python_code
stringlengths 0
992k
| repo_name
stringlengths 8
46
| file_path
stringlengths 5
162
|
---|---|---|
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training a CLIP like dual encoder models using text and vision encoders in the library.
The script can be used to train CLIP like models for languages other than english by using
a text encoder pre-trained in the desired language. Currently this script support the following vision
and text models:
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask)
"""
import json
import logging
import os
import sys
import time
from dataclasses import dataclass, field
from pathlib import Path
from typing import Callable, Optional
import jax
import jax.numpy as jnp
import optax
import torch
from flax import jax_utils
from flax.jax_utils import unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, shard, shard_prng_key
from modeling_hybrid_clip import FlaxHybridCLIP
from torchvision.datasets import VisionDataset
from torchvision.io import ImageReadMode, read_image
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm
import transformers
from transformers import AutoTokenizer, HfArgumentParser, TrainingArguments, is_tensorboard_available, set_seed
logger = logging.getLogger(__name__)
# Cache the result
has_tensorboard = is_tensorboard_available()
if has_tensorboard:
try:
from flax.metrics.tensorboard import SummaryWriter
except ImportError as ie:
has_tensorboard = False
print(f"Unable to display metrics through TensorBoard because some package are not installed: {ie}")
else:
print(
"Unable to display metrics through TensorBoard because the package is not installed: "
"Please run pip install tensorboard to enable."
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
text_model_name_or_path: str = field(
metadata={
"help": (
"The text model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
)
},
)
vision_model_name_or_path: str = field(
metadata={
"help": (
"The vision model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
)
},
)
from_pt: bool = field(
default=True,
metadata={"help": "whether to load the text and vision model using PyTorch checkpoints."},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
" `[float32, float16, bfloat16]`."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."})
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
)
max_seq_length: Optional[int] = field(
default=72,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
def __post_init__(self):
if self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension == "json", "`train_file` should be a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension == "json", "`validation_file` should be a json file."
# We use torchvision for faster image pre-processing.
# We need to ensure faster processing speed as it can become a bottleneck on TPU
class Transform(torch.nn.Module):
def __init__(self, image_size):
super().__init__()
self.transforms = torch.nn.Sequential(
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
CenterCrop(image_size),
ConvertImageDtype(torch.float),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
with torch.no_grad():
x = self.transforms(x)
return x
class ImageTextDataset(VisionDataset):
"""
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.
Args:
root: (string): The root path where the dataset is stored
file_path: (string): Path to the file containing the image_paths and associated captions.
The expected format is jsonlines where each line is a json object containing to keys.
`image_path`: The path to the image.
`captions`: An `array` of captions.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.ToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
transforms (callable, optional): A function/transform that takes input sample and its target as entry
and returns a transformed version.
"""
def __init__(
self,
root: str,
file_path: str,
captions_per_image=2,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None,
):
super().__init__(root, transforms, transform, target_transform)
with open(file_path, "r") as f:
examples = [json.loads(line) for line in f.readlines()]
self.captions = []
self.image_paths = []
for example in examples:
captions_subset = example["captions"][:captions_per_image]
self.captions.extend(captions_subset)
self.image_paths.extend([example["image_path"]] * len(captions_subset))
def _load_image(self, idx: int):
path = self.image_paths[idx]
return read_image(path, mode=ImageReadMode.RGB)
def _load_target(self, idx):
return self.captions[idx]
def __getitem__(self, index: int):
image = self._load_image(index)
target = self._load_target(index)
if self.transforms is not None:
image, target = self.transforms(image, target)
return image, target
def __len__(self) -> int:
return len(self.captions)
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray
def replicate(self):
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
elif model_args.text_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.text_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
model = FlaxHybridCLIP.from_text_vision_pretrained(
model_args.text_model_name_or_path,
model_args.vision_model_name_or_path,
seed=training_args.seed,
dtype=getattr(jnp, model_args.dtype),
text_from_pt=model_args.from_pt,
vision_from_pt=model_args.from_pt,
)
config = model.config
# set seed for torch dataloaders
set_seed(training_args.seed)
# Initialize torchvision transforms and jit them for faster processing
preprocess = Transform(config.vision_config.image_size)
preprocess = torch.jit.script(preprocess)
# Initialize the image-text dataset
train_dataset = ImageTextDataset(
data_args.data_dir,
data_args.train_file,
captions_per_image=2,
transform=preprocess,
)
eval_dataset = ImageTextDataset(
data_args.data_dir,
data_args.validation_file,
captions_per_image=1,
transform=preprocess,
)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
steps_per_epoch = len(train_dataset) // train_batch_size
total_train_steps = steps_per_epoch * num_epochs
# Use collate function to tokenizer the text and convert the processed images to numpy
def collate_fn(examples):
pixel_values = torch.stack([example[0] for example in examples]).permute(0, 2, 3, 1).numpy()
captions = [example[1] for example in examples]
inputs = tokenizer(
captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True, return_tensors="np"
)
batch = {
"pixel_values": pixel_values,
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
}
return batch
# Create data loaders
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=train_batch_size,
shuffle=True,
num_workers=data_args.preprocessing_num_workers,
persistent_workers=True,
drop_last=True,
collate_fn=collate_fn,
)
eval_loader = torch.utils.data.DataLoader(
eval_dataset,
batch_size=eval_batch_size,
shuffle=False,
num_workers=data_args.preprocessing_num_workers,
persistent_workers=True,
drop_last=True,
collate_fn=collate_fn,
)
# Enable tensorboard only on the master node
if has_tensorboard and jax.process_index() == 0:
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir).joinpath("logs").as_posix())
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
rng, dropout_rng = jax.random.split(rng)
# Create learning rate schedule
linear_decay_lr_schedule_fn = create_learning_rate_fn(
len(train_dataset),
train_batch_size,
training_args.num_train_epochs,
training_args.warmup_steps,
training_args.learning_rate,
)
# create adam optimizer
adamw = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
)
# Setup train state
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)
def cross_entropy(logits, axis):
logprobs = jax.nn.log_softmax(logits, axis=axis)
nll = jnp.diag(logprobs)
ce = -jnp.mean(nll)
return ce
def clip_loss(similarity):
loss = (cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)) / 2
return loss
# Define gradient update step fn
def train_step(state, batch):
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
def compute_loss(params):
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
loss = clip_loss(logits)
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_state, metrics
# Define eval fn
def eval_step(params, batch):
logits = model(**batch, params=params, train=False)[0]
loss = clip_loss(logits)
# summarize metrics
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return metrics
# Create parallel version of the train and eval step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
p_eval_step = jax.pmap(eval_step, "batch")
# Replicate the train state on each device
state = state.replicate()
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
logger.info(f" Total optimization steps = {total_train_steps}")
train_time = 0
# Create sampling rng
rng, input_rng = jax.random.split(rng)
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
for epoch in epochs:
# ======================== Training ================================
train_start = time.time()
# Create sampling rng
rng, input_rng = jax.random.split(rng)
train_metrics = []
steps_per_epoch = len(train_dataset) // train_batch_size
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
# train
for batch in train_loader:
batch = shard(batch)
state, train_metric = p_train_step(state, batch)
train_metrics.append(train_metric)
train_step_progress_bar.update(1)
train_time += time.time() - train_start
train_metric = unreplicate(train_metric)
train_step_progress_bar.close()
epochs.write(
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:"
f" {train_metric['learning_rate']})"
)
# ======================== Evaluating ==============================
eval_metrics = []
eval_steps = len(eval_dataset) // eval_batch_size
eval_step_progress_bar = tqdm(total=eval_steps, desc="Evaluating...", position=2, leave=False)
for batch in eval_loader:
# Model forward
batch = shard(batch)
metrics = p_eval_step(state.params, batch)
eval_metrics.append(metrics)
eval_step_progress_bar.update(1)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
# Print metrics and update progress bar
eval_step_progress_bar.close()
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
epochs.write(desc)
epochs.desc = desc
# Save metrics
if has_tensorboard and jax.process_index() == 0:
cur_step = epoch * (len(train_dataset) // train_batch_size)
write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(unreplicate(state.params))
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of epoch {epoch+1}",
)
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/jax-projects/hybrid_clip/run_hybrid_clip.py |
#!/usr/bin/env python3
import logging
import sys
import time
from dataclasses import field
from pathlib import Path
from typing import Dict, List, Optional, Union
import flax
import jax
import jax.numpy as jnp
import librosa
import numpy as np
import optax
from datasets import DatasetDict, load_dataset
from flax import jax_utils, traverse_util
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from tqdm import tqdm
from transformers import (
FlaxWav2Vec2ForPreTraining,
HfArgumentParser,
TrainingArguments,
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
is_tensorboard_available,
)
from transformers.models.wav2vec2.modeling_flax_wav2vec2 import _compute_mask_indices, _sample_negative_indices
logger = logging.getLogger(__name__)
@flax.struct.dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_extractor: Optional[bool] = field(
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
verbose_logging: Optional[bool] = field(
default=False,
metadata={"help": "Whether to log verbose messages or not."},
)
max_gumbel_temperature: Optional[float] = field(
default=2.0, metadata={"help": "Maximum temperature for gumbel softmax."}
)
min_gumbel_temperature: Optional[float] = field(
default=0.1, metadata={"help": "Minimum temperature for gumbel softmax."}
)
gumbel_temperature_decay: Optional[float] = field(
default=0.999995, metadata={"help": "Decay of gumbel temperature during training."}
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
" `[float32, float16, bfloat16]`."
)
},
)
@flax.struct.dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_split_name: Optional[str] = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
validation_split_name: Optional[str] = field(
default="validation",
metadata={
"help": (
"The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"
)
},
)
speech_file_column: Optional[str] = field(
default="file",
metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_duration_in_seconds: Optional[float] = field(
default=20.0, metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}
)
pad_to_multiple_of: Optional[int] = field(
default=1024,
metadata={
"help": (
"If set will pad the sequence to a multiple of the provided value. This is important to avoid"
" triggering recompilations on TPU"
)
},
)
@flax.struct.dataclass
class FlaxDataCollatorForWav2Vec2Pretraining:
"""
Data collator that will dynamically pad the inputs received and prepare masked indices
for self-supervised pretraining.
Args:
model (:class:`~transformers.FlaxWav2Vec2ForPreTraining`):
The Wav2Vec2 model used for pretraining. The data collator needs to have access
to config and ``_get_feat_extract_output_lengths`` function for correct padding.
feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`):
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
model: FlaxWav2Vec2ForPreTraining
feature_extractor: Wav2Vec2FeatureExtractor
padding: Union[bool, str] = "longest"
pad_to_multiple_of: Optional[int] = None
max_length: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
# reformat list to dict and set to pytorch format
batch = self.feature_extractor.pad(
features,
max_length=self.max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="np",
)
mask_indices_seq_length = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1])
batch_size = batch["input_values"].shape[0]
attention_mask = None
if batch["attention_mask"] is not None:
output_lengths = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1))
attention_mask = np.zeros((batch_size, mask_indices_seq_length), dtype=np.int8)
# these two operations makes sure that all values
# before the output lengths indices are attended to
attention_mask[(np.arange(attention_mask.shape[0]), output_lengths - 1)] = 1
attention_mask = jnp.flip(jnp.flip(attention_mask, -1).cumsum(-1), -1).astype("bool")
# sample randomly masked indices
batch["mask_time_indices"] = _compute_mask_indices(
(batch_size, mask_indices_seq_length),
self.model.config.mask_time_prob,
self.model.config.mask_time_length,
attention_mask=attention_mask,
min_masks=2,
)
# sample indices to take for negative vectors
batch["sampled_negative_indices"] = _sample_negative_indices(
(batch["mask_time_indices"].shape + (self.model.config.proj_codevector_dim,)),
self.model.config.num_negatives,
attention_mask=attention_mask,
)
return batch
def configure_logger(model_args: ModelArguments, training_args: TrainingArguments):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logging_level = logging.WARNING
if model_args.verbose_logging:
logging_level = logging.DEBUG
logger.setLevel(logging_level)
def write_train_metric(summary_writer, train_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
def write_eval_metric(summary_writer, eval_metrics, step):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int) -> np.ndarray:
num_samples = len(samples_idx)
samples_to_remove = num_samples % batch_size
if samples_to_remove != 0:
samples_idx = samples_idx[:-samples_to_remove]
sections_split = num_samples // batch_size
batch_idx = np.split(samples_idx, sections_split)
return batch_idx
def compute_contrastive_loss(
quantized_features, transformer_features, negative_indices, mask_time_indices, logits_temp, num_negatives
):
batch_size, sequence_length, hidden_size = quantized_features.shape
# take negative vectors from sampled indices
quantized_negatives = quantized_features.reshape(-1, hidden_size)[negative_indices.reshape(-1)]
quantized_negatives = quantized_negatives.reshape(
batch_size, sequence_length, num_negatives, hidden_size
).transpose(2, 0, 1, 3)
target_features = jnp.concatenate([quantized_features[None, :], quantized_negatives], axis=0)
loss_logits = optax.cosine_similarity(transformer_features, target_features)
loss_logits = loss_logits / logits_temp
neg_is_pos = (quantized_features == quantized_negatives).all(-1)
neg_is_pos = jnp.concatenate([jnp.full((1,) + loss_logits.shape[1:], False), neg_is_pos], axis=0)
# make sure incorrectly sampled vectors don't contribute to loss
loss_logits = jnp.where(neg_is_pos, -1e9, loss_logits)
predictions = loss_logits.transpose(2, 1, 0).reshape(-1, loss_logits.shape[0])
targets = ((1 - mask_time_indices) * -100).transpose(1, 0).flatten()
target_mask = jnp.where(targets >= 0, 1.0, 0.0)
contrastive_loss = optax.softmax_cross_entropy(predictions, onehot(targets, predictions.shape[-1])) * target_mask
contrastive_loss = contrastive_loss.sum()
return contrastive_loss
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
configure_logger(model_args, training_args)
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
if "validation" not in datasets.keys():
# make sure only "validation" and "train" keys remain"
datasets = DatasetDict()
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
)
else:
# make sure only "validation" and "train" keys remain"
datasets = DatasetDict()
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split="validation",
cache_dir=model_args.cache_dir,
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"{data_args.train_split_name}",
cache_dir=model_args.cache_dir,
)
# only normalized-inputs-training is supported
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=True
)
def prepare_dataset(batch):
# check that all files have the correct sampling rate
batch["speech"], _ = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate)
return batch
# load audio files into numpy arrays
vectorized_datasets = datasets.map(
prepare_dataset, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets["train"].column_names
)
# filter audio files that are too long
vectorized_datasets = vectorized_datasets.filter(
lambda data: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
)
def normalize(batch):
return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate)
# normalize and transform to `BatchFeatures`
vectorized_datasets = vectorized_datasets.map(
normalize,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
remove_columns=vectorized_datasets["train"].column_names,
)
# pretraining is only supported for "newer" stable layer norm architecture
# apply_spec_augment has to be True, mask_feature_prob has to be 0.0
config = Wav2Vec2Config.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
raise ValueError(
"PreTraining is only supported for ``config.do_stable_layer_norm=True`` and"
" ``config.feat_extract_norm='layer'"
)
model = FlaxWav2Vec2ForPreTraining(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype))
# Activate gradient checkpointing if needed
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
data_collator = FlaxDataCollatorForWav2Vec2Pretraining(
model=model, feature_extractor=feature_extractor, pad_to_multiple_of=data_args.pad_to_multiple_of
)
# Enable tensorboard only on the master node
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
else:
logger.warning(
"Unable to display metrics through TensorBoard because the package is not installed: "
"Please run pip install tensorboard to enable."
)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
dropout_rngs = jax.random.split(rng, jax.local_device_count())
gumbel_rngs = jax.random.split(rng, jax.local_device_count())
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
num_train_steps = len(vectorized_datasets["train"]) // train_batch_size * num_epochs
# Create learning rate schedule
warmup_fn = optax.linear_schedule(
init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
)
decay_fn = optax.linear_schedule(
init_value=training_args.learning_rate,
end_value=0,
transition_steps=num_train_steps - training_args.warmup_steps,
)
linear_decay_lr_schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
flat_mask = {
path: (path[-1] != "bias" and path[-2:] not in [("layer_norm", "scale"), ("final_layer_norm", "scale")])
for path in flat_params
}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
adamw = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# Setup train state and define training hyper-parameters
state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
num_negatives = model.config.num_negatives
contrastive_logits_temperature = model.config.contrastive_logits_temperature
num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
diversity_loss_weight = model.config.diversity_loss_weight
# Define gradient update step fn
def train_step(state, batch, dropout_rng, gumbel_rng):
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
gumbel_rng, new_gumbel_rng = jax.random.split(gumbel_rng)
def loss_fn(params):
negative_indices = batch.pop("sampled_negative_indices")
gumbel_temperature = jnp.clip(
model_args.max_gumbel_temperature * model_args.gumbel_temperature_decay**state.step,
a_min=model_args.min_gumbel_temperature,
)
outputs = state.apply_fn(
**batch,
gumbel_temperature=gumbel_temperature,
params=params,
dropout_rng=dropout_rng,
gumbel_rng=gumbel_rng,
train=True,
)
contrastive_loss = compute_contrastive_loss(
outputs.projected_quantized_states,
outputs.projected_states,
negative_indices,
batch["mask_time_indices"],
contrastive_logits_temperature,
num_negatives,
)
diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
loss = contrastive_loss + diversity_loss_weight * diversity_loss
return loss
grad_fn = jax.value_and_grad(loss_fn)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
metrics = jax.lax.pmean(
{"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
)
return new_state, metrics, new_dropout_rng, new_gumbel_rng
# Create parallel version of the train step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
# Define eval fn
def eval_step(params, batch):
negative_indices = batch.pop("sampled_negative_indices")
outputs = model(**batch, params=params, train=False)
contrastive_loss = compute_contrastive_loss(
outputs.projected_quantized_states,
outputs.projected_states,
negative_indices,
batch["mask_time_indices"],
contrastive_logits_temperature,
num_negatives,
)
diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
loss = contrastive_loss + diversity_loss_weight * diversity_loss
# summarize metrics
metrics = {"loss": loss.mean(), "codevector_perplexity": outputs.codevector_perplexity}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return metrics
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
# Replicate the train state on each device
state = jax_utils.replicate(state)
train_time = 0
train_metrics = []
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
for epoch in epochs:
# ======================== Training ================================
train_start = time.time()
# Create sampling rng
rng, input_rng = jax.random.split(rng)
# Generate an epoch by shuffling sampling indices from the train dataset
num_train_samples = len(vectorized_datasets["train"])
# Avoid using jax.numpy here in case of TPU training
train_samples_idx = np.random.permutation(np.arange(num_train_samples))
train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)
# Gather the indexes for creating the batch and do a training step
for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
samples = [vectorized_datasets["train"][int(idx)] for idx in batch_idx]
model_inputs = data_collator(samples)
model_inputs = shard(model_inputs.data)
# Model forward
state, train_metric, dropout_rngs, gumbel_rngs = p_train_step(
state, model_inputs, dropout_rngs, gumbel_rngs
)
train_metrics.append(train_metric)
cur_step = epoch * (num_train_samples // train_batch_size) + step
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
# Save metrics
train_metric = jax_utils.unreplicate(train_metric)
train_time += time.time() - train_start
if has_tensorboard and jax.process_index() == 0:
write_train_metric(summary_writer, train_metrics, train_time, cur_step)
epochs.write(
f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:"
f" {train_metric['learning_rate'].mean()})"
)
train_metrics = []
# ======================== Evaluating ==============================
num_eval_samples = len(vectorized_datasets["validation"])
# Avoid using jax.numpy here in case of TPU training
eval_samples_idx = np.arange(num_eval_samples)
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
eval_metrics = []
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
samples = [vectorized_datasets["validation"][int(idx)] for idx in batch_idx]
model_inputs = data_collator(samples)
# Model forward
model_inputs = shard(model_inputs.data)
metrics = p_eval_step(state.params, model_inputs)
eval_metrics.append(metrics)
# get eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
# Update progress bar
epochs.write(
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {eval_metrics['loss']}, Perplexity:"
f" {eval_metrics['codevector_perplexity']})"
)
# Save metrics
if has_tensorboard and jax.process_index() == 0:
cur_step = epoch * (len(vectorized_datasets["train"]) // train_batch_size)
write_eval_metric(summary_writer, eval_metrics, cur_step)
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
model.save_pretrained(training_args.output_dir, params=params, push_to_hub=training_args.push_to_hub)
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/jax-projects/wav2vec2/run_wav2vec2_pretrain_flax.py |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The Google Research Authors and The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for constructing PyTrees of PartitionSpecs."""
# utils adapted from https://github.com/google-research/google-research/blob/master/flax_models/t5x/partitions.py
import re
from flax.core.frozen_dict import freeze
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.experimental import PartitionSpec as P
# Sentinels
_unmatched = object()
# For specifying empty leaf dict `{}`
empty_dict = object()
def _match(qs, ks):
"""Return True if regexes in qs match any window of strings in tuple ks."""
# compile regexes and force complete match
qts = tuple((re.compile(x + "$") for x in qs))
for i in range(len(ks) - len(qs) + 1):
matches = [x.match(y) for x, y in zip(qts, ks[i:])]
if matches and all(matches):
return True
return False
def _replacement_rules(rules):
def replace(key, val):
for rule, replacement in rules:
if _match(rule, key):
return replacement
return val
return replace
# PartitionSpec for GPTNeo
# replicate the hidden dim and shard feed-forward and head dim
def _get_partition_rules():
return [
# embeddings
(("transformer", "wpe", "embedding"), P("mp", None)),
(("transformer", "wte", "embedding"), P("mp", None)),
# atention
(("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(None, "mp")),
(("attention", "out_proj", "kernel"), P("mp", None)),
(("attention", "out_proj", "bias"), None),
# mlp
(("mlp", "c_fc", "kernel"), P(None, "mp")),
(("mlp", "c_fc", "bias"), P("mp")),
(("mlp", "c_proj", "kernel"), P("mp", None)),
(("mlp", "c_proj", "bias"), None),
# layer norms
((r"ln_\d+", "bias"), None),
((r"\d+", r"ln_\d+", "scale"), None),
(("ln_f", "bias"), None),
(("ln_f", "scale"), None),
]
def set_partitions(in_dict):
rules = _get_partition_rules()
replace = _replacement_rules(rules)
initd = {k: _unmatched for k in flatten_dict(in_dict)}
result = {k: replace(k, v) for k, v in initd.items()}
assert _unmatched not in result.values(), "Incomplete partition spec."
return freeze(unflatten_dict(result))
| transformers-main | examples/research_projects/jax-projects/model_parallel/partitions.py |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Pre-training/Fine-tuning the GPTNeo model for causal language modeling on a text file or a dataset using model parallelism.
"""
import logging
import math
import os
import sys
import time
from dataclasses import dataclass, field
from itertools import chain
from pathlib import Path
from typing import Callable, Optional
import datasets
import jax
import jax.numpy as jnp
import numpy as np
import optax
from datasets import Dataset, load_dataset
from flax.core.frozen_dict import freeze, unfreeze
from flax.training.common_utils import onehot, stack_forest
from jax.experimental.maps import mesh
from jax.experimental.pjit import pjit
from partitions import set_partitions
from tqdm import tqdm
import transformers
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForCausalLM,
HfArgumentParser,
TrainingArguments,
is_tensorboard_available,
)
from transformers.testing_utils import CaptureLogger
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
" `[float32, float16, bfloat16]`."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
block_size: Optional[int] = field(
default=None,
metadata={
"help": (
"Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
"""
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
Shuffle batches if `shuffle` is `True`.
"""
steps_per_epoch = len(dataset) // batch_size
if shuffle:
batch_idx = jax.random.permutation(rng, len(dataset))
else:
batch_idx = jnp.arange(len(dataset))
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
for idx in batch_idx:
batch = dataset[idx]
batch = {k: jnp.array(v) for k, v in batch.items()}
yield batch
def write_train_metric(summary_writer, train_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = stack_forest(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
def write_eval_metric(summary_writer, eval_metrics, step):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
) -> Callable[[int], jnp.array]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False
)
if "validation" not in dataset.keys():
dataset["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
)
dataset["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.train_file.split(".")[-1]
if extension == "txt":
extension = "text"
dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained config and tokenizer
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if training_args.do_train:
column_names = dataset["train"].column_names
else:
column_names = dataset["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
def tokenize_function(examples):
with CaptureLogger(tok_logger) as cl:
output = tokenizer(examples[text_column_name])
# clm input could be much much longer than block_size
if "Token indices sequence length is longer than the" in cl.out:
tok_logger.warning(
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
" before being passed to the model."
)
return output
tokenized_datasets = dataset.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > config.max_position_embeddings:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx."
)
block_size = 1024
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(data_args.block_size, tokenizer.model_max_length)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_train:
if "train" not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = lm_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if "validation" not in tokenized_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = lm_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
# Enable tensorboard only on the master node
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
else:
logger.warning(
"Unable to display metrics through TensorBoard because the package is not installed: "
"Please run pip install tensorboard to enable."
)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
rng, dropout_rng = jax.random.split(rng)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
steps_per_epoch = len(train_dataset) // train_batch_size
total_train_steps = steps_per_epoch * num_epochs
# TODO: weights should be initialized in pjitted fun, this won't work for REALLY large models
# TODO: when loading from pre-trained model we need to make sure the vocab is divisible by num_partitions
# GPT2's vocab is odd, we need to resize it for fine-tuning
model = FlaxAutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
# Create learning rate schedule
linear_decay_lr_schedule_fn = create_learning_rate_fn(
len(train_dataset),
train_batch_size,
training_args.num_train_epochs,
training_args.warmup_steps,
training_args.learning_rate,
)
optimizer = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
)
def get_initial_state(params):
state = optimizer.init(params)
return tuple(state), params
# Get PartitionSpec for model params
param_spec = set_partitions(unfreeze(model.params))
# Get the PyTree for opt_state, we don't actually initialize the opt_state yet.
params_shapes = jax.tree_util.tree_map(lambda x: x.shape, model.params)
state_shapes = jax.eval_shape(get_initial_state, params_shapes)
# get PartitionSpec for opt_state, this is very specific to adamw
# TODO: optax returns different state for different optimizers, how can we handle this generically ?
# or maybe we don't since in our examples we just use adamw or adafactor
def get_opt_spec(x):
if isinstance(x, dict):
return param_spec
return None
opt_state_spec, param_spec = jax.tree_util.tree_map(
get_opt_spec, state_shapes, is_leaf=lambda x: isinstance(x, (dict, optax.EmptyState))
)
# pjit the get_initial_state function to shard params and init
# optimizer state in sharded way
p_get_initial_state = pjit(
get_initial_state,
in_axis_resources=None,
out_axis_resources=(opt_state_spec, param_spec),
)
# hack: move the inital params to CPU to free up device memory
# TODO: allow loading weights on CPU in pre-trained model
model.params = jax.tree_util.tree_map(lambda x: np.asarray(x), model.params)
# mesh defination
mesh_devices = np.array(jax.devices()).reshape(1, jax.local_device_count())
# actually initialize the opt_state
with mesh(mesh_devices, ("dp", "mp")):
opt_state, params = p_get_initial_state(freeze(model.params))
# cross-entropy with z loss
def loss_fn(logits, labels, z_loss=0):
shift_logits = logits[..., :-1, :]
shift_labels = labels[..., 1:]
shift_labels = onehot(shift_labels, shift_logits.shape[-1])
shift_logits = shift_logits - jax.lax.stop_gradient(shift_logits.max(axis=-1, keepdims=True))
log_z = jnp.log(jnp.sum(jnp.exp(shift_logits), axis=-1, keepdims=True))
log_softmax = shift_logits - log_z
loss = -jnp.sum(shift_labels * log_softmax, axis=-1)
loss += (1e-4 * jnp.square(log_z.squeeze(-1))) * z_loss
return loss.mean()
# Define gradient update step fn
# TODO: try to use TrainState instead of passing params and opt_state individually
def train_step(params, opt_state, dropout_rng, batch, step):
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
def compute_loss(params):
labels = batch.pop("labels")
logits = model(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
loss = loss_fn(logits, labels, z_loss=1.0)
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grads = grad_fn(params)
updates, new_opt_state = optimizer.update(grads, opt_state, params)
new_params = optax.apply_updates(params, updates)
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(step)}
return new_params, tuple(new_opt_state), new_dropout_rng, metrics, step + 1
# Define eval fn
def eval_step(input_ids, labels, params):
logits = model(input_ids=input_ids, params=params, train=False)[0]
loss = loss_fn(logits, labels)
# metrics
return {"loss": loss}
p_train_step = pjit(
train_step,
in_axis_resources=(param_spec, opt_state_spec, None, None, None),
out_axis_resources=(param_spec, opt_state_spec, None, None, None),
donate_argnums=(0, 1),
)
p_eval_step = pjit(
eval_step,
in_axis_resources=(None, None, param_spec),
out_axis_resources=None,
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
logger.info(f" Total optimization steps = {total_train_steps}")
train_time = 0
train_metrics = []
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
global_step = 0
# we are not doing 2D parallelism (yet!), this just does model parallelism
with mesh(mesh_devices, ("dp", "mp")):
for _ in epochs:
# ======================== Training ================================
train_start = time.time()
# Create sampling rng
rng, input_rng = jax.random.split(rng)
# Generate an epoch by shuffling sampling indices from the train dataset
train_metrics = []
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
steps_per_epoch = len(train_dataset) // train_batch_size
# train
for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
batch = next(train_loader)
params, opt_state, dropout_rng, train_metric, global_step = p_train_step(
params,
opt_state,
dropout_rng,
batch,
global_step,
)
train_metrics.append(train_metric)
cur_step = global_step
if cur_step % training_args.logging_steps == 0 and cur_step > 0:
# Save metrics
train_time += time.time() - train_start
if has_tensorboard and jax.process_index() == 0:
write_train_metric(summary_writer, train_metrics, train_time, cur_step)
epochs.write(
f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:"
f" {train_metric['learning_rate']})"
)
train_metrics = []
if cur_step % training_args.eval_steps == 0 and cur_step > 0:
# ======================== Evaluating ==============================
eval_metrics = []
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
eval_steps = len(eval_dataset) // eval_batch_size
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
batch = next(eval_loader)
metrics = p_eval_step(batch["input_ids"], batch["labels"], params)
eval_metrics.append(metrics)
# normalize eval metrics
eval_metrics = stack_forest(eval_metrics)
eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics)
try:
eval_metrics["perplexity"] = math.exp(eval_metrics["loss"])
except OverflowError:
eval_metrics["perplexity"] = float("inf")
logger.info(
f"Step... ({cur_step} | Eval loss: {eval_metrics['loss']} | Eval Perplexity:"
f" {eval_metrics['perplexity']}"
)
if cur_step % training_args.save_steps == 0 and cur_step > 0:
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(params)
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of step {cur_step}",
)
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/jax-projects/model_parallel/run_clm_mp.py |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=fill-mask
"""
import logging
import os
import sys
import time
from collections import defaultdict
from dataclasses import dataclass, field
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import datasets
import flax
import jax
import jax.numpy as jnp
import numpy as np
import optax
from datasets import load_dataset
from flax import jax_utils, traverse_util
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard
from tqdm import tqdm
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForMaskedLM,
HfArgumentParser,
PreTrainedTokenizerBase,
TensorType,
TrainingArguments,
is_tensorboard_available,
set_seed,
)
if datasets.__version__ <= "1.8.0":
raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming")
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
" `[float32, float16, bfloat16]`."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
train_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
)
validation_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
text_column_name: str = field(
default="text", metadata={"help": "The name of the column to retrieve the training text."}
)
shuffle_buffer_size: int = field(
default=10000, metadata={"help": "The number of examples to pre-load for shuffling."}
)
num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."})
num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"})
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
@flax.struct.dataclass
class FlaxDataCollatorForLanguageModeling:
"""
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
are not all of the same length.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
The probability with which to (randomly) mask tokens in the input.
.. note::
For best performance, this data collator should be used with a dataset having items that are dictionaries or
BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
:class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
argument :obj:`return_special_tokens_mask=True`.
"""
tokenizer: PreTrainedTokenizerBase
mlm_probability: float = 0.15
def __post_init__(self):
if self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
"You should pass `mlm=False` to train on causal language modeling instead."
)
def __call__(self, examples: List[Dict[str, np.ndarray]]) -> Dict[str, np.ndarray]:
# Handle dict or lists with proper padding and conversion to tensor.
batch = self.tokenizer.pad(examples, return_tensors=TensorType.NUMPY)
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
batch["input_ids"], batch["labels"] = self.mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
return batch
def mask_tokens(
self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.copy()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = np.full(labels.shape, self.mlm_probability)
special_tokens_mask = special_tokens_mask.astype("bool")
probability_matrix[special_tokens_mask] = 0.0
masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
indices_random &= masked_indices & ~indices_replaced
random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int) -> np.ndarray:
num_samples = len(samples_idx)
samples_to_remove = num_samples % batch_size
if samples_to_remove != 0:
samples_idx = samples_idx[:-samples_to_remove]
sections_split = num_samples // batch_size
batch_idx = np.split(samples_idx, sections_split)
return batch_idx
def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length):
"""
The training iterator is advanced so that after groupifying the samples,
`num_samples` of length `max_seq_length` are returned.
"""
num_total_tokens = max_seq_length * num_samples
samples = defaultdict(list)
i = 0
while i < num_total_tokens:
tokenized_samples = next(train_iterator)
i += len(tokenized_samples["input_ids"])
# concatenate tokenized samples to list (excluding "id" and "text")
samples = {
k: samples[k] + tokenized_samples[k] for k in ["input_ids", "attention_mask", "special_tokens_mask"]
}
# Concatenated tokens are split to lists of length `max_seq_length`.
# Note that remainedr of % max_seq_length are thrown away.
def group_texts(examples):
result = {
k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)]
for k, t in examples.items()
}
return result
grouped_samples = group_texts(samples)
return grouped_samples
def write_train_metric(summary_writer, train_metrics, train_time, step):
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
def write_eval_metric(summary_writer, eval_metrics, step):
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"eval_{metric_name}", value, step)
if __name__ == "__main__":
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
level="INFO",
datefmt="[%X]",
)
# Log on each process the small summary:
logger = logging.getLogger(__name__)
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
streaming=True,
split="train",
)
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
# efficient when it receives the `special_tokens_mask`.
def tokenize_function(examples):
return tokenizer(examples[data_args.text_column_name], return_special_tokens_mask=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=list(dataset.features.keys()))
shuffle_seed = training_args.seed
tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed)
has_tensorboard = is_tensorboard_available()
if has_tensorboard and jax.process_index() == 0:
try:
from flax.metrics.tensorboard import SummaryWriter
except ImportError as ie:
has_tensorboard = False
logger.warning(
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
)
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
# Data collator
# This one will take care of randomly masking the tokens.
data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
dropout_rngs = jax.random.split(rng, jax.local_device_count())
if model_args.model_name_or_path:
model = FlaxAutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
else:
model = FlaxAutoModelForMaskedLM.from_config(
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
# define number steps per stream epoch
num_train_steps = data_args.num_train_steps
# Create learning rate schedule
warmup_fn = optax.linear_schedule(
init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
)
decay_fn = optax.linear_schedule(
init_value=training_args.learning_rate,
end_value=0,
transition_steps=num_train_steps - training_args.warmup_steps,
)
linear_decay_lr_schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
# Note that this mask is specifically adapted for FlaxBERT-like models.
# For other models, one should correct the layer norm parameter naming
# accordingly.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
adamw = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# Setup train state
state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
# Define gradient update step fn
def train_step(state, batch, dropout_rng):
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
def loss_fn(params):
labels = batch.pop("labels")
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
# compute loss, ignore padded input tokens
label_mask = jnp.where(labels > 0, 1.0, 0.0)
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
# take average
loss = loss.sum() / label_mask.sum()
return loss
grad_fn = jax.value_and_grad(loss_fn)
loss, grad = grad_fn(state.params)
grad = jax.lax.pmean(grad, "batch")
new_state = state.apply_gradients(grads=grad)
metrics = jax.lax.pmean(
{"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
)
return new_state, metrics, new_dropout_rng
# Create parallel version of the train step
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
# Define eval fn
def eval_step(params, batch):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
# compute loss, ignore padded input tokens
label_mask = jnp.where(labels > 0, 1.0, 0.0)
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
# compute accuracy
accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
# summarize metrics
metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
metrics = jax.lax.psum(metrics, axis_name="batch")
return metrics
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
# Replicate the train state on each device
state = jax_utils.replicate(state)
train_time = 0
train_start = time.time()
train_metrics = []
eval_metrics = []
training_iter = iter(tokenized_datasets)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
steps = tqdm(range(num_train_steps), desc="Training...", position=0)
for step in range(num_train_steps):
# ======================== Training ================================
try:
samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
except StopIteration:
# Once the end of the dataset stream is reached, the training iterator
# is reinitialized and reshuffled and a new eval dataset is randomly chosen.
shuffle_seed += 1
tokenized_datasets.set_epoch(shuffle_seed)
training_iter = iter(tokenized_datasets)
eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
# process input samples
model_inputs = data_collator(samples)
# Model forward
model_inputs = shard(model_inputs.data)
state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
train_metrics.append(train_metric)
if step % training_args.logging_steps == 0 and step > 0:
steps.write(
f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate:"
f" {train_metric['learning_rate'].mean()})"
)
train_time += time.time() - train_start
if has_tensorboard and jax.process_index() == 0:
write_train_metric(summary_writer, train_metrics, train_time, step)
train_metrics = []
# ======================== Evaluating ==============================
if step % training_args.eval_steps == 0 and step > 0:
# Avoid using jax.numpy here in case of TPU training
eval_samples_idx = np.arange(data_args.num_eval_samples)
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)):
# process input samples
batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()}
model_inputs = data_collator(batch_eval_samples)
# Model forward
model_inputs = shard(model_inputs.data)
metrics = p_eval_step(state.params, model_inputs)
eval_metrics.append(metrics)
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics)
eval_normalizer = eval_metrics.pop("normalizer")
eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics)
# Update progress bar
steps.desc = (
f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc:"
f" {eval_metrics['accuracy']})"
)
if has_tensorboard and jax.process_index() == 0:
write_eval_metric(summary_writer, eval_metrics, step)
eval_metrics = []
# save checkpoint after each epoch and push checkpoint to the hub
if jax.process_index() == 0:
params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params))
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of step {step+1}",
)
# update tqdm bar
steps.update(1)
| transformers-main | examples/research_projects/jax-projects/dataset-streaming/run_mlm_flax_stream.py |
# Copyright 2022 - Intel Corp. All rights reserved.
# Authors: Mayank Kumar Raunak, Javier Turek, Nicole Beckage
"""
Implementation of a new method for fine-tuning transformer models that we call
Information Gain Filtration 'IGF' on WikiText data set and compared the results
with the standard fine-tuning method
Steps followed in the code:
1) Generate a objective dataset of pairs (X, IG(X)). IG(X)--Informativeness of context 'X'.
Our IG (information gain) model is learning to predict the ‘informativeness’ of a particular
context. Informativeness is the change in metric between the model’s accuracy on an
objective set before and after seeing that context. For casual language modeling, the
metric is perplexity.
2) A secondary learner is trained to infer a function approximation for IG using the dataset
created in (1).
3) The learner created in (2) is used to inform the fine-tuning process and filter out low informative samples.
Last, a plot is generated to compare the performance of IGF to standard fine-tuning without any filtering
"""
# Prerequisite libraries:
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpt2,
recopy_gpt2,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPT2LMHeadModel
def generate_n_pairs(
context_len=32,
max_steps=10,
size_objective_set=100,
min_len=1026,
trim=True,
data_file="data/tokenized_stories_train_wikitext103.jbl",
igf_data_file="igf_context_pairs.jbl",
):
"""
Collecting *n* pairs for training the secondary learner
Args:
context_len: The maximum total input sequence length after tokenization. Sequences longer
than this will be truncated, sequences shorter will be padded
max_steps: To calculate training epochs of secondary learner
size_objective_set: size of objective data set used to create (X,IG(X)) pairs which is the training data for secondary learner
min_len: The minimum length of the article to be used as objective set
trim: If True truncate the context if it exceeds context length
data_file: Tokenized data set split for training and evaluation of model
igf_data_file: file to store (I,IG(X)) paired data set to train secondary learner
Returns:
Data stored in igf_data_file
"""
# generates same data everytime
set_seed(3)
# generate train_data and objective_set
train_data, objective_set = generate_datasets(
context_len, data_file, number=size_objective_set, min_len=1026, trim=True
)
# keeps model same across runs
set_seed(4)
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# load pretrained model
model = load_gpt2("gpt2").to(device)
print("computing perplexity on objective set")
orig_perp = compute_perplexity(model, objective_set, context_len).item()
print("perplexity on objective set:", orig_perp)
# collect igf pairs and save to file demo.jbl
collect_objective_set(model, orig_perp, context_len, train_data, objective_set, max_steps, device, igf_data_file)
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def training_secondary_learner(
secondary_learner_train_data,
secondary_learner_max_epochs=15,
secondary_learner_batch_size=128,
eval_freq=100,
igf_model_path="igf_model.pt",
):
"""
Train the secondary learner
Args:
secondary_learner_train_data: Data set with (X,IG(X)) pairs to train secondary learner where IG(X) - measure of informativeness and X- context
secondary_learner_max_epochs: Number of epochs to train secondary learner
secondary_learner_batch_size: Batch size to train secondary learner
eval_freq (object): secondary model evaluation can be triggered at eval_freq
igf_model_path: path to store trained secondary learner
Returns:
Trained secondary learner
"""
set_seed(42)
# Load pre-trained model
model = GPT2LMHeadModel.from_pretrained("gpt2")
# Initialize secondary learner to use embedding weights of model
secondary_learner = SecondaryLearner(model)
# Train secondary learner
secondary_learner = train_secondary_learner(
secondary_learner,
secondary_learner_train_data,
max_epochs=secondary_learner_max_epochs,
batch_size=secondary_learner_batch_size,
eval_freq=100,
igf_model_path=igf_model_path,
)
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def finetune(
model,
train_dataset,
test_dataset,
context_len=32,
max_steps=1000,
batch_size=16,
threshold=1.0,
recopy_model=recopy_gpt2,
secondary_learner=None,
eval_interval=10,
finetuned_model_name="gpt2_finetuned.pt",
):
"""
fine-tune with IGF if secondary_learner is not None, else standard fine-tuning
Args:
model: pre-trained GPT-2 model
train_dataset: Data set to train GPT-2 model
test_dataset: Evaluate GPT-2 model
context_len: The maximum total input sequence length after tokenization. Sequences longer
than this will be truncated, sequences shorter will be padded
max_steps: To calculate training epochs
batch_size: Batch size to train GPT-2 model
threshold: The threshold value used by secondary learner to filter the train_data and allow only"
informative data as input to the model
recopy_model: Reset the model to the original pretrained GPT-2 weights after each iteration
secondary_learner: Selection of IGF as fine-tuning method if not None
eval_interval: number of batches after which decay the selectivity of our secondary learner filter from
1 standard deviation above average to 1 below average
fine-tuned_model_name: name of the final final-tuned GPT-2 model
Returns:
Fine-tuned GPT-2 model
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler)
num_train_epochs = max_steps // (len(train_dataset)) + 1
global_step = 0
context = torch.zeros((1, context_len), dtype=torch.long, device=device)
model, lm_optimizer, lm_scheduler = recopy_model(model, device, max_steps)
model.train()
if secondary_learner is not None:
secondary_learner.to(device)
secondary_learner.eval()
contexts = []
examples = 0
observed_qs = []
test_perps = []
# Compute the performance of the transformer model at the beginning
real_perp = compute_perplexity(model, test_dataset, context_len)
test_perps.append(real_perp)
print("Test perplexity, step", global_step, ":", real_perp)
for epoch in range(int(num_train_epochs)):
for step, example in enumerate(train_dataloader):
torch.cuda.empty_cache()
start = random.randint(0, example.size(2) - context_len - 1)
context[0, :] = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
outputs = model(context, labels=context)
do_backprop = True
if secondary_learner is not None:
predicted_q = secondary_learner.forward(
torch.tensor(context, dtype=torch.long, device=device).unsqueeze(0)
)[0].item()
observed_qs.append(float(predicted_q))
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
threshold = -1
if predicted_q < threshold:
do_backprop = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu()))
lm_loss = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
examples = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0)
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
real_perp = compute_perplexity(model, test_dataset, context_len)
test_perps.append(real_perp)
print("Test perplexity, step", global_step, ":", real_perp)
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict(), finetuned_model_name)
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def main():
parser = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task")
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain data files for WikiText.",
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--data_file",
type=str,
default=None,
help=(
"A jbl file containing tokenized data which can be split as objective dataset, "
"train_dataset and test_dataset."
