 2016 Nobel Prize in Literature, had abandoned its efforts to reach him.", 'Danius said, "Right now we are doing nothing. I have called and sent emails to his closest collaborator and received very friendly replies. For now, that is certainly enough."', "Previously, Ring's CEO, Jamie Siminoff, remarked the company started when his doorbell wasn't audible from his shop in his garage.", ] inputs = tokenizer(FIRST_6_FLORES_200, padding=True, return_tensors="pt").to(torch_device) batch_translation = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["fra_Latn"]) EXPECTED_FAIRSEQ_TRANSLATION = [ '"Nous avons maintenant des souris de 4 mois non diabétiques qui étaient diabétiques", a-t-il ajouté.', "Le docteur Ehud Ur, professeur de médecine à l'université Dalhousie, à Halifax, en Nouvelle-Écosse, et président de la division clinique et scientifique de l'Association canadienne du diabète, prévient que la recherche n'en est qu'à ses débuts.", "Comme d'autres spécialistes, il est sceptique quant à la guérison du diabète.", "Lundi, Sara Danius, secrétaire permanente du Comité Nobel de littérature à l'Académie suédoise, a annoncé publiquement lors d'une émission de radio sur Sveriges Radio en Suède que le comité, incapable de joindre Bob Dylan directement pour lui annoncer le prix Nobel de littérature 2016, avait abandonné ses efforts pour le joindre.", "Danius a déclaré: \"Pour l'instant, nous ne faisons rien. J'ai appelé et envoyé des courriels à son plus proche collaborateur et j'ai reçu des réponses très amicales. Pour l'instant, c'est certainement suffisant\".", "Auparavant, le PDG de Ring, Jamie Siminoff, a fait remarquer que la société avait commencé lorsque sa sonnette n'était pas audible depuis son magasin dans son garage.", ] translation = tokenizer.batch_decode( batch_translation.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) assert translation == EXPECTED_FAIRSEQ_TRANSLATION @require_torch class NllbMoeRouterTest(unittest.TestCase): r""" Switch Transformers has different blocks from classic transformer based models. The Swift MLP contains a Router class, that has to be tested to check if it is correctly implemented Original implementation of the routers here: """ config = NllbMoeConfig( num_experts=4, hidden_size=32, d_ff=16, expert_capacity=4, ) batch_size = 2 sequence_length = 20 def test_top_2_routing(self): # test routing with minimal reproduction mask = torch.ones((self.batch_size, self.sequence_length), dtype=torch.bool) mask[0][0] = False mask[1][0] = False mask = mask.reshape(-1) set_seed(0) hidden_states = torch.rand((self.batch_size, self.sequence_length, self.config.hidden_size)) classfier = torch.nn.Linear(self.config.hidden_size, self.config.num_experts) hf_router = NllbMoeTop2Router(self.config) _, _, hidden_dim = hidden_states.shape logits = classfier(hidden_states.reshape((self.batch_size * self.sequence_length), hidden_dim)) top_1_mask, router_probs = hf_router.route_tokens(logits, padding_mask=mask) torch.argmax(top_1_mask, dim=-1) router_mask = router_probs.bool() set_seed(0) experts = [ torch.nn.Linear(hidden_dim, hidden_dim), torch.nn.Linear(hidden_dim, hidden_dim), torch.nn.Linear(hidden_dim, hidden_dim), torch.nn.Linear(hidden_dim, hidden_dim), ] hidden_states = hidden_states.reshape((self.batch_size * self.sequence_length), hidden_dim) masked_hidden_states = torch.einsum("bm,be->ebm", hidden_states, router_mask) for idx, expert in enumerate(experts): token_indices = router_mask[:, idx] combining_weights = router_probs[token_indices, idx] expert_output = expert(masked_hidden_states[idx, token_indices]) expert_output *= 1 - self.config.moe_token_dropout masked_hidden_states[idx, token_indices] = torch.einsum("b,be->be", combining_weights, expert_output) hidden_states = masked_hidden_states.sum(dim=0).reshape(self.batch_size, self.sequence_length, hidden_dim) # fmt: off EXPECTED_MEAN_FAIRSEQ_HIDDEN_STATES = torch.Tensor([[ 7.0340e-04, 2.7997e-03, -1.3351e-02, -7.6705e-03, -3.5089e-03,3.9773e-03, 7.4593e-03, 1.2566e-02, 3.5860e-03, -2.7448e-02,-1.3731e-02, -1.0534e-02, -1.3606e-02, -1.5048e-02, -2.8914e-03,-5.0371e-03, -1.3963e-03, 6.0076e-03, -1.1380e-02, -1.4620e-02, 5.2401e-03, 8.4660e-04, -1.5319e-03, -1.6735e-02, 1.1302e-02, 3.6119e-03, 4.6084e-03, -1.3458e-02, 7.7792e-05, 1.4312e-02, 4.9107e-03, -5.0936e-03], [-4.4538e-03, 3.1026e-03, 1.4121e-04, -4.8121e-03, -5.6279e-03, 7.2493e-03, 3.9769e-03, 1.1114e-02, -1.5666e-03, -2.3477e-02, 8.7268e-03, 1.3446e-02, -2.8845e-05, -1.7287e-02, 8.7619e-03, -4.5316e-03, -1.2164e-02, 5.7461e-03, -4.5861e-03, -9.3907e-03, 2.9808e-02, 8.9206e-04, -7.6232e-04, -1.4173e-02, 3.0208e-03, 1.5310e-02, 9.7717e-03, 3.1014e-03, 7.8042e-03, 8.0197e-03, 3.4784e-03, -7.1728e-03]]) # fmt: on self.assertTrue(torch.allclose(hidden_states.mean(1), EXPECTED_MEAN_FAIRSEQ_HIDDEN_STATES, 1e-4)) def test_batch_prioritized_routing(self): set_seed(0) config = NllbMoeConfig( num_experts=4, hidden_size=32, d_ff=16, expert_capacity=4, second_expert_policy="random" ) mask = torch.zeros((self.batch_size * self.sequence_length), dtype=torch.bool) logits = torch.rand((self.batch_size * self.sequence_length, 4)) config.batch_prioritized_routing = True router = NllbMoeTop2Router(config) top_1_mask, _ = router.route_tokens(logits, padding_mask=mask) # check that the routing is batch first. One of the last token is routed while expert capacity is very small # this means that it had a greater probability of being routed assert top_1_mask[-1, 0] == 1 def test_second_expert_policy(self): config = NllbMoeConfig( num_experts=4, hidden_size=32, d_ff=16, expert_capacity=40, ) set_seed(0) mask = torch.zeros((self.batch_size * self.sequence_length), dtype=torch.bool) logits = torch.rand((self.batch_size * self.sequence_length, 4)) set_seed(0) config.second_expert_policy = "random" router = NllbMoeTop2Router(config) top_1_mask, router_probs = router.route_tokens(logits, padding_mask=mask) set_seed(0) config.second_expert_policy = "sampling" router = NllbMoeTop2Router(config) top_1_mask_sp, router_probs_sp = router.route_tokens(logits, padding_mask=mask) set_seed(0) config.second_expert_policy = "all" router = NllbMoeTop2Router(config) top_1_mask_all, router_probs_all = router.route_tokens(logits, padding_mask=mask) # fmt: off EXPECTED_ROUTER_ALL = torch.tensor([[0.3902, 0.0000, 0.0000, 0.6098], [0.0000, 0.0000, 0.7770, 0.2230], [0.0000, 0.0000, 0.2726, 0.7274], [0.4221, 0.0000, 0.5779, 0.0000], [0.0000, 0.0000, 0.7810, 0.2190], [0.5518, 0.4482, 0.0000, 0.0000], [0.0000, 0.4060, 0.5940, 0.0000], [0.7340, 0.0000, 0.0000, 0.2660], [0.4778, 0.5222, 0.0000, 0.0000], [0.0000, 0.3984, 0.0000, 0.6016], [0.0000, 0.0548, 0.9452, 0.0000], [0.6796, 0.0000, 0.0000, 0.3204], [0.0700, 0.0000, 0.9300, 0.0000], [0.1854, 0.0000, 0.8146, 0.0000], [0.6775, 0.3225, 0.0000, 0.0000], [0.0000, 0.0000, 0.5027, 0.4973], [0.0000, 0.6577, 0.0000, 0.3423], [0.0000, 0.7767, 0.0000, 0.2233], [0.1944, 0.8056, 0.0000, 0.0000], [0.0000, 0.3073, 0.0000, 0.6927], [0.0000, 0.5655, 0.4345, 0.0000], [0.5791, 0.0000, 0.0000, 0.4209], [0.0440, 0.0000, 0.9560, 0.0000], [0.0083, 0.9917, 0.0000, 0.0000], [0.0000, 0.8395, 0.0000, 0.1605], [0.0000, 0.1458, 0.0000, 0.8542], [0.0000, 0.8534, 0.1466, 0.0000], [0.4938, 0.0000, 0.0000, 0.5062], [0.1329, 0.8671, 0.0000, 0.0000], [0.3058, 0.0000, 0.6942, 0.0000], [0.4458, 0.0000, 0.0000, 0.5542], [0.9053, 0.0947, 0.0000, 0.0000], [0.0000, 0.7563, 0.2437, 0.0000], [0.0000, 0.0000, 0.4096, 0.5904], [0.4551, 0.0000, 0.0000, 0.5449], [0.8502, 0.1498, 0.0000, 0.0000], [0.0000, 0.6312, 0.3688, 0.0000], [0.8920, 0.0000, 0.0000, 0.1080], [0.1913, 0.0000, 0.0000, 0.8087], [0.2491, 0.7509, 0.0000, 0.0000]]) EXPECTED_ROUTER_SP = torch.tensor([[0.0000, 0.6539, 0.0000, 0.3461], [0.0000, 0.0000, 0.3998, 0.6002], [0.0000, 0.5574, 0.0000, 0.4426], [0.0000, 0.0000, 0.4441, 0.5559], [0.0000, 0.6545, 0.3455, 0.0000], [0.4419, 0.5581, 0.0000, 0.0000], [0.0000, 0.4014, 0.5986, 0.0000], [0.3215, 0.0000, 0.0000, 0.6785], [0.4765, 0.5235, 0.0000, 0.0000], [0.0000, 0.5467, 0.0000, 0.4533], [0.0000, 0.4156, 0.5844, 0.0000], [0.3370, 0.0000, 0.6630, 0.0000], [0.0000, 0.0000, 0.4558, 0.5442], [0.4659, 0.0000, 0.5341, 0.0000], [0.6179, 0.3821, 0.0000, 0.0000], [0.6277, 0.0000, 0.3723, 0.0000], [0.5836, 0.4164, 0.0000, 0.0000], [0.0000, 0.6600, 0.0000, 0.3400], [0.0000, 0.4933, 0.0000, 0.5067], [0.6016, 0.0000, 0.0000, 0.3984], [0.0000, 0.5160, 0.4840, 0.0000], [0.5799, 0.0000, 0.0000, 0.4201], [0.0000, 0.0000, 0.4826, 0.5174], [0.5426, 0.4574, 0.0000, 0.0000], [0.5362, 0.4638, 0.0000, 0.0000], [0.6448, 0.0000, 0.0000, 0.3552], [0.0000, 0.5909, 0.4091, 0.0000], [0.4196, 0.0000, 0.0000, 0.5804], [0.3191, 0.6809, 0.0000, 0.0000], [0.0000, 0.0000, 0.4886, 0.5114], [0.4899, 0.0000, 0.0000, 0.5101], [0.4123, 0.0000, 0.5877, 0.0000], [0.0000, 0.3736, 0.0000, 0.6264], [0.0000, 0.0000, 0.6009, 0.3991], [0.4246, 0.0000, 0.0000, 0.5754], [0.4997, 0.0000, 0.5003, 0.0000], [0.0000, 0.3595, 0.6405, 0.0000], [0.5433, 0.0000, 0.0000, 0.4567], [0.0000, 0.6806, 0.0000, 0.3194], [0.6689, 0.3311, 0.0000, 0.0000]]) EXPECTED_ROUTER = torch.tensor([[0.4324, 0.5676, 0.0000, 0.0000], [0.0000, 0.4348, 0.0000, 0.5652], [0.4559, 0.5441, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 1.0000], [0.4744, 0.5256, 0.0000, 0.0000], [0.0000, 0.5103, 0.0000, 0.4897], [0.0000, 0.0000, 1.0000, 0.0000], [0.0000, 0.0000, 0.0000, 1.0000], [0.0000, 1.0000, 0.0000, 0.0000], [0.0000, 0.5467, 0.0000, 0.4533], [0.0000, 0.0000, 1.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000], [0.0000, 0.0000, 0.0000, 1.0000], [0.0000, 0.0000, 1.0000, 0.0000], [1.0000, 0.0000, 0.0000, 0.0000], [0.5063, 0.4937, 0.0000, 0.0000], [0.5396, 0.0000, 0.0000, 0.4604], [0.4576, 0.5424, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 1.0000], [0.5134, 0.0000, 0.4866, 0.0000], [0.0000, 0.5160, 0.4840, 0.0000], [0.5439, 0.0000, 0.4561, 0.0000], [0.4849, 0.0000, 0.0000, 0.5151], [0.5426, 0.4574, 0.0000, 0.0000], [0.5362, 0.4638, 0.0000, 0.0000], [1.0000, 0.0000, 0.0000, 0.0000], [0.0000, 1.0000, 0.0000, 0.0000], [0.0000, 0.4448, 0.0000, 0.5552], [0.0000, 1.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.4886, 0.5114], [0.4899, 0.0000, 0.0000, 0.5101], [0.0000, 0.0000, 0.5296, 0.4704], [0.0000, 0.0000, 0.4469, 0.5531], [0.0000, 0.4053, 0.5947, 0.0000], [0.0000, 0.0000, 0.4460, 0.5540], [0.4997, 0.0000, 0.5003, 0.0000], [0.0000, 0.0000, 0.5851, 0.4149], [1.0000, 0.0000, 0.0000, 0.0000], [0.0000, 0.5010, 0.4990, 0.0000], [1.0000, 0.0000, 0.0000, 0.0000]]) EXPECTED_TOP_1_ALL = torch.LongTensor([[0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) EXPECTED_TOP_1_SP = torch.LongTensor([[0, 1, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [1, 0, 0, 0]]) # `sampling` and `random` do not affect the mask of the top_1 router # fmt: on torch.testing.assert_allclose(router_probs_all, EXPECTED_ROUTER_ALL, 1e-4, 1e-4) torch.testing.assert_allclose(router_probs_sp, EXPECTED_ROUTER_SP, 1e-4, 1e-4) torch.testing.assert_allclose(router_probs, EXPECTED_ROUTER, 1e-4, 1e-4) torch.testing.assert_allclose(top_1_mask_all, EXPECTED_TOP_1_ALL, 1e-4, 1e-4) torch.testing.assert_allclose(top_1_mask_sp, EXPECTED_TOP_1_SP, 1e-4, 1e-4) torch.testing.assert_allclose(top_1_mask, EXPECTED_TOP_1_SP, 1e-4, 1e-4)
transformers-main
tests/models/nllb_moe/test_modeling_nllb_moe.py
transformers-main
tests/models/nllb_moe/__init__.py
transformers-main
tests/models/sew_d/__init__.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Hubert model. """ import math import unittest import pytest from transformers import SEWDConfig, is_torch_available from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SEWDForCTC, SEWDForSequenceClassification, SEWDModel, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, ) from transformers.models.hubert.modeling_hubert import _compute_mask_indices class SEWDModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=32, feat_extract_norm="group", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(64, 32, 32), conv_stride=(5, 2, 1), conv_kernel=(10, 3, 1), conv_bias=False, num_conv_pos_embeddings=31, num_conv_pos_embedding_groups=2, squeeze_factor=2, max_position_embeddings=512, position_buckets=256, share_att_key=True, relative_attention=True, position_biased_input=False, pos_att_type=("p2c", "c2p"), norm_rel_ebd="layer_norm", num_hidden_layers=2, num_attention_heads=2, hidden_dropout=0.1, intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, vocab_size=32, do_stable_layer_norm=False, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.squeeze_factor = squeeze_factor self.max_position_embeddings = max_position_embeddings self.position_buckets = position_buckets self.share_att_key = share_att_key self.relative_attention = relative_attention self.position_biased_input = position_biased_input self.pos_att_type = pos_att_type self.norm_rel_ebd = norm_rel_ebd self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.scope = scope output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length // self.squeeze_factor def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() return config, input_values, attention_mask def get_config(self): return SEWDConfig( hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, squeeze_factor=self.squeeze_factor, max_position_embeddings=self.max_position_embeddings, position_buckets=self.position_buckets, share_att_key=self.share_att_key, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, norm_rel_ebd=self.norm_rel_ebd, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout=self.hidden_dropout, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, ) def create_and_check_model(self, config, input_values, attention_mask): model = SEWDModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = SEWDModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = SEWDForCTC(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() self.parent.assertTrue(isinstance(sum_loss, float)) self.parent.assertTrue(isinstance(mean_loss, float)) def check_ctc_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = SEWDForCTC(config=config) model.to(torch_device) model.train() # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 if max_length_labels[i] < labels.shape[-1]: # it's important that we make sure that target lenghts are at least # one shorter than logit lenghts to prevent -inf labels[i, max_length_labels[i] - 1 :] = -100 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_seq_classifier_loss(self, config, input_values, *args): model = SEWDForSequenceClassification(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() unmasked_loss = model(input_values, labels=labels).loss.item() self.parent.assertTrue(isinstance(masked_loss, float)) self.parent.assertTrue(isinstance(unmasked_loss, float)) self.parent.assertTrue(masked_loss != unmasked_loss) def check_seq_classifier_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = SEWDForSequenceClassification(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_labels_out_of_vocab(self, config, input_values, *args): model = SEWDForCTC(config) model.to(torch_device) model.train() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100) with pytest.raises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_torch class SEWDModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (SEWDForCTC, SEWDModel, SEWDForSequenceClassification) if is_torch_available() else () pipeline_model_mapping = ( { "audio-classification": SEWDForSequenceClassification, "automatic-speech-recognition": SEWDForCTC, "feature-extraction": SEWDModel, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False test_torchscript = False def setUp(self): self.model_tester = SEWDModelTester(self) self.config_tester = ConfigTester(self, config_class=SEWDConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_ctc_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_training(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) # Hubert has no inputs_embeds def test_inputs_embeds(self): pass # `input_ids` is renamed to `input_values` def test_forward_signature(self): pass # SEW cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # SEW has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) # set layer drop to 0 model.config.layerdrop = 0.0 input_values = inputs_dict["input_values"] input_lengths = torch.tensor( [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device ) output_lengths = model._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) inputs_dict["labels"] = labels outputs = model(**inputs_dict) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "masked_spec_embed", "quantizer.weight_proj.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = SEWDModel.from_pretrained("asapp/sew-d-tiny-100k") self.assertIsNotNone(model) @require_torch class SEWDUtilsTest(unittest.TestCase): def test_compute_mask_indices(self): batch_size = 4 sequence_length = 60 mask_prob = 0.5 mask_length = 1 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)]) def test_compute_mask_indices_overlap(self): batch_size = 4 sequence_length = 80 mask_prob = 0.5 mask_length = 4 mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length) mask = torch.from_numpy(mask).to(torch_device) # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal for batch_sum in mask.sum(axis=-1): self.assertTrue(int(batch_sum) <= mask_prob * sequence_length) @require_torch @require_soundfile @slow class SEWDModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_inference_pretrained_batched(self): model = SEWDModel.from_pretrained("asapp/sew-d-tiny-100k").to(torch_device) processor = Wav2Vec2FeatureExtractor.from_pretrained("asapp/sew-d-tiny-100k") input_speech = self._load_datasamples(2) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) with torch.no_grad(): outputs = model(input_values).last_hidden_state # expected outputs taken from the original SEW-D implementation expected_outputs_first = torch.tensor( [ [ [-0.1619, 0.6995, 0.4062, -0.1014], [-0.1364, 0.5960, 0.0952, -0.0873], [-0.1572, 0.5718, 0.4228, -0.0864], [-0.1325, 0.6823, 0.1387, -0.0871], ], [ [-0.1296, 0.4008, 0.4952, -0.1450], [-0.1152, 0.3693, 0.3037, -0.1290], [-0.1194, 0.6074, 0.3531, -0.1466], [-0.1113, 0.3135, 0.2224, -0.1338], ], ], device=torch_device, ) expected_outputs_last = torch.tensor( [ [ [-0.1577, 0.5108, 0.8553, 0.2550], [-0.1530, 0.3580, 0.6143, 0.2672], [-0.1535, 0.4954, 0.8503, 0.1387], [-0.1572, 0.3363, 0.6217, 0.1490], ], [ [-0.1338, 0.5459, 0.9607, -0.1133], [-0.1502, 0.3738, 0.7313, -0.0986], [-0.0953, 0.4708, 1.0821, -0.0944], [-0.1474, 0.3598, 0.7248, -0.0748], ], ], device=torch_device, ) expected_output_sum = 54201.0469 self.assertTrue(torch.allclose(outputs[:, :4, :4], expected_outputs_first, atol=1e-3)) self.assertTrue(torch.allclose(outputs[:, -4:, -4:], expected_outputs_last, atol=1e-3)) self.assertTrue(abs(outputs.sum() - expected_output_sum) < 1) def test_inference_ctc_batched(self): model = SEWDForCTC.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h").to(torch_device) processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h", do_lower_case=True) input_speech = self._load_datasamples(2) inputs = processor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_trans = processor.batch_decode(predicted_ids) EXPECTED_TRANSCRIPTIONS = [ "a man said to the universe sir i exist", "swet covered breon's body trickling into the titlowing closs that was the only garmened he war", ] self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
transformers-main
tests/models/sew_d/test_modeling_sew_d.py
transformers-main
tests/models/table_transformer/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Table Transformer model. """ import inspect import math import unittest from huggingface_hub import hf_hub_download from transformers import ResNetConfig, TableTransformerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_timm, require_torch, require_vision, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import TableTransformerForObjectDetection, TableTransformerModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class TableTransformerModelTester: def __init__( self, parent, batch_size=8, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=8, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, num_queries=12, num_channels=3, min_size=200, max_size=200, n_targets=8, num_labels=3, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.num_queries = num_queries self.num_channels = num_channels self.min_size = min_size self.max_size = max_size self.n_targets = n_targets self.num_labels = num_labels # we also set the expected seq length for both encoder and decoder self.encoder_seq_length = math.ceil(self.min_size / 32) * math.ceil(self.max_size / 32) self.decoder_seq_length = self.num_queries def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]) pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device) labels = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) labels = [] for i in range(self.batch_size): target = {} target["class_labels"] = torch.randint( high=self.num_labels, size=(self.n_targets,), device=torch_device ) target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device) target["masks"] = torch.rand(self.n_targets, self.min_size, self.max_size, device=torch_device) labels.append(target) config = self.get_config() return config, pixel_values, pixel_mask, labels def get_config(self): resnet_config = ResNetConfig( num_channels=3, embeddings_size=10, hidden_sizes=[10, 20, 30, 40], depths=[1, 1, 2, 1], hidden_act="relu", num_labels=3, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], ) return TableTransformerConfig( d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, num_queries=self.num_queries, num_labels=self.num_labels, use_timm_backbone=False, backbone_config=resnet_config, ) def prepare_config_and_inputs_for_common(self): config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs() inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def create_and_check_table_transformer_model(self, config, pixel_values, pixel_mask, labels): model = TableTransformerModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size) ) def create_and_check_table_transformer_object_detection_head_model(self, config, pixel_values, pixel_mask, labels): model = TableTransformerForObjectDetection(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) def create_and_check_table_transformer_no_timm_backbone(self, config, pixel_values, pixel_mask, labels): config.use_timm_backbone = False config.backbone_config = ResNetConfig() model = TableTransformerForObjectDetection(config=config) model.to(torch_device) model.eval() result = model(pixel_values=pixel_values, pixel_mask=pixel_mask) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4)) @require_torch class TableTransformerModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TableTransformerModel, TableTransformerForObjectDetection, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": TableTransformerModel, "object-detection": TableTransformerForObjectDetection} if is_torch_available() else {} ) is_encoder_decoder = True test_torchscript = False test_pruning = False test_head_masking = False test_missing_keys = False # special case for head models def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ in ["TableTransformerForObjectDetection"]: labels = [] for i in range(self.model_tester.batch_size): target = {} target["class_labels"] = torch.ones( size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long ) target["boxes"] = torch.ones( self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float ) target["masks"] = torch.ones( self.model_tester.n_targets, self.model_tester.min_size, self.model_tester.max_size, device=torch_device, dtype=torch.float, ) labels.append(target) inputs_dict["labels"] = labels return inputs_dict def setUp(self): self.model_tester = TableTransformerModelTester(self) self.config_tester = ConfigTester(self, config_class=TableTransformerConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() def test_table_transformer_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_table_transformer_model(*config_and_inputs) def test_table_transformer_object_detection_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_table_transformer_object_detection_head_model(*config_and_inputs) def test_table_transformer_no_timm_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_table_transformer_no_timm_backbone(*config_and_inputs) @unittest.skip(reason="Table Transformer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Table Transformer does not have a get_input_embeddings method") def test_model_common_attributes(self): pass @unittest.skip(reason="Table Transformer is not a generative model") def test_generate_without_input_ids(self): pass @unittest.skip(reason="Table Transformer does not use token embeddings") def test_resize_tokens_embeddings(self): pass @slow def test_model_outputs_equivalence(self): # TODO Niels: fix me! pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True decoder_seq_length = self.model_tester.decoder_seq_length encoder_seq_length = self.model_tester.encoder_seq_length decoder_key_length = self.model_tester.decoder_seq_length encoder_key_length = self.model_tester.encoder_seq_length for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning # Object Detection model returns pred_logits and pred_boxes if model_class.__name__ == "TableTransformerForObjectDetection": correct_outlen += 2 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_retain_grad_hidden_states_attentions(self): # removed retain_grad and grad on decoder_hidden_states, as queries don't require grad config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] encoder_hidden_states = outputs.encoder_hidden_states[0] encoder_attentions = outputs.encoder_attentions[0] encoder_hidden_states.retain_grad() encoder_attentions.retain_grad() decoder_attentions = outputs.decoder_attentions[0] decoder_attentions.retain_grad() cross_attentions = outputs.cross_attentions[0] cross_attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(encoder_attentions.grad) self.assertIsNotNone(decoder_attentions.grad) self.assertIsNotNone(cross_attentions.grad) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model.config.is_encoder_decoder: expected_arg_names = ["pixel_values", "pixel_mask"] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" in arg_names else [] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) else: expected_arg_names = ["pixel_values", "pixel_mask"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_different_timm_backbone(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # let's pick a random timm backbone config.backbone = "tf_mobilenetv3_small_075" for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if model_class.__name__ == "TableTransformerForObjectDetection": expected_shape = ( self.model_tester.batch_size, self.model_tester.num_queries, self.model_tester.num_labels + 1, ) self.assertEqual(outputs.logits.shape, expected_shape) self.assertTrue(outputs) def test_greyscale_images(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # use greyscale pixel values inputs_dict["pixel_values"] = floats_tensor( [self.model_tester.batch_size, 1, self.model_tester.min_size, self.model_tester.max_size] ) # let's set num_channels to 1 config.num_channels = 1 config.backbone_config.num_channels = 1 for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertTrue(outputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) configs_no_init.init_xavier_std = 1e9 for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: if "bbox_attention" in name and "bias" not in name: self.assertLess( 100000, abs(param.data.max().item()), msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) TOLERANCE = 1e-4 # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_timm @require_vision @slow class TableTransformerModelIntegrationTests(unittest.TestCase): def test_table_detection(self): image_processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-detection") model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-detection") model.to(torch_device) file_path = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename="example_pdf.png") image = Image.open(file_path).convert("RGB") inputs = image_processor(image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) expected_shape = (1, 15, 3) self.assertEqual(outputs.logits.shape, expected_shape) expected_logits = torch.tensor( [[-6.7329, -16.9590, 6.7447], [-8.0038, -22.3071, 6.9288], [-7.2445, -20.9855, 7.3465]], device=torch_device, ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_logits, atol=1e-4)) expected_boxes = torch.tensor( [[0.4868, 0.1764, 0.6729], [0.6674, 0.4621, 0.3864], [0.4720, 0.1757, 0.6362]], device=torch_device ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes, atol=1e-3))
transformers-main
tests/models/table_transformer/test_modeling_table_transformer.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class BarkProcessorTest(unittest.TestCase): def setUp(self): self.checkpoint = "suno/bark-small" self.tmpdirname = tempfile.mkdtemp() self.voice_preset = "en_speaker_1" self.input_string = "This is a test string" self.speaker_embeddings_dict_path = "speaker_embeddings_path.json" self.speaker_embeddings_directory = "speaker_embeddings" def get_tokenizer(self, **kwargs): return AutoTokenizer.from_pretrained(self.checkpoint, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() processor = BarkProcessor(tokenizer=tokenizer) processor.save_pretrained(self.tmpdirname) processor = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) @slow def test_save_load_pretrained_additional_features(self): processor = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, ) processor.save_pretrained( self.tmpdirname, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, speaker_embeddings_directory=self.speaker_embeddings_directory, ) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") processor = BarkProcessor.from_pretrained( self.tmpdirname, self.speaker_embeddings_dict_path, bos_token="(BOS)", eos_token="(EOS)", ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) def test_speaker_embeddings(self): processor = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint, speaker_embeddings_dict_path=self.speaker_embeddings_dict_path, ) seq_len = 35 nb_codebooks_coarse = 2 nb_codebooks_total = 8 voice_preset = { "semantic_prompt": np.ones(seq_len), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len)), "fine_prompt": np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset inputs = processor(text=self.input_string, voice_preset=voice_preset) processed_voice_preset = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(key, np.array([])).tolist()) # test loading voice preset from npz file tmpfilename = os.path.join(self.tmpdirname, "file.npz") np.savez(tmpfilename, **voice_preset) inputs = processor(text=self.input_string, voice_preset=tmpfilename) processed_voice_preset = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist(), processed_voice_preset.get(key, np.array([])).tolist()) # test loading voice preset from the hub inputs = processor(text=self.input_string, voice_preset=self.voice_preset) def test_tokenizer(self): tokenizer = self.get_tokenizer() processor = BarkProcessor(tokenizer=tokenizer) encoded_processor = processor(text=self.input_string) encoded_tok = tokenizer( self.input_string, padding="max_length", max_length=256, add_special_tokens=False, return_attention_mask=True, return_token_type_ids=False, ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key].squeeze().tolist())
transformers-main
tests/models/bark/test_processor_bark.py
transformers-main
tests/models/bark/__init__.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Bark model. """ import copy import inspect import tempfile import unittest from transformers import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, is_torch_available, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ..encodec.test_modeling_encodec import EncodecModelTester if is_torch_available(): import torch from transformers import ( BarkCausalModel, BarkCoarseModel, BarkFineModel, BarkModel, BarkProcessor, BarkSemanticModel, ) class BarkSemanticModelTester: def __init__( self, parent, batch_size=2, seq_length=4, is_training=False, # for now training is not supported use_input_mask=True, use_labels=True, vocab_size=33, output_vocab_size=33, hidden_size=16, num_hidden_layers=2, num_attention_heads=2, intermediate_size=15, dropout=0.1, window_size=256, initializer_range=0.02, n_codes_total=8, # for BarkFineModel n_codes_given=1, # for BarkFineModel ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.output_vocab_size = output_vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.window_size = window_size self.initializer_range = initializer_range self.bos_token_id = output_vocab_size - 1 self.eos_token_id = output_vocab_size - 1 self.pad_token_id = output_vocab_size - 1 self.n_codes_total = n_codes_total self.n_codes_given = n_codes_given self.is_encoder_decoder = False def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) inputs_dict = { "input_ids": input_ids, "head_mask": head_mask, "attention_mask": input_mask, } return config, inputs_dict def get_config(self): return BarkSemanticConfig( vocab_size=self.vocab_size, output_vocab_size=self.output_vocab_size, hidden_size=self.hidden_size, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, window_size=self.window_size, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 config.output_vocab_size = 300 return config def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = BarkSemanticModel(config=config).to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "logits" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) # test no attention_mask works outputs = model(input_ids, use_cache=True) _, past_key_values = outputs.to_tuple() output_from_no_past = model(next_input_ids)["logits"] output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"] random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) class BarkCoarseModelTester: def __init__( self, parent, batch_size=2, seq_length=4, is_training=False, # for now training is not supported use_input_mask=True, use_labels=True, vocab_size=33, output_vocab_size=33, hidden_size=16, num_hidden_layers=2, num_attention_heads=2, intermediate_size=15, dropout=0.1, window_size=256, initializer_range=0.02, n_codes_total=8, # for BarkFineModel n_codes_given=1, # for BarkFineModel ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.output_vocab_size = output_vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.window_size = window_size self.initializer_range = initializer_range self.bos_token_id = output_vocab_size - 1 self.eos_token_id = output_vocab_size - 1 self.pad_token_id = output_vocab_size - 1 self.n_codes_total = n_codes_total self.n_codes_given = n_codes_given self.is_encoder_decoder = False def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) inputs_dict = { "input_ids": input_ids, "head_mask": head_mask, "attention_mask": input_mask, } return config, inputs_dict def get_config(self): return BarkCoarseConfig( vocab_size=self.vocab_size, output_vocab_size=self.output_vocab_size, hidden_size=self.hidden_size, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, window_size=self.window_size, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 config.output_vocab_size = 300 return config def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = BarkCoarseModel(config=config).to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "logits" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) # test no attention_mask works outputs = model(input_ids, use_cache=True) _, past_key_values = outputs.to_tuple() output_from_no_past = model(next_input_ids)["logits"] output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"] random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) class BarkFineModelTester: def __init__( self, parent, batch_size=2, seq_length=4, is_training=False, # for now training is not supported use_input_mask=True, use_labels=True, vocab_size=33, output_vocab_size=33, hidden_size=16, num_hidden_layers=2, num_attention_heads=2, intermediate_size=15, dropout=0.1, window_size=256, initializer_range=0.02, n_codes_total=8, # for BarkFineModel n_codes_given=1, # for BarkFineModel ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.output_vocab_size = output_vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.window_size = window_size self.initializer_range = initializer_range self.bos_token_id = output_vocab_size - 1 self.eos_token_id = output_vocab_size - 1 self.pad_token_id = output_vocab_size - 1 self.n_codes_total = n_codes_total self.n_codes_given = n_codes_given self.is_encoder_decoder = False def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length, self.n_codes_total], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) # randint between self.n_codes_given - 1 and self.n_codes_total - 1 codebook_idx = ids_tensor((1,), self.n_codes_total - self.n_codes_given).item() + self.n_codes_given inputs_dict = { "codebook_idx": codebook_idx, "input_ids": input_ids, "head_mask": head_mask, "attention_mask": input_mask, } return config, inputs_dict def get_config(self): return BarkFineConfig( vocab_size=self.vocab_size, output_vocab_size=self.output_vocab_size, hidden_size=self.hidden_size, num_layers=self.num_hidden_layers, num_heads=self.num_attention_heads, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, window_size=self.window_size, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 config.output_vocab_size = 300 return config def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = BarkFineModel(config=config).to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["logits"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "logits" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) # test no attention_mask works outputs = model(input_ids, use_cache=True) _, past_key_values = outputs.to_tuple() output_from_no_past = model(next_input_ids)["logits"] output_from_past = model(next_tokens, past_key_values=past_key_values)["logits"] random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) class BarkModelTester: def __init__( self, parent, semantic_kwargs=None, coarse_acoustics_kwargs=None, fine_acoustics_kwargs=None, codec_kwargs=None, is_training=False, # for now training is not supported ): if semantic_kwargs is None: semantic_kwargs = {} if coarse_acoustics_kwargs is None: coarse_acoustics_kwargs = {} if fine_acoustics_kwargs is None: fine_acoustics_kwargs = {} if codec_kwargs is None: codec_kwargs = {} self.parent = parent self.semantic_model_tester = BarkSemanticModelTester(parent, **semantic_kwargs) self.coarse_acoustics_model_tester = BarkCoarseModelTester(parent, **coarse_acoustics_kwargs) self.fine_acoustics_model_tester = BarkFineModelTester(parent, **fine_acoustics_kwargs) self.codec_model_tester = EncodecModelTester(parent, **codec_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): # TODO: @Yoach: Preapre `inputs_dict` inputs_dict = {} config = self.get_config() return config, inputs_dict def get_config(self): return BarkConfig.from_sub_model_configs( self.semantic_model_tester.get_config(), self.coarse_acoustics_model_tester.get_config(), self.fine_acoustics_model_tester.get_config(), self.codec_model_tester.get_config(), ) def get_pipeline_config(self): config = self.get_config() # follow the `get_pipeline_config` of the sub component models config.semantic_config.vocab_size = 300 config.coarse_acoustics_config.vocab_size = 300 config.fine_acoustics_config.vocab_size = 300 config.semantic_config.output_vocab_size = 300 config.coarse_acoustics_config.output_vocab_size = 300 config.fine_acoustics_config.output_vocab_size = 300 return config def prepare_config_and_inputs_for_common(self): # TODO: @Yoach pass # return config, inputs_dict # Need this class in oder to create tiny model for `bark` # TODO (@Yoach) Implement actual test methods @unittest.skip("So far all tests will fail.") class BarkModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (BarkModel,) if is_torch_available() else () def setUp(self): self.model_tester = BarkModelTester(self) self.config_tester = ConfigTester(self, config_class=BarkConfig, n_embd=37) @require_torch class BarkSemanticModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (BarkSemanticModel,) if is_torch_available() else () all_generative_model_classes = (BarkCausalModel,) if is_torch_available() else () is_encoder_decoder = False fx_compatible = False test_missing_keys = False test_pruning = False test_model_parallel = False # no model_parallel for now test_resize_embeddings = True def setUp(self): self.model_tester = BarkSemanticModelTester(self) self.config_tester = ConfigTester(self, config_class=BarkSemanticConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_ids = inputs["input_ids"] del inputs["input_ids"] wte = model.get_input_embeddings() inputs["input_embeds"] = wte(input_ids) with torch.no_grad(): model(**inputs)[0] def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = self.all_generative_model_classes[0](config).eval().to(torch_device) if torch_device == "cuda": model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) @require_torch class BarkCoarseModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): # Same tester as BarkSemanticModelTest, except for model_class and config_class all_model_classes = (BarkCoarseModel,) if is_torch_available() else () all_generative_model_classes = (BarkCausalModel,) if is_torch_available() else () is_encoder_decoder = False fx_compatible = False test_missing_keys = False test_pruning = False test_model_parallel = False # no model_parallel for now test_resize_embeddings = True def setUp(self): self.model_tester = BarkCoarseModelTester(self) self.config_tester = ConfigTester(self, config_class=BarkCoarseConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_ids = inputs["input_ids"] del inputs["input_ids"] wte = model.get_input_embeddings() inputs["input_embeds"] = wte(input_ids) with torch.no_grad(): model(**inputs)[0] def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = self.all_generative_model_classes[0](config).eval().to(torch_device) if torch_device == "cuda": model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) @require_torch class BarkFineModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (BarkFineModel,) if is_torch_available() else () is_encoder_decoder = False fx_compatible = False test_missing_keys = False test_pruning = False # no model_parallel for now test_model_parallel = False # torchscript disabled for now because forward with an int test_torchscript = False test_resize_embeddings = True def setUp(self): self.model_tester = BarkFineModelTester(self) self.config_tester = ConfigTester(self, config_class=BarkFineConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) input_ids = inputs["input_ids"] del inputs["input_ids"] wte = model.get_input_embeddings()[inputs_dict["codebook_idx"]] inputs["input_embeds"] = wte(input_ids[:, :, inputs_dict["codebook_idx"]]) with torch.no_grad(): model(**inputs)[0] def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] # take first codebook channel model = self.all_model_classes[0](config).eval().to(torch_device) if torch_device == "cuda": model.half() # toy generation_configs semantic_generation_config = BarkSemanticGenerationConfig(semantic_vocab_size=0) coarse_generation_config = BarkCoarseGenerationConfig(n_coarse_codebooks=config.n_codes_given) fine_generation_config = BarkFineGenerationConfig( max_fine_history_length=config.block_size // 2, max_fine_input_length=config.block_size, n_fine_codebooks=config.n_codes_total, ) codebook_size = config.vocab_size - 1 model.generate( input_ids, history_prompt=None, temperature=None, semantic_generation_config=semantic_generation_config, coarse_generation_config=coarse_generation_config, fine_generation_config=fine_generation_config, codebook_size=codebook_size, ) model.generate( input_ids, history_prompt=None, temperature=0.7, semantic_generation_config=semantic_generation_config, coarse_generation_config=coarse_generation_config, fine_generation_config=fine_generation_config, codebook_size=codebook_size, ) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["codebook_idx", "input_ids"] self.assertListEqual(arg_names[:2], expected_arg_names) def test_model_common_attributes(self): # one embedding layer per codebook config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings()[0], (torch.nn.Embedding)) model.set_input_embeddings( torch.nn.ModuleList([torch.nn.Embedding(10, 10) for _ in range(config.n_codes_total)]) ) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x[0], torch.nn.Linear)) def test_resize_tokens_embeddings(self): # resizing tokens_embeddings of a ModuleList original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed_list = model.resize_token_embeddings(model_vocab_size) cloned_embeddings_list = [model_embed.weight.clone() for model_embed in model_embed_list] # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed_list = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix for each codebook for model_embed, cloned_embeddings in zip(model_embed_list, cloned_embeddings_list): self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed_list = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) for model_embed, cloned_embeddings in zip(model_embed_list, cloned_embeddings_list): self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. # only check for the first embedding matrix models_equal = True for p1, p2 in zip(cloned_embeddings_list[0], model_embed_list[0].weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_resize_embeddings_untied(self): # resizing tokens_embeddings of a ModuleList original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return original_config.tie_word_embeddings = False for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) output_embeds_list = model.get_output_embeddings() for output_embeds in output_embeds_list: self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds_list = model.get_output_embeddings() for output_embeds in output_embeds_list: self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Input ids should be clamped to the maximum size of the vocabulary inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) @require_torch class BarkModelIntegrationTests(unittest.TestCase): @cached_property def model(self): return BarkModel.from_pretrained("suno/bark").to(torch_device) @cached_property def processor(self): return BarkProcessor.from_pretrained("suno/bark") @cached_property def inputs(self): input_ids = self.processor("In the light of the moon, a little egg lay on a leaf", voice_preset="en_speaker_6") input_ids = input_ids.to(torch_device) return input_ids @cached_property def semantic_generation_config(self): semantic_generation_config = BarkSemanticGenerationConfig(**self.model.generation_config.semantic_config) return semantic_generation_config @cached_property def coarse_generation_config(self): coarse_generation_config = BarkCoarseGenerationConfig(**self.model.generation_config.coarse_acoustics_config) return coarse_generation_config @cached_property def fine_generation_config(self): fine_generation_config = BarkFineGenerationConfig(**self.model.generation_config.fine_acoustics_config) return fine_generation_config @slow def test_generate_semantic(self): input_ids = self.inputs # fmt: off # check first ids expected_output_ids = [7363, 321, 41, 1461, 6915, 952, 326, 41, 41, 927,] # fmt: on # greedy decoding with torch.no_grad(): output_ids = self.model.semantic.generate( **input_ids, do_sample=False, temperature=1.0, semantic_generation_config=self.semantic_generation_config, ) self.assertListEqual(output_ids[0, : len(expected_output_ids)].tolist(), expected_output_ids) @slow def test_generate_coarse(self): input_ids = self.inputs history_prompt = input_ids["history_prompt"] # fmt: off # check first ids expected_output_ids = [11018, 11391, 10651, 11418, 10857, 11620, 10642, 11366, 10312, 11528, 10531, 11516, 10474, 11051, 10524, 11051, ] # fmt: on with torch.no_grad(): output_ids = self.model.semantic.generate( **input_ids, do_sample=False, temperature=1.0, semantic_generation_config=self.semantic_generation_config, ) output_ids = self.model.coarse_acoustics.generate( output_ids, history_prompt=history_prompt, do_sample=False, temperature=1.0, semantic_generation_config=self.semantic_generation_config, coarse_generation_config=self.coarse_generation_config, codebook_size=self.model.generation_config.codebook_size, ) self.assertListEqual(output_ids[0, : len(expected_output_ids)].tolist(), expected_output_ids) @slow def test_generate_fine(self): input_ids = self.inputs history_prompt = input_ids["history_prompt"] # fmt: off expected_output_ids = [ [1018, 651, 857, 642, 312, 531, 474, 524, 524, 776,], [367, 394, 596, 342, 504, 492, 27, 27, 822, 822,], [961, 955, 221, 955, 955, 686, 939, 939, 479, 176,], [638, 365, 218, 944, 853, 363, 639, 22, 884, 456,], [302, 912, 524, 38, 174, 209, 879, 23, 910, 227,], [440, 673, 861, 666, 372, 558, 49, 172, 232, 342,], [244, 358, 123, 356, 586, 520, 499, 877, 542, 637,], [806, 685, 905, 848, 803, 810, 921, 208, 625, 203,], ] # fmt: on with torch.no_grad(): output_ids = self.model.semantic.generate( **input_ids, do_sample=False, temperature=1.0, semantic_generation_config=self.semantic_generation_config, ) output_ids = self.model.coarse_acoustics.generate( output_ids, history_prompt=history_prompt, do_sample=False, temperature=1.0, semantic_generation_config=self.semantic_generation_config, coarse_generation_config=self.coarse_generation_config, codebook_size=self.model.generation_config.codebook_size, ) # greedy decoding output_ids = self.model.fine_acoustics.generate( output_ids, history_prompt=history_prompt, temperature=None, semantic_generation_config=self.semantic_generation_config, coarse_generation_config=self.coarse_generation_config, fine_generation_config=self.fine_generation_config, codebook_size=self.model.generation_config.codebook_size, ) self.assertListEqual(output_ids[0, :, : len(expected_output_ids[0])].tolist(), expected_output_ids) @slow def test_generate_end_to_end(self): input_ids = self.inputs with torch.no_grad(): self.model.generate(**input_ids) self.model.generate(**{key: val for (key, val) in input_ids.items() if key != "history_prompt"}) @slow def test_generate_end_to_end_with_args(self): input_ids = self.inputs with torch.no_grad(): self.model.generate(**input_ids, do_sample=True, temperature=0.6, penalty_alpha=0.6) self.model.generate(**input_ids, do_sample=True, temperature=0.6, num_beams=4) @slow def test_generate_end_to_end_with_sub_models_args(self): input_ids = self.inputs with torch.no_grad(): self.model.generate( **input_ids, do_sample=False, temperature=1.0, coarse_do_sample=True, coarse_temperature=0.7 ) self.model.generate( **input_ids, do_sample=False, temperature=1.0, coarse_do_sample=True, coarse_temperature=0.7, fine_temperature=0.3, ) self.model.generate( **input_ids, do_sample=True, temperature=0.6, penalty_alpha=0.6, semantic_temperature=0.9, coarse_temperature=0.2, fine_temperature=0.1, ) @require_torch_gpu @slow def test_generate_end_to_end_with_offload(self): input_ids = self.inputs with torch.no_grad(): # standard generation output_with_no_offload = self.model.generate(**input_ids, do_sample=False, temperature=1.0) torch.cuda.empty_cache() memory_before_offload = torch.cuda.memory_allocated() model_memory_footprint = self.model.get_memory_footprint() # activate cpu offload self.model.enable_cpu_offload() memory_after_offload = torch.cuda.memory_allocated() # checks if the model have been offloaded # CUDA memory usage after offload should be near 0, leaving room to small differences room_for_difference = 1.1 self.assertGreater( (memory_before_offload - model_memory_footprint) * room_for_difference, memory_after_offload ) # checks if device is the correct one self.assertEqual(self.model.device.type, torch_device) # checks if hooks exist self.assertTrue(hasattr(self.model.semantic, "_hf_hook")) # output with cpu offload output_with_offload = self.model.generate(**input_ids, do_sample=False, temperature=1.0) # checks if same output self.assertListEqual(output_with_no_offload.tolist(), output_with_offload.tolist())
transformers-main
tests/models/bark/test_modeling_bark.py
transformers-main
tests/models/convnextv2/__init__.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ConvNextV2 model. """ import inspect import unittest from transformers import ConvNextV2Config from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextV2Backbone, ConvNextV2ForImageClassification, ConvNextV2Model from transformers.models.convnextv2.modeling_convnextv2 import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class ConvNextV2ModelTester: def __init__( self, parent, batch_size=13, image_size=32, num_channels=3, num_stages=4, hidden_sizes=[10, 20, 30, 40], depths=[2, 2, 3, 2], is_training=True, use_labels=True, intermediate_size=37, hidden_act="gelu", num_labels=10, initializer_range=0.02, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_stages = num_stages self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_labels = num_labels self.initializer_range = initializer_range self.out_features = out_features self.out_indices = out_indices self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return ConvNextV2Config( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=False, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, labels): model = ConvNextV2Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): model = ConvNextV2ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_backbone(self, config, pixel_values, labels): model = ConvNextV2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) # verify backbone works with out_features=None config.out_features = None model = ConvNextV2Backbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict def prepare_config_and_inputs_with_labels(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class ConvNextV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ConvNextV2 does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( ConvNextV2Model, ConvNextV2ForImageClassification, ConvNextV2Backbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": ConvNextV2Model, "image-classification": ConvNextV2ForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = ConvNextV2ModelTester(self) self.config_tester = ConfigTester(self, config_class=ConvNextV2Config, has_text_modality=False, hidden_size=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_with_labels() config.return_dict = True if model_class.__name__ in [ *get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), ]: continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_with_labels() config.use_cache = False config.return_dict = True if ( model_class.__name__ in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] or not model_class.supports_gradient_checkpointing ): continue model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ConvNextV2Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ConvNextV2ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224").to(torch_device) preprocessor = self.default_image_processor image = prepare_img() inputs = preprocessor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.9996, 0.1966, -0.4386]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers-main
tests/models/convnextv2/test_modeling_convnextv2.py
transformers-main
tests/models/graphormer/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Graphormer model. """ import copy import inspect import os import tempfile import unittest from transformers import GraphormerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import tensor from transformers import GraphormerForGraphClassification, GraphormerModel from transformers.models.graphormer.modeling_graphormer import GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST class GraphormerModelTester: def __init__( self, parent, num_classes=1, num_atoms=32 * 9, num_edges=32 * 3, num_in_degree=32, num_out_degree=32, num_spatial=32, num_edge_dis=16, multi_hop_max_dist=5, # sometimes is 20 spatial_pos_max=32, edge_type="multi_hop", init_fn=None, max_nodes=32, share_input_output_embed=False, num_hidden_layers=2, embedding_dim=32, ffn_embedding_dim=32, num_attention_heads=4, dropout=0.1, attention_dropout=0.1, activation_dropout=0.1, layerdrop=0.0, encoder_normalize_before=False, pre_layernorm=False, apply_graphormer_init=False, activation_fn="gelu", embed_scale=None, freeze_embeddings=False, num_trans_layers_to_freeze=0, traceable=False, q_noise=0.0, qn_block_size=8, kdim=None, vdim=None, bias=True, self_attention=True, batch_size=10, graph_size=20, is_training=True, ): self.parent = parent self.num_classes = num_classes self.num_labels = num_classes self.num_atoms = num_atoms self.num_in_degree = num_in_degree self.num_out_degree = num_out_degree self.num_edges = num_edges self.num_spatial = num_spatial self.num_edge_dis = num_edge_dis self.edge_type = edge_type self.multi_hop_max_dist = multi_hop_max_dist self.spatial_pos_max = spatial_pos_max self.max_nodes = max_nodes self.num_hidden_layers = num_hidden_layers self.embedding_dim = embedding_dim self.hidden_size = embedding_dim self.ffn_embedding_dim = ffn_embedding_dim self.num_attention_heads = num_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.layerdrop = layerdrop self.encoder_normalize_before = encoder_normalize_before self.pre_layernorm = pre_layernorm self.apply_graphormer_init = apply_graphormer_init self.activation_fn = activation_fn self.embed_scale = embed_scale self.freeze_embeddings = freeze_embeddings self.num_trans_layers_to_freeze = num_trans_layers_to_freeze self.share_input_output_embed = share_input_output_embed self.traceable = traceable self.q_noise = q_noise self.qn_block_size = qn_block_size self.init_fn = init_fn self.kdim = kdim self.vdim = vdim self.self_attention = self_attention self.bias = bias self.batch_size = batch_size self.graph_size = graph_size self.is_training = is_training def prepare_config_and_inputs(self): attn_bias = ids_tensor( [self.batch_size, self.graph_size + 1, self.graph_size + 1], self.num_atoms ) # Def not sure here attn_edge_type = ids_tensor([self.batch_size, self.graph_size, self.graph_size, 1], self.num_edges) spatial_pos = ids_tensor([self.batch_size, self.graph_size, self.graph_size], self.num_spatial) in_degree = ids_tensor([self.batch_size, self.graph_size], self.num_in_degree) out_degree = ids_tensor([self.batch_size, self.graph_size], self.num_out_degree) input_nodes = ids_tensor([self.batch_size, self.graph_size, 1], self.num_atoms) input_edges = ids_tensor( [self.batch_size, self.graph_size, self.graph_size, self.multi_hop_max_dist, 1], self.num_edges ) labels = ids_tensor([self.batch_size], self.num_classes) config = self.get_config() return config, attn_bias, attn_edge_type, spatial_pos, in_degree, out_degree, input_nodes, input_edges, labels def get_config(self): return GraphormerConfig( num_atoms=self.num_atoms, num_in_degree=self.num_in_degree, num_out_degree=self.num_out_degree, num_edges=self.num_edges, num_spatial=self.num_spatial, num_edge_dis=self.num_edge_dis, edge_type=self.edge_type, multi_hop_max_dist=self.multi_hop_max_dist, spatial_pos_max=self.spatial_pos_max, max_nodes=self.max_nodes, num_hidden_layers=self.num_hidden_layers, embedding_dim=self.embedding_dim, hidden_size=self.embedding_dim, ffn_embedding_dim=self.ffn_embedding_dim, num_attention_heads=self.num_attention_heads, dropout=self.dropout, attention_dropout=self.attention_dropout, activation_dropout=self.activation_dropout, layerdrop=self.layerdrop, encoder_normalize_before=self.encoder_normalize_before, pre_layernorm=self.pre_layernorm, apply_graphormer_init=self.apply_graphormer_init, activation_fn=self.activation_fn, embed_scale=self.embed_scale, freeze_embeddings=self.freeze_embeddings, num_trans_layers_to_freeze=self.num_trans_layers_to_freeze, share_input_output_embed=self.share_input_output_embed, traceable=self.traceable, q_noise=self.q_noise, qn_block_size=self.qn_block_size, init_fn=self.init_fn, kdim=self.kdim, vdim=self.vdim, self_attention=self.self_attention, bias=self.bias, ) def create_and_check_model( self, config, attn_bias, attn_edge_type, spatial_pos, in_degree, out_degree, input_nodes, input_edges, labels ): model = GraphormerModel(config=config) model.to(torch_device) model.eval() result = model( input_nodes=input_nodes, attn_bias=attn_bias, in_degree=in_degree, out_degree=out_degree, spatial_pos=spatial_pos, input_edges=input_edges, attn_edge_type=attn_edge_type, labels=labels, ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.graph_size + 1, self.hidden_size) ) def create_and_check_for_graph_classification( self, config, attn_bias, attn_edge_type, spatial_pos, in_degree, out_degree, input_nodes, input_edges, labels ): model = GraphormerForGraphClassification(config) model.to(torch_device) model.eval() result = model( input_nodes=input_nodes, attn_bias=attn_bias, in_degree=in_degree, out_degree=out_degree, spatial_pos=spatial_pos, input_edges=input_edges, attn_edge_type=attn_edge_type, labels=labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, attn_bias, attn_edge_type, spatial_pos, in_degree, out_degree, input_nodes, input_edges, labels, ) = config_and_inputs inputs_dict = { "attn_bias": attn_bias, "attn_edge_type": attn_edge_type, "spatial_pos": spatial_pos, "in_degree": in_degree, "out_degree": out_degree, "input_nodes": input_nodes, "input_edges": input_edges, "labels": labels, } return config, inputs_dict @require_torch class GraphormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (GraphormerForGraphClassification, GraphormerModel) if is_torch_available() else () all_generative_model_classes = () pipeline_model_mapping = {"feature-extraction": GraphormerModel} if is_torch_available() else {} test_pruning = False test_head_masking = False test_resize_embeddings = False main_input_name_nodes = "input_nodes" main_input_name_edges = "input_edges" has_attentions = False # does not output attention def setUp(self): self.model_tester = GraphormerModelTester(self) self.config_tester = ConfigTester(self, config_class=GraphormerConfig, has_text_modality=False) # overwrite from common as `Graphormer` requires more input arguments def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) try: required_keys = ( "input_nodes", "input_edges", "attn_bias", "in_degree", "out_degree", "spatial_pos", "attn_edge_type", ) required_inputs = tuple(inputs[k] for k in required_keys) model(*required_inputs) traced_model = torch.jit.trace(model, required_inputs) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): if layer_name in loaded_model_state_dict: p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) # Avoid memory leak. Without this, each call increase RAM usage by ~20MB. # (Even with this call, there are still memory leak by ~0.04MB) self.clear_torch_jit_class_registry() def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Graphormer does not use one single inputs_embedding but three") def test_inputs_embeds(self): pass @unittest.skip(reason="Graphormer does not implement feed forward chunking") def test_feed_forward_chunking(self): pass @unittest.skip(reason="Graphormer does not share input and output embeddings") def test_model_common_attributes(self): pass def test_initialization(self): def _config_zero_init(config): configs_no_init = copy.deepcopy(config) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(configs_no_init, key, 1e-10) return configs_no_init config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) batch_size = self.model_tester.batch_size self.assertListEqual( list(hidden_states[0].shape[-2:]), [batch_size, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Always returns hidden_states check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = False # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) outputs = model(**inputs_dict) output = outputs[0] hidden_states = outputs.hidden_states[0] hidden_states.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) # Inputs are 'input_nodes' and 'input_edges' not 'input_ids' def test_model_main_input_name(self): for model_class in self.all_model_classes: model_signature = inspect.signature(getattr(model_class, "forward")) # The main input is the name of the argument after `self` observed_main_input_name_nodes = list(model_signature.parameters.keys())[1] observed_main_input_name_edges = list(model_signature.parameters.keys())[2] self.assertEqual(model_class.main_input_name_nodes, observed_main_input_name_nodes) self.assertEqual(model_class.main_input_name_edges, observed_main_input_name_edges) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["input_nodes", "input_edges"] self.assertListEqual(arg_names[:2], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_graph_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_graph_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GraphormerForGraphClassification.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class GraphormerModelIntegrationTest(unittest.TestCase): @slow def test_inference_graph_classification(self): model = GraphormerForGraphClassification.from_pretrained("clefourrier/graphormer-base-pcqm4mv2") # Actual real graph data from the MUTAG dataset # fmt: off model_input = { "attn_bias": tensor( [ [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ], [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, float("-inf"), float("-inf"), float("-inf"), float("-inf")], ], ] ), "attn_edge_type": tensor( [ [ [[0], [3], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [3], [0], [3], [0], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [3], [0], [3], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[3], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [3], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [3], [0], [0], [0]], [[0], [0], [0], [3], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [3], [3], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [0], [3], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [3], [3]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0]], ], [ [[0], [3], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0]], [[3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [3], [0], [3], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [3], [0], [0], [0], [3], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [3], [0], [3], [3], [0], [0], [0], [0], [0], [0]], [[3], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [3], [3], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [3], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0], [0]], ], ] ), # fmt: on "spatial_pos": tensor( [ [ [1, 2, 3, 4, 3, 2, 4, 5, 6, 5, 6, 7, 8, 7, 9, 10, 10], [2, 1, 2, 3, 4, 3, 5, 6, 5, 4, 5, 6, 7, 6, 8, 9, 9], [3, 2, 1, 2, 3, 4, 4, 5, 4, 3, 4, 5, 6, 5, 7, 8, 8], [4, 3, 2, 1, 2, 3, 3, 4, 3, 2, 3, 4, 5, 4, 6, 7, 7], [3, 4, 3, 2, 1, 2, 2, 3, 4, 3, 4, 5, 6, 5, 7, 8, 8], [2, 3, 4, 3, 2, 1, 3, 4, 5, 4, 5, 6, 7, 6, 8, 9, 9], [4, 5, 4, 3, 2, 3, 1, 2, 3, 4, 5, 6, 5, 4, 6, 7, 7], [5, 6, 5, 4, 3, 4, 2, 1, 2, 3, 4, 5, 4, 3, 5, 6, 6], [6, 5, 4, 3, 4, 5, 3, 2, 1, 2, 3, 4, 3, 2, 4, 5, 5], [5, 4, 3, 2, 3, 4, 4, 3, 2, 1, 2, 3, 4, 3, 5, 6, 6], [6, 5, 4, 3, 4, 5, 5, 4, 3, 2, 1, 2, 3, 4, 4, 5, 5], [7, 6, 5, 4, 5, 6, 6, 5, 4, 3, 2, 1, 2, 3, 3, 4, 4], [8, 7, 6, 5, 6, 7, 5, 4, 3, 4, 3, 2, 1, 2, 2, 3, 3], [7, 6, 5, 4, 5, 6, 4, 3, 2, 3, 4, 3, 2, 1, 3, 4, 4], [9, 8, 7, 6, 7, 8, 6, 5, 4, 5, 4, 3, 2, 3, 1, 2, 2], [10, 9, 8, 7, 8, 9, 7, 6, 5, 6, 5, 4, 3, 4, 2, 1, 3], [10, 9, 8, 7, 8, 9, 7, 6, 5, 6, 5, 4, 3, 4, 2, 3, 1], ], [ [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 4, 5, 5, 0, 0, 0, 0], [2, 1, 2, 3, 4, 5, 4, 3, 4, 3, 5, 6, 6, 0, 0, 0, 0], [3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 4, 5, 5, 0, 0, 0, 0], [4, 3, 2, 1, 2, 3, 4, 3, 4, 5, 5, 6, 6, 0, 0, 0, 0], [5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 6, 7, 7, 0, 0, 0, 0], [6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 5, 6, 6, 0, 0, 0, 0], [5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 4, 5, 5, 0, 0, 0, 0], [4, 3, 2, 3, 4, 3, 2, 1, 2, 3, 3, 4, 4, 0, 0, 0, 0], [3, 4, 3, 4, 5, 4, 3, 2, 1, 2, 2, 3, 3, 0, 0, 0, 0], [2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 3, 4, 4, 0, 0, 0, 0], [4, 5, 4, 5, 6, 5, 4, 3, 2, 3, 1, 2, 2, 0, 0, 0, 0], [5, 6, 5, 6, 7, 6, 5, 4, 3, 4, 2, 1, 3, 0, 0, 0, 0], [5, 6, 5, 6, 7, 6, 5, 4, 3, 4, 2, 3, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ], ] ), "in_degree": tensor( [ [3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 2, 2], [3, 3, 4, 3, 3, 3, 3, 4, 4, 3, 4, 2, 2, 0, 0, 0, 0], ] ), "out_degree": tensor( [ [3, 3, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 4, 2, 2], [3, 3, 4, 3, 3, 3, 3, 4, 4, 3, 4, 2, 2, 0, 0, 0, 0], ] ), "input_nodes": tensor( [ [[3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3]], [[3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [3], [0], [0], [0], [0]], ] ), "input_edges": tensor( [ [ [ [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [0], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], ], [ [ [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [4]], [[4], [4], [4], [4], [0]], [[4], [4], [4], [0], [0]], [[4], [4], [0], [0], [0]], [[4], [4], [4], [0], [0]], [[4], [0], [0], [0], [0]], [[4], [4], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], [ [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], [[0], [0], [0], [0], [0]], ], ], ] ), "labels": tensor([1, 0]), } output = model(**model_input)["logits"] expected_shape = torch.Size((2, 1)) self.assertEqual(output.shape, expected_shape) expected_logs = torch.tensor( [[7.6060], [7.4126]] ) self.assertTrue(torch.allclose(output, expected_logs, atol=1e-4))
transformers-main
tests/models/graphormer/test_modeling_graphormer.py
transformers-main
tests/models/glpn/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch GLPN model. """ import inspect import unittest from transformers import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MODEL_MAPPING, GLPNConfig, GLPNForDepthEstimation, GLPNModel from transformers.models.glpn.modeling_glpn import GLPN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class GLPNConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_attention_heads")) self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) class GLPNModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, num_encoder_blocks=4, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], hidden_sizes=[16, 32, 64, 128], downsampling_rates=[1, 4, 8, 16], num_attention_heads=[1, 2, 4, 8], is_training=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, decoder_hidden_size=16, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.sr_ratios = sr_ratios self.depths = depths self.hidden_sizes = hidden_sizes self.downsampling_rates = downsampling_rates self.num_attention_heads = num_attention_heads self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.decoder_hidden_size = decoder_hidden_size self.num_labels = num_labels self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return GLPNConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, decoder_hidden_size=self.decoder_hidden_size, ) def create_and_check_model(self, config, pixel_values, labels): model = GLPNModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def create_and_check_for_depth_estimation(self, config, pixel_values, labels): config.num_labels = self.num_labels model = GLPNForDepthEstimation(config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) result = model(pixel_values, labels=labels) self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class GLPNModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (GLPNModel, GLPNForDepthEstimation) if is_torch_available() else () pipeline_model_mapping = ( {"depth-estimation": GLPNForDepthEstimation, "feature-extraction": GLPNModel} if is_torch_available() else {} ) test_head_masking = False test_pruning = False test_resize_embeddings = False def setUp(self): self.model_tester = GLPNModelTester(self) self.config_tester = GLPNConfigTester(self, config_class=GLPNConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_depth_estimation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs) @unittest.skip("GLPN does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("GLPN does not have get_input_embeddings method and get_output_embeddings methods") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = sum(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) # verify the last attentions (last block, last layer) expected_seq_len = (self.model_tester.image_size // 32) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) # verify the first attentions (first block, first layer) expected_seq_len = (self.model_tester.image_size // 4) ** 2 expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_encoder_blocks self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: if model_class in get_values(MODEL_MAPPING): continue # TODO: remove the following 3 lines once we have a MODEL_FOR_DEPTH_ESTIMATION_MAPPING # this can then be incorporated into _prepare_for_class in test_modeling_common.py if model_class.__name__ == "GLPNForDepthEstimation": batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape inputs_dict["labels"] = torch.zeros( [self.model_tester.batch_size, height, width], device=torch_device ).long() model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @slow def test_model_from_pretrained(self): for model_name in GLPN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GLPNModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision @slow class GLPNModelIntegrationTest(unittest.TestCase): @slow def test_inference_depth_estimation(self): image_processor = GLPNImageProcessor.from_pretrained(GLPN_PRETRAINED_MODEL_ARCHIVE_LIST[0]) model = GLPNForDepthEstimation.from_pretrained(GLPN_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device) image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the predicted depth expected_shape = torch.Size([1, 480, 640]) self.assertEqual(outputs.predicted_depth.shape, expected_shape) expected_slice = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))
transformers-main
tests/models/glpn/test_modeling_glpn.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class GLPNImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size_divisor=32, do_rescale=True, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size_divisor = size_divisor self.do_rescale = do_rescale def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } def expected_output_image_shape(self, images): if isinstance(images[0], Image.Image): width, height = images[0].size else: height, width = images[0].shape[1], images[0].shape[2] height = height // self.size_divisor * self.size_divisor width = width // self.size_divisor * self.size_divisor return self.num_channels, height, width def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, size_divisor=self.size_divisor, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class GLPNImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = GLPNImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = GLPNImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size_divisor")) self.assertTrue(hasattr(image_processing, "resample")) self.assertTrue(hasattr(image_processing, "do_rescale")) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape)) def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape)) def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs) self.assertTrue(tuple(encoded_images.shape) == (1, *expected_output_image_shape))
transformers-main
tests/models/glpn/test_image_processing_glpn.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch BigBirdPegasus model. """ import copy import tempfile import unittest from transformers import BigBirdPegasusConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, PegasusTokenizer, ) from transformers.models.bigbird_pegasus.modeling_bigbird_pegasus import ( BigBirdPegasusDecoder, BigBirdPegasusEncoder, ) MODEL_ID = "google/bigbird-pegasus-large-pubmed" def prepare_bigbird_pegasus_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) input_dict = { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } input_dict = {k: input_dict[k].to(torch_device) for k in input_dict} return input_dict class BigBirdPegasusModelTester: def __init__( self, parent, batch_size=7, seq_length=256, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=31, hidden_act="gelu_fast", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=260, eos_token_id=1, pad_token_id=0, bos_token_id=2, attention_type="block_sparse", use_bias=False, block_size=16, num_random_blocks=3, scale_embedding=True, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.attention_type = attention_type self.use_bias = use_bias self.block_size = block_size self.num_random_blocks = num_random_blocks self.scale_embedding = scale_embedding def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_bigbird_pegasus_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return BigBirdPegasusConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, attention_type=self.attention_type, use_bias=self.use_bias, block_size=self.block_size, num_random_blocks=self.num_random_blocks, scale_embedding=self.scale_embedding, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = BigBirdPegasusModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = BigBirdPegasusModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = BigBirdPegasusEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = BigBirdPegasusDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) def create_and_check_model(self, config, inputs_dict): model = BigBirdPegasusModel(config=config).to(torch_device).eval() input_ids = inputs_dict["input_ids"] decoder_input_ids = inputs_dict["decoder_input_ids"] result = model(input_ids, decoder_input_ids=decoder_input_ids, use_cache=True) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) @require_torch class BigBirdPegasusModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( BigBirdPegasusModel, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForSequenceClassification, BigBirdPegasusForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (BigBirdPegasusForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": BigBirdPegasusForConditionalGeneration, "feature-extraction": BigBirdPegasusModel, "question-answering": BigBirdPegasusForQuestionAnswering, "summarization": BigBirdPegasusForConditionalGeneration, "text-classification": BigBirdPegasusForSequenceClassification, "text-generation": BigBirdPegasusForCausalLM, "text2text-generation": BigBirdPegasusForConditionalGeneration, "translation": BigBirdPegasusForConditionalGeneration, "zero-shot": BigBirdPegasusForSequenceClassification, } if is_torch_available() else {} ) is_encoder_decoder = True test_missing_keys = False test_pruning = False test_head_masking = False # torchscript tests are not passing for now. # Also torchscript is not an important feature to have in the beginning. test_torchscript = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"): return True return False # overwrite from GenerationTesterMixin to solve problem # with conflicting random seeds def _get_input_ids_and_config(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.attention_type = "original_full" input_ids = inputs_dict[self.input_name] attention_mask = torch.ones_like(input_ids, dtype=torch.long) # cut to half length & take max batch_size 3 sequence_length = input_ids.shape[-1] // 2 input_ids = input_ids[:batch_size, :sequence_length] attention_mask = attention_mask[:batch_size, :sequence_length] # generate max 3 tokens max_length = input_ids.shape[-1] + 3 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` config.pad_token_id = config.eos_token_id return config, input_ids, attention_mask, max_length def setUp(self): self.model_tester = BigBirdPegasusModelTester(self) self.config_tester = ConfigTester(self, config_class=BigBirdPegasusConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_model_various_attn_type(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["original_full", "block_sparse"]: config_and_inputs[0].attention_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_generate_without_input_ids(self): if self.model_tester.attention_type == "block_sparse": # this test can never pass for BigBird-block-sparse attention since input_ids must be multiple of block_size return super().test_generate_without_input_ids() def test_retain_grad_hidden_states_attentions(self): if self.model_tester.attention_type == "block_sparse": # this test can't pass since attention matrix (which is getting returned) can't have gradients (& just 0 at many locations) return super().test_retain_grad_hidden_states_attentions() # BigBirdPegasusForSequenceClassification does not support inputs_embeds def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in ( BigBirdPegasusModel, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, ): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_dict.pop("decoder_attention_mask") input_dict.pop("decoder_input_ids") model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device) if torch_device == "cuda": model.half() model.generate(**input_dict) model.generate(**input_dict, do_sample=True, early_stopping=False, num_return_sequences=3) @slow def test_batched_forward_original_full(self): self._check_batched_forward(attn_type="original_full") @slow def test_batched_forward_block_sparse(self): self._check_batched_forward(attn_type="block_sparse", tolerance=1e-1) def _check_batched_forward(self, attn_type, tolerance=1e-3): config, _ = self.model_tester.prepare_config_and_inputs() config.max_position_embeddings = 128 config.block_size = 16 config.attention_type = attn_type model = BigBirdPegasusForConditionalGeneration(config).to(torch_device) model.eval() chunk_length = 32 sample_with_padding = [3, 8, 11] * chunk_length + [0] * chunk_length sample_without_padding = [4, 7, 9, 13] * chunk_length target_ids_without_padding = [2, 3] * 8 target_ids_with_padding = [7, 8] * 6 + 4 * [-100] attention_mask = torch.tensor( [[1] * 3 * chunk_length + [0] * chunk_length, [1] * 4 * chunk_length], device=torch_device, dtype=torch.long, ) input_ids = torch.tensor([sample_with_padding, sample_without_padding], device=torch_device, dtype=torch.long) labels = torch.tensor( [target_ids_without_padding, target_ids_with_padding], device=torch_device, dtype=torch.long ) with torch.no_grad(): logits_batched = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels).logits with torch.no_grad(): logits_single_first = model(input_ids=input_ids[:1, :-chunk_length], labels=labels[:1]).logits self.assertTrue(torch.allclose(logits_batched[0, -3:], logits_single_first[0, -3:], atol=tolerance)) with torch.no_grad(): logits_single_second = model(input_ids=input_ids[1:], labels=labels[1:, :-4]).logits self.assertTrue(torch.allclose(logits_batched[1, :3], logits_single_second[0, :3], atol=tolerance)) def test_auto_padding(self): ids = [[7, 6, 9] * 65] config, _ = self.model_tester.prepare_config_and_inputs() input_ids = torch.tensor(ids, device=torch_device, dtype=torch.long) attention_mask = input_ids.new_ones(input_ids.shape) decoder_input_ids = torch.tensor([[33, 5, 8] * 3], device=torch_device, dtype=torch.long) config.block_size = 8 model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device) output1 = model(input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids)[ "logits" ] ids = [[7, 6, 9] * 65 + [0] * 5] input_ids = torch.tensor(ids, device=torch_device, dtype=torch.long) attention_mask = torch.tensor([[1] * 3 * 65 + [0] * 5], device=torch_device, dtype=torch.long) output2 = model(input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids)[ "logits" ] self.assertTrue(torch.allclose(output1, output2, atol=1e-5)) def test_for_change_to_full_attn(self): self.model_tester.seq_length = 9 config, input_dict = self.model_tester.prepare_config_and_inputs() # automatic switch will happen config.attention_type = "block_sparse" model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device) state_dict = model.state_dict() outputs1 = model(**input_dict)["logits"] config.attention_type = "original_full" model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device) model.load_state_dict(state_dict) outputs2 = model(**input_dict)["logits"] self.assertTrue(torch.allclose(outputs1, outputs2, atol=1e-5)) @require_torch @require_sentencepiece @require_tokenizers @slow class BigBirdPegasusModelIntegrationTests(unittest.TestCase): def _get_dummy_input_ids(self): # fmt: off ids = torch.tensor( [[685, 560, 630, 193, 836, 764, 708, 360, 10, 724, 278, 755, 805, 600, 71, 473, 601, 397, 315, 706, 487, 552, 88, 175, 601, 850, 678, 538, 846, 73, 778, 917, 116, 977, 756, 710, 1023, 848, 432, 449, 851, 100, 985, 178, 756, 798, 660, 148, 911, 424, 289, 962, 266, 698, 640, 545, 544, 715, 245, 152, 676, 511, 460, 883, 184, 29, 803, 129, 129, 933, 54, 902, 551, 489, 757, 274, 336, 389, 618, 43, 443, 544, 889, 258, 322, 1000, 938, 58, 292, 871, 120, 780, 431, 83, 92, 897, 399, 612, 566, 909, 634, 939, 85, 204, 325, 775, 965, 48, 640, 1013, 132, 973, 869, 181, 1001, 847, 144, 661, 228, 955, 792, 720, 910, 374, 854, 561, 306, 582, 170, 676, 449, 96, 198, 607, 257, 882, 691, 293, 931, 817, 862, 388, 611, 555, 974, 369, 1000, 918, 202, 384, 513, 907, 371, 556, 955, 384, 24, 700, 131, 378, 99, 575, 932, 735, 124, 964, 595, 943, 740, 149, 210, 563, 412, 783, 42, 59, 706, 37, 779, 87, 44, 873, 12, 771, 308, 81, 33, 183, 129, 807, 276, 175, 555, 372, 185, 445, 489, 590, 287, 281, 638, 771, 516, 95, 227, 876, 270, 881, 297, 329, 20, 608, 841, 411, 451, 249, 181, 324, 1005, 830, 783, 865, 261, 964, 750, 140, 1021, 599, 462, 890, 622, 844, 697, 529, 153, 926, 150, 111, 26, 465, 957, 890, 887, 118, 446, 596, 674, 873, 929, 229, 508, 764, 122, 327, 470, 288, 526, 840, 697, 153, 592, 42, 275, 553, 439, 208, 780, 167, 112, 350, 1018, 130, 736, 887, 813, 217, 382, 25, 68, 979, 1008, 772, 235, 717, 999, 292, 727, 1023, 702, 710, 728, 556, 33, 12, 617, 213, 139, 695, 1004, 422, 638, 669, 624, 489, 771, 540, 980, 218, 664, 822, 308, 175, 149, 950, 542, 580, 548, 808, 394, 74, 298, 920, 900, 815, 731, 947, 877, 772, 800, 778, 395, 540, 430, 200, 424, 62, 342, 866, 45, 803, 931, 89, 34, 646, 233, 768, 37, 769, 460, 291, 198, 895, 950, 255, 81, 447, 137, 190, 130, 210, 369, 292, 377, 348, 169, 885, 805, 177, 538, 324, 872, 509, 804, 115, 799, 30, 754, 290, 147, 274, 222, 341, 510, 515, 70, 358, 909, 557, 886, 766, 323, 624, 92, 342, 424, 552, 972, 663, 415, 658, 711, 968, 275, 861, 44, 84, 434, 810, 94, 175, 406, 202, 858, 499, 481, 988, 330, 541, 1004, 210, 618, 955, 897, 983, 576, 17, 107, 165, 607, 537, 629, 192, 196, 308, 137, 953, 860, 94, 892, 751, 88, 161, 148, 585, 456, 88, 14, 315, 594, 121, 885, 952, 833, 716, 733, 933, 282, 801, 427, 783, 471, 285, 277, 979, 325, 535, 228, 891, 596, 648, 969, 574, 654, 518, 257, 137, 208, 464, 950, 140, 5, 424, 349, 942, 283, 587, 821, 1007, 434, 220, 820, 740, 874, 787, 374, 291, 564, 671, 438, 827, 940, 824, 509, 1021, 787, 942, 856, 450, 327, 491, 54, 817, 95, 60, 337, 667, 637, 164, 571, 946, 107, 202, 301, 782, 890, 839, 551, 680, 649, 14, 1017, 904, 721, 1017, 535, 505, 848, 986, 777, 740, 775, 210, 456, 469, 474, 963, 573, 401, 57, 883, 750, 664, 281, 5, 613, 1005, 306, 344, 543, 567, 154, 789, 354, 358, 698, 408, 412, 30, 930, 372, 822, 632, 948, 855, 503, 8, 618, 1010, 138, 695, 897, 852, 377, 933, 722, 149, 886, 1009, 260, 127, 811, 578, 533, 805, 325, 977, 113, 944, 651, 238, 361, 991, 860, 556, 64, 928, 917, 455, 266, 445, 604, 624, 420, 340, 845, 275, 370, 843, 227, 226, 940, 644, 909, 229, 827, 898, 370, 129, 808, 25, 699, 293, 356, 838, 135, 4, 227, 890, 681, 445, 418, 285, 837, 27, 737, 249, 366, 948, 202, 438, 198, 930, 648, 638, 607, 73, 247, 853, 136, 708, 214, 476, 621, 324, 103, 853, 328, 596, 224, 257, 646, 348, 108, 927, 970, 980, 520, 150, 998, 477, 393, 684, 559, 1, 361, 692, 551, 90, 75, 500, 739, 636, 344, 97, 852, 283, 719, 33, 116, 455, 866, 429, 828, 826, 691, 174, 746, 133, 442, 94, 348, 402, 420, 707, 405, 942, 186, 976, 376, 677, 874, 703, 517, 498, 499, 206, 415, 366, 856, 739, 420, 586, 219, 952, 539, 375, 23, 461, 720, 355, 603, 52, 999, 815, 721, 574, 445, 816, 1019, 105, 641, 395, 972, 910, 328, 607, 519, 686, 246, 415, 528, 170, 167, 310, 940, 595, 392, 221, 834, 682, 835, 115, 861, 335, 742, 220, 247, 101, 416, 222, 179, 509, 175, 606, 627, 674, 781, 737, 746, 849, 67, 457, 1012, 126, 139, 625, 731, 156, 697, 121, 322, 449, 710, 857, 291, 976, 4, 701, 239, 678, 172, 724, 857, 583, 661, 903, 797, 628, 903, 835, 605, 989, 615, 870, 380, 710, 110, 330, 101, 695, 846, 918, 508, 672, 594, 36, 238, 244, 251, 393, 767, 282, 22, 430, 230, 983, 401, 154, 1007, 120, 678, 896, 386, 390, 711, 397, 347, 587, 1020, 951, 79, 831, 585, 200, 814, 134, 560, 700, 171, 452, 139, 755, 314, 476, 346, 388, 126, 719, 851, 198, 699, 901, 18, 710, 448, 351, 665, 644, 326, 425, 165, 571, 178, 440, 665, 674, 915, 866, 463, 754, 136, 950, 748, 47, 497, 1013, 640, 930, 338, 158, 525, 631, 815, 887, 289, 803, 116, 600, 637, 410, 175, 499, 876, 565, 1002, 623, 577, 333, 887, 586, 147, 773, 776, 644, 49, 77, 294, 117, 494, 561, 110, 979, 180, 562, 72, 859, 434, 1007, 286, 516, 75, 597, 491, 322, 888, 533, 209, 43, 499, 29, 411, 856, 181, 305, 963, 615, 778, 259, 373, 877, 746, 858, 381, 886, 613, 91, 69, 618, 523, 13, 617, 226, 422, 168, 929, 379, 290, 923, 100, 218, 307, 345, 211, 789, 735, 669, 585, 275, 410, 921, 552, 235, 636, 285, 665, 659, 708, 173, 724, 302, 823, 1, 139, 708, 903, 732, 868, 442, 967, 916, 163, 51, 243, 871]], # noqa: E231 dtype=torch.long, device=torch_device, ) # fmt: on return ids def _get_dummy_target_ids(self): # fmt: off ids = torch.tensor( [[13, 6, 1, 4, 12, 4, 8, 10, 4, 6, 3, 5, 8, 7, 9, 9]], # noqa: E231 dtype=torch.long, device=torch_device, ) # fmt: on return ids def test_inference_block_sparse(self): model = BigBirdPegasusForConditionalGeneration.from_pretrained( MODEL_ID, attention_type="block_sparse", block_size=16, num_random_blocks=3 ) model.to(torch_device) input_ids = self._get_dummy_input_ids() target_ids = self._get_dummy_target_ids() outputs = model(input_ids, labels=target_ids) prediction_logits = outputs.logits self.assertEqual(prediction_logits.shape, torch.Size((1, 16, 96103))) # fmt: off expected_prediction_logits_slice = torch.tensor( [[1.5118, 5.5227, 4.8125, 1.7603, 8.1704, 3.996, 4.8118, 6.7806, 2.2297, 6.9834, 3.1906, 0.103, 7.1515, 6.3679, 3.1896, 6.3054, 3.9741, 6.3772, 5.0042, -0.6338, 6.7868, 0.592, 0.5363, 1.87, -0.331, -2.4518, 1.8263, 3.1899], [1.5702, 5.8135, 4.6675, 2.3674, 8.9828, 3.7913, 5.4027, 7.6567, 1.9007, 7.3706, 3.8824, 0.0247, 7.6094, 6.6985, 3.2826, 7.0094, 3.8713, 5.6555, 5.0439, -0.3519, 7.1525, 0.4062, -0.2419, 2.2194, -0.6447, -2.9614, 2.0713, 3.248], [1.4527, 5.6003, 4.5381, 2.6382, 9.2809, 3.2969, 5.6811, 8.4011, 1.6909, 7.4937, 4.3185, -0.0878, 7.61, 6.6822, 3.4753, 7.3962, 3.5336, 4.9216, 4.943, -0.2043, 7.3326, 0.2199, -0.6016, 2.4367, -0.7043, -3.0689, 2.3215, 3.0611], [1.1084, 5.6308, 4.4886, 2.717, 9.4103, 3.0733, 5.5825, 8.4325, 1.3075, 7.5495, 4.4782, -0.1092, 7.8115, 6.6285, 3.5311, 7.6853, 3.509, 4.4994, 4.9224, -0.1384, 7.3069, -0.0473, -0.8578, 2.4632, -0.5249, -3.4627, 2.2671, 2.8818]], # noqa: E231 device=torch_device, ) # fmt: on self.assertTrue( torch.allclose(prediction_logits[0, 4:8, 128:156], expected_prediction_logits_slice, atol=1e-4) ) def test_inference_full_attn(self): model = BigBirdPegasusForConditionalGeneration.from_pretrained(MODEL_ID, attention_type="original_full") model.to(torch_device) input_ids = self._get_dummy_input_ids() target_ids = self._get_dummy_target_ids() outputs = model(input_ids, labels=target_ids) prediction_logits = outputs.logits self.assertEqual(prediction_logits.shape, torch.Size((1, 16, 96103))) # fmt: off expected_prediction_logits_slice = torch.tensor( [[1.3418, 5.8304, 6.5662, 2.0448, 8.7702, 4.6579, 4.9947, 6.429, 2.4296, 7.9431, 4.217, 0.0672, 7.334, 5.1966, 2.9603, 6.0814, 4.6756, 7.5522, 5.076, 0.213, 6.6638, 0.6577, 0.244, 2.1221, 0.7531, -2.4076, 1.8731, 3.5594], [1.5525, 6.0524, 6.309, 2.6245, 9.229, 4.5213, 5.0913, 7.0622, 1.7992, 8.0962, 4.7994, -0.0248, 7.7168, 5.5878, 3.0883, 6.5248, 4.7895, 6.9974, 4.8787, 0.5445, 6.6686, 0.0102, -0.1659, 2.6195, 0.7389, -2.8956, 1.9928, 3.3777], [1.6407, 6.2104, 6.0331, 2.8076, 9.4074, 3.9772, 5.0574, 7.5316, 1.4201, 8.3035, 5.0212, -0.1031, 7.553, 5.5023, 3.1427, 6.7674, 4.4409, 6.457, 4.525, 0.728, 6.5422, -0.6234, -0.4726, 2.7486, 0.6985, -3.0804, 1.9669, 3.2365], [1.5065, 6.1271, 5.8296, 2.8405, 9.5649, 3.6834, 5.1214, 7.546, 0.9758, 8.3335, 5.1952, -0.1395, 7.4348, 5.6893, 3.2942, 7.0356, 4.1665, 5.9695, 4.3898, 0.8931, 6.3988, -0.8957, -0.7522, 2.8924, 0.6498, -3.4358, 1.8654, 2.9735]], # noqa: E231 device=torch_device, ) # fmt: on self.assertTrue( torch.allclose(prediction_logits[0, 4:8, 128:156], expected_prediction_logits_slice, atol=1e-4) ) def test_seq_to_seq_generation(self): MODEL_ID = "google/bigbird-pegasus-large-arxiv" model = BigBirdPegasusForConditionalGeneration.from_pretrained(MODEL_ID).to(torch_device) tokenizer = PegasusTokenizer.from_pretrained(MODEL_ID) ARTICLE_LEP = r"""the lep experiments at the resonance of @xmath1-boson have tested the standard model ( sm ) at quantum level , measuring the @xmath1-decay into fermion pairs with an accuracy of one part in ten thousands . the good agreement of the lep data with the sm predictions have severely constrained the behavior of new physics at the @xmath1-pole . taking these achievements into account one can imagine that the physics of @xmath1-boson will again play the central role in the frontier of particle physics if the next generation @xmath1 factory comes true with the generated @xmath1 events several orders of magnitude higher than that of the lep . this factory can be realized in the gigaz option of the international linear collider ( ilc)@xcite . the ilc is a proposed electron - positron collider with tunable energy ranging from @xmath12 to @xmath13 and polarized beams in its first phase , and the gigaz option corresponds to its operation on top of the resonance of @xmath1 boson by adding a bypass to its main beam line . given the high luminosity , @xmath14 , and the cross section at the resonance of @xmath1 boson , @xmath15 , about @xmath16 @xmath1 events can be generated in an operational year of @xmath17 of gigaz , which implies that the expected sensitivity to the branching ratio of @xmath1-decay can be improved from @xmath18 at the lep to @xmath19 at the gigaz@xcite . in light of this , the @xmath1-boson properties , especially its exotic or rare decays which are widely believed to be sensitive to new physics , should be investigated comprehensively to evaluate their potential in probing new physics . among the rare @xmath1-decays , the flavor changing ( fc ) processes were most extensively studied to explore the flavor texture in new physics @xcite , and it was found that , although these processes are severely suppressed in the sm , their branching ratios in new physics models can be greatly enhanced to @xmath19 for lepton flavor violation decays @xcite and @xmath20 for quark flavor violation decays @xcite . besides the fc processes , the @xmath1-decay into light higgs boson(s ) is another type of rare process that was widely studied , e.g. the decay @xmath21 ( @xmath22 ) with the particle @xmath0 denoting a light higgs boson was studied in @xcite , the decay @xmath23 was studied in the two higgs doublet model ( 2hdm)@xcite and the minimal supersymmetric standard model ( mssm)@xcite , and the decay @xmath4 was studied in a model independent way @xcite , in 2hdm@xcite and also in mssm@xcite . these studies indicate that , in contrast with the kinematic forbidden of these decays in the sm , the rates of these decays can be as large as @xmath18 in new physics models , which lie within the expected sensitivity of the gigaz . in this work , we extend the previous studies of these decays to some new models and investigate these decays altogether . we are motivated by some recent studies on the singlet extension of the mssm , such as the next - to - minimal supersymmetric standard model ( nmssm ) @xcite and the nearly minimal supersymmetric standard model ( nmssm ) @xcite , where a light cp - odd higgs boson @xmath0 with singlet - dominant component may naturally arise from the spontaneous breaking of some approximate global symmetry like @xmath24 or peccei - quuin symmetry @xcite . these non - minimal supersymmetric models can not only avoid the @xmath25-problem , but also alleviate the little hierarchy by having such a light higgs boson @xmath0 @xcite . we are also motivated by that , with the latest experiments , the properties of the light higgs boson are more stringently constrained than before . so it is worth updating the previous studies . so far there is no model - independent lower bound on the lightest higgs boson mass . in the sm , it must be heavier than @xmath26 gev , obtained from the null observation of the higgs boson at lep experiments . however , due to the more complex structure of the higgs sector in the extensions of the sm , this lower bound can be significantly relaxed according to recent studies , e.g. , for the cp - odd higgs boson @xmath0 we have @xmath27 gev in the nmssm @xcite , @xmath28 gev in the nmssm @xcite , and @xmath29 gev in the lepton - specific 2hdm ( l2hdm ) @xcite . with such a light cp - odd higgs boson , the z - decay into one or more @xmath0 is open up . noting that the decay @xmath30 is forbidden due to bose symmetry , we in this work study the rare @xmath1-decays @xmath6 ( @xmath22 ) , @xmath31 and @xmath4 in a comparative way for four models , namely the type - ii 2hdm@xcite , the l2hdm @xcite , the nmssm and the nmssm . in our study , we examine carefully the constraints on the light @xmath0 from many latest experimental results . this work is organized as follows . in sec . ii we briefly describe the four new physics models . in sec . iii we present the calculations of the rare @xmath1-decays . in sec . iv we list the constraints on the four new physics models . in sec . v we show the numerical results for the branching ratios of the rare @xmath1-decays in various models . finally , the conclusion is given in sec . as the most economical way , the sm utilizes one higgs doublet to break the electroweak symmetry . as a result , the sm predicts only one physical higgs boson with its properties totally determined by two free parameters . in new physics models , the higgs sector is usually extended by adding higgs doublets and/or singlets , and consequently , more physical higgs bosons are predicted along with more free parameters involved in . the general 2hdm contains two @xmath32 doublet higgs fields @xmath33 and @xmath34 , and with the assumption of cp - conserving , its scalar potential can be parameterized as@xcite : @xmath35,\end{aligned}\ ] ] where @xmath36 ( @xmath37 ) are free dimensionless parameters , and @xmath38 ( @xmath39 ) are the parameters with mass dimension . after the electroweak symmetry breaking , the spectrum of this higgs sector includes three massless goldstone modes , which become the longitudinal modes of @xmath40 and @xmath1 bosons , and five massive physical states : two cp - even higgs bosons @xmath41 and @xmath42 , one neutral cp - odd higgs particle @xmath0 and a pair of charged higgs bosons @xmath43 . noting the constraint @xmath44 with @xmath45 and @xmath46 denoting the vacuum expectation values ( vev ) of @xmath33 and @xmath34 respectively , we choose @xmath47 as the input parameters with @xmath48 , and @xmath49 being the mixing angle that diagonalizes the mass matrix of the cp - even higgs fields . the difference between the type - ii 2hdm and the l2hdm comes from the yukawa coupling of the higgs bosons to quark / lepton . in the type - ii 2hdm , one higgs doublet @xmath34 generates the masses of up - type quarks and the other doublet @xmath33 generates the masses of down - type quarks and charged leptons ; while in the l2hdm one higgs doublet @xmath33 couples only to leptons and the other doublet @xmath34 couples only to quarks . so the yukawa interactions of @xmath0 to fermions in these two models are given by @xcite @xmath50 with @xmath51 denoting generation index . obviously , in the type - ii 2hdm the @xmath52 coupling and the @xmath53 coupling can be simultaneously enhanced by @xmath54 , while in the l2hdm only the @xmath53 coupling is enhanced by @xmath55 . the structures of the nmssm and the nmssm are described by their superpotentials and corresponding soft - breaking terms , which are given by @xcite @xmath56 where @xmath57 is the superpotential of the mssm without the @xmath25 term , @xmath58 and @xmath59 are higgs doublet and singlet superfields with @xmath60 and @xmath61 being their scalar component respectively , @xmath62 , @xmath63 , @xmath64 , @xmath65 , @xmath66 and @xmath67 are soft breaking parameters , and @xmath68 and @xmath69 are coefficients of the higgs self interactions . with the superpotentials and the soft - breaking terms , one can get the higgs potentials of the nmssm and the nmssm respectively . like the 2hdm , the higgs bosons with same cp property will mix and the mass eigenstates are obtained by diagonalizing the corresponding mass matrices : @xmath70 where the fields on the right hands of the equations are component fields of @xmath71 , @xmath72 and @xmath61 defined by @xmath73 @xmath74 and @xmath75 are respectively the cp - even and cp - odd neutral higgs bosons , @xmath76 and @xmath77 are goldstone bosons eaten by @xmath1 and @xmath78 , and @xmath79 is the charged higgs boson . so both the nmssm and nmssm predict three cp - even higgs bosons , two cp - odd higgs bosons and one pair of charged higgs bosons . in general , the lighter cp - odd higgs @xmath0 in these model is the mixture of the singlet field @xmath80 and the doublet field combination , @xmath81 , i.e. @xmath82 and its couplings to down - type quarks are then proportional to @xmath83 . so for singlet dominated @xmath0 , @xmath84 is small and the couplings are suppressed . as a comparison , the interactions of @xmath0 with the squarks are given by@xcite @xmath85 i.e. the interaction does not vanish when @xmath86 approaches zero . just like the 2hdm where we use the vevs of the higgs fields as fundamental parameters , we choose @xmath68 , @xmath69 , @xmath87 , @xmath88 , @xmath66 and @xmath89 as input parameters for the nmssm@xcite and @xmath68 , @xmath54 , @xmath88 , @xmath65 , @xmath90 and @xmath91 as input parameters for the nmssm@xcite . about the nmssm and the nmssm , three points should be noted . the first is for the two models , there is no explicit @xmath92term , and the effective @xmath25 parameter ( @xmath93 ) is generated when the scalar component of @xmath59 develops a vev . the second is , the nmssm is actually same as the nmssm with @xmath94@xcite , because the tadpole terms @xmath95 and its soft breaking term @xmath96 in the nmssm do not induce any interactions , except for the tree - level higgs boson masses and the minimization conditions . and the last is despite of the similarities , the nmssm has its own peculiarity , which comes from its neutralino sector . in the basis @xmath97 , its neutralino mass matrix is given by @xcite @xmath98 where @xmath99 and @xmath100 are @xmath101 and @xmath102 gaugino masses respectively , @xmath103 , @xmath104 , @xmath105 and @xmath106 . after diagonalizing this matrix one can get the mass eigenstate of the lightest neutralino @xmath107 with mass taking the following form @xcite @xmath108 this expression implies that @xmath107 must be lighter than about @xmath109 gev for @xmath110 ( from lower bound on chargnio mass ) and @xmath111 ( perturbativity bound ) . like the other supersymmetric models , @xmath107 as the lightest sparticle acts as the dark matter in the universe , but due to its singlino - dominated nature , it is difficult to annihilate sufficiently to get the correct density in the current universe . so the relic density of @xmath107 plays a crucial way in selecting the model parameters . for example , as shown in @xcite , for @xmath112 , there is no way to get the correct relic density , and for the other cases , @xmath107 mainly annihilates by exchanging @xmath1 boson for @xmath113 , or by exchanging a light cp - odd higgs boson @xmath0 with mass satisfying the relation @xmath114 for @xmath115 . for the annihilation , @xmath54 and @xmath25 are required to be less than 10 and @xmath116 respectively because through eq.([mass - exp ] ) a large @xmath87 or @xmath25 will suppress @xmath117 to make the annihilation more difficult . the properties of the lightest cp - odd higgs boson @xmath0 , such as its mass and couplings , are also limited tightly since @xmath0 plays an important role in @xmath107 annihilation . the phenomenology of the nmssm is also rather special , and this was discussed in detail in @xcite . in the type - ii 2hdm , l2hdm , nmssm and nmssm , the rare @xmath1-decays @xmath118 ( @xmath22 ) , @xmath3 and @xmath4 may proceed by the feynman diagrams shown in fig.[fig1 ] , fig.[fig2 ] and fig.[fig3 ] respectively . for these diagrams , the intermediate state @xmath119 represents all possible cp - even higgs bosons in the corresponding model , i.e. @xmath41 and @xmath42 in type - ii 2hdm and l2hdm and @xmath41 , @xmath42 and @xmath120 in nmssm and nmssm . in order to take into account the possible resonance effects of @xmath119 in fig.[fig1](c ) for @xmath2 and fig.[fig3 ] ( a ) for @xmath11 , we have calculated all the decay modes of @xmath119 and properly included the width effect in its propagator . as to the decay @xmath121 , two points should be noted . one is , unlike the decays @xmath6 and @xmath11 , this process proceeds only through loops mediated by quarks / leptons in the type - ii 2hdm and l2hdm , and additionally by sparticles in the nmssm and nmssm . so in most cases its rate should be much smaller than the other two . the other is due to cp - invariance , loops mediated by squarks / sleptons give no contribution to the decay@xcite . in actual calculation , this is reflected by the fact that the coupling coefficient of @xmath122 differs from that of @xmath123 by a minus sign ( see eq.([asqsq ] ) ) , and as a result , the squark - mediated contributions to @xmath121 are completely canceled out . with regard to the rare decay @xmath11 , we have more explanations . in the lowest order , this decay proceeds by the diagram shown in fig.[fig3 ] ( a ) , and hence one may think that , as a rough estimate , it is enough to only consider the contributions from fig.[fig3](a ) . however , we note that in some cases of the type - ii 2hdm and l2hdm , due to the cancelation of the contributions from different @xmath119 in fig.[fig3 ] ( a ) and also due to the potentially largeness of @xmath124 couplings ( i.e. larger than the electroweak scale @xmath125 ) , the radiative correction from the higgs - mediated loops may dominate over the tree level contribution even when the tree level prediction of the rate , @xmath126 , exceeds @xmath20 . on the other hand , we find the contribution from quark / lepton - mediated loops can be safely neglected if @xmath127 in the type - ii 2hdm and the l2hdm . in the nmssm and the nmssm , besides the corrections from the higgs- and quark / lepton - mediated loops , loops involving sparticles such as squarks , charginos and neutralinos can also contribute to the decay . we numerically checked that the contributions from squarks and charginos can be safely neglected if @xmath127 . we also calculated part of potentially large neutralino correction ( note that there are totally about @xmath128 diagrams for such correction ! ) and found they can be neglected too . since considering all the radiative corrections will make our numerical calculation rather slow , we only include the most important correction , namely that from higgs - mediated loops , in presenting our results for the four models . one can intuitively understand the relative smallness of the sparticle contribution to @xmath11 as follows . first consider the squark contribution which is induced by the @xmath129 interaction ( @xmath130 denotes the squark in chirality state ) and the @xmath131 interaction through box diagrams . because the @xmath132 interaction conserves the chirality of the squarks while the @xmath133 interaction violates the chirality , to get non - zero contribution to @xmath11 from the squark loops , at least four chiral flippings are needed , with three of them provided by @xmath131 interaction and the rest provided by the left - right squark mixing . this means that , if one calculates the amplitude in the chirality basis with the mass insertion method , the amplitude is suppressed by the mixing factor @xmath134 with @xmath135 being the off diagonal element in squark mass matrix . next consider the chargino / neutralino contributions . since for a light @xmath0 , its doublet component , parameterized by @xmath84 in eq.([mixing ] ) , is usually small , the couplings of @xmath0 with the sparticles will never be tremendously large@xcite . so the chargino / neutralino contributions are not important too . in our calculation of the decays , we work in the mass eigenstates of sparticles instead of in the chirality basis . for the type - ii 2hdm and the l2hdm , we consider the following constraints @xcite : * theoretical constraints on @xmath136 from perturbativity , unitarity and requirements that the scalar potential is finit at large field values and contains no flat directions @xcite , which imply that @xmath137 * the constraints from the lep search for neutral higgs bosons . we compute the signals from the higgs - strahlung production @xmath138 ( @xmath139 ) with @xmath140 @xcite and from the associated production @xmath141 with @xmath142 @xcite , and compare them with the corresponding lep data which have been inputted into our code . we also consider the constraints from @xmath138 by looking for a peak of @xmath143 recoil mass distribution of @xmath1-boson @xcite and the constraint of @xmath144 mev when @xmath145 @xcite . + these constraints limit the quantities such as @xmath146 \times br ( h_i \to \bar{b } b ) $ ] on the @xmath147 plane with the the subscript @xmath148 denoting the coupling coefficient of the @xmath149 interaction . they also impose a model - dependent lower bound on @xmath150 , e.g. , @xmath151 for the type - ii 2hdm ( from our scan results ) , @xmath152 for the l2hdm@xcite , and @xmath153 for the nmssm @xcite . these bounds are significantly lower than that of the sm , i.e. @xmath154 , partially because in new physics models , unconventional decay modes of @xmath155 such as @xmath156 are open up . as to the nmssm , another specific reason for allowing a significantly lighter cp - even higgs boson is that the boson may be singlet - dominated in this model . + with regard to the lightest cp - odd higgs boson @xmath0 , we checked that there is no lower bound on its mass so long as the @xmath157 interaction is weak or @xmath155 is sufficiently heavy . * the constraints from the lep search for a light higgs boson via the yukawa process @xmath158 with @xmath22 and @xmath61 denoting a scalar @xcite . these constraints can limit the @xmath159 coupling versus @xmath160 in new physics models . * the constraints from the cleo - iii limit on @xmath161 and the latest babar limits on @xmath162 . these constraints will put very tight constraints on the @xmath163 coupling for @xmath164 . in our analysis , we use the results of fig.8 in the second paper of @xcite to excluded the unfavored points . * the constraints from @xmath165 couplings . since the higgs sector can give sizable higher order corrections to @xmath165 couplings , we calculate them to one loop level and require the corrected @xmath165 couplings to lie within the @xmath166 range of their fitted value . the sm predictions for the couplings at @xmath1-pole are given by @xmath167 and @xmath168 @xcite , and the fitted values are given by @xmath169 and @xmath170 , respectively@xcite . we adopt the formula in @xcite to the 2hdm in our calculation . * the constraints from @xmath171 leptonic decay . we require the new physics correction to the branching ratio @xmath172 to be in the range of @xmath173 @xcite . we use the formula in @xcite in our calculation . + about the constraints ( 5 ) and ( 6 ) , two points should be noted . one is all higgs bosons are involved in the constraints by entering the self energy of @xmath171 lepton , the @xmath174 vertex correction or the @xmath175 vertex correction , and also the box diagrams for @xmath176@xcite . since the yukawa couplings of the higgs bosons to @xmath171 lepton get enhanced by @xmath54 and so do the corrections , @xmath54 must be upper bounded for given spectrum of the higgs sector . generally speaking , the lighter @xmath0 is , the more tightly @xmath54 is limited@xcite . the other point is in the type - ii 2hdm , @xmath177 , b - physics observables as well as @xmath178 decays discussed above can constraint the model in a tighter way than the constraints ( 5 ) and ( 6 ) since the yukawa couplings of @xmath171 lepton and @xmath179 quark are simultaneously enhanced by @xmath54 . but for the l2hdm , because only the yukawa couplings of @xmath171 lepton get enhanced ( see eq.[yukawa ] ) , the constraints ( 5 ) and ( 6 ) are more important in limiting @xmath54 . * indirect constraints from the precision electroweak observables such as @xmath180 , @xmath181 and @xmath182 , or their combinations @xmath183 @xcite . we require @xmath184 to be compatible with the lep / sld data at @xmath185 confidence level@xcite . we also require new physics prediction of @xmath186 is within the @xmath187 range of its experimental value . the latest results for @xmath188 are @xmath189 ( measured value ) and @xmath190 ( sm prediction ) for @xmath191 gev @xcite . in our code , we adopt the formula for these observables presented in @xcite to the type - ii 2hdm and the l2hdm respectively . + in calculating @xmath180 , @xmath181 and @xmath182 , we note that these observables get dominant contributions from the self energies of the gauge bosons @xmath1 , @xmath192 and @xmath193 . since there is no @xmath194 coupling or @xmath195 coupling , @xmath0 must be associated with the other higgs bosons to contribute to the self energies . so by the uv convergence of these quantities , one can infer that , for the case of a light @xmath0 and @xmath196 , these quantities depend on the spectrum of the higgs sector in a way like @xmath197 at leading order , which implies that a light @xmath0 can still survive the constraints from the precision electroweak observables given the splitting between @xmath150 and @xmath198 is moderate@xcite . * the constraints from b physics observables such as the branching ratios for @xmath199 , @xmath200 and @xmath201 , and the mass differences @xmath202 and @xmath203 . we require their theoretical predications to agree with the corresponding experimental values at @xmath187 level . + in the type - ii 2hdm and the l2hdm , only the charged higgs boson contributes to these observables by loops , so one can expect that @xmath198 versus @xmath54 is to be limited . combined analysis of the limits in the type - ii 2hdm has been done by the ckmfitter group , and the lower bound of @xmath204 as a function of @xmath87 was given in fig.11 of @xcite . this analysis indicates that @xmath198 must be heavier than @xmath205 at @xmath185 c.l . regardless the value of @xmath54 . in this work , we use the results of fig.11 in @xcite to exclude the unfavored points . as for the l2hdm , b physics actually can not put any constraints@xcite because in this model the couplings of the charged higgs boson to quarks are proportional to @xmath206 and in the case of large @xmath54 which we are interested in , they are suppressed . in our analysis of the l2hdm , we impose the lep bound on @xmath198 , i.e. @xmath207@xcite . * the constraints from the muon anomalous magnetic moment @xmath208 . now both the theoretical prediction and the experimental measured value of @xmath208 have reached a remarkable precision , but a significant deviation still exists : @xmath209 @xcite . in the 2hdm , @xmath208 gets additional contributions from the one - loop diagrams induced by the higgs bosons and also from the two - loop barr - zee diagrams mediated by @xmath0 and @xmath155@xcite . if the higgs bosons are much heavier than @xmath25 lepton mass , the contributions from the barr - zee diagrams are more important , and to efficiently alleviate the discrepancy of @xmath208 , one needs a light @xmath0 along with its enhanced couplings to @xmath25 lepton and also to heavy fermions such as bottom quark and @xmath171 lepton to push up the effects of the barr - zee diagram@xcite . the cp - even higgs bosons are usually preferred to be heavy since their contributions to @xmath208 are negative . + in the type - ii 2hdm , because @xmath54 is tightly constrained by the process @xmath210 at the lep@xcite and the @xmath178 decay@xcite , the barr - zee diagram contribution is insufficient to enhance @xmath208 to @xmath187 range around its measured value@xcite . so in our analysis , we require the type - ii 2hdm to explain @xmath208 at @xmath211 level . while for the l2hdm , @xmath54 is less constrained compared with the type - ii 2hdm , and the barr - zee diagram involving the @xmath171-loop is capable to push up greatly the theoretical prediction of @xmath208@xcite . therefore , we require the l2hdm to explain the discrepancy at @xmath187 level . + unlike the other constraints discussed above , the @xmath208 constraint will put a two - sided bound on @xmath54 since on the one hand , it needs a large @xmath54 to enhance the barr - zee contribution , but on the other hand , too large @xmath54 will result in an unacceptable large @xmath208 . * since this paper concentrates on a light @xmath0 , the decay @xmath212 is open up with a possible large decay width . we require the width of any higgs boson to be smaller than its mass to avoid a too fat higgs boson@xcite . we checked that for the scenario characterized by @xmath213 , the coefficient of @xmath214 interaction is usually larger than the electroweak scale @xmath125 , and consequently a large decay width is resulted . for the nmssm and nmssm , the above constraints become more complicated because in these models , not only more higgs bosons are involved in , but also sparticles enter the constraints . so it is not easy to understand some of the constraints intuitively . take the process @xmath199 as an example . in the supersymmetric models , besides the charged higgs contribution , chargino loops , gluino loops as well as neutralino loops also contribute to the process@xcite , and depending on the susy parameters , any of these contributions may become dominated over or be canceled by other contributions . as a result , although the charged higgs affects the process in the same way as that in the type - ii 2hdm , charged higgs as light as @xmath215 is still allowed even for @xmath216@xcite . since among the constraints , @xmath208 is rather peculiar in that it needs new physics to explain the discrepancy between @xmath217 and @xmath218 , we discuss more about its dependence on susy parameters . in the nmssm and the nmssm , @xmath208 receives contributions from higgs loops and neutralino / chargino loops . for the higgs contribution , it is quite similar to that of the type - ii 2hdm except that more higgs bosons are involved in@xcite . for the neutralino / chargino contribution , in the light bino limit ( i.e. @xmath219 ) , it can be approximated by@xcite @xmath220 for @xmath221 with @xmath222 being smuon mass . so combining the two contributions together , one can learn that a light @xmath0 along with large @xmath54 and/or light smuon with moderate @xmath87 are favored to dilute the discrepancy . because more parameters are involved in the constraints on the supersymmetric models , we consider following additional constraints to further limit their parameters : * direct bounds on sparticle masses from the lep1 , the lep2 and the tevatron experiments @xcite . * the lep1 bound on invisible z decay @xmath223 ; the lep2 bound on neutralino production @xmath224 and @xmath225@xcite . * dark matter constraints from the wmap relic density 0.0975 @xmath226 0.1213 @xcite . note that among the above constraints , the constraint ( 2 ) on higgs sector and the constraint ( c ) on neutralino sector are very important . this is because in the supersymmetric models , the sm - like higgs is upper bounded by about @xmath227 at tree level and by about @xmath228 at loop level , and that the relic density restricts the lsp annihilation cross section in a certain narrow range . in our analysis of the nmssm , we calculate the constraints ( 3 ) and ( 5 - 7 ) by ourselves and utilize the code nmssmtools @xcite to implement the rest constraints . we also extend nmssmtools to the nmssm to implement the constraints . for the extension , the most difficult thing we faced is how to adapt the code micromegas@xcite to the nmssm case . we solve this problem by noting the following facts : * as we mentioned before , the nmssm is actually same as the nmssm with the trilinear singlet term setting to zero . so we can utilize the model file of the nmssm as the input of the micromegas and set @xmath229 . * since in the nmssm , the lsp is too light to annihilate into higgs pairs , there is no need to reconstruct the effective higgs potential to calculate precisely the annihilation channel @xmath230 with @xmath61 denoting any of higgs bosons@xcite . we thank the authors of the nmssmtools for helpful discussion on this issue when we finish such extension@xcite . with the above constraints , we perform four independent random scans over the parameter space of the type - ii 2hdm , the l2hdm , the nmssm and the nmssm respectively . we vary the parameters in following ranges : @xmath231 for the type - ii 2hdm , @xmath232 for the l2hdm , @xmath233 for the nmssm , and @xmath234 for the nmssm . in performing the scans , we note that for the nmssm and the nmssm , some constraints also rely on the gaugino masses and the soft breaking parameters in the squark sector and the slepton sector . since these parameters affect little on the properties of @xmath0 , we fix them to reduce the number of free parameters in our scan . for the squark sector , we adopt the @xmath235 scenario which assumes that the soft mass parameters for the third generation squarks are degenerate : @xmath236 800 gev , and that the trilinear couplings of the third generation squarks are also degenerate , @xmath237 with @xmath238 . for the slepton sector , we assume all the soft - breaking masses and trilinear parameters to be 100 gev . this setting is necessary for the nmssm since this model is difficult to explain the muon anomalous moment at @xmath239 level for heavy sleptons@xcite . finally , we assume the grand unification relation @xmath240 for the gaugino masses with @xmath241 being fine structure constants of the different gauge group . with large number of random points in the scans , we finally get about @xmath242 , @xmath243 , @xmath244 and @xmath242 samples for the type - ii 2hdm , the l2hdm , the nmssm and the nmssm respectively which survive the constraints and satisfy @xmath245 . analyzing the properties of the @xmath0 indicates that for most of the surviving points in the nmssm and the nmssm , its dominant component is the singlet field ( numerically speaking , @xmath246 ) so that its couplings to the sm fermions are suppressed@xcite . our analysis also indicates that the main decay products of @xmath0 are @xmath247 for the l2hdm@xcite , @xmath248 ( dominant ) and @xmath247 ( subdominant ) for the type - ii 2hdm , the nmssm and the nmssm , and in some rare cases , neutralino pairs in the nmssm@xcite . in fig.