),
)
parser.add_argument(
"--igf_data_file",
type=str,
default=None,
help="A jbl file containing the context and information gain pairs to train secondary learner.",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the final fine-tuned model is stored.",
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--context_len",
default=32,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--size_objective_set",
default=100,
type=int,
help="number of articles that are long enough to be used as our objective set",
)
parser.add_argument(
"--eval_freq", default=100, type=int, help="secondary model evaluation is triggered at eval_freq"
)
parser.add_argument("--max_steps", default=1000, type=int, help="To calculate training epochs")
parser.add_argument(
"--secondary_learner_batch_size",
default=128,
type=int,
help="batch size of training data for secondary learner",
)
parser.add_argument(
"--batch_size", default=16, type=int, help="batch size of training data of language model(gpt2) "
)
parser.add_argument(
"--eval_interval",
default=10,
type=int,
help=(
"decay the selectivity of our secondary learner filter from"
"1 standard deviation above average to 1 below average after 10 batches"
),
)
parser.add_argument(
"--number", default=100, type=int, help="The number of examples split to be used as objective_set/test_data"
)
parser.add_argument(
"--min_len", default=1026, type=int, help="The minimum length of the article to be used as objective set"
)
parser.add_argument(
"--secondary_learner_max_epochs", default=15, type=int, help="number of epochs to train secondary learner"
)
parser.add_argument("--trim", default=True, type=bool, help="truncate the example if it exceeds context length")
parser.add_argument(
"--threshold",
default=1.0,
type=float,
help=(
"The threshold value used by secondary learner to filter the train_data and allow only"
" informative data as input to the model"
),
)
parser.add_argument("--finetuned_model_name", default="gpt2_finetuned.pt", type=str, help="finetuned_model_name")
parser.add_argument(
"--recopy_model",
default=recopy_gpt2,
type=str,
help="Reset the model to the original pretrained GPT-2 weights after each iteration",
)
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32,
max_steps=10,
size_objective_set=100,
min_len=1026,
trim=True,
data_file="data/tokenized_stories_train_wikitext103.jbl",
igf_data_file="igf_context_pairs.jbl",
)
# Load train data for secondary learner
secondary_learner_train_data = joblib.load("data/IGF_values.jbl")
# Train secondary learner
secondary_learner = training_secondary_learner(
secondary_learner_train_data,
secondary_learner_max_epochs=15,
secondary_learner_batch_size=128,
eval_freq=100,
igf_model_path="igf_model.pt",
)
# load pretrained gpt2 model
model = GPT2LMHeadModel.from_pretrained("gpt2")
set_seed(42)
# Generate train and test data to train and evaluate gpt2 model
train_dataset, test_dataset = generate_datasets(
context_len=32, file="data/tokenized_stories_train_wikitext103.jbl", number=100, min_len=1026, trim=True
)
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
model,
train_dataset,
test_dataset,
context_len=32,
max_steps=1000,
batch_size=16,
threshold=1.0,
recopy_model=recopy_gpt2,
secondary_learner=secondary_learner,
eval_interval=10,
finetuned_model_name="gpt2_finetuned.pt",
)
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/information-gain-filtration/run_clm_igf.py |
# Copyright 2022 - Intel Corp. All rights reserved.
# Authors: Mayank Kumar Raunak, Javier Turek, Nicole Backage
import copy
import logging
import random
import joblib
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AdamW, GPT2LMHeadModel, get_linear_schedule_with_warmup
logger = logging.getLogger(__name__)
def set_seed(seed):
"""
For reproducible training
Args:
seed: A seed for reproducible training
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def compute_perplexity(model, test_data, context_len):
"""
Computes perplexity of the transformer model on data in test_data
Args:
model: Pre-trained GPT2 model
test_data: Data on which perplexity calculation is required
context_len: The maximum total input sequence length after tokenization. Sequences longer
than this will be truncated, sequences shorter will be padded
Returns:
Perplexity on input test data
"""
model.eval()
device = next(model.parameters()).device
eval_batch_size = 1
context = torch.zeros((eval_batch_size, context_len), dtype=torch.long, device=device)
eval_dataloader = DataLoader(test_data, shuffle=False, batch_size=eval_batch_size)
eval_loss = torch.zeros(1, device=device)
nb_eval_examples = 0
for batch in eval_dataloader:
batch.to(device)
# pad
context.zero_()
for i in range(eval_batch_size):
context[i, :] = batch[i]
outputs = model(context, labels=context)
eval_loss += outputs[0].sum().item()
nb_eval_examples += batch.size(0)
eval_loss = eval_loss / nb_eval_examples
perplexity = torch.exp(eval_loss)
model.train()
return perplexity
def load_gpt2(model_name="gpt2"):
"""
load original gpt2 and save off for quicker loading
Args:
model_name: GPT-2
Returns:
GPT-2 model
"""
model = GPT2LMHeadModel.from_pretrained(model_name, output_hidden_states=True)
torch.save(model.state_dict(), model_name + "local.pt")
return model
def recopy_gpt2(orig_model, device, max_steps):
"""
Reset the model to the original pretrained GPT-2 weights after each iteration
Args:
orig_model: Original pretrained GPT-2 model imported from Transformers library
device: CPU/GPU
max_steps: number of training steps
Returns:
Original PreTrained GPT-2 model,
lm_optimizer: Adam optimizer with Decoupled weight decay
lm_scheduler: linear scheduler with the appropriate schedule
"""
model = copy.deepcopy(orig_model)
model.to(device)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
lm_optimizer = AdamW(optimizer_grouped_parameters, lr=5e-5, eps=1e-8)
lm_scheduler = get_linear_schedule_with_warmup(lm_optimizer, 0, max_steps)
torch.cuda.empty_cache()
return model, lm_optimizer, lm_scheduler
def intermittent_save(contexts, real_perps, past_perps, filename):
"""
save the perplexity differences to filename
Args:
contexts: Example on which the perplexity is calculated
real_perps: Perplexity after back-propagating on the selected context
past_perps: Perplexity of model before training on the context
filename: File to store perplexity differences
Returns:
file with perplexity differences
"""
# save the perplexity differences to filename
avg = np.array(real_perps).mean()
std = np.array(real_perps).std()
perp_diff = (real_perps - avg) / std
data_final = list(zip(contexts, perp_diff, past_perps))
joblib.dump(data_final, filename)
def collect_objective_set(
model,
orig_perp,
context_len,
train_data,
objective_set,
max_steps,
device,
filename="dev.jbl",
recopy_model=recopy_gpt2,
):
"""
Collect individual IGF values from pre-trained transformer model
max_steps samples of training data to train secondary model
Args:
model: Pre-trained GPT2 model
orig_perp: Perplexity of original pretrained GPT-2 model
context_len: The maximum total input sequence length after tokenization. Sequences longer
than this will be truncated, sequences shorter will be padded
train_data: Data to train model
objective_set: Contexts used to create (X,IG(X)) pairs which is the training data for secondary learner
max_steps: To calculate training epochs of model
device: GPU/CPU
filename: To store intermediate perplexity differences
recopy_model: Reset the model to the original pretrained GPT-2 weights after each iteration
Returns:
file stored intermediate perplexity differences in intermediate stages
"""
# initialize variables to record relevant information
contexts = []
real_perps = []
past_perps = []
# Initialize the transformer model
orig_model = copy.deepcopy(model)
orig_model.to(device="cpu")
torch.cuda.empty_cache()
# Compute perplexity of initial transformer model for comparison
model.train()
model, lm_optimizer, lm_scheduler = recopy_model(orig_model, device, max_steps)
for step in tqdm(range(max_steps)):
context = torch.zeros((1, context_len), dtype=torch.long, device=device)
story = random.choice(train_data)
start = random.randint(0, len(story[0]) - context_len - 1)
context[0, :] = story[0][start : start + context_len]
lm_optimizer.zero_grad()
outputs = model(context, labels=context)
lm_loss = outputs[0]
past_perp = compute_perplexity(model, context, context_len)
model.train()
lm_loss.backward()
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0)
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
# Compute perplexity after back-propagating on the selected context
real_perp = compute_perplexity(model, objective_set, context_len)
# Periodically save the stored (X, IG(X)) pairs
if step % 1000 == 0 and step > 1:
intermittent_save(contexts, real_perps, past_perps, filename)
# Reset the pretrained model to the original pretrained GPT-2 weights after each iteration
model, lm_optimizer, lm_scheduler = recopy_model(orig_model, device, max_steps)
past_perps.append(past_perp.item())
real_perps.append(orig_perp - real_perp.item())
contexts.append(np.array(context.cpu()))
intermittent_save(contexts, real_perps, past_perps, filename)
def generate_datasets(
context_len, file="data/tokenized_stories_train_wikitext103.jbl", number=100, min_len=1026, trim=True
):
"""
Generate objective set and training set
Args:
context_len: The maximum total input sequence length after tokenization. Sequences longer
than this will be truncated, sequences shorter will be padded
file: Tokenized data split into training set and objective set
number: size of objective dataset
min_len: minimum length of a context in objective set
trim: If True truncate the context if it exceeds context length
Returns:
Generated objective set and training data
"""
# Generate objective set and training set
# Designate the first number (100) articles that are long enough to be used
# as our objective set, rest (that are long enough) are training data for
# secondary learner
data = joblib.load(file)
print("data loaded")
objective_set = []
if trim:
for i, example in enumerate(data):
if len(example[0]) > min_len:
start = random.randint(0, len(example[0]) - context_len - 1)
objective_set.append(example[0, start : start + context_len])
if len(objective_set) >= number:
break
train_data = []
for j in range(i + 1, len(data)):
if len(data[j][0]) > min_len:
train_data.append(data[j])
else:
objective_set = data[0:number]
train_data = data[number:]
joblib.dump(objective_set, "objective_set.jbl")
print("objective set saved")
return train_data, objective_set
def train_secondary_learner(
secondary_learner, train_dataset, max_epochs, batch_size, eval_freq=50, igf_model_path="secondary_learner.pt"
):
"""
Train the secondary learner (igf_model)
Args:
secondary_learner: secondary learner
train_dataset: data to train secondary learner
max_epochs: number of epochs to train secondary learner
batch_size: batch size of training data of secondary learner
eval_freq: secondary model evaluation can be triggered at eval_freq
igf_model_path: path to store trained secondary learner
Returns:
Trained secondary learner
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# We will use the first 512 pairs from our dataset as a test set for
# our secondary learner and the rest to train
test_dataset = train_dataset[:512]
train_dataset = train_dataset[512:]
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataloader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# secondary learner model set up
loss = nn.MSELoss()
test_loss = nn.MSELoss(reduction="sum")
secondary_learner.to(device)
q_optimizer = torch.optim.Adam(secondary_learner.parameters(), lr=0.00001)
secondary_learner.train()
# TODO in original code this is written as number of actual batches seen
# not number of items seen but other places it is number of items instead.
# improve consistency! changed this to epochs for clarity
best_test_loss = float("inf")
# Iterate through batches until we've used max_steps batches
for epoch in range(int(max_epochs)):
tr_q_loss = 0.0
secondary_learner.train()
for step, batch in enumerate(train_dataloader):
context = batch[0].to(device)
real_q = batch[1].to(device)
predicted_q = secondary_learner(context)
q_optimizer.zero_grad()
q_loss = loss(predicted_q, real_q.float())
q_loss.backward()
q_optimizer.step()
tr_q_loss += q_loss.item()
# model trains fairly quickly so we won't wait for a full epoch
# eval is triggered at eval_freq and end of epochs
if (step % eval_freq == 0 and step > 0) or ((step + 1) == len(train_dataloader)):
tr_loss = tr_q_loss / (step + 1)
secondary_learner.eval()
q_loss2 = 0.0
sum_q2 = 0.0
predicted = []
actual = []
# Compute performance of the secondary learner after this batch
for step2, batch2 in enumerate(test_dataloader):
features2 = batch2[0].to(device)
real_q2 = batch2[1].to(device)
predicted_q2 = secondary_learner(features2)
q_loss2 += test_loss(predicted_q2, real_q2).item()
sum_q2 += torch.sum(predicted_q2).item()
for ei, i in enumerate(predicted_q2.cpu().detach().numpy()):
predicted.append(i.item())
for ei, i in enumerate(real_q2.cpu().detach().numpy()):
actual.append(i.item())
q_loss2 /= len(test_dataset)
print(
"Epoch: ",
epoch,
"step: ",
step,
"Avg. q:",
sum_q2 / len(test_dataset),
"Train Loss: ",
tr_loss,
"Test Loss: ",
q_loss2,
)
if q_loss2 < best_test_loss:
joblib.dump((predicted, actual), "pred_vs_actual.jbl")
torch.save(secondary_learner.state_dict(), igf_model_path)
best_test_loss = q_loss2
secondary_learner.train()
return secondary_learner
class SecondaryLearner(nn.Module):
"""
Our secondary learner
"""
def __init__(self, model):
"""
We use a simple convolutional network as our secondary learner
Args:
model: Pre-trained GPT2 model
"""
# embeddings are from the pretrained model
super(SecondaryLearner, self).__init__()
self.embeddings = model.transformer.wte
self.embeddings.weight = copy.deepcopy(model.transformer.wte.weight)
self.conv = nn.Conv1d(self.embeddings.weight.size(1), 256, 3, padding=1)
self.fc = nn.Sequential(nn.Linear(256, 32), nn.Dropout(p=0.1), nn.Linear(32, 32), nn.Linear(32, 1))
def forward(self, context):
"""
Forward pass through the secondary learner
Args:
context: Context input to the secondary learner
Returns:
tensor after squeeze operation
"""
pooled = torch.max(self.conv(self.embeddings(context).squeeze(1).transpose(1, 2)), 2)[0]
qs = self.fc(pooled)
return qs.squeeze(1)
@classmethod
def from_pretrained(cls, state_path, model):
"""
Load the secondary learner
Args:
state_path: Path to save secondary learner
model: Pretrained GPT-2
Returns:
secondary learner
"""
secondary_learner = cls(model) # this calls __init__
state_dict = torch.load(state_path)
secondary_learner.load_state_dict(state_dict)
secondary_learner.embeddings = model.transformer.wte
secondary_learner.embeddings.weight = copy.deepcopy(model.transformer.wte.weight)
return secondary_learner
| transformers-main | examples/research_projects/information-gain-filtration/igf/igf.py |
transformers-main | examples/research_projects/information-gain-filtration/igf/__init__.py |
|
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=fill-mask
"""
import logging
import os
import sys
from dataclasses import dataclass, field
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from datasets import load_dataset
from flax import jax_utils
from flax.optim import Adam
from flax.training import common_utils
from flax.training.common_utils import get_metrics
from jax.nn import log_softmax
from modeling_flax_performer import FlaxPerformerForMaskedLM
from tqdm import tqdm
from transformers import (
MODEL_FOR_MASKED_LM_MAPPING,
AutoTokenizer,
BertConfig,
FlaxBertForMaskedLM,
HfArgumentParser,
PreTrainedTokenizerBase,
TensorType,
TrainingArguments,
is_tensorboard_available,
set_seed,
)
# Cache the result
has_tensorboard = is_tensorboard_available()
if has_tensorboard:
try:
from flax.metrics.tensorboard import SummaryWriter
except ImportError as ie:
has_tensorboard = False
print(f"Unable to display metrics through TensorBoard because some package are not installed: {ie}")
else:
print(
"Unable to display metrics through TensorBoard because the package is not installed: "
"Please run pip install tensorboard to enable."
)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class WandbArguments:
"""
Arguments for logging
"""
wandb_user_name: Optional[str] = field(
default=None,
metadata={"help": "The WandB user name for potential logging. If left None, no logging"},
)
wandb_project_name: Optional[str] = field(
default="performer-experiments",
metadata={"help": "The WandB project name for potential logging"},
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
performer: bool = field(
default=False,
metadata={"help": "Whether to use FAVOR+ attention"},
)
reinitialize: bool = field(
default=False,
metadata={"help": "Whether to use a blank model without pretraining"},
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
train_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
)
validation_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
# Adapted from transformers/data/data_collator.py
# Letting here for now, let's discuss where it should live
@dataclass
class FlaxDataCollatorForLanguageModeling:
"""
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
are not all of the same length.
Args:
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
The tokenizer used for encoding the data.
mlm (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to use masked language modeling. If set to :obj:`False`, the labels are the same as the
inputs with the padding tokens ignored (by setting them to -100). Otherwise, the labels are -100 for
non-masked tokens and the value to predict for the masked token.
mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
The probability with which to (randomly) mask tokens in the input, when :obj:`mlm` is set to :obj:`True`.
.. note::
For best performance, this data collator should be used with a dataset having items that are dictionaries or
BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
:class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
argument :obj:`return_special_tokens_mask=True`.
"""
tokenizer: PreTrainedTokenizerBase
mlm: bool = True
mlm_probability: float = 0.15
def __post_init__(self):
if self.mlm and self.tokenizer.mask_token is None:
raise ValueError(
"This tokenizer does not have a mask token which is necessary for masked language modeling. "
"You should pass `mlm=False` to train on causal language modeling instead."
)
def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
# Handle dict or lists with proper padding and conversion to tensor.
batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)
# If special token mask has been preprocessed, pop it from the dict.
special_tokens_mask = batch.pop("special_tokens_mask", None)
if self.mlm:
batch["input_ids"], batch["labels"] = self.mask_tokens(
batch["input_ids"], special_tokens_mask=special_tokens_mask
)
else:
labels = batch["input_ids"].copy()
if self.tokenizer.pad_token_id is not None:
labels[labels == self.tokenizer.pad_token_id] = -100
batch["labels"] = labels
return batch
def mask_tokens(
self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.copy()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = np.full(labels.shape, self.mlm_probability)
special_tokens_mask = special_tokens_mask.astype("bool")
probability_matrix[special_tokens_mask] = 0.0
masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# 10% of the time, we replace masked input tokens with random word
indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
indices_random &= masked_indices & ~indices_replaced
random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
def create_learning_rate_scheduler(
factors="constant * linear_warmup * rsqrt_decay",
base_learning_rate=0.5,
warmup_steps=1000,
decay_factor=0.5,
steps_per_decay=20000,
steps_per_cycle=100000,
):
"""Creates learning rate schedule.
Interprets factors in the factors string which can consist of:
* constant: interpreted as the constant value,
* linear_warmup: interpreted as linear warmup until warmup_steps,
* rsqrt_decay: divide by square root of max(step, warmup_steps)
* rsqrt_normalized_decay: divide by square root of max(step/warmup_steps, 1)
* decay_every: Every k steps decay the learning rate by decay_factor.
* cosine_decay: Cyclic cosine decay, uses steps_per_cycle parameter.
Args:
factors: string, factors separated by "*" that defines the schedule.
base_learning_rate: float, the starting constant for the lr schedule.
warmup_steps: int, how many steps to warm up for in the warmup schedule.
decay_factor: float, the amount to decay the learning rate by.
steps_per_decay: int, how often to decay the learning rate.
steps_per_cycle: int, steps per cycle when using cosine decay.
Returns:
a function learning_rate(step): float -> {"learning_rate": float}, the
step-dependent lr.
"""
factors = [n.strip() for n in factors.split("*")]
def step_fn(step):
"""Step to learning rate function."""
ret = 1.0
for name in factors:
if name == "constant":
ret *= base_learning_rate
elif name == "linear_warmup":
ret *= jnp.minimum(1.0, step / warmup_steps)
elif name == "rsqrt_decay":
ret /= jnp.sqrt(jnp.maximum(step, warmup_steps))
elif name == "rsqrt_normalized_decay":
ret *= jnp.sqrt(warmup_steps)
ret /= jnp.sqrt(jnp.maximum(step, warmup_steps))
elif name == "decay_every":
ret *= decay_factor ** (step // steps_per_decay)
elif name == "cosine_decay":
progress = jnp.maximum(0.0, (step - warmup_steps) / float(steps_per_cycle))
ret *= jnp.maximum(0.0, 0.5 * (1.0 + jnp.cos(jnp.pi * (progress % 1.0))))
else:
raise ValueError("Unknown factor %s." % name)
return jnp.asarray(ret, dtype=jnp.float32)
return step_fn
def compute_metrics(logits, labels, weights, label_smoothing=0.0):
"""Compute summary metrics."""
loss, normalizer = cross_entropy(logits, labels, weights, label_smoothing)
acc, _ = accuracy(logits, labels, weights)
metrics = {"loss": loss, "accuracy": acc, "normalizer": normalizer}
metrics = jax.lax.psum(metrics, axis_name="batch")
return metrics
def accuracy(logits, targets, weights=None):
"""Compute weighted accuracy for log probs and targets.
Args:
logits: [batch, length, num_classes] float array.
targets: categorical targets [batch, length] int array.
weights: None or array of shape [batch, length]
Returns:
Tuple of scalar loss and batch normalizing factor.
"""
if logits.ndim != targets.ndim + 1:
raise ValueError(
"Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))
)
loss = jnp.equal(jnp.argmax(logits, axis=-1), targets)
loss *= weights
return loss.sum(), weights.sum()
def cross_entropy(logits, targets, weights=None, label_smoothing=0.0):
"""Compute cross entropy and entropy for log probs and targets.
Args:
logits: [batch, length, num_classes] float array.
targets: categorical targets [batch, length] int array.
weights: None or array of shape [batch, length]
label_smoothing: label smoothing constant, used to determine the on and off values.
Returns:
Tuple of scalar loss and batch normalizing factor.
"""
if logits.ndim != targets.ndim + 1:
raise ValueError(
"Incorrect shapes. Got shape %s logits and %s targets" % (str(logits.shape), str(targets.shape))
)
vocab_size = logits.shape[-1]
confidence = 1.0 - label_smoothing
low_confidence = (1.0 - confidence) / (vocab_size - 1)
normalizing_constant = -(
confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
)
soft_targets = common_utils.onehot(targets, vocab_size, on_value=confidence, off_value=low_confidence)
loss = -jnp.sum(soft_targets * log_softmax(logits), axis=-1)
loss = loss - normalizing_constant
if weights is not None:
loss = loss * weights
normalizing_factor = weights.sum()
else:
normalizing_factor = np.prod(targets.shape)
return loss.sum(), normalizing_factor
def training_step(optimizer, batch, dropout_rng):
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
def loss_fn(params):
targets = batch.pop("labels")
# Hide away tokens which doesn't participate in the optimization
token_mask = jnp.where(targets > 0, 1.0, 0.0)
logits = model(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
loss, weight_sum = cross_entropy(logits, targets, token_mask)
return loss / weight_sum
step = optimizer.state.step
lr = lr_scheduler_fn(step)
grad_fn = jax.value_and_grad(loss_fn)
loss, grad = grad_fn(optimizer.target)
grad = jax.lax.pmean(grad, "batch")
optimizer = optimizer.apply_gradient(grad, learning_rate=lr)
return loss, optimizer, new_dropout_rng
def eval_step(params, batch):
"""
Calculate evaluation metrics on a batch.
"""
targets = batch.pop("labels")
# Hide away tokens which doesn't participate in the optimization
token_mask = jnp.where(targets > 0, 1.0, 0.0)
logits = model(**batch, params=params, train=False)[0]
return compute_metrics(logits, targets, token_mask)
def generate_batch_splits(samples_idx: np.ndarray, batch_size: int) -> np.ndarray:
nb_samples = len(samples_idx)
samples_to_remove = nb_samples % batch_size
if samples_to_remove != 0:
samples_idx = samples_idx[:-samples_to_remove]
sections_split = nb_samples // batch_size
batch_idx = np.split(samples_idx, sections_split)
return batch_idx
if __name__ == "__main__":
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, WandbArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args, wandb_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args, wandb_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
level="NOTSET",
datefmt="[%X]",
)
# Log on each process the small summary:
logger = logging.getLogger(__name__)
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
if "validation" not in datasets.keys():
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.train_file.split(".")[-1]
if extension == "txt":
extension = "text"
datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
rng = jax.random.PRNGKey(training_args.seed)
dropout_rngs = jax.random.split(rng, jax.local_device_count())
config = BertConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
lm_class = FlaxPerformerForMaskedLM if model_args.performer else FlaxBertForMaskedLM
if model_args.reinitialize:
model = lm_class(config=BertConfig.from_pretrained(model_args.model_name_or_path))
else:
model = lm_class.from_pretrained(
model_args.model_name_or_path,
dtype=jnp.float32,
input_shape=(training_args.train_batch_size, config.max_position_embeddings),
seed=training_args.seed,
dropout_rate=0.1,
)
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
column_names = datasets["train"].column_names
else:
column_names = datasets["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
padding = "max_length" if data_args.pad_to_max_length else False
def tokenize_function(examples):
# Remove empty lines
examples = [line for line in examples if len(line) > 0 and not line.isspace()]
return tokenizer(
examples,
return_special_tokens_mask=True,
padding=padding,
truncation=True,
max_length=data_args.max_seq_length,
)
tokenized_datasets = datasets.map(
tokenize_function,
input_columns=[text_column_name],
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
# Enable tensorboard only on the master node
if has_tensorboard and jax.host_id() == 0:
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir).joinpath("logs").as_posix())
# Data collator
# This one will take care of randomly masking the tokens.
data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
# Setup optimizer
optimizer = Adam(
learning_rate=training_args.learning_rate,
weight_decay=training_args.weight_decay,
beta1=training_args.adam_beta1,
beta2=training_args.adam_beta2,
).create(model.params)
# Create learning rate scheduler
lr_scheduler_fn = create_learning_rate_scheduler(
base_learning_rate=training_args.learning_rate, warmup_steps=max(training_args.warmup_steps, 1)
)
# Create parallel version of the training and evaluation steps
p_training_step = jax.pmap(training_step, "batch", donate_argnums=(0,))
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
# Replicate the optimizer on each device
optimizer = jax_utils.replicate(optimizer)
# Store some constant
nb_epochs = int(training_args.num_train_epochs)
batch_size = int(training_args.train_batch_size)
eval_batch_size = int(training_args.eval_batch_size)
if wandb_args.wandb_user_name is not None:
import wandb
wandb.init(project=wandb_args.wandb_project_name, entity=wandb_args.wandb_user_name)
epochs = tqdm(range(nb_epochs), desc=f"Epoch ... (1/{nb_epochs})", position=0)
for epoch in epochs:
# ======================== Training ================================
# Create sampling rng
rng, training_rng, eval_rng = jax.random.split(rng, 3)
# Generate an epoch by shuffling sampling indices from the train dataset
nb_training_samples = len(tokenized_datasets["train"])
# Avoid using jax.numpy here in case of TPU training
training_samples_idx = np.random.permutation(np.arange(nb_training_samples))
training_batch_idx = generate_batch_splits(training_samples_idx, batch_size)
# Gather the indexes for creating the batch and do a training step
for batch_idx in tqdm(training_batch_idx, desc="Training...", position=1):
samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
model_inputs = data_collator(samples, pad_to_multiple_of=16)
# Model forward
model_inputs = common_utils.shard(model_inputs.data)
loss, optimizer, dropout_rngs = p_training_step(optimizer, model_inputs, dropout_rngs)
if wandb_args.wandb_user_name is not None:
wandb.log({"Training loss": np.array(loss).mean()})
epochs.write(f"Loss: {loss}")
# ======================== Evaluating ==============================
nb_eval_samples = len(tokenized_datasets["validation"])
# Avoid using jax.numpy here in case of TPU training
eval_samples_idx = np.arange(nb_eval_samples)
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
eval_metrics = []
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
model_inputs = data_collator(samples, pad_to_multiple_of=16)
# Model forward
model_inputs = common_utils.shard(model_inputs.data)
metrics = p_eval_step(optimizer.target, model_inputs)
eval_metrics.append(metrics)
eval_metrics_np = get_metrics(eval_metrics)
eval_metrics_np = jax.tree_util.tree_map(jnp.sum, eval_metrics_np)
eval_normalizer = eval_metrics_np.pop("normalizer")
eval_summary = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics_np)
# Update progress bar
epochs.desc = (
f"Epoch... ({epoch + 1}/{nb_epochs} | Loss: {eval_summary['loss']}, Acc: {eval_summary['accuracy']})"
)
if wandb_args.wandb_user_name is not None:
wandb.log({"Eval loss": np.array(eval_summary["loss"]).mean()})
# Save metrics
if has_tensorboard and jax.host_id() == 0:
for name, value in eval_summary.items():
summary_writer.scalar(name, value, epoch)
| transformers-main | examples/research_projects/performer/run_mlm_performer.py |
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
IMPORTANT:
This code was copied from
https://github.com/google-research/google-research/blob/master/performer/fast_self_attention/fast_self_attention.py on
6/11/2020. This is very new code, so it might be prone to change soon -> make sure to check the original code and
update accordingly
Core Fast Attention Module for Flax. Implementation of the approximate fast softmax and generalized attention mechanism
leveraging structured random feature maps [RFM] techniques and low rank decomposition of the attention matrix.
"""
# pylint: disable=invalid-name, missing-function-docstring, line-too-long
import abc
import functools
from collections.abc import Iterable # pylint: disable=g-importing-member
import jax
import jax.numpy as jnp
import numpy as onp
from absl import logging
from jax import lax, random
def nonnegative_softmax_kernel_feature_creator(
data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True, eps=0.0001
):
"""
Constructs nonnegative kernel features for fast softmax attention
Args:
data: input for which features are computes
projection_matrix: random matrix used to compute features
attention_dims_t: tuple of attention dimensions
batch_dims_t: tuple of batch dimensions
precision: precision parameter
is_query: predicate indicating whether input data corresponds to queries or
keys
normalize_data: predicate indicating whether data should be normalized,
eps: numerical stabilizer
Returns:
Random features for fast softmax attention.
"""
del attention_dims_t
if normalize_data:
# We have e^{qk^T/sqrt{d}} = e^{q_norm k_norm^T}, where
# w_norm = w * data_normalizer for w in {q,k}.
data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1])))
else:
data_normalizer = 1.0
ratio = 1.0 / jnp.sqrt(projection_matrix.shape[0])
data_mod_shape = data.shape[0 : len(batch_dims_t)] + projection_matrix.shape
data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix
data_dash = lax.dot_general(
data_normalizer * data,
data_thick_random_matrix,
(((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)),
precision=precision,
)
diag_data = jnp.square(data)
diag_data = jnp.sum(diag_data, axis=data.ndim - 1)
diag_data = (diag_data / 2.0) * data_normalizer * data_normalizer
diag_data = jnp.expand_dims(diag_data, axis=data.ndim - 1)
if is_query:
last_dims_t = (len(data_dash.shape) - 1,)
data_dash = ratio * (
jnp.exp(data_dash - diag_data - jnp.max(data_dash, axis=last_dims_t, keepdims=True)) + eps
)
else:
data_dash = ratio * (jnp.exp(data_dash - diag_data - jnp.max(data_dash)) + eps)
return data_dash
def sincos_softmax_kernel_feature_creator(
data, projection_matrix, attention_dims_t, batch_dims_t, precision, normalize_data=True
):
"""
Constructs kernel sin-cos features for fast softmax attention
Args:
data: input for which features are computes
projection_matrix: random matrix used to compute features
attention_dims_t: tuple of attention dimensions
batch_dims_t: tuple of batch dimensions
precision: precision parameter
normalize_data: predicate indicating whether data should be normalized
Returns:
Random features for fast softmax attention.
"""
if normalize_data:
# We have: exp(qk^T/sqrt{d}) = exp(|q|^2/2sqrt{d}) * exp(|k|^2/2sqrt{d}) *
# exp(-(|q*c-k*c|^2)/2), where c = 1.0 / sqrt{sqrt{d}}.
data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1])))
else:
data_normalizer = 1.0
ratio = 1.0 / jnp.sqrt(projection_matrix.shape[0])
data_mod_shape = data.shape[0 : len(batch_dims_t)] + projection_matrix.shape
data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix
data_dash = lax.dot_general(
data_normalizer * data,
data_thick_random_matrix,
(((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)),
precision=precision,
)
data_dash_cos = ratio * jnp.cos(data_dash)
data_dash_sin = ratio * jnp.sin(data_dash)
data_dash = jnp.concatenate((data_dash_cos, data_dash_sin), axis=-1)
# Constructing D_data and data^{'}
diag_data = jnp.square(data)
diag_data = jnp.sum(diag_data, axis=data.ndim - 1)
diag_data = (diag_data / 2.0) * data_normalizer * data_normalizer
diag_data = jnp.expand_dims(diag_data, axis=data.ndim - 1)
# Additional renormalization for numerical stability
data_renormalizer = jnp.max(diag_data, attention_dims_t, keepdims=True)
diag_data -= data_renormalizer
diag_data = jnp.exp(diag_data)
data_prime = data_dash * diag_data
return data_prime
def generalized_kernel_feature_creator(
data, projection_matrix, batch_dims_t, precision, kernel_fn, kernel_epsilon, normalize_data
):
"""
Constructs kernel features for fast generalized attention
Args:
data: input for which features are computes
projection_matrix: matrix used to compute features
batch_dims_t: tuple of batch dimensions
precision: precision parameter
kernel_fn: kernel function used
kernel_epsilon: additive positive term added to every feature for numerical
stability
normalize_data: predicate indicating whether data should be normalized
Returns:
Random features for fast generalized attention.
"""
if normalize_data:
data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1])))
else:
data_normalizer = 1.0
if projection_matrix is None:
return kernel_fn(data_normalizer * data) + kernel_epsilon
else:
data_mod_shape = data.shape[0 : len(batch_dims_t)] + projection_matrix.shape
data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix
data_dash = lax.dot_general(
data_normalizer * data,
data_thick_random_matrix,
(((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)),
precision=precision,
)
data_prime = kernel_fn(data_dash) + kernel_epsilon
return data_prime
def make_fast_softmax_attention(
qkv_dim,
renormalize_attention=True,
numerical_stabilizer=0.000001,
nb_features=256,
ortho_features=True,
ortho_scaling=0.0,
redraw_features=True,
unidirectional=False,
nonnegative_features=True,
lax_scan_unroll=1,
):
"""Construct a fast softmax attention method."""
logging.info(
"Fast softmax attention: %s features and orthogonal=%s, renormalize=%s",
nb_features,
ortho_features,
renormalize_attention,
)
if ortho_features:
matrix_creator = functools.partial(GaussianOrthogonalRandomMatrix, nb_features, qkv_dim, scaling=ortho_scaling)
else:
matrix_creator = functools.partial(GaussianUnstructuredRandomMatrix, nb_features, qkv_dim)
if nonnegative_features:
def kernel_feature_creator(
data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True
):
return nonnegative_softmax_kernel_feature_creator(
data,
projection_matrix,
attention_dims_t,
batch_dims_t,
precision,
is_query,
normalize_data,
numerical_stabilizer,
)
else:
def kernel_feature_creator(
data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True
):
del is_query
return sincos_softmax_kernel_feature_creator(
data, projection_matrix, attention_dims_t, batch_dims_t, precision, normalize_data
)
attention_fn = FastAttentionviaLowRankDecomposition(
matrix_creator,
kernel_feature_creator,
renormalize_attention=renormalize_attention,
numerical_stabilizer=numerical_stabilizer,
redraw_features=redraw_features,
unidirectional=unidirectional,
lax_scan_unroll=lax_scan_unroll,
).dot_product_attention
return attention_fn
def make_fast_generalized_attention(
qkv_dim,
renormalize_attention=True,
numerical_stabilizer=0.0,
nb_features=256,
features_type="deterministic",
kernel_fn=jax.nn.relu,
kernel_epsilon=0.001,
redraw_features=False,
unidirectional=False,
lax_scan_unroll=1,
):
"""Construct a fast generalized attention menthod."""
logging.info("Fast generalized attention.: %s features and renormalize=%s", nb_features, renormalize_attention)
if features_type == "ortho":
matrix_creator = functools.partial(GaussianOrthogonalRandomMatrix, nb_features, qkv_dim, scaling=False)
elif features_type == "iid":
matrix_creator = functools.partial(GaussianUnstructuredRandomMatrix, nb_features, qkv_dim)
elif features_type == "deterministic":
matrix_creator = None
else:
raise ValueError("Unknown feature value type")
def kernel_feature_creator(
data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=False
):
del attention_dims_t
del is_query
return generalized_kernel_feature_creator(
data, projection_matrix, batch_dims_t, precision, kernel_fn, kernel_epsilon, normalize_data
)
attention_fn = FastAttentionviaLowRankDecomposition(
matrix_creator,
kernel_feature_creator,
renormalize_attention=renormalize_attention,
numerical_stabilizer=numerical_stabilizer,
redraw_features=redraw_features,
unidirectional=unidirectional,
lax_scan_unroll=lax_scan_unroll,
).dot_product_attention
return attention_fn
class RandomMatrix(object):
r"""
Abstract class providing a method for constructing 2D random arrays. Class is responsible for constructing 2D
random arrays.
"""
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def get_2d_array(self):
raise NotImplementedError("Abstract method")
class GaussianUnstructuredRandomMatrix(RandomMatrix):
def __init__(self, nb_rows, nb_columns, key):
self.nb_rows = nb_rows
self.nb_columns = nb_columns
self.key = key
def get_2d_array(self):
return random.normal(self.key, (self.nb_rows, self.nb_columns))
class GaussianOrthogonalRandomMatrix(RandomMatrix):
r"""
Class providing a method to create Gaussian orthogonal matrix. Class is responsible for constructing 2D Gaussian
orthogonal arrays.
"""
def __init__(self, nb_rows, nb_columns, key, scaling=0):
self.nb_rows = nb_rows
self.nb_columns = nb_columns
self.key = key
self.scaling = scaling
def get_2d_array(self):
nb_full_blocks = int(self.nb_rows / self.nb_columns)
block_list = []
rng = self.key
for _ in range(nb_full_blocks):
rng, rng_input = jax.random.split(rng)
unstructured_block = random.normal(rng_input, (self.nb_columns, self.nb_columns))
q, _ = jnp.linalg.qr(unstructured_block)
q = jnp.transpose(q)
block_list.append(q)
remaining_rows = self.nb_rows - nb_full_blocks * self.nb_columns
if remaining_rows > 0:
rng, rng_input = jax.random.split(rng)
unstructured_block = random.normal(rng_input, (self.nb_columns, self.nb_columns))
q, _ = jnp.linalg.qr(unstructured_block)
q = jnp.transpose(q)
block_list.append(q[0:remaining_rows])
final_matrix = jnp.vstack(block_list)
if self.scaling == 0:
multiplier = jnp.linalg.norm(random.normal(self.key, (self.nb_rows, self.nb_columns)), axis=1)
elif self.scaling == 1:
multiplier = jnp.sqrt(float(self.nb_columns)) * jnp.ones((self.nb_rows))
else:
raise ValueError("Scaling must be one of {0, 1}. Was %s" % self._scaling)
return jnp.matmul(jnp.diag(multiplier), final_matrix)
class FastAttention(object):
r"""
Abstract class providing a method for fast attention. Class is responsible for providing a method
<dot_product_attention> for fast approximate attention.
"""
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def dot_product_attention(
self,
query,
key,
value,
dtype=jnp.float32,
bias=None,
axis=None,
broadcast_dropout=True,
dropout_rng=None,
dropout_rate=0.0,
deterministic=False,
precision=None,
):
"""
Computes dot-product attention given query, key, and value. This is the core function for applying fast
approximate dot-product attention. It calculates the attention weights given query and key and combines the
values using the attention weights. This function supports multi-dimensional inputs
Args:
query: queries for calculating attention with shape of [batch_size, dim1,
dim2, ..., dimN, num_heads, mem_channels].
key: keys for calculating attention with shape of [batch_size, dim1, dim2,
..., dimN, num_heads, mem_channels].
value: values to be used in attention with shape of [batch_size, dim1,
dim2,..., dimN, num_heads, value_channels].
dtype: the dtype of the computation (default: float32)
bias: bias for the attention weights. This can be used for incorporating
autoregressive mask, padding mask, proximity bias.
axis: axises over which the attention is applied.
broadcast_dropout: bool: use a broadcasted dropout along batch dims.
dropout_rng: JAX PRNGKey: to be used for dropout.
dropout_rate: dropout rate.
deterministic: bool, deterministic or not (to apply dropout).
precision: numerical precision of the computation see `jax.lax.Precision`
for details
Returns:
Output of shape [bs, dim1, dim2, ..., dimN,, num_heads, value_channels].
"""
raise NotImplementedError("Abstract method")
def _numerator(z_slice_shape, precision, unroll=1):
def fwd(qs, ks, vs):
def body(p, qkv):
(q, k, v) = qkv
p += jnp.einsum("...m,...d->...md", k, v, precision=precision)
X_slice = jnp.einsum("...m,...md->...d", q, p, precision=precision)
return p, X_slice
init_value = jnp.zeros(z_slice_shape)
p, W = lax.scan(body, init_value, (qs, ks, vs), unroll=unroll)
return W, (p, qs, ks, vs)
def bwd(pqkv, W_ct):
def body(carry, qkv_xct):
p, p_ct = carry
q, k, v, x_ct = qkv_xct
q_ct = jnp.einsum("...d,...md->...m", x_ct, p, precision=precision)
p_ct += jnp.einsum("...d,...m->...md", x_ct, q, precision=precision)
k_ct = jnp.einsum("...md,...d->...m", p_ct, v, precision=precision)
v_ct = jnp.einsum("...md,...m->...d", p_ct, k, precision=precision)
p -= jnp.einsum("...m,...d->...md", k, v, precision=precision)
return (p, p_ct), (q_ct, k_ct, v_ct)
p, qs, ks, vs = pqkv
_, (qs_ct, ks_ct, vs_ct) = lax.scan(
body, (p, jnp.zeros_like(p)), (qs, ks, vs, W_ct), reverse=True, unroll=unroll
)
return qs_ct, ks_ct, vs_ct
@jax.custom_vjp
def _numerator_impl(qs, ks, vs):
W, _ = fwd(qs, ks, vs)
return W
_numerator_impl.defvjp(fwd, bwd)
return _numerator_impl
def _denominator(t_slice_shape, precision, unroll=1):
def fwd(qs, ks):
def body(p, qk):
q, k = qk
p += k
x = jnp.einsum("...m,...m->...", q, p, precision=precision)
return p, x
p = jnp.zeros(t_slice_shape)
p, R = lax.scan(body, p, (qs, ks), unroll=unroll)
return R, (qs, ks, p)
def bwd(qkp, R_ct):
def body(carry, qkx):
p, p_ct = carry
q, k, x_ct = qkx
q_ct = jnp.einsum("...,...m->...m", x_ct, p, precision=precision)
p_ct += jnp.einsum("...,...m->...m", x_ct, q, precision=precision)
k_ct = p_ct
p -= k
return (p, p_ct), (q_ct, k_ct)
qs, ks, p = qkp
_, (qs_ct, ks_ct) = lax.scan(body, (p, jnp.zeros_like(p)), (qs, ks, R_ct), reverse=True, unroll=unroll)
return (qs_ct, ks_ct)
@jax.custom_vjp
def _denominator_impl(qs, ks):
R, _ = fwd(qs, ks)
return R
_denominator_impl.defvjp(fwd, bwd)
return _denominator_impl
class FastAttentionviaLowRankDecomposition(FastAttention):
r"""
Class providing a method for fast attention via low rank decomposition. Class is responsible for providing a method
<dot_product_attention> for fast dot-product attention with the use of low rank decomposition (e.g. with random
feature maps).