[fig4 ] , we project the surviving samples on the @xmath249 plane . this figure shows that the allowed range of @xmath54 is from @xmath250 to @xmath251 in the type - ii 2hdm , and from @xmath252 to @xmath253 in the l2hdm . just as we introduced before , the lower bounds of @xmath254 come from the fact that we require the models to explain the muon anomalous moment , while the upper bound is due to we have imposed the constraint from the lep process @xmath255 , which have limited the upper reach of the @xmath256 coupling for light @xmath61 @xcite(for the dependence of @xmath256 coupling on @xmath54 , see sec . this figure also indicates that for the nmssm and the nmssm , @xmath54 is upper bounded by @xmath257 . for the nmssm , this is because large @xmath87 can suppress the dark matter mass to make its annihilation difficult ( see @xcite and also sec . ii ) , but for the nmssm , this is because we choose a light slepton mass so that large @xmath54 can enhance @xmath208 too significantly to be experimentally unacceptable . we checked that for the slepton mass as heavy as @xmath258 , @xmath259 is still allowed for the nmssm . in fig.[fig5 ] and fig.[fig6 ] , we show the branching ratios of @xmath260 and @xmath261 respectively . fig.[fig5 ] indicates , among the four models , the type - ii 2hdm predicts the largest ratio for @xmath260 with its value varying from @xmath262 to @xmath263 . the underlying reason is in the type - ii 2hdm , the @xmath264 coupling is enhanced by @xmath54 ( see fig.[fig4 ] ) , while in the other three model , the coupling is suppressed either by @xmath265 or by the singlet component of the @xmath0 . fig.[fig6 ] shows that the l2hdm predicts the largest rate for @xmath266 with its value reaching @xmath5 in optimum case , and for the other three models , the ratio of @xmath261 is at least about one order smaller than that of @xmath267 . this feature can be easily understood from the @xmath268 coupling introduced in sect . we emphasize that , if the nature prefers a light @xmath0 , @xmath260 and/or @xmath269 in the type - ii 2hdm and the l2hdm will be observable at the gigaz . then by the rates of the two decays , one can determine whether the type - ii 2hdm or the l2hdm is the right theory . on the other hand , if both decays are observed with small rates or fail to be observed , the singlet extensions of the mssm are favored . in fig.[fig7 ] , we show the rate of @xmath3 as the function of @xmath270 . this figure indicates that the branching ratio of @xmath121 can reach @xmath271 , @xmath272 , @xmath273 and @xmath274 for the optimal cases of the type - ii 2hdm , the l2hdm , the nmssm and the nmssm respectively , which implies that the decay @xmath121 will never be observable at the gigaz if the studied model is chosen by nature . the reason for the smallness is , as we pointed out before , that the decay @xmath121 proceeds only at loop level . comparing the optimum cases of the type - ii 2hdm , the nmssm and the nmssm shown in fig.5 - 7 , one may find that the relation @xmath275 holds for any of the decays . this is because the decays are all induced by the yukawa couplings with similar structure for the models . in the supersymmetric models , the large singlet component of the light @xmath0 is to suppress the yukawa couplings , and the @xmath0 in the nmssm has more singlet component than that in the nmssm . next we consider the decay @xmath11 , which , unlike the above decays , depends on the higgs self interactions . in fig.[fig8 ] we plot its rate as a function of @xmath270 and this figure indicates that the @xmath276 may be the largest among the ratios of the exotic @xmath1 decays , reaching @xmath277 in the optimum cases of the type - ii 2hdm , the l2hdm and the nmssm . the underlying reason is , in some cases , the intermediate state @xmath119 in fig.[fig3 ] ( a ) may be on - shell . in fact , we find this is one of the main differences between the nmssm and the nmssm , that is , in the nmssm , @xmath119 in fig.[fig3 ] ( a ) may be on - shell ( corresponds to the points with large @xmath278 ) while in the nmssm , this seems impossible . so we conclude that the decay @xmath11 may serve as an alternative channel to test new physics models , especially it may be used to distinguish the nmssm from the nmssm if the supersymmetry is found at the lhc and the @xmath11 is observed at the gigaz with large rate . before we end our discussion , we note that in the nmssm , the higgs boson @xmath0 may be lighter than @xmath279 without conflicting with low energy data from @xmath178 decays and the other observables ( see fig.[fig4]-[fig8 ] ) . in this case , @xmath0 is axion - like as pointed out in @xcite . we checked that , among the rare @xmath1 decays discussed in this paper , the largest branching ratio comes from @xmath280 which can reach @xmath281 . since in this case , the decay product of @xmath0 is highly collinear muon pair , detecting the decay @xmath280 may need some knowledge about detectors , which is beyond our discussion . in this paper , we studied the rare @xmath1-decays @xmath2 ( @xmath7 ) , @xmath282 and @xmath4 in the type - ii 2hdm , lepton - specific 2hdm , nmssm and nmssm , which predict a light cp - odd higgs boson @xmath0 . in the parameter space allowed by current experiments , the branching ratio can be as large as @xmath5 for @xmath118 , @xmath8 for @xmath3 and @xmath9 for @xmath4 , which implies that the decays @xmath2 and @xmath283 may be accessible at the gigaz option . since different models predict different size of branching ratios , these decays can be used to distinguish different model through the measurement of these rare decays . this work was supported in part by hastit under grant no . 2009hastit004 , by the national natural science foundation of china ( nnsfc ) under grant nos . 10821504 , 10725526 , 10635030 , 10775039 , 11075045 and by the project of knowledge innovation program ( pkip ) of chinese academy of sciences under grant no . . for some reviews , see , e.g. , m. a. perez , g. tavares - velasco and j. j. toscano , int . j. mod . a * 19 * , 159 ( 2004 ) ; j. m. yang , arxiv:1006.2594 . j. i. illana , m. masip , 67 , 035004 ( 2003 ) ; j. cao , z. xiong , j. m. yang , 32 , 245 ( 2004 ) . d. atwood _ et al_. , 66 , 093005 ( 2002 ) . j. kalinowski , and s. pokorski , 219 , 116 ( 1989 ) ; a. djouadi , p. m. zerwas and j. zunft , 259 , 175 ( 1991 ) ; a. djouadi , j. kalinowski , and p. m. zerwas , z. phys . c * 54 * , 255 ( 1992 ) . m. krawczyk , _ et al . _ , 19 , 463 ( 2001 ) ; 8 , 495 ( 1999 ) . j. f. gunion , g. gamberini and s. f. novaes , 38 , 3481 ( 1988 ) ; thomas j. weiler and tzu - chiang yuan , 318 , 337 ( 1989 ) ; a. djouadi , _ et al . _ , 1 , 163 ( 1998)[hep - ph/9701342 ] . d. chang and w. y. keung , phys . lett . * 77 * , 3732 ( 1996 ) . e. keith and e. ma , 57 , 2017 ( 1998 ) ; m. a. perez , g. tavares - velasco and j. j. toscano , int . j. mod.phys . a * 19 * , 159 ( 2004 ) . f. larios , g. tavares - velasco and c. p. yuan , 64 , 055004 ( 2001 ) ; 66 , 075006 ( 2002 ) . a. djouadi , _ et al . _ , 10 , 27 ( 1999 ) [ hep - ph/9903229 ] . for a detailed introduction of the nmssm , see f. franke and h. fraas , int . j. mod . a * 12 * ( 1997 ) 479 ; for a recent review of the nmssm , see for example , u. ellwanger , c. hugonie , and a. m. teixeira , arxiv : 0910.1785 . see , e.g. , j. r. ellis , j. f. gunion , h. e. haber , l. roszkowski and f. zwirner , phys . rev . d * 39 * ( 1989 ) 844 ; m. drees , int . j. mod . phys . a * 4 * ( 1989 ) 3635 ; u. ellwanger , m. rausch de traubenberg and c. a. savoy , phys . b * 315 * ( 1993 ) 331 ; nucl . b * 492 * ( 1997 ) 21 ; d.j . miller , r. nevzorov , p.m. zerwas , 681 , 3 ( 2004 ) . c. panagiotakopoulos , k. tamvakis , 446 , 224 ( 1999 ) ; 469 , 145 ( 1999 ) ; c. panagiotakopoulos , a. pilaftsis , 63 , 055003 ( 2001 ) ; a. dedes , _ et al . _ , 63 , 055009 ( 2001 ) ; a. menon , _ et al . _ , 70 , 035005 ( 2004 ) ; v. barger , _ et al . _ , 630 , 85 ( 2005 ) . c. balazs , _ et al . _ , 0706 , 066 ( 2007 ) . b. a. dobrescu , k. t. matchev , 0009 , 031 ( 2000 ) ; a. arhrib , k. cheung , t. j. hou , k. w. song , hep - ph/0611211 ; 0703 , 073 ( 2007 ) ; x. g. he , j. tandean , and g. valencia , 98 , 081802 ( 2007 ) ; 0806 , 002 ( 2008 ) ; f. domingo _ et al_. , 0901 , 061 ( 2009 ) ; gudrun hiller , 70 , 034018 ( 2004 ) ; r. dermisek , and john f. gunion , 75 , 075019 ( 2007 ) ; 79 , 055014 ( 2009 ) ; 81 , 055001 ( 2010 ) ; r. dermisek , john f. gunion , and b. mcelrath , 76 , 051105 ( 2007 ) ; z. heng , _ et al_. , 77 , 095012 ( 2008 ) ; a. belyaev _ et al_. , 81 , 075021 ( 2010 ) ; d. das and u. ellwanger , arxiv:1007.1151 [ hep - ph ] . s. andreas , o. lebedev , s. ramos - sanchez and a. ringwald , arxiv:1005.3978 [ hep - ph ] . j. f. gunion , jhep * 0908 * , 032 ( 2009 ) ; r. dermisek and j. f. gunion , phys . rev . d * 81 * , 075003 ( 2010 ) . r. dermisek and j. f. gunion , phys . lett . * 95 * , 041801 ( 2005 ) ; phys . d * 73 * , 111701 ( 2006 ) . j. cao , h. e. logan , j. m. yang , 79 , 091701 ( 2009 ) . j. cao , p. wan , l. wu , j. m. yang , 80 , 071701 ( 2009 ) . j. f. gunion and h. e. haber , 67 , 075019 ( 2003 ) . r. m. barnett , _ et al . _ , phys . b * 136 * , 191 ( 1984 ) ; r. m. barnett , g. senjanovic and d. wyler , phys . d * 30 * , 1529 ( 1984 ) ; y. grossman , nucl . b * 426 * , 355 ( 1994 ) . h. s. goh , l. j. hall and p. kumar , jhep * 0905 * , 097 ( 2009 ) ; a. g. akeroyd and w. j. stirling , nucl . b * 447 * , 3 ( 1995 ) ; a. g. akeroyd , phys . b * 377 * , 95 ( 1996 ) ; h. e. logan and d. maclennan , phys . rev . d * 79 * , 115022 ( 2009 ) ; m. aoki , _ et al . _ , arxiv:0902.4665 [ hep - ph ] . v. barger , p. langacker , h. s. lee and g. shaughnessy , phys . d * 73 * , 115010 ( 2006 ) . s. hesselbach , _ et . _ , arxiv:0810.0511v2 [ hep - ph ] . de vivie and p. janot [ aleph collaboration ] , pa13 - 027 contribution to the international conference on high energy physics , warsaw , poland , 2531 july 1996 ; j. kurowska , o. grajek and p. zalewski [ delphi collaboration ] , cern - open-99 - 385 . [ aleph collaboration and delphi collaboration and l3 collaboration ] , phys . rept . * 427 * , 257 ( 2006 ) . j. cao and j. m. yang , jhep * 0812 * , 006 ( 2008 ) . m. krawczyk and d. temes , eur . j. c * 44 * , 435 ( 2005 ) . g. altarelli and r. barbieri , 253 , 161 ( 1991 ) ; m. e. peskin , t. takeuchi , 46 , 381 ( 1992 ) . c. amsler , _ et al . _ , ( particle data group ) , 667 , 1 ( 2008 ) . o. deschamps , s. descotes - genon , s. monteil , v. niess , s. tjampens and v. tisserand , arxiv:0907.5135 [ hep - ph ] . s. su and b. thomas , phys . d * 79 * , 095014 ( 2009 ) . g. abbiendi , _ et al . _ , eur . phys . j. c * 32 * , 453 ( 2004 ) . m. davier , _ et al . _ , 66 , 1 ( 2010 ) . k. cheung , _ et al . _ , phys . d * 64 * , 111301 ( 2001 ) . k. cheung and o. c. w. kong , phys . d * 68 * , 053003 ( 2003 ) . t. besmer , c. greub , t.hurth , 609 , 359 ( 2001 ) ; f. borzumati , _ et al . _ , 62 , 075005(2000 ) . j. cao , k. i. hikasa , w. wang , j. m. yang and l. x. yu , phys . d * 82 * , 051701 ( 2010 ) [ arxiv:1006.4811 [ hep - ph ] ] . j. f. gunion , _ et . d * 73 * , 015011 ( 2006 ) . martin and j. d. wells , phys . d * 64 * , 035003 ( 2001 ) . j. abdallah _ et al . _ , eur . j. c * 31 * , 421 ( 2004 ) ; g. abbiendi _ et al . _ , eur . j. c * 35 * , 1 ( 2004 ) . j. dunkley _ et al . _ [ wmap collaboration ] , astrophys . j. suppl . * 180 * , 306 ( 2009 ) [ arxiv:0803.0586 [ astro - ph ] ] . u. ellwanger _ et al . _ , 02 , 066 ( 2005 ) . g. belanger , f. boudjema , a. pukhov and a. semenov , comput . commun . * 174 * , 577 ( 2006 ) ; comput . phys . commun . * 176 * , 367 ( 2007 ) . g. belanger , f. boudjema , c. hugonie , a. pukhov and a. semenov , jcap * 0509 * , 001 ( 2005 ) .""" ARTICLE_MAGNET = r"""it is well known that the classical magnetoresistance ( mr ) in metals or semiconductors with a closed free electron fermi surface increases quadratically with increasing magnetic field @xmath2 for @xmath3 and saturates when @xmath4 . here @xmath5 is the zero - magnetic - field mobility . hence , the extraordinarily high and linear mr ( lmr ) , which breaks this familiar rule , has been gaining much attention as soon as its discovery . in the past decade , this unexpected lmr has been reported in silver chalcogenide,@xcite indium antimonide,@xcite silicon,@xcite mnas - gaas composite material,@xcite and graphene.@xcite kapitza s linear law@xcite indicates that the metal shows a magnetoresistance linear in perpendicular magnetic field when it has an open fermi surface and a mean free path longer than the electronic larmor radius . recently , another two models , irrespective of the open fermi surface , have been constructed to provide possible mechanisms for the lmr phenomenon . abrikosov suggested a quantum - limit origin of lmr for the homogenous system with a gapless linear energy spectrum.@xcite his model requires that landau levels are well formed and the carrier concentration is small that all electrons occupy only the lowest landau band . alternatively , parish and littlewood developed a classical model without involving linear spectrum.@xcite ignoring the concrete microscopic mechanism , they attributed this unusual mr to the mobility fluctuations in a strongly inhomogenous system . topological insulators@xcite ( tis ) are novel materials with a full energy gap in bulk , while there are gapless surface states . due to its unique band structure with only one helical dirac cone and linear energy dispersion,@xcite the surface states of the ti bi@xmath0se@xmath1 become an excellent platform for the study of quantum - limit lmr . the recent experiment in this flat surface system , however , reported that a large positive mr , which becomes very linear above a characteristic field of @xmath6@xmath7@xmath8 t , was observed even in an opposite situation where the carrier sheet density is high that electrons occupy more than one landau levels.@xcite moreover , they found that raising temperature to room temperature almost has no influence on the observed lmr . it is striking that this observation is in conflict with abrikosov s model and also with the classical parish - littlewood model . so far a reliable theoretical scheme capable of explaining this novel experiment has still been lacking . in this paper , we generalize the balance - equation approach@xcite to a system modeling the surface states of a three - dimensional ti to investigate the two - dimensional magnetotransport in it . we find that a positive , nonsaturating and dominantly linear magnetoresistance can appear within quite wide magnetic - field range in the ti surface state having a positive and finite effective g - factor . this linear magnetoresistance shows up in the system of high carrier concentration and low mobility when electrons are in extended states and spread over many smeared landau levels , and persists up to room temperature , providing a possible mechanism for the recently observed linear magnetoresistance in topological insulator bi@xmath0se@xmath1 nanoribbons.@xcite we consider the surface state of a bi@xmath0se@xmath1-type large bulk gap ti in the @xmath9-@xmath10 plane under the influence of a uniform magnetic field @xmath11 applied along the @xmath12 direction.@xcite following the experimental observation,@xcite we assume that the fermi energy locates in the gap of the bulk band and above the dirac point , i.e. the surface carriers are electrons . further , the separations of the fermi energy from the bottom of bulk band and dirac point are much larger than the highest temperature ( @xmath13 ) considered in this work . hence , the contribution from the bulk band to the magnetotransport is negligible . these electrons , scattered by randomly distributed impurities and by phonons , are driven by a uniform in - plane electric field @xmath14 in the topological surface . the hamiltonian of this many - electron and phonon system consists of an electron part @xmath15 , a phonon part @xmath16 , and electron - impurity and electron - phonon interactions @xmath17 and @xmath18 : @xmath19 here , the electron hamiltonian is taken in the form @xmath20 , \ ] ] in which @xmath21 , @xmath22 , @xmath23 and @xmath24 , stand , respectively , for the canonical momentum , coordinate , momentum and spin operators of the @xmath25th electron having charge @xmath26 , @xmath27 is the vector potential of the perpendicular magnetic field @xmath28 in the landau gauge , @xmath29 is the fermi velocity , @xmath30 is the effective g - factor of the surface electron , and @xmath31 is the bohr magneton with @xmath32 the free electron mass . the sum index @xmath25 in eq.([helectron ] ) goes over all electrons of total number @xmath33 in the surface state of unit area . in the frame work of balance equation approach,@xcite the two - dimensional center - of - mass ( c.m . ) momentum and coordinate @xmath34 and @xmath35 , and the relative - electron momenta and coordinates @xmath36 and @xmath37 are introduced to write the hamiltonian @xmath15 into the sum of a single - particle c.m . part @xmath38 and a many - particle relative - electron part @xmath39 : @xmath40 , with @xmath41.\end{aligned}\ ] ] in this , @xmath42 is the canonical momentum of the center - of - mass and @xmath43 is the canonical momentum for the @xmath25th relative electron . here we have also introduced c.m . spin operators @xmath44 and @xmath45 . the commutation relations between the c.m . spin operators @xmath46 and @xmath47 and the spin operators @xmath48 , @xmath49 and @xmath50 of the @xmath25th electron are of order of @xmath51 : @xmath52= n^{-1}2\,{\rm i}\,\varepsi lon_{\beta_1\beta_2\beta_3}\sigma_j^{\beta_3}$ ] with @xmath53 . therefore , for a macroscopic large @xmath33 system , the c.m . part @xmath38 actually commutes with the relative - electron part @xmath54 in the hamiltonian , i.e. the c.m . motion and the relative motion of electrons are truly separated from each other . the couplings between the two emerge only through the electron impurity and electron phonon interactions . furthermore , the electric field @xmath55 shows up only in @xmath38 . and , in view of @xmath56={\rm i}\delta_{\alpha \beta}(\delta_{ij}-1/n)\simeq { \rm i}\delta_{\alpha\beta}\delta_{ij}$ ] , i.e. the relative - electron momenta and coordinates can be treated as canonical conjugate variables , the relative - motion part @xmath54 is just the hamiltonian of @xmath33 electrons in the surface state of ti in the magnetic field without the presence of the electric field . in terms of the c.m . coordinate @xmath57 and the relative electron density operator @xmath58 , the electron impurity and electron phonon interactions can be written as@xcite @xmath59 here @xmath60 and @xmath61 are respectively the impurity potential ( an impurity at randomly distributed position @xmath62 ) and electron phonon coupling matrix element in the plane - wave representation , and @xmath63 with @xmath64 and @xmath65 being the creation and annihilation operators for a phonon of wavevector @xmath66 in branch @xmath67 having frequency @xmath68 . velocity ( operator ) @xmath69 is the time variation of its coordinate : @xmath70= v_{\rm f}(\sigma_{\rm c}^y\ , \hat{i}-\sigma_{\rm c}^x\ , \hat{j})$ ] . to derive a force - balance equation for steady state transport we consider the heisenberg equation for the rate of change of the c.m . canonical momentum @xmath71 : @xmath72= - n e({\bm v}\times { \bm b})- n e{\bm e}+{\bm { f}}_{\rm i}+{\bm { f}}_{\rm p},\ ] ] in which the frictional forces @xmath73 and @xmath74 share the same expressions as given in ref .. the statistical average of the operator equation can be determined to linear order in the electron impurity and electron phonon interactions @xmath17 and @xmath18 with the initial density matrix @xmath75 at temperature @xmath76 when the in - plane electric field @xmath77 is not strong . for steady - transport states we have @xmath78 , leading to a force - balance equation of the form @xmath79 here @xmath80 , the statistically averaged velocity of the moving center - of - mass , is identified as the average rate of change of its position , i.e. the drift velocity of the electron system driven by the electric field @xmath77 , and @xmath81 and @xmath82 are frictional forces experienced by the center - of - mass due to impurity and phonon scatterings : @xmath83,\label{fp}\end{aligned}\ ] ] in which @xmath84 is the bose distribution function , @xmath85 , and @xmath86 stands for the imaginary part of the fourier spectrum of the relative - electron density correlation function defined by @xmath87\big\rangle_{0},\ ] ] where @xmath88 and @xmath89 denotes the statistical averaging over the initial density matrix @xmath90.@xcite the force - balance equation describes the steady - state two - dimensional magnetotransport in the surface state of a ti . note that the frictional forces @xmath81 and @xmath82 are in the opposite direction of the drift velocity @xmath91 and their magnitudes are functions of @xmath92 only . with the drift velocity @xmath93 in the @xmath9 direction , the force - balance equation eq . yields a transverse resistivity @xmath94 , and a longitudinal resistivity @xmath95 . the linear one is in the form @xmath96 for calculating the electron density correlation function @xmath97 we proceed in the landau representation.@xcite the landau levels of the single - particle hamiltonian @xmath98 of the relative - electron system in the absence of electric field are composed of a positive `` @xmath99 '' and a negative `` @xmath100 '' branch@xcite @xmath101 with @xmath102 and @xmath103 , and a zero ( @xmath104 ) level @xmath105 the corresponding landau wave functions are @xmath106 and @xmath107 for @xmath108 ; and @xmath109 for @xmath104 . here @xmath110 is the wavevector of the system along @xmath9 direction ; @xmath111 with @xmath112 ; and @xmath113 is the harmonic oscillator eigenfunction with @xmath114 being the hermite polynomial , @xmath115 , and @xmath116 . each landau level contains @xmath117 electron states for system of unit surface area . the positive branch @xmath118 and the @xmath104 level @xmath119 of the above energy spectra are indeed quite close to those of the surface states in the bulk gap of bi@xmath0se@xmath1-family materials derived from microscopic band calculation.@xcite the landau levels are broadened due to impurity , phonon and electron - electron scatterings . we model the imaginary part of the retarded green s function , or the density - of - states , of the broadened landau level @xmath120 ( written for `` + ' ' -branch and @xmath104 levels ) , using a gaussian - type form:@xcite @xmath121,\ ] ] with a half - width @xmath122 of the form:@xcite @xmath123^{1/2}$ ] . here @xmath124 is the single - particle lifetime and @xmath125 is the cyclotron frequency of linear - energy - dispersion system with @xmath126 being the zero - temperature fermi level . using a semi - empirical parameter @xmath127 to relate @xmath124 with the transport scattering time @xmath128 , and expressing @xmath129 with the zero - field mobility @xmath5 at finite temperature,@xcite we can write the landau - level broadening as @xmath130^{1/2}.\ ] ] in the present study we consider the case of @xmath120-doping , i.e. the fermi level is high enough above the energy zero of the dirac cone in the range of `` + ' ' -branch levels and the states of `` @xmath100''-branch levels are completely filled , that they are irrelevant to electron transport . special attention has to be paid to the @xmath104 level , since , depending on the direction of exchange potential the effective g - factor of a ti surface state , @xmath30 , can be positive , zero or negative.@xcite the sign and magnitude of the effective g - factor determines how many states of the zero level should be included in or excluded from the available states for electron occupation in the case of @xmath120-doping at a magnetic field . ( i ) if @xmath131 , the @xmath104 level center is exactly at @xmath132 and the system is electron - hole symmetric . the total number of negative energy states ( including the states of the lower half of the @xmath104 level and states of the @xmath100"-branch levels ) and that of positive energy states ( including the states of the upper half of the @xmath104 level and states of the @xmath99"-branch levels ) do not change when changing magnetic field . therefore , the lower - half negative energy states of this level are always filled and the upper - half positive - energy states of it are available for the occupation of particles which are counted as electrons participating in transport in the case of @xmath120-doping . ( ii ) for a finite positive @xmath133 , the @xmath104 level @xmath134 moves downward to negative energy and its distance to the nearest @xmath100"-branch level is @xmath135 closer than to the nearest + " -branch level at finite magnetic field strength @xmath2 . this is equivalent to the opening of an increasingly enlarged ( with increasing @xmath2 ) energy gap between the + " -branch states and the states of the zero - level and the @xmath100"-branch levels . the opening of a sufficient energy gap implies that with increasing magnetic field the states in the + " -branch levels would no longer shrink into the zero - level , and thus the @xmath104 level should be completely excluded from the conduction band , i.e. only particles occupying the + " -branch states are counted as electrons participating in transport in the case of @xmath120-doping , when the magnetic field @xmath2 gets larger than a certain value ( depending on the magnitude of @xmath30 ) . ( iii ) for a finite negative @xmath136 , the @xmath104 level @xmath134 moves upward to positive energy and an increasingly enlarged energy gap will be opened between the states of the zero - level and the + " -branch and the states of @xmath100"-branch levels , and particles occupying the @xmath104 level and + " -branch states are electrons participating in transport when the magnetic field @xmath2 gets larger than a certain value . as a result , the experimentally accessible sheet density @xmath33 of electrons participating in transport is related to the fermi energy @xmath137 by the following equation valid at finite @xmath30 for the magnetic field @xmath2 larger than a certain value : @xmath138 in which @xmath139 + 1\}^{-1}$ ] is the fermi distribution function at temperature @xmath76 and the summation index @xmath120 goes over @xmath140 for @xmath133 , or @xmath141 for @xmath136 . in the case of @xmath131 , @xmath142\ ] ] valid for arbitrary magnetic field , in which @xmath143 . the imaginary part of relative - electron density correlation function in the presence of a magnetic field , @xmath86 , can be expressed in the landau representation as@xcite @xmath144 in which the transform factor @xmath145 ^ 2,\end{aligned}\ ] ] with @xmath146 , @xmath147 , @xmath148 , and @xmath149 being associated laguerre polynomials . the landau - representation correlation function @xmath150 in eq.([piqw ] ) can be constructed with the imaginary part of the retarded green s function @xmath151 , or the density - of - states , of the @xmath120th landau level as@xcite @xmath152\nonumber\\ & \hspace{1.2cm}\times{\rm im}g_n(\epsilon+\omega){\rm im}g_{n'}(\epsilon).\end{aligned}\ ] ] the summation indices @xmath120 and @xmath153 in eq.([piqw ] ) are taken over @xmath140 for @xmath133 , or @xmath154 for @xmath136 . in the case of @xmath131 , eq.([piqw ] ) still works and the summation indices @xmath120 and @xmath153 go over @xmath154 but with @xmath155 replaced by @xmath156 in eq.([p2nn ] ) . numerical calculations are performed for the magnetoresistivity @xmath157 of surface state in a uniform ti bi@xmath0se@xmath1 . at zero temperature the elastic scattering contributing to the resistivity is modeled by a coulomb potential due to charged impurities:@xcite @xmath158 with @xmath159 being the impurity density , which is determined by the zero - magnetic - field mobility @xmath5 . at temperatures higher than @xmath160,@xcite phonon scatterings play increasingly important role and the dominant inelastic contribution comes from optical phonons . for this polar material , the scattering by optical phonons via the deformation potential can be neglected . hence , we take account of inelastic scattering from optical phonons via frhlich coupling : @xmath161 . in the numerical calculation we use the following parameters:@xcite fermi velocity @xmath162 , static dielectric constant @xmath163 , optical dielectric constant @xmath164 , and phonon energy @xmath165 . the broadening parameter is taken to be @xmath166 . as a function of the magnetic field @xmath2 having different effective g - factors : @xmath167 and @xmath168 for a ti surface system with electron sheet density @xmath169 in the cases of zero - magnetic - field mobility @xmath170 ( a ) and @xmath171 ( b ) . several integer - number positions of filling factor @xmath172 are marked in ( b).,scaledwidth=40.0% ] fig.[diffg ] shows the calculated magnetoresistivity @xmath157 versus the magnetic field strength @xmath2 for a ti surface system with electron sheet density @xmath169 but having different effective g - factors : @xmath167 and @xmath168 for two values of zero - magnetic - field mobility @xmath170 and @xmath171 , representing different degree of landau - level broadening . in the case without zeeman splitting ( @xmath131 ) the resistivity @xmath157 exhibits almost no change with changing magnetic field up to 10 t , except the shubnikov - de haas ( sdh ) oscillation showing up in the case of @xmath171 . this kind of magnetoresistance behavior was indeed seen experimentally in the electron - hole symmetrical massless system of single - layer graphene.@xcite in the case of a positive g - factor , @xmath173 , the magnetoresistivity increases linearly with increasing magnetic field ; while for a negative g - factor , @xmath174 , the magnetoresistivity decreases linearly with increasing magnetic field . is shown as a function of the magnetic field @xmath2 for different values of zero - magnetic - field mobility : ( a ) @xmath175 , ( b ) @xmath176 , ( c ) @xmath177 , ( d ) @xmath178 , ( e ) @xmath179 , and ( f ) @xmath180 . the inset of ( a ) illustrates the same for a larger magnetic - field range @xmath181 . the filling factor @xmath182 is plotted versus the magnetic field in ( f ) ; and several integer - number positions of @xmath182 are also marked in ( d ) and ( e ) . here the surface electron density @xmath169 and the lattice temperature @xmath183.,scaledwidth=47.0% ] in the following we will give more detailed examination on the linearly increasing magnetoresistance in the positive @xmath30 case . fig.[rhob ] shows the calculated resistivity @xmath157 versus the magnetic field strength @xmath2 at lattice temperature @xmath183 for system of carrier sheet density @xmath169 and @xmath173 , having different zero - field mobility @xmath184 and @xmath180 . all resistivity curves for mobility @xmath185 exhibit clear linearity in the magnetic - field range and appear no tendency of saturation at the highest field shown in the figure . especially , for the case @xmath170 , the linear behavior extends even up to the magnetic field of @xmath186 , as illustrated in the inset of fig.[rhob](a ) . this feature contradicts the classical mr which saturates at sufficiently large magnetic field @xmath187 . note that here we only present the calculated @xmath157 for magnetic field @xmath2 larger than @xmath188 t , for which a sufficient energy gap @xmath135 is assumed to open that with further increase of the magnetic field the states in the `` + ' ' -branch levels no longer shrink into the zero level and thus it should be excluded from the conduction band . this is of course not true for very weak magnetic field . when @xmath189 the energy gap @xmath190 , the situation becomes similar to the case of @xmath131 : the whole upper half of the zero - level states are available to electron occupation and we should have a flat resistivity @xmath157 when changing magnetic field . with increasing @xmath2 the portion of the zero - level states available to conduction electrons decreases until the magnetic field reaches @xmath191 . as a result the resistivity @xmath157 should exhibit a crossover from a flat changing at small @xmath2 to positively linear increasing at @xmath192 . this is just the behavior observed in the ti bi@xmath0se@xmath1.@xcite note that in the case of @xmath170 , the broadened landau - level widths are always larger than the neighboring level interval : @xmath193 , which requires @xmath194 ^ 2 $ ] , even for the lowest landau level @xmath195 , i.e. the whole landau - level spectrum is smeared . with increasing the zero - field mobility the magnitude of resistivity @xmath157 decreases , and when the broadened landau - level width becomes smaller than the neighboring level interval , @xmath196 , a weak sdh oscillation begin to occur around the linearly - dependent average value of @xmath157 at higher portion of the magnetic field range , as seen in fig.[rhob](c ) , ( d ) and ( e ) for @xmath197 and @xmath198 . on the other hand , in the case of large mobility , e.g. @xmath199 , where the broadened landau - level widths @xmath200 are much smaller than the neighboring level interval even for level index @xmath120 as large as @xmath201 , the magnetoresistivity shows pronounced sdh oscillation and the linear - dependent behavior disappears , before the appearance of quantum hall effect,@xcite as shown in fig.[rhob](f ) . abrikosov s model for the lmr requires the applied magnetic field large enough to reach the quantum limit at which all the carriers are within the lowest landau level,@xcite while it is obvious that more than one landau levels are occupied in the experimental samples in the field range in which the linear and non - saturating magnetoresistivity was observed.@xcite for the given electron surface density @xmath202 , the number of occupied landau levels , or the filling factor @xmath172 , at different magnetic fields is shown in fig.[rhob](f ) , as well as in the fig.[rhob](d ) and ( e ) , where the integer - number positions of @xmath203 , i.e. filling up to entire @xmath182 landau levels , coincide with the minima of the density - of - states or the dips of sdh oscillation . this is in contrast with @xmath131 case , where the integer number of @xmath203 , which implies a filling up to the center position of the @xmath182th landau levels , locates at a peak of sdh oscillation , as shown in fig.[diffg]b . the observed sdh oscillations in the bi@xmath0se@xmath1 nanoribbon exhibiting nonsaturating surface lmr in the experiment@xcite favor the former case : a finite positive effective @xmath133 . is plotted as a function of the surface electron density @xmath33 at magnetic field @xmath204 : ( a ) at different values of zero - field mobility @xmath5 , and ( b ) at different values of zero - field conductivity @xmath205.,scaledwidth=40.0% ] at various lattice temperatures . here the zero - magnetic - field mobility at zero temperature is @xmath206.,scaledwidth=35.0% ] next , we examine the density - dependence of the linear magnetoresistivity . to compare with abrikosov s quantum magnetoresistance which suggests a @xmath207 behavior,@xcite we show the calculated @xmath208 for above lmr versus the carrier sheet density @xmath33 in fig.[rhon ] at fixed magnetic field @xmath209 t . the mobility is taken respectively to be @xmath210 and @xmath211m@xmath212/vs to make the resistivity in the lmr regime . a clearly linear dependence of @xmath213 on the surface density @xmath33 is seen in all cases , indicating that this non - saturating linear resistivity is almost inversely proportional to the carrier density . in the figure we also show @xmath208 versus @xmath33 under the condition of different given conductivity @xmath214 and @xmath215 . in this case the half - width @xmath216 is independent of surface density . the linear dependence still holds , indicating that this linear behavior is not sensitive to the modest @xmath33-dependence of landau level broadening @xmath216 as long as the system is in the overlapped landau level regime . from the above discussion , it is obvious that lmr shows up in the system having overlapped landau levels and the separation of landau levels makes the mr departure from the linear increase . at high temperature , the thermal energy would smear the level separation and phonon scatterings further broaden landau levels . hence , it is believed that this lmr will be robust against raising temperature . this is indeed the case as seen in fig.[rhot ] , where we plot the calculated magnetoresistivity @xmath157 for the above system with zero - temperature linear mobility @xmath217m@xmath212/vs versus the magnetic field at different lattice temperatures . we can see that raising temperature to room temperature has little effect on the linearity of mr . due to the decreased mobility at higher temperature from phonon scattering , the weak sdh oscillation on the linear background tends to vanish . these features are in good agreement with the experimental report.@xcite in summary , we have studied the two - dimensional magnetotransport in the flat surface of a three - dimensional ti , which arises from the surface states with a wavevector - linear energy dispersion and a finite , positive zeeman splitting within the bulk energy gap . when the level broadening is comparable to or larger than the landau - level separation and the conduction electrons spread over many landau levels , a positive , dominantly linear and non - saturating magnetoresistance appears within a quite wide range of magnetic field and persists up to room temperature . this remarkable lmr provides a possible mechanism for the recently observed linear magnetoresistance in topological insulator bi@xmath0se@xmath1 nanoribbons.@xcite in contrast to quantum hall effect which appears in the case of well formed landau levels and to abrikosov s quantum magnetotransport,@xcite which is limited to the extreme quantum limit that all electrons coalesce into the lowest landau level , the discussed lmr is a phenomena of pure classical two - dimensional magnetotransport in a system having linear - energy - dispersion , appearing in the regime of overlapped landau levels , irrespective of its showing up in relatively high magnetic field range . furthermore , the present scheme deals with spatially uniform case without invoking the mobility fluctuation in a strongly inhomogeneous system , which is required in the classical parish and littlewood model to produce a lmr.@xcite the appearance of this significant positive - increasing linear magnetoresistance depends on the existence of a positive and sizable effective g - factor . if the zeeman energy splitting is quite small the resistivity @xmath157 would exhibit little change with changing magnetic field . in the case of a negative and sizable effective g - factor the magnetoresistivity would decrease linearly with increasing magnetic field . therefore , the behavior of the longitudinal resistivity versus magnetic field may provide a useful way for judging the direction and the size of the effective zeeman energy splitting in ti surface states . this work was supported by the national science foundation of china ( grant no . 11104002 ) , the national basic research program of china ( grant no . 2012cb927403 ) and by the program for science&technology innovation talents in universities of henan province ( grant no . 2012hastit029 ) .""" inputs = tokenizer( [ARTICLE_LEP, ARTICLE_MAGNET], max_length=1024, padding="max_length", truncation=True, return_tensors="pt", ) inputs = {k: inputs[k].to(torch_device) for k in inputs} hypotheses_batch = model.generate(**inputs) EXPECTED_LEP = ( "we study the rare decays @xmath0 ( @xmath1 ) at the gigaz option of the international linear collider " "( ilc ).<n> we calculate the branching ratios of @xmath2 in the two higgs doublet model ( 2hdm ), the " "minimal supersymmetric standard model ( mssm ), the next - to - minimal supersymmetric standard model " "( nmssm ) and the nearly minimal supersymmetric standard model ( nmssm ).<n> we find that the branching " "ratios of @xmath3 can reach @xmath4 in 2hdm, @xmath5 in mssm, @xmath6 in nmssm and @xmath7 in nmssm, " "while they are much smaller than @xmath8 in 2hdm, @xmath9 in mssm, @xmath10 in nmssm and @xmath11 in " "nmssm." ) EXPECTED_MAGNET = ( "we investigate the two - dimensional magnetotransport in the surface state of a topological insulator " "( ti ).<n> we find that a positive, nonsaturating and dominantly linear magnetoresistance can appear " "within quite wide magnetic - field range in the ti surface state having a positive and finite effective g " "- factor.<n> this linear magnetoresistance shows up in the system of high carrier concentration and low " "mobility when electrons are in extended states and spread over many smeared landau levels, and persists " "up to room temperature, providing a possible mechanism for the recently observed linear magnetoresistance " "in topological insulator bi@xmath0se@xmath1 nanoribbons." ) generated = tokenizer.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) self.assertTrue(generated == [EXPECTED_LEP, EXPECTED_MAGNET]) class BigBirdPegasusStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=7, d_model=32, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, attention_type="original_full", use_bias=True, block_size=16, num_random_blocks=3, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 self.attention_type = attention_type self.use_bias = use_bias self.block_size = block_size self.num_random_blocks = num_random_blocks def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = BigBirdPegasusConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, attention_type=self.attention_type, use_bias=self.use_bias, block_size=self.block_size, num_random_blocks=self.num_random_blocks, ) return ( config, input_ids, attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = BigBirdPegasusDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = BigBirdPegasusDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice # big bird has extremely high logits which requires # such a high error tolerance here assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=5e-1) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, lm_labels = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class BigBirdPegasusStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (BigBirdPegasusDecoder, BigBirdPegasusForCausalLM) if is_torch_available() else () all_generative_model_classes = (BigBirdPegasusForCausalLM,) if is_torch_available() else () test_pruning = False is_encoder_decoder = False def setUp( self, ): self.model_tester = BigBirdPegasusStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=BigBirdPegasusConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients return @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass
transformers-main
tests/models/bigbird_pegasus/test_modeling_bigbird_pegasus.py
transformers-main
tests/models/bigbird_pegasus/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch BioGPT model. """ import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class BioGptModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return BioGptConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BioGptModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = BioGptForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_biogpt_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = BioGptModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_biogpt_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = BioGptModel(config=config).to(torch_device).eval() attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False ): model = BioGptForCausalLM(config) model.to(torch_device) if gradient_checkpointing: model.gradient_checkpointing_enable() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def create_and_check_biogpt_weight_initialization(self, config, *args): model = BioGptModel(config) model_std = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) def create_and_check_biogpt_for_token_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): config.num_labels = self.num_labels model = BioGptForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class BioGptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) all_generative_model_classes = (BioGptForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False def setUp(self): self.model_tester = BioGptModelTester(self) self.config_tester = ConfigTester(self, config_class=BioGptConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_biogpt_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*config_and_inputs) def test_biogpt_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) def test_biogpt_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*config_and_inputs) def test_biogpt_weight_initialization(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*config_and_inputs) def test_biogpt_token_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*config_and_inputs) @slow def test_batch_generation(self): model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(torch_device) tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") tokenizer.padding_side = "left" # Define PAD Token = EOS Token = 50256 tokenizer.pad_token = tokenizer.eos_token model.config.pad_token_id = model.config.eos_token_id # use different length sentences to test batching sentences = [ "Hello, my dog is a little", "Today, I", ] inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) outputs = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), ) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model.generate(input_ids=inputs_non_padded) num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item() inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "Hello, my dog is a little bit bigger than a little bit.", "Today, I have a good idea of how to use the information", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence]) @slow def test_model_from_pretrained(self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BioGptModel.from_pretrained(model_name) self.assertIsNotNone(model) # Copied from tests.models.opt.test_modeling_opt.OPTModelTest with OPT->BioGpt, prepare_config_and_inputs-> prepare_config_and_inputs_for_common def test_biogpt_sequence_classification_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size) model = BioGptForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) # Copied from tests.models.opt.test_modeling_opt.OPTModelTest with OPT->BioGpt, prepare_config_and_inputs-> prepare_config_and_inputs_for_common def test_biogpt_sequence_classification_model_for_multi_label(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() config.num_labels = 3 config.problem_type = "multi_label_classification" input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) sequence_labels = ids_tensor( [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size ).to(torch.float) model = BioGptForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels) self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class BioGptModelIntegrationTest(unittest.TestCase): @slow def test_inference_lm_head_model(self): model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") input_ids = torch.tensor([[2, 4805, 9, 656, 21]]) output = model(input_ids)[0] vocab_size = 42384 expected_shape = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_biogpt_generation(self): tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") model.to(torch_device) torch.manual_seed(0) tokenized = tokenizer("COVID-19 is", return_tensors="pt").to(torch_device) output_ids = model.generate( **tokenized, min_length=100, max_length=1024, num_beams=5, early_stopping=True, ) output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True) EXPECTED_OUTPUT_STR = ( "COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the" " causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and" " territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK)," " and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and" " more than 800,000 deaths." ) self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
transformers-main
tests/models/biogpt/test_modeling_biogpt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class BioGptTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = BioGptTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(self.merges_file, "w") as fp: fp.write("\n".join(merges)) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): """Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt""" tokenizer = BioGptTokenizer(self.vocab_file, self.merges_file) text = "lower" bpe_tokens = ["low", "er</w>"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + ["<unk>"] input_bpe_tokens = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_2)
transformers-main
tests/models/biogpt/test_tokenization_biogpt.py
transformers-main