"""
def __init__(
self,
matrix_creator,
kernel_feature_creator,
renormalize_attention,
numerical_stabilizer,
redraw_features,
unidirectional,
lax_scan_unroll=1,
): # For optimal GPU performance, set to 16.
rng = random.PRNGKey(0)
self.matrix_creator = matrix_creator
self.projection_matrix = self.draw_weights(rng)
self.kernel_feature_creator = kernel_feature_creator
self.renormalize_attention = renormalize_attention
self.numerical_stabilizer = numerical_stabilizer
self.redraw_features = redraw_features
self.unidirectional = unidirectional
self.lax_scan_unroll = lax_scan_unroll
def draw_weights(self, key):
if self.matrix_creator is None:
return None
matrixrng, _ = random.split(key)
projection_matrix = self.matrix_creator(key=matrixrng).get_2d_array()
return projection_matrix
def dot_product_attention(
self,
query,
key,
value,
dtype=jnp.float32,
bias=None,
axis=None,
broadcast_dropout=True,
dropout_rng=None,
dropout_rate=0.0,
deterministic=False,
precision=None,
):
assert key.shape[:-1] == value.shape[:-1]
assert query.shape[0:1] == key.shape[0:1] and query.shape[-1] == key.shape[-1]
if axis is None:
axis = tuple(range(1, key.ndim - 2))
if not isinstance(axis, Iterable):
axis = (axis,)
assert key.ndim == query.ndim
assert key.ndim == value.ndim
for ax in axis:
if not (query.ndim >= 3 and 1 <= ax < query.ndim - 2):
raise ValueError("Attention axis must be between the batch axis and the last-two axes.")
n = key.ndim
# Constructing projection tensor.
if self.redraw_features:
# TODO(kchoro): Get rid of the constant below.
query_seed = lax.convert_element_type(jnp.ceil(jnp.sum(query) * 10000000.0), jnp.int32)
rng = random.PRNGKey(query_seed)
self.projection_matrix = self.draw_weights(rng)
# batch_dims is <bs, <non-attention dims>, num_heads>
batch_dims = tuple(onp.delete(range(n), axis + (n - 1,)))
# q & k -> (bs, <non-attention dims>, num_heads, <attention dims>, channels)
qk_perm = batch_dims + axis + (n - 1,)
k_extra_perm = axis + batch_dims + (n - 1,)
key_extra = key.transpose(k_extra_perm)
key = key.transpose(qk_perm)
query = query.transpose(qk_perm)
# v -> (bs, <non-attention dims>, num_heads, <attention dims>, channels)
v_perm = batch_dims + axis + (n - 1,)
value = value.transpose(v_perm)
batch_dims_t = tuple(range(len(batch_dims)))
attention_dims_t = tuple(range(len(batch_dims), len(batch_dims) + len(axis)))
# Constructing tensors Q^{'} and K^{'}.
query_prime = self.kernel_feature_creator(
query, self.projection_matrix, attention_dims_t, batch_dims_t, precision, True
)
key_prime = self.kernel_feature_creator(
key, self.projection_matrix, attention_dims_t, batch_dims_t, precision, False
)
if self.unidirectional:
index = attention_dims_t[0]
z_slice_shape = key_prime.shape[0 : len(batch_dims_t)] + (key_prime.shape[-1],) + (value.shape[-1],)
numerator_fn = _numerator(z_slice_shape, precision, self.lax_scan_unroll)
W = numerator_fn(
jnp.moveaxis(query_prime, index, 0), jnp.moveaxis(key_prime, index, 0), jnp.moveaxis(value, index, 0)
)
# Constructing W = (Q^{'}(K^{'})^{T})_{masked}V
W = jnp.moveaxis(W, 0, index)
if not self.renormalize_attention:
# Unidirectional, not-normalized attention.
perm_inv = _invert_perm(qk_perm)
result = W.transpose(perm_inv)
return result
else:
# Unidirectional, normalized attention.
thick_all_ones = jnp.zeros(key.shape[0:-1]) + jnp.ones(key_extra.shape[0 : len(axis)])
index = attention_dims_t[0]
t_slice_shape = key_prime.shape[0 : len(batch_dims_t)] + (key_prime.shape[-1],)
denominator_fn = _denominator(t_slice_shape, precision, self.lax_scan_unroll)
R = denominator_fn(jnp.moveaxis(query_prime, index, 0), jnp.moveaxis(key_prime, index, 0))
R = jnp.moveaxis(R, 0, index)
else:
contract_query = tuple(range(len(batch_dims) + len(axis), len(batch_dims) + len(axis) + 1))
contract_z = tuple(range(len(batch_dims), len(batch_dims) + 1))
# Constructing Z = (K^{'})^{T}V
# Z (bs, <non-attention dims>, num_heads, channels_m, channels_v)
Z = lax.dot_general(
key_prime,
value,
((attention_dims_t, attention_dims_t), (batch_dims_t, batch_dims_t)),
precision=precision,
)
# Constructing W = Q^{'}Z = Q^{'}(K^{'})^{T}V
# q (bs, <non-attention dims>, num_heads, <attention dims>, channels_m)
# Z (bs, <non-attention dims>, num_heads, channels_m, channels_v)
# W (bs, <non-attention dims>, num_heads, <attention dims>, channels_v)
W = lax.dot_general(
query_prime, Z, ((contract_query, contract_z), (batch_dims_t, batch_dims_t)), precision=precision
)
if not self.renormalize_attention:
# Bidirectional, not-normalized attention.
perm_inv = _invert_perm(qk_perm)
result = W.transpose(perm_inv)
return result
else:
# Bidirectional, normalized attention.
thick_all_ones = jnp.zeros(key.shape[0:-1]) + jnp.ones(key_extra.shape[0 : len(axis)])
contract_key = tuple(range(len(batch_dims), len(batch_dims) + len(axis)))
contract_thick_all_ones = tuple(range(thick_all_ones.ndim - len(axis), thick_all_ones.ndim))
# Construct T = (K^{'})^{T} 1_L
# k (bs, <non-attention dims>, num_heads, <attention dims>, channels)
T = lax.dot_general(
key_prime,
thick_all_ones,
((contract_key, contract_thick_all_ones), (batch_dims_t, batch_dims_t)),
precision=precision,
)
# Construct partition function: R = Q^{'} T = Q^{'}(K^{'})^{T} 1_L
# q_p (bs, <non-attention dims>, num_heads, <attention dims>, channs_m)
# T (bs, <non-attention dims>, num_heads, channels_m)
R = lax.dot_general(
query_prime,
T,
(((query_prime.ndim - 1,), (T.ndim - 1,)), (batch_dims_t, range(0, len(T.shape) - 1))),
precision=precision,
)
R = R + 2 * self.numerical_stabilizer * (jnp.abs(R) <= self.numerical_stabilizer)
R = jnp.reciprocal(R)
R = jnp.expand_dims(R, len(R.shape))
# W (bs, <non-attention dims>, num_heads, <attention dims>, channels_v)
# R (bs, <non-attention dims>, num_heads, <attention dims>, extra_channel)
result = W * R
# back to (bs, dim1, dim2, ..., dimN, num_heads, channels)
perm_inv = _invert_perm(qk_perm)
result = result.transpose(perm_inv)
return result
def _invert_perm(perm):
perm_inv = [0] * len(perm)
for i, j in enumerate(perm):
perm_inv[j] = i
return tuple(perm_inv)
| transformers-main | examples/research_projects/performer/modeling_flax_performer_utils.py |
# coding=utf-8
# Copyright 2018 The Google Flax Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Dict, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from jax.random import PRNGKey
from modeling_flax_performer_utils import make_fast_softmax_attention
from transformers.file_utils import add_start_docstrings
from transformers.modeling_flax_utils import ACT2FN
from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.bert.modeling_flax_bert import FlaxBertOnlyMLMHead, FlaxBertPreTrainedModel
from transformers.utils import logging
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "BertConfig"
_TOKENIZER_FOR_DOC = "BertTokenizer"
BERT_START_DOCSTRING = r"""
This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
pruning heads etc.)
This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
general usage and behavior.
Parameters:
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
weights.
"""
BERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`~transformers.BertTokenizer`. See
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
`What are attention masks? <../glossary.html#attention-mask>`__
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
1]``:
- 0 corresponds to a `sentence A` token,
- 1 corresponds to a `sentence B` token.
`What are token type IDs? <../glossary.html#token-type-ids>`_
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
config.max_position_embeddings - 1]``.
`What are position IDs? <../glossary.html#position-ids>`_
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
vectors than the model's internal embedding lookup matrix.
output_attentions (:obj:`bool`, `optional`):
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
tensors for more detail.
output_hidden_states (:obj:`bool`, `optional`):
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
more detail.
return_dict (:obj:`bool`, `optional`):
Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""
class FlaxPerformerLayerNorm(nn.Module):
"""
Layer normalization (https://arxiv.org/abs/1607.06450). Operates on the last axis of the input data.
"""
epsilon: float = 1e-6
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
bias: bool = True # If True, bias (beta) is added.
scale: bool = True # If True, multiply by scale (gamma). When the next layer is linear
# (also e.g. nn.relu), this can be disabled since the scaling will be
# done by the next layer.
bias_init: jnp.ndarray = nn.initializers.zeros
scale_init: jnp.ndarray = nn.initializers.ones
@nn.compact
def __call__(self, x):
"""
Applies layer normalization on the input. It normalizes the activations of the layer for each given example in
a batch independently, rather than across a batch like Batch Normalization. i.e. applies a transformation that
maintains the mean activation within each example close to 0 and the activation standard deviation close to 1
Args:
x: the inputs
Returns:
Normalized inputs (the same shape as inputs).
"""
features = x.shape[-1]
mean = jnp.mean(x, axis=-1, keepdims=True)
mean2 = jnp.mean(jax.lax.square(x), axis=-1, keepdims=True)
var = mean2 - jax.lax.square(mean)
mul = jax.lax.rsqrt(var + self.epsilon)
if self.scale:
mul = mul * jnp.asarray(self.param("gamma", self.scale_init, (features,)), self.dtype)
y = (x - mean) * mul
if self.bias:
y = y + jnp.asarray(self.param("beta", self.bias_init, (features,)), self.dtype)
return y
class FlaxPerformerEmbedding(nn.Module):
"""
Specify a new class for doing the embedding stuff as Flax's one use 'embedding' for the parameter name and PyTorch
use 'weight'
"""
vocab_size: int
hidden_size: int
emb_init: Callable[..., np.ndarray] = nn.initializers.normal(stddev=0.1)
@nn.compact
def __call__(self, inputs):
embedding = self.param("weight", self.emb_init, (self.vocab_size, self.hidden_size))
return jnp.take(embedding, inputs, axis=0)
class FlaxPerformerEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
vocab_size: int
hidden_size: int
type_vocab_size: int
max_length: int
@nn.compact
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask):
# Embed
w_emb = FlaxPerformerEmbedding(self.vocab_size, self.hidden_size, name="word_embeddings")(
jnp.atleast_2d(input_ids.astype("i4"))
)
p_emb = FlaxPerformerEmbedding(self.max_length, self.hidden_size, name="position_embeddings")(
jnp.atleast_2d(position_ids.astype("i4"))
)
t_emb = FlaxPerformerEmbedding(self.type_vocab_size, self.hidden_size, name="token_type_embeddings")(
jnp.atleast_2d(token_type_ids.astype("i4"))
)
# Sum all embeddings
summed_emb = w_emb + jnp.broadcast_to(p_emb, w_emb.shape) + t_emb
# Layer Norm
layer_norm = FlaxPerformerLayerNorm(name="layer_norm")(summed_emb)
return layer_norm
class FlaxPerformerAttention(nn.Module):
num_heads: int
head_size: int
@nn.compact
def __call__(self, hidden_state, attention_mask):
single_head_dim = self.head_size // self.num_heads
fast_softmax_attention = make_fast_softmax_attention(qkv_dim=single_head_dim)
self_att = nn.attention.SelfAttention(
num_heads=self.num_heads, qkv_features=self.head_size, name="self", attention_fn=fast_softmax_attention
)(hidden_state, attention_mask)
layer_norm = FlaxPerformerLayerNorm(name="layer_norm")(self_att + hidden_state)
return layer_norm
class FlaxPerformerIntermediate(nn.Module):
output_size: int
hidden_act: str = "gelu"
@nn.compact
def __call__(self, hidden_state):
# TODO: Add ACT2FN reference to change activation function
dense = nn.Dense(features=self.output_size, name="dense")(hidden_state)
return ACT2FN[self.hidden_act](dense)
class FlaxPerformerOutput(nn.Module):
@nn.compact
def __call__(self, intermediate_output, attention_output):
hidden_state = nn.Dense(attention_output.shape[-1], name="dense")(intermediate_output)
hidden_state = FlaxPerformerLayerNorm(name="layer_norm")(hidden_state + attention_output)
return hidden_state
class FlaxPerformerLayer(nn.Module):
num_heads: int
head_size: int
intermediate_size: int
hidden_act: str = "gelu"
@nn.compact
def __call__(self, hidden_state, attention_mask):
attention = FlaxPerformerAttention(self.num_heads, self.head_size, name="attention")(
hidden_state, attention_mask
)
intermediate = FlaxPerformerIntermediate(
self.intermediate_size, name="intermediate", hidden_act=self.hidden_act
)(attention)
output = FlaxPerformerOutput(name="output")(intermediate, attention)
return output
class FlaxPerformerLayerCollection(nn.Module):
"""
Stores N BertLayer(s)
"""
num_layers: int
num_heads: int
head_size: int
intermediate_size: int
hidden_act: str = "gelu"
@nn.compact
def __call__(self, inputs, attention_mask):
assert self.num_layers > 0, f"num_layers should be >= 1, got ({self.num_layers})"
# Initialize input / output
input_i = inputs
# Forward over all encoders
for i in range(self.num_layers):
layer = FlaxPerformerLayer(
self.num_heads, self.head_size, self.intermediate_size, hidden_act=self.hidden_act, name=f"{i}"
)
input_i = layer(input_i, attention_mask)
return input_i
class FlaxPerformerEncoder(nn.Module):
num_layers: int
num_heads: int
head_size: int
intermediate_size: int
hidden_act: str = "gelu"
@nn.compact
def __call__(self, hidden_state, attention_mask):
layer = FlaxPerformerLayerCollection(
self.num_layers,
self.num_heads,
self.head_size,
self.intermediate_size,
name="layer",
hidden_act=self.hidden_act,
)(hidden_state, attention_mask)
return layer
class FlaxPerformerPooler(nn.Module):
@nn.compact
def __call__(self, hidden_state):
cls_token = hidden_state[:, 0]
out = nn.Dense(hidden_state.shape[-1], name="dense")(cls_token)
return jax.lax.tanh(out)
class FlaxPerformerModule(nn.Module):
vocab_size: int
hidden_size: int
type_vocab_size: int
max_length: int
num_encoder_layers: int
num_heads: int
head_size: int
intermediate_size: int
hidden_act: str = "gelu"
add_pooling_layer: bool = True
@nn.compact
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask):
# Embedding
embeddings = FlaxPerformerEmbeddings(
self.vocab_size, self.hidden_size, self.type_vocab_size, self.max_length, name="embeddings"
)(input_ids, token_type_ids, position_ids, attention_mask)
# N stacked encoding layers
encoder = FlaxPerformerEncoder(
self.num_encoder_layers,
self.num_heads,
self.head_size,
self.intermediate_size,
hidden_act=self.hidden_act,
name="encoder",
)(embeddings, attention_mask)
if not self.add_pooling_layer:
return encoder
pooled = FlaxPerformerPooler(name="pooler")(encoder)
return encoder, pooled
@add_start_docstrings(
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
BERT_START_DOCSTRING,
)
class FlaxPerformerModel(FlaxBertPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in `Attention is
all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
"""
model_class = FlaxPerformerModule
config_class = BertConfig
base_model_prefix = "bert"
@staticmethod
def convert_from_pytorch(pt_state: Dict, config: BertConfig) -> Dict:
jax_state = dict(pt_state)
# Need to change some parameters name to match Flax names so that we don't have to fork any layer
for key, tensor in pt_state.items():
# Key parts
key_parts = set(key.split("."))
# Every dense layer has "kernel" parameters instead of "weight"
if "dense.weight" in key:
del jax_state[key]
key = key.replace("weight", "kernel")
jax_state[key] = tensor
# SelfAttention needs also to replace "weight" by "kernel"
if {"query", "key", "value"} & key_parts:
# Flax SelfAttention decomposes the heads (num_head, size // num_heads)
if "bias" in key:
jax_state[key] = tensor.reshape((config.num_attention_heads, -1))
elif "weight":
del jax_state[key]
key = key.replace("weight", "kernel")
tensor = tensor.reshape((config.num_attention_heads, -1, config.hidden_size)).transpose((2, 0, 1))
jax_state[key] = tensor
# SelfAttention output is not a separate layer, remove one nesting
if "attention.output.dense" in key:
del jax_state[key]
key = key.replace("attention.output.dense", "attention.self.out")
jax_state[key] = tensor
# SelfAttention output is not a separate layer, remove nesting on layer norm
if "attention.output.LayerNorm" in key:
del jax_state[key]
key = key.replace("attention.output.LayerNorm", "attention.LayerNorm")
jax_state[key] = tensor
# There are some transposed parameters w.r.t their PyTorch counterpart
if "intermediate.dense.kernel" in key or "output.dense.kernel" in key:
jax_state[key] = tensor.T
# Self Attention output projection needs to be transposed
if "out.kernel" in key:
jax_state[key] = tensor.reshape((config.hidden_size, config.num_attention_heads, -1)).transpose(
1, 2, 0
)
# Pooler needs to transpose its kernel
if "pooler.dense.kernel" in key:
jax_state[key] = tensor.T
# Handle LayerNorm conversion
if "LayerNorm" in key:
del jax_state[key]
# Replace LayerNorm by layer_norm
new_key = key.replace("LayerNorm", "layer_norm")
if "weight" in key:
new_key = new_key.replace("weight", "gamma")
elif "bias" in key:
new_key = new_key.replace("bias", "beta")
jax_state[new_key] = tensor
return jax_state
def __init__(
self, config: BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs
):
module = FlaxPerformerModule(
vocab_size=config.vocab_size,
hidden_size=config.hidden_size,
type_vocab_size=config.type_vocab_size,
max_length=config.max_position_embeddings,
num_encoder_layers=config.num_hidden_layers,
num_heads=config.num_attention_heads,
head_size=config.hidden_size,
intermediate_size=config.intermediate_size,
dropout_rate=config.hidden_dropout_prob,
hidden_act=config.hidden_act,
)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
@property
def module(self) -> nn.Module:
return self._module
def __call__(
self, input_ids, token_type_ids=None, position_ids=None, dropout_rng: PRNGKey = None, attention_mask=None
):
input_ids, attention_mask, token_type_ids, position_ids = self._check_inputs(
input_ids, attention_mask, token_type_ids, position_ids
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(token_type_ids, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
rng=rngs,
)
class FlaxPerformerForMaskedLM(FlaxBertPreTrainedModel):
def __init__(
self, config: BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs
):
module = FlaxPerformerForMaskedLMModule(
vocab_size=config.vocab_size,
type_vocab_size=config.type_vocab_size,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
head_size=config.hidden_size,
num_heads=config.num_attention_heads,
num_encoder_layers=config.num_hidden_layers,
max_length=config.max_position_embeddings,
hidden_act=config.hidden_act,
**kwargs,
)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
params: dict = None,
train: bool = False,
dropout_rng: PRNGKey = None,
):
input_ids, attention_mask, token_type_ids, position_ids = self._check_inputs(
input_ids, attention_mask, token_type_ids, position_ids
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(token_type_ids, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
rngs=rngs,
)
class FlaxPerformerForMaskedLMModule(nn.Module):
vocab_size: int
hidden_size: int
intermediate_size: int
head_size: int
num_heads: int
num_encoder_layers: int
type_vocab_size: int
max_length: int
hidden_act: str
dropout_rate: float = 0.0
dtype: jnp.dtype = jnp.float32
@nn.compact
def __call__(
self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, deterministic: bool = True
):
# Model
encoder = FlaxPerformerModule(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
type_vocab_size=self.type_vocab_size,
max_length=self.max_length,
num_encoder_layers=self.num_encoder_layers,
num_heads=self.num_heads,
head_size=self.hidden_size,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
add_pooling_layer=False,
name="bert",
)(input_ids, attention_mask, token_type_ids, position_ids)
# Compute the prediction scores
encoder = nn.Dropout(rate=self.dropout_rate)(encoder, deterministic=deterministic)
logits = FlaxBertOnlyMLMHead(
vocab_size=self.vocab_size, hidden_act=self.hidden_act, name="cls", dtype=self.dtype
)(encoder)
return (logits,)
| transformers-main | examples/research_projects/performer/modeling_flax_performer.py |
#! /usr/bin/python3
import argparse
import logging
import os
import sys
from collections import namedtuple
import torch
from modeling_bertabs import BertAbs, build_predictor
from torch.utils.data import DataLoader, SequentialSampler
from tqdm import tqdm
from transformers import BertTokenizer
from .utils_summarization import (
CNNDMDataset,
build_mask,
compute_token_type_ids,
encode_for_summarization,
truncate_or_pad,
)
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Batch = namedtuple("Batch", ["document_names", "batch_size", "src", "segs", "mask_src", "tgt_str"])
def evaluate(args):
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True)
model = BertAbs.from_pretrained("remi/bertabs-finetuned-extractive-abstractive-summarization")
model.to(args.device)
model.eval()
symbols = {
"BOS": tokenizer.vocab["[unused0]"],
"EOS": tokenizer.vocab["[unused1]"],
"PAD": tokenizer.vocab["[PAD]"],
}
if args.compute_rouge:
reference_summaries = []
generated_summaries = []
import nltk
import rouge
nltk.download("punkt")
rouge_evaluator = rouge.Rouge(
metrics=["rouge-n", "rouge-l"],
max_n=2,
limit_length=True,
length_limit=args.beam_size,
length_limit_type="words",
apply_avg=True,
apply_best=False,
alpha=0.5, # Default F1_score
weight_factor=1.2,
stemming=True,
)
# these (unused) arguments are defined to keep the compatibility
# with the legacy code and will be deleted in a next iteration.
args.result_path = ""
args.temp_dir = ""
data_iterator = build_data_iterator(args, tokenizer)
predictor = build_predictor(args, tokenizer, symbols, model)
logger.info("***** Running evaluation *****")
logger.info(" Number examples = %d", len(data_iterator.dataset))
logger.info(" Batch size = %d", args.batch_size)
logger.info("")
logger.info("***** Beam Search parameters *****")
logger.info(" Beam size = %d", args.beam_size)
logger.info(" Minimum length = %d", args.min_length)
logger.info(" Maximum length = %d", args.max_length)
logger.info(" Alpha (length penalty) = %.2f", args.alpha)
logger.info(" Trigrams %s be blocked", ("will" if args.block_trigram else "will NOT"))
for batch in tqdm(data_iterator):
batch_data = predictor.translate_batch(batch)
translations = predictor.from_batch(batch_data)
summaries = [format_summary(t) for t in translations]
save_summaries(summaries, args.summaries_output_dir, batch.document_names)
if args.compute_rouge:
reference_summaries += batch.tgt_str
generated_summaries += summaries
if args.compute_rouge:
scores = rouge_evaluator.get_scores(generated_summaries, reference_summaries)
str_scores = format_rouge_scores(scores)
save_rouge_scores(str_scores)
print(str_scores)
def save_summaries(summaries, path, original_document_name):
"""Write the summaries in fies that are prefixed by the original
files' name with the `_summary` appended.
Attributes:
original_document_names: List[string]
Name of the document that was summarized.
path: string
Path were the summaries will be written
summaries: List[string]
The summaries that we produced.
"""
for summary, document_name in zip(summaries, original_document_name):
# Prepare the summary file's name
if "." in document_name:
bare_document_name = ".".join(document_name.split(".")[:-1])
extension = document_name.split(".")[-1]
name = bare_document_name + "_summary." + extension
else:
name = document_name + "_summary"
file_path = os.path.join(path, name)
with open(file_path, "w") as output:
output.write(summary)
def format_summary(translation):
"""Transforms the output of the `from_batch` function
into nicely formatted summaries.
"""
raw_summary, _, _ = translation
summary = (
raw_summary.replace("[unused0]", "")
.replace("[unused3]", "")
.replace("[PAD]", "")
.replace("[unused1]", "")
.replace(r" +", " ")
.replace(" [unused2] ", ". ")
.replace("[unused2]", "")
.strip()
)
return summary
def format_rouge_scores(scores):
return """\n
****** ROUGE SCORES ******
** ROUGE 1
F1 >> {:.3f}
Precision >> {:.3f}
Recall >> {:.3f}
** ROUGE 2
F1 >> {:.3f}
Precision >> {:.3f}
Recall >> {:.3f}
** ROUGE L
F1 >> {:.3f}
Precision >> {:.3f}
Recall >> {:.3f}""".format(
scores["rouge-1"]["f"],
scores["rouge-1"]["p"],
scores["rouge-1"]["r"],
scores["rouge-2"]["f"],
scores["rouge-2"]["p"],
scores["rouge-2"]["r"],
scores["rouge-l"]["f"],
scores["rouge-l"]["p"],
scores["rouge-l"]["r"],
)
def save_rouge_scores(str_scores):
with open("rouge_scores.txt", "w") as output:
output.write(str_scores)
#
# LOAD the dataset
#
def build_data_iterator(args, tokenizer):
dataset = load_and_cache_examples(args, tokenizer)
sampler = SequentialSampler(dataset)
def collate_fn(data):
return collate(data, tokenizer, block_size=512, device=args.device)
iterator = DataLoader(
dataset,
sampler=sampler,
batch_size=args.batch_size,
collate_fn=collate_fn,
)
return iterator
def load_and_cache_examples(args, tokenizer):
dataset = CNNDMDataset(args.documents_dir)
return dataset
def collate(data, tokenizer, block_size, device):
"""Collate formats the data passed to the data loader.
In particular we tokenize the data batch after batch to avoid keeping them
all in memory. We output the data as a namedtuple to fit the original BertAbs's
API.
"""
data = [x for x in data if not len(x[1]) == 0] # remove empty_files
names = [name for name, _, _ in data]
summaries = [" ".join(summary_list) for _, _, summary_list in data]
encoded_text = [encode_for_summarization(story, summary, tokenizer) for _, story, summary in data]
encoded_stories = torch.tensor(
[truncate_or_pad(story, block_size, tokenizer.pad_token_id) for story, _ in encoded_text]
)
encoder_token_type_ids = compute_token_type_ids(encoded_stories, tokenizer.cls_token_id)
encoder_mask = build_mask(encoded_stories, tokenizer.pad_token_id)
batch = Batch(
document_names=names,
batch_size=len(encoded_stories),
src=encoded_stories.to(device),
segs=encoder_token_type_ids.to(device),
mask_src=encoder_mask.to(device),
tgt_str=summaries,
)
return batch
def decode_summary(summary_tokens, tokenizer):
"""Decode the summary and return it in a format
suitable for evaluation.
"""
summary_tokens = summary_tokens.to("cpu").numpy()
summary = tokenizer.decode(summary_tokens)
sentences = summary.split(".")
sentences = [s + "." for s in sentences]
return sentences
def main():
"""The main function defines the interface with the users."""
parser = argparse.ArgumentParser()
parser.add_argument(
"--documents_dir",
default=None,
type=str,
required=True,
help="The folder where the documents to summarize are located.",
)
parser.add_argument(
"--summaries_output_dir",
default=None,
type=str,
required=False,
help="The folder in wich the summaries should be written. Defaults to the folder where the documents are",
)
parser.add_argument(
"--compute_rouge",
default=False,
type=bool,
required=False,
help="Compute the ROUGE metrics during evaluation. Only available for the CNN/DailyMail dataset.",
)
# EVALUATION options
parser.add_argument(
"--no_cuda",
default=False,
type=bool,
help="Whether to force the execution on CPU.",
)
parser.add_argument(
"--batch_size",
default=4,
type=int,
help="Batch size per GPU/CPU for training.",
)
# BEAM SEARCH arguments
parser.add_argument(
"--min_length",
default=50,
type=int,
help="Minimum number of tokens for the summaries.",
)
parser.add_argument(
"--max_length",
default=200,
type=int,
help="Maixmum number of tokens for the summaries.",
)
parser.add_argument(
"--beam_size",
default=5,
type=int,
help="The number of beams to start with for each example.",
)
parser.add_argument(
"--alpha",
default=0.95,
type=float,
help="The value of alpha for the length penalty in the beam search.",
)
parser.add_argument(
"--block_trigram",
default=True,
type=bool,
help="Whether to block the existence of repeating trigrams in the text generated by beam search.",
)
args = parser.parse_args()
# Select device (distibuted not available)
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
# Check the existence of directories
if not args.summaries_output_dir:
args.summaries_output_dir = args.documents_dir
if not documents_dir_is_valid(args.documents_dir):
raise FileNotFoundError(
"We could not find the directory you specified for the documents to summarize, or it was empty. Please"
" specify a valid path."
)
os.makedirs(args.summaries_output_dir, exist_ok=True)
evaluate(args)
def documents_dir_is_valid(path):
if not os.path.exists(path):
return False
file_list = os.listdir(path)
if len(file_list) == 0:
return False
return True
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/bertabs/run_summarization.py |
transformers-main | examples/research_projects/bertabs/__init__.py |
|
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Convert BertExtAbs's checkpoints.
The script looks like it is doing something trivial but it is not. The "weights"
proposed by the authors are actually the entire model pickled. We need to load
the model within the original codebase to be able to only save its `state_dict`.
"""
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
SAMPLE_TEXT = "Hello world! cécé herlolip"
BertAbsConfig = namedtuple(
"BertAbsConfig",
[
"temp_dir",
"large",
"use_bert_emb",
"finetune_bert",
"encoder",
"share_emb",
"max_pos",
"enc_layers",
"enc_hidden_size",
"enc_heads",
"enc_ff_size",
"enc_dropout",
"dec_layers",
"dec_hidden_size",
"dec_heads",
"dec_ff_size",
"dec_dropout",
],
)
def convert_bertabs_checkpoints(path_to_checkpoints, dump_path):
"""Copy/paste and tweak the pre-trained weights provided by the creators
of BertAbs for the internal architecture.
"""
# Instantiate the authors' model with the pre-trained weights
config = BertAbsConfig(
temp_dir=".",
finetune_bert=False,
large=False,
share_emb=True,
use_bert_emb=False,
encoder="bert",
max_pos=512,
enc_layers=6,
enc_hidden_size=512,
enc_heads=8,
enc_ff_size=512,
enc_dropout=0.2,
dec_layers=6,
dec_hidden_size=768,
dec_heads=8,
dec_ff_size=2048,
dec_dropout=0.2,
)
checkpoints = torch.load(path_to_checkpoints, lambda storage, loc: storage)
original = AbsSummarizer(config, torch.device("cpu"), checkpoints)
original.eval()
new_model = BertAbsSummarizer(config, torch.device("cpu"))
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("convert the model")
new_model.bert.load_state_dict(original.bert.state_dict())
new_model.decoder.load_state_dict(original.decoder.state_dict())
new_model.generator.load_state_dict(original.generator.state_dict())
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("Make sure that the models' outputs are identical")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# prepare the model inputs
encoder_input_ids = tokenizer.encode("This is sample éàalj'-.")
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(encoder_input_ids)))
encoder_input_ids = torch.tensor(encoder_input_ids).unsqueeze(0)
decoder_input_ids = tokenizer.encode("This is sample 3 éàalj'-.")
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(decoder_input_ids)))
decoder_input_ids = torch.tensor(decoder_input_ids).unsqueeze(0)
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0
# forward pass
src = encoder_input_ids
tgt = decoder_input_ids
segs = token_type_ids = None
clss = None
mask_src = encoder_attention_mask = None
mask_tgt = decoder_attention_mask = None
mask_cls = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
output_original_model = original(src, tgt, segs, clss, mask_src, mask_tgt, mask_cls)[0]
output_original_generator = original.generator(output_original_model)
output_converted_model = new_model(
encoder_input_ids, decoder_input_ids, token_type_ids, encoder_attention_mask, decoder_attention_mask
)[0]
output_converted_generator = new_model.generator(output_converted_model)
maximum_absolute_difference = torch.max(torch.abs(output_converted_model - output_original_model)).item()
print("Maximum absolute difference beween weights: {:.2f}".format(maximum_absolute_difference))
maximum_absolute_difference = torch.max(torch.abs(output_converted_generator - output_original_generator)).item()
print("Maximum absolute difference beween weights: {:.2f}".format(maximum_absolute_difference))
are_identical = torch.allclose(output_converted_model, output_original_model, atol=1e-3)
if are_identical:
logging.info("all weights are equal up to 1e-3")
else:
raise ValueError("the weights are different. The new model is likely different from the original one.")
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("saving the model's state dictionary")
torch.save(
new_model.state_dict(), "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--bertabs_checkpoint_path",
default=None,
type=str,
required=True,
help="Path the official PyTorch dump.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the output PyTorch model.",
)
args = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| transformers-main | examples/research_projects/bertabs/convert_bertabs_original_pytorch_checkpoint.py |
# coding=utf-8
# Copyright 2019 The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BertAbs configuration """
import logging
from transformers import PretrainedConfig
logger = logging.getLogger(__name__)
BERTABS_FINETUNED_CONFIG_MAP = {
"bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json",
}
class BertAbsConfig(PretrainedConfig):
r"""Class to store the configuration of the BertAbs model.
Arguments:
vocab_size: int
Number of tokens in the vocabulary.
max_pos: int
The maximum sequence length that this model will be used with.
enc_layer: int
The numner of hidden layers in the Transformer encoder.
enc_hidden_size: int
The size of the encoder's layers.
enc_heads: int
The number of attention heads for each attention layer in the encoder.
enc_ff_size: int
The size of the encoder's feed-forward layers.
enc_dropout: int
The dropout probability for all fully connected layers in the
embeddings, layers, pooler and also the attention probabilities in
the encoder.
dec_layer: int
The numner of hidden layers in the decoder.
dec_hidden_size: int
The size of the decoder's layers.
dec_heads: int
The number of attention heads for each attention layer in the decoder.
dec_ff_size: int
The size of the decoder's feed-forward layers.
dec_dropout: int
The dropout probability for all fully connected layers in the
embeddings, layers, pooler and also the attention probabilities in
the decoder.
"""
model_type = "bertabs"
def __init__(
self,
vocab_size=30522,
max_pos=512,
enc_layers=6,
enc_hidden_size=512,
enc_heads=8,
enc_ff_size=512,
enc_dropout=0.2,
dec_layers=6,
dec_hidden_size=768,
dec_heads=8,
dec_ff_size=2048,
dec_dropout=0.2,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.max_pos = max_pos
self.enc_layers = enc_layers
self.enc_hidden_size = enc_hidden_size
self.enc_heads = enc_heads
self.enc_ff_size = enc_ff_size
self.enc_dropout = enc_dropout
self.dec_layers = dec_layers
self.dec_hidden_size = dec_hidden_size
self.dec_heads = dec_heads
self.dec_ff_size = dec_ff_size
self.dec_dropout = dec_dropout
| transformers-main | examples/research_projects/bertabs/configuration_bertabs.py |
import os
from collections import deque
import torch
from torch.utils.data import Dataset
# ------------
# Data loading
# ------------
class CNNDMDataset(Dataset):
"""Abstracts the dataset used to train seq2seq models.
The class will process the documents that are located in the specified
folder. The preprocessing will work on any document that is reasonably
formatted. On the CNN/DailyMail dataset it will extract both the story
and the summary.
CNN/Daily News:
The CNN/Daily News raw datasets are downloaded from [1]. The stories are
stored in different files; the summary appears at the end of the story as
sentences that are prefixed by the special `@highlight` line. To process
the data, untar both datasets in the same folder, and pass the path to this
folder as the "data_dir argument. The formatting code was inspired by [2].
[1] https://cs.nyu.edu/~kcho/
[2] https://github.com/abisee/cnn-dailymail/
"""
def __init__(self, path="", prefix="train"):
"""We initialize the class by listing all the documents to summarize.
Files are not read in memory due to the size of some datasets (like CNN/DailyMail).
"""
assert os.path.isdir(path)
self.documents = []
story_filenames_list = os.listdir(path)
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
path_to_story = os.path.join(path, story_filename)
if not os.path.isfile(path_to_story):
continue
self.documents.append(path_to_story)
def __len__(self):
"""Returns the number of documents."""
return len(self.documents)
def __getitem__(self, idx):
document_path = self.documents[idx]
document_name = document_path.split("/")[-1]
with open(document_path, encoding="utf-8") as source:
raw_story = source.read()
story_lines, summary_lines = process_story(raw_story)
return document_name, story_lines, summary_lines
def process_story(raw_story):
"""Extract the story and summary from a story file.
Arguments:
raw_story (str): content of the story file as an utf-8 encoded string.
Raises:
IndexError: If the story is empty or contains no highlights.
"""
nonempty_lines = list(filter(lambda x: len(x) != 0, [line.strip() for line in raw_story.split("\n")]))
# for some unknown reason some lines miss a period, add it
nonempty_lines = [_add_missing_period(line) for line in nonempty_lines]
# gather article lines
story_lines = []
lines = deque(nonempty_lines)
while True:
try:
element = lines.popleft()
if element.startswith("@highlight"):
break
story_lines.append(element)
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
summary_lines = list(filter(lambda t: not t.startswith("@highlight"), lines))
return story_lines, summary_lines
def _add_missing_period(line):
END_TOKENS = [".", "!", "?", "...", "'", "`", '"', "\u2019", "\u2019", ")"]
if line.startswith("@highlight"):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
# --------------------------
# Encoding and preprocessing
# --------------------------
def truncate_or_pad(sequence, block_size, pad_token_id):
"""Adapt the source and target sequences' lengths to the block size.
If the sequence is shorter we append padding token to the right of the sequence.
"""
if len(sequence) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(sequence)))
return sequence
def build_mask(sequence, pad_token_id):
"""Builds the mask. The attention mechanism will only attend to positions
with value 1."""
mask = torch.ones_like(sequence)
idx_pad_tokens = sequence == pad_token_id
mask[idx_pad_tokens] = 0
return mask
def encode_for_summarization(story_lines, summary_lines, tokenizer):
"""Encode the story and summary lines, and join them
as specified in [1] by using `[SEP] [CLS]` tokens to separate
sentences.
"""
story_lines_token_ids = [tokenizer.encode(line) for line in story_lines]
story_token_ids = [token for sentence in story_lines_token_ids for token in sentence]
summary_lines_token_ids = [tokenizer.encode(line) for line in summary_lines]
summary_token_ids = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def compute_token_type_ids(batch, separator_token_id):
"""Segment embeddings as described in [1]
The values {0,1} were found in the repository [2].
Attributes:
batch: torch.Tensor, size [batch_size, block_size]
Batch of input.
separator_token_id: int
The value of the token that separates the segments.
[1] Liu, Yang, and Mirella Lapata. "Text summarization with pretrained encoders."
arXiv preprint arXiv:1908.08345 (2019).
[2] https://github.com/nlpyang/PreSumm (/src/prepro/data_builder.py, commit fac1217)
"""
batch_embeddings = []
for sequence in batch:
sentence_num = -1
embeddings = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2)
batch_embeddings.append(embeddings)
return torch.tensor(batch_embeddings)
| transformers-main | examples/research_projects/bertabs/utils_summarization.py |
# MIT License
# Copyright (c) 2019 Yang Liu and the HuggingFace team
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import copy
import math
import numpy as np
import torch
from configuration_bertabs import BertAbsConfig
from torch import nn
from torch.nn.init import xavier_uniform_
from transformers import BertConfig, BertModel, PreTrainedModel
MAX_SIZE = 5000
BERTABS_FINETUNED_MODEL_ARCHIVE_LIST = [
"remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization",
]
class BertAbsPreTrainedModel(PreTrainedModel):
config_class = BertAbsConfig
load_tf_weights = False
base_model_prefix = "bert"
class BertAbs(BertAbsPreTrainedModel):
def __init__(self, args, checkpoint=None, bert_extractive_checkpoint=None):
super().__init__(args)
self.args = args
self.bert = Bert()
# If pre-trained weights are passed for Bert, load these.
load_bert_pretrained_extractive = True if bert_extractive_checkpoint else False
if load_bert_pretrained_extractive:
self.bert.model.load_state_dict(
{n[11:]: p for n, p in bert_extractive_checkpoint.items() if n.startswith("bert.model")},
strict=True,
)
self.vocab_size = self.bert.model.config.vocab_size
if args.max_pos > 512:
my_pos_embeddings = nn.Embedding(args.max_pos, self.bert.model.config.hidden_size)
my_pos_embeddings.weight.data[:512] = self.bert.model.embeddings.position_embeddings.weight.data
my_pos_embeddings.weight.data[512:] = self.bert.model.embeddings.position_embeddings.weight.data[-1][
None, :
].repeat(args.max_pos - 512, 1)
self.bert.model.embeddings.position_embeddings = my_pos_embeddings
tgt_embeddings = nn.Embedding(self.vocab_size, self.bert.model.config.hidden_size, padding_idx=0)
tgt_embeddings.weight = copy.deepcopy(self.bert.model.embeddings.word_embeddings.weight)
self.decoder = TransformerDecoder(
self.args.dec_layers,
self.args.dec_hidden_size,
heads=self.args.dec_heads,
d_ff=self.args.dec_ff_size,
dropout=self.args.dec_dropout,
embeddings=tgt_embeddings,
vocab_size=self.vocab_size,
)
gen_func = nn.LogSoftmax(dim=-1)
self.generator = nn.Sequential(nn.Linear(args.dec_hidden_size, args.vocab_size), gen_func)
self.generator[0].weight = self.decoder.embeddings.weight
load_from_checkpoints = False if checkpoint is None else True
if load_from_checkpoints:
self.load_state_dict(checkpoint)
def init_weights(self):
for module in self.decoder.modules():
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
for p in self.generator.parameters():
if p.dim() > 1:
xavier_uniform_(p)
else:
p.data.zero_()
def forward(
self,
encoder_input_ids,
decoder_input_ids,
token_type_ids,
encoder_attention_mask,
decoder_attention_mask,
):
encoder_output = self.bert(
input_ids=encoder_input_ids,
token_type_ids=token_type_ids,
attention_mask=encoder_attention_mask,
)
encoder_hidden_states = encoder_output[0]
dec_state = self.decoder.init_decoder_state(encoder_input_ids, encoder_hidden_states)
decoder_outputs, _ = self.decoder(decoder_input_ids[:, :-1], encoder_hidden_states, dec_state)
return decoder_outputs
class Bert(nn.Module):
"""This class is not really necessary and should probably disappear."""
def __init__(self):
super().__init__()
config = BertConfig.from_pretrained("bert-base-uncased")
self.model = BertModel(config)
def forward(self, input_ids, attention_mask=None, token_type_ids=None, **kwargs):
self.eval()
with torch.no_grad():
encoder_outputs, _ = self.model(
input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, **kwargs
)
return encoder_outputs
class TransformerDecoder(nn.Module):
"""
The Transformer decoder from "Attention is All You Need".