tests/models/biogpt/__init__.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch VisualBERT model. """ import copy import unittest from transformers import VisualBertConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForRegionToPhraseAlignment, VisualBertForVisualReasoning, VisualBertModel, ) from transformers.models.visual_bert.modeling_visual_bert import VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST class VisualBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, visual_seq_length=5, is_training=True, use_attention_mask=True, use_visual_attention_mask=True, use_token_type_ids=True, use_visual_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, visual_embedding_dim=20, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.visual_seq_length = visual_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_visual_attention_mask = use_visual_attention_mask self.use_token_type_ids = use_token_type_ids self.use_visual_token_type_ids = use_visual_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.visual_embedding_dim = visual_embedding_dim self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def get_config(self): return VisualBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, visual_embedding_dim=self.visual_embedding_dim, num_labels=self.num_labels, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) visual_embeds = floats_tensor([self.batch_size, self.visual_seq_length, self.visual_embedding_dim]) attention_mask = None if self.use_attention_mask: attention_mask = torch.ones((self.batch_size, self.seq_length), dtype=torch.long, device=torch_device) visual_attention_mask = None if self.use_visual_attention_mask: visual_attention_mask = torch.ones( (self.batch_size, self.visual_seq_length), dtype=torch.long, device=torch_device ) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) visual_token_type_ids = None if self.use_visual_token_type_ids: visual_token_type_ids = ids_tensor([self.batch_size, self.visual_seq_length], self.type_vocab_size) config = self.get_config() return config, { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, } def prepare_config_and_inputs_for_pretraining(self): masked_lm_labels = None sentence_image_labels = None if self.use_labels: masked_lm_labels = ids_tensor([self.batch_size, self.seq_length + self.visual_seq_length], self.vocab_size) sentence_image_labels = ids_tensor( [self.batch_size], self.type_sequence_label_size, ) config, input_dict = self.prepare_config_and_inputs_for_common() input_dict.update({"labels": masked_lm_labels, "sentence_image_labels": sentence_image_labels}) return config, input_dict def prepare_config_and_inputs_for_multiple_choice(self): input_ids = ids_tensor([self.batch_size, self.num_choices, self.seq_length], self.vocab_size) visual_embeds = floats_tensor( [self.batch_size, self.num_choices, self.visual_seq_length, self.visual_embedding_dim] ) attention_mask = None if self.use_attention_mask: attention_mask = torch.ones( (self.batch_size, self.num_choices, self.seq_length), dtype=torch.long, device=torch_device ) visual_attention_mask = None if self.use_visual_attention_mask: visual_attention_mask = torch.ones( (self.batch_size, self.num_choices, self.visual_seq_length), dtype=torch.long, device=torch_device ) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.num_choices, self.seq_length], self.type_vocab_size) visual_token_type_ids = None if self.use_visual_token_type_ids: visual_token_type_ids = ids_tensor( [self.batch_size, self.num_choices, self.visual_seq_length], self.type_vocab_size ) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, "visual_embeds": visual_embeds, "visual_token_type_ids": visual_token_type_ids, "visual_attention_mask": visual_attention_mask, "labels": labels, } def prepare_config_and_inputs_for_vqa(self): vqa_labels = None if self.use_labels: vqa_labels = floats_tensor([self.batch_size, self.num_labels]) config, input_dict = self.prepare_config_and_inputs_for_common() input_dict.update({"labels": vqa_labels}) return config, input_dict def prepare_config_and_inputs_for_nlvr(self): nlvr_labels = None if self.use_labels: nlvr_labels = ids_tensor([self.batch_size], self.num_labels) config, input_dict = self.prepare_config_and_inputs_for_common() input_dict.update({"labels": nlvr_labels}) return config, input_dict def prepare_config_and_inputs_for_flickr(self): region_to_phrase_position = torch.cat( ( ids_tensor([self.batch_size, self.seq_length], self.visual_seq_length), torch.ones(self.batch_size, self.visual_seq_length, dtype=torch.long, device=torch_device) * -1, ), dim=-1, ) flickr_labels = None if self.use_labels: flickr_labels = floats_tensor( [self.batch_size, self.seq_length + self.visual_seq_length, self.visual_seq_length] ) config, input_dict = self.prepare_config_and_inputs_for_common() input_dict.update({"region_to_phrase_position": region_to_phrase_position, "labels": flickr_labels}) return config, input_dict def create_and_check_model(self, config, input_dict): model = VisualBertModel(config=config) model.to(torch_device) model.eval() result = model(**input_dict) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length + self.visual_seq_length, self.hidden_size), ) def create_and_check_for_pretraining(self, config, input_dict): model = VisualBertForPreTraining(config=config) model.to(torch_device) model.eval() result = model(**input_dict) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length + self.visual_seq_length, self.vocab_size), ) def create_and_check_for_vqa(self, config, input_dict): model = VisualBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model(**input_dict) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_multiple_choice(self, config, input_dict): model = VisualBertForMultipleChoice(config=config) model.to(torch_device) model.eval() result = model(**input_dict) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_nlvr(self, config, input_dict): model = VisualBertForVisualReasoning(config=config) model.to(torch_device) model.eval() result = model(**input_dict) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_flickr(self, config, input_dict): model = VisualBertForRegionToPhraseAlignment(config=config) model.to(torch_device) model.eval() result = model(**input_dict) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.seq_length + self.visual_seq_length, self.visual_seq_length) ) @require_torch class VisualBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( VisualBertModel, VisualBertForMultipleChoice, VisualBertForVisualReasoning, VisualBertForRegionToPhraseAlignment, VisualBertForQuestionAnswering, VisualBertForPreTraining, ) if is_torch_available() else () ) pipeline_model_mapping = {"feature-extraction": VisualBertModel} if is_torch_available() else {} test_torchscript = False test_pruning = False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class == VisualBertForMultipleChoice: for key in inputs_dict.keys(): value = inputs_dict[key] if isinstance(value, torch.Tensor) and value.ndim > 1: if key != "visual_embeds": inputs_dict[key] = ( inputs_dict[key].unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() ) else: inputs_dict[key] = ( inputs_dict[key] .unsqueeze(1) .expand(-1, self.model_tester.num_choices, -1, self.model_tester.visual_embedding_dim) .contiguous() ) elif model_class == VisualBertForRegionToPhraseAlignment: total_length = self.model_tester.seq_length + self.model_tester.visual_seq_length batch_size = self.model_tester.batch_size inputs_dict["region_to_phrase_position"] = torch.zeros( (batch_size, total_length), dtype=torch.long, device=torch_device, ) if return_labels: if model_class == VisualBertForMultipleChoice: inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class == VisualBertForPreTraining: total_length = self.model_tester.seq_length + self.model_tester.visual_seq_length batch_size = self.model_tester.batch_size inputs_dict["labels"] = torch.zeros( (batch_size, total_length), dtype=torch.long, device=torch_device, ) inputs_dict["sentence_image_labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) # Flickr expects float labels elif model_class == VisualBertForRegionToPhraseAlignment: batch_size = self.model_tester.batch_size total_length = self.model_tester.seq_length + self.model_tester.visual_seq_length inputs_dict["labels"] = torch.ones( ( batch_size, total_length, self.model_tester.visual_seq_length, ), dtype=torch.float, device=torch_device, ) # VQA expects float labels elif model_class == VisualBertForQuestionAnswering: inputs_dict["labels"] = torch.ones( (self.model_tester.batch_size, self.model_tester.num_labels), dtype=torch.float, device=torch_device, ) elif model_class == VisualBertForVisualReasoning: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size), dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = VisualBertModelTester(self) self.config_tester = ConfigTester(self, config_class=VisualBertConfig, hidden_size=37) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) visual_seq_len = getattr(self.model_tester, "visual_seq_length", None) encoder_seq_length = (seq_len if seq_len is not None else 0) + ( visual_seq_len if visual_seq_len is not None else 0 ) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) chunk_length = getattr(self.model_tester, "chunk_length", None) if chunk_length is not None and hasattr(self.model_tester, "num_hashes"): encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) if chunk_length is not None: self.assertListEqual( list(self_attentions[0].shape[-4:]), [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length], ) else: self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1: seq_length = seq_length * self.model_tester.chunk_length else: seq_length = self.model_tester.seq_length + self.model_tester.visual_seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_pretraining() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_model_for_vqa(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_vqa() self.model_tester.create_and_check_for_vqa(*config_and_inputs) def test_model_for_nlvr(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_nlvr() self.model_tester.create_and_check_for_nlvr(*config_and_inputs) def test_model_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_multiple_choice() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_model_for_flickr(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_flickr() self.model_tester.create_and_check_for_flickr(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = VisualBertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class VisualBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_vqa_coco_pre(self): model = VisualBertForPreTraining.from_pretrained("uclanlp/visualbert-vqa-coco-pre") input_ids = torch.tensor([1, 2, 3, 4, 5, 6], dtype=torch.long).reshape(1, -1) token_type_ids = torch.tensor([0, 0, 0, 1, 1, 1], dtype=torch.long).reshape(1, -1) visual_embeds = torch.ones(size=(1, 10, 2048), dtype=torch.float32) * 0.5 visual_token_type_ids = torch.ones(size=(1, 10), dtype=torch.long) attention_mask = torch.tensor([1] * 6).reshape(1, -1) visual_attention_mask = torch.tensor([1] * 10).reshape(1, -1) with torch.no_grad(): output = model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, ) vocab_size = 30522 expected_shape = torch.Size((1, 16, vocab_size)) self.assertEqual(output.prediction_logits.shape, expected_shape) expected_slice = torch.tensor( [[[-5.1858, -5.1903, -4.9142], [-6.2214, -5.9238, -5.8381], [-6.3027, -5.9939, -5.9297]]] ) self.assertTrue(torch.allclose(output.prediction_logits[:, :3, :3], expected_slice, atol=1e-4)) expected_shape_2 = torch.Size((1, 2)) self.assertEqual(output.seq_relationship_logits.shape, expected_shape_2) expected_slice_2 = torch.tensor([[0.7393, 0.1754]]) self.assertTrue(torch.allclose(output.seq_relationship_logits, expected_slice_2, atol=1e-4)) @slow def test_inference_vqa(self): model = VisualBertForQuestionAnswering.from_pretrained("uclanlp/visualbert-vqa") input_ids = torch.tensor([1, 2, 3, 4, 5, 6], dtype=torch.long).reshape(1, -1) token_type_ids = torch.tensor([0, 0, 0, 1, 1, 1], dtype=torch.long).reshape(1, -1) visual_embeds = torch.ones(size=(1, 10, 2048), dtype=torch.float32) * 0.5 visual_token_type_ids = torch.ones(size=(1, 10), dtype=torch.long) attention_mask = torch.tensor([1] * 6).reshape(1, -1) visual_attention_mask = torch.tensor([1] * 10).reshape(1, -1) with torch.no_grad(): output = model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, ) # vocab_size = 30522 expected_shape = torch.Size((1, 3129)) self.assertEqual(output.logits.shape, expected_shape) expected_slice = torch.tensor( [[-8.9898, 3.0803, -1.8016, 2.4542, -8.3420, -2.0224, -3.3124, -4.4139, -3.1491, -3.8997]] ) self.assertTrue(torch.allclose(output.logits[:, :10], expected_slice, atol=1e-4)) @slow def test_inference_nlvr(self): model = VisualBertForVisualReasoning.from_pretrained("uclanlp/visualbert-nlvr2") input_ids = torch.tensor([1, 2, 3, 4, 5, 6], dtype=torch.long).reshape(1, -1) token_type_ids = torch.tensor([0, 0, 0, 1, 1, 1], dtype=torch.long).reshape(1, -1) visual_embeds = torch.ones(size=(1, 10, 1024), dtype=torch.float32) * 0.5 visual_token_type_ids = torch.ones(size=(1, 10), dtype=torch.long) attention_mask = torch.tensor([1] * 6).reshape(1, -1) visual_attention_mask = torch.tensor([1] * 10).reshape(1, -1) with torch.no_grad(): output = model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, ) # vocab_size = 30522 expected_shape = torch.Size((1, 2)) self.assertEqual(output.logits.shape, expected_shape) expected_slice = torch.tensor([[-1.1436, 0.8900]]) self.assertTrue(torch.allclose(output.logits, expected_slice, atol=1e-4)) @slow def test_inference_vcr(self): model = VisualBertForMultipleChoice.from_pretrained("uclanlp/visualbert-vcr") input_ids = torch.tensor([[[1, 2, 3, 4, 5, 6] for i in range(4)]], dtype=torch.long) attention_mask = torch.ones_like(input_ids) token_type_ids = torch.ones_like(input_ids) visual_embeds = torch.ones(size=(1, 4, 10, 512), dtype=torch.float32) * 0.5 visual_token_type_ids = torch.ones(size=(1, 4, 10), dtype=torch.long) visual_attention_mask = torch.ones_like(visual_token_type_ids) with torch.no_grad(): output = model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, visual_embeds=visual_embeds, visual_attention_mask=visual_attention_mask, visual_token_type_ids=visual_token_type_ids, ) # vocab_size = 30522 expected_shape = torch.Size((1, 4)) self.assertEqual(output.logits.shape, expected_shape) expected_slice = torch.tensor([[-7.7697, -7.7697, -7.7697, -7.7697]]) self.assertTrue(torch.allclose(output.logits, expected_slice, atol=1e-4))
transformers-main
tests/models/visual_bert/test_modeling_visual_bert.py
transformers-main
tests/models/visual_bert/__init__.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch BLIP-2 model. """ import inspect import tempfile import unittest import numpy as np import requests from transformers import CONFIG_MAPPING, Blip2Config, Blip2QFormerConfig, Blip2VisionConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import Blip2ForConditionalGeneration, Blip2Model, Blip2VisionModel from transformers.models.blip_2.modeling_blip_2 import BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import Blip2Processor class Blip2VisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=1e-10, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return Blip2VisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values): model = Blip2VisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class Blip2VisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as BLIP-2's vision encoder does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (Blip2VisionModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = Blip2VisionModelTester(self) self.config_tester = ConfigTester( self, config_class=Blip2VisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="BLIP-2's vision encoder does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass @unittest.skip(reason="Blip2VisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Blip2VisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Blip2VisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class Blip2QFormerModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, bos_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return Blip2QFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, ) # this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py class Blip2TextModelDecoderOnlyTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, embed_dim=16, num_labels=3, word_embed_proj_dim=16, type_sequence_label_size=2, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.embed_dim = embed_dim self.num_labels = num_labels self.type_sequence_label_size = type_sequence_label_size self.word_embed_proj_dim = word_embed_proj_dim self.is_encoder_decoder = False def prepare_config_and_inputs(self): config = self.get_config() input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3) input_ids[:, -1] = self.eos_token_id # Eos Token attention_mask = input_ids.ne(self.pad_token_id) return config, input_ids, attention_mask def get_config(self): return CONFIG_MAPPING["opt"]( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, embed_dim=self.embed_dim, is_encoder_decoder=False, word_embed_proj_dim=self.word_embed_proj_dim, ) # this model tester uses a decoder-only language model (OPT) class Blip2ForConditionalGenerationDecoderOnlyModelTester: def __init__( self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10 ): if vision_kwargs is None: vision_kwargs = {} if qformer_kwargs is None: qformer_kwargs = {} if text_kwargs is None: text_kwargs = {} self.parent = parent self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs) self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs) self.text_model_tester = Blip2TextModelDecoderOnlyTester(parent, **text_kwargs) self.is_training = is_training self.num_query_tokens = num_query_tokens def prepare_config_and_inputs(self): _, pixel_values = self.vision_model_tester.prepare_config_and_inputs() _, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values def get_config(self): return Blip2Config.from_vision_qformer_text_configs( vision_config=self.vision_model_tester.get_config(), qformer_config=self.qformer_model_tester.get_config(), text_config=self.text_model_tester.get_config(), num_query_tokens=self.num_query_tokens, ) def create_and_check_for_conditional_generation(self, config, input_ids, attention_mask, pixel_values): model = Blip2ForConditionalGeneration(config).to(torch_device).eval() with torch.no_grad(): result = model(pixel_values, input_ids, attention_mask) expected_seq_length = self.num_query_tokens + self.text_model_tester.seq_length self.parent.assertEqual( result.logits.shape, (self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, attention_mask, pixel_values = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask, "labels": input_ids, } return config, inputs_dict @require_torch class Blip2ForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (Blip2ForConditionalGeneration,) if is_torch_available() else () fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_torchscript = False def setUp(self): self.model_tester = Blip2ForConditionalGenerationDecoderOnlyModelTester(self) def test_for_conditional_generation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Blip2Model does not have input/output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="There's no base Blip2Model") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="There's no base Blip2Model") def test_save_load_fast_init_to_base(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_load_vision_qformer_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save Blip2Config and check if we can load Blip2VisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save Blip2Config and check if we can load Blip2QFormerConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST: model = Blip2ForConditionalGeneration.from_pretrained(model_name) self.assertIsNotNone(model) # this class is based on `T5ModelTester` found in tests/models/t5/test_modeling_t5.py class Blip2TextModelTester: def __init__( self, parent, vocab_size=99, batch_size=12, encoder_seq_length=7, decoder_seq_length=9, # For common tests is_training=True, use_attention_mask=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, dropout_rate=0.1, initializer_factor=0.002, eos_token_id=1, pad_token_id=0, decoder_start_token_id=0, scope=None, decoder_layers=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.scope = None self.decoder_layers = decoder_layers def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None decoder_attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = self.get_config() return ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) def get_config(self): return CONFIG_MAPPING["t5"]( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) # this model tester uses an encoder-decoder language model (T5) class Blip2ModelTester: def __init__( self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10 ): if vision_kwargs is None: vision_kwargs = {} if qformer_kwargs is None: qformer_kwargs = {} if text_kwargs is None: text_kwargs = {} self.parent = parent self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs) self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs) self.text_model_tester = Blip2TextModelTester(parent, **text_kwargs) self.is_training = is_training self.num_query_tokens = num_query_tokens def prepare_config_and_inputs(self): _, pixel_values = self.vision_model_tester.prepare_config_and_inputs() ( _, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels, ) = self.text_model_tester.prepare_config_and_inputs() config = self.get_config() return config, input_ids, attention_mask, pixel_values, decoder_input_ids, decoder_attention_mask, lm_labels def get_config(self): return Blip2Config.from_vision_qformer_text_configs( vision_config=self.vision_model_tester.get_config(), qformer_config=self.qformer_model_tester.get_config(), text_config=self.text_model_tester.get_config(), num_query_tokens=self.num_query_tokens, ) def create_and_check_for_conditional_generation( self, config, input_ids, attention_mask, pixel_values, decoder_input_ids, decoder_attention_mask, labels ): model = Blip2ForConditionalGeneration(config).to(torch_device).eval() with torch.no_grad(): result = model(pixel_values, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask) self.parent.assertEqual( result.logits.shape, ( self.vision_model_tester.batch_size, self.text_model_tester.seq_length, self.text_model_tester.vocab_size, ), ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, pixel_values, decoder_input_ids, decoder_attention_mask, labels, ) = config_and_inputs inputs_dict = { "pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "labels": labels, } return config, inputs_dict @require_torch class Blip2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Blip2ForConditionalGeneration, Blip2Model) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": Blip2Model, "image-to-text": Blip2ForConditionalGeneration} if is_torch_available() else {} ) fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False test_torchscript = False def setUp(self): self.model_tester = Blip2ModelTester(self) def test_for_conditional_generation(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Blip2Model does not have input/output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="There's no base Blip2Model") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="There's no base Blip2Model") def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="Does not work on the tiny model as we keep hitting edge cases.") def test_cpu_offload(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_load_vision_qformer_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save Blip2Config and check if we can load Blip2VisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save Blip2Config and check if we can load Blip2QFormerConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict()) @slow def test_model_from_pretrained(self): for model_name in BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST: model = Blip2ForConditionalGeneration.from_pretrained(model_name) self.assertIsNotNone(model) def test_get_text_features(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() inputs_dict = { "input_ids": torch.LongTensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).to(torch_device), "attention_mask": torch.LongTensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(torch_device), "decoder_input_ids": torch.LongTensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).to(torch_device), } model = Blip2Model(config).to(torch_device) model.eval() text_features = model.get_text_features(**inputs_dict) self.assertEqual(text_features[0].shape, (1, 10, config.text_config.vocab_size)) def test_get_image_features(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] for key in keys_to_pop: inputs_dict.pop(key) model = Blip2Model(config).to(torch_device) model.eval() image_features = model.get_image_features(**inputs_dict) self.assertEqual( image_features[0].shape, ( self.model_tester.vision_model_tester.batch_size, self.model_tester.vision_model_tester.seq_length, config.vision_config.hidden_size, ), ) def test_get_qformer_features(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] for key in keys_to_pop: inputs_dict.pop(key) model = Blip2Model(config).to(torch_device) model.eval() qformer_features = model.get_qformer_features(**inputs_dict) self.assertEqual( qformer_features[0].shape, (self.model_tester.vision_model_tester.batch_size, 10, config.vision_config.hidden_size), ) # override from common to deal with nested configurations (`vision_config`, `text_config` and `qformer_config`) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for key in ["vision_config", "qformer_config", "text_config"]: setattr(configs_no_init, key, _config_zero_init(getattr(configs_no_init, key))) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # We will verify our results on an image of cute cats def prepare_img(): url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg" image = Image.open(requests.get(url, stream=True).raw) return image @require_vision @require_torch @slow class Blip2ModelIntegrationTest(unittest.TestCase): def test_inference_opt(self): processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16 ).to(torch_device) # prepare image image = prepare_img() inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16) predictions = model.generate(**inputs) generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip() # Test output self.assertEqual(predictions[0].tolist(), [2, 102, 693, 2828, 15, 5, 4105, 19, 10, 2335, 50118]) self.assertEqual("a woman sitting on the beach with a dog", generated_text) # image and context prompt = "Question: which city is this? Answer:" inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16) predictions = model.generate(**inputs) generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip() # Test output self.assertEqual( predictions[0].tolist(), [2, 24, 18, 45, 10, 343, 6, 24, 18, 10, 4105, 50118], ) self.assertEqual(generated_text, "it's not a city, it's a beach") def test_inference_opt_batched_beam_search(self): processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16 ).to(torch_device) # prepare image image = prepare_img() inputs = processor(images=[image, image], return_tensors="pt").to(torch_device, dtype=torch.float16) predictions = model.generate(**inputs, num_beams=2) # Test output (in this case, slightly different from greedy search) self.assertEqual(predictions[0].tolist(), [2, 102, 693, 2828, 15, 5, 4105, 19, 69, 2335, 50118]) self.assertEqual(predictions[1].tolist(), [2, 102, 693, 2828, 15, 5, 4105, 19, 69, 2335, 50118]) def test_inference_t5(self): processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16 ).to(torch_device) # prepare image image = prepare_img() inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16) predictions = model.generate(**inputs) generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip() # Test output self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1]) self.assertEqual("woman playing with dog on the beach", generated_text) # image and context prompt = "Question: which city is this? Answer:" inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16) predictions = model.generate(**inputs) generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip() # Test output self.assertEqual( predictions[0].tolist(), [0, 3, 7, 152, 67, 839, 1], ) self.assertEqual(generated_text, "san diego") def test_inference_t5_batched_beam_search(self): processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16 ).to(torch_device) # prepare image image = prepare_img() inputs = processor(images=[image, image], return_tensors="pt").to(torch_device, dtype=torch.float16) predictions = model.generate(**inputs, num_beams=2) # Test output (in this case, slightly different from greedy search) self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1]) self.assertEqual(predictions[1].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1]) @require_torch_multi_gpu def test_inference_opt_multi_gpu(self): processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="balanced" ) # prepare image image = prepare_img() inputs = processor(images=image, return_tensors="pt").to(0, dtype=torch.float16) predictions = model.generate(**inputs) generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip() # Test output self.assertEqual(predictions[0].tolist(), [2, 102, 693, 2828, 15, 5, 4105, 19, 10, 2335, 50118]) self.assertEqual("a woman sitting on the beach with a dog", generated_text) # image and context prompt = "Question: which city is this? Answer:" inputs = processor(images=image, text=prompt, return_tensors="pt").to(0, dtype=torch.float16) predictions = model.generate(**inputs) generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip() # Test output self.assertEqual( predictions[0].tolist(), [2, 24, 18, 45, 10, 343, 6, 24, 18, 10, 4105, 50118], ) self.assertEqual(generated_text, "it's not a city, it's a beach") @require_torch_multi_gpu def test_inference_t5_multi_gpu(self): processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl") device_map = device_map = { "query_tokens": 0, "vision_model": 0, "language_model": 1, "language_projection": 0, "qformer": 0, } model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16, device_map=device_map ) # prepare image image = prepare_img() inputs = processor(images=image, return_tensors="pt").to(0, dtype=torch.float16) predictions = model.generate(**inputs) generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip() # Test output self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1]) self.assertEqual("woman playing with dog on the beach", generated_text) # image and context prompt = "Question: which city is this? Answer:" inputs = processor(images=image, text=prompt, return_tensors="pt").to(0, dtype=torch.float16) predictions = model.generate(**inputs) generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip() # Test output self.assertEqual( predictions[0].tolist(), [0, 3, 7, 152, 67, 839, 1], ) self.assertEqual(generated_text, "san diego")
transformers-main
tests/models/blip_2/test_modeling_blip_2.py
transformers-main
tests/models/blip_2/__init__.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, Blip2Processor, BlipImageProcessor, GPT2Tokenizer, PreTrainedTokenizerFast @require_vision class Blip2ProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = BlipImageProcessor() tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model") processor = Blip2Processor(image_processor, tokenizer) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_additional_features(self): processor = Blip2Processor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = Blip2Processor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, BlipImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Blip2Processor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Blip2Processor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str, return_token_type_ids=False) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Blip2Processor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Blip2Processor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Blip2Processor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()), ["pixel_values", "input_ids", "attention_mask"])
transformers-main
tests/models/blip_2/test_processor_blip_2.py
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import random import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import FlavaImageProcessor, FlavaProcessor from transformers.models.flava.image_processing_flava import ( FLAVA_CODEBOOK_MEAN, FLAVA_CODEBOOK_STD, FLAVA_IMAGE_MEAN, FLAVA_IMAGE_STD, ) @require_vision class FlavaProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() # fmt: off vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write("".join([x + "\n" for x in vocab_tokens])) image_processor_map = { "image_mean": FLAVA_IMAGE_MEAN, "image_std": FLAVA_IMAGE_STD, "do_normalize": True, "do_resize": True, "size": 224, "do_center_crop": True, "crop_size": 224, "input_size_patches": 14, "total_mask_patches": 75, "mask_group_max_patches": None, "mask_group_min_patches": 16, "mask_group_min_aspect_ratio": 0.3, "mask_group_max_aspect_ratio": None, "codebook_do_resize": True, "codebook_size": 112, "codebook_do_center_crop": True, "codebook_crop_size": 112, "codebook_do_map_pixels": True, "codebook_do_normalize": True, "codebook_image_mean": FLAVA_CODEBOOK_MEAN, "codebook_image_std": FLAVA_CODEBOOK_STD, } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return BertTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): return BertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_image_processor(self, **kwargs): return FlavaImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() image_processor = self.get_image_processor() processor_slow = FlavaProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = FlavaProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = FlavaProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = FlavaProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, BertTokenizer) self.assertIsInstance(processor_fast.tokenizer, BertTokenizerFast) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, FlavaImageProcessor) self.assertIsInstance(processor_fast.image_processor, FlavaImageProcessor) def test_save_load_pretrained_additional_features(self): processor = FlavaProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = FlavaProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, BertTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, FlavaImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) # With rest of the args random.seed(1234) input_feat_extract = image_processor( image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np" ) random.seed(1234) input_processor = processor( images=image_input, return_image_mask=True, return_codebook_pixels=True, return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) # add extra args inputs = processor(text=input_str, images=image_input, return_codebook_pixels=True, return_image_mask=True) self.assertListEqual( list(inputs.keys()), [ "input_ids", "token_type_ids", "attention_mask", "pixel_values", "codebook_pixel_values", "bool_masked_pos", ], ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = FlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), processor.model_input_names)
transformers-main
tests/models/flava/test_processor_flava.py
transformers-main
tests/models/flava/__init__.py
# coding=utf-8 # Copyright 2022 Meta Platforms authors and HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): import PIL from transformers import FlavaImageProcessor from transformers.image_utils import PILImageResampling from transformers.models.flava.image_processing_flava import ( FLAVA_CODEBOOK_MEAN, FLAVA_CODEBOOK_STD, FLAVA_IMAGE_MEAN, FLAVA_IMAGE_STD, ) else: FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None class FlavaImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, resample=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=True, image_mean=FLAVA_IMAGE_MEAN, image_std=FLAVA_IMAGE_STD, input_size_patches=14, total_mask_patches=75, mask_group_max_patches=None, mask_group_min_patches=16, mask_group_min_aspect_ratio=0.3, mask_group_max_aspect_ratio=None, codebook_do_resize=True, codebook_size=None, codebook_resample=None, codebook_do_center_crop=True, codebook_crop_size=None, codebook_do_map_pixels=True, codebook_do_normalize=True, codebook_image_mean=FLAVA_CODEBOOK_MEAN, codebook_image_std=FLAVA_CODEBOOK_STD, ): size = size if size is not None else {"height": 224, "width": 224} crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112} codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.do_resize = do_resize self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.min_resolution = min_resolution self.max_resolution = max_resolution self.size = size self.resample = resample if resample is not None else PILImageResampling.BICUBIC self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_center_crop = do_center_crop self.crop_size = crop_size self.input_size_patches = input_size_patches self.total_mask_patches = total_mask_patches self.mask_group_max_patches = mask_group_max_patches self.mask_group_min_patches = mask_group_min_patches self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio self.codebook_do_resize = codebook_do_resize self.codebook_size = codebook_size self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS self.codebook_do_center_crop = codebook_do_center_crop self.codebook_crop_size = codebook_crop_size self.codebook_do_map_pixels = codebook_do_map_pixels self.codebook_do_normalize = codebook_do_normalize self.codebook_image_mean = codebook_image_mean self.codebook_image_std = codebook_image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "resample": self.resample, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "input_size_patches": self.input_size_patches, "total_mask_patches": self.total_mask_patches, "mask_group_max_patches": self.mask_group_max_patches, "mask_group_min_patches": self.mask_group_min_patches, "mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio, "mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio, "codebook_do_resize": self.codebook_do_resize, "codebook_size": self.codebook_size, "codebook_resample": self.codebook_resample, "codebook_do_center_crop": self.codebook_do_center_crop, "codebook_crop_size": self.codebook_crop_size, "codebook_do_map_pixels": self.codebook_do_map_pixels, "codebook_do_normalize": self.codebook_do_normalize, "codebook_image_mean": self.codebook_image_mean, "codebook_image_std": self.codebook_image_std, } def get_expected_image_size(self): return (self.size["height"], self.size["width"]) def get_expected_mask_size(self): return ( (self.input_size_patches, self.input_size_patches) if not isinstance(self.input_size_patches, tuple) else self.input_size_patches ) def get_expected_codebook_image_size(self): return (self.codebook_size["height"], self.codebook_size["width"]) def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class FlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = FlavaImageProcessor if is_vision_available() else None maxDiff = None def setUp(self): self.image_processor_tester = FlavaImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "resample")) self.assertTrue(hasattr(image_processing, "crop_size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "masking_generator")) self.assertTrue(hasattr(image_processing, "codebook_do_resize")) self.assertTrue(hasattr(image_processing, "codebook_size")) self.assertTrue(hasattr(image_processing, "codebook_resample")) self.assertTrue(hasattr(image_processing, "codebook_do_center_crop")) self.assertTrue(hasattr(image_processing, "codebook_crop_size")) self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels")) self.assertTrue(hasattr(image_processing, "codebook_do_normalize")) self.assertTrue(hasattr(image_processing, "codebook_image_mean")) self.assertTrue(hasattr(image_processing, "codebook_image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 224, "width": 224}) self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224}) self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112}) self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112}) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66 ) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33}) self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66}) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, PIL.Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt") # Test no bool masked pos self.assertFalse("bool_masked_pos" in encoded_images) expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() # Test no bool masked pos self.assertFalse("bool_masked_pos" in encoded_images) self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def _test_call_framework(self, instance_class, prepare_kwargs): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, **prepare_kwargs) for image in image_inputs: self.assertIsInstance(image, instance_class) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) expected_height, expected_width = self.image_processor_tester.get_expected_mask_size() self.assertEqual( encoded_images.bool_masked_pos.shape, ( self.image_processor_tester.batch_size, expected_height, expected_width, ), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test masking encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) expected_height, expected_width = self.image_processor_tester.get_expected_mask_size() self.assertEqual( encoded_images.bool_masked_pos.shape, ( self.image_processor_tester.batch_size, expected_height, expected_width, ), ) def test_call_numpy(self): self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True}) def test_call_pytorch(self): self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True}) def test_masking(self): # Initialize image_processing random.seed(1234) image_processing = self.image_processing_class(**self.image_processor_dict) image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) # Test not batched input encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt") self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75) def test_codebook_pixels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, PIL.Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size() self.assertEqual( encoded_images.codebook_pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size() self.assertEqual( encoded_images.codebook_pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), )
transformers-main
tests/models/flava/test_image_processing_flava.py
# coding=utf-8 # Copyright 2022 Meta Platforms authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch FLAVA model. """ import inspect import os import random import tempfile import unittest import numpy as np import requests from transformers import ( FlavaConfig, FlavaImageCodebookConfig, FlavaImageConfig, FlavaMultimodalConfig, FlavaTextConfig, ) from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FlavaForPreTraining, FlavaImageCodebook, FlavaImageModel, FlavaModel, FlavaMultimodalModel, FlavaTextModel, ) from transformers.models.flava.modeling_flava import ( FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST, FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST, ) else: FlavaModel = None FlavaForPreTraining = None torch = {} if is_vision_available(): from PIL import Image from transformers import FlavaProcessor class FlavaImageModelTester: def __init__( self, parent, batch_size=12, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=30, patch_size=2, num_channels=3, qkv_bias=True, mask_token=True, vocab_size=99, ): self.parent = parent self.batch_size = batch_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.mask_token = mask_token self.vocab_size = vocab_size def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) num_patches = self.image_size // self.patch_size bool_masked_pos = ( torch.rand((self.batch_size, num_patches, num_patches), device=pixel_values.device) < 0.9 ).long() config = self.get_config() return config, pixel_values, bool_masked_pos def get_config(self): return FlavaImageConfig( hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, qkv_bias=self.qkv_bias, mask_token=self.mask_token, vocab_size=self.vocab_size, ) def create_and_check_model(self, config, pixel_values, bool_masked_pos): model = FlavaImageModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values, bool_masked_pos) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) image_size = (self.image_size, self.image_size) patch_size = (self.patch_size, self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, bool_masked_pos = config_and_inputs inputs_dict = {"pixel_values": pixel_values, "bool_masked_pos": bool_masked_pos} return config, inputs_dict @require_torch class FlavaImageModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as FLAVA does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (FlavaImageModel,) if is_torch_available() else () test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = FlavaImageModelTester(self) self.config_tester = ConfigTester(self, config_class=FlavaImageConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_inputs_embeds(self): # FLAVA does not use inputs_embeds pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True # in FLAVA, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) image_size = (self.model_tester.image_size, self.model_tester.image_size) patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_len = num_patches + 1 for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # FLAVA has a different seq_length image_size = (self.model_tester.image_size, self.model_tester.image_size) patch_size = (self.model_tester.patch_size, self.model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) seq_length = num_patches + 1 self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): pass def test_training_gradient_checkpointing(self): pass # skip this test as FlavaImageModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_from_base(self): pass # skip this test as FlavaImageModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = FlavaImageModel.from_pretrained(model_name) self.assertIsNotNone(model) class FlavaTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, vocab_size=102, type_vocab_size=2, max_position_embeddings=512, position_embedding_type="absolute", hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, qkv_bias=True, ): self.parent = parent self.batch_size = batch_size self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.seq_length = seq_length self.vocab_size = vocab_size self.type_vocab_size = type_vocab_size self.max_position_embeddings = max_position_embeddings self.position_embedding_type = position_embedding_type self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.pad_token_id = pad_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = self.get_config() return config, input_ids, token_type_ids, input_mask def get_config(self): return FlavaTextConfig( vocab_size=self.vocab_size, type_vocab_size=self.type_vocab_size, max_position_embeddings=self.max_position_embeddings, position_embedding_type=self.position_embedding_type, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, pad_token_id=self.pad_token_id, qkv_bias=self.qkv_bias, ) def create_and_check_model(self, config, input_ids, token_type_ids, input_mask): model = FlavaTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class FlavaTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (FlavaTextModel,) if is_torch_available() else () test_pruning = False test_head_masking = False test_torchscript = False def setUp(self): self.model_tester = FlavaTextModelTester(self) self.config_tester = ConfigTester(self, config_class=FlavaTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_training(self): pass def test_training_gradient_checkpointing(self): pass def test_inputs_embeds(self): # FLAVA does not use inputs_embeds pass # skip this test as FlavaTextModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_from_base(self): pass # skip this test as FlavaTextModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = FlavaTextModel.from_pretrained(model_name) self.assertIsNotNone(model) class FlavaMultimodalModelTester: def __init__( self, parent, batch_size=12, seq_length=44, use_input_mask=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, qkv_bias=True, ce_ignore_index=-100, use_cls_token=True, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.use_input_mask = use_input_mask self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.ce_ignore_index = ce_ignore_index self.use_cls_token = use_cls_token def prepare_config_and_inputs(self): hidden_states = floats_tensor([self.batch_size, self.seq_length - 1, self.hidden_size]) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, hidden_states, input_mask def get_config(self): return FlavaMultimodalConfig( hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, qkv_bias=self.qkv_bias, use_cls_token=self.use_cls_token, ce_ignore_index=self.ce_ignore_index, ) def create_and_check_model(self, config, hidden_states, input_mask): model = FlavaMultimodalModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(hidden_states, attention_mask=input_mask) result = model(hidden_states) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, hidden_states, input_mask = config_and_inputs inputs_dict = {"hidden_states": hidden_states, "attention_mask": input_mask} return config, inputs_dict @require_torch class FlavaMultimodalModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (FlavaMultimodalModel,) if is_torch_available() else () test_pruning = False test_head_masking = False test_resize_embeddings = False test_torchscript = False def setUp(self): self.model_tester = FlavaMultimodalModelTester(self) self.config_tester = ConfigTester( self, config_class=FlavaMultimodalConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["hidden_states"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model_common_attributes(self): # No embedding in multimodal model pass def test_training(self): pass def test_training_gradient_checkpointing(self): pass def test_inputs_embeds(self): # FLAVA does not use inputs_embeds pass # skip this test as FlavaMultimodalModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_from_base(self): pass # skip this test as FlavaMultimodalModel has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = FlavaMultimodalModel.from_pretrained(model_name) self.assertIsNotNone(model) class FlavaImageCodebookTester: def __init__( self, parent, batch_size=12, image_size=112, num_channels=3, hidden_size=32, num_groups=2, vocab_size=99, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.hidden_size = hidden_size self.num_groups = num_groups self.vocab_size = vocab_size def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return FlavaImageCodebookConfig( hidden_size=self.hidden_size, num_groups=self.num_groups, vocab_size=self.vocab_size ) def create_and_check_model(self, config, pixel_values): model = FlavaImageCodebook(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(pixel_values) self.parent.assertEqual( result.shape, (self.batch_size, config.vocab_size, self.image_size // 8, self.image_size // 8) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class FlavaImageCodebookTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (FlavaImageCodebook,) if is_torch_available() else () test_pruning = False test_head_masking = False test_resize_embeddings = False test_torchscript = False has_attentions = False def setUp(self): self.model_tester = FlavaImageCodebookTester(self) self.config_tester = ConfigTester(self, config_class=FlavaImageCodebookConfig, has_text_modality=False) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) @unittest.skip(reason="Flava does not output attentions") def test_attention_outputs(self): pass def test_model_common_attributes(self): # No embedding in multimodal model pass def test_training(self): pass def test_hidden_states_output(self): pass def test_retain_grad_hidden_states_attentions(self): # no attentions pass def test_training_gradient_checkpointing(self): pass def test_inputs_embeds(self): # FLAVA does not use inputs_embeds pass def test_model_outputs_equivalence(self): pass # skip this test as FlavaImageCodebook has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_from_base(self): pass # skip this test as FlavaImageCodebook has no base class and is # not available in MODEL_MAPPING def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = FlavaImageCodebook.from_pretrained(model_name) self.assertIsNotNone(model) class FlavaModelTester: model_class = FlavaModel def __init__( self, parent, text_kwargs=None, image_kwargs=None, multimodal_kwargs=None, image_codebook_kwargs=None, is_training=True, hidden_size=32, projection_dim=32, initializer_range=0.02, layer_norm_eps=1e-12, ): if text_kwargs is None: text_kwargs = {} if image_kwargs is None: image_kwargs = {} if multimodal_kwargs is None: multimodal_kwargs = {} if image_codebook_kwargs is None: image_codebook_kwargs = {} self.parent = parent self.image_model_tester = FlavaImageModelTester(parent, **image_kwargs) self.text_model_tester = FlavaTextModelTester(parent, **text_kwargs) self.multimodal_model_tester = FlavaMultimodalModelTester(parent, **multimodal_kwargs) self.image_codebook_tester = FlavaImageCodebookTester(parent, **image_codebook_kwargs) self.is_training = is_training self.config_tester = ConfigTester(self, config_class=FlavaConfig, hidden_size=37) self.hidden_size = hidden_size self.projection_dim = projection_dim self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps def test_config(self): self.config_tester.run_common_tests() def prepare_config_and_inputs_for_common(self): _, pixel_values, bool_masked_pos = self.image_model_tester.prepare_config_and_inputs() _, input_ids, token_type_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() config = self.get_config() return config, { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "bool_masked_pos": bool_masked_pos, } def get_config(self): return FlavaConfig.from_configs( self.image_model_tester.get_config(), self.text_model_tester.get_config(), self.multimodal_model_tester.get_config(), self.image_codebook_tester.get_config(), hidden_size=self.hidden_size, projection_dim=self.projection_dim, initializer_range=self.initializer_range, layer_norm_eps=self.layer_norm_eps, ) def create_and_check_model(self, config, inputs): self._test_model(config, inputs, test_image=True) self._test_model(config, inputs, test_text=True) self._test_model(config, inputs, test_image=True, test_text=True) def _test_model(self, config, inputs, test_image=False, test_text=False): model = self.model_class(config).to(torch_device).eval() with torch.no_grad(): result = model( input_ids=inputs["input_ids"] if test_text else None, attention_mask=inputs["attention_mask"] if test_text else None, token_type_ids=inputs["token_type_ids"] if test_text else None, pixel_values=inputs["pixel_values"] if test_image else None, bool_masked_pos=inputs["bool_masked_pos"] if test_image else None, ) image_size = (self.image_model_tester.image_size, self.image_model_tester.image_size) patch_size = (self.image_model_tester.patch_size, self.image_model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) if test_image: self.parent.assertEqual( result.image_embeddings.shape, (self.image_model_tester.batch_size, num_patches + 1, self.image_model_tester.hidden_size), ) else: self.parent.assertIsNone(result.image_embeddings) if test_text: self.parent.assertEqual( result.text_embeddings.shape, ( self.text_model_tester.batch_size, self.text_model_tester.seq_length, self.text_model_tester.hidden_size, ), ) else: self.parent.assertIsNone(result.text_embeddings) if test_image and test_text: self.parent.assertEqual( result.multimodal_embeddings.shape, ( self.multimodal_model_tester.batch_size, self.text_model_tester.seq_length + num_patches + 2, self.multimodal_model_tester.hidden_size, ), ) else: self.parent.assertIsNone(result.multimodal_embeddings) @require_torch class FlavaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (FlavaModel,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": FlavaModel} if is_torch_available() else {} class_for_tester = FlavaModelTester test_head_masking = False test_pruning = False test_resize_embeddings = False test_attention_outputs = False def setUp(self): self.model_tester = self.class_for_tester(self) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_model(*config_and_inputs) # hidden_states are tested in individual model tests def test_hidden_states_output(self): pass # input_embeds are tested in individual model tests def test_inputs_embeds(self): pass # tested in individual model tests def test_retain_grad_hidden_states_attentions(self): pass # FlavaModel does not have input/output embeddings def test_model_common_attributes(self): pass # override as the `logit_scale` parameter initilization is different for FLAVA def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale" or name == "flava.logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False configs_no_init.return_loss = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] pixel_values = inputs_dict["pixel_values"] # FLAVA needs pixel_values if "input_ids_masked" in inputs_dict: # For pretraining inputs = (input_ids, inputs_dict["input_ids_masked"], pixel_values) else: inputs = (input_ids, pixel_values) traced_model = torch.jit.trace(model, inputs) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() # Non persistent buffers won't be in original state dict loaded_model_state_dict.pop("text_model.embeddings.token_type_ids", None) non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_image_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save FlavaConfig and check if we can load FlavaImageConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) image_config = FlavaImageConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.image_config.to_dict(), image_config.to_dict()) # Save FlavaConfig and check if we can load FlavaTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = FlavaTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) # Save FlavaConfig and check if we can load FlavaMultimodalConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) multimodal_config = FlavaMultimodalConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.multimodal_config.to_dict(), multimodal_config.to_dict()) # overwrite from common since FlavaModel/TFFlavaModel return FLAVAOutput/TFFLAVAOutput @slow def test_model_from_pretrained(self): for model_name in FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = FlavaModel.from_pretrained(model_name) self.assertIsNotNone(model) class FlavaForPreTrainingTester(FlavaModelTester): model_class = FlavaForPreTraining def prepare_config_and_inputs_for_common(self): _, pixel_values, bool_masked_pos = self.image_model_tester.prepare_config_and_inputs() _, input_ids, token_type_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() config = self.get_config() input_ids_masked = input_ids.detach().clone() input_ids_masked[:, 1:3] = 100 mlm_labels = input_ids.detach().clone() mlm_labels[:, :] = config.ce_ignore_index mlm_labels[:, 1:3] = input_ids[:, 1:3] mim_labels = torch.randint( 0, self.image_model_tester.vocab_size, bool_masked_pos.size(), device=bool_masked_pos.device ).long() mim_labels[bool_masked_pos.ne(True)] = config.ce_ignore_index itm_labels = torch.ones(mlm_labels.size(0), device=bool_masked_pos.device).long() return config, { "input_ids": input_ids, "input_ids_masked": input_ids_masked, "token_type_ids": token_type_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "bool_masked_pos": bool_masked_pos, "mlm_labels": mlm_labels, "mim_labels": mim_labels, "itm_labels": itm_labels, "return_loss": True, } def _test_model(self, config, inputs, test_image=False, test_text=False): model = self.model_class(config).to(torch_device).eval() with torch.no_grad(): result = model( input_ids=inputs["input_ids"] if test_text else None, input_ids_masked=inputs["input_ids_masked"] if test_text else None, attention_mask=inputs["attention_mask"] if test_text else None, token_type_ids=inputs["token_type_ids"] if test_text else None, pixel_values=inputs["pixel_values"] if test_image else None, bool_masked_pos=inputs["bool_masked_pos"] if test_image else None, mlm_labels=inputs["mlm_labels"], mim_labels=inputs["mim_labels"], itm_labels=inputs["itm_labels"], return_loss=inputs["return_loss"], ) image_size = (self.image_model_tester.image_size, self.image_model_tester.image_size) patch_size = (self.image_model_tester.patch_size, self.image_model_tester.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) if test_image: self.parent.assertEqual( result.image_embeddings.shape, (self.image_model_tester.batch_size, num_patches + 1, self.image_model_tester.hidden_size), ) if not test_text: self.parent.assertEqual( result.loss_info.mim.dim(), 0, ) self.parent.assertEqual( result.mim_logits.shape, (inputs["bool_masked_pos"].sum().item(), self.image_model_tester.vocab_size), ) else: self.parent.assertIsNone(result.image_embeddings) if test_text: self.parent.assertEqual( result.text_embeddings.shape, ( self.text_model_tester.batch_size, self.text_model_tester.seq_length, self.text_model_tester.hidden_size, ), ) if not test_image: self.parent.assertEqual(result.loss_info.mlm.dim(), 0) self.parent.assertEqual( result.mlm_logits.shape, ( (inputs["mlm_labels"] != self.multimodal_model_tester.ce_ignore_index).sum().item(), self.text_model_tester.vocab_size, ), ) else: self.parent.assertIsNone(result.text_embeddings) if test_image and test_text: self.parent.assertEqual( result.multimodal_masked_embeddings.shape, ( self.multimodal_model_tester.batch_size, self.text_model_tester.seq_length + num_patches + 2, self.multimodal_model_tester.hidden_size, ), ) self.parent.assertEqual( result.itm_logits.shape, (self.text_model_tester.batch_size, 2), ) self.parent.assertEqual( result.mmm_text_logits.shape, ( (inputs["mlm_labels"] != self.multimodal_model_tester.ce_ignore_index).sum().item(), self.text_model_tester.vocab_size, ), ) self.parent.assertEqual( result.mmm_image_logits.shape, (inputs["bool_masked_pos"].sum().item(), self.image_model_tester.vocab_size), ) self.parent.assertEqual( result.contrastive_logits_per_image.shape, (self.image_model_tester.batch_size, self.text_model_tester.batch_size), ) self.parent.assertEqual( result.contrastive_logits_per_text.shape, (self.text_model_tester.batch_size, self.image_model_tester.batch_size), ) for item in [ result.loss_info.global_contrastive, result.loss_info.itm, result.loss_info.mmm_text, result.loss_info.mmm_image, ]: self.parent.assertEqual(item.dim(), 0) for item in [result.loss_info.mim, result.loss_info.mlm]: self.parent.assertIsNone(item) else: self.parent.assertIsNone(result.multimodal_masked_embeddings) for item in [ result.loss_info.global_contrastive, result.loss_info.itm, result.loss_info.mmm_text, result.loss_info.mmm_image, ]: self.parent.assertIsNone(item) self.parent.assertIsNone(result.multimodal_embeddings) @require_torch class FlavaForPreTrainingTest(FlavaModelTest): all_model_classes = (FlavaForPreTraining,) if is_torch_available() else () class_for_tester = FlavaForPreTrainingTester test_torchscript = False # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @require_vision @require_torch class FlavaModelIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "facebook/flava-full" model = FlavaModel.from_pretrained(model_name).to(torch_device) processor = FlavaProcessor.from_pretrained(model_name) image = prepare_img() inputs = processor( text=["a photo of a cat", "a photo of a dog"], images=[image, image], padding="max_length", max_length=77, return_tensors="pt", ).to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs, return_dict=True) # verify the embeddings self.assertAlmostEqual(outputs.image_embeddings.sum().item(), -1352.53540, places=4) self.assertAlmostEqual(outputs.text_embeddings.sum().item(), -198.98225, places=4) self.assertAlmostEqual(outputs.multimodal_embeddings.sum().item(), -3988.51367, places=4) @require_vision @require_torch class FlavaForPreTrainingIntegrationTest(unittest.TestCase): @slow def test_inference(self): model_name = "facebook/flava-full" model = FlavaForPreTraining.from_pretrained(model_name).to(torch_device) processor = FlavaProcessor.from_pretrained(model_name) torch.manual_seed(1) random.seed(1) image = prepare_img() inputs = processor( text=["a photo of a cat", "a photo of a dog"], images=[image, image], padding="max_length", max_length=77, return_tensors="pt", return_codebook_pixels=True, return_image_mask=True, ) inputs["input_ids_masked"] = inputs["input_ids"].clone() inputs["input_ids_masked"][0, 4:6] = 103 inputs["mlm_labels"] = inputs["input_ids"].clone() inputs["mlm_labels"][:, :] = -100 inputs["mlm_labels"][0, 4:6] = inputs["input_ids"][0, 4:6] inputs = inputs.to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits self.assertEqual( outputs.contrastive_logits_per_image.shape, torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])), ) self.assertEqual( outputs.contrastive_logits_per_text.shape, torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])), ) expected_logits = torch.tensor([[16.1291, 8.4033], [16.1291, 8.4033]], device=torch_device) self.assertTrue(torch.allclose(outputs.contrastive_logits_per_image, expected_logits, atol=1e-3)) self.assertAlmostEqual(outputs.loss_info.mmm_text.item(), 1.75533199, places=4) self.assertAlmostEqual(outputs.loss_info.mmm_image.item(), 7.0290069, places=4) self.assertAlmostEqual(outputs.loss.item(), 11.0626, places=4)
transformers-main
tests/models/flava/test_modeling_flava.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import AlbertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_MODEL_FOR_PRETRAINING_MAPPING from transformers.models.albert.modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertModel, ) class TFAlbertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, embedding_size=16, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.embedding_size = 16 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, embedding_size=self.embedding_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_albert_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFAlbertModel(config=config) # inputs = {'input_ids': input_ids, # 'attention_mask': input_mask, # 'token_type_ids': token_type_ids} # sequence_output, pooled_output = model(**inputs) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_albert_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFAlbertForPreTraining(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, self.num_labels)) def create_and_check_albert_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFAlbertForMaskedLM(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_albert_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFAlbertForSequenceClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_albert_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFAlbertForQuestionAnswering(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_albert_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFAlbertForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices]) def create_and_check_albert_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFAlbertForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFAlbertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFAlbertModel, TFAlbertForPreTraining, TFAlbertForMaskedLM, TFAlbertForSequenceClassification, TFAlbertForQuestionAnswering, TFAlbertForTokenClassification, TFAlbertForMultipleChoice, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFAlbertModel, "fill-mask": TFAlbertForMaskedLM, "question-answering": TFAlbertForQuestionAnswering, "text-classification": TFAlbertForSequenceClassification, "token-classification": TFAlbertForTokenClassification, "zero-shot": TFAlbertForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["sentence_order_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) return inputs_dict def setUp(self): self.model_tester = TFAlbertModelTester(self) self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_albert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_for_pretraining(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_for_multiple_choice(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_for_sequence_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_albert_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFAlbertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFAlbertModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFAlbertForPreTraining.from_pretrained("albert-base-v2") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 30000] self.assertEqual(output.shape, expected_shape) expected_slice = tf.constant( [ [ [4.595668, 0.74462754, -1.818147], [4.5954347, 0.7454184, -1.8188258], [4.5954905, 0.7448235, -1.8182316], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
transformers-main
tests/models/albert/test_modeling_tf_albert.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class FlaxAlbertModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_attention_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_choices = num_choices def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class FlaxAlbertModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def setUp(self): self.model_tester = FlaxAlbertModelTester(self) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("albert-base-v2") outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs) @require_flax class FlaxAlbertModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = FlaxAlbertModel.from_pretrained("albert-base-v2") input_ids = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = (1, 11, 768) self.assertEqual(output.shape, expected_shape) expected_slice = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
transformers-main
tests/models/albert/test_modeling_flax_albert.py
transformers-main
tests/models/albert/__init__.py
# coding=utf-8 # Copyright 2019 Hugging Face inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class AlbertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = AlbertTokenizer rust_tokenizer_class = AlbertTokenizerFast test_rust_tokenizer = True test_sentencepiece = True test_sentencepiece_ignore_case = True def setUp(self): super().setUp() # We have a SentencePiece fixture for testing tokenizer = AlbertTokenizer(SAMPLE_VOCAB) tokenizer.save_pretrained(self.tmpdirname) def get_input_output_texts(self, tokenizer): input_text = "this is a test" output_text = "this is a test" return input_text, output_text def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<pad>" token_id = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<pad>") self.assertEqual(vocab_keys[1], "<unk>") self.assertEqual(vocab_keys[-1], "▁eloquent") self.assertEqual(len(vocab_keys), 30_000) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 30_000) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "I was born in 92000, and this is falsé." tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_full_tokenizer(self): tokenizer = AlbertTokenizer(SAMPLE_VOCAB, keep_accents=True) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁this", "▁is", "▁a", "▁test"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [48, 25, 21, 1289]) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual(ids, [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."], ) def test_sequence_builders(self): tokenizer = AlbertTokenizer(SAMPLE_VOCAB) text = tokenizer.encode("sequence builders") text_2 = tokenizer.encode("multi-sequence build") encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [ tokenizer.sep_token_id ] @slow def test_tokenizer_integration(self): # fmt: off expected_encoding = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="albert-base-v2", revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e", )
transformers-main
tests/models/albert/test_tokenization_albert.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class AlbertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, embedding_size=16, hidden_size=36, num_hidden_layers=2, # this needs to be the same as `num_hidden_layers`! num_hidden_groups=2, num_attention_heads=6, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.embedding_size = embedding_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_hidden_groups = num_hidden_groups self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, num_hidden_groups=self.num_hidden_groups, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = AlbertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = AlbertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, sentence_order_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, config.num_labels)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = AlbertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = AlbertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = AlbertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = AlbertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = AlbertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class AlbertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["sentence_order_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = AlbertModelTester(self) self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = AlbertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class AlbertModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = AlbertModel.from_pretrained("albert-base-v2") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
transformers-main
tests/models/albert/test_modeling_albert.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch VideoMAE model. """ import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class VideoMAEModelTester: def __init__( self, parent, batch_size=13, image_size=10, num_channels=3, patch_size=2, tubelet_size=2, num_frames=2, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, mask_ratio=0.9, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.patch_size = patch_size self.tubelet_size = tubelet_size self.num_frames = num_frames self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.mask_ratio = mask_ratio self.scope = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame self.num_patches_per_frame = (image_size // patch_size) ** 2 self.seq_length = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos self.num_masks = int(mask_ratio * self.seq_length) def prepare_config_and_inputs(self): pixel_values = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, decoder_hidden_size=self.hidden_size, decoder_intermediate_size=self.intermediate_size, decoder_num_attention_heads=self.num_attention_heads, decoder_num_hidden_layers=self.num_hidden_layers, ) def create_and_check_model(self, config, pixel_values, labels): model = VideoMAEModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_pretraining(self, config, pixel_values, labels): model = VideoMAEForPreTraining(config) model.to(torch_device) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch mask = torch.ones((self.num_masks,)) mask = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) bool_masked_pos = mask.expand(self.batch_size, -1).bool() result = model(pixel_values, bool_masked_pos) # model only returns predictions for masked patches num_masked_patches = mask.sum().item() decoder_num_labels = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class VideoMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as VideoMAE does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = VideoMAEModelTester(self) self.config_tester = ConfigTester(self, config_class=VideoMAEConfig, has_text_modality=False, hidden_size=37) def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch mask = torch.ones((self.model_tester.num_masks,)) mask = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) bool_masked_pos = mask.expand(self.model_tester.batch_size, -1).bool() inputs_dict["bool_masked_pos"] = bool_masked_pos.to(torch_device) if return_labels: if model_class in [ *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING), ]: inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = VideoMAEModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_attention_outputs(self): if not self.has_attentions: pass else: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: num_visible_patches = self.model_tester.seq_length - self.model_tester.num_masks seq_len = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(hidden_states), expected_num_layers) num_visible_patches = self.model_tester.seq_length - self.model_tester.num_masks seq_length = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # We will verify our results on a video of eating spaghetti # Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] def prepare_video(): file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) video = np.load(file) return list(video) @require_torch @require_vision class VideoMAEModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def test_inference_for_video_classification(self): model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics").to( torch_device ) image_processor = self.default_image_processor video = prepare_video() inputs = image_processor(video, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 400)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.3669, -0.0688, -0.2421]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @slow def test_inference_for_pretraining(self): model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short").to(torch_device) image_processor = self.default_image_processor video = prepare_video() inputs = image_processor(video, return_tensors="pt").to(torch_device) # add boolean mask, indicating which patches to mask local_path = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt") inputs["bool_masked_pos"] = torch.load(local_path) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]], device=torch_device ) self.assertEqual(outputs.logits.shape, expected_shape) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `True`) expected_loss = torch.tensor([0.5142], device=torch_device) self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `False`) model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short", norm_pix_loss=False).to( torch_device ) with torch.no_grad(): outputs = model(**inputs) expected_loss = torch.tensor(torch.tensor([0.6469]), device=torch_device) self.assertTrue(torch.allclose(outputs.loss, expected_loss, atol=1e-4))
transformers-main
tests/models/videomae/test_modeling_videomae.py
transformers-main
tests/models/videomae/__init__.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VideoMAEImageProcessor class VideoMAEImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, num_frames=10, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], crop_size=None, ): size = size if size is not None else {"shortest_edge": 18} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.num_frames = num_frames self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.crop_size = crop_size def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } def expected_output_image_shape(self, images): return self.num_frames, self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_video_inputs( batch_size=self.batch_size, num_frames=self.num_frames, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class VideoMAEImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = VideoMAEImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = VideoMAEImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 18}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL videos video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], Image.Image) # Test not batched input encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos) self.assertEqual( tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape) ) def test_call_numpy(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], np.ndarray) # Test not batched input encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos) self.assertEqual( tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape) ) def test_call_pytorch(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True) for video in video_inputs: self.assertIsInstance(video, list) self.assertIsInstance(video[0], torch.Tensor) # Test not batched input encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape([encoded_videos[0]]) self.assertEqual(tuple(encoded_videos.shape), (1, *expected_output_video_shape)) # Test batched encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values expected_output_video_shape = self.image_processor_tester.expected_output_image_shape(encoded_videos) self.assertEqual( tuple(encoded_videos.shape), (self.image_processor_tester.batch_size, *expected_output_video_shape) )
transformers-main
tests/models/videomae/test_image_processing_videomae.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import Speech2TextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_SP = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp FR_CODE = 5 ES_CODE = 10 @require_sentencepiece @require_tokenizers class SpeechToTextTokenizerTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = Speech2TextTokenizer test_rust_tokenizer = False test_sentencepiece = True def setUp(self): super().setUp() spm_model = sp.SentencePieceProcessor() spm_model.Load(SAMPLE_SP) vocab = ["<s>", "<pad>", "</s>", "<unk>"] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(spm_model))] vocab_tokens = dict(zip(vocab, range(len(vocab)))) save_dir = Path(self.tmpdirname) save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"]) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"]) tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "<pad>" token_id = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "<s>") self.assertEqual(vocab_keys[1], "<pad>") self.assertEqual(vocab_keys[-1], "j") self.assertEqual(len(vocab_keys), 1_001) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 1_001) def test_full_tokenizer(self): tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname) tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [289, 50, 14, 174, 386], ) tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") self.assertListEqual( tokens, # fmt: off [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."], # fmt: on ) ids = tokenizer.convert_tokens_to_ids(tokens) self.assertListEqual(ids, [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8]) back_tokens = tokenizer.convert_ids_to_tokens(ids) self.assertListEqual( back_tokens, # fmt: off [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."], # fmt: on ) @slow def test_tokenizer_integration(self): # fmt: off expected_encoding = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="facebook/s2t-small-mustc-en-de-st", revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad", ) @require_sentencepiece class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase): checkpoint_name = "valhalla/s2t_mustc_multilinguial_medium" french_text = "C'est trop cool" spanish_text = "Esto es genial" @classmethod def setUpClass(cls): cls.tokenizer: Speech2TextTokenizer = Speech2TextTokenizer.from_pretrained(cls.checkpoint_name) return cls def check_language_codes(self): self.assertEqual(self.tokenizer.lang_code_to_id["pt"], 4) self.assertEqual(self.tokenizer.lang_code_to_id["ru"], 6) self.assertEqual(self.tokenizer.lang_code_to_id["it"], 9) self.assertEqual(self.tokenizer.lang_code_to_id["de"], 11) def test_vocab_size(self): self.assertEqual(self.tokenizer.vocab_size, 10_000) def test_tokenizer_decode_ignores_language_codes(self): self.assertIn(ES_CODE, self.tokenizer.all_special_ids) generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2] result = self.tokenizer.decode(generated_ids, skip_special_tokens=True) expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True) self.assertEqual(result, expected_spanish) self.assertNotIn(self.tokenizer.eos_token, result) def test_tokenizer_adds_special_tokens(self): self.tokenizer.tgt_lang = "fr" encoded = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0], FR_CODE) self.assertEqual(encoded[-1], self.tokenizer.eos_token_id) def test_tgt_lang_setter(self): self.tokenizer.tgt_lang = "fr" self.assertListEqual(self.tokenizer.prefix_tokens, [FR_CODE]) self.tokenizer.tgt_lang = "es" self.assertListEqual(self.tokenizer.prefix_tokens, [ES_CODE])
transformers-main
tests/models/speech_to_text/test_tokenization_speech_to_text.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Speech2Text model. """ import copy import inspect import os import tempfile import unittest from transformers import Speech2TextConfig from transformers.testing_utils import ( is_torch_available, require_sentencepiece, require_tokenizers, require_torch, require_torchaudio, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import Speech2TextForConditionalGeneration, Speech2TextModel, Speech2TextProcessor from transformers.models.speech_to_text.modeling_speech_to_text import Speech2TextDecoder, Speech2TextEncoder def prepare_speech_to_text_inputs_dict( config, input_features, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_features.ne(0) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { # "input_ids": input_features, "input_features": input_features, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_torch class Speech2TextModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, num_conv_layers=2, conv_kernel_sizes=(5, 5), conv_channels=32, input_feat_per_channel=24, input_channels=1, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, max_source_positions=20, max_target_positions=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.num_conv_layers = num_conv_layers self.conv_kernel_sizes = conv_kernel_sizes self.conv_channels = conv_channels self.input_feat_per_channel = input_feat_per_channel self.input_channels = input_channels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_features = floats_tensor( [self.batch_size, self.seq_length, self.input_feat_per_channel], self.vocab_size ) attention_mask = torch.ones([self.batch_size, self.seq_length], dtype=torch.long, device=torch_device) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(2) config = self.get_config() inputs_dict = prepare_speech_to_text_inputs_dict( config, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, ) return config, inputs_dict def get_config(self): return Speech2TextConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, num_conv_layers=self.num_conv_layers, conv_kernel_sizes=self.conv_kernel_sizes, conv_channels=self.conv_channels, input_feat_per_channel=self.input_feat_per_channel, input_channels=self.input_channels, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, max_source_positions=self.max_source_positions, max_target_positions=self.max_target_positions, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_subsampled_output_lengths(self, input_lengths): """ Computes the output length of the convolutional layers """ for i in range(self.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def create_and_check_model_forward(self, config, inputs_dict): model = Speech2TextModel(config=config).to(torch_device).eval() input_features = inputs_dict["input_features"] decoder_input_ids = inputs_dict["decoder_input_ids"] # first forward pass last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state self.parent.assertTrue(last_hidden_state.shape, (13, 7, 16)) def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = Speech2TextModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["decoder_input_ids"] attention_mask = inputs_dict["decoder_attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size).clamp(2) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = Speech2TextModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = Speech2TextEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder( inputs_dict["input_features"], attention_mask=inputs_dict["attention_mask"] )[0] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = Speech2TextDecoder.from_pretrained(tmpdirname).to(torch_device) encoder_attention_mask = encoder._get_feature_vector_attention_mask( encoder_last_hidden_state.shape[1], inputs_dict["attention_mask"] ) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=encoder_attention_mask, )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class Speech2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Speech2TextModel, Speech2TextForConditionalGeneration) if is_torch_available() else () all_generative_model_classes = (Speech2TextForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( {"automatic-speech-recognition": Speech2TextForConditionalGeneration, "feature-extraction": Speech2TextModel} if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = True test_pruning = False test_missing_keys = False input_name = "input_features" def setUp(self): self.model_tester = Speech2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=Speech2TextConfig) self.maxDiff = 3000 def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_model_forward(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_forward(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) # not implemented currently def test_inputs_embeds(self): pass # training is not supported yet def test_training(self): pass def test_training_gradient_checkpointing(self): pass def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_features = input_dict["input_features"] attention_mask = input_dict["attention_mask"] model = Speech2TextForConditionalGeneration(config).eval().to(torch_device) if torch_device == "cuda": input_features = input_features.half() model.half() model.generate(input_features, attention_mask=attention_mask) model.generate(input_features, num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_features", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] expected_arg_names.extend( ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"] if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names else ["encoder_outputs"] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length else: seq_length = self.model_tester.seq_length subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length) self.assertListEqual( list(hidden_states[0].shape[-2:]), [subsampled_seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length) subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length) with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) out_len = len(outputs) correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, subsampled_encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) def test_resize_tokens_embeddings(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # make sure that decoder_input_ids are resized if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_resize_embeddings_untied(self): ( original_config, inputs_dict, ) = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return original_config.tie_word_embeddings = False # if model cannot untied embeddings -> leave test if original_config.tie_word_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) def test_generate_without_input_ids(self): pass @staticmethod def _get_encoder_outputs( model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1 ): encoder = model.get_encoder() encoder_outputs = encoder( input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( num_interleave, dim=0 ) input_ids = input_ids[:, :, 0] input_ids = torch.zeros_like(input_ids[:, :1], dtype=torch.long) + model._get_decoder_start_token_id() attention_mask = None return encoder_outputs, input_ids, attention_mask def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1): batch_size, seq_length = input_ids.shape[:2] subsampled_seq_length = self.model_tester.get_subsampled_output_lengths(seq_length) num_sequences_in_output = batch_size * num_return_sequences gen_len = ( output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length ) # scores self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config) # Attentions # encoder self._check_encoder_attention_for_generate( output.encoder_attentions, batch_size, config, subsampled_seq_length ) # decoder self._check_attentions_for_generate( num_sequences_in_output, output.decoder_attentions, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # Hidden States # encoder self._check_encoder_hidden_states_for_generate( output.encoder_hidden_states, batch_size, config, subsampled_seq_length ) # decoder self._check_hidden_states_for_generate( num_sequences_in_output, output.decoder_hidden_states, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() inputs = self._prepare_for_class(inputs_dict, model_class) try: model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward input_features = inputs["input_features"] attention_mask = inputs["attention_mask"] decoder_input_ids = inputs["decoder_input_ids"] decoder_attention_mask = inputs["decoder_attention_mask"] traced_model = torch.jit.trace( model, (input_features, attention_mask, decoder_input_ids, decoder_attention_mask) ) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_pt_tf_model_equivalence(self, allow_missing_keys=True): # Allow missing keys since TF doesn't cache the sinusoidal embeddings in an attribute super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys) @require_torch @require_torchaudio @require_sentencepiece @require_tokenizers @slow class Speech2TextModelIntegrationTests(unittest.TestCase): @cached_property def default_processor(self): return Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_generation_librispeech(self): model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") model.to(torch_device) processor = self.default_processor input_speech = self._load_datasamples(1) input_features = processor(input_speech, return_tensors="pt").input_features.to(torch_device) generated_ids = model.generate(input_features) generated_transcript = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel" ] self.assertListEqual(generated_transcript, EXPECTED_TRANSCRIPTIONS) def test_generation_librispeech_batched(self): model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") model.to(torch_device) processor = self.default_processor input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="pt", padding=True) input_features = inputs.input_features.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) generated_ids = model.generate(input_features, attention_mask=attention_mask) generated_transcripts = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel", "nor is mister cultar's manner less interesting than his matter", "he tells us that at this festive season of the year with christmas and roast beef looming before us" " similes drawn from eating and its results occur most readily to the mind", "he has grave doubts whether sir frederick leyton's work is really greek after all and can discover in it" " but little of rocky ithaca", ] self.assertListEqual(generated_transcripts, EXPECTED_TRANSCRIPTIONS)
transformers-main
tests/models/speech_to_text/test_modeling_speech_to_text.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import Speech2TextTokenizer, is_speech_available from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, require_torchaudio from transformers.utils import FEATURE_EXTRACTOR_NAME from .test_feature_extraction_speech_to_text import floats_list if is_speech_available(): from transformers import Speech2TextFeatureExtractor, Speech2TextProcessor SAMPLE_SP = get_tests_dir("fixtures/test_sentencepiece.model") @require_torch @require_torchaudio @require_sentencepiece class Speech2TextProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab = ["<s>", "<pad>", "</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) save_dir = Path(self.tmpdirname) save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"]) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"]) tokenizer = Speech2TextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) feature_extractor_map = { "feature_size": 24, "num_mel_bins": 24, "padding_value": 0.0, "sampling_rate": 16000, "return_attention_mask": False, "do_normalize": True, } save_json(feature_extractor_map, save_dir / FEATURE_EXTRACTOR_NAME) def get_tokenizer(self, **kwargs): return Speech2TextTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_feature_extractor(self, **kwargs): return Speech2TextFeatureExtractor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def test_save_load_pretrained_default(self): tokenizer = self.get_tokenizer() feature_extractor = self.get_feature_extractor() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) processor.save_pretrained(self.tmpdirname) processor = Speech2TextProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor) def test_save_load_pretrained_additional_features(self): processor = Speech2TextProcessor( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0) processor = Speech2TextProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, Speech2TextTokenizer) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor, Speech2TextFeatureExtractor) def test_feature_extractor(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) raw_speech = floats_list((3, 1000)) input_feat_extract = feature_extractor(raw_speech, return_tensors="np") input_processor = processor(raw_speech, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) input_str = "This is a test string" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_tokenizer_decode(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): feature_extractor = self.get_feature_extractor() tokenizer = self.get_tokenizer() processor = Speech2TextProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="`processor` and `feature_extractor` model input names do not match", )
transformers-main
tests/models/speech_to_text/test_processor_speech_to_text.py
transformers-main
tests/models/speech_to_text/__init__.py
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import Speech2TextFeatureExtractor global_rng = random.Random() def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_torchaudio class Speech2TextFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=24, num_mel_bins=24, padding_value=0.0, sampling_rate=16_000, return_attention_mask=True, do_normalize=True, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.feature_size = feature_size self.num_mel_bins = num_mel_bins self.padding_value = padding_value self.sampling_rate = sampling_rate self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size speech_inputs = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class Speech2TextFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = Speech2TextFeatureExtractor if is_speech_available() else None def setUp(self): self.feat_extract_tester = Speech2TextFeatureExtractionTester(self) def _check_zero_mean_unit_variance(self, input_vector): self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3)) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test feature size input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) # Test not batched input encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test 2-D numpy arrays are batched. speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)] np_speech_inputs = np.asarray(speech_inputs) encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) def test_cepstral_mean_and_variance_normalization(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] paddings = ["longest", "max_length", "do_not_pad"] max_lengths = [None, 16, None] for max_length, padding in zip(max_lengths, paddings): inputs = feature_extractor( speech_inputs, padding=padding, max_length=max_length, return_attention_mask=True ) input_features = inputs.input_features attention_mask = inputs.attention_mask fbank_feat_lengths = [np.sum(x) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def test_cepstral_mean_and_variance_normalization_np(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] paddings = ["longest", "max_length", "do_not_pad"] max_lengths = [None, 16, None] for max_length, padding in zip(max_lengths, paddings): inputs = feature_extractor( speech_inputs, max_length=max_length, padding=padding, return_tensors="np", return_attention_mask=True ) input_features = inputs.input_features attention_mask = inputs.attention_mask fbank_feat_lengths = [np.sum(x) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def test_cepstral_mean_and_variance_normalization_trunc_max_length(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] inputs = feature_extractor( speech_inputs, padding="max_length", max_length=4, truncation=True, return_tensors="np", return_attention_mask=True, ) input_features = inputs.input_features attention_mask = inputs.attention_mask fbank_feat_lengths = np.sum(attention_mask == 1, axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1]) self._check_zero_mean_unit_variance(input_features[2]) def test_cepstral_mean_and_variance_normalization_trunc_longest(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] inputs = feature_extractor( speech_inputs, padding="longest", max_length=4, truncation=True, return_tensors="np", return_attention_mask=True, ) input_features = inputs.input_features attention_mask = inputs.attention_mask fbank_feat_lengths = np.sum(attention_mask == 1, axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 4, 24)) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] inputs = feature_extractor( speech_inputs, padding="longest", max_length=16, truncation=True, return_tensors="np", return_attention_mask=True, ) input_features = inputs.input_features attention_mask = inputs.attention_mask fbank_feat_lengths = np.sum(attention_mask == 1, axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape, (3, 6, 24)) def test_double_precision_pad(self): import torch feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) np_speech_inputs = np.random.rand(100, 32).astype(np.float64) py_speech_inputs = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.float32) pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.float32) def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_integration(self): # fmt: off expected = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ]) # fmt: on input_speech = self._load_datasamples(1) feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) input_features = feature_extractor(input_speech, return_tensors="pt").input_features self.assertEquals(input_features.shape, (1, 584, 24)) self.assertTrue(np.allclose(input_features[0, 0, :30], expected, atol=1e-4))
transformers-main
tests/models/speech_to_text/test_feature_extraction_speech_to_text.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow Speech2Text model. """ from __future__ import annotations import inspect import unittest from transformers import Speech2TextConfig from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property, is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import Speech2TextProcessor, TFSpeech2TextForConditionalGeneration, TFSpeech2TextModel def prepare_speech_to_text_inputs_dict( config, input_features, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = tf.math.not_equal(input_features, 0) if decoder_attention_mask is None: decoder_attention_mask = tf.math.not_equal(decoder_input_ids, config.pad_token_id) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_features": input_features, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class TFSpeech2TextModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, num_conv_layers=2, conv_kernel_sizes=(5, 5), conv_channels=32, input_feat_per_channel=24, input_channels=1, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, max_source_positions=20, max_target_positions=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, scale_embedding=False, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.num_conv_layers = num_conv_layers self.conv_kernel_sizes = conv_kernel_sizes self.conv_channels = conv_channels self.input_feat_per_channel = input_feat_per_channel self.input_channels = input_channels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.scale_embedding = scale_embedding def prepare_config_and_inputs(self): input_features = floats_tensor( [self.batch_size, self.seq_length, self.input_feat_per_channel], self.vocab_size ) attention_mask = tf.ones([self.batch_size, self.seq_length], dtype=tf.int64) decoder_input_ids = tf.math.maximum(ids_tensor([self.batch_size, self.seq_length], self.vocab_size), 2) config = self.get_config() inputs_dict = prepare_speech_to_text_inputs_dict( config, input_features=input_features, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, ) return config, inputs_dict def get_config(self): return Speech2TextConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, num_conv_layers=self.num_conv_layers, conv_kernel_sizes=self.conv_kernel_sizes, conv_channels=self.conv_channels, input_feat_per_channel=self.input_feat_per_channel, input_channels=self.input_channels, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, max_source_positions=self.max_source_positions, max_target_positions=self.max_target_positions, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, scale_embedding=self.scale_embedding, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def get_subsampled_output_lengths(self, input_lengths): """ Computes the output length of the convolutional layers """ for _ in range(self.num_conv_layers): input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFSpeech2TextModel(config=config).get_decoder() input_ids = inputs_dict["decoder_input_ids"] attention_mask = inputs_dict["decoder_attention_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, use_cache=True) _, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = tf.math.maximum(ids_tensor((self.batch_size, 3), config.vocab_size), 2) next_attn_mask = ids_tensor((self.batch_size, 3), 2, dtype=tf.int64) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, atol=1e-2) @require_tf class TFSpeech2TextModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFSpeech2TextModel, TFSpeech2TextForConditionalGeneration) if is_tf_available() else () all_generative_model_classes = (TFSpeech2TextForConditionalGeneration,) if is_tf_available() else () pipeline_model_mapping = {"feature-extraction": TFSpeech2TextModel} if is_tf_available() else {} is_encoder_decoder = True test_pruning = False test_missing_keys = False test_onnx = False input_name = "input_ids" def setUp(self): self.model_tester = TFSpeech2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=Speech2TextConfig) self.maxDiff = 3000 def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) # not implemented currently def test_inputs_embeds(self): pass # training is not supported yet def test_training(self): pass def test_training_gradient_checkpointing(self): pass def test_generate_fp16(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) if hasattr(self.model_tester, "encoder_seq_length"): seq_length = self.model_tester.encoder_seq_length else: seq_length = self.model_tester.seq_length subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length) self.assertListEqual( list(hidden_states[0].shape[-2:]), [subsampled_seq_length, self.model_tester.hidden_size], ) if config.is_encoder_decoder: hidden_states = outputs.decoder_hidden_states self.assertIsInstance(hidden_states, (list, tuple)) self.assertEqual(len(hidden_states), expected_num_layers) seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) self.assertListEqual( list(hidden_states[0].shape[-2:]), [decoder_seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length) subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) out_len = len(outputs) correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, subsampled_encoder_key_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length], ) def test_resize_token_embeddings(self): # Overwritten method from parent; see `test_resize_embeddings_untied` pass def test_resize_tokens_embeddings(self): # see `test_resize_embeddings_untied` pass def test_resize_embeddings_untied(self): # TODO: copy test from PT. Not working at the moment because the test relies on `model.resize_token_embeddings`, # whose TF implementation assumes the use of `TFWrappedEmbeddings`. But with a `TFWrappedEmbeddings` we can't # load the weights from PT (also, it induces TF1 behavior, so we might want to rework how # `model.resize_token_embeddings` operates). pass def test_generate_without_input_ids(self): pass @staticmethod def _get_encoder_outputs( model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1 ): encoder = model.get_encoder() encoder_outputs = encoder( input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) encoder_outputs["last_hidden_state"] = tf.repeat(encoder_outputs.last_hidden_state, num_interleave, axis=0) input_ids = input_ids[:, :, 0] input_ids = tf.zeros_like(input_ids[:, :1], dtype=tf.int64) + model._get_decoder_start_token_id() attention_mask = None return encoder_outputs, input_ids, attention_mask def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1): batch_size, seq_length = input_ids.shape[:2] subsampled_seq_length = self.model_tester.get_subsampled_output_lengths(seq_length) num_sequences_in_output = batch_size * num_return_sequences gen_len = ( output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length ) # scores self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config) # Attentions # encoder self._check_encoder_attention_for_generate( output.encoder_attentions, batch_size, config, subsampled_seq_length ) # decoder self._check_attentions_for_generate( num_sequences_in_output, output.decoder_attentions, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # Hidden States # encoder self._check_encoder_hidden_states_for_generate( output.encoder_hidden_states, batch_size, config, subsampled_seq_length ) # decoder self._check_hidden_states_for_generate( num_sequences_in_output, output.decoder_hidden_states, min_length=1, max_length=output.sequences.shape[-1], config=config, use_cache=use_cache, ) # overwritten from parent due to the inability to work when non-text inputs are not passed AND because the input is # `input_features` def test_lm_head_model_random_no_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_features = inputs_dict.get("input_features", None) # iterate over all generative models for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined model needs input_features with self.assertRaises(AssertionError): model.generate(do_sample=True, max_length=5) # num_return_sequences = 1 self._check_generated_ids(model.generate(input_features, do_sample=True)) with self.assertRaises(ValueError): # generating multiple sequences when no beam search generation # is not allowed as it would always generate the same sequences model.generate(input_features, do_sample=False, num_return_sequences=2) # num_return_sequences > 1, sample self._check_generated_ids(model.generate(input_features, do_sample=True, num_return_sequences=2)) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_features, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_features.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) # overwritten from parent due to the inability to work when non-text inputs are not passed AND because the input is # `input_features` def test_lm_head_model_random_beam_search_generate(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_features = inputs_dict.get("input_features", None) for model_class in self.all_generative_model_classes: model = model_class(config) if config.bos_token_id is None: # if bos token id is not defined model needs input_ids, num_return_sequences = 1 self._check_generated_ids(model.generate(input_features, do_sample=True, num_beams=2)) with self.assertRaises(ValueError): # generating more sequences than having beams leads is not possible model.generate(input_features, do_sample=False, num_return_sequences=3, num_beams=2) # num_return_sequences > 1, sample self._check_generated_ids( model.generate( input_features, do_sample=True, num_beams=2, num_return_sequences=2, ) ) # num_return_sequences > 1, greedy self._check_generated_ids( model.generate(input_features, do_sample=False, num_beams=2, num_return_sequences=2) ) # check bad words tokens language generation # create list of 1-seq bad token and list of 2-seq of bad tokens bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] output_tokens = model.generate( input_features, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2 ) # only count generated tokens generated_ids = output_tokens[:, input_features.shape[-1] :] self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) # overwritten from parent -- the input is `input_features`, not `input_ids` def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "input_features", "attention_mask", "decoder_input_ids", "decoder_attention_mask", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_pt_tf_model_equivalence(self, allow_missing_keys=True): # Allow missing keys since TF doesn't cache the sinusoidal embeddings in an attribute super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys) @require_tf @require_sentencepiece @require_tokenizers @slow class TFSpeech2TextModelIntegrationTests(unittest.TestCase): @cached_property def default_processor(self): return Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") def _load_datasamples(self, num_samples): from datasets import load_dataset ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def test_generation_librispeech(self): model = TFSpeech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = self.default_processor input_speech = self._load_datasamples(1) input_features = processor(input_speech, return_tensors="tf").input_features generated_ids = model.generate(input_features) generated_transcript = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel" ] self.assertListEqual(generated_transcript, EXPECTED_TRANSCRIPTIONS) def test_generation_librispeech_batched(self): model = TFSpeech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr") processor = self.default_processor input_speech = self._load_datasamples(4) inputs = processor(input_speech, return_tensors="tf", padding=True) generated_ids = model.generate(inputs.input_features, attention_mask=inputs.attention_mask) generated_transcripts = processor.batch_decode(generated_ids, skip_special_tokens=True) EXPECTED_TRANSCRIPTIONS = [ "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel", "nor is mister cultar's manner less interesting than his matter", "he tells us that at this festive season of the year with christmas and roast beef looming before us" " similes drawn from eating and its results occur most readily to the mind", "he has grave doubts whether sir frederick leyton's work is really greek after all and can discover in it" " but little of rocky ithaca", ] self.assertListEqual(generated_transcripts, EXPECTED_TRANSCRIPTIONS)
transformers-main
tests/models/speech_to_text/test_modeling_tf_speech_to_text.py
transformers-main
tests/models/time_series_transformer/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch TimeSeriesTransformer model. """ import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from parameterized import parameterized from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin TOLERANCE = 1e-4 if is_torch_available(): import torch from transformers import ( TimeSeriesTransformerConfig, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, ) from transformers.models.time_series_transformer.modeling_time_series_transformer import ( TimeSeriesTransformerDecoder, TimeSeriesTransformerEncoder, ) @require_torch class TimeSeriesTransformerModelTester: def __init__( self, parent, batch_size=13, prediction_length=7, context_length=14, cardinality=19, embedding_dimension=5, num_time_features=4, is_training=True, hidden_size=64, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, lags_sequence=[1, 2, 3, 4, 5], ): self.parent = parent self.batch_size = batch_size self.prediction_length = prediction_length self.context_length = context_length self.cardinality = cardinality self.num_time_features = num_time_features self.lags_sequence = lags_sequence self.embedding_dimension = embedding_dimension self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.encoder_seq_length = context_length self.decoder_seq_length = prediction_length def get_config(self): return TimeSeriesTransformerConfig( encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, prediction_length=self.prediction_length, context_length=self.context_length, lags_sequence=self.lags_sequence, num_time_features=self.num_time_features, num_static_real_features=1, num_static_categorical_features=1, cardinality=[self.cardinality], embedding_dimension=[self.embedding_dimension], ) def prepare_time_series_transformer_inputs_dict(self, config): _past_length = config.context_length + max(config.lags_sequence) static_categorical_features = ids_tensor([self.batch_size, 1], config.cardinality[0]) static_real_features = floats_tensor([self.batch_size, 1]) past_time_features = floats_tensor([self.batch_size, _past_length, config.num_time_features]) past_values = floats_tensor([self.batch_size, _past_length]) past_observed_mask = floats_tensor([self.batch_size, _past_length]) > 0.5 # decoder inputs future_time_features = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features]) future_values = floats_tensor([self.batch_size, config.prediction_length]) inputs_dict = { "past_values": past_values, "static_categorical_features": static_categorical_features, "static_real_features": static_real_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def prepare_config_and_inputs(self): config = self.get_config() inputs_dict = self.prepare_time_series_transformer_inputs_dict(config) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = TimeSeriesTransformerModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = TimeSeriesTransformerEncoder.from_pretrained(tmpdirname).to(torch_device) transformer_inputs, _, _, _ = model.create_network_inputs(**inputs_dict) enc_input = transformer_inputs[:, : config.context_length, ...] dec_input = transformer_inputs[:, config.context_length :, ...] encoder_last_hidden_state_2 = encoder(inputs_embeds=enc_input)[0] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = TimeSeriesTransformerDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( inputs_embeds=dec_input, encoder_hidden_states=encoder_last_hidden_state, )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class TimeSeriesTransformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TimeSeriesTransformerModel, TimeSeriesTransformerForPrediction) if is_torch_available() else () ) all_generative_model_classes = (TimeSeriesTransformerForPrediction,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": TimeSeriesTransformerModel} if is_torch_available() else {} is_encoder_decoder = True test_pruning = False test_head_masking = False test_missing_keys = False test_torchscript = False test_inputs_embeds = False test_model_common_attributes = False def setUp(self): self.model_tester = TimeSeriesTransformerModelTester(self) self.config_tester = ConfigTester( self, config_class=TimeSeriesTransformerConfig, has_text_modality=False, prediction_length=self.model_tester.prediction_length, ) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, _ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) # Ignore since we have no tokens embeddings def test_resize_tokens_embeddings(self): pass # # Input is 'static_categorical_features' not 'input_ids' def test_model_main_input_name(self): model_signature = inspect.signature(getattr(TimeSeriesTransformerModel, "forward")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1] self.assertEqual(TimeSeriesTransformerModel.main_input_name, observed_main_input_name) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] expected_arg_names.extend( [ "future_observed_mask", "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] if "future_observed_mask" in arg_names else [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_seq_length], ) out_len = len(outputs) correct_outlen = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_seq_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, encoder_seq_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 2, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_seq_length], ) @parameterized.expand( [ (1, 5, [1]), (1, 5, [1, 10, 15]), (1, 5, [3, 6, 9, 10]), (2, 5, [1, 2, 7]), (2, 5, [2, 3, 4, 6]), (4, 5, [1, 5, 9, 11]), (4, 5, [7, 8, 13, 14]), ], ) def test_create_network_inputs(self, prediction_length, context_length, lags_sequence): history_length = max(lags_sequence) + context_length config = TimeSeriesTransformerConfig( prediction_length=prediction_length, context_length=context_length, lags_sequence=lags_sequence, scaling=False, num_parallel_samples=10, num_static_categorical_features=1, cardinality=[1], embedding_dimension=[2], num_static_real_features=1, ) model = TimeSeriesTransformerModel(config) batch = { "static_categorical_features": torch.tensor([[0]], dtype=torch.int64), "static_real_features": torch.tensor([[0.0]], dtype=torch.float32), "past_time_features": torch.arange(history_length, dtype=torch.float32).view(1, history_length, 1), "past_values": torch.arange(history_length, dtype=torch.float32).view(1, history_length), "past_observed_mask": torch.arange(history_length, dtype=torch.float32).view(1, history_length), } # test with no future_target (only one step prediction) batch["future_time_features"] = torch.arange(history_length, history_length + 1, dtype=torch.float32).view( 1, 1, 1 ) transformer_inputs, loc, scale, _ = model.create_network_inputs(**batch) self.assertTrue((scale == 1.0).all()) assert (loc == 0.0).all() ref = torch.arange(max(lags_sequence), history_length, dtype=torch.float32) for idx, lag in enumerate(lags_sequence): assert torch.isclose(ref - lag, transformer_inputs[0, :, idx]).all() # test with all future data batch["future_time_features"] = torch.arange( history_length, history_length + prediction_length, dtype=torch.float32 ).view(1, prediction_length, 1) batch["future_values"] = torch.arange( history_length, history_length + prediction_length, dtype=torch.float32 ).view(1, prediction_length) transformer_inputs, loc, scale, _ = model.create_network_inputs(**batch) assert (scale == 1.0).all() assert (loc == 0.0).all() ref = torch.arange(max(lags_sequence), history_length + prediction_length, dtype=torch.float32) for idx, lag in enumerate(lags_sequence): assert torch.isclose(ref - lag, transformer_inputs[0, :, idx]).all() # test for generation batch.pop("future_values") transformer_inputs, loc, scale, _ = model.create_network_inputs(**batch) lagged_sequence = model.get_lagged_subsequences( sequence=batch["past_values"], subsequences_length=1, shift=1, ) # assert that the last element of the lagged sequence is the one after the encoders input assert transformer_inputs[0, ..., 0][-1] + 1 == lagged_sequence[0, ..., 0][-1] future_values = torch.arange(history_length, history_length + prediction_length, dtype=torch.float32).view( 1, prediction_length ) # assert that the first element of the future_values is offset by lag after the decoders input assert lagged_sequence[0, ..., 0][-1] + lags_sequence[0] == future_values[0, ..., 0] @is_flaky() def test_retain_grad_hidden_states_attentions(self): super().test_retain_grad_hidden_states_attentions() def prepare_batch(filename="train-batch.pt"): file = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch", filename=filename, repo_type="dataset") batch = torch.load(file, map_location=torch_device) return batch @require_torch @slow class TimeSeriesTransformerModelIntegrationTests(unittest.TestCase): def test_inference_no_head(self): model = TimeSeriesTransformerModel.from_pretrained("huggingface/time-series-transformer-tourism-monthly").to( torch_device ) batch = prepare_batch() with torch.no_grad(): output = model( past_values=batch["past_values"], past_time_features=batch["past_time_features"], past_observed_mask=batch["past_observed_mask"], static_categorical_features=batch["static_categorical_features"], static_real_features=batch["static_real_features"], future_values=batch["future_values"], future_time_features=batch["future_time_features"], ).last_hidden_state expected_shape = torch.Size((64, model.config.context_length, model.config.d_model)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[0.8196, -1.5131, 1.4620], [1.1268, -1.3238, 1.5997], [1.5098, -1.0715, 1.7359]], device=torch_device ) self.assertTrue(torch.allclose(output[0, :3, :3], expected_slice, atol=TOLERANCE)) def test_inference_head(self): model = TimeSeriesTransformerForPrediction.from_pretrained( "huggingface/time-series-transformer-tourism-monthly" ).to(torch_device) batch = prepare_batch("val-batch.pt") with torch.no_grad(): output = model( past_values=batch["past_values"], past_time_features=batch["past_time_features"], past_observed_mask=batch["past_observed_mask"], static_categorical_features=batch["static_categorical_features"], static_real_features=batch["static_real_features"], future_time_features=batch["future_time_features"], ).encoder_last_hidden_state expected_shape = torch.Size((64, model.config.context_length, model.config.d_model)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[-1.2957, -1.0280, -0.6045], [-0.7017, -0.8193, -0.3717], [-1.0449, -0.8149, 0.1405]], device=torch_device ) self.assertTrue(torch.allclose(output[0, :3, :3], expected_slice, atol=TOLERANCE)) def test_seq_to_seq_generation(self): model = TimeSeriesTransformerForPrediction.from_pretrained( "huggingface/time-series-transformer-tourism-monthly" ).to(torch_device) batch = prepare_batch("val-batch.pt") with torch.no_grad(): outputs = model.generate( static_categorical_features=batch["static_categorical_features"], static_real_features=batch["static_real_features"], past_time_features=batch["past_time_features"], past_values=batch["past_values"], future_time_features=batch["future_time_features"], past_observed_mask=batch["past_observed_mask"], ) expected_shape = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length)) self.assertEqual(outputs.sequences.shape, expected_shape) expected_slice = torch.tensor([2825.2749, 3584.9207, 6763.9951], device=torch_device) mean_prediction = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -3:], expected_slice, rtol=1e-1))
transformers-main