Args:
num_layers (int): number of encoder layers.
d_model (int): size of the model
heads (int): number of heads
d_ff (int): size of the inner FF layer
dropout (float): dropout parameters
embeddings (:obj:`onmt.modules.Embeddings`):
embeddings to use, should have positional encodings
attn_type (str): if using a separate copy attention
"""
def __init__(self, num_layers, d_model, heads, d_ff, dropout, embeddings, vocab_size):
super().__init__()
# Basic attributes.
self.decoder_type = "transformer"
self.num_layers = num_layers
self.embeddings = embeddings
self.pos_emb = PositionalEncoding(dropout, self.embeddings.embedding_dim)
# Build TransformerDecoder.
self.transformer_layers = nn.ModuleList(
[TransformerDecoderLayer(d_model, heads, d_ff, dropout) for _ in range(num_layers)]
)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
# forward(input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask)
# def forward(self, input_ids, state, attention_mask=None, memory_lengths=None,
# step=None, cache=None, encoder_attention_mask=None, encoder_hidden_states=None, memory_masks=None):
def forward(
self,
input_ids,
encoder_hidden_states=None,
state=None,
attention_mask=None,
memory_lengths=None,
step=None,
cache=None,
encoder_attention_mask=None,
):
"""
See :obj:`onmt.modules.RNNDecoderBase.forward()`
memory_bank = encoder_hidden_states
"""
# Name conversion
tgt = input_ids
memory_bank = encoder_hidden_states
memory_mask = encoder_attention_mask
# src_words = state.src
src_words = state.src
src_batch, src_len = src_words.size()
padding_idx = self.embeddings.padding_idx
# Decoder padding mask
tgt_words = tgt
tgt_batch, tgt_len = tgt_words.size()
tgt_pad_mask = tgt_words.data.eq(padding_idx).unsqueeze(1).expand(tgt_batch, tgt_len, tgt_len)
# Encoder padding mask
if memory_mask is not None:
src_len = memory_mask.size(-1)
src_pad_mask = memory_mask.expand(src_batch, tgt_len, src_len)
else:
src_pad_mask = src_words.data.eq(padding_idx).unsqueeze(1).expand(src_batch, tgt_len, src_len)
# Pass through the embeddings
emb = self.embeddings(input_ids)
output = self.pos_emb(emb, step)
assert emb.dim() == 3 # len x batch x embedding_dim
if state.cache is None:
saved_inputs = []
for i in range(self.num_layers):
prev_layer_input = None
if state.cache is None:
if state.previous_input is not None:
prev_layer_input = state.previous_layer_inputs[i]
output, all_input = self.transformer_layers[i](
output,
memory_bank,
src_pad_mask,
tgt_pad_mask,
previous_input=prev_layer_input,
layer_cache=state.cache["layer_{}".format(i)] if state.cache is not None else None,
step=step,
)
if state.cache is None:
saved_inputs.append(all_input)
if state.cache is None:
saved_inputs = torch.stack(saved_inputs)
output = self.layer_norm(output)
if state.cache is None:
state = state.update_state(tgt, saved_inputs)
# Decoders in transformers return a tuple. Beam search will fail
# if we don't follow this convention.
return output, state # , state
def init_decoder_state(self, src, memory_bank, with_cache=False):
"""Init decoder state"""
state = TransformerDecoderState(src)
if with_cache:
state._init_cache(memory_bank, self.num_layers)
return state
class PositionalEncoding(nn.Module):
def __init__(self, dropout, dim, max_len=5000):
pe = torch.zeros(max_len, dim)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) * -(math.log(10000.0) / dim)))
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
pe = pe.unsqueeze(0)
super().__init__()
self.register_buffer("pe", pe)
self.dropout = nn.Dropout(p=dropout)
self.dim = dim
def forward(self, emb, step=None):
emb = emb * math.sqrt(self.dim)
if step:
emb = emb + self.pe[:, step][:, None, :]
else:
emb = emb + self.pe[:, : emb.size(1)]
emb = self.dropout(emb)
return emb
def get_emb(self, emb):
return self.pe[:, : emb.size(1)]
class TransformerDecoderLayer(nn.Module):
"""
Args:
d_model (int): the dimension of keys/values/queries in
MultiHeadedAttention, also the input size of
the first-layer of the PositionwiseFeedForward.
heads (int): the number of heads for MultiHeadedAttention.
d_ff (int): the second-layer of the PositionwiseFeedForward.
dropout (float): dropout probability(0-1.0).
self_attn_type (string): type of self-attention scaled-dot, average
"""
def __init__(self, d_model, heads, d_ff, dropout):
super().__init__()
self.self_attn = MultiHeadedAttention(heads, d_model, dropout=dropout)
self.context_attn = MultiHeadedAttention(heads, d_model, dropout=dropout)
self.feed_forward = PositionwiseFeedForward(d_model, d_ff, dropout)
self.layer_norm_1 = nn.LayerNorm(d_model, eps=1e-6)
self.layer_norm_2 = nn.LayerNorm(d_model, eps=1e-6)
self.drop = nn.Dropout(dropout)
mask = self._get_attn_subsequent_mask(MAX_SIZE)
# Register self.mask as a saved_state in TransformerDecoderLayer, so
# it gets TransformerDecoderLayer's cuda behavior automatically.
self.register_buffer("mask", mask)
def forward(
self,
inputs,
memory_bank,
src_pad_mask,
tgt_pad_mask,
previous_input=None,
layer_cache=None,
step=None,
):
"""
Args:
inputs (`FloatTensor`): `[batch_size x 1 x model_dim]`
memory_bank (`FloatTensor`): `[batch_size x src_len x model_dim]`
src_pad_mask (`LongTensor`): `[batch_size x 1 x src_len]`
tgt_pad_mask (`LongTensor`): `[batch_size x 1 x 1]`
Returns:
(`FloatTensor`, `FloatTensor`, `FloatTensor`):
* output `[batch_size x 1 x model_dim]`
* attn `[batch_size x 1 x src_len]`
* all_input `[batch_size x current_step x model_dim]`
"""
dec_mask = torch.gt(tgt_pad_mask + self.mask[:, : tgt_pad_mask.size(1), : tgt_pad_mask.size(1)], 0)
input_norm = self.layer_norm_1(inputs)
all_input = input_norm
if previous_input is not None:
all_input = torch.cat((previous_input, input_norm), dim=1)
dec_mask = None
query = self.self_attn(
all_input,
all_input,
input_norm,
mask=dec_mask,
layer_cache=layer_cache,
type="self",
)
query = self.drop(query) + inputs
query_norm = self.layer_norm_2(query)
mid = self.context_attn(
memory_bank,
memory_bank,
query_norm,
mask=src_pad_mask,
layer_cache=layer_cache,
type="context",
)
output = self.feed_forward(self.drop(mid) + query)
return output, all_input
# return output
def _get_attn_subsequent_mask(self, size):
"""
Get an attention mask to avoid using the subsequent info.
Args:
size: int
Returns:
(`LongTensor`):
* subsequent_mask `[1 x size x size]`
"""
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype("uint8")
subsequent_mask = torch.from_numpy(subsequent_mask)
return subsequent_mask
class MultiHeadedAttention(nn.Module):
"""
Multi-Head Attention module from
"Attention is All You Need"
:cite:`DBLP:journals/corr/VaswaniSPUJGKP17`.
Similar to standard `dot` attention but uses
multiple attention distributions simulataneously
to select relevant items.
.. mermaid::
graph BT
A[key]
B[value]
C[query]
O[output]
subgraph Attn
D[Attn 1]
E[Attn 2]
F[Attn N]
end
A --> D
C --> D
A --> E
C --> E
A --> F
C --> F
D --> O
E --> O
F --> O
B --> O
Also includes several additional tricks.
Args:
head_count (int): number of parallel heads
model_dim (int): the dimension of keys/values/queries,
must be divisible by head_count
dropout (float): dropout parameter
"""
def __init__(self, head_count, model_dim, dropout=0.1, use_final_linear=True):
assert model_dim % head_count == 0
self.dim_per_head = model_dim // head_count
self.model_dim = model_dim
super().__init__()
self.head_count = head_count
self.linear_keys = nn.Linear(model_dim, head_count * self.dim_per_head)
self.linear_values = nn.Linear(model_dim, head_count * self.dim_per_head)
self.linear_query = nn.Linear(model_dim, head_count * self.dim_per_head)
self.softmax = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.use_final_linear = use_final_linear
if self.use_final_linear:
self.final_linear = nn.Linear(model_dim, model_dim)
def forward(
self,
key,
value,
query,
mask=None,
layer_cache=None,
type=None,
predefined_graph_1=None,
):
"""
Compute the context vector and the attention vectors.
Args:
key (`FloatTensor`): set of `key_len`
key vectors `[batch, key_len, dim]`
value (`FloatTensor`): set of `key_len`
value vectors `[batch, key_len, dim]`
query (`FloatTensor`): set of `query_len`
query vectors `[batch, query_len, dim]`
mask: binary mask indicating which keys have
non-zero attention `[batch, query_len, key_len]`
Returns:
(`FloatTensor`, `FloatTensor`) :
* output context vectors `[batch, query_len, dim]`
* one of the attention vectors `[batch, query_len, key_len]`
"""
batch_size = key.size(0)
dim_per_head = self.dim_per_head
head_count = self.head_count
def shape(x):
"""projection"""
return x.view(batch_size, -1, head_count, dim_per_head).transpose(1, 2)
def unshape(x):
"""compute context"""
return x.transpose(1, 2).contiguous().view(batch_size, -1, head_count * dim_per_head)
# 1) Project key, value, and query.
if layer_cache is not None:
if type == "self":
query, key, value = (
self.linear_query(query),
self.linear_keys(query),
self.linear_values(query),
)
key = shape(key)
value = shape(value)
if layer_cache is not None:
device = key.device
if layer_cache["self_keys"] is not None:
key = torch.cat((layer_cache["self_keys"].to(device), key), dim=2)
if layer_cache["self_values"] is not None:
value = torch.cat((layer_cache["self_values"].to(device), value), dim=2)
layer_cache["self_keys"] = key
layer_cache["self_values"] = value
elif type == "context":
query = self.linear_query(query)
if layer_cache is not None:
if layer_cache["memory_keys"] is None:
key, value = self.linear_keys(key), self.linear_values(value)
key = shape(key)
value = shape(value)
else:
key, value = (
layer_cache["memory_keys"],
layer_cache["memory_values"],
)
layer_cache["memory_keys"] = key
layer_cache["memory_values"] = value
else:
key, value = self.linear_keys(key), self.linear_values(value)
key = shape(key)
value = shape(value)
else:
key = self.linear_keys(key)
value = self.linear_values(value)
query = self.linear_query(query)
key = shape(key)
value = shape(value)
query = shape(query)
# 2) Calculate and scale scores.
query = query / math.sqrt(dim_per_head)
scores = torch.matmul(query, key.transpose(2, 3))
if mask is not None:
mask = mask.unsqueeze(1).expand_as(scores)
scores = scores.masked_fill(mask, -1e18)
# 3) Apply attention dropout and compute context vectors.
attn = self.softmax(scores)
if predefined_graph_1 is not None:
attn_masked = attn[:, -1] * predefined_graph_1
attn_masked = attn_masked / (torch.sum(attn_masked, 2).unsqueeze(2) + 1e-9)
attn = torch.cat([attn[:, :-1], attn_masked.unsqueeze(1)], 1)
drop_attn = self.dropout(attn)
if self.use_final_linear:
context = unshape(torch.matmul(drop_attn, value))
output = self.final_linear(context)
return output
else:
context = torch.matmul(drop_attn, value)
return context
class DecoderState(object):
"""Interface for grouping together the current state of a recurrent
decoder. In the simplest case just represents the hidden state of
the model. But can also be used for implementing various forms of
input_feeding and non-recurrent models.
Modules need to implement this to utilize beam search decoding.
"""
def detach(self):
"""Need to document this"""
self.hidden = tuple([_.detach() for _ in self.hidden])
self.input_feed = self.input_feed.detach()
def beam_update(self, idx, positions, beam_size):
"""Need to document this"""
for e in self._all:
sizes = e.size()
br = sizes[1]
if len(sizes) == 3:
sent_states = e.view(sizes[0], beam_size, br // beam_size, sizes[2])[:, :, idx]
else:
sent_states = e.view(sizes[0], beam_size, br // beam_size, sizes[2], sizes[3])[:, :, idx]
sent_states.data.copy_(sent_states.data.index_select(1, positions))
def map_batch_fn(self, fn):
raise NotImplementedError()
class TransformerDecoderState(DecoderState):
"""Transformer Decoder state base class"""
def __init__(self, src):
"""
Args:
src (FloatTensor): a sequence of source words tensors
with optional feature tensors, of size (len x batch).
"""
self.src = src
self.previous_input = None
self.previous_layer_inputs = None
self.cache = None
@property
def _all(self):
"""
Contains attributes that need to be updated in self.beam_update().
"""
if self.previous_input is not None and self.previous_layer_inputs is not None:
return (self.previous_input, self.previous_layer_inputs, self.src)
else:
return (self.src,)
def detach(self):
if self.previous_input is not None:
self.previous_input = self.previous_input.detach()
if self.previous_layer_inputs is not None:
self.previous_layer_inputs = self.previous_layer_inputs.detach()
self.src = self.src.detach()
def update_state(self, new_input, previous_layer_inputs):
state = TransformerDecoderState(self.src)
state.previous_input = new_input
state.previous_layer_inputs = previous_layer_inputs
return state
def _init_cache(self, memory_bank, num_layers):
self.cache = {}
for l in range(num_layers):
layer_cache = {"memory_keys": None, "memory_values": None}
layer_cache["self_keys"] = None
layer_cache["self_values"] = None
self.cache["layer_{}".format(l)] = layer_cache
def repeat_beam_size_times(self, beam_size):
"""Repeat beam_size times along batch dimension."""
self.src = self.src.data.repeat(1, beam_size, 1)
def map_batch_fn(self, fn):
def _recursive_map(struct, batch_dim=0):
for k, v in struct.items():
if v is not None:
if isinstance(v, dict):
_recursive_map(v)
else:
struct[k] = fn(v, batch_dim)
self.src = fn(self.src, 0)
if self.cache is not None:
_recursive_map(self.cache)
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
class PositionwiseFeedForward(nn.Module):
"""A two-layer Feed-Forward-Network with residual layer norm.
Args:
d_model (int): the size of input for the first-layer of the FFN.
d_ff (int): the hidden layer size of the second-layer
of the FNN.
dropout (float): dropout probability in :math:`[0, 1)`.
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
self.actv = gelu
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x):
inter = self.dropout_1(self.actv(self.w_1(self.layer_norm(x))))
output = self.dropout_2(self.w_2(inter))
return output + x
#
# TRANSLATOR
# The following code is used to generate summaries using the
# pre-trained weights and beam search.
#
def build_predictor(args, tokenizer, symbols, model, logger=None):
# we should be able to refactor the global scorer a lot
scorer = GNMTGlobalScorer(args.alpha, length_penalty="wu")
translator = Translator(args, model, tokenizer, symbols, global_scorer=scorer, logger=logger)
return translator
class GNMTGlobalScorer(object):
"""
NMT re-ranking score from
"Google's Neural Machine Translation System" :cite:`wu2016google`
Args:
alpha (float): length parameter
beta (float): coverage parameter
"""
def __init__(self, alpha, length_penalty):
self.alpha = alpha
penalty_builder = PenaltyBuilder(length_penalty)
self.length_penalty = penalty_builder.length_penalty()
def score(self, beam, logprobs):
"""
Rescores a prediction based on penalty functions
"""
normalized_probs = self.length_penalty(beam, logprobs, self.alpha)
return normalized_probs
class PenaltyBuilder(object):
"""
Returns the Length and Coverage Penalty function for Beam Search.
Args:
length_pen (str): option name of length pen
cov_pen (str): option name of cov pen
"""
def __init__(self, length_pen):
self.length_pen = length_pen
def length_penalty(self):
if self.length_pen == "wu":
return self.length_wu
elif self.length_pen == "avg":
return self.length_average
else:
return self.length_none
"""
Below are all the different penalty terms implemented so far
"""
def length_wu(self, beam, logprobs, alpha=0.0):
"""
NMT length re-ranking score from
"Google's Neural Machine Translation System" :cite:`wu2016google`.
"""
modifier = ((5 + len(beam.next_ys)) ** alpha) / ((5 + 1) ** alpha)
return logprobs / modifier
def length_average(self, beam, logprobs, alpha=0.0):
"""
Returns the average probability of tokens in a sequence.
"""
return logprobs / len(beam.next_ys)
def length_none(self, beam, logprobs, alpha=0.0, beta=0.0):
"""
Returns unmodified scores.
"""
return logprobs
class Translator(object):
"""
Uses a model to translate a batch of sentences.
Args:
model (:obj:`onmt.modules.NMTModel`):
NMT model to use for translation
fields (dict of Fields): data fields
beam_size (int): size of beam to use
n_best (int): number of translations produced
max_length (int): maximum length output to produce
global_scores (:obj:`GlobalScorer`):
object to rescore final translations
copy_attn (bool): use copy attention during translation
beam_trace (bool): trace beam search for debugging
logger(logging.Logger): logger.
"""
def __init__(self, args, model, vocab, symbols, global_scorer=None, logger=None):
self.logger = logger
self.args = args
self.model = model
self.generator = self.model.generator
self.vocab = vocab
self.symbols = symbols
self.start_token = symbols["BOS"]
self.end_token = symbols["EOS"]
self.global_scorer = global_scorer
self.beam_size = args.beam_size
self.min_length = args.min_length
self.max_length = args.max_length
def translate(self, batch, step, attn_debug=False):
"""Generates summaries from one batch of data."""
self.model.eval()
with torch.no_grad():
batch_data = self.translate_batch(batch)
translations = self.from_batch(batch_data)
return translations
def translate_batch(self, batch, fast=False):
"""
Translate a batch of sentences.
Mostly a wrapper around :obj:`Beam`.
Args:
batch (:obj:`Batch`): a batch from a dataset object
fast (bool): enables fast beam search (may not support all features)
"""
with torch.no_grad():
return self._fast_translate_batch(batch, self.max_length, min_length=self.min_length)
# Where the beam search lives
# I have no idea why it is being called from the method above
def _fast_translate_batch(self, batch, max_length, min_length=0):
"""Beam Search using the encoder inputs contained in `batch`."""
# The batch object is funny
# Instead of just looking at the size of the arguments we encapsulate
# a size argument.
# Where is it defined?
beam_size = self.beam_size
batch_size = batch.batch_size
src = batch.src
segs = batch.segs
mask_src = batch.mask_src
src_features = self.model.bert(src, segs, mask_src)
dec_states = self.model.decoder.init_decoder_state(src, src_features, with_cache=True)
device = src_features.device
# Tile states and memory beam_size times.
dec_states.map_batch_fn(lambda state, dim: tile(state, beam_size, dim=dim))
src_features = tile(src_features, beam_size, dim=0)
batch_offset = torch.arange(batch_size, dtype=torch.long, device=device)
beam_offset = torch.arange(0, batch_size * beam_size, step=beam_size, dtype=torch.long, device=device)
alive_seq = torch.full([batch_size * beam_size, 1], self.start_token, dtype=torch.long, device=device)
# Give full probability to the first beam on the first step.
topk_log_probs = torch.tensor([0.0] + [float("-inf")] * (beam_size - 1), device=device).repeat(batch_size)
# Structure that holds finished hypotheses.
hypotheses = [[] for _ in range(batch_size)] # noqa: F812
results = {}
results["predictions"] = [[] for _ in range(batch_size)] # noqa: F812
results["scores"] = [[] for _ in range(batch_size)] # noqa: F812
results["gold_score"] = [0] * batch_size
results["batch"] = batch
for step in range(max_length):
decoder_input = alive_seq[:, -1].view(1, -1)
# Decoder forward.
decoder_input = decoder_input.transpose(0, 1)
dec_out, dec_states = self.model.decoder(decoder_input, src_features, dec_states, step=step)
# Generator forward.
log_probs = self.generator(dec_out.transpose(0, 1).squeeze(0))
vocab_size = log_probs.size(-1)
if step < min_length:
log_probs[:, self.end_token] = -1e20
# Multiply probs by the beam probability.
log_probs += topk_log_probs.view(-1).unsqueeze(1)
alpha = self.global_scorer.alpha
length_penalty = ((5.0 + (step + 1)) / 6.0) ** alpha
# Flatten probs into a list of possibilities.
curr_scores = log_probs / length_penalty
if self.args.block_trigram:
cur_len = alive_seq.size(1)
if cur_len > 3:
for i in range(alive_seq.size(0)):
fail = False
words = [int(w) for w in alive_seq[i]]
words = [self.vocab.ids_to_tokens[w] for w in words]
words = " ".join(words).replace(" ##", "").split()
if len(words) <= 3:
continue
trigrams = [(words[i - 1], words[i], words[i + 1]) for i in range(1, len(words) - 1)]
trigram = tuple(trigrams[-1])
if trigram in trigrams[:-1]:
fail = True
if fail:
curr_scores[i] = -10e20
curr_scores = curr_scores.reshape(-1, beam_size * vocab_size)
topk_scores, topk_ids = curr_scores.topk(beam_size, dim=-1)
# Recover log probs.
topk_log_probs = topk_scores * length_penalty
# Resolve beam origin and true word ids.
topk_beam_index = topk_ids.div(vocab_size)
topk_ids = topk_ids.fmod(vocab_size)
# Map beam_index to batch_index in the flat representation.
batch_index = topk_beam_index + beam_offset[: topk_beam_index.size(0)].unsqueeze(1)
select_indices = batch_index.view(-1)
# Append last prediction.
alive_seq = torch.cat([alive_seq.index_select(0, select_indices), topk_ids.view(-1, 1)], -1)
is_finished = topk_ids.eq(self.end_token)
if step + 1 == max_length:
is_finished.fill_(1)
# End condition is top beam is finished.
end_condition = is_finished[:, 0].eq(1)
# Save finished hypotheses.
if is_finished.any():
predictions = alive_seq.view(-1, beam_size, alive_seq.size(-1))
for i in range(is_finished.size(0)):
b = batch_offset[i]
if end_condition[i]:
is_finished[i].fill_(1)
finished_hyp = is_finished[i].nonzero().view(-1)
# Store finished hypotheses for this batch.
for j in finished_hyp:
hypotheses[b].append((topk_scores[i, j], predictions[i, j, 1:]))
# If the batch reached the end, save the n_best hypotheses.
if end_condition[i]:
best_hyp = sorted(hypotheses[b], key=lambda x: x[0], reverse=True)
score, pred = best_hyp[0]
results["scores"][b].append(score)
results["predictions"][b].append(pred)
non_finished = end_condition.eq(0).nonzero().view(-1)
# If all sentences are translated, no need to go further.
if len(non_finished) == 0:
break
# Remove finished batches for the next step.
topk_log_probs = topk_log_probs.index_select(0, non_finished)
batch_index = batch_index.index_select(0, non_finished)
batch_offset = batch_offset.index_select(0, non_finished)
alive_seq = predictions.index_select(0, non_finished).view(-1, alive_seq.size(-1))
# Reorder states.
select_indices = batch_index.view(-1)
src_features = src_features.index_select(0, select_indices)
dec_states.map_batch_fn(lambda state, dim: state.index_select(dim, select_indices))
return results
def from_batch(self, translation_batch):
batch = translation_batch["batch"]
assert len(translation_batch["gold_score"]) == len(translation_batch["predictions"])
batch_size = batch.batch_size
preds, _, _, tgt_str, src = (
translation_batch["predictions"],
translation_batch["scores"],
translation_batch["gold_score"],
batch.tgt_str,
batch.src,
)
translations = []
for b in range(batch_size):
pred_sents = self.vocab.convert_ids_to_tokens([int(n) for n in preds[b][0]])
pred_sents = " ".join(pred_sents).replace(" ##", "")
gold_sent = " ".join(tgt_str[b].split())
raw_src = [self.vocab.ids_to_tokens[int(t)] for t in src[b]][:500]
raw_src = " ".join(raw_src)
translation = (pred_sents, gold_sent, raw_src)
translations.append(translation)
return translations
def tile(x, count, dim=0):
"""
Tiles x on dimension dim count times.
"""
perm = list(range(len(x.size())))
if dim != 0:
perm[0], perm[dim] = perm[dim], perm[0]
x = x.permute(perm).contiguous()
out_size = list(x.size())
out_size[0] *= count
batch = x.size(0)
x = x.view(batch, -1).transpose(0, 1).repeat(count, 1).transpose(0, 1).contiguous().view(*out_size)
if dim != 0:
x = x.permute(perm).contiguous()
return x
#
# Optimizer for training. We keep this here in case we want to add
# a finetuning script.
#
class BertSumOptimizer(object):
"""Specific optimizer for BertSum.
As described in [1], the authors fine-tune BertSum for abstractive
summarization using two Adam Optimizers with different warm-up steps and
learning rate. They also use a custom learning rate scheduler.
[1] Liu, Yang, and Mirella Lapata. "Text summarization with pretrained encoders."
arXiv preprint arXiv:1908.08345 (2019).
"""
def __init__(self, model, lr, warmup_steps, beta_1=0.99, beta_2=0.999, eps=1e-8):
self.encoder = model.encoder
self.decoder = model.decoder
self.lr = lr
self.warmup_steps = warmup_steps
self.optimizers = {
"encoder": torch.optim.Adam(
model.encoder.parameters(),
lr=lr["encoder"],
betas=(beta_1, beta_2),
eps=eps,
),
"decoder": torch.optim.Adam(
model.decoder.parameters(),
lr=lr["decoder"],
betas=(beta_1, beta_2),
eps=eps,
),
}
self._step = 0
self.current_learning_rates = {}
def _update_rate(self, stack):
return self.lr[stack] * min(self._step ** (-0.5), self._step * self.warmup_steps[stack] ** (-1.5))
def zero_grad(self):
self.optimizer_decoder.zero_grad()
self.optimizer_encoder.zero_grad()
def step(self):
self._step += 1
for stack, optimizer in self.optimizers.items():
new_rate = self._update_rate(stack)
for param_group in optimizer.param_groups:
param_group["lr"] = new_rate
optimizer.step()
self.current_learning_rates[stack] = new_rate
| transformers-main | examples/research_projects/bertabs/modeling_bertabs.py |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class SummarizationDataProcessingTest(unittest.TestCase):
def setUp(self):
self.block_size = 10
def test_fit_to_block_sequence_too_small(self):
"""Pad the sequence with 0 if the sequence is smaller than the block size."""
sequence = [1, 2, 3, 4]
expected_output = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(sequence, self.block_size, 0), expected_output)
def test_fit_to_block_sequence_fit_exactly(self):
"""Do nothing if the sequence is the right size."""
sequence = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
expected_output = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(sequence, self.block_size, 0), expected_output)
def test_fit_to_block_sequence_too_big(self):
"""Truncate the sequence if it is too long."""
sequence = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
expected_output = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(sequence, self.block_size, 0), expected_output)
def test_process_story_no_highlights(self):
"""Processing a story with no highlights returns an empty list for the summary."""
raw_story = """It was the year of Our Lord one thousand seven hundred and
seventy-five.\n\nSpiritual revelations were conceded to England at that
favoured period, as at this."""
_, summary_lines = process_story(raw_story)
self.assertEqual(summary_lines, [])
def test_process_empty_story(self):
"""An empty story returns an empty collection of lines."""
raw_story = ""
story_lines, summary_lines = process_story(raw_story)
self.assertEqual(story_lines, [])
self.assertEqual(summary_lines, [])
def test_process_story_with_missing_period(self):
raw_story = (
"It was the year of Our Lord one thousand seven hundred and "
"seventy-five\n\nSpiritual revelations were conceded to England "
"at that favoured period, as at this.\n@highlight\n\nIt was the best of times"
)
story_lines, summary_lines = process_story(raw_story)
expected_story_lines = [
"It was the year of Our Lord one thousand seven hundred and seventy-five.",
"Spiritual revelations were conceded to England at that favoured period, as at this.",
]
self.assertEqual(expected_story_lines, story_lines)
expected_summary_lines = ["It was the best of times."]
self.assertEqual(expected_summary_lines, summary_lines)
def test_build_mask_no_padding(self):
sequence = torch.tensor([1, 2, 3, 4])
expected = torch.tensor([1, 1, 1, 1])
np.testing.assert_array_equal(build_mask(sequence, 0).numpy(), expected.numpy())
def test_build_mask(self):
sequence = torch.tensor([1, 2, 3, 4, 23, 23, 23])
expected = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(sequence, 23).numpy(), expected.numpy())
def test_build_mask_with_padding_equal_to_one(self):
sequence = torch.tensor([8, 2, 3, 4, 1, 1, 1])
expected = torch.tensor([1, 1, 1, 1, 0, 0, 0])
np.testing.assert_array_equal(build_mask(sequence, 1).numpy(), expected.numpy())
def test_compute_token_type_ids(self):
separator = 101
batch = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]])
expected = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]])
result = compute_token_type_ids(batch, separator)
np.testing.assert_array_equal(result, expected)
| transformers-main | examples/research_projects/bertabs/test_utils_summarization.py |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning (m)LUKE model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library 🤗
without using a Trainer.
"""
import argparse
import logging
import math
import os
import random
from pathlib import Path
import datasets
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs
from datasets import ClassLabel, load_dataset, load_metric
from huggingface_hub import Repository, create_repo
from luke_utils import DataCollatorForLukeTokenClassification, is_punctuation, padding_tensor
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from transformers import (
AdamW,
LukeConfig,
LukeForEntitySpanClassification,
LukeTokenizer,
SchedulerType,
default_data_collator,
get_scheduler,
set_seed,
)
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
def parse_args():
parser = argparse.ArgumentParser(
description="Finetune (m)LUKE on a token classification task (such as NER) with the accelerate library"
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--text_column_name",
type=str,
default=None,
help="The column name of text to input in the file (a csv or JSON file).",
)
parser.add_argument(
"--label_column_name",
type=str,
default=None,
help="The column name of label to input in the file (a csv or JSON file).",
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_length` is passed."
),
)
parser.add_argument(
"--max_entity_length",
type=int,
default=32,
help=(
"The maximum total input entity length after tokenization (Used only for (M)Luke models). Sequences longer"
" than this will be truncated, sequences shorter will be padded if `--pad_to_max_length` is passed."
),
)
parser.add_argument(
"--max_mention_length",
type=int,
default=30,
help=(
"The maximum total input mention length after tokenization (Used only for (M)Luke models). Sequences"
" longer than this will be truncated, sequences shorter will be padded if `--pad_to_max_length` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--label_all_tokens",
action="store_true",
help="Setting labels of all special tokens to -100 and thus PyTorch will ignore them.",
)
parser.add_argument(
"--return_entity_level_metrics",
action="store_true",
help="Indication whether entity level metrics are to be returner.",
)
parser.add_argument(
"--task_name",
type=str,
default="ner",
choices=["ner", "pos", "chunk"],
help="The name of the task.",
)
parser.add_argument(
"--debug",
action="store_true",
help="Activate debug mode and run training only with a subset of data.",
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument(
"--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`."
)
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
args = parser.parse_args()
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
def main():
args = parse_args()
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
handler = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(kwargs_handlers=[handler])
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
# Retrieve of infer repo_name
repo_name = args.hub_model_id
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
repo_id = create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
# Clone repo locally
repo = Repository(args.output_dir, clone_from=repo_id, token=args.hub_token)
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called
# 'tokens' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
else:
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# Trim a number of training examples
if args.debug:
for split in raw_datasets.keys():
raw_datasets[split] = raw_datasets[split].select(range(100))
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
if raw_datasets["train"] is not None:
column_names = raw_datasets["train"].column_names
features = raw_datasets["train"].features
else:
column_names = raw_datasets["validation"].column_names
features = raw_datasets["validation"].features
if args.text_column_name is not None:
text_column_name = args.text_column_name
elif "tokens" in column_names:
text_column_name = "tokens"
else:
text_column_name = column_names[0]
if args.label_column_name is not None:
label_column_name = args.label_column_name
elif f"{args.task_name}_tags" in column_names:
label_column_name = f"{args.task_name}_tags"
else:
label_column_name = column_names[1]
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
else:
label_list = get_label_list(raw_datasets["train"][label_column_name])
num_labels = len(label_list)
# Map that sends B-Xxx label to its I-Xxx counterpart
b_to_i_label = []
for idx, label in enumerate(label_list):
if label.startswith("B-") and label.replace("B-", "I-") in label_list:
b_to_i_label.append(label_list.index(label.replace("B-", "I-")))
else:
b_to_i_label.append(idx)
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.config_name:
config = LukeConfig.from_pretrained(args.config_name, num_labels=num_labels)
elif args.model_name_or_path:
config = LukeConfig.from_pretrained(args.model_name_or_path, num_labels=num_labels)
else:
logger.warning("You are instantiating a new config instance from scratch.")
tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path
if not tokenizer_name_or_path:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
tokenizer = LukeTokenizer.from_pretrained(
tokenizer_name_or_path,
use_fast=False,
task="entity_span_classification",
max_entity_length=args.max_entity_length,
max_mention_length=args.max_mention_length,
)
if args.model_name_or_path:
model = LukeForEntitySpanClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
else:
logger.info("Training new model from scratch")
model = LukeForEntitySpanClassification.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
padding = "max_length" if args.pad_to_max_length else False
def compute_sentence_boundaries_for_luke(examples):
sentence_boundaries = []
for tokens in examples[text_column_name]:
sentence_boundaries.append([0, len(tokens)])
examples["sentence_boundaries"] = sentence_boundaries
return examples
def compute_entity_spans_for_luke(examples):
all_entity_spans = []
texts = []
all_labels_entity_spans = []
all_original_entity_spans = []
for labels, tokens, sentence_boundaries in zip(
examples[label_column_name], examples[text_column_name], examples["sentence_boundaries"]
):
subword_lengths = [len(tokenizer.tokenize(token)) for token in tokens]
total_subword_length = sum(subword_lengths)
_, context_end = sentence_boundaries
if total_subword_length > args.max_length - 2:
cur_length = sum(subword_lengths[:context_end])
idx = context_end - 1
while cur_length > args.max_length - 2:
cur_length -= subword_lengths[idx]
context_end -= 1
idx -= 1
text = ""
sentence_words = tokens[:context_end]
sentence_subword_lengths = subword_lengths[:context_end]
word_start_char_positions = []
word_end_char_positions = []
labels_positions = {}
for word, label in zip(sentence_words, labels):
if word[0] == "'" or (len(word) == 1 and is_punctuation(word)):
text = text.rstrip()
word_start_char_positions.append(len(text))
text += word
word_end_char_positions.append(len(text))
text += " "
labels_positions[(word_start_char_positions[-1], word_end_char_positions[-1])] = label
text = text.rstrip()
texts.append(text)
entity_spans = []
labels_entity_spans = []
original_entity_spans = []
for word_start in range(len(sentence_words)):
for word_end in range(word_start, len(sentence_words)):
if (
sum(sentence_subword_lengths[word_start:word_end]) <= tokenizer.max_mention_length
and len(entity_spans) < tokenizer.max_entity_length
):
entity_spans.append((word_start_char_positions[word_start], word_end_char_positions[word_end]))
original_entity_spans.append((word_start, word_end + 1))
if (
word_start_char_positions[word_start],
word_end_char_positions[word_end],
) in labels_positions:
labels_entity_spans.append(
labels_positions[
(word_start_char_positions[word_start], word_end_char_positions[word_end])
]
)
else:
labels_entity_spans.append(0)
all_entity_spans.append(entity_spans)
all_labels_entity_spans.append(labels_entity_spans)
all_original_entity_spans.append(original_entity_spans)
examples["entity_spans"] = all_entity_spans
examples["text"] = texts
examples["labels_entity_spans"] = all_labels_entity_spans
examples["original_entity_spans"] = all_original_entity_spans
return examples
def tokenize_and_align_labels(examples):
entity_spans = []
for v in examples["entity_spans"]:
entity_spans.append(list(map(tuple, v)))
tokenized_inputs = tokenizer(
examples["text"],
entity_spans=entity_spans,
max_length=args.max_length,
padding=padding,
truncation=True,
)
if padding == "max_length":
tokenized_inputs["labels"] = padding_tensor(
examples["labels_entity_spans"], -100, tokenizer.padding_side, tokenizer.max_entity_length
)
tokenized_inputs["original_entity_spans"] = padding_tensor(
examples["original_entity_spans"], (-1, -1), tokenizer.padding_side, tokenizer.max_entity_length
)
tokenized_inputs[label_column_name] = padding_tensor(
examples[label_column_name], -1, tokenizer.padding_side, tokenizer.max_entity_length
)
else:
tokenized_inputs["labels"] = [ex[: tokenizer.max_entity_length] for ex in examples["labels_entity_spans"]]
tokenized_inputs["original_entity_spans"] = [
ex[: tokenizer.max_entity_length] for ex in examples["original_entity_spans"]
]
tokenized_inputs[label_column_name] = [
ex[: tokenizer.max_entity_length] for ex in examples[label_column_name]
]
return tokenized_inputs
with accelerator.main_process_first():
raw_datasets = raw_datasets.map(
compute_sentence_boundaries_for_luke,
batched=True,
desc="Adding sentence boundaries",
)
raw_datasets = raw_datasets.map(
compute_entity_spans_for_luke,
batched=True,
desc="Adding sentence spans",
)
processed_raw_datasets = raw_datasets.map(
tokenize_and_align_labels,
batched=True,
remove_columns=raw_datasets["train"].column_names,
desc="Running tokenizer on dataset",
)
train_dataset = processed_raw_datasets["train"]
eval_dataset = processed_raw_datasets["validation"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorForTokenClassification` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
data_collator = DataCollatorForLukeTokenClassification(
tokenizer, pad_to_multiple_of=(8 if accelerator.use_fp16 else None)
)
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Use the device given by the `accelerator` object.
device = accelerator.device
model.to(device)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Metrics
metric = load_metric("seqeval")
def get_luke_labels(outputs, ner_tags, original_entity_spans):
true_predictions = []
true_labels = []
for output, original_spans, tags in zip(outputs.logits, original_entity_spans, ner_tags):
true_tags = [val for val in tags if val != -1]
true_original_spans = [val for val in original_spans if val != (-1, -1)]
max_indices = torch.argmax(output, axis=1)
max_logits = torch.max(output, axis=1).values
predictions = []
for logit, index, span in zip(max_logits, max_indices, true_original_spans):
if index != 0:
predictions.append((logit, span, label_list[index]))
predicted_sequence = [label_list[0]] * len(true_tags)
for _, span, label in sorted(predictions, key=lambda o: o[0], reverse=True):
if all(o == label_list[0] for o in predicted_sequence[span[0] : span[1]]):
predicted_sequence[span[0]] = label
if span[1] - span[0] > 1:
predicted_sequence[span[0] + 1 : span[1]] = [label] * (span[1] - span[0] - 1)
true_predictions.append(predicted_sequence)
true_labels.append([label_list[tag_id] for tag_id in true_tags])
return true_predictions, true_labels
def compute_metrics():
results = metric.compute()
if args.return_entity_level_metrics:
# Unpack nested dictionaries
final_results = {}
for key, value in results.items():
if isinstance(value, dict):
for n, v in value.items():
final_results[f"{key}_{n}"] = v
else:
final_results[key] = value
return final_results
else:
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
for epoch in range(args.num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
_ = batch.pop("original_entity_spans")
outputs = model(**batch)
loss = outputs.loss
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
model.eval()
for step, batch in enumerate(eval_dataloader):
original_entity_spans = batch.pop("original_entity_spans")
with torch.no_grad():
outputs = model(**batch)
preds, refs = get_luke_labels(outputs, batch[label_column_name], original_entity_spans)
metric.add_batch(
predictions=preds,
references=refs,
) # predictions and preferences are expected to be a nested list of labels, not label_ids
eval_metric = compute_metrics()
accelerator.print(f"epoch {epoch}:", eval_metric)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
)
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/luke/run_luke_ner_no_trainer.py |
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def padding_tensor(sequences, padding_value, padding_side, sequence_length):
if isinstance(padding_value, tuple):
out_tensor = np.full((len(sequences), sequence_length, 2), padding_value)
else:
out_tensor = np.full((len(sequences), sequence_length), padding_value)
for i, tensor in enumerate(sequences):
if padding_side == "right":
if isinstance(padding_value, tuple):
out_tensor[i, : len(tensor[:sequence_length]), :2] = tensor[:sequence_length]
else:
out_tensor[i, : len(tensor[:sequence_length])] = tensor[:sequence_length]
else:
if isinstance(padding_value, tuple):
out_tensor[i, len(tensor[:sequence_length]) - 1 :, :2] = tensor[:sequence_length]
else:
out_tensor[i, len(tensor[:sequence_length]) - 1 :] = tensor[:sequence_length]
return out_tensor.tolist()
def is_punctuation(char):
cp = ord(char)
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
@dataclass
class DataCollatorForLukeTokenClassification(DataCollatorMixin):
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (`int`, *optional*, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
return_tensors (`str`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def torch_call(self, features):
import torch
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
batch = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
# Conversion to tensors will fail if we have labels as they are not of the same length yet.
return_tensors="pt" if labels is None else None,
)
if labels is None:
return batch
sequence_length = torch.tensor(batch["entity_ids"]).shape[1]
padding_side = self.tokenizer.padding_side
if padding_side == "right":
batch[label_name] = [
list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels
]
else:
batch[label_name] = [
[self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels
]
ner_tags = [feature["ner_tags"] for feature in features]
batch["ner_tags"] = padding_tensor(ner_tags, -1, padding_side, sequence_length)
original_entity_spans = [feature["original_entity_spans"] for feature in features]
batch["original_entity_spans"] = padding_tensor(original_entity_spans, (-1, -1), padding_side, sequence_length)
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
return batch
| transformers-main | examples/research_projects/luke/luke_utils.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on HANS."""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, List, Optional
import numpy as np
import torch
from utils_hans import HansDataset, InputFeatures, hans_processors, hans_tasks_num_labels
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import is_main_process
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: str = field(
metadata={"help": "The name of the task to train selected in the list: " + ", ".join(hans_processors.keys())}
)
data_dir: str = field(
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
)
max_seq_length: int = field(
default=128,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
def hans_data_collator(features: List[InputFeatures]) -> Dict[str, torch.Tensor]:
"""
Data collator that removes the "pairID" key if present.