tests/models/time_series_transformer/test_modeling_time_series_transformer.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import M2M100Tokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.m2m_100.tokenization_m2m_100 import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): SAMPLE_SP = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right EN_CODE = 128022 FR_CODE = 128028 @require_sentencepiece class M2M100TokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = M2M100Tokenizer test_rust_tokenizer = False test_seq2seq = False test_sentencepiece = True def setUp(self): super().setUp() vocab = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) save_dir = Path(self.tmpdirname) save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"]) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"]) tokenizer = M2M100Tokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return M2M100Tokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): return ( "This is a test", "This is a test", ) def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "</s>" token_id = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): tokenizer = self.get_tokenizer() vocab_keys = list(tokenizer.get_vocab().keys()) self.assertEqual(vocab_keys[0], "</s>") self.assertEqual(vocab_keys[1], "<unk>") self.assertEqual(vocab_keys[-1], "<s>") self.assertEqual(len(vocab_keys), tokenizer.vocab_size + len(tokenizer.get_added_vocab())) @unittest.skip("Skip this test while all models are still to be uploaded.") def test_pretrained_model_lists(self): pass def test_full_tokenizer(self): tokenizer = self.get_tokenizer() tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [2, 3, 4, 5, 6], ) back_tokens = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(back_tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) text = tokenizer.convert_tokens_to_string(tokens) self.assertEqual(text, "This is a test") @slow def test_tokenizer_integration(self): # fmt: off expected_encoding = {'input_ids': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="facebook/m2m100_418M", revision="c168bae485c864188cf9aa0e4108b0b6934dc91e", ) @require_torch @require_sentencepiece @require_tokenizers class M2M100TokenizerIntegrationTest(unittest.TestCase): checkpoint_name = "facebook/m2m100_418M" src_text = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] tgt_text = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off expected_src_tokens = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] # fmt: on @classmethod def setUpClass(cls): cls.tokenizer: M2M100Tokenizer = M2M100Tokenizer.from_pretrained( cls.checkpoint_name, src_lang="en", tgt_lang="fr" ) cls.pad_token_id = 1 return cls def check_language_codes(self): self.assertEqual(self.tokenizer.get_lang_id("ar"), 128006) self.assertEqual(self.tokenizer.get_lang_id("en"), 128022) self.assertEqual(self.tokenizer.get_lang_id("ro"), 128076) self.assertEqual(self.tokenizer.get_lang_id("mr"), 128063) def test_get_vocab(self): vocab = self.tokenizer.get_vocab() self.assertEqual(len(vocab), self.tokenizer.vocab_size) self.assertEqual(vocab["<unk>"], 3) self.assertIn(self.tokenizer.get_lang_token("en"), vocab) def test_tokenizer_batch_encode_plus(self): self.tokenizer.src_lang = "en" ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, ids) def test_tokenizer_decode_ignores_language_codes(self): self.assertIn(FR_CODE, self.tokenizer.all_special_ids) # fmt: off generated_ids = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on result = self.tokenizer.decode(generated_ids, skip_special_tokens=True) expected_french = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True) self.assertEqual(result, expected_french) self.assertNotIn(self.tokenizer.eos_token, result) def test_special_tokens_unaffacted_by_save_load(self): tmpdirname = tempfile.mkdtemp() original_special_tokens = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(tmpdirname) new_tok = M2M100Tokenizer.from_pretrained(tmpdirname) self.assertDictEqual(new_tok.lang_token_to_id, original_special_tokens) @require_torch def test_batch_fairseq_parity(self): self.tokenizer.src_lang = "en" self.tokenizer.tgt_lang = "fr" batch = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=True, return_tensors="pt") batch["decoder_input_ids"] = shift_tokens_right( batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id ) for k in batch: batch[k] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def test_src_lang_setter(self): self.tokenizer.src_lang = "mr" self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) self.tokenizer.src_lang = "zh" self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) @require_torch def test_tokenizer_target_mode(self): self.tokenizer.tgt_lang = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) self.tokenizer.tgt_lang = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) @require_torch def test_tokenizer_translation(self): inputs = self.tokenizer._build_translation_inputs("A test", return_tensors="pt", src_lang="en", tgt_lang="ar") self.assertEqual( nested_simplify(inputs), { # en_XX, A, test, EOS "input_ids": [[128022, 58, 4183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128006, }, )
transformers-main
tests/models/m2m_100/test_tokenization_m2m_100.py
transformers-main
tests/models/m2m_100/__init__.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch M2M100 model. """ import copy import tempfile import unittest from transformers import M2M100Config, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import M2M100ForConditionalGeneration, M2M100Model, M2M100Tokenizer from transformers.models.m2m_100.modeling_m2m_100 import M2M100Decoder, M2M100Encoder def prepare_m2m_100_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class M2M100ModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, encoder_layerdrop=0.0, decoder_layerdrop=0.0, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input input_ids = input_ids.clamp(self.pad_token_id + 1) decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1) config = self.get_config() inputs_dict = prepare_m2m_100_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return M2M100Config( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, encoder_layerdrop=self.encoder_layerdrop, decoder_layerdrop=self.decoder_layerdrop, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = M2M100Model(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = M2M100Model(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = M2M100Encoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = M2M100Decoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class M2M100ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( M2M100Model, M2M100ForConditionalGeneration, ) if is_torch_available() else () ) all_generative_model_classes = (M2M100ForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": M2M100ForConditionalGeneration, "feature-extraction": M2M100Model, "summarization": M2M100ForConditionalGeneration, "text2text-generation": M2M100ForConditionalGeneration, "translation": M2M100ForConditionalGeneration, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = True test_pruning = False test_missing_keys = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def setUp(self): self.model_tester = M2M100ModelTester(self) self.config_tester = ConfigTester(self, config_class=M2M100Config) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (M2M100Model, M2M100ForConditionalGeneration): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = M2M100ForConditionalGeneration(config).eval().to(torch_device) if torch_device == "cuda": model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) TOLERANCE = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class M2M100ModelIntegrationTests(unittest.TestCase): @cached_property def default_tokenizer(self): return M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") def test_inference_no_head(self): model = M2M100Model.from_pretrained("facebook/m2m100_418M").to(torch_device) input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, 1024)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_inference_head(self): model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device) # change to intended input input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_seq_to_seq_generation(self): model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device) tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="fr", tgt_lang="en") src_fr = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams dct = tokenizer(src_fr, padding=True, return_tensors="pt") hypotheses_batch = model.generate( input_ids=dct["input_ids"].to(torch_device), attention_mask=dct["attention_mask"].to(torch_device), num_beams=5, forced_bos_token_id=tokenizer.get_lang_id("en"), ) expected_en = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] generated = tokenizer.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) assert generated == expected_en
transformers-main
tests/models/m2m_100/test_modeling_m2m_100.py
transformers-main
tests/models/squeezebert/__init__.py
# coding=utf-8 # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import SqueezeBertTokenizer, SqueezeBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class SqueezeBertTokenizationTest(BertTokenizationTest): tokenizer_class = SqueezeBertTokenizer rust_tokenizer_class = SqueezeBertTokenizerFast test_rust_tokenizer = True def get_rust_tokenizer(self, **kwargs): return SqueezeBertTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) @slow def test_sequence_builders(self): tokenizer = SqueezeBertTokenizer.from_pretrained("squeezebert/squeezebert-mnli-headless") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [ tokenizer.sep_token_id ]
transformers-main
tests/models/squeezebert/test_tokenization_squeezebert.py
# coding=utf-8 # Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class SqueezeBertModelTester(object): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=False, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=64, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, q_groups=2, k_groups=2, v_groups=2, post_attention_groups=2, intermediate_groups=4, output_groups=1, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.q_groups = q_groups self.k_groups = k_groups self.v_groups = v_groups self.post_attention_groups = post_attention_groups self.intermediate_groups = intermediate_groups self.output_groups = output_groups def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return SqueezeBertConfig( embedding_size=self.hidden_size, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, attention_probs_dropout_prob=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, q_groups=self.q_groups, k_groups=self.k_groups, v_groups=self.v_groups, post_attention_groups=self.post_attention_groups, intermediate_groups=self.intermediate_groups, output_groups=self.output_groups, ) def create_and_check_squeezebert_model( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = SqueezeBertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_squeezebert_for_masked_lm( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = SqueezeBertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_squeezebert_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = SqueezeBertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_squeezebert_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = SqueezeBertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_squeezebert_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = SqueezeBertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_squeezebert_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = SqueezeBertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SqueezeBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) pipeline_model_mapping = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = True test_head_masking = False def setUp(self): self.model_tester = SqueezeBertModelTester(self) self.config_tester = ConfigTester(self, config_class=SqueezeBertConfig, dim=37) def test_config(self): self.config_tester.run_common_tests() def test_squeezebert_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SqueezeBertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_sentencepiece @require_tokenizers @require_torch class SqueezeBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_classification_head(self): model = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli") input_ids = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]]) output = model(input_ids)[0] expected_shape = torch.Size((1, 3)) self.assertEqual(output.shape, expected_shape) expected_tensor = torch.tensor([[0.6401, -0.0349, -0.6041]]) self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4))
transformers-main
tests/models/squeezebert/test_modeling_squeezebert.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Swin model. """ import collections import inspect import unittest from transformers import SwinConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel from transformers.models.swin.modeling_swin import SWIN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SwinModelTester: def __init__( self, parent, batch_size=13, image_size=32, patch_size=2, num_channels=3, embed_dim=16, depths=[1, 2, 1], num_heads=[2, 2, 4], window_size=2, mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, patch_norm=True, initializer_range=0.02, layer_norm_eps=1e-5, is_training=True, scope=None, use_labels=True, type_sequence_label_size=10, encoder_stride=8, out_features=["stage1", "stage2"], out_indices=[1, 2], ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.patch_norm = patch_norm self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.is_training = is_training self.scope = scope self.use_labels = use_labels self.type_sequence_label_size = type_sequence_label_size self.encoder_stride = encoder_stride self.out_features = out_features self.out_indices = out_indices def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return SwinConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def create_and_check_model(self, config, pixel_values, labels): model = SwinModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim)) def create_and_check_backbone(self, config, pixel_values, labels): model = SwinBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], 16, 16]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) # verify backbone works with out_features=None config.out_features = None model = SwinBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, model.channels[-1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), 1) def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): model = SwinForMaskedImageModeling(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images config.num_channels = 1 model = SwinForMaskedImageModeling(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = SwinForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = SwinForImageClassification(config) model.to(torch_device) model.eval() pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SwinModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( SwinModel, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": SwinModel, "image-classification": SwinForImageClassification} if is_torch_available() else {} ) fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = SwinModelTester(self) self.config_tester = ConfigTester(self, config_class=SwinConfig, embed_dim=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) # TODO: check if this works again for PyTorch 2.x.y @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.") def test_multi_gpu_data_parallel_forward(self): pass def test_training_gradient_checkpointing(self): super().test_training_gradient_checkpointing() def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_for_masked_image_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @unittest.skip(reason="Swin does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Swin Transformer does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = len(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True window_size_squared = config.window_size**2 model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) # also another +1 for reshaped_hidden_states added_hidden_states = 1 if model_class.__name__ == "SwinBackbone" else 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) def check_hidden_states_output(self, inputs_dict, config, model_class, image_size): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # Swin has a different seq_length patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]), [num_patches, self.model_tester.embed_dim], ) if not model_class.__name__ == "SwinBackbone": reshaped_hidden_states = outputs.reshaped_hidden_states self.assertEqual(len(reshaped_hidden_states), expected_num_layers) batch_size, num_channels, height, width = reshaped_hidden_states[0].shape reshaped_hidden_states = ( reshaped_hidden_states[0].view(batch_size, num_channels, height * width).permute(0, 2, 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]), [num_patches, self.model_tester.embed_dim], ) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) def test_hidden_states_output_with_padding(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.patch_size = 3 image_size = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) patch_size = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable) else (config.patch_size, config.patch_size) ) padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) @slow def test_model_from_pretrained(self): for model_name in SWIN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SwinModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @require_vision @require_torch class SwinModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = SwinForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224").to(torch_device) image_processor = self.default_image_processor image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.0948, -0.6454, -0.0921]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @require_torch class SwinBackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (SwinBackbone,) if is_torch_available() else () config_class = SwinConfig def setUp(self): self.model_tester = SwinModelTester(self)
transformers-main
tests/models/swin/test_modeling_swin.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TF 2.0 Swin model. """ from __future__ import annotations import inspect import unittest import numpy as np from transformers import SwinConfig from transformers.testing_utils import require_tf, require_vision, slow, to_2tuple from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.swin.modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, ) if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class TFSwinModelTester: def __init__( self, parent, batch_size=13, image_size=32, patch_size=2, num_channels=3, embed_dim=16, depths=[1, 2, 1], num_heads=[2, 2, 4], window_size=2, mlp_ratio=2.0, qkv_bias=True, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, drop_path_rate=0.1, hidden_act="gelu", use_absolute_embeddings=False, patch_norm=True, initializer_range=0.02, layer_norm_eps=1e-5, is_training=True, scope=None, use_labels=True, type_sequence_label_size=10, encoder_stride=8, ) -> None: self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.embed_dim = embed_dim self.depths = depths self.num_heads = num_heads self.window_size = window_size self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_absolute_embeddings = use_absolute_embeddings self.patch_norm = patch_norm self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.is_training = is_training self.scope = scope self.use_labels = use_labels self.type_sequence_label_size = type_sequence_label_size self.encoder_stride = encoder_stride def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return SwinConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def create_and_check_model(self, config, pixel_values, labels): model = TFSwinModel(config=config) result = model(pixel_values) expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim)) def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels): model = TFSwinForMaskedImageModeling(config=config) result = model(pixel_values) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images config.num_channels = 1 model = TFSwinForMaskedImageModeling(config) pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, 1, self.image_size, self.image_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = TFSwinForImageClassification(config) result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = TFSwinForImageClassification(config) pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class TFSwinModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFSwinModel, TFSwinForImageClassification, TFSwinForMaskedImageModeling, ) if is_tf_available() else () ) pipeline_model_mapping = ( {"feature-extraction": TFSwinModel, "image-classification": TFSwinForImageClassification} if is_tf_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFSwinModelTester(self) self.config_tester = ConfigTester(self, config_class=SwinConfig, embed_dim=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_image_modeling(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @unittest.skip(reason="Swin does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), tf.keras.layers.Layer) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, tf.keras.layers.Dense)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions expected_num_attentions = len(self.model_tester.depths) self.assertEqual(len(attentions), expected_num_attentions) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True window_size_squared = config.window_size**2 model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), expected_num_attentions) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states added_hidden_states = 2 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), expected_num_attentions) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_heads[0], window_size_squared, window_size_squared], ) def check_hidden_states_output(self, inputs_dict, config, model_class, image_size): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) # Swin has a different seq_length patch_size = to_2tuple(config.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]), [num_patches, self.model_tester.embed_dim], ) reshaped_hidden_states = outputs.reshaped_hidden_states self.assertEqual(len(reshaped_hidden_states), expected_num_layers) batch_size, num_channels, height, width = reshaped_hidden_states[0].shape reshaped_hidden_states = tf.reshape(reshaped_hidden_states[0], (batch_size, num_channels, height * width)) reshaped_hidden_states = tf.transpose(reshaped_hidden_states, (0, 2, 1)) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]), [num_patches, self.model_tester.embed_dim], ) def test_hidden_states_output(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() image_size = to_2tuple(self.model_tester.image_size) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, image_size) def test_inputs_requiring_padding(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.patch_size = 3 image_size = to_2tuple(self.model_tester.image_size) patch_size = to_2tuple(config.patch_size) padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width)) @slow def test_model_from_pretrained(self): for model_name in TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFSwinModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_vision @require_tf class TFSwinModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = TFSwinForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224") image_processor = self.default_image_processor image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") inputs = image_processor(images=image, return_tensors="tf") # forward pass outputs = model(inputs) # verify the logits expected_shape = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.constant([-0.0948, -0.6454, -0.0921]) self.assertTrue(np.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers-main
tests/models/swin/test_modeling_tf_swin.py
transformers-main
tests/models/swin/__init__.py
transformers-main
tests/models/mobilenet_v1/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch MobileNetV1 model. """ import inspect import unittest from transformers import MobileNetV1Config from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetV1ForImageClassification, MobileNetV1Model from transformers.models.mobilenet_v1.modeling_mobilenet_v1 import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetV1ImageProcessor class MobileNetV1ConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "tf_padding")) self.parent.assertTrue(hasattr(config, "depth_multiplier")) class MobileNetV1ModelTester: def __init__( self, parent, batch_size=13, num_channels=3, image_size=32, depth_multiplier=0.25, min_depth=8, tf_padding=True, last_hidden_size=1024, output_stride=32, hidden_act="relu6", classifier_dropout_prob=0.1, initializer_range=0.02, is_training=True, use_labels=True, num_labels=10, scope=None, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.depth_multiplier = depth_multiplier self.min_depth = min_depth self.tf_padding = tf_padding self.last_hidden_size = int(last_hidden_size * depth_multiplier) self.output_stride = output_stride self.hidden_act = hidden_act self.classifier_dropout_prob = classifier_dropout_prob self.use_labels = use_labels self.is_training = is_training self.num_labels = num_labels self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None pixel_labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = self.get_config() return config, pixel_values, labels, pixel_labels def get_config(self): return MobileNetV1Config( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, min_depth=self.min_depth, tf_padding=self.tf_padding, hidden_act=self.hidden_act, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels, pixel_labels): model = MobileNetV1Model(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels): config.num_labels = self.num_labels model = MobileNetV1ForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels, pixel_labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class MobileNetV1ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as MobileNetV1 does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (MobileNetV1Model, MobileNetV1ForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": MobileNetV1Model, "image-classification": MobileNetV1ForImageClassification} if is_torch_available() else {} ) test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = MobileNetV1ModelTester(self) self.config_tester = MobileNetV1ConfigTester(self, config_class=MobileNetV1Config, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="MobileNetV1 does not output attentions") def test_attention_outputs(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_stages = 26 self.assertEqual(len(hidden_states), expected_num_stages) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = MobileNetV1Model.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class MobileNetV1ModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( MobileNetV1ImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224") if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = MobileNetV1ForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1001)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-4.1739, -1.1233, 3.1205]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers-main
tests/models/mobilenet_v1/test_modeling_mobilenet_v1.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import MobileNetV1ImageProcessor class MobileNetV1ImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, ): size = size if size is not None else {"shortest_edge": 20} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class MobileNetV1ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = MobileNetV1ImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = MobileNetV1ImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
transformers-main
tests/models/mobilenet_v1/test_image_processing_mobilenet_v1.py
transformers-main
tests/models/convnext/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ConvNext model. """ import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class ConvNextModelTester: def __init__( self, parent, batch_size=13, image_size=32, num_channels=3, num_stages=4, hidden_sizes=[10, 20, 30, 40], depths=[2, 2, 3, 2], is_training=True, use_labels=True, intermediate_size=37, hidden_act="gelu", num_labels=10, initializer_range=0.02, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_stages = num_stages self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_labels = num_labels self.initializer_range = initializer_range self.out_features = out_features self.out_indices = out_indices self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=False, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, labels): model = ConvNextModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): model = ConvNextForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_backbone(self, config, pixel_values, labels): model = ConvNextBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify hidden states self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) # verify backbone works with out_features=None config.out_features = None model = ConvNextBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class ConvNextModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ConvNext does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) fx_compatible = True test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = ConvNextModelTester(self) self.config_tester = ConfigTester(self, config_class=ConvNextConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="ConvNext does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="ConvNext does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="ConvNext does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ConvNextModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ConvNextModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.0260, -0.4739, 0.1911]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @require_torch class ConvNextBackboneTest(unittest.TestCase, BackboneTesterMixin): all_model_classes = (ConvNextBackbone,) if is_torch_available() else () config_class = ConvNextConfig has_attentions = False def setUp(self): self.model_tester = ConvNextModelTester(self)
transformers-main
tests/models/convnext/test_modeling_convnext.py
# coding=utf-8 # Copyright 2022s HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import ConvNextImageProcessor class ConvNextImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, crop_pct=0.875, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"shortest_edge": 20} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.crop_pct = crop_pct self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_pct": self.crop_pct, } def expected_output_image_shape(self, images): return self.num_channels, self.size["shortest_edge"], self.size["shortest_edge"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class ConvNextImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ConvNextImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ConvNextImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "crop_pct")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"shortest_edge": 42})
transformers-main
tests/models/convnext/test_image_processing_convnext.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow ConvNext model. """ from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import ConvNextConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFConvNextForImageClassification, TFConvNextModel if is_vision_available(): from PIL import Image from transformers import ConvNextImageProcessor class TFConvNextModelTester: def __init__( self, parent, batch_size=13, image_size=32, num_channels=3, num_stages=4, hidden_sizes=[10, 20, 30, 40], depths=[2, 2, 3, 2], is_training=True, use_labels=True, intermediate_size=37, hidden_act="gelu", type_sequence_label_size=10, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_stages = num_stages self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ConvNextConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=False, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = TFConvNextModel(config=config) result = model(pixel_values, training=False) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = TFConvNextForImageClassification(config) result = model(pixel_values, labels=labels, training=False) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class TFConvNextModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ConvNext does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (TFConvNextModel, TFConvNextForImageClassification) if is_tf_available() else () pipeline_model_mapping = ( {"feature-extraction": TFConvNextModel, "image-classification": TFConvNextForImageClassification} if is_tf_available() else {} ) test_pruning = False test_onnx = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = TFConvNextModelTester(self) self.config_tester = ConfigTester( self, config_class=ConvNextConfig, has_text_modality=False, hidden_size=37, ) @unittest.skip(reason="ConvNext does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) @slow def test_keras_fit(self): super().test_keras_fit() @unittest.skip(reason="ConvNext does not support input and output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0, reason="TF does not support backprop for grouped convolutions on CPU.", ) def test_dataset_conversion(self): super().test_dataset_conversion() def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) # Since ConvNext does not have any attention we need to rewrite this test. def test_model_outputs_equivalence(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(tuple_object, dict_object)), msg=( "Tuple and dict output are not equal. Difference:" f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" ), ) recursive_check(tuple_output, dict_output) for model_class in self.all_model_classes: model = model_class(config) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs) tuple_inputs = self._prepare_for_class(inputs_dict, model_class) dict_inputs = self._prepare_for_class(inputs_dict, model_class) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TFConvNextModel.from_pretrained("facebook/convnext-tiny-224") self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class TFConvNextModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ConvNextImageProcessor.from_pretrained("facebook/convnext-tiny-224") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = TFConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="tf") # forward pass outputs = model(**inputs) # verify the logits expected_shape = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.constant([-0.0260, -0.4739, 0.1911]) tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4)
transformers-main
tests/models/convnext/test_modeling_tf_convnext.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch GPTNeoX model. """ import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class GPTNeoXModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=64, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.pad_token_id = vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_labels = None if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return config, input_ids, input_mask, token_labels def get_config(self): return GPTNeoXConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) def prepare_config_and_inputs_for_decoder(self): config, input_ids, input_mask, token_labels = self.prepare_config_and_inputs() config.is_decoder = True return config, input_ids, input_mask, token_labels def create_and_check_model(self, config, input_ids, input_mask): model = GPTNeoXModel(config=config) model.to(torch_device) model.eval() _ = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder(self, config, input_ids, input_mask): config.add_cross_attention = True model = GPTNeoXModel(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_causal_lm(self, config, input_ids, input_mask, token_labels): model = GPTNeoXForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_question_answering(self, config, input_ids, input_mask, token_labels): config.num_labels = self.num_labels model = GPTNeoXForQuestionAnswering(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification(self, config, input_ids, input_mask, token_labels): config.num_labels = self.num_labels model = GPTNeoXForSequenceClassification(config) model.to(torch_device) model.eval() sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification(self, config, input_ids, input_mask, token_labels): config.num_labels = self.num_labels model = GPTNeoXForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_decoder_model_past_large_inputs(self, config, input_ids, input_mask): config.is_decoder = True model = GPTNeoXForCausalLM(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, attention_mask=input_mask, use_cache=True) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask, output_hidden_states=True) output_from_no_past = output_from_no_past["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask, token_labels = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class GPTNeoXModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = (GPTNeoXForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_missing_keys = False test_model_parallel = False test_head_masking = False def setUp(self): self.model_tester = GPTNeoXModelTester(self) self.config_tester = ConfigTester(self, config_class=GPTNeoXConfig, hidden_size=64, num_attention_heads=8) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(config, input_ids, input_mask) def test_model_as_decoder(self): config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(config, input_ids, input_mask) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder(config, input_ids, input_mask) def test_decoder_model_past_large_inputs(self): config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(config, input_ids, input_mask) def test_model_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_model_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_model_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_model_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @unittest.skip(reason="Feed forward chunking is not implemented") def test_feed_forward_chunking(self): pass @parameterized.expand([("linear",), ("dynamic",)]) def test_model_rope_scaling(self, scaling_type): config, _ = self.model_tester.prepare_config_and_inputs_for_common() short_input = ids_tensor([1, 10], config.vocab_size) long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights original_model = GPTNeoXModel(config) original_model.to(torch_device) original_model.eval() original_short_output = original_model(short_input).last_hidden_state original_long_output = original_model(long_input).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights config.rope_scaling = {"type": scaling_type, "factor": 10.0} scaled_model = GPTNeoXModel(config) scaled_model.to(torch_device) scaled_model.eval() scaled_short_output = scaled_model(short_input).last_hidden_state scaled_long_output = scaled_model(long_input).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) else: self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5)) @require_torch class GPTNeoXLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_gptneox(self): tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-410m-deduped") for checkpointing in [True, False]: model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-410m-deduped") if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(torch_device) inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 expected_output = "My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure" output_ids = model.generate(**inputs, do_sample=False, max_new_tokens=20) output_str = tokenizer.batch_decode(output_ids)[0] self.assertEqual(output_str, expected_output)
transformers-main
tests/models/gpt_neox/test_modeling_gpt_neox.py
transformers-main
tests/models/gpt_neox/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch PoolFormer model. """ import inspect import unittest from transformers import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MODEL_MAPPING, PoolFormerConfig, PoolFormerForImageClassification, PoolFormerModel from transformers.models.poolformer.modeling_poolformer import POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class PoolFormerConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "hidden_sizes")) self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) class PoolFormerModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, num_encoder_blocks=4, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], hidden_sizes=[16, 32, 64, 128], downsampling_rates=[1, 4, 8, 16], is_training=False, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, initializer_range=0.02, num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.sr_ratios = sr_ratios self.depths = depths self.hidden_sizes = hidden_sizes self.downsampling_rates = downsampling_rates self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) config = PoolFormerConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, initializer_range=self.initializer_range, ) return config, pixel_values, labels def create_and_check_model(self, config, pixel_values, labels): model = PoolFormerModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) expected_height = expected_width = self.image_size // 32.0 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class PoolFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (PoolFormerModel, PoolFormerForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": PoolFormerModel, "image-classification": PoolFormerForImageClassification} if is_torch_available() else {} ) test_head_masking = False test_pruning = False test_resize_embeddings = False test_torchscript = False has_attentions = False def setUp(self): self.model_tester = PoolFormerModelTester(self) self.config_tester = PoolFormerConfigTester(self, config_class=PoolFormerConfig) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip("PoolFormer does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip("PoolFormer does not have get_input_embeddings method and get_output_embeddings methods") def test_model_common_attributes(self): pass def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = self.model_tester.num_encoder_blocks self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_training(self): if not self.model_tester.is_training: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: if model_class in get_values(MODEL_MAPPING): continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) @slow def test_model_from_pretrained(self): for model_name in POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = PoolFormerModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch class PoolFormerModelIntegrationTest(unittest.TestCase): @slow def test_inference_image_classification_head(self): image_processor = PoolFormerImageProcessor() model = PoolFormerForImageClassification.from_pretrained("sail/poolformer_s12").to(torch_device) inputs = image_processor(images=prepare_img(), return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.6113, 0.1685, -0.0492]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers-main
tests/models/poolformer/test_modeling_poolformer.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import PoolFormerImageProcessor class PoolFormerImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize_and_center_crop=True, size=None, crop_pct=0.9, crop_size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"shortest_edge": 30} crop_size = crop_size if crop_size is not None else {"height": 30, "width": 30} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize_and_center_crop = do_resize_and_center_crop self.size = size self.crop_pct = crop_pct self.crop_size = crop_size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class PoolFormerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = PoolFormerImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = PoolFormerImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize_and_center_crop")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "crop_pct")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 30}) self.assertEqual(image_processor.crop_size, {"height": 30, "width": 30}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
transformers-main
tests/models/poolformer/test_image_processing_poolformer.py
transformers-main
tests/models/poolformer/__init__.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch WavLM model. """ import math import unittest import pytest from datasets import load_dataset from transformers import WavLMConfig, is_torch_available from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Wav2Vec2FeatureExtractor, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, ) class WavLMModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=16, feat_extract_norm="group", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, # this is most likely not correctly set yet intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, vocab_size=32, do_stable_layer_norm=False, tdnn_dim=(32, 32), tdnn_kernel=(3, 3), tdnn_dilation=(1, 1), xvector_output_dim=32, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.tdnn_dim = tdnn_dim self.tdnn_kernel = tdnn_kernel self.tdnn_dilation = tdnn_dilation self.xvector_output_dim = xvector_output_dim self.scope = scope output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() return config, input_values, attention_mask def get_config(self): return WavLMConfig( hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, tdnn_dim=self.tdnn_dim, tdnn_kernel=self.tdnn_kernel, tdnn_dilation=self.tdnn_dilation, xvector_output_dim=self.xvector_output_dim, ) def create_and_check_model(self, config, input_values, attention_mask): model = WavLMModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = WavLMModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = WavLMForCTC(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() self.parent.assertTrue(isinstance(sum_loss, float)) self.parent.assertTrue(isinstance(mean_loss, float)) def check_seq_classifier_loss(self, config, input_values, *args): model = WavLMForSequenceClassification(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() unmasked_loss = model(input_values, labels=labels).loss.item() self.parent.assertTrue(isinstance(masked_loss, float)) self.parent.assertTrue(isinstance(unmasked_loss, float)) self.parent.assertTrue(masked_loss != unmasked_loss) def check_ctc_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = WavLMForCTC(config=config) model.to(torch_device) model.train() # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 if max_length_labels[i] < labels.shape[-1]: # it's important that we make sure that target lenghts are at least # one shorter than logit lenghts to prevent -inf labels[i, max_length_labels[i] - 1 :] = -100 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_seq_classifier_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = WavLMForSequenceClassification(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_labels_out_of_vocab(self, config, input_values, *args): model = WavLMForCTC(config) model.to(torch_device) model.train() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100) with pytest.raises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_torch class WavLMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (WavLMForCTC, WavLMModel, WavLMForAudioFrameClassification, WavLMForSequenceClassification, WavLMForXVector) if is_torch_available() else () ) pipeline_model_mapping = ( { "audio-classification": WavLMForSequenceClassification, "automatic-speech-recognition": WavLMForCTC, "feature-extraction": WavLMModel, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False def setUp(self): self.model_tester = WavLMModelTester(self) self.config_tester = ConfigTester(self, config_class=WavLMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_seq_classifier_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_loss(*config_and_inputs) def test_ctc_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_training(*config_and_inputs) def test_seq_classifier_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_training(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) # WavLM has no inputs_embeds def test_inputs_embeds(self): pass # `input_ids` is renamed to `input_values` def test_forward_signature(self): pass # WavLM cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # WavLM has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass # WavLM uses PyTorch's multi-head-attention class # and thus can't retain gradients on attentions def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) # set layer drop to 0 model.config.layerdrop = 0.0 input_values = inputs_dict["input_values"] input_lengths = torch.tensor( [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device ) output_lengths = model._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) inputs_dict["labels"] = labels outputs = model(**inputs_dict) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] hidden_states.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "feature_projection.projection.weight", "feature_projection.projection.bias", "label_embeddings_concat", "rel_attn_embed", "objective.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "codevectors") and module.codevectors is not None: module.codevectors.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) @unittest.skip(reason="Feed forward chunking is not implemented for WavLM") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus") self.assertIsNotNone(model) @require_torch @require_torchaudio @slow class WavLMModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _load_superb(self, task, num_samples): ds = load_dataset("anton-l/superb_dummy", task, split="test") return ds[:num_samples] def test_inference_base(self): model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus").to(torch_device) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "microsoft/wavlm-base-plus", return_attention_mask=True ) input_speech = self._load_datasamples(2) inputs = feature_extractor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): hidden_states_slice = ( model(input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu() ) EXPECTED_HIDDEN_STATES_SLICE = torch.tensor( [[[0.0577, 0.1161], [0.0579, 0.1165]], [[0.0199, 0.1237], [0.0059, 0.0605]]] ) # TODO: update the tolerance after the CI moves to torch 1.10 self.assertTrue(torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, atol=5e-2)) def test_inference_large(self): model = WavLMModel.from_pretrained("microsoft/wavlm-large").to(torch_device) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "microsoft/wavlm-large", return_attention_mask=True ) input_speech = self._load_datasamples(2) inputs = feature_extractor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): hidden_states_slice = ( model(input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu() ) EXPECTED_HIDDEN_STATES_SLICE = torch.tensor( [[[0.2122, 0.0500], [0.2118, 0.0563]], [[0.1353, 0.1818], [0.2453, 0.0595]]] ) self.assertTrue(torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, rtol=5e-2)) def test_inference_diarization(self): model = WavLMForAudioFrameClassification.from_pretrained("microsoft/wavlm-base-plus-sd").to(torch_device) processor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sd") input_data = self._load_superb("sd", 4) inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): outputs = model(input_values, attention_mask=attention_mask) # labels is a one-hot array of shape (num_frames, num_speakers) labels = (outputs.logits > 0).long() # s3prl logits for the same batch expected_logits = torch.tensor( [ [[-5.9566, -8.6554], [-5.7137, -8.9386], [-5.7906, -7.0973], [-5.7829, -5.9999]], [[-5.2086, -7.7878], [-4.8890, -7.9312], [-4.2004, -3.9101], [-5.4480, -4.6932]], [[-4.6105, -6.7178], [-5.1930, -6.1635], [-2.6228, -4.1123], [-2.7646, -3.1576]], [[-4.4477, -7.9206], [-3.9339, -7.3707], [-4.9528, -4.8242], [-3.6921, -2.9687]], ], device=torch_device, ) self.assertEqual(labels[0, :, 0].sum(), 258) self.assertEqual(labels[0, :, 1].sum(), 647) # TODO: update the tolerance after the CI moves to torch 1.10 self.assertTrue(torch.allclose(outputs.logits[:, :4], expected_logits, atol=1e-2)) def test_inference_speaker_verification(self): model = WavLMForXVector.from_pretrained("microsoft/wavlm-base-plus-sv").to(torch_device) processor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sv") input_data = self._load_superb("si", 4) inputs = processor(input_data["speech"], return_tensors="pt", padding=True) labels = torch.tensor([5, 1, 1, 3], device=torch_device).T with torch.no_grad(): input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) outputs = model(input_values, attention_mask=attention_mask, labels=labels) embeddings = torch.nn.functional.normalize(outputs.embeddings, dim=-1) cosine_sim = torch.nn.CosineSimilarity(dim=-1) # id10002 vs id10002 self.assertAlmostEqual(cosine_sim(embeddings[1], embeddings[2]).item(), 0.9787, 3) # id10006 vs id10002 self.assertAlmostEqual(cosine_sim(embeddings[0], embeddings[1]).item(), 0.5064, 3) # id10002 vs id10004 self.assertAlmostEqual(cosine_sim(embeddings[2], embeddings[3]).item(), 0.4780, 3) # TODO: update the tolerance after the CI moves to torch 1.10 self.assertAlmostEqual(outputs.loss.item(), 18.4154, 2)
transformers-main
tests/models/wavlm/test_modeling_wavlm.py
transformers-main
tests/models/wavlm/__init__.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest import warnings from transformers import AutoTokenizer, MarianConfig, MarianTokenizer, TranslationPipeline, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeq2SeqLM, TFMarianModel, TFMarianMTModel @require_tf class TFMarianModelTester: config_cls = MarianConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFMarianModel(config=config).get_decoder() input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] head_mask = inputs_dict["head_mask"] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def prepare_marian_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) if decoder_attention_mask is None: decoder_attention_mask = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8), ], axis=-1, ) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class TFMarianModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (TFMarianMTModel, TFMarianModel) if is_tf_available() else () all_generative_model_classes = (TFMarianMTModel,) if is_tf_available() else () pipeline_model_mapping = ( { "conversational": TFMarianMTModel, "feature-extraction": TFMarianModel, "summarization": TFMarianMTModel, "text2text-generation": TFMarianMTModel, "translation": TFMarianMTModel, } if is_tf_available() else {} ) is_encoder_decoder = True test_pruning = False test_onnx = False def setUp(self): self.model_tester = TFMarianModelTester(self) self.config_tester = ConfigTester(self, config_class=MarianConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) @require_tf class AbstractMarianIntegrationTest(unittest.TestCase): maxDiff = 1000 # show more chars for failing integration tests @classmethod def setUpClass(cls) -> None: cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}" return cls @cached_property def tokenizer(self) -> MarianTokenizer: return AutoTokenizer.from_pretrained(self.model_name) @property def eos_token_id(self) -> int: return self.tokenizer.eos_token_id @cached_property def model(self): warnings.simplefilter("error") model: TFMarianMTModel = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name) assert isinstance(model, TFMarianMTModel) c = model.config self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]]) self.assertEqual(c.max_length, 512) self.assertEqual(c.decoder_start_token_id, c.pad_token_id) return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, padding=True, return_tensors="tf") generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128 ) generated_words = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=True) return generated_words @require_sentencepiece @require_tokenizers @require_tf class TestMarian_MT_EN(AbstractMarianIntegrationTest): """Cover low resource/high perplexity setting. This breaks if pad_token_id logits not set to LARGE_NEGATIVE.""" src = "mt" tgt = "en" src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."] expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."] @unittest.skip("Skipping until #12647 is resolved.") @slow def test_batch_generation_mt_en(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers @require_tf class TestMarian_en_zh(AbstractMarianIntegrationTest): src = "en" tgt = "zh" src_text = ["My name is Wolfgang and I live in Berlin"] expected_text = ["我叫沃尔夫冈 我住在柏林"] @unittest.skip("Skipping until #12647 is resolved.") @slow def test_batch_generation_en_zh(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers @require_tf class TestMarian_en_ROMANCE(AbstractMarianIntegrationTest): """Multilingual on target side.""" src = "en" tgt = "ROMANCE" src_text = [ ">>fr<< Don't spend so much time watching TV.", ">>pt<< Your message has been sent.", ">>es<< He's two years older than me.", ] expected_text = [ "Ne passez pas autant de temps à regarder la télé.", "A sua mensagem foi enviada.", "Es dos años más viejo que yo.", ] @unittest.skip("Skipping until #12647 is resolved.") @slow def test_batch_generation_en_ROMANCE_multi(self): self._assert_generated_batch_equal_expected() @unittest.skip("Skipping until #12647 is resolved.") @slow def test_pipeline(self): pipeline = TranslationPipeline(self.model, self.tokenizer, framework="tf") output = pipeline(self.src_text) self.assertEqual(self.expected_text, [x["translation_text"] for x in output])
transformers-main
tests/models/marian/test_modeling_tf_marian.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import timeout_decorator # noqa from transformers import MarianConfig, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" import jax import jax.numpy as jnp from transformers import MarianTokenizer from transformers.models.marian.modeling_flax_marian import FlaxMarianModel, FlaxMarianMTModel, shift_tokens_right def prepare_marian_inputs_dict( config, input_ids, decoder_input_ids=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = np.where(input_ids != config.pad_token_id, 1, 0) if decoder_attention_mask is None: decoder_attention_mask = np.where(decoder_input_ids != config.pad_token_id, 1, 0) if head_mask is None: head_mask = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class FlaxMarianModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=32, eos_token_id=2, pad_token_id=1, bos_token_id=0, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.initializer_range = initializer_range def prepare_config_and_inputs(self): input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1) decoder_input_ids = shift_tokens_right(input_ids, 1, 2) config = MarianConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=False, ) inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, inputs_dict): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(inputs_dict["input_ids"]) decoder_input_ids, decoder_attention_mask = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) decoder_attention_mask = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4") decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, decoder_position_ids=decoder_position_ids, ) decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=outputs_cache.past_key_values, decoder_position_ids=decoder_position_ids, ) outputs = model.decode(decoder_input_ids, encoder_outputs) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(inputs_dict["input_ids"]) decoder_input_ids, decoder_attention_mask = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) decoder_attention_mask_cache = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ], axis=-1, ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask_cache, past_key_values=past_key_values, decoder_position_ids=decoder_position_ids, ) decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=decoder_attention_mask_cache, decoder_position_ids=decoder_position_ids, ) outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class FlaxMarianModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin): is_encoder_decoder = True all_model_classes = (FlaxMarianModel, FlaxMarianMTModel) if is_flax_available() else () all_generative_model_classes = (FlaxMarianMTModel,) if is_flax_available() else () def setUp(self): self.model_tester = FlaxMarianModelTester(self) def test_use_cache_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(model_class, config, inputs_dict) def test_use_cache_forward_with_attn_mask(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict) def test_encode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def encode_jitted(input_ids, attention_mask=None, **kwargs): return model.encode(input_ids=input_ids, attention_mask=attention_mask) with self.subTest("JIT Enabled"): jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = encode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_decode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): model = model_class(config) encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"]) prepared_inputs_dict = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs): return model.decode( decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, ) with self.subTest("JIT Enabled"): jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = decode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("Helsinki-NLP/opus-mt-en-de") # FlaxMarianForSequenceClassification expects eos token in input_ids input_ids = np.ones((1, 1)) * model.config.eos_token_id outputs = model(input_ids) self.assertIsNotNone(outputs) @require_flax @require_sentencepiece @require_tokenizers class MarianIntegrationTest(unittest.TestCase): src = None tgt = None @classmethod def setUpClass(cls) -> None: cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}" return cls @cached_property def tokenizer(self): return MarianTokenizer.from_pretrained(self.model_name) @property def eos_token_id(self) -> int: return self.tokenizer.eos_token_id @cached_property def model(self): model: FlaxMarianMTModel = FlaxMarianMTModel.from_pretrained(self.model_name) self.assertEqual(model.config.decoder_start_token_id, model.config.pad_token_id) return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, padding=True, return_tensors="np", **tokenizer_kwargs) generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128, ).sequences generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_words @require_flax @require_sentencepiece @require_tokenizers class TestMarian_EN_FR(MarianIntegrationTest): src = "en" tgt = "fr" src_text = [ "I am a small frog.", "Now I can forget the 100 words of german that I know.", ] expected_text = [ "Je suis une petite grenouille.", "Maintenant, je peux oublier les 100 mots d'allemand que je connais.", ] @slow def test_batch_generation_en_fr(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_FR_EN(MarianIntegrationTest): src = "fr" tgt = "en" src_text = [ "Donnez moi le micro.", "Tom et Mary étaient assis à une table.", # Accents ] expected_text = [ "Give me the microphone.", "Tom and Mary were sitting at a table.", ] @slow def test_batch_generation_fr_en(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_MT_EN(MarianIntegrationTest): """Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten""" src = "mt" tgt = "en" src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."] expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."] @slow def test_batch_generation_mt_en(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_EN_DE(MarianIntegrationTest): src = "en" tgt = "de" src_text = [ "I am a small frog.", "Now I can forget the 100 words of german that I know.", "Tom asked his teacher for advice.", "That's how I would do it.", "Tom really admired Mary's courage.", "Turn around and close your eyes.", ] expected_text = [ "Ich bin ein kleiner Frosch.", "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.", "Tom bat seinen Lehrer um Rat.", "So würde ich das machen.", "Tom bewunderte Marias Mut wirklich.", "Drehen Sie sich um und schließen Sie die Augen.", ] @slow def test_batch_generation_en_de(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_en_zh(MarianIntegrationTest): src = "en" tgt = "zh" src_text = ["My name is Wolfgang and I live in Berlin"] expected_text = ["我叫沃尔夫冈 我住在柏林"] @slow def test_batch_generation_eng_zho(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_RU_FR(MarianIntegrationTest): src = "ru" tgt = "fr" src_text = ["Он показал мне рукопись своей новой пьесы."] expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."] @slow def test_batch_generation_ru_fr(self): self._assert_generated_batch_equal_expected() @require_flax @require_sentencepiece @require_tokenizers class TestMarian_en_ROMANCE(MarianIntegrationTest): """Multilingual on target side.""" src = "en" tgt = "ROMANCE" src_text = [ ">>fr<< Don't spend so much time watching TV.", ">>pt<< Your message has been sent.", ">>es<< He's two years older than me.", ] expected_text = [ "Ne passez pas autant de temps à regarder la télé.", "A sua mensagem foi enviada.", "Es dos años más viejo que yo.", ] @slow def test_batch_generation_en_ROMANCE_multi(self): self._assert_generated_batch_equal_expected()
transformers-main
tests/models/marian/test_modeling_flax_marian.py
transformers-main
tests/models/marian/__init__.py
# coding=utf-8 # Copyright 2020 Huggingface # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_SP = get_tests_dir("fixtures/test_sentencepiece.model") mock_tokenizer_config = {"target_lang": "fi", "source_lang": "en"} zh_code = ">>zh<<" ORG_NAME = "Helsinki-NLP/" if is_torch_available(): FRAMEWORK = "pt" elif is_tf_available(): FRAMEWORK = "tf" else: FRAMEWORK = "jax" @require_sentencepiece class MarianTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = MarianTokenizer test_rust_tokenizer = False test_sentencepiece = True def setUp(self): super().setUp() vocab = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) save_dir = Path(self.tmpdirname) save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab"]) save_json(mock_tokenizer_config, save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"]) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["source_spm"]) copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["target_spm"]) tokenizer = MarianTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs) -> MarianTokenizer: return MarianTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): return ( "This is a test", "This is a test", ) def test_convert_token_and_id(self): """Test ``_convert_token_to_id`` and ``_convert_id_to_token``.""" token = "</s>" token_id = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id) self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token) def test_get_vocab(self): vocab_keys = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0], "</s>") self.assertEqual(vocab_keys[1], "<unk>") self.assertEqual(vocab_keys[-1], "<pad>") self.assertEqual(len(vocab_keys), 9) def test_vocab_size(self): self.assertEqual(self.get_tokenizer().vocab_size, 9) def test_tokenizer_equivalence_en_de(self): en_de_tokenizer = MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de") batch = en_de_tokenizer(["I am a small frog"], return_tensors=None) self.assertIsInstance(batch, BatchEncoding) expected = [38, 121, 14, 697, 38848, 0] self.assertListEqual(expected, batch.input_ids[0]) save_dir = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(save_dir) contents = [x.name for x in Path(save_dir).glob("*")] self.assertIn("source.spm", contents) MarianTokenizer.from_pretrained(save_dir) def test_outputs_not_longer_than_maxlen(self): tok = self.get_tokenizer() batch = tok( ["I am a small frog" * 1000, "I am a small frog"], padding=True, truncation=True, return_tensors=FRAMEWORK ) self.assertIsInstance(batch, BatchEncoding) self.assertEqual(batch.input_ids.shape, (2, 512)) def test_outputs_can_be_shorter(self): tok = self.get_tokenizer() batch_smaller = tok(["I am a tiny frog", "I am a small frog"], padding=True, return_tensors=FRAMEWORK) self.assertIsInstance(batch_smaller, BatchEncoding) self.assertEqual(batch_smaller.input_ids.shape, (2, 10)) @slow def test_tokenizer_integration(self): # fmt: off expected_encoding = {'input_ids': [[43495, 462, 20, 42164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 38999, 6, 8, 464, 132, 1703, 492, 13, 4669, 37867, 13, 7525, 27, 1593, 988, 13, 33972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 12338, 2, 13958, 387, 2, 3629, 6953, 188, 2900, 2, 13958, 8011, 11501, 23, 8460, 4073, 34009, 20, 435, 11439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 37867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 26453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10767, 6, 316, 304, 4239, 3, 0], [148, 15722, 19, 1839, 12, 1350, 13, 22327, 5082, 5418, 47567, 35938, 59, 318, 19552, 108, 2183, 54, 14976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 19088, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100], [36, 6395, 12570, 39147, 11597, 6, 266, 4, 45405, 7296, 3, 0, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100, 58100]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=expected_encoding, model_name="Helsinki-NLP/opus-mt-en-de", revision="1a8c2263da11e68e50938f97e10cd57820bd504c", decode_kwargs={"use_source_tokenizer": True}, ) def test_tokenizer_integration_seperate_vocabs(self): tokenizer = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs") source_text = "Tämä on testi" target_text = "This is a test" expected_src_ids = [76, 7, 2047, 2] expected_target_ids = [69, 12, 11, 940, 2] src_ids = tokenizer(source_text).input_ids self.assertListEqual(src_ids, expected_src_ids) target_ids = tokenizer(text_target=target_text).input_ids self.assertListEqual(target_ids, expected_target_ids) decoded = tokenizer.decode(target_ids, skip_special_tokens=True) self.assertEqual(decoded, target_text)
transformers-main
tests/models/marian/test_tokenization_marian.py
# coding=utf-8 # Copyright 2021, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Marian model. """ import tempfile import unittest from huggingface_hub.hf_api import list_models from transformers import MarianConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( AutoConfig, AutoModelWithLMHead, AutoTokenizer, MarianModel, MarianMTModel, TranslationPipeline, ) from transformers.models.marian.convert_marian_to_pytorch import ( ORG_NAME, convert_hf_name_to_opus_name, convert_opus_name_to_hf_name, ) from transformers.models.marian.modeling_marian import ( MarianDecoder, MarianEncoder, MarianForCausalLM, shift_tokens_right, ) def prepare_marian_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class MarianModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, decoder_start_token_id=3, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.decoder_start_token_id = decoder_start_token_id # forcing a certain token to be generated, sets all other tokens to -inf # if however the token to be generated is already at -inf then it can lead token # `nan` values and thus break generation self.forced_bos_token_id = None self.forced_eos_token_id = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( 3, ) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return MarianConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, forced_bos_token_id=self.forced_bos_token_id, forced_eos_token_id=self.forced_eos_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = MarianModel(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = MarianModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = MarianEncoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = MarianDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class MarianModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (MarianModel, MarianMTModel) if is_torch_available() else () all_generative_model_classes = (MarianMTModel,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": MarianMTModel, "feature-extraction": MarianModel, "summarization": MarianMTModel, "text-generation": MarianForCausalLM, "text2text-generation": MarianMTModel, "translation": MarianMTModel, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = True test_pruning = False test_missing_keys = False def setUp(self): self.model_tester = MarianModelTester(self) self.config_tester = ConfigTester(self, config_class=MarianConfig) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = MarianMTModel(config).eval().to(torch_device) if torch_device == "cuda": model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def test_share_encoder_decoder_embeddings(self): config, input_dict = self.model_tester.prepare_config_and_inputs() # check if embeddings are shared by default for model_class in self.all_model_classes: model = model_class(config) self.assertIs(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens) self.assertIs(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight) # check if embeddings are not shared when config.share_encoder_decoder_embeddings = False config.share_encoder_decoder_embeddings = False for model_class in self.all_model_classes: model = model_class(config) self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens) self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight) # check if a model with shared embeddings can be saved and loaded with share_encoder_decoder_embeddings = False config, _ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname, share_encoder_decoder_embeddings=False) self.assertIsNot(model.get_encoder().embed_tokens, model.get_decoder().embed_tokens) self.assertIsNot(model.get_encoder().embed_tokens.weight, model.get_decoder().embed_tokens.weight) def test_resize_decoder_token_embeddings(self): config, _ = self.model_tester.prepare_config_and_inputs() # check if resize_decoder_token_embeddings raises an error when embeddings are shared for model_class in self.all_model_classes: model = model_class(config) with self.assertRaises(ValueError): model.resize_decoder_token_embeddings(config.vocab_size + 1) # check if decoder embeddings are resized when config.share_encoder_decoder_embeddings = False config.share_encoder_decoder_embeddings = False for model_class in self.all_model_classes: model = model_class(config) model.resize_decoder_token_embeddings(config.vocab_size + 1) self.assertEqual(model.get_decoder().embed_tokens.weight.shape, (config.vocab_size + 1, config.d_model)) # check if lm_head is also resized config, _ = self.model_tester.prepare_config_and_inputs() config.share_encoder_decoder_embeddings = False model = MarianMTModel(config) model.resize_decoder_token_embeddings(config.vocab_size + 1) self.assertEqual(model.lm_head.weight.shape, (config.vocab_size + 1, config.d_model)) def test_tie_word_embeddings_decoder(self): pass def assert_tensors_close(a, b, atol=1e-12, prefix=""): """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if torch.allclose(a, b, atol=atol): return True raise except Exception: pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() if a.numel() > 100: msg = f"tensor values are {pct_different:.1%} percent different." else: msg = f"{a} != {b}" if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) class ModelManagementTests(unittest.TestCase): @slow @require_torch def test_model_names(self): model_list = list_models() model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)] bad_model_ids = [mid for mid in model_ids if "+" in model_ids] self.assertListEqual([], bad_model_ids) self.assertGreater(len(model_ids), 500) @require_torch @require_sentencepiece @require_tokenizers class MarianIntegrationTest(unittest.TestCase): src = "en" tgt = "de" src_text = [ "I am a small frog.", "Now I can forget the 100 words of german that I know.", "Tom asked his teacher for advice.", "That's how I would do it.", "Tom really admired Mary's courage.", "Turn around and close your eyes.", ] expected_text = [ "Ich bin ein kleiner Frosch.", "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.", "Tom bat seinen Lehrer um Rat.", "So würde ich das machen.", "Tom bewunderte Marias Mut wirklich.", "Drehen Sie sich um und schließen Sie die Augen.", ] # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen @classmethod def setUpClass(cls) -> None: cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}" return cls @cached_property def tokenizer(self): return AutoTokenizer.from_pretrained(self.model_name) @property def eos_token_id(self) -> int: return self.tokenizer.eos_token_id @cached_property def model(self): model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device) c = model.config self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]]) self.assertEqual(c.max_length, 512) self.assertEqual(c.decoder_start_token_id, c.pad_token_id) if torch_device == "cuda": return model.half() else: return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, padding=True, return_tensors="pt", **tokenizer_kwargs).to( torch_device ) self.assertEqual(self.model.device, model_inputs.input_ids.device) generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128, renormalize_logits=True, # Marian should always renormalize its logits. See #25459 ) generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_words @require_sentencepiece @require_tokenizers class TestMarian_EN_DE_More(MarianIntegrationTest): @slow def test_forward(self): src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."] expected_ids = [38, 121, 14, 697, 38848, 0] model_inputs = self.tokenizer(src, text_target=tgt, return_tensors="pt").to(torch_device) self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist()) desired_keys = { "input_ids", "attention_mask", "labels", } self.assertSetEqual(desired_keys, set(model_inputs.keys())) model_inputs["decoder_input_ids"] = shift_tokens_right( model_inputs.labels, self.tokenizer.pad_token_id, self.model.config.decoder_start_token_id ) model_inputs["return_dict"] = True model_inputs["use_cache"] = False with torch.no_grad(): outputs = self.model(**model_inputs) max_indices = outputs.logits.argmax(-1) self.tokenizer.batch_decode(max_indices) def test_unk_support(self): t = self.tokenizer ids = t(["||"], return_tensors="pt").to(torch_device).input_ids[0].tolist() expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id] self.assertEqual(expected, ids) def test_pad_not_split(self): input_ids_w_pad = self.tokenizer(["I am a small frog <pad>"], return_tensors="pt").input_ids[0].tolist() expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0] # pad self.assertListEqual(expected_w_pad, input_ids_w_pad) @slow def test_batch_generation_en_de(self): self._assert_generated_batch_equal_expected() def test_auto_config(self): config = AutoConfig.from_pretrained(self.model_name) self.assertIsInstance(config, MarianConfig) @require_sentencepiece @require_tokenizers class TestMarian_EN_FR(MarianIntegrationTest): src = "en" tgt = "fr" src_text = [ "I am a small frog.", "Now I can forget the 100 words of german that I know.", ] expected_text = [ "Je suis une petite grenouille.", "Maintenant, je peux oublier les 100 mots d'allemand que je connais.", ] @slow def test_batch_generation_en_fr(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers class TestMarian_FR_EN(MarianIntegrationTest): src = "fr" tgt = "en" src_text = [ "Donnez moi le micro.", "Tom et Mary étaient assis à une table.", # Accents ] expected_text = [ "Give me the microphone.", "Tom and Mary were sitting at a table.", ] @slow def test_batch_generation_fr_en(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers class TestMarian_RU_FR(MarianIntegrationTest): src = "ru" tgt = "fr" src_text = ["Он показал мне рукопись своей новой пьесы."] expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."] @slow def test_batch_generation_ru_fr(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers class TestMarian_MT_EN(MarianIntegrationTest): """Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten""" src = "mt" tgt = "en" src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."] expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."] @slow def test_batch_generation_mt_en(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers class TestMarian_en_zh(MarianIntegrationTest): src = "en" tgt = "zh" src_text = ["My name is Wolfgang and I live in Berlin"] expected_text = ["我叫沃尔夫冈 我住在柏林"] @slow def test_batch_generation_eng_zho(self): self._assert_generated_batch_equal_expected() @require_sentencepiece @require_tokenizers class TestMarian_en_ROMANCE(MarianIntegrationTest): """Multilingual on target side.""" src = "en" tgt = "ROMANCE" src_text = [ ">>fr<< Don't spend so much time watching TV.", ">>pt<< Your message has been sent.", ">>es<< He's two years older than me.", ] expected_text = [ "Ne passez pas autant de temps à regarder la télé.", "A sua mensagem foi enviada.", "Es dos años más viejo que yo.", ] @slow def test_batch_generation_en_ROMANCE_multi(self): self._assert_generated_batch_equal_expected() @slow def test_pipeline(self): device = 0 if torch_device == "cuda" else -1 pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device) output = pipeline(self.src_text) self.assertEqual(self.expected_text, [x["translation_text"] for x in output]) @require_sentencepiece @require_tokenizers class TestMarian_FI_EN_V2(MarianIntegrationTest): src = "fi" tgt = "en" src_text = [ "minä tykkään kirjojen lukemisesta", "Pidän jalkapallon katsomisesta", ] expected_text = ["I like to read books", "I like watching football"] @classmethod def setUpClass(cls) -> None: cls.model_name = "hf-internal-testing/test-opus-tatoeba-fi-en-v2" return cls @slow def test_batch_generation_fi_en(self): self._assert_generated_batch_equal_expected() @require_torch class TestConversionUtils(unittest.TestCase): def test_renaming_multilingual(self): old_names = [ "opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi", "opus-mt-cmn+cn-fi", # no group "opus-mt-en-de", # standard name "opus-mt-en-de", # standard name ] expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"] self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names]) def test_undoing_renaming(self): hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"] converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names] expected_opus_names = [ "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi", "cmn+cn-fi", "en-de", # standard name "en-de", ] self.assertListEqual(expected_opus_names, converted_opus_names) class MarianStandaloneDecoderModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, d_model=16, decoder_seq_length=7, is_training=True, is_decoder=True, use_attention_mask=True, use_cache=False, use_labels=True, decoder_start_token_id=2, decoder_ffn_dim=32, decoder_layers=2, encoder_attention_heads=4, decoder_attention_heads=4, max_position_embeddings=30, is_encoder_decoder=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, scope=None, ): self.parent = parent self.batch_size = batch_size self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.d_model = d_model self.hidden_size = d_model self.num_hidden_layers = decoder_layers self.decoder_layers = decoder_layers self.decoder_ffn_dim = decoder_ffn_dim self.encoder_attention_heads = encoder_attention_heads self.decoder_attention_heads = decoder_attention_heads self.num_attention_heads = decoder_attention_heads self.eos_token_id = eos_token_id self.bos_token_id = bos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.use_cache = use_cache self.max_position_embeddings = max_position_embeddings self.is_encoder_decoder = is_encoder_decoder self.scope = None self.decoder_key_length = decoder_seq_length self.base_model_out_len = 2 self.decoder_attention_idx = 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) lm_labels = None if self.use_labels: lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) config = MarianConfig( vocab_size=self.vocab_size, d_model=self.d_model, decoder_layers=self.decoder_layers, decoder_ffn_dim=self.decoder_ffn_dim, encoder_attention_heads=self.encoder_attention_heads, decoder_attention_heads=self.decoder_attention_heads, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, use_cache=self.use_cache, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, max_position_embeddings=self.max_position_embeddings, is_encoder_decoder=self.is_encoder_decoder, ) return ( config, input_ids, attention_mask, lm_labels, ) def create_and_check_decoder_model_past( self, config, input_ids, attention_mask, lm_labels, ): config.use_cache = True model = MarianDecoder(config=config).to(torch_device).eval() # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def create_and_check_decoder_model_attention_mask_past( self, config, input_ids, attention_mask, lm_labels, ): model = MarianDecoder(config=config).to(torch_device).eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = input_ids.shape[-1] // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=attn_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, lm_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class MarianStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (MarianDecoder, MarianForCausalLM) if is_torch_available() else () all_generative_model_classes = (MarianForCausalLM,) if is_torch_available() else () test_pruning = False is_encoder_decoder = False def setUp( self, ): self.model_tester = MarianStandaloneDecoderModelTester(self, is_training=False) self.config_tester = ConfigTester(self, config_class=MarianConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) def test_decoder_model_attn_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) def test_retain_grad_hidden_states_attentions(self): # decoder cannot keep gradients return @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def test_left_padding_compatibility(self): pass
transformers-main
tests/models/marian/test_modeling_marian.py
transformers-main
tests/models/vilt/__init__.py
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from PIL import Image from transformers import ViltImageProcessor class ViltImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, size_divisor=2, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], ): size = size if size is not None else {"shortest_edge": 30} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.size_divisor = size_divisor self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to ViltImageProcessor, assuming do_resize is set to True with a scalar size and size_divisor. """ if not batched: size = self.size["shortest_edge"] image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] scale = size / min(w, h) if h < w: newh, neww = size, scale * w else: newh, neww = scale * h, size max_size = int((1333 / 800) * size) if max(newh, neww) > max_size: scale = max_size / max(newh, neww) newh = newh * scale neww = neww * scale newh, neww = int(newh + 0.5), int(neww + 0.5) expected_height, expected_width = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width def expected_output_image_shape(self, images): height, width = self.get_expected_values(images, batched=True) return (self.num_channels, height, width) def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class ViltImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ViltImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ViltImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "size_divisor")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 30}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42) self.assertEqual(image_processor.size, {"shortest_edge": 42})
transformers-main
tests/models/vilt/test_image_processing_vilt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ViLT model. """ import unittest from datasets import load_dataset from packaging import version from transformers import ViltConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltForTokenClassification, ViltModel, ) from transformers.models.vilt.modeling_vilt import VILT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import ViltProcessor class ViltModelTester: def __init__( self, parent, batch_size=13, seq_length=7, image_size=30, patch_size=2, num_channels=3, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, scope=None, modality_type_vocab_size=2, add_multiple_images=False, num_images=-1, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.scope = scope self.modality_type_vocab_size = modality_type_vocab_size self.add_multiple_images = add_multiple_images self.num_images = num_images # we set the expected sequence length (which is used in several tests) # this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) if self.add_multiple_images: pixel_values = floats_tensor([self.batch_size, 2, self.num_channels, self.image_size, self.image_size]) else: pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) if self.use_labels: token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return (config, input_ids, token_type_ids, input_mask, pixel_values, token_labels) def get_config(self): return ViltConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, num_labels=self.num_labels, modality_type_vocab_size=self.modality_type_vocab_size, num_images=self.num_images, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, pixel_values, token_labels, ): model = ViltModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, pixel_values=pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, pixel_values, token_labels, ): model = ViltForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, token_type_ids=token_type_ids, pixel_values=pixel_values) result = model(input_ids, pixel_values=pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, pixel_values, token_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask, "pixel_values": pixel_values, } return config, inputs_dict def prepare_pixel_values(self): return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) @require_torch class ViltModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( ViltModel, ViltForQuestionAnswering, ViltForImageAndTextRetrieval, ViltForMaskedLM, ViltForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( {"feature-extraction": ViltModel, "visual-question-answering": ViltForQuestionAnswering} if is_torch_available() else {} ) test_pruning = False test_headmasking = False test_torchscript = False model_split_percents = [0.5, 0.8, 0.9] # ViltForMaskedLM, ViltForQuestionAnswering and ViltForImagesAndTextClassification require special treatment def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "ViltForQuestionAnswering": inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, self.model_tester.num_labels, device=torch_device ) elif model_class.__name__ in ["ViltForMaskedLM", "ViltForTokenClassification"]: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) elif model_class.__name__ == "ViltForImagesAndTextClassification": inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = ViltModelTester(self) self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True if model_class.__name__ == "ViltForImagesAndTextClassification": config.modality_type_vocab_size = 3 # ViltForImageAndTextRetrieval doesn't support training for now if model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval]: continue model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) for k, v in inputs.items(): print(k, v.shape) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True # ViltForImageAndTextRetrieval doesn't support training for now if ( model_class in [*get_values(MODEL_MAPPING), ViltForImageAndTextRetrieval] or not model_class.supports_gradient_checkpointing ): continue model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @unittest.skip( reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic hidden states""" ) def test_save_load(self): pass @unittest.skip( reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic hidden states""" ) def test_determinism(self): pass @unittest.skip( reason="""VilT samples image tokens from a multinomial distribution, resulting in not deterministic hidden states""" ) def test_model_outputs_equivalence(self): pass def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "expected_seq_len", None) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions if model_class.__name__ == "ViltForImagesAndTextClassification": # attentions are a list of length num_images # each element contains the attentions of a particular image index self.assertEqual(len(attentions), self.model_tester.num_images) self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers) else: self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions if model_class.__name__ == "ViltForImagesAndTextClassification": # attentions are a list of length num_images # each element contains the attentions of a particular image index self.assertEqual(len(attentions), self.model_tester.num_images) self.assertEqual(len(attentions[0]), self.model_tester.num_hidden_layers) else: self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) if model_class.__name__ == "ViltForImagesAndTextClassification": self.assertListEqual( list(attentions[0][0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) else: self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions if model_class.__name__ == "ViltForImagesAndTextClassification": self.assertEqual(len(self_attentions), self.model_tester.num_images) self.assertEqual(len(self_attentions[0]), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0][0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) else: self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) if model_class.__name__ == "ViltForImagesAndTextClassification": # hidden_states are a list of length num_images # each element contains the hidden states of a particular image index self.assertEqual(len(hidden_states), self.model_tester.num_images) self.assertEqual(len(hidden_states[0]), expected_num_layers) else: self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.expected_seq_len if model_class.__name__ == "ViltForImagesAndTextClassification": self.assertListEqual( list(hidden_states[0][0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) else: self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: print("Model class:", model_class) inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] attentions = outputs.attentions[0] if model_class.__name__ == "ViltForImagesAndTextClassification": # hidden_states are a list of length num_images # each element contains the hidden states of a particular image index hidden_states[0].retain_grad() attentions[0].retain_grad() else: hidden_states.retain_grad() attentions.retain_grad() output.flatten()[0].backward(retain_graph=True) if model_class.__name__ == "ViltForImagesAndTextClassification": # hidden_states are a list of length num_images # each element contains the hidden states of a particular image index self.assertIsNotNone(hidden_states[0].grad) self.assertIsNotNone(attentions[0].grad) else: self.assertIsNotNone(hidden_states.grad) self.assertIsNotNone(attentions.grad) @slow def test_model_from_pretrained(self): for model_name in VILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ViltModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class ViltForImagesAndTextClassificationModelTest(ViltModelTest, unittest.TestCase): all_model_classes = (ViltForImagesAndTextClassification,) if is_torch_available() else () def setUp(self): self.model_tester = ViltModelTester(self, modality_type_vocab_size=3, add_multiple_images=True, num_images=2) self.config_tester = ConfigTester(self, config_class=ViltConfig, hidden_size=37) @unittest.skip("We only test the model that takes in multiple images") def test_model(self): pass @unittest.skip("We only test the model that takes in multiple images") def test_for_token_classification(self): pass # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class ViltModelIntegrationTest(unittest.TestCase): @cached_property def default_processor(self): return ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") if is_vision_available() else None @slow def test_inference_masked_lm(self): model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm").to(torch_device) processor = self.default_processor image = prepare_img() text = "a bunch of [MASK] laying on a [MASK]." inputs = processor(image, text, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size([1, 11, 30522]) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-12.5061, -12.5123, -12.5174]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3], expected_slice, atol=1e-4)) # verify masked token prediction equals "cats" predicted_id = outputs.logits[0, 4, :].argmax(-1).item() assert processor.decode([predicted_id]) == "cats" @slow def test_inference_visual_question_answering(self): model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa").to(torch_device) processor = self.default_processor image = prepare_img() text = "How many cats are there?" inputs = processor(image, text, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 3129)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-15.9495, -18.1472, -10.3041]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) # compute loss vqa_labels = [[2, 3, 155, 800]] vqa_scores = [[1.0, 0.3, 0.3, 0.3]] labels = torch.zeros(1, model.config.num_labels).to(torch_device) for i, (labels_example, scores_example) in enumerate(zip(vqa_labels, vqa_scores)): for l, s in zip(labels_example, scores_example): labels[i, l] = s # forward pass outputs = model(**inputs, labels=labels) # verify we have a positive loss self.assertTrue(outputs.loss > 0) @slow def test_inference_natural_language_visual_reasoning(self): model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2").to( torch_device ) processor = self.default_processor dataset = load_dataset("hf-internal-testing/fixtures_nlvr2", split="test") image1 = Image.open(dataset[0]["file"]).convert("RGB") image2 = Image.open(dataset[1]["file"]).convert("RGB") text = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) encoding_1 = processor(image1, text, return_tensors="pt") encoding_2 = processor(image2, text, return_tensors="pt") pixel_values = torch.stack([encoding_1.pixel_values, encoding_2.pixel_values], dim=1) # forward pass outputs = model( input_ids=encoding_1.input_ids.to(torch_device), pixel_values=pixel_values.to(torch_device), ) # verify the logits expected_shape = torch.Size([1, 2]) self.assertEqual(outputs.logits.shape, expected_shape) is_pillow_less_than_9 = version.parse(PIL.__version__) < version.parse("9.0.0") if is_pillow_less_than_9: expected_slice = torch.tensor( [-2.4013, 2.9342], device=torch_device, ) else: expected_slice = torch.tensor( [-2.3713, 2.9168], device=torch_device, ) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers-main
tests/models/vilt/test_modeling_vilt.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import ElectraConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.electra.modeling_tf_electra import ( TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, ) class TFElectraModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.embedding_size = 128 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = ElectraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFElectraModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_causal_lm_base_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.is_decoder = True model = TFElectraModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TFElectraModel(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states) # Also check the case where encoder outputs are not passed result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_causal_lm_base_model_past( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TFElectraModel(config=config) # first forward pass outputs = model(input_ids, use_cache=True) outputs_use_cache_conf = model(input_ids) outputs_no_past = model(input_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) output_from_no_past = model(next_input_ids, output_hidden_states=True).hidden_states[0] output_from_past = model( next_tokens, past_key_values=past_key_values, output_hidden_states=True ).hidden_states[0] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_causal_lm_base_model_past_with_attn_mask( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TFElectraModel(config=config) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass outputs = model(input_ids, attention_mask=attn_mask, use_cache=True) # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) past_key_values = outputs.past_key_values # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size)) ) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat( [attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], axis=1, ) output_from_no_past = model( next_input_ids, attention_mask=attn_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, past_key_values=past_key_values, attention_mask=attn_mask, output_hidden_states=True ).hidden_states[0] # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6) def create_and_check_causal_lm_base_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ): config.is_decoder = True model = TFElectraModel(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=input_mask, use_cache=True) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, ).hidden_states[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = TFElectraModel(config=config) input_ids = input_ids[:1, :] input_mask = input_mask[:1, :] encoder_hidden_states = encoder_hidden_states[:1, :, :] encoder_attention_mask = encoder_attention_mask[:1, :] self.batch_size = 1 # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, ).hidden_states[0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, ).hidden_states[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1]) # select random slice random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFElectraForMaskedLM(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFElectraForPreTraining(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFElectraForSequenceClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFElectraForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFElectraForQuestionAnswering(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFElectraForTokenClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFElectraModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFElectraModel, TFElectraForMaskedLM, TFElectraForPreTraining, TFElectraForTokenClassification, TFElectraForMultipleChoice, TFElectraForSequenceClassification, TFElectraForQuestionAnswering, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFElectraModel, "fill-mask": TFElectraForMaskedLM, "question-answering": TFElectraForQuestionAnswering, "text-classification": TFElectraForSequenceClassification, "token-classification": TFElectraForTokenClassification, "zero-shot": TFElectraForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFElectraModelTester(self) self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): """Test the base model""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_causal_lm_base_model(self): """Test the base model of the causal LM model is_deocder=True, no cross_attention, no encoder outputs """ config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_base_model(*config_and_inputs) def test_model_as_decoder(self): """Test the base model as a decoder (of an encoder-decoder architecture) is_deocder=True + cross_attention + pass encoder outputs """ config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_causal_lm_base_model_past(self): """Test causal LM base model with `past_key_values`""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_base_model_past(*config_and_inputs) def test_causal_lm_base_model_past_with_attn_mask(self): """Test the causal LM base model with `past_key_values` and `attention_mask`""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_base_model_past_with_attn_mask(*config_and_inputs) def test_causal_lm_base_model_past_with_large_inputs(self): """Test the causal LM base model with `past_key_values` and a longer decoder sequence length""" config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_causal_lm_base_model_past_large_inputs(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): """Similar to `test_causal_lm_base_model_past_with_large_inputs` but with cross-attention""" config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): # for model_name in TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/electra-small-discriminator"]: model = TFElectraModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFElectraModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFElectraForPreTraining.from_pretrained("lysandre/tiny-electra-random") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6] self.assertEqual(output.shape, expected_shape) print(output[:, :3]) expected_slice = tf.constant([[-0.24651965, 0.8835437, 1.823782]]) tf.debugging.assert_near(output[:, :3], expected_slice, atol=1e-4)
transformers-main
tests/models/electra/test_modeling_tf_electra.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ElectraConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ) from transformers.models.electra.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST class ElectraModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1) config = self.get_config() return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ) def get_config(self): return ElectraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, _, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_electra_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): model = ElectraModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_electra_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = ElectraModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_electra_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): model = ElectraForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_electra_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = ElectraForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_electra_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_labels = self.num_labels model = ElectraForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_electra_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_labels = self.num_labels model = ElectraForPreTraining(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length)) def create_and_check_electra_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_labels = self.num_labels model = ElectraForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_electra_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): model = ElectraForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_electra_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ): config.num_choices = self.num_choices model = ElectraForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, fake_token_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class ElectraModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( ElectraModel, ElectraForPreTraining, ElectraForMaskedLM, ElectraForCausalLM, ElectraForMultipleChoice, ElectraForTokenClassification, ElectraForSequenceClassification, ElectraForQuestionAnswering, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": ElectraModel, "fill-mask": ElectraForMaskedLM, "question-answering": ElectraForQuestionAnswering, "text-classification": ElectraForSequenceClassification, "text-generation": ElectraForCausalLM, "token-classification": ElectraForTokenClassification, "zero-shot": ElectraForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = ElectraModelTester(self) self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_electra_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_model(*config_and_inputs) def test_electra_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_electra_model_as_decoder(*config_and_inputs) def test_electra_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_electra_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs) def test_for_pre_training(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ElectraModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_electra_for_causal_lm(*config_and_inputs) @require_torch class ElectraModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = ElectraModel.from_pretrained("google/electra-small-discriminator") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 256)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[0.4471, 0.6821, -0.3265], [0.4627, 0.5255, -0.3668], [0.4532, 0.3313, -0.4344]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
transformers-main
tests/models/electra/test_modeling_electra.py
transformers-main
tests/models/electra/__init__.py
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers import ElectraTokenizerFast from transformers.models.electra.tokenization_electra import ( VOCAB_FILES_NAMES, BasicTokenizer, ElectraTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class ElectraTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = ElectraTokenizer rust_tokenizer_class = ElectraTokenizerFast test_rust_tokenizer = True space_between_special_tokens = True from_pretrained_filter = filter_non_english def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [9, 6, 7, 12, 10, 11]) def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) # With lower casing tokenizer = self.get_tokenizer(do_lower_case=True) rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True) sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_chinese(self): tokenizer = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def test_basic_tokenizer_lower(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_no_lower(self): tokenizer = BasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def test_clean_text(self): tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]]) self.assertListEqual( [rust_tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], [], ["[UNK]"]] ) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("google/electra-base-discriminator") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_2 + [102] def test_offsets_with_special_characters(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." tokens = tokenizer_r.encode_plus( sentence, return_attention_mask=False, return_token_type_ids=False, return_offsets_mapping=True, add_special_tokens=True, ) do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False expected_results = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]) ) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) def test_change_tokenize_chinese_chars(self): list_of_commun_chinese_char = ["的", "人", "有"] text_with_chinese_char = "".join(list_of_commun_chinese_char) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): kwargs["tokenize_chinese_chars"] = True tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(tokens_without_spe_char_p, list_of_commun_chinese_char) self.assertListEqual(tokens_without_spe_char_r, list_of_commun_chinese_char) kwargs["tokenize_chinese_chars"] = False tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) ids_without_spe_char_r = tokenizer_r.encode(text_with_chinese_char, add_special_tokens=False) ids_without_spe_char_p = tokenizer_p.encode(text_with_chinese_char, add_special_tokens=False) tokens_without_spe_char_r = tokenizer_r.convert_ids_to_tokens(ids_without_spe_char_r) tokens_without_spe_char_p = tokenizer_p.convert_ids_to_tokens(ids_without_spe_char_p) # it is expected that only the first Chinese character is not preceded by "##". expected_tokens = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(list_of_commun_chinese_char) ] self.assertListEqual(tokens_without_spe_char_p, expected_tokens) self.assertListEqual(tokens_without_spe_char_r, expected_tokens)
transformers-main
tests/models/electra/test_tokenization_electra.py
import unittest import numpy as np from transformers import ElectraConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.electra.modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, ) class FlaxElectraModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_attention_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, embedding_size=24, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.embedding_size = embedding_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_choices = num_choices def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = ElectraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, embedding_size=self.embedding_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class FlaxElectraModelTest(FlaxModelTesterMixin, unittest.TestCase): test_head_masking = True all_model_classes = ( ( FlaxElectraModel, FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForPreTraining, FlaxElectraForTokenClassification, FlaxElectraForQuestionAnswering, FlaxElectraForMultipleChoice, FlaxElectraForSequenceClassification, ) if is_flax_available() else () ) def setUp(self): self.model_tester = FlaxElectraModelTester(self) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: if model_class_name == FlaxElectraForMaskedLM: model = model_class_name.from_pretrained("google/electra-small-generator") else: model = model_class_name.from_pretrained("google/electra-small-discriminator") outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs)
transformers-main
tests/models/electra/test_modeling_flax_electra.py
transformers-main
tests/models/bit/__init__.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Bit model. """ import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class BitModelTester: def __init__( self, parent, batch_size=3, image_size=32, num_channels=3, embeddings_size=10, hidden_sizes=[8, 16, 32, 64], depths=[1, 1, 2, 1], is_training=True, use_labels=True, hidden_act="relu", num_labels=3, scope=None, out_features=["stage2", "stage3", "stage4"], out_indices=[2, 3, 4], num_groups=1, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.embeddings_size = embeddings_size self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.num_labels = num_labels self.scope = scope self.num_stages = len(hidden_sizes) self.out_features = out_features self.out_indices = out_indices self.num_groups = num_groups def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return BitConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, out_features=self.out_features, out_indices=self.out_indices, num_groups=self.num_groups, ) def create_and_check_model(self, config, pixel_values, labels): model = BitModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = BitForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_backbone(self, config, pixel_values, labels): model = BitBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels), len(config.out_features)) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) # verify backbone works with out_features=None config.out_features = None model = BitBackbone(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # verify feature maps self.parent.assertEqual(len(result.feature_maps), 1) self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels), 1) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class BitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Bit does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = BitModelTester(self) self.config_tester = ConfigTester(self, config_class=BitConfig, has_text_modality=False) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="Bit does not output attentions") def test_attention_outputs(self): pass @unittest.skip(reason="Bit does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Bit does not support input and output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_backbone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*config_and_inputs) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config=config) for name, module in model.named_modules(): if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): self.assertTrue( torch.all(module.weight == 1), msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) self.assertTrue( torch.all(module.bias == 0), msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() layers_type = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: config.layer_type = layer_type inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) @unittest.skip(reason="Bit does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BitModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class BitModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def test_inference_image_classification_head(self): model = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([[-0.6526, -0.5263, -1.4398]]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) @require_torch class BitBackboneTest(BackboneTesterMixin, unittest.TestCase): all_model_classes = (BitBackbone,) if is_torch_available() else () config_class = BitConfig has_attentions = False def setUp(self): self.model_tester = BitModelTester(self)
transformers-main
tests/models/bit/test_modeling_bit.py