"""
batch = default_data_collator(features)
_ = batch.pop("pairID", None)
return batch
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
" --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed
set_seed(training_args.seed)
try:
num_labels = hans_tasks_num_labels[data_args.task_name]
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Get datasets
train_dataset = (
HansDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
)
if training_args.do_train
else None
)
eval_dataset = (
HansDataset(
data_dir=data_args.data_dir,
tokenizer=tokenizer,
task=data_args.task_name,
max_seq_length=data_args.max_seq_length,
overwrite_cache=data_args.overwrite_cache,
evaluate=True,
)
if training_args.do_eval
else None
)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=hans_data_collator,
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
output = trainer.predict(eval_dataset)
preds = output.predictions
preds = np.argmax(preds, axis=1)
pair_ids = [ex.pairID for ex in eval_dataset]
output_eval_file = os.path.join(training_args.output_dir, "hans_predictions.txt")
label_list = eval_dataset.get_labels()
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
writer.write("pairID,gold_label\n")
for pid, pred in zip(pair_ids, preds):
writer.write("ex" + str(pid) + "," + label_list[int(pred)] + "\n")
trainer._log(output.metrics)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/adversarial/run_hans.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
logger = logging.getLogger(__name__)
@dataclass(frozen=True)
class InputExample:
"""
A single training/test example for simple sequence classification.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
pairID: (Optional) string. Unique identifier for the pair of sentences.
"""
guid: str
text_a: str
text_b: Optional[str] = None
label: Optional[str] = None
pairID: Optional[str] = None
@dataclass(frozen=True)
class InputFeatures:
"""
A single set of features of data.
Property names are the same names as the corresponding inputs to a model.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
token_type_ids: (Optional) Segment token indices to indicate first and second
portions of the inputs. Only some models use them.
label: (Optional) Label corresponding to the input. Int for classification problems,
float for regression problems.
pairID: (Optional) Unique identifier for the pair of sentences.
"""
input_ids: List[int]
attention_mask: Optional[List[int]] = None
token_type_ids: Optional[List[int]] = None
label: Optional[Union[int, float]] = None
pairID: Optional[int] = None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class HansDataset(Dataset):
"""
This will be superseded by a framework-agnostic approach
soon.
"""
features: List[InputFeatures]
def __init__(
self,
data_dir: str,
tokenizer: PreTrainedTokenizer,
task: str,
max_seq_length: Optional[int] = None,
overwrite_cache=False,
evaluate: bool = False,
):
processor = hans_processors[task]()
cached_features_file = os.path.join(
data_dir,
"cached_{}_{}_{}_{}".format(
"dev" if evaluate else "train",
tokenizer.__class__.__name__,
str(max_seq_length),
task,
),
)
label_list = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
self.label_list = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lock_path = cached_features_file + ".lock"
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not overwrite_cache:
logger.info(f"Loading features from cached file {cached_features_file}")
self.features = torch.load(cached_features_file)
else:
logger.info(f"Creating features from dataset file at {data_dir}")
examples = (
processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
)
logger.info("Training examples: %s", len(examples))
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(self.features, cached_features_file)
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> InputFeatures:
return self.features[i]
def get_labels(self):
return self.label_list
if is_tf_available():
import tensorflow as tf
class TFHansDataset:
"""
This will be superseded by a framework-agnostic approach
soon.
"""
features: List[InputFeatures]
def __init__(
self,
data_dir: str,
tokenizer: PreTrainedTokenizer,
task: str,
max_seq_length: Optional[int] = 128,
overwrite_cache=False,
evaluate: bool = False,
):
processor = hans_processors[task]()
label_list = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
self.label_list = label_list
examples = processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir)
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer)
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
self.dataset = tf.data.Dataset.from_generator(
gen,
(
{
"example_id": tf.int32,
"input_ids": tf.int32,
"attention_mask": tf.int32,
"token_type_ids": tf.int32,
},
tf.int64,
),
(
{
"example_id": tf.TensorShape([]),
"input_ids": tf.TensorShape([None, None]),
"attention_mask": tf.TensorShape([None, None]),
"token_type_ids": tf.TensorShape([None, None]),
},
tf.TensorShape([]),
),
)
def get_dataset(self):
return self.dataset
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> InputFeatures:
return self.features[i]
def get_labels(self):
return self.label_list
class HansProcessor(DataProcessor):
"""Processor for the HANS data set."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_train_set.txt")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_evaluation_set.txt")), "dev")
def get_labels(self):
"""See base class.
Note that we follow the standard three labels for MNLI
(see :class:`~transformers.data.processors.utils.MnliProcessor`)
but the HANS evaluation groups `contradiction` and `neutral` into `non-entailment` (label 0) while
`entailment` is label 1."""
return ["contradiction", "entailment", "neutral"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[5]
text_b = line[6]
pairID = line[7][2:] if line[7].startswith("ex") else line[7]
label = line[0]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, pairID=pairID))
return examples
def hans_convert_examples_to_features(
examples: List[InputExample],
label_list: List[str],
max_length: int,
tokenizer: PreTrainedTokenizer,
):
"""
Loads a data file into a list of ``InputFeatures``
Args:
examples: List of ``InputExamples`` containing the examples.
label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method.
max_length: Maximum example length.
tokenizer: Instance of a tokenizer that will tokenize the examples.
Returns:
A list of task-specific ``InputFeatures`` which can be fed to the model.
"""
label_map = {label: i for i, label in enumerate(label_list)}
features = []
for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"):
if ex_index % 10000 == 0:
logger.info("Writing example %d" % (ex_index))
inputs = tokenizer(
example.text_a,
example.text_b,
add_special_tokens=True,
max_length=max_length,
padding="max_length",
truncation=True,
return_overflowing_tokens=True,
)
label = label_map[example.label] if example.label in label_map else 0
pairID = int(example.pairID)
features.append(InputFeatures(**inputs, label=label, pairID=pairID))
for i, example in enumerate(examples[:5]):
logger.info("*** Example ***")
logger.info(f"guid: {example}")
logger.info(f"features: {features[i]}")
return features
hans_tasks_num_labels = {
"hans": 3,
}
hans_processors = {
"hans": HansProcessor,
}
| transformers-main | examples/research_projects/adversarial/utils_hans.py |
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
"""
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger(__name__)
model_dict = {"facebook/bart-base": BartForConditionalGeneration}
tokenizer_dict = {"facebook/bart-base": BartTokenizer}
def parse_args():
parser = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph.")
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--max_length",
type=int,
default=5,
help="The maximum total input sequence length after tokenization.",
)
parser.add_argument(
"--num_beams",
type=int,
default=None,
help=(
"Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
),
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="Device where the model will be run",
)
parser.add_argument("--output_file_path", type=str, default=None, help="Where to store the final ONNX file.")
args = parser.parse_args()
return args
def load_model_tokenizer(model_name, device="cpu"):
huggingface_model = model_dict[model_name].from_pretrained(model_name).to(device)
tokenizer = tokenizer_dict[model_name].from_pretrained(model_name)
if model_name in ["facebook/bart-base"]:
huggingface_model.config.no_repeat_ngram_size = 0
huggingface_model.config.forced_bos_token_id = None
huggingface_model.config.min_length = 0
return huggingface_model, tokenizer
def export_and_validate_model(model, tokenizer, onnx_file_path, num_beams, max_length):
model.eval()
ort_sess = None
bart_script_model = torch.jit.script(BARTBeamSearchGenerator(model))
with torch.no_grad():
ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt").to(model.device)
summary_ids = model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
num_beams=num_beams,
max_length=max_length,
early_stopping=True,
decoder_start_token_id=model.config.decoder_start_token_id,
)
torch.onnx.export(
bart_script_model,
(
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
),
onnx_file_path,
opset_version=14,
input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"],
output_names=["output_ids"],
dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
},
example_outputs=summary_ids,
)
logger.info("Model exported to {}".format(onnx_file_path))
new_onnx_file_path = remove_dup_initializers(os.path.abspath(onnx_file_path))
logger.info("Deduplicated and optimized model written to {}".format(new_onnx_file_path))
ort_sess = onnxruntime.InferenceSession(new_onnx_file_path)
ort_out = ort_sess.run(
None,
{
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(num_beams),
"max_length": np.array(max_length),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id),
},
)
np.testing.assert_allclose(summary_ids.cpu().numpy(), ort_out[0], rtol=1e-3, atol=1e-3)
logger.info("Model outputs from torch and ONNX Runtime are similar.")
logger.info("Success.")
def main():
args = parse_args()
max_length = 5
num_beams = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.setLevel(logging.INFO)
transformers.utils.logging.set_verbosity_error()
device = torch.device(args.device)
model, tokenizer = load_model_tokenizer(args.model_name_or_path, device)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
model.to(device)
if args.max_length:
max_length = args.max_length
if args.num_beams:
num_beams = args.num_beams
if args.output_file_path:
output_name = args.output_file_path
else:
output_name = "BART.onnx"
logger.info("Exporting model to ONNX")
export_and_validate_model(model, tokenizer, output_name, num_beams, max_length)
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/onnx/summarization/run_onnx_exporter.py |
"""
Code to remove duplicate initializers to reduce ONNX model size.
"""
import os
import numpy
import onnx
def _is_equal_tensor_proto(a, b):
name_a = a.name
name_b = b.name
a.name = ""
b.name = ""
res = a == b
a.name = name_a
b.name = name_b
return res
def _node_replace_input_with(node_proto, name, new_name):
for i, input_name in enumerate(node_proto.input):
if input_name == name:
node_proto.input.insert(i, new_name)
node_proto.input.pop(i + 1)
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, name, new_name)
_graph_replace_input_with(node_proto.attribute[1].g, name, new_name)
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, name, new_name)
def _graph_replace_input_with(graph_proto, name, new_name):
for n in graph_proto.node:
_node_replace_input_with(n, name, new_name)
def _remove_dup_initializers_from_model(model, model_without_ext, ind_to_replace):
inits_with_data = list(model.graph.initializer)
inits = list(model_without_ext.graph.initializer)
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
name_i = inits[i].name
name_ref = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i])
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, name_i, name_ref)
def remove_dup_initializers(onnx_file_path):
"""
Removes duplicate initializers from the model to reduce its size.
Writes a new file in the same directory as onnx_file_path and returns the path to that file.
"""
model_file_folder = os.path.dirname(onnx_file_path)
model_file_name = os.path.basename(onnx_file_path)
model = onnx.load(os.path.join(model_file_folder, model_file_name))
inits = list(model.graph.initializer)
dup_set = set()
dup_map = {}
ind_to_replace = []
total_reduced_size = 0
for i in range(len(inits)):
if i in dup_set:
continue
for j in range(i + 1, len(inits)):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j]):
dup_set.add(i)
dup_set.add(j)
dtype = inits[j].data_type
mem_size = numpy.prod(inits[j].dims)
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("unexpected data type: ", dtype)
total_reduced_size += mem_size
name_i = inits[i].name
name_j = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(name_j)
else:
dup_map[name_i] = [name_j]
ind_to_replace.append((j, i))
print("total reduced size: ", total_reduced_size / 1024 / 1024 / 1024, "GB")
ind_to_replace = sorted(ind_to_replace)
_remove_dup_initializers_from_model(model, model, ind_to_replace)
optimized_model_file_name = "optimized_" + model_file_name
new_model = os.path.join(model_file_folder, optimized_model_file_name)
onnx.save(model, new_model)
return new_model
| transformers-main | examples/research_projects/onnx/summarization/bart_onnx/reduce_onnx_size.py |
import copy
import itertools
from typing import List, Optional, Tuple
import torch
import torch.nn.functional as F
from transformers import BartConfig
from transformers.generation import GenerationMixin
def _convert_past_list_to_tuple(past_key_values):
"""
In Bart model, the type of past_key_values is tuple(tuple(torch.FloatTensor)) which is not
TorchScript-compatible. To support this, we have to convert it during the export process.
This function will convert past values from a list to tuple(tuple(torch.FloatTensor)) for
the inner decoder.
According to the definition of past_key_values, each inner tuple(torch.FloatTensor) has 4 tensors,
so we convert every 4 elements in the list as a tuple(torch.FloatTensor).
"""
count_of_each_inner_tuple = 4
results = ()
temp_result = ()
count_n = len(past_key_values) // count_of_each_inner_tuple
for idx in range(count_n):
real_idx = idx * count_of_each_inner_tuple
temp_result = tuple(past_key_values[real_idx : real_idx + count_of_each_inner_tuple])
results += ((temp_result),)
return results
class EncoderForONNX(torch.nn.Module):
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
def forward(self, input_ids, attention_mask):
return self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=False,
)
class DecoderForONNX(torch.nn.Module):
def __init__(self, decoder):
super().__init__()
self.decoder = decoder
def forward(self, input_ids, encoder_state, attention_mask, past=None):
all_results = None
if past is not None:
all_results = _convert_past_list_to_tuple(past)
input_ids = input_ids[:, -1:]
last_hidden_state, past_key_values = self.decoder(
input_ids=input_ids,
encoder_hidden_states=encoder_state,
encoder_attention_mask=attention_mask,
past_key_values=all_results,
return_dict=False,
)
past_values = []
for past in past_key_values:
past_values = past_values + list(past)
return last_hidden_state, past_values
def _create_traced_encoder(encoder, input_ids, attention_mask):
encoder_c = copy.deepcopy(encoder)
encoder_for_onnx = EncoderForONNX(encoder_c)
return torch.jit.trace(encoder_for_onnx, (input_ids, attention_mask))
def _create_traced_decoder(decoder, input_ids, encoder_state, attention_mask, past=None):
decoder_c = copy.deepcopy(decoder)
decoder_for_onnx = DecoderForONNX(decoder_c)
past_values = list(itertools.chain.from_iterable(past or ()))
# Do this twice so we got 2 different decoders for further work.
if past_values:
return torch.jit.trace(decoder_for_onnx, (input_ids, encoder_state, attention_mask, past_values))
else:
return torch.jit.trace(decoder_for_onnx, (input_ids, encoder_state, attention_mask))
class BartConfigTS(BartConfig, torch.nn.Module):
"""
BartConfigTS is a TorchScript-compatible transformers.models.bart.configuration_bart.BartConfig.
TorchScript only supports sub-classes of torch.nn.Module.
"""
def __init__(self, config):
BartConfig.__init__(self, config)
torch.nn.Module.__init__(self)
class MinLengthLogitsProcessorTS(torch.nn.Module):
r"""
:class:`transformers.LogitsProcessor` enforcing a min-length by setting EOS probability to 0.
Args:
min_length (:obj:`int`):
The minimum length below which the score of :obj:`eos_token_id` is set to :obj:`-float("Inf")`.
eos_token_id (:obj:`int`):
The id of the `end-of-sequence` token.
"""
def __init__(self, min_length: int, eos_token_id: int):
super().__init__()
if not isinstance(min_length, int) or min_length < 0:
raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}")
if not isinstance(eos_token_id, int) or eos_token_id < 0:
raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}")
self.min_length = min_length
self.eos_token_id = eos_token_id
def forward(self, input_ids, scores) -> torch.Tensor:
cur_len = input_ids.shape[-1]
if cur_len < self.min_length:
scores[:, self.eos_token_id] = -float("inf")
return scores
class BARTGenerator(torch.nn.Module, GenerationMixin):
def __init__(self, model):
super().__init__()
self.config = BartConfigTS(model.config)
self.config.force_bos_token_to_be_generated = False
self._trace_modules(model)
self.logits_processor = MinLengthLogitsProcessorTS(self.config.min_length, self.config.eos_token_id)
self.final_logits_weight = model.model.shared.weight
self.final_logits_bias = model.final_logits_bias
self.decoder_layers = model.config.decoder_layers
def _trace_modules(self, model):
input_ids = torch.tensor(
[
[
19,
669,
18,
420,
8,
664,
57,
42,
8,
664,
21,
3028,
195,
4445,
331,
1293,
34,
21,
10,
6174,
1100,
6,
69,
104,
42,
32,
2621,
1638,
144,
4,
6174,
558,
108,
4419,
1091,
28,
4,
1668,
9,
1509,
1621,
279,
35,
867,
2734,
85,
11,
2216,
2734,
85,
203,
2244,
7,
6,
15,
8102,
7,
57,
8629,
5,
model.config.eos_token_id,
]
],
device=model.device,
dtype=torch.long,
)
attention_mask = torch.tensor(
[[True] * input_ids.shape[-1]],
device=model.device,
dtype=torch.bool,
)
self.encoder = _create_traced_encoder(model.get_encoder(), input_ids, attention_mask)
encoder_outputs = model.get_encoder()(input_ids, attention_mask=attention_mask, return_dict=True)
decoder = model.model.decoder
decoder_outputs = decoder(input_ids, attention_mask, encoder_outputs["last_hidden_state"], None, None, None)
self.decoder_no_past = _create_traced_decoder(
model.model.decoder, input_ids, encoder_outputs["last_hidden_state"], attention_mask
)
self.decoder_with_past = _create_traced_decoder(
model.model.decoder, input_ids, encoder_outputs["last_hidden_state"], attention_mask, decoder_outputs[1]
)
def _encoder_forward(self, input_ids, attention_mask):
return self.encoder(input_ids, attention_mask)[0]
@staticmethod
def _init_sequence_length_for_generation(
input_ids: torch.LongTensor, max_length: int
) -> Tuple[torch.Tensor, torch.Tensor, int]:
unfinished_sequences = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device) + 1
sequence_lengths = torch.zeros(input_ids.shape[0], dtype=torch.long, device=input_ids.device) + max_length
cur_len = input_ids.shape[-1]
return sequence_lengths, unfinished_sequences, cur_len
def _decoder_forward(self, input_ids, encoder_output, attention_mask, past: List[torch.Tensor]):
# Update here to use different decoder for different values of past.
if past is None or len(past) == 0:
decoder_output, past = self.decoder_no_past(
input_ids=input_ids, encoder_state=encoder_output, attention_mask=attention_mask
)
else:
decoder_output, past = self.decoder_with_past(
input_ids=input_ids, encoder_state=encoder_output, attention_mask=attention_mask, past=past
)
lm_logits = F.linear(decoder_output, self.final_logits_weight, bias=self.final_logits_bias)
return lm_logits, past
def greedy_search(
self, input_ids, encoder_output, attention_mask, max_length, pad_token_id: int, eos_token_id: int
):
# init sequence length tensors
sequence_lengths, unfinished_sequences, cur_len = self._init_sequence_length_for_generation(
input_ids, max_length
)
past: List[torch.Tensor] = []
while cur_len < max_length:
logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past)
next_token_logits = logits[:, -1, :]
# pre-process distribution
scores = self.logits_processor(input_ids, next_token_logits)
# argmax
next_tokens = torch.argmax(scores, dim=-1)
# add code that transfomers next_tokens to tokens_to_add
if eos_token_id is not None:
assert pad_token_id is not None, "If eos_token_id is defined, make sure that pad_token_id is defined."
next_tokens = next_tokens * unfinished_sequences + (pad_token_id) * (1 - unfinished_sequences)
# add token and increase length by one
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
# update sequence length
if eos_token_id is not None:
sequence_lengths, unfinished_sequences = self._update_seq_length_for_generation(
sequence_lengths, unfinished_sequences, cur_len, next_tokens == eos_token_id
)
# stop when there is a </s> in each sentence, or if we exceed the maximul length
if unfinished_sequences.max() == 0:
break
# increase cur_len
cur_len = cur_len + 1
return input_ids
def _prepare_decoder_input_ids_for_generation(
self,
input_ids: torch.LongTensor,
decoder_start_token_id,
bos_token_id: Optional[int] = None,
) -> torch.LongTensor:
decoder_input_ids = (
torch.ones((input_ids.shape[0], 1), dtype=input_ids.dtype, device=input_ids.device)
* decoder_start_token_id
)
return decoder_input_ids
def forward(self, input_ids, attention_mask, max_length, decoder_start_token_id):
pad_token_id = self.config.pad_token_id
bos_token_id = self.config.bos_token_id
eos_token_id = self.config.eos_token_id
# special case if pad_token_id is not defined
if pad_token_id is None and eos_token_id is not None:
# Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.
pad_token_id = eos_token_id
encoder_output = self._encoder_forward(input_ids, attention_mask)
input_ids = self._prepare_decoder_input_ids_for_generation(
input_ids,
decoder_start_token_id=decoder_start_token_id,
bos_token_id=bos_token_id,
)
return self.greedy_search(
input_ids,
encoder_output,
attention_mask,
max_length=max_length,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
# TorchScript compatible BeamSearchScorer
class BeamSearchScorerTS(torch.nn.Module):
def __init__(self):
super().__init__()
self.max_length: int = 200
self.num_beams: int = 3
self.batch_size: int = 1
self.length_penalty: float = 1.0
self.do_early_stopping: bool = True
self.num_beam_hyps_to_keep: int = 1
self.num_beam_groups: int = 1
self.group_size: int = self.num_beams // self.num_beam_groups
self._done = torch.zeros(self.batch_size, dtype=torch.bool)
self._beam_hyps_count = torch.zeros(self.batch_size, dtype=torch.long)
self._beam_hyps_worst_scores = torch.zeros(self.batch_size) + 1e9
self._beam_hyps_max_length: int = self.max_length - 1
self._beam_hyps: List[torch.Tensor] = [torch.zeros(2)] # placeholder for TorchScript compatibility
self._beam_scores: List[torch.Tensor] = [torch.zeros(2)] # placeholder for TorchScript compatibility
def is_done(self) -> torch.Tensor:
return self._done.all()
def init(
self,
batch_size: int,
max_length: int,
num_beams: int,
device: torch.device,
length_penalty: float = 1.0,
do_early_stopping: bool = False,
num_beam_hyps_to_keep: int = 1,
num_beam_groups: int = 1,
):
self.max_length = max_length
self.num_beams = num_beams
self.batch_size = batch_size
self.length_penalty = length_penalty
self.do_early_stopping = do_early_stopping
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
self.num_beam_groups = num_beam_groups
self.group_size = self.num_beams // self.num_beam_groups
# NOTE: TorchScript does not support List of Modules
# Rewritten BeamHypotheses with tensors and list of tensors.
self._done = torch.zeros(batch_size, dtype=torch.bool, device=device)
self._beam_hyps_count = torch.zeros(batch_size, dtype=torch.long, device=device)
self._beam_hyps_worst_scores = torch.zeros(batch_size, device=device) + 1e9
self._beam_hyps = []
self._beam_scores = []
self._beam_hyps_max_length = max_length - 1 # ignoring bos_token
if not isinstance(num_beams, int) or num_beams <= 1:
raise ValueError(
f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
" one should make use of `greedy_search` instead."
)
if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
raise ValueError(
"`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
)
def hypo_len(self, hypo_idx: int):
"""
Number of hypotheses in the list.
"""
return self._beam_hyps_count[hypo_idx]
def hypo_add(self, hyp: torch.Tensor, sum_logprobs: float, hypo_idx: int):
"""
Add a new hypothesis to the list.
"""
score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty)
hyps_count = self.hypo_len(hypo_idx)
if hyps_count < self.num_beams or score > self._beam_hyps_worst_scores[hypo_idx]:
# NOTE: work around difference of torch.sum(empty_tensor) == 0, while error in onnx.
# Bug: https://msdata.visualstudio.com/Vienna/_workitems/edit/1486599
beam_idx = (
torch.sum(self._beam_hyps_count[:hypo_idx]) if hypo_idx != 0 else torch.tensor(0, dtype=torch.long)
)
self._beam_scores.insert(beam_idx, torch.tensor([score]))
self._beam_hyps.insert(beam_idx, hyp)
if hyps_count + 1 > self.num_beams:
sorted_next_scores, sorted_indices = torch.topk(
torch.cat(self._beam_scores)[beam_idx : beam_idx + hyps_count + 1], hyps_count + 1, largest=False
)
del self._beam_hyps[int((sorted_indices[0] + beam_idx))]
del self._beam_scores[int((sorted_indices[0] + beam_idx))]
self._beam_hyps_worst_scores[hypo_idx] = sorted_next_scores[1]
else:
self._beam_hyps_worst_scores[hypo_idx] = min(score, self._beam_hyps_worst_scores[hypo_idx])
self._beam_hyps_count[hypo_idx] = hyps_count + 1
def hypo_is_done(self, hypo_idx: int, best_sum_logprobs: float, cur_len: int) -> bool:
"""
If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst
one in the heap, then we are done with this sentence.
"""
if self.hypo_len(hypo_idx) < self.num_beams:
return False
elif self.do_early_stopping:
return True
else:
cur_score = best_sum_logprobs / cur_len**self.length_penalty
ret = self._beam_hyps_worst_scores[hypo_idx].item() >= cur_score
return ret
def process(
self,
input_ids: torch.Tensor,
next_scores: torch.Tensor,
next_tokens: torch.Tensor,
next_indices: torch.Tensor,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
cur_len = input_ids.shape[-1]
batch_size = len(self._beam_hyps_count)
assert batch_size == (input_ids.shape[0] // self.group_size)
device = input_ids.device
next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device)
next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)
for batch_idx in range(batch_size):
if self._done[batch_idx]:
assert (
self.hypo_len(batch_idx) >= self.num_beams
), "Batch can only be done if at least {} beams have been generated".format(self.num_beams)
assert (
eos_token_id is not None and pad_token_id is not None
), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined"
# pad the batch
next_beam_scores[batch_idx, :] = 0
next_beam_tokens[batch_idx, :] = pad_token_id
next_beam_indices[batch_idx, :] = 0
continue
# next tokens for this sentence
beam_idx = 0
for beam_token_rank, (next_token, next_score, next_index) in enumerate(
zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
):
batch_beam_idx = batch_idx * self.group_size + next_index
# add to generated hypotheses if end of sentence
if (eos_token_id is not None) and (next_token == eos_token_id):
# if beam_token does not belong to top num_beams tokens, it should not be added
is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
if is_beam_token_worse_than_top_num_beams:
continue
self.hypo_add(
input_ids[batch_beam_idx].clone(),
next_score.item(),
batch_idx,
)
else:
# add next predicted token since it is not eos_token
next_beam_scores[batch_idx, beam_idx] = next_score
next_beam_tokens[batch_idx, beam_idx] = next_token
next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
beam_idx += 1
# once the beam for next step is full, don't add more tokens to it.
if beam_idx == self.group_size:
break
if beam_idx < self.group_size:
raise ValueError(
f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
)
# Check if we are done so that we can save a pad step if all(done)
self._done[batch_idx] = self._done[batch_idx] or self.hypo_is_done(
batch_idx,
next_scores[batch_idx].max().item(),
cur_len,
)
return next_beam_scores.view(-1), next_beam_tokens.view(-1), next_beam_indices.view(-1)
def finalize(
self,
input_ids: torch.Tensor,
final_beam_scores: torch.Tensor,
final_beam_tokens: torch.Tensor,
final_beam_indices: torch.Tensor,
pad_token_id: int,
eos_token_id: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = len(self._beam_hyps_count)
# finalize all open beam hypotheses and add to generated hypotheses
for batch_idx in range(batch_size):
if self._done[batch_idx]:
continue
# all open beam hypotheses are added to the beam hypothesis
# beam hypothesis class automatically keeps the best beams
for beam_id in range(self.num_beams):
batch_beam_idx = batch_idx * self.num_beams + beam_id
final_score = final_beam_scores[batch_beam_idx].item()
final_tokens = input_ids[batch_beam_idx]
self.hypo_add(final_tokens, final_score, batch_idx)
# select the best hypotheses
# NOTE: torch.Tensor.new_zeros() is not scriptable
sent_lengths = torch.zeros(batch_size * self.num_beam_hyps_to_keep, dtype=torch.long)
best = []
best_scores = torch.zeros(
batch_size * self.num_beam_hyps_to_keep, device=input_ids.device, dtype=torch.float32
)
# retrieve best hypotheses
for i in range(batch_size):
# NOTE: lambda is not scriptable
batch_hypo_start = torch.sum(self._beam_hyps_count[:i]) if i > 0 else torch.tensor(0, dtype=torch.long)
batch_hypo_end = torch.sum(self._beam_hyps_count[: i + 1])
beam_scores = torch.cat(self._beam_scores)[batch_hypo_start:batch_hypo_end]
sorted_next_scores, sorted_indices = torch.topk(beam_scores, len(beam_scores), largest=True)
for j in range(self.num_beam_hyps_to_keep):
best_score = beam_scores[sorted_indices[j]]
best_hyp = self._beam_hyps[batch_hypo_start + sorted_indices[j]]
sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)
# append to lists
best.append(best_hyp)
best_scores[i * self.num_beam_hyps_to_keep + j] = best_score
# prepare for adding eos
sent_max_len = min(sent_lengths.max() + 1, self.max_length)
decoded = torch.zeros(batch_size * self.num_beam_hyps_to_keep, sent_max_len, dtype=torch.long)
# shorter batches are padded if needed
if sent_lengths.min() != sent_lengths.max():
assert pad_token_id is not None, "`pad_token_id` has to be defined"
decoded.fill_(pad_token_id)
# fill with hypotheses and eos_token_id if the latter fits in
for i, hypo in enumerate(best):
decoded[i, : sent_lengths[i]] = hypo
if sent_lengths[i] < self.max_length:
decoded[i, sent_lengths[i]] = eos_token_id
return decoded, best_scores
class BARTBeamSearchGenerator(BARTGenerator):
def __init__(self, model):
super().__init__(model)
self.beam_scorer = BeamSearchScorerTS()
self.device = model.device
@staticmethod
def _expand_inputs_for_generation(
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
last_hidden_state: torch.Tensor,
expand_size: int = 1,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
expanded_return_idx = (
torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
)
input_ids = input_ids.index_select(0, expanded_return_idx)
attention_mask = attention_mask.index_select(0, expanded_return_idx)
last_hidden_state = last_hidden_state.index_select(0, expanded_return_idx.to(last_hidden_state.device))
return input_ids, attention_mask, last_hidden_state
def adjust_logits_during_generation(self, logits, cur_len: int, max_length: int):
if cur_len == 1 and self.config.force_bos_token_to_be_generated:
logits = self._force_token_id_to_be_generated(logits, self.config.bos_token_id)
elif cur_len == max_length - 1 and self.config.eos_token_id is not None:
logits = self._force_token_id_to_be_generated(logits, self.config.eos_token_id)
return logits
@staticmethod
def _force_token_id_to_be_generated(scores, token_id: int):
"""force one of token_ids to be generated by setting prob of all other tokens to 0 (logprob=-float("inf"))"""
mask = torch.full_like(scores, 1, dtype=torch.bool)
mask[:, token_id] = False
return scores.masked_fill(mask, -float("inf"))
def _reorder_cache(self, past: List[torch.Tensor], beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
reordered_decoder_past = []
for state in past:
reordered_decoder_past.append(state.index_select(0, beam_idx))
return reordered_decoder_past
def beam_search(
self, input_ids, encoder_output, attention_mask, num_beams, max_length, pad_token_id: int, eos_token_id: int
):
batch_size = self.beam_scorer.batch_size
num_beams = self.beam_scorer.num_beams
batch_beam_size, cur_len = input_ids.shape
assert (
num_beams * batch_size == batch_beam_size
), f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * num_beams,))
next_tokens = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device)
next_indices = torch.zeros((batch_size, num_beams), dtype=torch.long, device=input_ids.device)
past: List[torch.Tensor] = []
while cur_len < max_length:
logits, past = self._decoder_forward(input_ids, encoder_output, attention_mask, past)
next_token_logits = logits[:, -1, :]
# adjust tokens for Bart, *e.g.*
next_token_logits = self.adjust_logits_during_generation(
next_token_logits, cur_len=cur_len, max_length=max_length
)
next_token_scores = F.log_softmax(next_token_logits, dim=-1) # (batch_size * num_beams, vocab_size)
# pre-process distribution
next_token_scores = self.logits_processor(input_ids, next_token_scores)
next_token_scores = next_token_scores + beam_scores[:, None].expand_as(next_token_scores)
# reshape for beam search
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
next_token_scores, next_tokens = torch.topk(
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
)
next_indices = next_tokens // vocab_size
next_tokens = next_tokens % vocab_size
beam_scores, beam_next_tokens, beam_idx = self.beam_scorer.process(
input_ids,
next_token_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
cur_len = cur_len + 1
if len(past) > 0:
past = self._reorder_cache(past, beam_idx)
if self.beam_scorer.is_done():
break
sequences, sequence_scores = self.beam_scorer.finalize(
input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
return sequences
def forward(self, input_ids, attention_mask, num_beams, max_length, decoder_start_token_id):
pad_token_id = self.config.pad_token_id
bos_token_id = self.config.bos_token_id
eos_token_id = self.config.eos_token_id
# special case if pad_token_id is not defined
if pad_token_id is None and eos_token_id is not None:
# logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
pad_token_id = eos_token_id
encoder_output = self._encoder_forward(input_ids, attention_mask)
input_ids = self._prepare_decoder_input_ids_for_generation(
input_ids,
decoder_start_token_id=decoder_start_token_id,
bos_token_id=bos_token_id,
)
batch_size = input_ids.shape[0]
length_penalty = self.config.length_penalty
num_return_sequences = self.config.num_return_sequences
early_stopping = True
self.beam_scorer.init(
batch_size=batch_size,
max_length=max_length,
num_beams=num_beams,
device=self.device,
length_penalty=length_penalty,
do_early_stopping=early_stopping,
num_beam_hyps_to_keep=num_return_sequences,
)
input_ids, attention_mask, encoder_output = self._expand_inputs_for_generation(
input_ids,
attention_mask,
encoder_output,
expand_size=num_beams,
)
return self.beam_search(
input_ids=input_ids,
encoder_output=encoder_output,
attention_mask=attention_mask,
num_beams=num_beams,
max_length=max_length,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
)
| transformers-main | examples/research_projects/onnx/summarization/bart_onnx/generation_onnx.py |
"""
coding=utf-8
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
Adapted From Facebook Inc, Detectron2
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.import copy
"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class ResizeShortestEdge:
def __init__(self, short_edge_length, max_size=sys.maxsize):
"""
Args:
short_edge_length (list[min, max])
max_size (int): maximum allowed longest edge length.
"""
self.interp_method = "bilinear"
self.max_size = max_size
self.short_edge_length = short_edge_length
def __call__(self, imgs):
img_augs = []
for img in imgs:
h, w = img.shape[:2]
# later: provide list and randomly choose index for resize
size = np.random.randint(self.short_edge_length[0], self.short_edge_length[1] + 1)
if size == 0:
return img
scale = size * 1.0 / min(h, w)
if h < w:
newh, neww = size, scale * w
else:
newh, neww = scale * h, size
if max(newh, neww) > self.max_size:
scale = self.max_size * 1.0 / max(newh, neww)
newh = newh * scale
neww = neww * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
if img.dtype == np.uint8:
pil_image = Image.fromarray(img)
pil_image = pil_image.resize((neww, newh), PILImageResampling.BILINEAR)
img = np.asarray(pil_image)
else:
img = img.permute(2, 0, 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw
img = nn.functional.interpolate(
img, (newh, neww), mode=self.interp_method, align_corners=False
).squeeze(0)
img_augs.append(img)
return img_augs
class Preprocess:
def __init__(self, cfg):
self.aug = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST)
self.input_format = cfg.INPUT.FORMAT
self.size_divisibility = cfg.SIZE_DIVISIBILITY
self.pad_value = cfg.PAD_VALUE
self.max_image_size = cfg.INPUT.MAX_SIZE_TEST
self.device = cfg.MODEL.DEVICE
self.pixel_std = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD), 1, 1)
self.pixel_mean = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD), 1, 1)
self.normalizer = lambda x: (x - self.pixel_mean) / self.pixel_std
def pad(self, images):
max_size = tuple(max(s) for s in zip(*[img.shape for img in images]))
image_sizes = [im.shape[-2:] for im in images]
images = [
nn.functional.pad(
im,
[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]],
value=self.pad_value,
)
for size, im in zip(image_sizes, images)
]
return torch.stack(images), torch.tensor(image_sizes)
def __call__(self, images, single_image=False):
with torch.no_grad():
if not isinstance(images, list):
images = [images]
if single_image:
assert len(images) == 1
for i in range(len(images)):
if isinstance(images[i], torch.Tensor):
images.insert(i, images.pop(i).to(self.device).float())
elif not isinstance(images[i], torch.Tensor):
images.insert(
i,
torch.as_tensor(img_tensorize(images.pop(i), input_format=self.input_format))
.to(self.device)
.float(),
)
# resize smallest edge
raw_sizes = torch.tensor([im.shape[:2] for im in images])
images = self.aug(images)
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
images = [self.normalizer(x) for x in images]
# now pad them to do the following operations
images, sizes = self.pad(images)
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
scales_yx = torch.true_divide(raw_sizes, sizes)
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def _scale_box(boxes, scale_yx):
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def _clip_box(tensor, box_size: Tuple[int, int]):
assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!"
h, w = box_size
tensor[:, 0].clamp_(min=0, max=w)
tensor[:, 1].clamp_(min=0, max=h)
tensor[:, 2].clamp_(min=0, max=w)
tensor[:, 3].clamp_(min=0, max=h)
| transformers-main | examples/research_projects/lxmert/processing_image.py |
"""
coding=utf-8
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
Adapted From Facebook Inc, Detectron2 && Huggingface Co.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.import copy
"""
import itertools
import math
import os
from abc import ABCMeta, abstractmethod
from collections import OrderedDict, namedtuple
from typing import Dict, List, Tuple
import numpy as np
import torch
from torch import nn
from torch.nn.modules.batchnorm import BatchNorm2d
from torchvision.ops import RoIPool
from torchvision.ops.boxes import batched_nms, nms
from utils import WEIGHTS_NAME, Config, cached_path, hf_bucket_url, is_remote_url, load_checkpoint
# other:
def norm_box(boxes, raw_sizes):
if not isinstance(boxes, torch.Tensor):
normalized_boxes = boxes.copy()
else:
normalized_boxes = boxes.clone()
normalized_boxes[:, :, (0, 2)] /= raw_sizes[:, 1]
normalized_boxes[:, :, (1, 3)] /= raw_sizes[:, 0]
return normalized_boxes
def pad_list_tensors(
list_tensors,
preds_per_image,
max_detections=None,
return_tensors=None,
padding=None,
pad_value=0,
location=None,
):
"""
location will always be cpu for np tensors
"""
if location is None:
location = "cpu"
assert return_tensors in {"pt", "np", None}
assert padding in {"max_detections", "max_batch", None}
new = []
if padding is None:
if return_tensors is None:
return list_tensors
elif return_tensors == "pt":
if not isinstance(list_tensors, torch.Tensor):
return torch.stack(list_tensors).to(location)
else:
return list_tensors.to(location)
else:
if not isinstance(list_tensors, list):
return np.array(list_tensors.to(location))
else:
return list_tensors.to(location)
if padding == "max_detections":
assert max_detections is not None, "specify max number of detections per batch"
elif padding == "max_batch":
max_detections = max(preds_per_image)
for i in range(len(list_tensors)):
too_small = False
tensor_i = list_tensors.pop(0)
if tensor_i.ndim < 2:
too_small = True
tensor_i = tensor_i.unsqueeze(-1)
assert isinstance(tensor_i, torch.Tensor)
tensor_i = nn.functional.pad(
input=tensor_i,
pad=(0, 0, 0, max_detections - preds_per_image[i]),
mode="constant",
value=pad_value,
)
if too_small:
tensor_i = tensor_i.squeeze(-1)
if return_tensors is None:
if location == "cpu":
tensor_i = tensor_i.cpu()
tensor_i = tensor_i.tolist()
if return_tensors == "np":
if location == "cpu":
tensor_i = tensor_i.cpu()
tensor_i = tensor_i.numpy()
else:
if location == "cpu":
tensor_i = tensor_i.cpu()
new.append(tensor_i)
if return_tensors == "np":
return np.stack(new, axis=0)
elif return_tensors == "pt" and not isinstance(new, torch.Tensor):
return torch.stack(new, dim=0)
else:
return list_tensors
def do_nms(boxes, scores, image_shape, score_thresh, nms_thresh, mind, maxd):
scores = scores[:, :-1]
num_bbox_reg_classes = boxes.shape[1] // 4
# Convert to Boxes to use the `clip` function ...
boxes = boxes.reshape(-1, 4)
_clip_box(boxes, image_shape)
boxes = boxes.view(-1, num_bbox_reg_classes, 4) # R x C x 4
# Select max scores
max_scores, max_classes = scores.max(1) # R x C --> R
num_objs = boxes.size(0)
boxes = boxes.view(-1, 4)
idxs = torch.arange(num_objs).to(boxes.device) * num_bbox_reg_classes + max_classes
max_boxes = boxes[idxs] # Select max boxes according to the max scores.
# Apply NMS
keep = nms(max_boxes, max_scores, nms_thresh)
keep = keep[:maxd]
if keep.shape[-1] >= mind and keep.shape[-1] <= maxd:
max_boxes, max_scores = max_boxes[keep], max_scores[keep]
classes = max_classes[keep]
return max_boxes, max_scores, classes, keep
else:
return None
# Helper Functions
def _clip_box(tensor, box_size: Tuple[int, int]):
assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!"
h, w = box_size
tensor[:, 0].clamp_(min=0, max=w)
tensor[:, 1].clamp_(min=0, max=h)
tensor[:, 2].clamp_(min=0, max=w)
tensor[:, 3].clamp_(min=0, max=h)
def _nonempty_boxes(box, threshold: float = 0.0) -> torch.Tensor:
widths = box[:, 2] - box[:, 0]
heights = box[:, 3] - box[:, 1]
keep = (widths > threshold) & (heights > threshold)
return keep
def get_norm(norm, out_channels):
if isinstance(norm, str):
if len(norm) == 0:
return None
norm = {
"BN": BatchNorm2d,
"GN": lambda channels: nn.GroupNorm(32, channels),
"nnSyncBN": nn.SyncBatchNorm, # keep for debugging
"": lambda x: x,
}[norm]
return norm(out_channels)
def _create_grid_offsets(size: List[int], stride: int, offset: float, device):
grid_height, grid_width = size
shifts_x = torch.arange(
offset * stride,
grid_width * stride,
step=stride,
dtype=torch.float32,
device=device,
)
shifts_y = torch.arange(
offset * stride,
grid_height * stride,
step=stride,
dtype=torch.float32,
device=device,
)
shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
shift_x = shift_x.reshape(-1)
shift_y = shift_y.reshape(-1)
return shift_x, shift_y
def build_backbone(cfg):
input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN))
norm = cfg.RESNETS.NORM
stem = BasicStem(
in_channels=input_shape.channels,
out_channels=cfg.RESNETS.STEM_OUT_CHANNELS,
norm=norm,
caffe_maxpool=cfg.MODEL.MAX_POOL,
)
freeze_at = cfg.BACKBONE.FREEZE_AT
if freeze_at >= 1:
for p in stem.parameters():
p.requires_grad = False
out_features = cfg.RESNETS.OUT_FEATURES
depth = cfg.RESNETS.DEPTH
num_groups = cfg.RESNETS.NUM_GROUPS
width_per_group = cfg.RESNETS.WIDTH_PER_GROUP
bottleneck_channels = num_groups * width_per_group
in_channels = cfg.RESNETS.STEM_OUT_CHANNELS
out_channels = cfg.RESNETS.RES2_OUT_CHANNELS
stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1
res5_dilation = cfg.RESNETS.RES5_DILATION
assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth]
stages = []
out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features]
max_stage_idx = max(out_stage_idx)
for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
dilation = res5_dilation if stage_idx == 5 else 1
first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
stage_kargs = {
"num_blocks": num_blocks_per_stage[idx],
"first_stride": first_stride,
"in_channels": in_channels,
"bottleneck_channels": bottleneck_channels,
"out_channels": out_channels,
"num_groups": num_groups,
"norm": norm,
"stride_in_1x1": stride_in_1x1,
"dilation": dilation,
}
stage_kargs["block_class"] = BottleneckBlock
blocks = ResNet.make_stage(**stage_kargs)
in_channels = out_channels
out_channels *= 2
bottleneck_channels *= 2
if freeze_at >= stage_idx:
for block in blocks:
block.freeze()
stages.append(blocks)
return ResNet(stem, stages, out_features=out_features)
def find_top_rpn_proposals(
proposals,
pred_objectness_logits,
images,
image_sizes,
nms_thresh,
pre_nms_topk,
post_nms_topk,
min_box_side_len,
training,
):
"""Args:
proposals (list[Tensor]): (L, N, Hi*Wi*A, 4).
pred_objectness_logits: tensors of length L.
nms_thresh (float): IoU threshold to use for NMS
pre_nms_topk (int): before nms
post_nms_topk (int): after nms
min_box_side_len (float): minimum proposal box side
training (bool): True if proposals are to be used in training,
Returns:
results (List[Dict]): stores post_nms_topk object proposals for image i.
"""
num_images = len(images)
device = proposals[0].device
# 1. Select top-k anchor for every level and every image
topk_scores = [] # #lvl Tensor, each of shape N x topk
topk_proposals = []
level_ids = [] # #lvl Tensor, each of shape (topk,)
batch_idx = torch.arange(num_images, device=device)
for level_id, proposals_i, logits_i in zip(itertools.count(), proposals, pred_objectness_logits):
Hi_Wi_A = logits_i.shape[1]
num_proposals_i = min(pre_nms_topk, Hi_Wi_A)
# sort is faster than topk (https://github.com/pytorch/pytorch/issues/22812)
# topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1)
logits_i, idx = logits_i.sort(descending=True, dim=1)
topk_scores_i = logits_i[batch_idx, :num_proposals_i]
topk_idx = idx[batch_idx, :num_proposals_i]
# each is N x topk
topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4
topk_proposals.append(topk_proposals_i)
topk_scores.append(topk_scores_i)
level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device))
# 2. Concat all levels together
topk_scores = torch.cat(topk_scores, dim=1)
topk_proposals = torch.cat(topk_proposals, dim=1)
level_ids = torch.cat(level_ids, dim=0)
# if I change to batched_nms, I wonder if this will make a difference
# 3. For each image, run a per-level NMS, and choose topk results.
results = []
for n, image_size in enumerate(image_sizes):
boxes = topk_proposals[n]
scores_per_img = topk_scores[n]
# I will have to take a look at the boxes clip method
_clip_box(boxes, image_size)
# filter empty boxes
keep = _nonempty_boxes(boxes, threshold=min_box_side_len)
lvl = level_ids
if keep.sum().item() != len(boxes):
boxes, scores_per_img, lvl = (
boxes[keep],
scores_per_img[keep],
level_ids[keep],
)
keep = batched_nms(boxes, scores_per_img, lvl, nms_thresh)
keep = keep[:post_nms_topk]
res = (boxes[keep], scores_per_img[keep])
results.append(res)
# I wonder if it would be possible for me to pad all these things.
return results
def subsample_labels(labels, num_samples, positive_fraction, bg_label):
"""
Returns:
pos_idx, neg_idx (Tensor):
1D vector of indices. The total length of both is `num_samples` or fewer.
"""
positive = torch.nonzero((labels != -1) & (labels != bg_label)).squeeze(1)
negative = torch.nonzero(labels == bg_label).squeeze(1)
num_pos = int(num_samples * positive_fraction)
# protect against not enough positive examples
num_pos = min(positive.numel(), num_pos)
num_neg = num_samples - num_pos
# protect against not enough negative examples
num_neg = min(negative.numel(), num_neg)
# randomly select positive and negative examples
perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]
pos_idx = positive[perm1]
neg_idx = negative[perm2]
return pos_idx, neg_idx
def add_ground_truth_to_proposals(gt_boxes, proposals):
raise NotImplementedError()
def add_ground_truth_to_proposals_single_image(gt_boxes, proposals):
raise NotImplementedError()
def _fmt_box_list(box_tensor, batch_index: int):
repeated_index = torch.full(
(len(box_tensor), 1),
batch_index,
dtype=box_tensor.dtype,
device=box_tensor.device,
)
return torch.cat((repeated_index, box_tensor), dim=1)
def convert_boxes_to_pooler_format(box_lists: List[torch.Tensor]):
pooler_fmt_boxes = torch.cat(
[_fmt_box_list(box_list, i) for i, box_list in enumerate(box_lists)],
dim=0,
)
return pooler_fmt_boxes
def assign_boxes_to_levels(
box_lists: List[torch.Tensor],
min_level: int,
max_level: int,
canonical_box_size: int,
canonical_level: int,
):
box_sizes = torch.sqrt(torch.cat([boxes.area() for boxes in box_lists]))
# Eqn.(1) in FPN paper
level_assignments = torch.floor(canonical_level + torch.log2(box_sizes / canonical_box_size + 1e-8))
# clamp level to (min, max), in case the box size is too large or too small
# for the available feature maps
level_assignments = torch.clamp(level_assignments, min=min_level, max=max_level)
return level_assignments.to(torch.int64) - min_level
# Helper Classes
class _NewEmptyTensorOp(torch.autograd.Function):
@staticmethod
def forward(ctx, x, new_shape):
ctx.shape = x.shape
return x.new_empty(new_shape)
@staticmethod
def backward(ctx, grad):
shape = ctx.shape
return _NewEmptyTensorOp.apply(grad, shape), None
class ShapeSpec(namedtuple("_ShapeSpec", ["channels", "height", "width", "stride"])):
def __new__(cls, *, channels=None, height=None, width=None, stride=None):
return super().__new__(cls, channels, height, width, stride)
class Box2BoxTransform(object):
"""
This R-CNN transformation scales the box's width and height
by exp(dw), exp(dh) and shifts a box's center by the offset
(dx * width, dy * height).
"""
def __init__(self, weights: Tuple[float, float, float, float], scale_clamp: float = None):
"""
Args:
weights (4-element tuple): Scaling factors that are applied to the
(dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set
such that the deltas have unit variance; now they are treated as
hyperparameters of the system.
scale_clamp (float): When predicting deltas, the predicted box scaling
factors (dw and dh) are clamped such that they are <= scale_clamp.
"""
self.weights = weights
if scale_clamp is not None:
self.scale_clamp = scale_clamp
else:
"""
Value for clamping large dw and dh predictions.
The heuristic is that we clamp such that dw and dh are no larger
than what would transform a 16px box into a 1000px box
(based on a small anchor, 16px, and a typical image size, 1000px).
"""
self.scale_clamp = math.log(1000.0 / 16)
def get_deltas(self, src_boxes, target_boxes):
"""
Get box regression transformation deltas (dx, dy, dw, dh) that can be used
to transform the `src_boxes` into the `target_boxes`. That is, the relation
``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
any delta is too large and is clamped).
Args:
src_boxes (Tensor): source boxes, e.g., object proposals
target_boxes (Tensor): target of the transformation, e.g., ground-truth
boxes.
"""
assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
assert isinstance(target_boxes, torch.Tensor), type(target_boxes)
src_widths = src_boxes[:, 2] - src_boxes[:, 0]
src_heights = src_boxes[:, 3] - src_boxes[:, 1]
src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths
src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights
target_widths = target_boxes[:, 2] - target_boxes[:, 0]
target_heights = target_boxes[:, 3] - target_boxes[:, 1]
target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths
target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights
wx, wy, ww, wh = self.weights
dx = wx * (target_ctr_x - src_ctr_x) / src_widths
dy = wy * (target_ctr_y - src_ctr_y) / src_heights
dw = ww * torch.log(target_widths / src_widths)
dh = wh * torch.log(target_heights / src_heights)
deltas = torch.stack((dx, dy, dw, dh), dim=1)
assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!"
return deltas
def apply_deltas(self, deltas, boxes):
"""
Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
Args:
deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
deltas[i] represents k potentially different class-specific
box transformations for the single box boxes[i].
boxes (Tensor): boxes to transform, of shape (N, 4)
"""
boxes = boxes.to(deltas.dtype)
widths = boxes[:, 2] - boxes[:, 0]
heights = boxes[:, 3] - boxes[:, 1]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
wx, wy, ww, wh = self.weights
dx = deltas[:, 0::4] / wx
dy = deltas[:, 1::4] / wy
dw = deltas[:, 2::4] / ww
dh = deltas[:, 3::4] / wh
# Prevent sending too large values into torch.exp()
dw = torch.clamp(dw, max=self.scale_clamp)
dh = torch.clamp(dh, max=self.scale_clamp)
pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
pred_w = torch.exp(dw) * widths[:, None]
pred_h = torch.exp(dh) * heights[:, None]
pred_boxes = torch.zeros_like(deltas)
pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1
pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1
pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2
pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2
return pred_boxes
class Matcher(object):
"""
This class assigns to each predicted "element" (e.g., a box) a ground-truth
element. Each predicted element will have exactly zero or one matches; each
ground-truth element may be matched to zero or more predicted elements.
The matching is determined by the MxN match_quality_matrix, that characterizes
how well each (ground-truth, prediction)-pair match each other. For example,
if the elements are boxes, this matrix may contain box intersection-over-union
overlap values.
The matcher returns (a) a vector of length N containing the index of the
ground-truth element m in [0, M) that matches to prediction n in [0, N).
(b) a vector of length N containing the labels for each prediction.
"""
def __init__(
self,
thresholds: List[float],
labels: List[int],
allow_low_quality_matches: bool = False,
):
"""
Args:
thresholds (list): a list of thresholds used to stratify predictions
into levels.
labels (list): a list of values to label predictions belonging at
each level. A label can be one of {-1, 0, 1} signifying
{ignore, negative class, positive class}, respectively.
allow_low_quality_matches (bool): if True, produce additional matches or predictions with maximum match quality lower than high_threshold.
For example, thresholds = [0.3, 0.5] labels = [0, -1, 1] All predictions with iou < 0.3 will be marked with 0 and
thus will be considered as false positives while training. All predictions with 0.3 <= iou < 0.5 will be marked with -1 and
thus will be ignored. All predictions with 0.5 <= iou will be marked with 1 and thus will be considered as true positives.
"""
thresholds = thresholds[:]
assert thresholds[0] > 0
thresholds.insert(0, -float("inf"))
thresholds.append(float("inf"))
assert all(low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:]))
assert all(label_i in [-1, 0, 1] for label_i in labels)
assert len(labels) == len(thresholds) - 1
self.thresholds = thresholds
self.labels = labels
self.allow_low_quality_matches = allow_low_quality_matches
def __call__(self, match_quality_matrix):
"""
Args:
match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted
elements. All elements must be >= 0 (due to the us of `torch.nonzero` for selecting indices in :meth:`set_low_quality_matches_`).
Returns:
matches (Tensor[int64]): a vector of length N, where matches[i] is a matched ground-truth index in [0, M)
match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates true or false positive or ignored
"""
assert match_quality_matrix.dim() == 2
if match_quality_matrix.numel() == 0:
default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64)
# When no gt boxes exist, we define IOU = 0 and therefore set labels
# to `self.labels[0]`, which usually defaults to background class 0
# To choose to ignore instead,
# can make labels=[-1,0,-1,1] + set appropriate thresholds
default_match_labels = match_quality_matrix.new_full(
(match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8
)
return default_matches, default_match_labels
assert torch.all(match_quality_matrix >= 0)
# match_quality_matrix is M (gt) x N (predicted)
# Max over gt elements (dim 0) to find best gt candidate for each prediction
matched_vals, matches = match_quality_matrix.max(dim=0)
match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8)
for l, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]):
low_high = (matched_vals >= low) & (matched_vals < high)
match_labels[low_high] = l
if self.allow_low_quality_matches:
self.set_low_quality_matches_(match_labels, match_quality_matrix)
return matches, match_labels
def set_low_quality_matches_(self, match_labels, match_quality_matrix):
"""
Produce additional matches for predictions that have only low-quality matches.
Specifically, for each ground-truth G find the set of predictions that have
maximum overlap with it (including ties); for each prediction in that set, if
it is unmatched, then match it to the ground-truth G.
This function implements the RPN assignment case (i)
in Sec. 3.1.2 of Faster R-CNN.
"""
# For each gt, find the prediction with which it has highest quality
highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
# Find the highest quality match available, even if it is low, including ties.
# Note that the matches qualities must be positive due to the use of
# `torch.nonzero`.
of_quality_inds = match_quality_matrix == highest_quality_foreach_gt[:, None]
if of_quality_inds.dim() == 0:
(_, pred_inds_with_highest_quality) = of_quality_inds.unsqueeze(0).nonzero().unbind(1)
else:
(_, pred_inds_with_highest_quality) = of_quality_inds.nonzero().unbind(1)
match_labels[pred_inds_with_highest_quality] = 1
class RPNOutputs(object):
def __init__(
self,
box2box_transform,
anchor_matcher,
batch_size_per_image,
positive_fraction,
images,
pred_objectness_logits,
pred_anchor_deltas,
anchors,
boundary_threshold=0,
gt_boxes=None,
smooth_l1_beta=0.0,
):
"""
Args:
box2box_transform (Box2BoxTransform): :class:`Box2BoxTransform` instance for anchor-proposal transformations.
anchor_matcher (Matcher): :class:`Matcher` instance for matching anchors to ground-truth boxes; used to determine training labels.
batch_size_per_image (int): number of proposals to sample when training
positive_fraction (float): target fraction of sampled proposals that should be positive
images (ImageList): :class:`ImageList` instance representing N input images
pred_objectness_logits (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A, Hi, W)
pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A*4, Hi, Wi)
anchors (list[torch.Tensor]): nested list of boxes. anchors[i][j] at (n, l) stores anchor array for feature map l
boundary_threshold (int): if >= 0, then anchors that extend beyond the image boundary by more than boundary_thresh are not used in training.
gt_boxes (list[Boxes], optional): A list of N elements.
smooth_l1_beta (float): The transition point between L1 and L2 lossn. When set to 0, the loss becomes L1. When +inf, it is ignored
"""
self.box2box_transform = box2box_transform
self.anchor_matcher = anchor_matcher
self.batch_size_per_image = batch_size_per_image
self.positive_fraction = positive_fraction
self.pred_objectness_logits = pred_objectness_logits
self.pred_anchor_deltas = pred_anchor_deltas
self.anchors = anchors
self.gt_boxes = gt_boxes
self.num_feature_maps = len(pred_objectness_logits)
self.num_images = len(images)
self.boundary_threshold = boundary_threshold
self.smooth_l1_beta = smooth_l1_beta
def _get_ground_truth(self):
raise NotImplementedError()
def predict_proposals(self):
# pred_anchor_deltas: (L, N, ? Hi, Wi)
# anchors:(N, L, -1, B)
# here we loop over specific feature map, NOT images
proposals = []
anchors = self.anchors.transpose(0, 1)
for anchors_i, pred_anchor_deltas_i in zip(anchors, self.pred_anchor_deltas):
B = anchors_i.size(-1)
N, _, Hi, Wi = pred_anchor_deltas_i.shape
anchors_i = anchors_i.flatten(start_dim=0, end_dim=1)
pred_anchor_deltas_i = pred_anchor_deltas_i.view(N, -1, B, Hi, Wi).permute(0, 3, 4, 1, 2).reshape(-1, B)
proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i)
# Append feature map proposals with shape (N, Hi*Wi*A, B)
proposals.append(proposals_i.view(N, -1, B))
proposals = torch.stack(proposals)
return proposals
def predict_objectness_logits(self):
"""
Returns:
pred_objectness_logits (list[Tensor]) -> (N, Hi*Wi*A).
"""
pred_objectness_logits = [
# Reshape: (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
score.permute(0, 2, 3, 1).reshape(self.num_images, -1)
for score in self.pred_objectness_logits
]
return pred_objectness_logits
# Main Classes
class Conv2d(nn.Conv2d):
def __init__(self, *args, **kwargs):
norm = kwargs.pop("norm", None)
activation = kwargs.pop("activation", None)
super().__init__(*args, **kwargs)
self.norm = norm
self.activation = activation
def forward(self, x):
if x.numel() == 0 and self.training:
assert not isinstance(self.norm, nn.SyncBatchNorm)
if x.numel() == 0:
assert not isinstance(self.norm, nn.GroupNorm)
output_shape = [
(i + 2 * p - (di * (k - 1) + 1)) // s + 1
for i, p, di, k, s in zip(
x.shape[-2:],
self.padding,
self.dilation,
self.kernel_size,
self.stride,
)
]
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
empty = _NewEmptyTensorOp.apply(x, output_shape)
if self.training:
_dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + _dummy
else:
return empty
x = super().forward(x)
if self.norm is not None:
x = self.norm(x)
if self.activation is not None:
x = self.activation(x)
return x
class LastLevelMaxPool(nn.Module):
"""
This module is used in the original FPN to generate a downsampled P6 feature from P5.
"""
def __init__(self):
super().__init__()
self.num_levels = 1
self.in_feature = "p5"
def forward(self, x):
return [nn.functional.max_pool2d(x, kernel_size=1, stride=2, padding=0)]
class LastLevelP6P7(nn.Module):
"""
This module is used in RetinaNet to generate extra layers, P6 and P7 from C5 feature.
"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.num_levels = 2
self.in_feature = "res5"
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
def forward(self, c5):
p6 = self.p6(c5)
p7 = self.p7(nn.functional.relu(p6))
return [p6, p7]
class BasicStem(nn.Module):
def __init__(self, in_channels=3, out_channels=64, norm="BN", caffe_maxpool=False):
super().__init__()
self.conv1 = Conv2d(
in_channels,
out_channels,
kernel_size=7,
stride=2,
padding=3,
bias=False,
norm=get_norm(norm, out_channels),
)
self.caffe_maxpool = caffe_maxpool
# use pad 1 instead of pad zero
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu_(x)
if self.caffe_maxpool:
x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=0, ceil_mode=True)
else:
x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=1)
return x
@property
def out_channels(self):
return self.conv1.out_channels
@property
def stride(self):
return 4 # = stride 2 conv -> stride 2 max pool
class ResNetBlockBase(nn.Module):
def __init__(self, in_channels, out_channels, stride):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = stride
def freeze(self):
for p in self.parameters():
p.requires_grad = False
return self
class BottleneckBlock(ResNetBlockBase):
def __init__(
self,
in_channels,
out_channels,
bottleneck_channels,
stride=1,
num_groups=1,
norm="BN",
stride_in_1x1=False,
dilation=1,
):
super().__init__(in_channels, out_channels, stride)
if in_channels != out_channels:
self.shortcut = Conv2d(
in_channels,
out_channels,
kernel_size=1,
stride=stride,
bias=False,
norm=get_norm(norm, out_channels),
)
else:
self.shortcut = None
# The original MSRA ResNet models have stride in the first 1x1 conv
# The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
# stride in the 3x3 conv
stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
self.conv1 = Conv2d(
in_channels,
bottleneck_channels,
kernel_size=1,
stride=stride_1x1,
bias=False,
norm=get_norm(norm, bottleneck_channels),
)
self.conv2 = Conv2d(
bottleneck_channels,
bottleneck_channels,
kernel_size=3,
stride=stride_3x3,
padding=1 * dilation,
bias=False,
groups=num_groups,
dilation=dilation,
norm=get_norm(norm, bottleneck_channels),
)
self.conv3 = Conv2d(
bottleneck_channels,
out_channels,
kernel_size=1,
bias=False,
norm=get_norm(norm, out_channels),
)
def forward(self, x):
out = self.conv1(x)
out = nn.functional.relu_(out)
out = self.conv2(out)
out = nn.functional.relu_(out)
out = self.conv3(out)
if self.shortcut is not None:
shortcut = self.shortcut(x)
else:
shortcut = x
out += shortcut
out = nn.functional.relu_(out)
return out
class Backbone(nn.Module, metaclass=ABCMeta):
def __init__(self):
super().__init__()
@abstractmethod
def forward(self):
pass
@property
def size_divisibility(self):
"""
Some backbones require the input height and width to be divisible by a specific integer. This is
typically true for encoder / decoder type networks with lateral connection (e.g., FPN) for which feature maps need to match
dimension in the "bottom up" and "top down" paths. Set to 0 if no specific input size divisibility is required.
"""
return 0
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name],
stride=self._out_feature_strides[name],
)
for name in self._out_features
}
@property
def out_features(self):
"""deprecated"""
return self._out_features
@property
def out_feature_strides(self):
"""deprecated"""
return {f: self._out_feature_strides[f] for f in self._out_features}
@property
def out_feature_channels(self):
"""deprecated"""
return {f: self._out_feature_channels[f] for f in self._out_features}
class ResNet(Backbone):
def __init__(self, stem, stages, num_classes=None, out_features=None):
"""
Args:
stem (nn.Module): a stem module
stages (list[list[ResNetBlock]]): several (typically 4) stages, each contains multiple :class:`ResNetBlockBase`.
num_classes (None or int): if None, will not perform classification.
out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in:
"stem", "linear", or "res2" ... If None, will return the output of the last layer.
"""
super(ResNet, self).__init__()
self.stem = stem
self.num_classes = num_classes
current_stride = self.stem.stride
self._out_feature_strides = {"stem": current_stride}
self._out_feature_channels = {"stem": self.stem.out_channels}
self.stages_and_names = []
for i, blocks in enumerate(stages):
for block in blocks:
assert isinstance(block, ResNetBlockBase), block
curr_channels = block.out_channels
stage = nn.Sequential(*blocks)
name = "res" + str(i + 2)
self.add_module(name, stage)
self.stages_and_names.append((stage, name))
self._out_feature_strides[name] = current_stride = int(
current_stride * np.prod([k.stride for k in blocks])
)
self._out_feature_channels[name] = blocks[-1].out_channels
if num_classes is not None:
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.linear = nn.Linear(curr_channels, num_classes)
# Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
# "The 1000-way fully-connected layer is initialized by
# drawing weights from a zero-mean Gaussian with std of 0.01."
nn.init.normal_(self.linear.weight, stddev=0.01)
name = "linear"
if out_features is None:
out_features = [name]
self._out_features = out_features
assert len(self._out_features)
children = [x[0] for x in self.named_children()]
for out_feature in self._out_features:
assert out_feature in children, "Available children: {}".format(", ".join(children))
def forward(self, x):
outputs = {}
x = self.stem(x)
if "stem" in self._out_features:
outputs["stem"] = x
for stage, name in self.stages_and_names:
x = stage(x)
if name in self._out_features:
outputs[name] = x
if self.num_classes is not None:
x = self.avgpool(x)
x = self.linear(x)
if "linear" in self._out_features:
outputs["linear"] = x
return outputs
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name],
stride=self._out_feature_strides[name],
)
for name in self._out_features
}
@staticmethod
def make_stage(
block_class,
num_blocks,
first_stride=None,
*,
in_channels,
out_channels,
**kwargs,
):
"""
Usually, layers that produce the same feature map spatial size
are defined as one "stage".
Under such definition, stride_per_block[1:] should all be 1.
"""
if first_stride is not None:
assert "stride" not in kwargs and "stride_per_block" not in kwargs
kwargs["stride_per_block"] = [first_stride] + [1] * (num_blocks - 1)
blocks = []
for i in range(num_blocks):
curr_kwargs = {}
for k, v in kwargs.items():
if k.endswith("_per_block"):
assert (
len(v) == num_blocks
), f"Argument '{k}' of make_stage should have the same length as num_blocks={num_blocks}."
newk = k[: -len("_per_block")]
assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!"
curr_kwargs[newk] = v[i]
else:
curr_kwargs[k] = v
blocks.append(block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs))
in_channels = out_channels
return blocks
class ROIPooler(nn.Module):
"""
Region of interest feature map pooler that supports pooling from one or more
feature maps.
"""
def __init__(
self,
output_size,
scales,
sampling_ratio,
canonical_box_size=224,
canonical_level=4,
):
super().__init__()
# assumption that stride is a power of 2.
min_level = -math.log2(scales[0])
max_level = -math.log2(scales[-1])
# a bunch of testing
assert math.isclose(min_level, int(min_level)) and math.isclose(max_level, int(max_level))
assert len(scales) == max_level - min_level + 1, "not pyramid"
assert 0 < min_level and min_level <= max_level
if isinstance(output_size, int):
output_size = (output_size, output_size)
assert len(output_size) == 2 and isinstance(output_size[0], int) and isinstance(output_size[1], int)
if len(scales) > 1:
assert min_level <= canonical_level and canonical_level <= max_level
assert canonical_box_size > 0
self.output_size = output_size
self.min_level = int(min_level)
self.max_level = int(max_level)
self.level_poolers = nn.ModuleList(RoIPool(output_size, spatial_scale=scale) for scale in scales)
self.canonical_level = canonical_level
self.canonical_box_size = canonical_box_size
def forward(self, feature_maps, boxes):
"""
Args:
feature_maps: List[torch.Tensor(N,C,W,H)]
box_lists: list[torch.Tensor])
Returns:
A tensor of shape(N*B, Channels, output_size, output_size)
"""
x = list(feature_maps.values())
num_level_assignments = len(self.level_poolers)
assert len(x) == num_level_assignments and len(boxes) == x[0].size(0)
pooler_fmt_boxes = convert_boxes_to_pooler_format(boxes)
if num_level_assignments == 1:
return self.level_poolers[0](x[0], pooler_fmt_boxes)
level_assignments = assign_boxes_to_levels(
boxes,
self.min_level,
self.max_level,
self.canonical_box_size,
self.canonical_level,
)
num_boxes = len(pooler_fmt_boxes)
num_channels = x[0].shape[1]
output_size = self.output_size[0]
dtype, device = x[0].dtype, x[0].device
output = torch.zeros(
(num_boxes, num_channels, output_size, output_size),
dtype=dtype,
device=device,
)
for level, (x_level, pooler) in enumerate(zip(x, self.level_poolers)):
inds = torch.nonzero(level_assignments == level).squeeze(1)
pooler_fmt_boxes_level = pooler_fmt_boxes[inds]
output[inds] = pooler(x_level, pooler_fmt_boxes_level)
return output
class ROIOutputs(object):
def __init__(self, cfg, training=False):
self.smooth_l1_beta = cfg.ROI_BOX_HEAD.SMOOTH_L1_BETA
self.box2box_transform = Box2BoxTransform(weights=cfg.ROI_BOX_HEAD.BBOX_REG_WEIGHTS)
self.training = training
self.score_thresh = cfg.ROI_HEADS.SCORE_THRESH_TEST
self.min_detections = cfg.MIN_DETECTIONS
self.max_detections = cfg.MAX_DETECTIONS
nms_thresh = cfg.ROI_HEADS.NMS_THRESH_TEST
if not isinstance(nms_thresh, list):
nms_thresh = [nms_thresh]
self.nms_thresh = nms_thresh
def _predict_boxes(self, proposals, box_deltas, preds_per_image):
num_pred = box_deltas.size(0)
B = proposals[0].size(-1)
K = box_deltas.size(-1) // B
box_deltas = box_deltas.view(num_pred * K, B)
proposals = torch.cat(proposals, dim=0).unsqueeze(-2).expand(num_pred, K, B)
proposals = proposals.reshape(-1, B)
boxes = self.box2box_transform.apply_deltas(box_deltas, proposals)
return boxes.view(num_pred, K * B).split(preds_per_image, dim=0)
def _predict_objs(self, obj_logits, preds_per_image):
probs = nn.functional.softmax(obj_logits, dim=-1)
probs = probs.split(preds_per_image, dim=0)
return probs
def _predict_attrs(self, attr_logits, preds_per_image):
attr_logits = attr_logits[..., :-1].softmax(-1)
attr_probs, attrs = attr_logits.max(-1)
return attr_probs.split(preds_per_image, dim=0), attrs.split(preds_per_image, dim=0)
@torch.no_grad()
def inference(
self,
obj_logits,
attr_logits,
box_deltas,
pred_boxes,
features,
sizes,
scales=None,
):
# only the pred boxes is the
preds_per_image = [p.size(0) for p in pred_boxes]
boxes_all = self._predict_boxes(pred_boxes, box_deltas, preds_per_image)
obj_scores_all = self._predict_objs(obj_logits, preds_per_image) # list of length N
attr_probs_all, attrs_all = self._predict_attrs(attr_logits, preds_per_image)
features = features.split(preds_per_image, dim=0)
# fun for each image too, also I can experiment and do multiple images
final_results = []
zipped = zip(boxes_all, obj_scores_all, attr_probs_all, attrs_all, sizes)
for i, (boxes, obj_scores, attr_probs, attrs, size) in enumerate(zipped):
for nms_t in self.nms_thresh:
outputs = do_nms(
boxes,
obj_scores,
size,
self.score_thresh,
nms_t,
self.min_detections,
self.max_detections,
)
if outputs is not None:
max_boxes, max_scores, classes, ids = outputs
break
if scales is not None:
scale_yx = scales[i]
max_boxes[:, 0::2] *= scale_yx[1]
max_boxes[:, 1::2] *= scale_yx[0]
final_results.append(
(
max_boxes,
classes,
max_scores,
attrs[ids],
attr_probs[ids],
features[i][ids],
)
)
boxes, classes, class_probs, attrs, attr_probs, roi_features = map(list, zip(*final_results))
return boxes, classes, class_probs, attrs, attr_probs, roi_features
def training(self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes):
pass
def __call__(
self,
obj_logits,
attr_logits,
box_deltas,
pred_boxes,
features,
sizes,
scales=None,
):
if self.training:
raise NotImplementedError()
return self.inference(
obj_logits,
attr_logits,
box_deltas,
pred_boxes,
features,
sizes,
scales=scales,
)
class Res5ROIHeads(nn.Module):
"""
ROIHeads perform all per-region computation in an R-CNN.
It contains logic of cropping the regions, extract per-region features
(by the res-5 block in this case), and make per-region predictions.
"""
def __init__(self, cfg, input_shape):
super().__init__()
self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE
self.positive_sample_fraction = cfg.ROI_HEADS.POSITIVE_FRACTION
self.in_features = cfg.ROI_HEADS.IN_FEATURES
self.num_classes = cfg.ROI_HEADS.NUM_CLASSES
self.proposal_append_gt = cfg.ROI_HEADS.PROPOSAL_APPEND_GT
self.feature_strides = {k: v.stride for k, v in input_shape.items()}
self.feature_channels = {k: v.channels for k, v in input_shape.items()}
self.cls_agnostic_bbox_reg = cfg.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG
self.stage_channel_factor = 2**3 # res5 is 8x res2
self.out_channels = cfg.RESNETS.RES2_OUT_CHANNELS * self.stage_channel_factor
# self.proposal_matcher = Matcher(
# cfg.ROI_HEADS.IOU_THRESHOLDS,
# cfg.ROI_HEADS.IOU_LABELS,
# allow_low_quality_matches=False,
# )
pooler_resolution = cfg.ROI_BOX_HEAD.POOLER_RESOLUTION
pooler_scales = (1.0 / self.feature_strides[self.in_features[0]],)
sampling_ratio = cfg.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
res5_halve = cfg.ROI_BOX_HEAD.RES5HALVE
use_attr = cfg.ROI_BOX_HEAD.ATTR
num_attrs = cfg.ROI_BOX_HEAD.NUM_ATTRS
self.pooler = ROIPooler(
output_size=pooler_resolution,
scales=pooler_scales,
sampling_ratio=sampling_ratio,
)
self.res5 = self._build_res5_block(cfg)
if not res5_halve:
"""
Modifications for VG in RoI heads:
1. Change the stride of conv1 and shortcut in Res5.Block1 from 2 to 1
2. Modifying all conv2 with (padding: 1 --> 2) and (dilation: 1 --> 2)
"""
self.res5[0].conv1.stride = (1, 1)
self.res5[0].shortcut.stride = (1, 1)
for i in range(3):
self.res5[i].conv2.padding = (2, 2)
self.res5[i].conv2.dilation = (2, 2)
self.box_predictor = FastRCNNOutputLayers(
self.out_channels,
self.num_classes,
self.cls_agnostic_bbox_reg,
use_attr=use_attr,
num_attrs=num_attrs,
)
def _build_res5_block(self, cfg):
stage_channel_factor = self.stage_channel_factor # res5 is 8x res2
num_groups = cfg.RESNETS.NUM_GROUPS
width_per_group = cfg.RESNETS.WIDTH_PER_GROUP
bottleneck_channels = num_groups * width_per_group * stage_channel_factor
out_channels = self.out_channels
stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1
norm = cfg.RESNETS.NORM
blocks = ResNet.make_stage(
BottleneckBlock,
3,
first_stride=2,
in_channels=out_channels // 2,
bottleneck_channels=bottleneck_channels,
out_channels=out_channels,
num_groups=num_groups,
norm=norm,
stride_in_1x1=stride_in_1x1,
)
return nn.Sequential(*blocks)
def _shared_roi_transform(self, features, boxes):
x = self.pooler(features, boxes)
return self.res5(x)
def forward(self, features, proposal_boxes, gt_boxes=None):
if self.training:
"""
see https://github.com/airsplay/py-bottom-up-attention/\
blob/master/detectron2/modeling/roi_heads/roi_heads.py
"""
raise NotImplementedError()
assert not proposal_boxes[0].requires_grad
box_features = self._shared_roi_transform(features, proposal_boxes)
feature_pooled = box_features.mean(dim=[2, 3]) # pooled to 1x1
obj_logits, attr_logits, pred_proposal_deltas = self.box_predictor(feature_pooled)
return obj_logits, attr_logits, pred_proposal_deltas, feature_pooled
class AnchorGenerator(nn.Module):
"""
For a set of image sizes and feature maps, computes a set of anchors.
"""
def __init__(self, cfg, input_shape: List[ShapeSpec]):
super().__init__()
sizes = cfg.ANCHOR_GENERATOR.SIZES
aspect_ratios = cfg.ANCHOR_GENERATOR.ASPECT_RATIOS
self.strides = [x.stride for x in input_shape]
self.offset = cfg.ANCHOR_GENERATOR.OFFSET
assert 0.0 <= self.offset < 1.0, self.offset
"""
sizes (list[list[int]]): sizes[i] is the list of anchor sizes for feat map i
1. given in absolute lengths in units of the input image;
2. they do not dynamically scale if the input image size changes.
aspect_ratios (list[list[float]])
strides (list[int]): stride of each input feature.
"""
self.num_features = len(self.strides)
self.cell_anchors = nn.ParameterList(self._calculate_anchors(sizes, aspect_ratios))
self._spacial_feat_dim = 4
def _calculate_anchors(self, sizes, aspect_ratios):
# If one size (or aspect ratio) is specified and there are multiple feature
# maps, then we "broadcast" anchors of that single size (or aspect ratio)
if len(sizes) == 1:
sizes *= self.num_features
if len(aspect_ratios) == 1:
aspect_ratios *= self.num_features
assert self.num_features == len(sizes)
assert self.num_features == len(aspect_ratios)
cell_anchors = [self.generate_cell_anchors(s, a).float() for s, a in zip(sizes, aspect_ratios)]
return cell_anchors
@property
def box_dim(self):
return self._spacial_feat_dim
@property
def num_cell_anchors(self):
"""
Returns:
list[int]: Each int is the number of anchors at every pixel location, on that feature map.
"""
return [len(cell_anchors) for cell_anchors in self.cell_anchors]
def grid_anchors(self, grid_sizes):
anchors = []
for size, stride, base_anchors in zip(grid_sizes, self.strides, self.cell_anchors):
shift_x, shift_y = _create_grid_offsets(size, stride, self.offset, base_anchors.device)
shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)
anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4))
return anchors
def generate_cell_anchors(self, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)):
"""
anchors are continuous geometric rectangles
centered on one feature map point sample.
We can later build the set of anchors
for the entire feature map by tiling these tensors
"""
anchors = []
for size in sizes:
area = size**2.0
for aspect_ratio in aspect_ratios:
w = math.sqrt(area / aspect_ratio)
h = aspect_ratio * w
x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0
anchors.append([x0, y0, x1, y1])
return nn.Parameter(torch.tensor(anchors))
def forward(self, features):
"""
Args:
features List[torch.Tensor]: list of feature maps on which to generate anchors.
Returns:
torch.Tensor: a list of #image elements.
"""
num_images = features[0].size(0)
grid_sizes = [feature_map.shape[-2:] for feature_map in features]
anchors_over_all_feature_maps = self.grid_anchors(grid_sizes)
anchors_over_all_feature_maps = torch.stack(anchors_over_all_feature_maps)
return anchors_over_all_feature_maps.unsqueeze(0).repeat_interleave(num_images, dim=0)
class RPNHead(nn.Module):
"""
RPN classification and regression heads. Uses a 3x3 conv to produce a shared
hidden state from which one 1x1 conv predicts objectness logits for each anchor
and a second 1x1 conv predicts bounding-box deltas specifying how to deform
each anchor into an object proposal.
"""
def __init__(self, cfg, input_shape: List[ShapeSpec]):
super().__init__()
# Standard RPN is shared across levels:
in_channels = [s.channels for s in input_shape]
assert len(set(in_channels)) == 1, "Each level must have the same channel!"
in_channels = in_channels[0]
anchor_generator = AnchorGenerator(cfg, input_shape)
num_cell_anchors = anchor_generator.num_cell_anchors
box_dim = anchor_generator.box_dim
assert len(set(num_cell_anchors)) == 1, "Each level must have the same number of cell anchors"
num_cell_anchors = num_cell_anchors[0]
if cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS == -1:
hid_channels = in_channels
else:
hid_channels = cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS
# Modifications for VG in RPN (modeling/proposal_generator/rpn.py)
# Use hidden dim instead fo the same dim as Res4 (in_channels)
# 3x3 conv for the hidden representation
self.conv = nn.Conv2d(in_channels, hid_channels, kernel_size=3, stride=1, padding=1)
# 1x1 conv for predicting objectness logits
self.objectness_logits = nn.Conv2d(hid_channels, num_cell_anchors, kernel_size=1, stride=1)
# 1x1 conv for predicting box2box transform deltas
self.anchor_deltas = nn.Conv2d(hid_channels, num_cell_anchors * box_dim, kernel_size=1, stride=1)
for layer in [self.conv, self.objectness_logits, self.anchor_deltas]:
nn.init.normal_(layer.weight, std=0.01)
nn.init.constant_(layer.bias, 0)
def forward(self, features):
"""
Args:
features (list[Tensor]): list of feature maps
"""
pred_objectness_logits = []
pred_anchor_deltas = []
for x in features:
t = nn.functional.relu(self.conv(x))
pred_objectness_logits.append(self.objectness_logits(t))
pred_anchor_deltas.append(self.anchor_deltas(t))
return pred_objectness_logits, pred_anchor_deltas
class RPN(nn.Module):
"""
Region Proposal Network, introduced by the Faster R-CNN paper.
"""
def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
super().__init__()
self.min_box_side_len = cfg.PROPOSAL_GENERATOR.MIN_SIZE
self.in_features = cfg.RPN.IN_FEATURES
self.nms_thresh = cfg.RPN.NMS_THRESH
self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE
self.positive_fraction = cfg.RPN.POSITIVE_FRACTION
self.smooth_l1_beta = cfg.RPN.SMOOTH_L1_BETA
self.loss_weight = cfg.RPN.LOSS_WEIGHT
self.pre_nms_topk = {
True: cfg.RPN.PRE_NMS_TOPK_TRAIN,
False: cfg.RPN.PRE_NMS_TOPK_TEST,
}
self.post_nms_topk = {
True: cfg.RPN.POST_NMS_TOPK_TRAIN,
False: cfg.RPN.POST_NMS_TOPK_TEST,
}
self.boundary_threshold = cfg.RPN.BOUNDARY_THRESH
self.anchor_generator = AnchorGenerator(cfg, [input_shape[f] for f in self.in_features])
self.box2box_transform = Box2BoxTransform(weights=cfg.RPN.BBOX_REG_WEIGHTS)
self.anchor_matcher = Matcher(
cfg.RPN.IOU_THRESHOLDS,
cfg.RPN.IOU_LABELS,
allow_low_quality_matches=True,
)
self.rpn_head = RPNHead(cfg, [input_shape[f] for f in self.in_features])
def training(self, images, image_shapes, features, gt_boxes):
pass
def inference(self, outputs, images, image_shapes, features, gt_boxes=None):
outputs = find_top_rpn_proposals(
outputs.predict_proposals(),
outputs.predict_objectness_logits(),
images,
image_shapes,
self.nms_thresh,
self.pre_nms_topk[self.training],
self.post_nms_topk[self.training],
self.min_box_side_len,
self.training,
)
results = []
for img in outputs:
im_boxes, img_box_logits = img
img_box_logits, inds = img_box_logits.sort(descending=True)
im_boxes = im_boxes[inds]
results.append((im_boxes, img_box_logits))
(proposal_boxes, logits) = tuple(map(list, zip(*results)))
return proposal_boxes, logits
def forward(self, images, image_shapes, features, gt_boxes=None):
"""
Args:
images (torch.Tensor): input images of length `N`
features (dict[str: Tensor])
gt_instances
"""
# features is dict, key = block level, v = feature_map
features = [features[f] for f in self.in_features]
pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features)
anchors = self.anchor_generator(features)
outputs = RPNOutputs(
self.box2box_transform,
self.anchor_matcher,
self.batch_size_per_image,
self.positive_fraction,
images,
pred_objectness_logits,
pred_anchor_deltas,
anchors,
self.boundary_threshold,
gt_boxes,
self.smooth_l1_beta,
)
# For RPN-only models, the proposals are the final output
if self.training:
raise NotImplementedError()
return self.training(outputs, images, image_shapes, features, gt_boxes)
else:
return self.inference(outputs, images, image_shapes, features, gt_boxes)
class FastRCNNOutputLayers(nn.Module):
"""
Two linear layers for predicting Fast R-CNN outputs:
(1) proposal-to-detection box regression deltas
(2) classification scores
"""
def __init__(
self,
input_size,
num_classes,
cls_agnostic_bbox_reg,
box_dim=4,
use_attr=False,
num_attrs=-1,
):
"""
Args:
input_size (int): channels, or (channels, height, width)
num_classes (int)
cls_agnostic_bbox_reg (bool)
box_dim (int)
"""
super().__init__()
if not isinstance(input_size, int):
input_size = np.prod(input_size)
# (do + 1 for background class)
self.cls_score = nn.Linear(input_size, num_classes + 1)
num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)
self.use_attr = use_attr
if use_attr:
"""
Modifications for VG in RoI heads
Embedding: {num_classes + 1} --> {input_size // 8}
Linear: {input_size + input_size // 8} --> {input_size // 4}
Linear: {input_size // 4} --> {num_attrs + 1}
"""
self.cls_embedding = nn.Embedding(num_classes + 1, input_size // 8)
self.fc_attr = nn.Linear(input_size + input_size // 8, input_size // 4)
self.attr_score = nn.Linear(input_size // 4, num_attrs + 1)
nn.init.normal_(self.cls_score.weight, std=0.01)
nn.init.normal_(self.bbox_pred.weight, std=0.001)
for item in [self.cls_score, self.bbox_pred]:
nn.init.constant_(item.bias, 0)
def forward(self, roi_features):
if roi_features.dim() > 2:
roi_features = torch.flatten(roi_features, start_dim=1)
scores = self.cls_score(roi_features)
proposal_deltas = self.bbox_pred(roi_features)
if self.use_attr:
_, max_class = scores.max(-1) # [b, c] --> [b]
cls_emb = self.cls_embedding(max_class) # [b] --> [b, 256]
roi_features = torch.cat([roi_features, cls_emb], -1) # [b, 2048] + [b, 256] --> [b, 2304]
roi_features = self.fc_attr(roi_features)
roi_features = nn.functional.relu(roi_features)
attr_scores = self.attr_score(roi_features)
return scores, attr_scores, proposal_deltas
else:
return scores, proposal_deltas
class GeneralizedRCNN(nn.Module):
def __init__(self, cfg):
super().__init__()
self.device = torch.device(cfg.MODEL.DEVICE)
self.backbone = build_backbone(cfg)
self.proposal_generator = RPN(cfg, self.backbone.output_shape())
self.roi_heads = Res5ROIHeads(cfg, self.backbone.output_shape())
self.roi_outputs = ROIOutputs(cfg)
self.to(self.device)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
config = kwargs.pop("config", None)
state_dict = kwargs.pop("state_dict", None)
cache_dir = kwargs.pop("cache_dir", None)
from_tf = kwargs.pop("from_tf", False)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
use_cdn = kwargs.pop("use_cdn", True)
# Load config if we don't provide a configuration
if not isinstance(config, Config):
config_path = config if config is not None else pretrained_model_name_or_path
# try:
config = Config.from_pretrained(
config_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
)
# Load model
if pretrained_model_name_or_path is not None:
if os.path.isdir(pretrained_model_name_or_path):
if os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
# Load from a PyTorch checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
else:
raise EnvironmentError(
"Error no file named {} found in directory {} ".format(
WEIGHTS_NAME,
pretrained_model_name_or_path,
)
)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
elif os.path.isfile(pretrained_model_name_or_path + ".index"):
assert (
from_tf
), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
pretrained_model_name_or_path + ".index"
)
archive_file = pretrained_model_name_or_path + ".index"
else:
archive_file = hf_bucket_url(
pretrained_model_name_or_path,
filename=WEIGHTS_NAME,
use_cdn=use_cdn,
)
try:
# Load from URL or cache if already cached
resolved_archive_file = cached_path(
archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
)
if resolved_archive_file is None:
raise EnvironmentError
except EnvironmentError:
msg = f"Can't load weights for '{pretrained_model_name_or_path}'."
raise EnvironmentError(msg)
if resolved_archive_file == archive_file:
print("loading weights file {}".format(archive_file))
else:
print("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
else:
resolved_archive_file = None
# Instantiate model.
model = cls(config)
if state_dict is None:
try:
try:
state_dict = torch.load(resolved_archive_file, map_location="cpu")
except Exception:
state_dict = load_checkpoint(resolved_archive_file)
except Exception:
raise OSError(
"Unable to load weights from pytorch checkpoint file. "
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
)
missing_keys = []
unexpected_keys = []
error_msgs = []
# Convert old format to new format if needed from a PyTorch state_dict
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if "gamma" in key:
new_key = key.replace("gamma", "weight")
if "beta" in key:
new_key = key.replace("beta", "bias")
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
model_to_load = model
model_to_load.load_state_dict(state_dict)
if model.__class__.__name__ != model_to_load.__class__.__name__:
base_model_state_dict = model_to_load.state_dict().keys()
head_model_state_dict_without_base_prefix = [
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
]
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
if len(unexpected_keys) > 0:
print(
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
" with another architecture (e.g. initializing a BertForSequenceClassification model from a"
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
" (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
)
else:
print(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
if len(missing_keys) > 0:
print(
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
)
else:
print(
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
" training."