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Tuple from transformers import AddedToken, LukeTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json") SAMPLE_MERGE_FILE = get_tests_dir("fixtures/merges.txt") SAMPLE_ENTITY_VOCAB = get_tests_dir("fixtures/test_entity_vocab.json") class LukeTokenizerTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = LukeTokenizer test_rust_tokenizer = False from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() self.special_tokens_map = {"entity_token_1": "<ent>", "entity_token_2": "<ent2>"} def get_tokenizer(self, task=None, **kwargs): kwargs.update(self.special_tokens_map) tokenizer = LukeTokenizer( vocab_file=SAMPLE_VOCAB, merges_file=SAMPLE_MERGE_FILE, entity_vocab_file=SAMPLE_ENTITY_VOCAB, task=task, **kwargs, ) tokenizer.sanitize_special_tokens() return tokenizer def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.get_tokenizer() text = "lower newer" bpe_tokens = ["l", "o", "w", "er", "Ġ", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) # , add_prefix_space=True) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("studio-ousia/luke-large") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) self.assertEqual(encoded_sentence, encoded_text_from_decode) self.assertEqual(encoded_pair, encoded_pair_from_decode) def get_clean_sequence(self, tokenizer, max_length=20) -> Tuple[str, list]: txt = "Beyonce lives in Los Angeles" ids = tokenizer.encode(txt, add_special_tokens=False) return txt, ids def test_space_encoding(self): tokenizer = self.get_tokenizer() sequence = "Encode this sequence." space_encoding = tokenizer.byte_encoder[" ".encode("utf-8")[0]] # Testing encoder arguments encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=False) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True) first_char = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(first_char, space_encoding) tokenizer.add_special_tokens({"bos_token": "<s>"}) encoded = tokenizer.encode(sequence, add_special_tokens=True) first_char = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(first_char, space_encoding) # Testing spaces after special tokens mask = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(mask, lstrip=True, rstrip=False)} ) # mask token has a left space mask_ind = tokenizer.convert_tokens_to_ids(mask) sequence = "Encode <mask> sequence" sequence_nospace = "Encode <mask>sequence" encoded = tokenizer.encode(sequence) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(first_char, space_encoding) encoded = tokenizer.encode(sequence_nospace) mask_loc = encoded.index(mask_ind) first_char = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(first_char, space_encoding) def test_pretokenized_inputs(self): pass def test_embeded_special_tokens(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = "A, <mask> AllenNLP sentence." tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]), ) tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"]) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2]) self.assertSequenceEqual( tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def test_padding_entity_inputs(self): tokenizer = self.get_tokenizer() sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) pad_id = tokenizer.entity_vocab["[PAD]"] mask_id = tokenizer.entity_vocab["[MASK]"] encoding = tokenizer([sentence, sentence], entity_spans=[[span], [span, span]], padding=True) self.assertEqual(encoding["entity_ids"], [[mask_id, pad_id], [mask_id, mask_id]]) # test with a sentence with no entity encoding = tokenizer([sentence, sentence], entity_spans=[[], [span, span]], padding=True) self.assertEqual(encoding["entity_ids"], [[pad_id, pad_id], [mask_id, mask_id]]) def test_if_tokenize_single_text_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer() sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." spans = [(15, 34)] entities = ["East Asian language"] with self.assertRaises(ValueError): tokenizer(sentence, entities=tuple(entities), entity_spans=spans) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=tuple(spans)) with self.assertRaises(ValueError): tokenizer(sentence, entities=[0], entity_spans=spans) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=[0]) with self.assertRaises(ValueError): tokenizer(sentence, entities=entities, entity_spans=spans + [(0, 9)]) def test_if_tokenize_entity_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." span = (15, 34) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[span, span]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0]) def test_if_tokenize_entity_pair_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_pair_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." # head and tail information with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0, 0]) def test_if_tokenize_entity_span_classification_raise_error_with_invalid_inputs(self): tokenizer = self.get_tokenizer(task="entity_span_classification") sentence = "Japanese is an East Asian language spoken by about 128 million people, primarily in Japan." with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[]) with self.assertRaises(ValueError): tokenizer(sentence, entity_spans=[0, 0, 0]) @slow @require_torch class LukeTokenizerIntegrationTests(unittest.TestCase): tokenizer_class = LukeTokenizer from_pretrained_kwargs = {"cls_token": "<s>"} def setUp(self): super().setUp() def test_single_text_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"] spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer(sentence, entities=entities, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she") self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["Ana Ivanovic"], tokenizer.entity_vocab["Thursday"], tokenizer.entity_vocab["[UNK]"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_single_text_only_entity_spans_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][9:10], spaces_between_special_tokens=False), " she") mask_id = tokenizer.entity_vocab["[MASK]"] self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ] ] ) # fmt: on def test_single_text_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday", "Dummy Entity"] spans = [(9, 21), (30, 38), (39, 42)] encoding = tokenizer( sentence, entities=entities, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) def test_text_pair_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday"] entities_pair = ["Dummy Entity"] spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, ) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She") self.assertEqual( encoding["entity_ids"], [ tokenizer.entity_vocab["Ana Ivanovic"], tokenizer.entity_vocab["Thursday"], tokenizer.entity_vocab["[UNK]"], ], ) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_text_pair_only_entity_spans_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, ) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday</s></s>She could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:6], spaces_between_special_tokens=False), " Ana Ivanovic" ) self.assertEqual( tokenizer.decode(encoding["input_ids"][8:9], spaces_between_special_tokens=False), " Thursday" ) self.assertEqual(tokenizer.decode(encoding["input_ids"][11:12], spaces_between_special_tokens=False), "She") mask_id = tokenizer.entity_vocab["[MASK]"] self.assertEqual(encoding["entity_ids"], [mask_id, mask_id, mask_id]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_text_pair_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", return_token_type_ids=True) sentence = "Top seed Ana Ivanovic said on Thursday" sentence_pair = "She could hardly believe her luck." entities = ["Ana Ivanovic", "Thursday"] entities_pair = ["Dummy Entity"] spans = [(9, 21), (30, 38)] spans_pair = [(0, 3)] encoding = tokenizer( sentence, sentence_pair, entities=entities, entities_pair=entities_pair, entity_spans=spans, entity_spans_pair=spans_pair, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) def test_entity_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification") sentence = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) span = (39, 42) encoding = tokenizer(sentence, entity_spans=[span], return_token_type_ids=True) # test words self.assertEqual(len(encoding["input_ids"]), 42) self.assertEqual(len(encoding["attention_mask"]), 42) self.assertEqual(len(encoding["token_type_ids"]), 42) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday<ent> she<ent> could hardly believe her luck as a fortuitous" " netcord helped the new world number one avoid a humiliating second- round exit at Wimbledon.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][9:12], spaces_between_special_tokens=False), "<ent> she<ent>" ) # test entities self.assertEqual(encoding["entity_ids"], [2]) self.assertEqual(encoding["entity_attention_mask"], [1]) self.assertEqual(encoding["entity_token_type_ids"], [0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [9, 10, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1] ] ) # fmt: on def test_entity_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_classification", return_token_type_ids=True ) sentence = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) # entity information span = (39, 42) encoding = tokenizer( sentence, entity_spans=[span], return_token_type_ids=True, padding="max_length", return_tensors="pt" ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 512)) self.assertEqual(encoding["attention_mask"].shape, (1, 512)) self.assertEqual(encoding["token_type_ids"].shape, (1, 512)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 1)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 1)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 1)) self.assertEqual( encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) ) def test_entity_pair_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." # head and tail information spans = [(9, 21), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed<ent> Ana Ivanovic<ent> said on Thursday<ent2> she<ent2> could hardly believe her luck.</s>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][3:8], spaces_between_special_tokens=False), "<ent> Ana Ivanovic<ent>", ) self.assertEqual( tokenizer.decode(encoding["input_ids"][11:14], spaces_between_special_tokens=False), "<ent2> she<ent2>" ) self.assertEqual(encoding["entity_ids"], [2, 3]) self.assertEqual(encoding["entity_attention_mask"], [1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [11, 12, 13, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on def test_entity_pair_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_pair_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." # head and tail information spans = [(9, 21), (39, 42)] encoding = tokenizer( sentence, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 2)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 2)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 2)) self.assertEqual( encoding["entity_position_ids"].shape, (1, tokenizer.max_entity_length, tokenizer.max_mention_length) ) def test_entity_span_classification_no_padding_or_truncation(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(0, 8), (9, 21), (39, 42)] encoding = tokenizer(sentence, entity_spans=spans, return_token_type_ids=True) self.assertEqual( tokenizer.decode(encoding["input_ids"], spaces_between_special_tokens=False), "<s>Top seed Ana Ivanovic said on Thursday she could hardly believe her luck.</s>", ) self.assertEqual(encoding["entity_ids"], [2, 2, 2]) self.assertEqual(encoding["entity_attention_mask"], [1, 1, 1]) self.assertEqual(encoding["entity_token_type_ids"], [0, 0, 0]) # fmt: off self.assertEqual( encoding["entity_position_ids"], [ [1, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [3, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ] ) # fmt: on self.assertEqual(encoding["entity_start_positions"], [1, 3, 9]) self.assertEqual(encoding["entity_end_positions"], [2, 5, 9]) def test_entity_span_classification_padding_pytorch_tensors(self): tokenizer = LukeTokenizer.from_pretrained( "studio-ousia/luke-base", task="entity_span_classification", return_token_type_ids=True ) sentence = "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck." spans = [(0, 8), (9, 21), (39, 42)] encoding = tokenizer( sentence, entity_spans=spans, return_token_type_ids=True, padding="max_length", max_length=30, max_entity_length=16, return_tensors="pt", ) # test words self.assertEqual(encoding["input_ids"].shape, (1, 30)) self.assertEqual(encoding["attention_mask"].shape, (1, 30)) self.assertEqual(encoding["token_type_ids"].shape, (1, 30)) # test entities self.assertEqual(encoding["entity_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_attention_mask"].shape, (1, 16)) self.assertEqual(encoding["entity_token_type_ids"].shape, (1, 16)) self.assertEqual(encoding["entity_position_ids"].shape, (1, 16, tokenizer.max_mention_length)) self.assertEqual(encoding["entity_start_positions"].shape, (1, 16)) self.assertEqual(encoding["entity_end_positions"].shape, (1, 16))
transformers-main
tests/models/luke/test_tokenization_luke.py
transformers-main
tests/models/luke/__init__.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch LUKE model. """ import unittest from transformers import LukeConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukeTokenizer, ) from transformers.models.luke.modeling_luke import LUKE_PRETRAINED_MODEL_ARCHIVE_LIST class LukeModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, entity_length=3, mention_length=5, use_attention_mask=True, use_token_type_ids=True, use_entity_ids=True, use_entity_attention_mask=True, use_entity_token_type_ids=True, use_entity_position_ids=True, use_labels=True, vocab_size=99, entity_vocab_size=10, entity_emb_size=6, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, num_entity_classification_labels=9, num_entity_pair_classification_labels=6, num_entity_span_classification_labels=4, use_entity_aware_attention=True, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.entity_length = entity_length self.mention_length = mention_length self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_entity_ids = use_entity_ids self.use_entity_attention_mask = use_entity_attention_mask self.use_entity_token_type_ids = use_entity_token_type_ids self.use_entity_position_ids = use_entity_position_ids self.use_labels = use_labels self.vocab_size = vocab_size self.entity_vocab_size = entity_vocab_size self.entity_emb_size = entity_emb_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.num_entity_classification_labels = num_entity_classification_labels self.num_entity_pair_classification_labels = num_entity_pair_classification_labels self.num_entity_span_classification_labels = num_entity_span_classification_labels self.scope = scope self.use_entity_aware_attention = use_entity_aware_attention self.encoder_seq_length = seq_length self.key_length = seq_length self.num_hidden_states_types = 2 # hidden_states and entity_hidden_states def prepare_config_and_inputs(self): # prepare words input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) # prepare entities entity_ids = ids_tensor([self.batch_size, self.entity_length], self.entity_vocab_size) entity_attention_mask = None if self.use_entity_attention_mask: entity_attention_mask = random_attention_mask([self.batch_size, self.entity_length]) entity_token_type_ids = None if self.use_token_type_ids: entity_token_type_ids = ids_tensor([self.batch_size, self.entity_length], self.type_vocab_size) entity_position_ids = None if self.use_entity_position_ids: entity_position_ids = ids_tensor( [self.batch_size, self.entity_length, self.mention_length], self.mention_length ) sequence_labels = None token_labels = None choice_labels = None entity_labels = None entity_classification_labels = None entity_pair_classification_labels = None entity_span_classification_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) entity_labels = ids_tensor([self.batch_size, self.entity_length], self.entity_vocab_size) entity_classification_labels = ids_tensor([self.batch_size], self.num_entity_classification_labels) entity_pair_classification_labels = ids_tensor( [self.batch_size], self.num_entity_pair_classification_labels ) entity_span_classification_labels = ids_tensor( [self.batch_size, self.entity_length], self.num_entity_span_classification_labels ) config = self.get_config() return ( config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ) def get_config(self): return LukeConfig( vocab_size=self.vocab_size, entity_vocab_size=self.entity_vocab_size, entity_emb_size=self.entity_emb_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, use_entity_aware_attention=self.use_entity_aware_attention, ) def create_and_check_model( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): model = LukeModel(config=config) model.to(torch_device) model.eval() # test with words + entities result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual( result.entity_last_hidden_state.shape, (self.batch_size, self.entity_length, self.hidden_size) ) # test with words only result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_classification_labels model = LukeForMaskedLM(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=token_labels, entity_labels=entity_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) if entity_ids is not None: self.parent.assertEqual( result.entity_logits.shape, (self.batch_size, self.entity_length, self.entity_vocab_size) ) else: self.parent.assertIsNone(result.entity_logits) def create_and_check_for_entity_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_classification_labels model = LukeForEntityClassification(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=entity_classification_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_entity_classification_labels)) def create_and_check_for_entity_pair_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_pair_classification_labels model = LukeForEntityClassification(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=entity_pair_classification_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_entity_pair_classification_labels)) def create_and_check_for_entity_span_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_entity_span_classification_labels model = LukeForEntitySpanClassification(config) model.to(torch_device) model.eval() entity_start_positions = ids_tensor([self.batch_size, self.entity_length], self.seq_length) entity_end_positions = ids_tensor([self.batch_size, self.entity_length], self.seq_length) result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, entity_start_positions=entity_start_positions, entity_end_positions=entity_end_positions, labels=entity_span_classification_labels, ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.entity_length, self.num_entity_span_classification_labels) ) def create_and_check_for_question_answering( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): model = LukeForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_labels model = LukeForSequenceClassification(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_labels = self.num_labels model = LukeForTokenClassification(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, labels=token_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ): config.num_choices = self.num_choices model = LukeForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_attention_mask = attention_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_entity_ids = entity_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_entity_token_type_ids = ( entity_token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() ) multiple_choice_entity_attention_mask = ( entity_attention_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() ) multiple_choice_entity_position_ids = ( entity_position_ids.unsqueeze(1).expand(-1, self.num_choices, -1, -1).contiguous() ) result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_attention_mask, token_type_ids=multiple_choice_token_type_ids, entity_ids=multiple_choice_entity_ids, entity_attention_mask=multiple_choice_entity_attention_mask, entity_token_type_ids=multiple_choice_entity_token_type_ids, entity_position_ids=multiple_choice_entity_position_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, token_type_ids, entity_ids, entity_attention_mask, entity_token_type_ids, entity_position_ids, sequence_labels, token_labels, choice_labels, entity_labels, entity_classification_labels, entity_pair_classification_labels, entity_span_classification_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, "entity_ids": entity_ids, "entity_token_type_ids": entity_token_type_ids, "entity_attention_mask": entity_attention_mask, "entity_position_ids": entity_position_ids, } return config, inputs_dict @require_torch class LukeModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( LukeModel, LukeForMaskedLM, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeForMultipleChoice, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": LukeModel, "fill-mask": LukeForMaskedLM, "question-answering": LukeForQuestionAnswering, "text-classification": LukeForSequenceClassification, "token-classification": LukeForTokenClassification, "zero-shot": LukeForSequenceClassification, } if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = True test_head_masking = True # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name in ["QAPipelineTests", "ZeroShotClassificationPipelineTests"]: return True return False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): entity_inputs_dict = {k: v for k, v in inputs_dict.items() if k.startswith("entity")} inputs_dict = {k: v for k, v in inputs_dict.items() if not k.startswith("entity")} inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if model_class == LukeForMultipleChoice: entity_inputs_dict = { k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous() if v.ndim == 2 else v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1, -1).contiguous() for k, v in entity_inputs_dict.items() } inputs_dict.update(entity_inputs_dict) if model_class == LukeForEntitySpanClassification: inputs_dict["entity_start_positions"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device ) inputs_dict["entity_end_positions"] = torch.ones( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device ) if return_labels: if model_class in ( LukeForEntityClassification, LukeForEntityPairClassification, LukeForSequenceClassification, LukeForMultipleChoice, ): inputs_dict["labels"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) elif model_class == LukeForEntitySpanClassification: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device, ) elif model_class == LukeForTokenClassification: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) elif model_class == LukeForMaskedLM: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device, ) inputs_dict["entity_labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.entity_length), dtype=torch.long, device=torch_device, ) return inputs_dict def setUp(self): self.model_tester = LukeModelTester(self) self.config_tester = ConfigTester(self, config_class=LukeConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in LUKE_PRETRAINED_MODEL_ARCHIVE_LIST: model = LukeModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_masked_lm_with_word_only(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs = (*config_and_inputs[:4], *((None,) * len(config_and_inputs[4:]))) self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_entity_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_entity_classification(*config_and_inputs) def test_for_entity_pair_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_entity_pair_classification(*config_and_inputs) def test_for_entity_span_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_entity_span_classification(*config_and_inputs) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_length = self.model_tester.seq_length entity_length = self.model_tester.entity_length key_length = seq_length + entity_length for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length + entity_length, key_length], ) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) added_hidden_states = self.model_tester.num_hidden_states_types self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, seq_length + entity_length, key_length], ) def test_entity_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) entity_hidden_states = outputs.entity_hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(entity_hidden_states), expected_num_layers) entity_length = self.model_tester.entity_length self.assertListEqual( list(entity_hidden_states[0].shape[-2:]), [entity_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_retain_grad_entity_hidden_states(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(**inputs) output = outputs[0] entity_hidden_states = outputs.entity_hidden_states[0] entity_hidden_states.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(entity_hidden_states.grad) @require_torch class LukeModelIntegrationTests(unittest.TestCase): @slow def test_inference_base_model(self): model = LukeModel.from_pretrained("studio-ousia/luke-base").eval() model.to(torch_device) tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base", task="entity_classification") text = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) span = (39, 42) encoding = tokenizer(text, entity_spans=[span], add_prefix_space=True, return_tensors="pt") # move all values to device for key, value in encoding.items(): encoding[key] = encoding[key].to(torch_device) outputs = model(**encoding) # Verify word hidden states expected_shape = torch.Size((1, 42, 768)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) # Verify entity hidden states expected_shape = torch.Size((1, 1, 768)) self.assertEqual(outputs.entity_last_hidden_state.shape, expected_shape) expected_slice = torch.tensor([[0.1457, 0.1044, 0.0174]]).to(torch_device) self.assertTrue(torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_large_model(self): model = LukeModel.from_pretrained("studio-ousia/luke-large").eval() model.to(torch_device) tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large", task="entity_classification") text = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped" " the new world number one avoid a humiliating second- round exit at Wimbledon ." ) span = (39, 42) encoding = tokenizer(text, entity_spans=[span], add_prefix_space=True, return_tensors="pt") # move all values to device for key, value in encoding.items(): encoding[key] = encoding[key].to(torch_device) outputs = model(**encoding) # Verify word hidden states expected_shape = torch.Size((1, 42, 1024)) self.assertEqual(outputs.last_hidden_state.shape, expected_shape) expected_slice = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ).to(torch_device) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) # Verify entity hidden states expected_shape = torch.Size((1, 1, 1024)) self.assertEqual(outputs.entity_last_hidden_state.shape, expected_shape) expected_slice = torch.tensor([[0.0466, -0.0106, -0.0179]]).to(torch_device) self.assertTrue(torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
transformers-main
tests/models/luke/test_modeling_luke.py
# coding=utf-8 # Copyright 2019 Hugging Face inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class DebertaTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = DebertaTokenizer test_rust_tokenizer = True rust_tokenizer_class = DebertaTokenizerFast def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] self.special_tokens_map = {"unk_token": "[UNK]"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "lower newer" output_text = "lower newer" return input_text, output_text def test_full_tokenizer(self): tokenizer = self.get_tokenizer() text = "lower newer" bpe_tokens = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) def test_token_type_ids(self): tokenizer = self.get_tokenizer() tokd = tokenizer("Hello", "World") expected_token_type_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"], expected_token_type_ids) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("microsoft/deberta-base") text = tokenizer.encode("sequence builders", add_special_tokens=False) text_2 = tokenizer.encode("multi-sequence build", add_special_tokens=False) encoded_text_from_decode = tokenizer.encode( "sequence builders", add_special_tokens=True, add_prefix_space=False ) encoded_pair_from_decode = tokenizer.encode( "sequence builders", "multi-sequence build", add_special_tokens=True, add_prefix_space=False ) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def test_tokenizer_integration(self): tokenizer_classes = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class) for tokenizer_class in tokenizer_classes: tokenizer = tokenizer_class.from_pretrained("microsoft/deberta-base") sequences = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] encoding = tokenizer(sequences, padding=True) decoded_sequences = [tokenizer.decode(seq, skip_special_tokens=True) for seq in encoding["input_ids"]] # fmt: off expected_encoding = { 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on expected_decoded_sequence = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data, expected_encoding) for expected, decoded in zip(expected_decoded_sequence, decoded_sequences): self.assertEqual(expected, decoded)
transformers-main
tests/models/deberta/test_tokenization_deberta.py
transformers-main
tests/models/deberta/__init__.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import DebertaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, ) class TFDebertaModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.relative_attention = False self.max_relative_positions = -1 self.position_biased_input = True self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, relative_attention=self.relative_attention, max_relative_positions=self.max_relative_positions, position_biased_input=self.position_biased_input, initializer_range=self.initializer_range, return_dict=True, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaForMaskedLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFDebertaForSequenceClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFDebertaForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFDebertaForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFDebertaModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFDebertaModel, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFDebertaModel, "fill-mask": TFDebertaForMaskedLM, "question-answering": TFDebertaForQuestionAnswering, "text-classification": TFDebertaForSequenceClassification, "token-classification": TFDebertaForTokenClassification, "zero-shot": TFDebertaForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFDebertaModelTester(self) self.config_tester = ConfigTester(self, config_class=DebertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): model = TFDebertaModel.from_pretrained("kamalkraj/deberta-base") self.assertIsNotNone(model) @require_tf class TFDeBERTaModelIntegrationTest(unittest.TestCase): @unittest.skip(reason="Model not available yet") def test_inference_masked_lm(self): pass @slow def test_inference_no_head(self): model = TFDebertaModel.from_pretrained("kamalkraj/deberta-base") input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_slice = tf.constant( [ [ [-0.59855896, -0.80552566, -0.8462135], [1.4484025, -0.93483794, -0.80593085], [0.3122741, 0.00316059, -1.4131377], ] ] ) tf.debugging.assert_near(output[:, 1:4, 1:4], expected_slice, atol=1e-4)
transformers-main
tests/models/deberta/test_modeling_tf_deberta.py
# coding=utf-8 # Copyright 2018 Microsoft Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class DebertaModelTester(object): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, relative_attention=False, position_biased_input=True, pos_att_type="None", num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.relative_attention = relative_attention self.position_biased_input = position_biased_input self.pos_att_type = pos_att_type self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return DebertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def check_loss_output(self, result): self.parent.assertListEqual(list(result.loss.size()), []) def create_and_check_deberta_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaModel(config=config) model.to(torch_device) model.eval() sequence_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)[0] sequence_output = model(input_ids, token_type_ids=token_type_ids)[0] sequence_output = model(input_ids)[0] self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size]) def create_and_check_deberta_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_deberta_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DebertaForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertListEqual(list(result.logits.size()), [self.batch_size, self.num_labels]) self.check_loss_output(result) def create_and_check_deberta_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = DebertaForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_deberta_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class DebertaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True test_torchscript = False test_pruning = False test_head_masking = False is_encoder_decoder = False def setUp(self): self.model_tester = DebertaModelTester(self) self.config_tester = ConfigTester(self, config_class=DebertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_deberta_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = DebertaModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch @require_sentencepiece @require_tokenizers class DebertaModelIntegrationTest(unittest.TestCase): @unittest.skip(reason="Model not available yet") def test_inference_masked_lm(self): pass @slow def test_inference_no_head(self): model = DebertaModel.from_pretrained("microsoft/deberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4), f"{output[:, 1:4, 1:4]}")
transformers-main
tests/models/deberta/test_modeling_deberta.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Pix2Struct model. """ import copy import inspect import os import tempfile import unittest import numpy as np import requests from transformers import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( Pix2StructForConditionalGeneration, Pix2StructProcessor, Pix2StructTextModel, Pix2StructVisionModel, ) from transformers.models.pix2struct.modeling_pix2struct import PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: is_torch_greater_or_equal_than_1_11 = False if is_vision_available(): from PIL import Image class Pix2StructVisionModelTester: def __init__( self, parent, batch_size=12, image_size=30, patch_size=2, num_channels=3, is_training=True, hidden_size=12, patch_embed_hidden_size=12, projection_dim=32, max_patches=64, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, initializer_range=1e-10, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_embed_hidden_size = patch_embed_hidden_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.hidden_size = hidden_size self.max_patches = max_patches self.seq_length = self.max_patches self.patch_proj_dim = ((patch_size**2) * num_channels) + 2 self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.scope = scope def prepare_config_and_inputs(self): flattened_patches = floats_tensor([self.batch_size, self.max_patches, self.patch_proj_dim]) config = self.get_config() return config, flattened_patches def get_config(self): return Pix2StructVisionConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, initializer_range=self.initializer_range, patch_embed_hidden_size=self.patch_embed_hidden_size, ) def create_and_check_model(self, config, flattened_patches): model = Pix2StructVisionModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(flattened_patches) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, flattened_patches = config_and_inputs inputs_dict = { "flattened_patches": flattened_patches, "attention_mask": torch.randint(0, 2, (self.batch_size, self.max_patches)), } return config, inputs_dict @require_torch class Pix2StructVisionModelTest(ModelTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Pix2Struct does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (Pix2StructVisionModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = Pix2StructVisionModelTester(self) self.config_tester = ConfigTester( self, config_class=Pix2StructVisionConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="Pix2StructVision does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, nn.Linear)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["flattened_patches"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`") def test_training(self): pass @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`") def test_training_gradient_checkpointing(self): pass @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Pix2StructVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Pix2StructVisionModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Pix2StructVisionModel.from_pretrained(model_name) self.assertIsNotNone(model) class Pix2StructTextModelTester: def __init__( self, parent, batch_size=12, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=12, projection_dim=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, dropout=0.1, attention_dropout=0.1, max_position_embeddings=512, initializer_range=0.02, bos_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.d_kv = hidden_size // num_attention_heads self.vocab_size = vocab_size self.hidden_size = hidden_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.dropout = dropout self.attention_dropout = attention_dropout self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.scope = scope self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: batch_size, seq_length = input_mask.shape rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,)) for batch_idx, start_index in enumerate(rnd_start_indices): input_mask[batch_idx, :start_index] = 1 input_mask[batch_idx, start_index:] = 0 config = self.get_config() return config, input_ids, input_mask def get_config(self): return Pix2StructTextConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, projection_dim=self.projection_dim, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, dropout=self.dropout, attention_dropout=self.attention_dropout, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, bos_token_id=self.bos_token_id, d_kv=self.d_kv, ) def create_and_check_model(self, config, input_ids, input_mask): model = Pix2StructTextModel(config=config) model.to(torch_device) model.eval() with torch.no_grad(): result = model(input_ids, attention_mask=input_mask) result = model(input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class Pix2StructTextModelTest(ModelTesterMixin, unittest.TestCase): all_model_classes = (Pix2StructTextModel,) if is_torch_available() else () fx_compatible = False test_pruning = False test_head_masking = False def setUp(self): self.model_tester = Pix2StructTextModelTester(self) self.config_tester = ConfigTester(self, config_class=Pix2StructTextConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`") def test_training(self): pass @unittest.skip(reason="Training is tested directly on `Pix2StructTextImageModelTest`") def test_training_gradient_checkpointing(self): pass @unittest.skip(reason="Pix2Struct does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Pix2StructTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_from_base(self): pass @unittest.skip(reason="Pix2StructTextModel has no base class and is not available in MODEL_MAPPING") def test_save_load_fast_init_to_base(self): pass @slow def test_model_from_pretrained(self): for model_name in PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = Pix2StructTextModel.from_pretrained(model_name) self.assertIsNotNone(model) class Pix2StructModelTester: def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True): if text_kwargs is None: text_kwargs = {} if vision_kwargs is None: vision_kwargs = {} self.parent = parent self.text_model_tester = Pix2StructTextModelTester(parent, **text_kwargs) self.vision_model_tester = Pix2StructVisionModelTester(parent, **vision_kwargs) self.is_training = is_training def prepare_config_and_inputs(self): text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs() vision_config, flattened_patches = self.vision_model_tester.prepare_config_and_inputs() config = self.get_config(text_config, vision_config) return config, input_ids, attention_mask, flattened_patches def get_config(self, text_config, vision_config): return Pix2StructConfig.from_text_vision_configs(text_config, vision_config, projection_dim=64) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, decoder_attention_mask, flattened_patches = config_and_inputs attention_mask = (flattened_patches.sum(dim=-1) != 0).float() inputs_dict = { "decoder_input_ids": input_ids, "labels": input_ids, "decoder_attention_mask": decoder_attention_mask, "flattened_patches": flattened_patches, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class Pix2StructModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (Pix2StructForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = {"image-to-text": Pix2StructForConditionalGeneration} if is_torch_available() else {} fx_compatible = False test_head_masking = False test_pruning = False test_resize_embeddings = True test_attention_outputs = False test_torchscript = False def setUp(self): self.model_tester = Pix2StructModelTester(self) def test_model(self): config, input_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config).to(torch_device) output = model(**input_dict) self.assertEqual( output[1].shape, ( self.model_tester.vision_model_tester.batch_size, self.model_tester.text_model_tester.seq_length, self.model_tester.text_model_tester.vocab_size, ), ) @unittest.skip(reason="Hidden_states is tested in individual model tests") def test_hidden_states_output(self): pass @unittest.skip(reason="Inputs_embeds is tested in individual model tests") def test_inputs_embeds(self): pass @unittest.skip(reason="Retain_grad is tested in individual model tests") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip(reason="Pix2StructModel does not have input/output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "flattened_patches", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "labels", "decoder_inputs_embeds", "use_cache", ] self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[:-1]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # hardcode labels to be the same as input_ids inputs["labels"] = inputs["input_ids"] loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes[:-1]: config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) # hardcode labels to be the same as input_ids inputs["labels"] = inputs["input_ids"] loss = model(**inputs).loss loss.backward() # override as the `logit_scale` parameter initilization is different for Pix2Struct def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): if param.requires_grad: # check if `logit_scale` is initilized as per the original implementation if name == "logit_scale": self.assertAlmostEqual( param.data.item(), np.log(1 / 0.07), delta=1e-3, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite because `vocab_size` is not an attribute of `Pix2StructConfig` but rather `Pix2StructTextConfig` def test_resize_tokens_embeddings(self): original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config) model.to(torch_device) if self.model_tester.is_training is False: model.eval() model_vocab_size = config.text_config.vocab_size # Retrieve the embeddings and clone theme model_embed = model.resize_token_embeddings(model_vocab_size) cloned_embeddings = model_embed.weight.clone() # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model_embed = model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Decoder input ids should be clamped to the maximum size of the vocabulary if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that adding and removing tokens has not modified the first part of the embedding matrix. models_equal = True for p1, p2 in zip(cloned_embeddings, model_embed.weight): if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) # overwrite because `vocab_size` is not an attribute of `Pix2StructConfig` but rather `Pix2StructTextConfig` def test_resize_embeddings_untied(self): original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.test_resize_embeddings: return original_config.tie_word_embeddings = False # if model cannot untied embeddings -> leave test if original_config.tie_word_embeddings: return for model_class in self.all_model_classes: config = copy.deepcopy(original_config) model = model_class(config).to(torch_device) # if no output embeddings -> leave test if model.get_output_embeddings() is None: continue # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size model_vocab_size = config.text_config.vocab_size model.resize_token_embeddings(model_vocab_size + 10) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10) output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size model.resize_token_embeddings(model_vocab_size - 15) self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15) # Check that it actually resizes the embeddings matrix output_embeds = model.get_output_embeddings() self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15) # Check bias if present if output_embeds.bias is not None: self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15) # Check that the model can still do a forward pass successfully (every parameter should be resized) # Decoder input ids should be clamped to the maximum size of the vocabulary if "decoder_input_ids" in inputs_dict: inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1) # Check that the model can still do a forward pass successfully (every parameter should be resized) model(**self._prepare_for_class(inputs_dict, model_class)) @unittest.skip(reason="Pix2Struct doesn't use tied weights") def test_tied_model_weights_key_ignore(self): pass def _create_and_check_torchscript(self, config, inputs_dict): if not self.test_torchscript: return configs_no_init = _config_zero_init(config) # To be sure we have no Nan configs_no_init.torchscript = True configs_no_init.return_dict = False for model_class in self.all_model_classes: model = model_class(config=configs_no_init) model.to(torch_device) model.eval() try: input_ids = inputs_dict["input_ids"] flattened_patches = inputs_dict["flattened_patches"] # Pix2Struct needs flattened_patches traced_model = torch.jit.trace(model, (input_ids, flattened_patches)) except RuntimeError: self.fail("Couldn't trace module.") with tempfile.TemporaryDirectory() as tmp_dir_name: pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt") try: torch.jit.save(traced_model, pt_file_name) except Exception: self.fail("Couldn't save module.") try: loaded_model = torch.jit.load(pt_file_name) except Exception: self.fail("Couldn't load module.") model.to(torch_device) model.eval() loaded_model.to(torch_device) loaded_model.eval() model_state_dict = model.state_dict() loaded_model_state_dict = loaded_model.state_dict() non_persistent_buffers = {} for key in loaded_model_state_dict.keys(): if key not in model_state_dict.keys(): non_persistent_buffers[key] = loaded_model_state_dict[key] loaded_model_state_dict = { key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers } self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys())) model_buffers = list(model.buffers()) for non_persistent_buffer in non_persistent_buffers.values(): found_buffer = False for i, model_buffer in enumerate(model_buffers): if torch.equal(non_persistent_buffer, model_buffer): found_buffer = True break self.assertTrue(found_buffer) model_buffers.pop(i) models_equal = True for layer_name, p1 in model_state_dict.items(): p2 = loaded_model_state_dict[layer_name] if p1.data.ne(p2.data).sum() > 0: models_equal = False self.assertTrue(models_equal) def test_load_vision_text_config(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() # Save Pix2StructConfig and check if we can load Pix2StructVisionConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) vision_config = Pix2StructVisionConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict()) # Save Pix2StructConfig and check if we can load Pix2StructTextConfig from it with tempfile.TemporaryDirectory() as tmp_dir_name: config.save_pretrained(tmp_dir_name) text_config = Pix2StructTextConfig.from_pretrained(tmp_dir_name) self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict()) # We will verify our results on an image of a stop sign def prepare_img(): url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`.", ) @require_vision @require_torch @slow class Pix2StructIntegrationTest(unittest.TestCase): def test_inference_image_captioning(self): model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device) processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") image = prepare_img() # image only inputs = processor(images=image, return_tensors="pt").to(torch_device) predictions = model.generate(**inputs) self.assertEqual( processor.decode(predictions[0], skip_special_tokens=True), "A stop sign is on a street corner." ) def test_batched_inference_image_captioning(self): model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device) processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") image_1 = prepare_img() second_url = ( "https://www.connollycove.com/wp-content/uploads/2019/06/temple-bar-dublin-world-famous-irish-pub.jpg" ) image_2 = Image.open(requests.get(second_url, stream=True).raw) # image only inputs = processor(images=[image_1, image_2], return_tensors="pt").to(torch_device) predictions = model.generate(**inputs) self.assertEqual( processor.decode(predictions[0], skip_special_tokens=True), "A stop sign is on a street corner." ) self.assertEqual( processor.decode(predictions[1], skip_special_tokens=True), "A row of books including The Temple Bar and Guiness.", ) def test_batched_inference_image_captioning_conditioned(self): model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base").to(torch_device) processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") image_1 = prepare_img() second_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg" image_2 = Image.open(requests.get(second_url, stream=True).raw) texts = ["A picture of", "An photography of"] # image only inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", add_special_tokens=False).to( torch_device ) predictions = model.generate(**inputs) self.assertEqual( processor.decode(predictions[0], skip_special_tokens=True), "A picture of a stop sign with a red stop sign", ) self.assertEqual( processor.decode(predictions[1], skip_special_tokens=True), "An photography of the Temple Bar and other places in the city.", ) def test_vqa_model(self): model_id = "google/pix2struct-ai2d-base" image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg" image = Image.open(requests.get(image_url, stream=True).raw) model = Pix2StructForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to( torch_device ) processor = Pix2StructProcessor.from_pretrained(model_id) # image only text = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud" inputs = processor(images=image, return_tensors="pt", text=text).to(torch_device, torch.bfloat16) predictions = model.generate(**inputs) self.assertEqual(processor.decode(predictions[0], skip_special_tokens=True), "ash cloud") def test_vqa_model_batched(self): model_id = "google/pix2struct-ai2d-base" image_urls = [ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg", "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo-2.png", ] images = [Image.open(requests.get(image_url, stream=True).raw) for image_url in image_urls] texts = [ "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud", "What is the producer in the diagram? (1) Phytoplankton (2) Zooplankton (3) Large fish (4) Small fish", ] model = Pix2StructForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to( torch_device ) processor = Pix2StructProcessor.from_pretrained(model_id) inputs = processor(images=images, return_tensors="pt", text=texts).to(torch_device, torch.bfloat16) predictions = model.generate(**inputs) self.assertEqual(processor.decode(predictions[0], skip_special_tokens=True), "ash cloud") self.assertEqual(processor.decode(predictions[1], skip_special_tokens=True), "Phytoplankton")
transformers-main
tests/models/pix2struct/test_modeling_pix2struct.py
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: is_torch_greater_or_equal_than_1_11 = False if is_vision_available(): from PIL import Image from transformers import Pix2StructImageProcessor class Pix2StructImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, size=None, do_normalize=True, do_convert_rgb=True, patch_size=None, ): size = size if size is not None else {"height": 20, "width": 20} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.size = size self.do_normalize = do_normalize self.do_convert_rgb = do_convert_rgb self.max_patches = [512, 1024, 2048, 4096] self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16} def prepare_image_processor_dict(self): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def prepare_dummy_image(self): img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") return raw_image def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`.", ) @require_torch @require_vision class Pix2StructImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = Pix2StructImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = Pix2StructImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processor = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processor, "do_normalize")) self.assertTrue(hasattr(image_processor, "do_convert_rgb")) def test_expected_patches(self): dummy_image = self.image_processor_tester.prepare_dummy_image() image_processor = self.image_processing_class(**self.image_processor_dict) max_patch = 2048 inputs = image_processor(dummy_image, return_tensors="pt", max_patches=max_patch) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0606), atol=1e-3, rtol=1e-3)) def test_call_pil(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def test_call_vqa(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 image_processor.is_vqa = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(ValueError): encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch ).flattened_patches dummy_text = "Hello" encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch, header_text=dummy_text ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch, header_text=dummy_text ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def test_call_numpy(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True) for image in image_inputs: self.assertIsInstance(image, np.ndarray) expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def test_call_pytorch(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) for image in image_inputs: self.assertIsInstance(image, torch.Tensor) # Test not batched input expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`.", ) @require_torch @require_vision class Pix2StructImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = Pix2StructImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = Pix2StructImageProcessingTester(self, num_channels=4) self.expected_encoded_image_num_channels = 3 @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processor = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processor, "do_normalize")) self.assertTrue(hasattr(image_processor, "do_convert_rgb")) def test_call_pil(self): # Initialize image_processor image_processor = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, Image.Image) # Test not batched input expected_hidden_dim = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input encoded_images = image_processor( image_inputs[0], return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched encoded_images = image_processor( image_inputs, return_tensors="pt", max_patches=max_patch ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skip("Pix2StructImageProcessor does not support 4 channels yet") # FIXME Amy def test_call_numpy(self): return super().test_call_numpy() @unittest.skip("Pix2StructImageProcessor does not support 4 channels yet") # FIXME Amy def test_call_pytorch(self): return super().test_call_torch()
transformers-main
tests/models/pix2struct/test_image_processing_pix2struct.py
transformers-main
tests/models/pix2struct/__init__.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available if is_torch_available(): from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: is_torch_greater_or_equal_than_1_11 = False if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, Pix2StructImageProcessor, Pix2StructProcessor, PreTrainedTokenizerFast, T5Tokenizer, ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11, reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`.", ) @require_vision @require_torch class Pix2StructProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() image_processor = Pix2StructImageProcessor() tokenizer = T5Tokenizer.from_pretrained("t5-small") processor = Pix2StructProcessor(image_processor, tokenizer) processor.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer def get_image_processor(self, **kwargs): return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """ This function prepares a list of random PIL images of the same fixed size. """ image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_additional_features(self): processor = Pix2StructProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = Pix2StructProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, Pix2StructImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str, return_token_type_ids=False, add_special_tokens=True) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual( list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"] ) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_max_patches(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) max_patches = [512, 1024, 2048, 4096] expected_hidden_size = [770, 770, 770, 770] # with text for i, max_patch in enumerate(max_patches): inputs = processor(text=input_str, images=image_input, max_patches=max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i]) # without text input for i, max_patch in enumerate(max_patches): inputs = processor(images=image_input, max_patches=max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[0], max_patch) self.assertEqual(inputs["flattened_patches"][0].shape[1], expected_hidden_size[i]) def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor) def test_model_input_names(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = Pix2StructProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"] self.assertListEqual( list(inputs.keys()), ["flattened_patches", "attention_mask", "decoder_attention_mask", "decoder_input_ids"] ) inputs = processor(text=input_str) # For now the processor supports only ["flattened_patches", "input_ids", "attention_mask", "decoder_attention_mask"] self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask"])
transformers-main
tests/models/pix2struct/test_processor_pix2struct.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pathlib import unittest from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class ConditionalDetrImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], do_rescale=True, rescale_factor=1 / 255, do_pad=True, ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_pad = do_pad def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to ConditionalDetrImageProcessor, assuming do_resize is set to True with a scalar size. """ if not batched: image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] if w < h: expected_height = int(self.size["shortest_edge"] * h / w) expected_width = self.size["shortest_edge"] elif w > h: expected_height = self.size["shortest_edge"] expected_width = int(self.size["shortest_edge"] * w / h) else: expected_height = self.size["shortest_edge"] expected_width = self.size["shortest_edge"] else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width def expected_output_image_shape(self, images): height, width = self.get_expected_values(images, batched=True) return self.num_channels, height, width def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class ConditionalDetrImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ConditionalDetrImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ConditionalDetrImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333}) self.assertEqual(image_processor.do_pad, True) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=False ) self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.do_pad, False) @slow def test_call_pytorch_with_coco_detection_annotations(self): # prepare image and target image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: target = json.loads(f.read()) target = {"image_id": 39769, "annotations": target} # encode them image_processing = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50") encoding = image_processing(images=image, annotations=target, return_tensors="pt") # verify pixel values expected_shape = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) expected_slice = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)) # verify area expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area)) # verify boxes expected_boxes_shape = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)) # verify image_id expected_image_id = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)) # verify is_crowd expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)) # verify class_labels expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)) # verify orig_size expected_orig_size = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)) # verify size expected_size = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size)) @slow def test_call_pytorch_with_coco_panoptic_annotations(self): # prepare image, target and masks_path image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f: target = json.loads(f.read()) target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them image_processing = ConditionalDetrImageProcessor(format="coco_panoptic") encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt") # verify pixel values expected_shape = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) expected_slice = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)) # verify area expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area)) # verify boxes expected_boxes_shape = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)) # verify image_id expected_image_id = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)) # verify is_crowd expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)) # verify class_labels expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)) # verify masks expected_masks_sum = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum) # verify orig_size expected_orig_size = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)) # verify size expected_size = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
transformers-main
tests/models/conditional_detr/test_image_processing_conditional_detr.py
transformers-main
tests/models/conditional_detr/__init__.py