)
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(error_msgs)
)
)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
return model
def forward(
self,
images,
image_shapes,
gt_boxes=None,
proposals=None,
scales_yx=None,
**kwargs,
):
"""
kwargs:
max_detections (int), return_tensors {"np", "pt", None}, padding {None,
"max_detections"}, pad_value (int), location = {"cuda", "cpu"}
"""
if self.training:
raise NotImplementedError()
return self.inference(
images=images,
image_shapes=image_shapes,
gt_boxes=gt_boxes,
proposals=proposals,
scales_yx=scales_yx,
**kwargs,
)
@torch.no_grad()
def inference(
self,
images,
image_shapes,
gt_boxes=None,
proposals=None,
scales_yx=None,
**kwargs,
):
# run images through backbone
original_sizes = image_shapes * scales_yx
features = self.backbone(images)
# generate proposals if none are available
if proposals is None:
proposal_boxes, _ = self.proposal_generator(images, image_shapes, features, gt_boxes)
else:
assert proposals is not None
# pool object features from either gt_boxes, or from proposals
obj_logits, attr_logits, box_deltas, feature_pooled = self.roi_heads(features, proposal_boxes, gt_boxes)
# prepare FRCNN Outputs and select top proposals
boxes, classes, class_probs, attrs, attr_probs, roi_features = self.roi_outputs(
obj_logits=obj_logits,
attr_logits=attr_logits,
box_deltas=box_deltas,
pred_boxes=proposal_boxes,
features=feature_pooled,
sizes=image_shapes,
scales=scales_yx,
)
# will we pad???
subset_kwargs = {
"max_detections": kwargs.get("max_detections", None),
"return_tensors": kwargs.get("return_tensors", None),
"pad_value": kwargs.get("pad_value", 0),
"padding": kwargs.get("padding", None),
}
preds_per_image = torch.tensor([p.size(0) for p in boxes])
boxes = pad_list_tensors(boxes, preds_per_image, **subset_kwargs)
classes = pad_list_tensors(classes, preds_per_image, **subset_kwargs)
class_probs = pad_list_tensors(class_probs, preds_per_image, **subset_kwargs)
attrs = pad_list_tensors(attrs, preds_per_image, **subset_kwargs)
attr_probs = pad_list_tensors(attr_probs, preds_per_image, **subset_kwargs)
roi_features = pad_list_tensors(roi_features, preds_per_image, **subset_kwargs)
subset_kwargs["padding"] = None
preds_per_image = pad_list_tensors(preds_per_image, None, **subset_kwargs)
sizes = pad_list_tensors(image_shapes, None, **subset_kwargs)
normalized_boxes = norm_box(boxes, original_sizes)
return OrderedDict(
{
"obj_ids": classes,
"obj_probs": class_probs,
"attr_ids": attrs,
"attr_probs": attr_probs,
"boxes": boxes,
"sizes": sizes,
"preds_per_image": preds_per_image,
"roi_features": roi_features,
"normalized_boxes": normalized_boxes,
}
)
| transformers-main | examples/research_projects/lxmert/modeling_frcnn.py |
"""
coding=utf-8
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal, Huggingface team :)
Adapted From Facebook Inc, Detectron2
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.import copy
"""
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import sha256
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cv2
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
_torch_available = True
except ImportError:
_torch_available = False
try:
from torch.hub import _get_torch_home
torch_cache_home = _get_torch_home()
except ImportError:
torch_cache_home = os.path.expanduser(
os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
)
default_cache_path = os.path.join(torch_cache_home, "transformers")
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co"
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
PATH = "/".join(str(Path(__file__).resolve()).split("/")[:-1])
CONFIG = os.path.join(PATH, "config.yaml")
ATTRIBUTES = os.path.join(PATH, "attributes.txt")
OBJECTS = os.path.join(PATH, "objects.txt")
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
WEIGHTS_NAME = "pytorch_model.bin"
CONFIG_NAME = "config.yaml"
def load_labels(objs=OBJECTS, attrs=ATTRIBUTES):
vg_classes = []
with open(objs) as f:
for object in f.readlines():
vg_classes.append(object.split(",")[0].lower().strip())
vg_attrs = []
with open(attrs) as f:
for object in f.readlines():
vg_attrs.append(object.split(",")[0].lower().strip())
return vg_classes, vg_attrs
def load_checkpoint(ckp):
r = OrderedDict()
with open(ckp, "rb") as f:
ckp = pkl.load(f)["model"]
for k in copy.deepcopy(list(ckp.keys())):
v = ckp.pop(k)
if isinstance(v, np.ndarray):
v = torch.tensor(v)
else:
assert isinstance(v, torch.tensor), type(v)
r[k] = v
return r
class Config:
_pointer = {}
def __init__(self, dictionary: dict, name: str = "root", level=0):
self._name = name
self._level = level
d = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
k = copy.deepcopy(k)
v = copy.deepcopy(v)
if isinstance(v, dict):
v = Config(v, name=k, level=level + 1)
d[k] = v
setattr(self, k, v)
self._pointer = d
def __repr__(self):
return str(list((self._pointer.keys())))
def __setattr__(self, key, val):
self.__dict__[key] = val
self.__dict__[key.upper()] = val
levels = key.split(".")
last_level = len(levels) - 1
pointer = self._pointer
if len(levels) > 1:
for i, l in enumerate(levels):
if hasattr(self, l) and isinstance(getattr(self, l), Config):
setattr(getattr(self, l), ".".join(levels[i:]), val)
if l == last_level:
pointer[l] = val
else:
pointer = pointer[l]
def to_dict(self):
return self._pointer
def dump_yaml(self, data, file_name):
with open(f"{file_name}", "w") as stream:
dump(data, stream)
def dump_json(self, data, file_name):
with open(f"{file_name}", "w") as stream:
json.dump(data, stream)
@staticmethod
def load_yaml(config):
with open(config) as stream:
data = load(stream, Loader=Loader)
return data
def __str__(self):
t = " "
if self._name != "root":
r = f"{t * (self._level-1)}{self._name}:\n"
else:
r = ""
level = self._level
for i, (k, v) in enumerate(self._pointer.items()):
if isinstance(v, Config):
r += f"{t * (self._level)}{v}\n"
self._level += 1
else:
r += f"{t * (self._level)}{k}: {v} ({type(v).__name__})\n"
self._level = level
return r[:-1]
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
return cls(config_dict)
@classmethod
def get_config_dict(cls, pretrained_model_name_or_path: str, **kwargs):
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
if os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
config_file = pretrained_model_name_or_path
else:
config_file = hf_bucket_url(pretrained_model_name_or_path, filename=CONFIG_NAME, use_cdn=False)
try:
# Load from URL or cache if already cached
resolved_config_file = cached_path(
config_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
)
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
config_file = Config.load_yaml(resolved_config_file)
except EnvironmentError:
msg = "Can't load config for"
raise EnvironmentError(msg)
if resolved_config_file == config_file:
print("loading configuration file from path")
else:
print("loading configuration file cache")
return Config.load_yaml(resolved_config_file), kwargs
# quick compare tensors
def compare(in_tensor):
out_tensor = torch.load("dump.pt", map_location=in_tensor.device)
n1 = in_tensor.numpy()
n2 = out_tensor.numpy()[0]
print(n1.shape, n1[0, 0, :5])
print(n2.shape, n2[0, 0, :5])
assert np.allclose(n1, n2, rtol=0.01, atol=0.1), (
f"{sum([1 for x in np.isclose(n1, n2, rtol=0.01, atol=0.1).flatten() if x is False])/len(n1.flatten())*100:.4f} %"
" element-wise mismatch"
)
raise Exception("tensors are all good")
# Hugging face functions below
def is_remote_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https")
def hf_bucket_url(model_id: str, filename: str, use_cdn=True) -> str:
endpoint = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
legacy_format = "/" not in model_id
if legacy_format:
return f"{endpoint}/{model_id}-{filename}"
else:
return f"{endpoint}/{model_id}/{filename}"
def http_get(
url,
temp_file,
proxies=None,
resume_size=0,
user_agent=None,
):
ua = "python/{}".format(sys.version.split()[0])
if _torch_available:
ua += "; torch/{}".format(torch.__version__)
if isinstance(user_agent, dict):
ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
elif isinstance(user_agent, str):
ua += "; " + user_agent
headers = {"user-agent": ua}
if resume_size > 0:
headers["Range"] = "bytes=%d-" % (resume_size,)
response = requests.get(url, stream=True, proxies=proxies, headers=headers)
if response.status_code == 416: # Range not satisfiable
return
content_length = response.headers.get("Content-Length")
total = resume_size + int(content_length) if content_length is not None else None
progress = tqdm(
unit="B",
unit_scale=True,
total=total,
initial=resume_size,
desc="Downloading",
)
for chunk in response.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
progress.update(len(chunk))
temp_file.write(chunk)
progress.close()
def get_from_cache(
url,
cache_dir=None,
force_download=False,
proxies=None,
etag_timeout=10,
resume_download=False,
user_agent=None,
local_files_only=False,
):
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
os.makedirs(cache_dir, exist_ok=True)
etag = None
if not local_files_only:
try:
response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout)
if response.status_code == 200:
etag = response.headers.get("ETag")
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
filename = url_to_filename(url, etag)
# get cache path to put the file
cache_path = os.path.join(cache_dir, filename)
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(cache_path):
return cache_path
else:
matching_files = [
file
for file in fnmatch.filter(os.listdir(cache_dir), filename + ".*")
if not file.endswith(".json") and not file.endswith(".lock")
]
if len(matching_files) > 0:
return os.path.join(cache_dir, matching_files[-1])
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
"Cannot find the requested files in the cached path and outgoing traffic has been"
" disabled. To enable model look-ups and downloads online, set 'local_files_only'"
" to False."
)
return None
# From now on, etag is not None.
if os.path.exists(cache_path) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lock_path = cache_path + ".lock"
with FileLock(lock_path):
# If the download just completed while the lock was activated.
if os.path.exists(cache_path) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
incomplete_path = cache_path + ".incomplete"
@contextmanager
def _resumable_file_manager():
with open(incomplete_path, "a+b") as f:
yield f
temp_file_manager = _resumable_file_manager
if os.path.exists(incomplete_path):
resume_size = os.stat(incomplete_path).st_size
else:
resume_size = 0
else:
temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False)
resume_size = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
"%s not found in cache or force_download set to True, downloading to %s",
url,
temp_file.name,
)
http_get(
url,
temp_file,
proxies=proxies,
resume_size=resume_size,
user_agent=user_agent,
)
os.replace(temp_file.name, cache_path)
meta = {"url": url, "etag": etag}
meta_path = cache_path + ".json"
with open(meta_path, "w") as meta_file:
json.dump(meta, meta_file)
return cache_path
def url_to_filename(url, etag=None):
url_bytes = url.encode("utf-8")
url_hash = sha256(url_bytes)
filename = url_hash.hexdigest()
if etag:
etag_bytes = etag.encode("utf-8")
etag_hash = sha256(etag_bytes)
filename += "." + etag_hash.hexdigest()
if url.endswith(".h5"):
filename += ".h5"
return filename
def cached_path(
url_or_filename,
cache_dir=None,
force_download=False,
proxies=None,
resume_download=False,
user_agent=None,
extract_compressed_file=False,
force_extract=False,
local_files_only=False,
):
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
if is_remote_url(url_or_filename):
# URL, so get it from the cache (downloading if necessary)
output_path = get_from_cache(
url_or_filename,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
user_agent=user_agent,
local_files_only=local_files_only,
)
elif os.path.exists(url_or_filename):
# File, and it exists.
output_path = url_or_filename
elif urlparse(url_or_filename).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError("file {} not found".format(url_or_filename))
else:
# Something unknown
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
if extract_compressed_file:
if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
output_dir, output_file = os.path.split(output_path)
output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
output_path_extracted = os.path.join(output_dir, output_extract_dir_name)
if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lock_path = output_path + ".lock"
with FileLock(lock_path):
shutil.rmtree(output_path_extracted, ignore_errors=True)
os.makedirs(output_path_extracted)
if is_zipfile(output_path):
with ZipFile(output_path, "r") as zip_file:
zip_file.extractall(output_path_extracted)
zip_file.close()
elif tarfile.is_tarfile(output_path):
tar_file = tarfile.open(output_path)
tar_file.extractall(output_path_extracted)
tar_file.close()
else:
raise EnvironmentError("Archive format of {} could not be identified".format(output_path))
return output_path_extracted
return output_path
def get_data(query, delim=","):
assert isinstance(query, str)
if os.path.isfile(query):
with open(query) as f:
data = eval(f.read())
else:
req = requests.get(query)
try:
data = requests.json()
except Exception:
data = req.content.decode()
assert data is not None, "could not connect"
try:
data = eval(data)
except Exception:
data = data.split("\n")
req.close()
return data
def get_image_from_url(url):
response = requests.get(url)
img = np.array(Image.open(BytesIO(response.content)))
return img
# to load legacy frcnn checkpoint from detectron
def load_frcnn_pkl_from_url(url):
fn = url.split("/")[-1]
if fn not in os.listdir(os.getcwd()):
wget.download(url)
with open(fn, "rb") as stream:
weights = pkl.load(stream)
model = weights.pop("model")
new = {}
for k, v in model.items():
new[k] = torch.from_numpy(v)
if "running_var" in k:
zero = torch.tensor([0])
k2 = k.replace("running_var", "num_batches_tracked")
new[k2] = zero
return new
def get_demo_path():
print(f"{os.path.abspath(os.path.join(PATH, os.pardir))}/demo.ipynb")
def img_tensorize(im, input_format="RGB"):
assert isinstance(im, str)
if os.path.isfile(im):
img = cv2.imread(im)
else:
img = get_image_from_url(im)
assert img is not None, f"could not connect to: {im}"
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if input_format == "RGB":
img = img[:, :, ::-1]
return img
def chunk(images, batch=1):
return (images[i : i + batch] for i in range(0, len(images), batch))
| transformers-main | examples/research_projects/lxmert/utils.py |
"""
coding=utf-8
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
Adapted From Facebook Inc, Detectron2
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.import copy
"""
import colorsys
import io
import cv2
import matplotlib as mpl
import matplotlib.colors as mplc
import matplotlib.figure as mplfigure
import numpy as np
import torch
from matplotlib.backends.backend_agg import FigureCanvasAgg
from utils import img_tensorize
_SMALL_OBJ = 1000
class SingleImageViz:
def __init__(
self,
img,
scale=1.2,
edgecolor="g",
alpha=0.5,
linestyle="-",
saveas="test_out.jpg",
rgb=True,
pynb=False,
id2obj=None,
id2attr=None,
pad=0.7,
):
"""
img: an RGB image of shape (H, W, 3).
"""
if isinstance(img, torch.Tensor):
img = img.numpy().astype("np.uint8")
if isinstance(img, str):
img = img_tensorize(img)
assert isinstance(img, np.ndarray)
width, height = img.shape[1], img.shape[0]
fig = mplfigure.Figure(frameon=False)
dpi = fig.get_dpi()
width_in = (width * scale + 1e-2) / dpi
height_in = (height * scale + 1e-2) / dpi
fig.set_size_inches(width_in, height_in)
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
ax.axis("off")
ax.set_xlim(0.0, width)
ax.set_ylim(height)
self.saveas = saveas
self.rgb = rgb
self.pynb = pynb
self.img = img
self.edgecolor = edgecolor
self.alpha = 0.5
self.linestyle = linestyle
self.font_size = int(np.sqrt(min(height, width)) * scale // 3)
self.width = width
self.height = height
self.scale = scale
self.fig = fig
self.ax = ax
self.pad = pad
self.id2obj = id2obj
self.id2attr = id2attr
self.canvas = FigureCanvasAgg(fig)
def add_box(self, box, color=None):
if color is None:
color = self.edgecolor
(x0, y0, x1, y1) = box
width = x1 - x0
height = y1 - y0
self.ax.add_patch(
mpl.patches.Rectangle(
(x0, y0),
width,
height,
fill=False,
edgecolor=color,
linewidth=self.font_size // 3,
alpha=self.alpha,
linestyle=self.linestyle,
)
)
def draw_boxes(self, boxes, obj_ids=None, obj_scores=None, attr_ids=None, attr_scores=None):
if len(boxes.shape) > 2:
boxes = boxes[0]
if len(obj_ids.shape) > 1:
obj_ids = obj_ids[0]
if len(obj_scores.shape) > 1:
obj_scores = obj_scores[0]
if len(attr_ids.shape) > 1:
attr_ids = attr_ids[0]
if len(attr_scores.shape) > 1:
attr_scores = attr_scores[0]
if isinstance(boxes, torch.Tensor):
boxes = boxes.numpy()
if isinstance(boxes, list):
boxes = np.array(boxes)
assert isinstance(boxes, np.ndarray)
areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
sorted_idxs = np.argsort(-areas).tolist()
boxes = boxes[sorted_idxs] if boxes is not None else None
obj_ids = obj_ids[sorted_idxs] if obj_ids is not None else None
obj_scores = obj_scores[sorted_idxs] if obj_scores is not None else None
attr_ids = attr_ids[sorted_idxs] if attr_ids is not None else None
attr_scores = attr_scores[sorted_idxs] if attr_scores is not None else None
assigned_colors = [self._random_color(maximum=1) for _ in range(len(boxes))]
assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
if obj_ids is not None:
labels = self._create_text_labels_attr(obj_ids, obj_scores, attr_ids, attr_scores)
for i in range(len(boxes)):
color = assigned_colors[i]
self.add_box(boxes[i], color)
self.draw_labels(labels[i], boxes[i], color)
def draw_labels(self, label, box, color):
x0, y0, x1, y1 = box
text_pos = (x0, y0)
instance_area = (y1 - y0) * (x1 - x0)
small = _SMALL_OBJ * self.scale
if instance_area < small or y1 - y0 < 40 * self.scale:
if y1 >= self.height - 5:
text_pos = (x1, y0)
else:
text_pos = (x0, y1)
height_ratio = (y1 - y0) / np.sqrt(self.height * self.width)
lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
font_size = np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
font_size *= 0.75 * self.font_size
self.draw_text(
text=label,
position=text_pos,
color=lighter_color,
)
def draw_text(
self,
text,
position,
color="g",
ha="left",
):
rotation = 0
font_size = self.font_size
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
color[np.argmax(color)] = max(0.8, np.max(color))
bbox = {
"facecolor": "black",
"alpha": self.alpha,
"pad": self.pad,
"edgecolor": "none",
}
x, y = position
self.ax.text(
x,
y,
text,
size=font_size * self.scale,
family="sans-serif",
bbox=bbox,
verticalalignment="top",
horizontalalignment=ha,
color=color,
zorder=10,
rotation=rotation,
)
def save(self, saveas=None):
if saveas is None:
saveas = self.saveas
if saveas.lower().endswith(".jpg") or saveas.lower().endswith(".png"):
cv2.imwrite(
saveas,
self._get_buffer()[:, :, ::-1],
)
else:
self.fig.savefig(saveas)
def _create_text_labels_attr(self, classes, scores, attr_classes, attr_scores):
labels = [self.id2obj[i] for i in classes]
attr_labels = [self.id2attr[i] for i in attr_classes]
labels = [
f"{label} {score:.2f} {attr} {attr_score:.2f}"
for label, score, attr, attr_score in zip(labels, scores, attr_labels, attr_scores)
]
return labels
def _create_text_labels(self, classes, scores):
labels = [self.id2obj[i] for i in classes]
if scores is not None:
if labels is None:
labels = ["{:.0f}%".format(s * 100) for s in scores]
else:
labels = ["{} {:.0f}%".format(li, s * 100) for li, s in zip(labels, scores)]
return labels
def _random_color(self, maximum=255):
idx = np.random.randint(0, len(_COLORS))
ret = _COLORS[idx] * maximum
if not self.rgb:
ret = ret[::-1]
return ret
def _get_buffer(self):
if not self.pynb:
s, (width, height) = self.canvas.print_to_buffer()
if (width, height) != (self.width, self.height):
img = cv2.resize(self.img, (width, height))
else:
img = self.img
else:
buf = io.BytesIO() # works for cairo backend
self.canvas.print_rgba(buf)
width, height = self.width, self.height
s = buf.getvalue()
img = self.img
buffer = np.frombuffer(s, dtype="uint8")
img_rgba = buffer.reshape(height, width, 4)
rgb, alpha = np.split(img_rgba, [3], axis=2)
try:
import numexpr as ne # fuse them with numexpr
visualized_image = ne.evaluate("img * (1 - alpha / 255.0) + rgb * (alpha / 255.0)")
except ImportError:
alpha = alpha.astype("float32") / 255.0
visualized_image = img * (1 - alpha) + rgb * alpha
return visualized_image.astype("uint8")
def _change_color_brightness(self, color, brightness_factor):
assert brightness_factor >= -1.0 and brightness_factor <= 1.0
color = mplc.to_rgb(color)
polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
modified_color = colorsys.hls_to_rgb(polygon_color[0], modified_lightness, polygon_color[2])
return modified_color
# Color map
_COLORS = (
np.array(
[
0.000,
0.447,
0.741,
0.850,
0.325,
0.098,
0.929,
0.694,
0.125,
0.494,
0.184,
0.556,
0.466,
0.674,
0.188,
0.301,
0.745,
0.933,
0.635,
0.078,
0.184,
0.300,
0.300,
0.300,
0.600,
0.600,
0.600,
1.000,
0.000,
0.000,
1.000,
0.500,
0.000,
0.749,
0.749,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
1.000,
0.667,
0.000,
1.000,
0.333,
0.333,
0.000,
0.333,
0.667,
0.000,
0.333,
1.000,
0.000,
0.667,
0.333,
0.000,
0.667,
0.667,
0.000,
0.667,
1.000,
0.000,
1.000,
0.333,
0.000,
1.000,
0.667,
0.000,
1.000,
1.000,
0.000,
0.000,
0.333,
0.500,
0.000,
0.667,
0.500,
0.000,
1.000,
0.500,
0.333,
0.000,
0.500,
0.333,
0.333,
0.500,
0.333,
0.667,
0.500,
0.333,
1.000,
0.500,
0.667,
0.000,
0.500,
0.667,
0.333,
0.500,
0.667,
0.667,
0.500,
0.667,
1.000,
0.500,
1.000,
0.000,
0.500,
1.000,
0.333,
0.500,
1.000,
0.667,
0.500,
1.000,
1.000,
0.500,
0.000,
0.333,
1.000,
0.000,
0.667,
1.000,
0.000,
1.000,
1.000,
0.333,
0.000,
1.000,
0.333,
0.333,
1.000,
0.333,
0.667,
1.000,
0.333,
1.000,
1.000,
0.667,
0.000,
1.000,
0.667,
0.333,
1.000,
0.667,
0.667,
1.000,
0.667,
1.000,
1.000,
1.000,
0.000,
1.000,
1.000,
0.333,
1.000,
1.000,
0.667,
1.000,
0.333,
0.000,
0.000,
0.500,
0.000,
0.000,
0.667,
0.000,
0.000,
0.833,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
0.167,
0.000,
0.000,
0.333,
0.000,
0.000,
0.500,
0.000,
0.000,
0.667,
0.000,
0.000,
0.833,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
0.167,
0.000,
0.000,
0.333,
0.000,
0.000,
0.500,
0.000,
0.000,
0.667,
0.000,
0.000,
0.833,
0.000,
0.000,
1.000,
0.000,
0.000,
0.000,
0.143,
0.143,
0.143,
0.857,
0.857,
0.857,
1.000,
1.000,
1.000,
]
)
.astype(np.float32)
.reshape(-1, 3)
)
| transformers-main | examples/research_projects/lxmert/visualizing_image.py |
import getopt
import json
import os
# import numpy as np
import sys
from collections import OrderedDict
import datasets
import numpy as np
import torch
from modeling_frcnn import GeneralizedRCNN
from processing_image import Preprocess
from utils import Config
"""
USAGE:
``python extracting_data.py -i <img_dir> -o <dataset_file>.datasets <batch_size>``
"""
TEST = False
CONFIG = Config.from_pretrained("unc-nlp/frcnn-vg-finetuned")
DEFAULT_SCHEMA = datasets.Features(
OrderedDict(
{
"attr_ids": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
"attr_probs": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
"boxes": datasets.Array2D((CONFIG.MAX_DETECTIONS, 4), dtype="float32"),
"img_id": datasets.Value("int32"),
"obj_ids": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
"obj_probs": datasets.Sequence(length=CONFIG.MAX_DETECTIONS, feature=datasets.Value("float32")),
"roi_features": datasets.Array2D((CONFIG.MAX_DETECTIONS, 2048), dtype="float32"),
"sizes": datasets.Sequence(length=2, feature=datasets.Value("float32")),
"preds_per_image": datasets.Value(dtype="int32"),
}
)
)
class Extract:
def __init__(self, argv=sys.argv[1:]):
inputdir = None
outputfile = None
subset_list = None
batch_size = 1
opts, args = getopt.getopt(argv, "i:o:b:s", ["inputdir=", "outfile=", "batch_size=", "subset_list="])
for opt, arg in opts:
if opt in ("-i", "--inputdir"):
inputdir = arg
elif opt in ("-o", "--outfile"):
outputfile = arg
elif opt in ("-b", "--batch_size"):
batch_size = int(arg)
elif opt in ("-s", "--subset_list"):
subset_list = arg
assert inputdir is not None # and os.path.isdir(inputdir), f"{inputdir}"
assert outputfile is not None and not os.path.isfile(outputfile), f"{outputfile}"
if subset_list is not None:
with open(os.path.realpath(subset_list)) as f:
self.subset_list = {self._vqa_file_split()[0] for x in tryload(f)}
else:
self.subset_list = None
self.config = CONFIG
if torch.cuda.is_available():
self.config.model.device = "cuda"
self.inputdir = os.path.realpath(inputdir)
self.outputfile = os.path.realpath(outputfile)
self.preprocess = Preprocess(self.config)
self.model = GeneralizedRCNN.from_pretrained("unc-nlp/frcnn-vg-finetuned", config=self.config)
self.batch = batch_size if batch_size != 0 else 1
self.schema = DEFAULT_SCHEMA
def _vqa_file_split(self, file):
img_id = int(file.split(".")[0].split("_")[-1])
filepath = os.path.join(self.inputdir, file)
return (img_id, filepath)
@property
def file_generator(self):
batch = []
for i, file in enumerate(os.listdir(self.inputdir)):
if self.subset_list is not None and i not in self.subset_list:
continue
batch.append(self._vqa_file_split(file))
if len(batch) == self.batch:
temp = batch
batch = []
yield list(map(list, zip(*temp)))
for i in range(1):
yield list(map(list, zip(*batch)))
def __call__(self):
# make writer
if not TEST:
writer = datasets.ArrowWriter(features=self.schema, path=self.outputfile)
# do file generator
for i, (img_ids, filepaths) in enumerate(self.file_generator):
images, sizes, scales_yx = self.preprocess(filepaths)
output_dict = self.model(
images,
sizes,
scales_yx=scales_yx,
padding="max_detections",
max_detections=self.config.MAX_DETECTIONS,
pad_value=0,
return_tensors="np",
location="cpu",
)
output_dict["boxes"] = output_dict.pop("normalized_boxes")
if not TEST:
output_dict["img_id"] = np.array(img_ids)
batch = self.schema.encode_batch(output_dict)
writer.write_batch(batch)
if TEST:
break
# finalizer the writer
if not TEST:
num_examples, num_bytes = writer.finalize()
print(f"Success! You wrote {num_examples} entry(s) and {num_bytes >> 20} mb")
def tryload(stream):
try:
data = json.load(stream)
try:
data = list(data.keys())
except Exception:
data = [d["img_id"] for d in data]
except Exception:
try:
data = eval(stream.read())
except Exception:
data = stream.read().split("\n")
return data
if __name__ == "__main__":
extract = Extract(sys.argv[1:])
extract()
if not TEST:
dataset = datasets.Dataset.from_file(extract.outputfile)
# wala!
# print(np.array(dataset[0:2]["roi_features"]).shape)
| transformers-main | examples/research_projects/lxmert/extracting_data.py |
import argparse
from copy import deepcopy
import numpy as np
from datasets import ClassLabel, DatasetDict, load_dataset
from evaluate import load
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_ckpt", type=str, default="microsoft/unixcoder-base-nine")
parser.add_argument("--num_epochs", type=int, default=5)
parser.add_argument("--batch_size", type=int, default=6)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--freeze", type=bool, default=True)
parser.add_argument("--learning_rate", type=float, default=5e-4)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--num_warmup_steps", type=int, default=10)
parser.add_argument("--weight_decay", type=float, default=0.01)
parser.add_argument("--output_dir", type=str, default="./results")
return parser.parse_args()
metric = load("accuracy")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return metric.compute(predictions=predictions, references=labels)
class CustomCallback(TrainerCallback):
def __init__(self, trainer) -> None:
super().__init__()
self._trainer = trainer
def on_epoch_end(self, args, state, control, **kwargs):
if control.should_evaluate:
control_copy = deepcopy(control)
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset, metric_key_prefix="train")
return control_copy
def main():
args = get_args()
set_seed(args.seed)
dataset = load_dataset("codeparrot/codecomplex", split="train")
train_test = dataset.train_test_split(test_size=0.2)
test_validation = train_test["test"].train_test_split(test_size=0.5)
train_test_validation = DatasetDict(
{
"train": train_test["train"],
"test": test_validation["train"],
"valid": test_validation["test"],
}
)
print("Loading tokenizer and model")
tokenizer = AutoTokenizer.from_pretrained(args.model_ckpt)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7)
model.config.pad_token_id = model.config.eos_token_id
if args.freeze:
for param in model.roberta.parameters():
param.requires_grad = False
labels = ClassLabel(num_classes=7, names=list(set(train_test_validation["train"]["complexity"])))
def tokenize(example):
inputs = tokenizer(example["src"], truncation=True, max_length=1024)
label = labels.str2int(example["complexity"])
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": label,
}
tokenized_datasets = train_test_validation.map(
tokenize,
batched=True,
remove_columns=train_test_validation["train"].column_names,
)
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
training_args = TrainingArguments(
output_dir=args.output_dir,
learning_rate=args.learning_rate,
lr_scheduler_type=args.lr_scheduler_type,
evaluation_strategy="epoch",
save_strategy="epoch",
logging_strategy="epoch",
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
num_train_epochs=args.num_epochs,
gradient_accumulation_steps=args.gradient_accumulation_steps,
weight_decay=0.01,
metric_for_best_model="accuracy",
run_name="complexity-java",
report_to="wandb",
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["valid"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
print("Training...")
trainer.add_callback(CustomCallback(trainer))
trainer.train()
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/codeparrot/examples/train_complexity_predictor.py |
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
parser = HfArgumentParser(InitializationArguments)
args = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
config_kwargs = {
"vocab_size": len(tokenizer),
"scale_attn_by_inverse_layer_idx": True,
"reorder_and_upcast_attn": True,
}
# Load model config (GPT-2 large in this case)
config = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
model = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
| transformers-main | examples/research_projects/codeparrot/scripts/initialize_model.py |
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
EOF_STRINGS = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"]
class TokenizedDataset(IterableDataset):
"""Tokenize and preprocess the dataset
Multiple copies of the same prompt are sent sequentially.
See compute_code for more details.
"""
def __init__(self, tokenizer, dataset, n_tasks=None, n_copies=1):
self.tokenizer = tokenizer
self.dataset = dataset
self.n_tasks = len(dataset) if n_tasks is None else n_tasks
self.n_copies = n_copies
def __iter__(self):
prompts = []
for task in range(self.n_tasks):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip())
outputs = self.tokenizer(prompts, padding=True, return_tensors="pt")
for task in range(self.n_tasks):
for _ in range(self.n_copies):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class EndOfFunctionCriteria(StoppingCriteria):
"""Custom `StoppingCriteria` which checks if all generated functions in the batch are completed."""
def __init__(self, start_length, eof_strings, tokenizer):
self.start_length = start_length
self.eof_strings = eof_strings
self.tokenizer = tokenizer
def __call__(self, input_ids, scores, **kwargs):
"""Returns true if all generated sequences contain any of the end-of-function strings."""
decoded_generations = self.tokenizer.batch_decode(input_ids[:, self.start_length :])
done = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings))
return all(done)
def remove_last_block(string):
"""Remove the last block of the code containing EOF_STRINGS"""
string_list = re.split("(%s)" % "|".join(EOF_STRINGS), string)
# last string should be ""
return "".join(string_list[:-2])
def complete_code(accelerator, model, tokenizer, dataloader, n_tasks, batch_size=20, **gen_kwargs):
"""Generate multiple codes for each task in the dataset. This function leverage accelerator to distribute
the processing to multiple GPUs.
dataloader, a wrapper around a TokenizeDataset objectm is supposed to send all the prompts from
the evalution dataset to the modelm as the following:
[p_0_0, p_0_1, ..., p_0_nc-1, p_1_0, ..., p_nt-1_nc-1]
where nc is the number of copies of the prompt, and nt is the number of tasks.
nc is such that num_sample = nc * batch_size
Parameters
----------
accelerator: Accelerator
model: transformers.PreTrainedModel
Code generation model. AutoTokenizer.from_pretrained(model_ckpt), ex model_ckpt = "lvwerra/codeparrot"
tokenizer: transformers.AutoTokenizer
The tokenizer used to train model
dataloader: DataLoader
The dataloader is a wrapper around a TokenizeDataset object. It is designed to be used with multiple GPUs.
n_tasks: int
The number of tasks in the dataset. It is used to determine the length of the output.
Should be aligned with the number of tasks in the TokenizeDataset.
batch_size: int
num_return_sequences per copy of the prompt such that num_sample = batch_size * n_copies
gen_kwargs: dict
Keyword arguments for the generation function of the model.
Returns
-------
code_gens: list of list of str, of length n_tasks
List of generated codes for each task.
Each element is a list of generated codes for each task, with length num_samples
"""
gen_token_dict = defaultdict(list) # dict of list of generated tokens
for step, batch in tqdm(enumerate(dataloader)):
with torch.no_grad():
gen_kwargs["stopping_criteria"][0].start_length = batch["ids"].shape[-1]
generated_tokens = accelerator.unwrap_model(model).generate(
input_ids=batch["ids"][:, : batch["input_len"]], num_return_sequences=batch_size, **gen_kwargs
)
# each task is generated batch_size times
generated_tasks = batch["task_id"].repeat(batch_size)
generated_tokens = accelerator.pad_across_processes(
generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
)
generated_tokens, generated_tasks = accelerator.gather((generated_tokens, generated_tasks))
generated_tokens = generated_tokens.cpu().numpy()
generated_tasks = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(generated_tasks, generated_tokens):
gen_token_dict[task].append(generated_tokens)
code_gens = [[] for _ in range(n_tasks)]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
gen_code = tokenizer.decode(s, skip_special_tokens=True, clean_up_tokenization_spaces=True)
code_gens[task].append(remove_last_block(gen_code))
return code_gens
def main():
# Setup configuration
parser = HfArgumentParser(HumanEvalArguments)
args = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
os.environ["HF_ALLOW_CODE_EVAL"] = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if args.num_workers is None:
args.num_workers = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
accelerator = Accelerator()
set_seed(args.seed, device_specific=True)
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_ckpt)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
# Generation settings
gen_kwargs = {
"do_sample": args.do_sample,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"top_p": args.top_p,
"top_k": args.top_k,
"stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0, EOF_STRINGS, tokenizer)]),
}
# Load evaluation dataset and metric
human_eval = load_dataset("openai_humaneval")
code_eval_metric = load_metric("code_eval")
n_tasks = args.num_tasks if args.num_tasks is not None else len(human_eval["test"])
n_copies = args.n_samples // args.batch_size
human_eval_tokenized = TokenizedDataset(tokenizer, human_eval["test"], n_copies=n_copies, n_tasks=n_tasks)
# do not confuse args.batch_size, which is actually the num_return_sequences
human_eval_loader = DataLoader(human_eval_tokenized, batch_size=1)
# Run a quick test to see if code evaluation is enabled
try:
_ = code_eval_metric.compute(references=[""], predictions=[[""]])
except ValueError as exception:
print(
'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`'
" flag to enable code evaluation."
)
raise exception
model, human_eval_loader = accelerator.prepare(model, human_eval_loader)
generations = complete_code(
accelerator,
model,
tokenizer,
human_eval_loader,
n_tasks=n_tasks,
batch_size=args.batch_size,
**gen_kwargs,
)
if accelerator.is_main_process:
references = []
for task in tqdm(range(n_tasks)):
test_func = human_eval["test"][task]["test"]
entry_point = f"check({human_eval['test'][task]['entry_point']})"
references.append("\n" + test_func + "\n" + entry_point)
# Evaluate completions with "code_eval" metric
pass_at_k, _ = code_eval_metric.compute(
references=references, predictions=generations, num_workers=args.num_workers
)
print(f"Results: {pass_at_k}")
# Save results to json file
with open(args.output_file, "w") as fp:
json.dump(pass_at_k, fp)
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/codeparrot/scripts/human_eval.py |
from arguments import TokenizerTrainingArguments
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoTokenizer, HfArgumentParser
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
# Iterator for Training
def batch_iterator(batch_size=10):
for _ in tqdm(range(0, args.n_examples, batch_size)):
yield [next(iter_dataset)[args.text_column] for _ in range(batch_size)]
# Configuration
parser = HfArgumentParser(TokenizerTrainingArguments)
args = parser.parse_args()
# Base tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.base_tokenizer)
base_vocab = list(bytes_to_unicode().values())
# Load dataset
dataset = load_dataset(args.dataset_name, split="train", streaming=True)
iter_dataset = iter(dataset)
# Training and saving
new_tokenizer = tokenizer.train_new_from_iterator(
batch_iterator(), vocab_size=args.vocab_size, initial_alphabet=base_vocab
)
new_tokenizer.save_pretrained(args.tokenizer_name, push_to_hub=args.push_to_hub)
| transformers-main | examples/research_projects/codeparrot/scripts/bpe_training.py |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class ConstantLengthDataset(IterableDataset):
def __init__(self, tokenizer, dataset, seq_length=1024, num_of_sequences=1024, chars_per_token=3.6):
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.bos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.input_characters = seq_length * chars_per_token * num_of_sequences
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(iterator)["content"])
buffer_len += len(buffer[-1])
except StopIteration:
more_examples = False
break
tokenized_inputs = tokenizer(buffer, truncation=False)["input_ids"]
all_token_ids = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id])
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
yield torch.tensor(input_ids)
def create_dataloader(args):
ds_kwargs = {"streaming": True}
valid_data = load_dataset(args.dataset_name, split="train", **ds_kwargs)
valid_dataset = ConstantLengthDataset(tokenizer, valid_data, seq_length=args.seq_length)
eval_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size)
return eval_dataloader
def evaluate(args):
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(batch, labels=batch)
loss = outputs.loss.repeat(args.batch_size)
losses.append(accelerator.gather(loss))
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
loss = torch.mean(torch.cat(losses))
try:
perplexity = torch.exp(loss)
except OverflowError:
perplexity = float("inf")
return loss.item(), perplexity.item()
# Setup Accelerator
accelerator = Accelerator()
# Parse configuration
parser = HfArgumentParser(EvaluationArguments)
args = parser.parse_args()
set_seed(args.seed)
# Logging
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
tokenizer = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
eval_dataloader = create_dataloader(args)
# Prepare everything with our `accelerator`.
model, eval_dataloader = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info("Evaluating and saving model after training")
eval_loss, perplexity = evaluate(args)
logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
| transformers-main | examples/research_projects/codeparrot/scripts/validation_loss.py |
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class TrainingArguments:
"""
Configuration for training model.
"""
model_ckpt: Optional[str] = field(
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be trained."}
)
save_dir: Optional[str] = field(
default="./", metadata={"help": "Save dir where model repo is cloned and models updates are saved to."}
)
dataset_name_train: Optional[str] = field(
default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path of training dataset."}
)
dataset_name_valid: Optional[str] = field(
default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."}
)
train_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for training."})
valid_batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size for evaluation."})
weight_decay: Optional[float] = field(default=0.1, metadata={"help": "Value of weight decay."})
shuffle_buffer: Optional[int] = field(
default=10000, metadata={"help": "Size of buffer used to shuffle streaming dataset."}
)
learning_rate: Optional[float] = field(default=2e-4, metadata={"help": "Learning rate fo training."})
lr_scheduler_type: Optional[str] = field(default="cosine", metadata={"help": "Learning rate."})
num_warmup_steps: Optional[int] = field(
default=750, metadata={"help": "Number of warmup steps in the learning rate schedule."}
)
gradient_accumulation_steps: Optional[int] = field(
default=16, metadata={"help": "Number of gradient accumulation steps."}
)
gradient_checkpointing: Optional[bool] = field(
default=True, metadata={"help": "Use gradient checkpointing to reduce memory footprint."}
)
max_train_steps: Optional[int] = field(default=50000, metadata={"help": "Maximum number of training steps."})
max_eval_steps: Optional[int] = field(
default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}
)
seq_length: Optional[int] = field(default=1024, metadata={"help": "Sequence lengths used for training."})
seed: Optional[int] = field(default=1, metadata={"help": "Training seed."})
save_checkpoint_steps: Optional[int] = field(
default=1024,
metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."},
)
resume_from_checkpoint: Optional[str] = field(
default=None, metadata={"help": "States path if the training should continue from a checkpoint folder."}
)
tokenized: Optional[bool] = field(default=False, metadata={"help": "If True the data is pretokenized."})
@dataclass
class EvaluationArguments:
"""
Configuration for evaluating model.
"""
model_ckpt: Optional[str] = field(
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."}
)
dataset_name: Optional[str] = field(
default="codeparrot/codeparrot-clean-valid", metadata={"help": "Name or path of validation dataset."}
)
batch_size: Optional[int] = field(default=2, metadata={"help": "Batch size used for evaluation."})
max_eval_steps: Optional[int] = field(
default=-1, metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}
)
seq_length: Optional[int] = field(default=1024, metadata={"help": "Length of sequences to be evaluated."})
seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."})
@dataclass
class HumanEvalArguments:
"""
Configuration for running evaluation on HumanEval dataset.
"""
model_ckpt: Optional[str] = field(
default="codeparrot/codeparrot", metadata={"help": "Model name or path of model to be evaluated."}
)
num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."})
num_tasks: Optional[int] = field(
default=None,
metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."},
)
do_sample: Optional[bool] = field(
default=True, metadata={"help": "Sample from the language model's output distribution."}
)
temperature: Optional[float] = field(default=0.2, metadata={"help": "Sampling temperature used for generation."})
max_new_tokens: Optional[int] = field(default=256, metadata={"help": "Maximum number of newly generated tokens."})
top_k: Optional[int] = field(default=0, metadata={"help": "Top-k parameter used for generation."})
top_p: Optional[float] = field(default=0.95, metadata={"help": "Top-p parameter used for nucleus sampling."})
batch_size: Optional[int] = field(default=10, metadata={"help": "Number of generations to run in parallel."})
n_samples: Optional[int] = field(
default=200, metadata={"help": "Number of completions to generate for each sample."}
)
seed: Optional[int] = field(default=1, metadata={"help": "Random seed used for evaluation."})
output_file: Optional[str] = field(
default="eval_results.json", metadata={"help": "Random seed used for evaluation."}
)
HF_ALLOW_CODE_EVAL: Optional[str] = field(
default="0", metadata={"help": "Allow `code_eval` to execute Python code on machine"}
)
device_int: Optional[int] = field(
default=-1,
metadata={
"help": (
"Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive"
" number corresponds to which GPU device id to run on."
)
},
)
@dataclass
class PreprocessingArguments:
"""
Configuration for preprocessing data.
"""
num_workers: Optional[int] = field(
default=None,
metadata={
"help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available."
},
)
dataset_name: Optional[str] = field(
default="transformersbook/codeparrot", metadata={"help": "Folder or name of dataset to process."}
)
output_dir: Optional[str] = field(
default="codeparrot-clean", metadata={"help": "Folder to save processed processed dataset."}
)
samples_per_file: Optional[int] = field(
default=100_000, metadata={"help": "Number of files to save per JSON output file."}
)
text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."})
line_max: Optional[float] = field(
default=1000, metadata={"help": "Maximum line length in file, otherwise file is filtered."}
)
line_mean: Optional[float] = field(
default=100, metadata={"help": "Maximum mean line length in file, otherwise file is filtered."}
)
alpha_frac: Optional[float] = field(
default=0.25, metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."}
)
min_token_ratio: Optional[float] = field(
default=1.5, metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."}
)
filter_proba: Optional[float] = field(
default=0.7, metadata={"help": "Probability for filtering config, test and uncommon files."}
)
tokenizer: Optional[str] = field(
default="codeparrot/codeparrot",
metadata={"help": "Name or path to the tokenizer."},
)
near_deduplication: Optional[bool] = field(
default=False, metadata={"help": "If True, near-duplicate samples are removed."}
)
jaccard_threshold: Optional[float] = field(
default=0.85, metadata={"help": "Jaccard threshold for near-duplicate samples."}
)
@dataclass
class TokenizerTrainingArguments:
"""
Configuration for tokenizer training.
"""
base_tokenizer: Optional[str] = field(
default="gpt2", metadata={"help": "Base tokenizer to build new tokenizer from."}
)
dataset_name: Optional[str] = field(
default="transformersbook/codeparrot-train", metadata={"help": "Dataset to train tokenizer on."}
)
text_column: Optional[str] = field(default="content", metadata={"help": "Column containing text data to process."})
vocab_size: Optional[int] = field(default=200_000, metadata={"help": "Number of examples to train tokenizer on."})
n_examples: Optional[int] = field(
default=32768, metadata={"help": "Number of examples to train the tokenizer on."}
)
tokenizer_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of new tokenizer."})
push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."})
@dataclass
class PretokenizationArguments:
"""
Configuration for data pretokenization.
"""
tokenizer_dir: Optional[str] = field(
default="codeparrot/codeparrot", metadata={"help": "Name or path to the tokenizer."}
)
dataset_name: Optional[str] = field(
default="codeparrot/codeparrot-clean-train", metadata={"help": "Name or path to the dataset to pretokenize."}
)
tokenized_data_repo: Optional[str] = field(
default="tokenized-codeparrot-train", metadata={"help": "Repo name of the pretokenized data."}
)
num_workers: Optional[int] = field(default=None, metadata={"help": "Number of workers used for code evaluation."})
@dataclass
class InitializationArguments:
"""
Configuration for initializing new model.
"""
config_name: Optional[str] = field(
default="gpt2-large", metadata={"help": "Configuration to use for model initialization."}
)
tokenizer_name: Optional[str] = field(
default="codeparrot/codeparrot", metadata={"help": "Tokenizer attached to model."}
)
model_name: Optional[str] = field(default="codeparrot", metadata={"help": "Name of the created model."})
push_to_hub: Optional[bool] = field(default=True, metadata={"help": "Push saved tokenizer to the hub."})
| transformers-main | examples/research_projects/codeparrot/scripts/arguments.py |
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
NON_ALPHA = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
MIN_NUM_TOKENS = 10
NUM_PERM = 256
def get_min_hash(tokens: List[str]) -> Optional[MinHash]:
"""Compute the MinHash of a code snippet."""
if len(tokens) < MIN_NUM_TOKENS:
return None
min_hash = MinHash(num_perm=NUM_PERM)
for token in set(tokens):
min_hash.update(token.encode())
return min_hash
def get_tokens(code: str) -> Set[str]:
"""Tokenize a code snippet."""
return {t for t in NON_ALPHA.split(code) if len(t.strip()) > 0}
class DuplicationIndex:
def __init__(
self,
*,
duplication_jaccard_threshold: float = 0.85,
):
self._duplication_jaccard_threshold = duplication_jaccard_threshold
self._num_perm = NUM_PERM
self._index = MinHashLSH(threshold=self._duplication_jaccard_threshold, num_perm=self._num_perm)
self._duplicate_clusters = defaultdict(set)
def add(self, code_key: Tuple, min_hash: MinHash) -> None:
"""Add a key to _index (MinHashLSH)
the min_hash is used to query closest matches based on the jaccard_threshold.
The new key is either added to a existing cluster of one close match,
or a new cluster is created. The clusters created in this way, depend on the order of add.
Args:
code_key (Tuple of (index, repo_name, path)):
Theoritically any hasbale key. Here we use a tuple to retrieve the information later.
min_hash: MinHash of the code_key.
"""
close_duplicates = self._index.query(min_hash)
if code_key in self._index.keys:
print(f"Duplicate key {code_key}")
return
self._index.insert(code_key, min_hash)
if len(close_duplicates) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(code_key)
break
else:
self._duplicate_clusters[close_duplicates[0]].add(code_key)
def get_duplicate_clusters(self) -> List[List[Dict]]:
"""Export the duplicate clusters.
For each cluster, the first element is the base element of the cluster.
The base element has an estimation jaccard similarity higher than the threshold with all the other elements.
Returns:
duplicate_clusters (List[List[Dict]]):
List of duplicate clusters.
"""
duplicate_clusters = []
for base, duplicates in self._duplicate_clusters.items():
cluster = [base] + list(duplicates)
# reformat the cluster to be a list of dict
cluster = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster]
duplicate_clusters.append(cluster)
return duplicate_clusters
def save(self, filepath) -> None:
duplicate_clusters = self.get_duplicate_clusters()
with open(filepath, "w") as f:
json.dump(duplicate_clusters, f)
def _compute_min_hash(element):
index, data = element
min_hash = get_min_hash([t for t in NON_ALPHA.split(data["content"]) if len(t.strip()) > 0])
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def minhash_iter(dataset_iterator: Type[Dataset]):
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash,
ThreadedIterator(dataset_iterator, max_queue_size=10000),
chunksize=100,
):
if data is not None:
yield data
def make_duplicate_clusters(dataset_iterator: Type[Dataset], jaccard_threshold: float):
"""Find duplicate clusters in the dataset in two steps:
1. Compute MinHash for each code snippet. MinHash is a tool for fast jaccard similarity estimation.
This step is computed using an asynchronous multiprocessing pool, minhash_iter
2. Find duplicate clusters. The computed MinHash is added sequentially to the DuplicationIndex.
This step cannot be parallelized. So using asynchronous thread in the previous step helps to speed up the process.
"""
di = DuplicationIndex(duplication_jaccard_threshold=jaccard_threshold)
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(dataset_iterator)), max_queue_size=100)):
di.add(filename, min_hash)
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def jaccard_similarity(code1: str, code2: str) -> float:
"""Compute the Jaccard similarity of two code snippets."""
tokens1 = get_tokens(code1)
tokens2 = get_tokens(code2)
return len(tokens1 & tokens2) / len(tokens1 | tokens2)
_shared_dataset = None
def _find_cluster_extremes_shared(cluster, jaccard_threshold):
"""Find a reduced cluster such that each code in the origin cluster is similar to at least one code in the reduced cluster.
Two codes are similar if their Jaccard similarity is above the threshold.
Args:
cluster (List[dict]):
cluster is a list of dict, each dict contains the following keys:
- base_index
- repo_name
- path
This is a typical output of DuplicationIndex.get_duplicate_clusters()
jaccard_threshold (float):
threshold for Jaccard similarity.
Two codes are similar if their Jaccard similarity is above the threshold.
Returns:
extremes (List[dict]):
A reduced representation of the cluster. The field copies is added to each dict.
The copies field indicates the number of similar codes in the cluster for a extreme.
"""
extremes = []
for element1 in cluster:
code1 = _shared_dataset[element1["base_index"]]["content"]
for element2 in extremes:
code2 = _shared_dataset[element2["base_index"]]["content"]
if jaccard_similarity(code1, code2) >= jaccard_threshold:
element2["copies"] += 1
break
else:
element1["copies"] = 1
extremes.append(element1)
return extremes
def find_extremes(cluster_list, dataset, jaccard_threshold):
"""Call the _find_cluster_extremes_shared function in a parallel fashion.
Args:
cluster_list (List[List[Dict]]):
each cluster is a list of dicts with the key base_index,
referring to the index of the base code in the dataset.
dataset (Type[Dataset]):
dataset is used to access the content of the code snippets,
using the base_index from the cluster_list.
dataset is shared between all the processes using a glabal variable (any other way to share the dataset?),
otherwise the multi processing is not speeded up.
jaccard_threshold (float):
the threshold for the jaccard similarity. The default value is 0.85
Returns:
extremes_list (List[Dict]):
Each cluster is reduced to extremes.
See _find_cluster_extremes_shared for the definition of extremes.
"""
global _shared_dataset
_shared_dataset = dataset
extremes_list = []
f = partial(_find_cluster_extremes_shared, jaccard_threshold=jaccard_threshold)
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
f,
cluster_list,
),
total=len(cluster_list),
):
extremes_list.append(extremes)
return extremes_list
def deduplicate_dataset(
dataset: Type[Dataset], jaccard_threshold: float = 0.85
) -> Tuple[Type[Dataset], List[List[Dict]]]:
"""Deduplicate the dataset using minhash and jaccard similarity.
This function first generate duplicate clusters, then each cluster
is reduced to the extremes that are similar to the other elements in the cluster.
Codes are called similar if their Jaccard similarity is greater than jaccard_threshold (0.85 default).
Args:
dataset (Type[Dataset]):
The dataset to deduplicate.
jaccard_threshold (float, default=0.85):
jaccard threshold to determine if two codes are similar
Returns:
ds_dedup (Type[Dataset]):
The deduplicated dataset.
duplicate_clusters (List[List[Dict]]):
The list of duplicate clusters.
Each cluster is a list of dicts with the following keys:
- base_index : int
The index of the code in the original dataset.
- repo_name : str
- path : str
- copies : int
The number of copies of the code in the cluster. (find_cluster_extremes)
- is_extreme : bool
Whether the code is an extreme in the cluster.
All the codes in the cluster are removed from the dataset except the extremes.
Example:
>>> from datasets import load_dataset
>>> from minhash_deduplication import deduplicate_dataset
>>> ds = load_dataset("lvwerra/codeparrot-clean", split="train")
>>> ds_dedup, duplicate_clusters = deduplicate_dataset(ds, jaccard_threshold=0.85)
"""
duplicate_clusters = make_duplicate_clusters(dataset, jaccard_threshold)
duplicate_indices = {x["base_index"] for cluster in duplicate_clusters for x in cluster}
extreme_dict = {}
extremes_clusters = find_extremes(duplicate_clusters, dataset, jaccard_threshold)
for extremes in extremes_clusters:
for element in extremes:
extreme_dict[element["base_index"]] = element
remove_indices = duplicate_indices - set(extreme_dict.keys())
ds_filter = dataset.filter(lambda x, idx: idx not in remove_indices, with_indices=True)
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
element["is_extreme"] = element["base_index"] in extreme_dict
if element["is_extreme"]:
element["copies"] = extreme_dict[element["base_index"]]["copies"]
print(f"Original dataset size: {len(dataset)}")
print(f"Number of duplicate clusters: {len(duplicate_clusters)}")
print(f"Files in duplicate cluster: {len(duplicate_indices)}")
print(f"Unique files in duplicate cluster: {len(extreme_dict)}")
print(f"Filtered dataset size: {len(ds_filter)}")
return ds_filter, duplicate_clusters
| transformers-main | examples/research_projects/codeparrot/scripts/minhash_deduplication.py |
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
PATTERN = re.compile(r"\s+")
def get_hash(example):
"""Get hash of content field."""
return {"hash": hashlib.md5(re.sub(PATTERN, "", example["content"]).encode("utf-8")).hexdigest()}
def line_stats(example):
"""Calculates mean and max line length of file."""
line_lengths = [len(line) for line in example["content"].splitlines()]
return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)}
def alpha_stats(example):
"""Calculates mean and max line length of file."""
alpha_frac = np.mean([c.isalnum() for c in example["content"]])
return {"alpha_frac": alpha_frac}
def check_uniques(example, uniques):
"""Check if current hash is still in set of unique hashes and remove if true."""
if example["hash"] in uniques:
uniques.remove(example["hash"])
return True
else:
return False
def is_autogenerated(example, scan_width=5):
"""Check if file is autogenerated by looking for keywords in the first few lines of the file."""
keywords = ["auto-generated", "autogenerated", "automatically generated"]
lines = example["content"].splitlines()
for _, line in zip(range(scan_width), lines):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def is_config_or_test(example, scan_width=5, coeff=0.05):
"""Check if file is a configuration file or a unit test by :
1- looking for keywords in the first few lines of the file.
2- counting number of occurence of the words 'config' and 'test' with respect to number of lines.
"""
keywords = ["unit tests", "test file", "configuration file"]
lines = example["content"].splitlines()
count_config = 0
count_test = 0
# first test
for _, line in zip(range(scan_width), lines):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
nlines = example["content"].count("\n")
threshold = int(coeff * nlines)
for line in lines:
count_config += line.lower().count("config")
count_test += line.lower().count("test")
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def has_no_keywords(example):
"""Check if a python file has none of the keywords for: funcion, class, for loop, while loop."""
keywords = ["def ", "class ", "for ", "while "]
lines = example["content"].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def has_few_assignments(example, minimum=4):
"""Check if file uses symbol '=' less than `minimum` times."""
lines = example["content"].splitlines()
counter = 0
for line in lines:
counter += line.lower().count("=")
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def char_token_ratio(example):
"""Compute character/token ratio of the file with tokenizer."""
input_ids = tokenizer(example["content"], truncation=False)["input_ids"]
ratio = len(example["content"]) / len(input_ids)
return {"ratio": ratio}
def preprocess(example):
"""Chain all preprocessing steps into one function to not fill cache."""
results = {}
results.update(get_hash(example))
results.update(line_stats(example))
results.update(alpha_stats(example))
results.update(char_token_ratio(example))
results.update(is_autogenerated(example))
results.update(is_config_or_test(example))
results.update(has_no_keywords(example))
results.update(has_few_assignments(example))
return results
def filter(example, uniques, args):
"""Filter dataset with heuristics. Config, test and has_no_keywords files are removed with a given probability."""
if not check_uniques(example, uniques):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def compress_file(file_path):
"""Compress a file with g-zip."""
with open(file_path, "rb") as f_in:
with gzip.open(str(file_path) + ".gz", "wb", compresslevel=6) as f_out:
shutil.copyfileobj(f_in, f_out)
os.unlink(file_path)
# Settings
parser = HfArgumentParser(PreprocessingArguments)
args = parser.parse_args()
if args.num_workers is None:
args.num_workers = multiprocessing.cpu_count()
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
t_start = time.time()
ds = load_dataset(args.dataset_name, split="train")
print(f"Time to load dataset: {time.time()-t_start:.2f}")
# Run preprocessing
t_start = time.time()
ds = ds.map(preprocess, num_proc=args.num_workers)
print(f"Time to preprocess dataset: {time.time()-t_start:.2f}")
# Deduplicate hashes
uniques = set(ds.unique("hash"))
frac = len(uniques) / len(ds)
print(f"Fraction of duplicates: {1-frac:.2%}")
# Deduplicate data and apply heuristics
t_start = time.time()
ds_filter = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args})
print(f"Time to filter dataset: {time.time()-t_start:.2f}")
print(f"Size of filtered dataset: {len(ds_filter)}")
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
t_start = time.time()
ds_filter, duplicate_clusters = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f"Time to deduplicate dataset: {time.time()-t_start:.2f}")
print(f"Size of deduplicate dataset: {len(ds_filter)}")
# Save data in batches of samples_per_file
output_dir = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / "duplicate_clusters.json", "w") as f:
json.dump(duplicate_clusters, f)
data_dir = output_dir / "data"
data_dir.mkdir(exist_ok=True)
t_start = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
file_path = str(data_dir / f"file-{file_number+1:012}.json")
end_index = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f"Time to save dataset: {time.time()-t_start:.2f}")
| transformers-main | examples/research_projects/codeparrot/scripts/preprocessing.py |
import logging
import os
import time
from argparse import Namespace
from pathlib import Path
import datasets
import torch
from accelerate import Accelerator, DistributedType
from accelerate.utils import ProjectConfiguration
from arguments import TrainingArguments
from datasets import load_dataset
from huggingface_hub import Repository
from torch.optim import AdamW
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, get_scheduler, set_seed
class ConstantLengthDataset(IterableDataset):
"""
Iterable dataset that returns constant length chunks of tokens from stream of text files.
Args:
tokenizer (Tokenizer): The processor used for proccessing the data.
dataset (dataset.Dataset): Dataset with text files.
infinite (bool): If True the iterator is reset after dataset reaches end else stops.
seq_length (int): Length of token sequences to return.
num_of_sequences (int): Number of token sequences to keep in buffer.
chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
tokenized (bool): If true we use a pretokenized dataset.
"""
def __init__(
self,
tokenizer,
dataset,
infinite=False,
seq_length=1024,
num_of_sequences=1024,
chars_per_token=3.6,
tokenized=False,
):
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.bos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.epoch = 0
self.infinite = infinite
self.current_size = 0
self.tokenized = tokenized
if self.tokenized:
self.max_buffer_size = seq_length * num_of_sequences
self.content_field = "input_ids"
else:
self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
self.content_field = "content"
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.max_buffer_size:
break
try:
buffer.append(next(iterator)[self.content_field])
buffer_len += len(buffer[-1])
except StopIteration:
if self.infinite:
iterator = iter(self.dataset)
self.epoch += 1
logger.info(f"Dataset epoch: {self.epoch}")
else:
more_examples = False
break
if self.tokenized:
tokenized_inputs = buffer
else:
tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"]
all_token_ids = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id])
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
self.current_size += 1
yield torch.tensor(input_ids)
def shuffle(self, buffer_size=1000):
return ShufflerIterDataPipe(self, buffer_size=buffer_size)
def setup_logging(args):
project_name = args.model_ckpt.split("/")[-1]
logger = logging.getLogger(__name__)
log_dir = Path(args.save_dir) / "log/"
log_dir.mkdir(exist_ok=True)
filename = f"debug_{accelerator.process_index}.log"
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=[logging.FileHandler(log_dir / filename), logging.StreamHandler()],
)
if accelerator.is_main_process: # we only want to setup logging once
accelerator.init_trackers(project_name, vars(args))
run_name = accelerator.trackers[0].run.name
logger.setLevel(logging.INFO)
datasets.utils.logging.set_verbosity_info()
transformers.utils.logging.set_verbosity_info()
else:
run_name = ""
logger.setLevel(logging.ERROR)
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
return logger, run_name
def create_dataloaders(args):
ds_kwargs = {"streaming": True}
train_data = load_dataset(args.dataset_name_train, split="train", **ds_kwargs)
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
valid_data = load_dataset(args.dataset_name_valid, split="train", **ds_kwargs)
train_dataset = ConstantLengthDataset(
tokenizer, train_data, infinite=True, seq_length=args.seq_length, tokenized=args.tokenized
)
valid_dataset = ConstantLengthDataset(
tokenizer, valid_data, infinite=False, seq_length=args.seq_length, tokenized=args.tokenized
)
train_dataset = train_dataset.shuffle(buffer_size=args.shuffle_buffer)
train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True)
eval_dataloader = DataLoader(valid_dataset, batch_size=args.valid_batch_size)
return train_dataloader, eval_dataloader
def get_grouped_params(model, args, no_decay=["bias", "ln_1.weight", "ln_2.weight", "ln_f.weight"]):
params_with_wd, params_without_wd = [], []
for n, p in model.named_parameters():
if any(nd in n for nd in no_decay):
params_without_wd.append(p)
else:
params_with_wd.append(p)
return [
{"params": params_with_wd, "weight_decay": args.weight_decay},
{"params": params_without_wd, "weight_decay": 0.0},
]
def log_metrics(step, metrics):
logger.info(f"Step {step}: {metrics}")
if accelerator.is_main_process:
accelerator.log(metrics, step)
def compute_tflops(elapsed_time, accelerator, args):
# TFLOPs formula (from Equation 3 in Section 5.1 of https://arxiv.org/pdf/2104.04473.pdf).
config_model = accelerator.unwrap_model(model).config
checkpoint_factor = 4 if args.gradient_checkpointing else 3
batch_size = args.train_batch_size * accelerator.state.num_processes * args.gradient_accumulation_steps
factor = 24 * checkpoint_factor * batch_size * args.seq_length * config_model.n_layer * (config_model.n_embd**2)
flops_per_iteration = factor * (
1.0
+ (args.seq_length / (6.0 * config_model.n_embd))
+ (tokenizer.vocab_size / (16.0 * config_model.n_layer * config_model.n_embd))
)
tflops = flops_per_iteration / (elapsed_time * accelerator.state.num_processes * (10**12))
return tflops
def evaluate(args):
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(batch, labels=batch)
loss = outputs.loss.repeat(args.valid_batch_size)
losses.append(accelerator.gather(loss))
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
losses = torch.cat(losses)
loss = losses[: eval_dataloader.dataset.current_size].mean()
try:
perplexity = torch.exp(loss)
except OverflowError:
perplexity = float("inf")
return loss.item(), perplexity.item()
# Settings
parser = HfArgumentParser(TrainingArguments)
args = parser.parse_args()
# Accelerator
config = ProjectConfiguration(project_dir=args.save_dir, logging_dir="log")
accelerator = Accelerator(log_with=["wandb", "tensorboard"], project_config=config)
acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()}
args = Namespace(**vars(args), **acc_state)
samples_per_step = accelerator.state.num_processes * args.train_batch_size
set_seed(args.seed)
# Clone model repository
if accelerator.is_main_process:
hf_repo = Repository(args.save_dir, clone_from=args.model_ckpt)
# Logging
logger, run_name = setup_logging(args)
logger.info(accelerator.state)
# Checkout new branch on repo
if accelerator.is_main_process:
hf_repo.git_checkout(run_name, create_branch_ok=True)
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(args.save_dir)
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
tokenizer = AutoTokenizer.from_pretrained(args.save_dir)
# Load dataset and dataloader
train_dataloader, eval_dataloader = create_dataloaders(args)
# Prepare the optimizer and learning rate scheduler
optimizer = AdamW(get_grouped_params(model, args), lr=args.learning_rate)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
accelerator.register_for_checkpointing(lr_scheduler)
def get_lr():
return optimizer.param_groups[0]["lr"]
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(args.save_dir) if f.is_dir() and "step" in str(f)]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract the step of the checkpoint to continue from there
training_difference = os.path.splitext(path)[0]
resume_step = int(training_difference.replace("step_", ""))
# Train model
model.train()
completed_steps = 0
t_start = time.time()
loss_tracking = 0
for step, batch in enumerate(train_dataloader, start=1):
if args.resume_from_checkpoint and step < resume_step:
continue # we need to skip steps until we reach the resumed step
loss = model(batch, labels=batch, use_cache=False).loss
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
loss_tracking += avg_loss.item() / args.gradient_accumulation_steps
log_metrics(step, {"samples": step * samples_per_step, "loss_per_step/train": loss.item()})
loss = loss / args.gradient_accumulation_steps
if step % args.gradient_accumulation_steps != 0:
# Prevent backward from doing gradient all_reduce in every step
if accelerator.distributed_type == DistributedType.MULTI_GPU:
with model.no_sync():
accelerator.backward(loss)
else:
accelerator.backward(loss)
else:
lr = get_lr()
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
elapsed_time = time.time() - t_start
tflops = compute_tflops(elapsed_time, accelerator, args)
log_metrics(
step,
{
"steps": completed_steps,
"loss/train": loss_tracking,
"lr": lr,
"tflops": tflops,
"time_per_iteration": elapsed_time,
},
)
t_start = time.time()
loss_tracking = 0
completed_steps += 1
if step % args.save_checkpoint_steps == 0:
logger.info("Evaluating and saving model checkpoint")
eval_loss, perplexity = evaluate(args)
log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity})
accelerator.wait_for_everyone()
save_dir = os.path.join(args.save_dir, f"step_{step}")
accelerator.save_state(save_dir)
if accelerator.is_main_process:
hf_repo.push_to_hub(commit_message=f"step {step}")
model.train()
if completed_steps >= args.max_train_steps:
break
# Evaluate and save the last checkpoint
logger.info("Evaluating and saving model after training")
eval_loss, perplexity = evaluate(args)
log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.save_dir, save_function=accelerator.save)
save_dir = os.path.join(args.save_dir, f"step_{step}")
accelerator.save_state(save_dir)
if accelerator.is_main_process:
hf_repo.push_to_hub(commit_message="final model")
| transformers-main | examples/research_projects/codeparrot/scripts/codeparrot_training.py |
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def tokenize(example):
output = {}
output["input_ids"] = tokenizer(example["content"], truncation=False)["input_ids"]
output["ratio_char_token"] = len(example["content"]) / len(output["input_ids"])
return output
parser = HfArgumentParser(PretokenizationArguments)
args = parser.parse_args()
if args.num_workers is None:
args.num_workers = multiprocessing.cpu_count()
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir)
t_start = time.time()
ds = load_dataset(args.dataset_name, split="train")
print(f"Dataset loaded in {time.time()-t_start:.2f}s")
t_start = time.time()
ds = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
"repo_name",
"path",
"copies",
"size",
"content",
"license",
"hash",
"line_mean",
"line_max",
"alpha_frac",
"autogenerated",
],
)
print(f"Dataset tokenized in {time.time()-t_start:.2f}s")
t_start = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f"Data pushed to the hub in {time.time()-t_start:.2f}s")
| transformers-main | examples/research_projects/codeparrot/scripts/pretokenizing.py |
from unittest import TestCase
from datasets import Dataset
from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters
def get_dataset():
data_dict = {
"repo_name": ["test_repo1", "test_repo2", "test_repo3"],
"path": ["test_1.py", "test_2.py", "unit_test.py"],
"content": ["a " * 20, "a " * 30, "b " * 7],
}
dataset = Dataset.from_dict(data_dict)
return dataset
class MakeDuplicateClustersTest(TestCase):
def test_make_duplicate_clusters(self):
ds = get_dataset()
duplicate_clusters = make_duplicate_clusters(ds, 0.85)
self.assertEqual(len(duplicate_clusters[0]), 2)
def test_deduplicate_dataset(self):
ds = get_dataset()
ds_filter, duplicate_clusters = deduplicate_dataset(ds)
self.assertEqual(len(ds_filter), 2)
print(duplicate_clusters)
self.assertEqual(duplicate_clusters[0][0]["copies"], 2)
self.assertEqual(duplicate_clusters[0][0]["is_extreme"], True)
| transformers-main | examples/research_projects/codeparrot/scripts/tests/test_deduplicate.py |
transformers-main | examples/research_projects/codeparrot/scripts/tests/__init__.py |
|
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
# Copyright 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A subclass of `Trainer` specific to Question-Answering tasks
"""
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
logger = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class QuestionAnsweringTrainer(Trainer):
def __init__(self, *args, eval_examples=None, post_process_function=None, quant_trainer_args=None, **kwargs):
super().__init__(*args, **kwargs)
self.eval_examples = eval_examples
self.post_process_function = post_process_function
self.quant_trainer_args = quant_trainer_args
self.calib_num = 128 # default number of calibration samples
def get_calib_dataloader(self, calib_dataset=None):
"""
Returns the calibration dataloader :class:`~torch.utils.data.DataLoader`.
Args:
calib_dataset (:obj:`torch.utils.data.Dataset`, `optional`)
"""
if calib_dataset is None and self.calib_dataset is None:
raise ValueError("Trainer: calibration requires an calib_dataset.")
calib_dataset = calib_dataset if calib_dataset is not None else self.calib_dataset
calib_dataset = self._remove_unused_columns(calib_dataset, description="Calibration")
return DataLoader(
calib_dataset,
batch_size=self.args.eval_batch_size,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
shuffle=True,
)
def calibrate(self, calib_dataset=None):
calib_dataset = self.train_dataset if calib_dataset is None else calib_dataset
calib_dataloader = self.get_calib_dataloader(calib_dataset)
model = self.model
quant_trainer.configure_model(model, self.quant_trainer_args, calib=True)
model.eval()
quant_trainer.enable_calibration(model)
logger.info("***** Running calibration *****")
logger.info(f" Num examples = {self.calib_num}")
logger.info(f" Batch size = {calib_dataloader.batch_size}")
for step, inputs in enumerate(calib_dataloader):
# Prediction step
loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only=True)
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(model, self.quant_trainer_args)
self.model = model
def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"):
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
eval_dataloader = self.get_eval_dataloader(eval_dataset)
eval_examples = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
compute_metrics = self.compute_metrics
self.compute_metrics = None
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
output = eval_loop(
eval_dataloader,
description="Evaluation",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
)
finally:
self.compute_metrics = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
eval_preds = self.post_process_function(eval_examples, eval_dataset, output.predictions)
metrics = self.compute_metrics(eval_preds)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
self.log(metrics)
else:
metrics = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
return metrics
def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"):
predict_dataloader = self.get_test_dataloader(predict_dataset)
# Temporarily disable metric computation, we will do it in the loop here.
compute_metrics = self.compute_metrics
self.compute_metrics = None
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
output = eval_loop(
predict_dataloader,
description="Prediction",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
)
finally:
self.compute_metrics = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict")
metrics = self.compute_metrics(predictions)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)
def save_onnx(self, output_dir="./"):
eval_dataset = self.eval_dataset
eval_dataloader = self.get_eval_dataloader(eval_dataset)
batch = next(iter(eval_dataloader))
# saving device - to make it consistent
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# convert to tuple
input_tuple = tuple(v.to(device) for k, v in batch.items())
logger.info("Converting model to be onnx compatible")
from pytorch_quantization.nn import TensorQuantizer
TensorQuantizer.use_fb_fake_quant = True
model = self.model.to(device)
model.eval()
model.float()
model_to_save = model.module if hasattr(model, "module") else model
quant_trainer.configure_model(model_to_save, self.quant_trainer_args)
output_model_file = os.path.join(output_dir, "model.onnx")
logger.info(f"exporting model to {output_model_file}")
axes = {0: "batch_size", 1: "seq_len"}
torch.onnx.export(
model_to_save,
input_tuple,
output_model_file,
export_params=True,
opset_version=13,
do_constant_folding=True,
input_names=["input_ids", "attention_mask", "token_type_ids"],
output_names=["output_start_logits", "output_end_logits"],
dynamic_axes={
"input_ids": axes,
"attention_mask": axes,
"token_type_ids": axes,
"output_start_logits": axes,
"output_end_logits": axes,
},
verbose=True,
)
logger.info("onnx export finished")
| transformers-main | examples/research_projects/quantization-qdqbert/trainer_quant_qa.py |
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Post-processing utilities for question answering.
"""
import collections
import json
import logging
import os
from typing import Optional, Tuple
import numpy as np
from tqdm.auto import tqdm
logger = logging.getLogger(__name__)
def postprocess_qa_predictions(
examples,
features,
predictions: Tuple[np.ndarray, np.ndarray],
version_2_with_negative: bool = False,
n_best_size: int = 20,
max_answer_length: int = 30,
null_score_diff_threshold: float = 0.0,
output_dir: Optional[str] = None,
prefix: Optional[str] = None,
log_level: Optional[int] = logging.WARNING,
):
"""
Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the
original contexts. This is the base postprocessing functions for models that only return start and end logits.
Args:
examples: The non-preprocessed dataset (see the main script for more information).
features: The processed dataset (see the main script for more information).
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
first dimension must match the number of elements of :obj:`features`.
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the underlying dataset contains examples with no answers.
n_best_size (:obj:`int`, `optional`, defaults to 20):
The total number of n-best predictions to generate when looking for an answer.
max_answer_length (:obj:`int`, `optional`, defaults to 30):
The maximum length of an answer that can be generated. This is needed because the start and end predictions
are not conditioned on one another.
null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0):
The threshold used to select the null answer: if the best answer has a score that is less than the score of
the null answer minus this threshold, the null answer is selected for this example (note that the score of
the null answer for an example giving several features is the minimum of the scores for the null answer on
each feature: all features must be aligned on the fact they `want` to predict a null answer).
Only useful when :obj:`version_2_with_negative` is :obj:`True`.
output_dir (:obj:`str`, `optional`):
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
answers, are saved in `output_dir`.
prefix (:obj:`str`, `optional`):
If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
``logging`` log level (e.g., ``logging.WARNING``)
"""
if len(predictions) != 2:
raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).")
all_start_logits, all_end_logits = predictions
if len(predictions[0]) != len(features):
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
features_per_example = collections.defaultdict(list)
for i, feature in enumerate(features):
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
# The dictionaries we have to fill.
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
if version_2_with_negative:
scores_diff_json = collections.OrderedDict()
# Logging.
logger.setLevel(log_level)
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
# Let's loop over all the examples!
for example_index, example in enumerate(tqdm(examples)):
# Those are the indices of the features associated to the current example.
feature_indices = features_per_example[example_index]
min_null_prediction = None
prelim_predictions = []
# Looping through all the features associated to the current example.
for feature_index in feature_indices:
# We grab the predictions of the model for this feature.
start_logits = all_start_logits[feature_index]
end_logits = all_end_logits[feature_index]
# This is what will allow us to map some the positions in our logits to span of texts in the original
# context.
offset_mapping = features[feature_index]["offset_mapping"]
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
# available in the current feature.
token_is_max_context = features[feature_index].get("token_is_max_context", None)
# Update minimum null prediction.
feature_null_score = start_logits[0] + end_logits[0]
if min_null_prediction is None or min_null_prediction["score"] > feature_null_score:
min_null_prediction = {
"offsets": (0, 0),
"score": feature_null_score,
"start_logit": start_logits[0],
"end_logit": end_logits[0],
}
# Go through all possibilities for the `n_best_size` greater start and end logits.
start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
for start_index in start_indexes:
for end_index in end_indexes:
# Don't consider out-of-scope answers, either because the indices are out of bounds or correspond
# to part of the input_ids that are not in the context.
if (
start_index >= len(offset_mapping)
or end_index >= len(offset_mapping)
or offset_mapping[start_index] is None
or len(offset_mapping[start_index]) < 2
or offset_mapping[end_index] is None
or len(offset_mapping[end_index]) < 2
):
continue
# Don't consider answers with a length that is either < 0 or > max_answer_length.
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
continue
# Don't consider answer that don't have the maximum context available (if such information is
# provided).
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
continue
prelim_predictions.append(
{
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
"score": start_logits[start_index] + end_logits[end_index],
"start_logit": start_logits[start_index],
"end_logit": end_logits[end_index],
}
)
if version_2_with_negative:
# Add the minimum null prediction
prelim_predictions.append(min_null_prediction)
null_score = min_null_prediction["score"]
# Only keep the best `n_best_size` predictions.
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
# Add back the minimum null prediction if it was removed because of its low score.
if version_2_with_negative and not any(p["offsets"] == (0, 0) for p in predictions):
predictions.append(min_null_prediction)
# Use the offsets to gather the answer text in the original context.
context = example["context"]
for pred in predictions:
offsets = pred.pop("offsets")
pred["text"] = context[offsets[0] : offsets[1]]
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
# failure.
if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""):
predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0})
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
# the LogSumExp trick).
scores = np.array([pred.pop("score") for pred in predictions])
exp_scores = np.exp(scores - np.max(scores))
probs = exp_scores / exp_scores.sum()
# Include the probabilities in our predictions.
for prob, pred in zip(probs, predictions):
pred["probability"] = prob
# Pick the best prediction. If the null answer is not possible, this is easy.
if not version_2_with_negative:
all_predictions[example["id"]] = predictions[0]["text"]
else:
# Otherwise we first need to find the best non-empty prediction.
i = 0
while predictions[i]["text"] == "":
i += 1
best_non_null_pred = predictions[i]
# Then we compare to the null prediction using the threshold.
score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"]
scores_diff_json[example["id"]] = float(score_diff) # To be JSON-serializable.
if score_diff > null_score_diff_threshold:
all_predictions[example["id"]] = ""
else:
all_predictions[example["id"]] = best_non_null_pred["text"]
# Make `predictions` JSON-serializable by casting np.float back to float.
all_nbest_json[example["id"]] = [
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
for pred in predictions
]
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
)
nbest_file = os.path.join(
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
)
if version_2_with_negative:
null_odds_file = os.path.join(
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
)
logger.info(f"Saving predictions to {prediction_file}.")
with open(prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
logger.info(f"Saving nbest_preds to {nbest_file}.")
with open(nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if version_2_with_negative:
logger.info(f"Saving null_odds to {null_odds_file}.")
with open(null_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
return all_predictions
def postprocess_qa_predictions_with_beam_search(
examples,
features,
predictions: Tuple[np.ndarray, np.ndarray],
version_2_with_negative: bool = False,
n_best_size: int = 20,
max_answer_length: int = 30,
start_n_top: int = 5,
end_n_top: int = 5,
output_dir: Optional[str] = None,
prefix: Optional[str] = None,
log_level: Optional[int] = logging.WARNING,
):
"""
Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the
original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as
cls token predictions.
Args:
examples: The non-preprocessed dataset (see the main script for more information).
features: The processed dataset (see the main script for more information).
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
first dimension must match the number of elements of :obj:`features`.
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the underlying dataset contains examples with no answers.
n_best_size (:obj:`int`, `optional`, defaults to 20):
The total number of n-best predictions to generate when looking for an answer.
max_answer_length (:obj:`int`, `optional`, defaults to 30):
The maximum length of an answer that can be generated. This is needed because the start and end predictions
are not conditioned on one another.
start_n_top (:obj:`int`, `optional`, defaults to 5):
The number of top start logits too keep when searching for the :obj:`n_best_size` predictions.
end_n_top (:obj:`int`, `optional`, defaults to 5):
The number of top end logits too keep when searching for the :obj:`n_best_size` predictions.
output_dir (:obj:`str`, `optional`):
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
answers, are saved in `output_dir`.
prefix (:obj:`str`, `optional`):
If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
``logging`` log level (e.g., ``logging.WARNING``)
"""
if len(predictions) != 5:
raise ValueError("`predictions` should be a tuple with five elements.")
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions
if len(predictions[0]) != len(features):
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
# Build a map example to its corresponding features.
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
features_per_example = collections.defaultdict(list)
for i, feature in enumerate(features):
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
# The dictionaries we have to fill.
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict() if version_2_with_negative else None
# Logging.
logger.setLevel(log_level)
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
# Let's loop over all the examples!
for example_index, example in enumerate(tqdm(examples)):
# Those are the indices of the features associated to the current example.
feature_indices = features_per_example[example_index]
min_null_score = None
prelim_predictions = []
# Looping through all the features associated to the current example.
for feature_index in feature_indices:
# We grab the predictions of the model for this feature.
start_log_prob = start_top_log_probs[feature_index]
start_indexes = start_top_index[feature_index]
end_log_prob = end_top_log_probs[feature_index]
end_indexes = end_top_index[feature_index]
feature_null_score = cls_logits[feature_index]
# This is what will allow us to map some the positions in our logits to span of texts in the original
# context.
offset_mapping = features[feature_index]["offset_mapping"]
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
# available in the current feature.
token_is_max_context = features[feature_index].get("token_is_max_context", None)
# Update minimum null prediction
if min_null_score is None or feature_null_score < min_null_score:
min_null_score = feature_null_score
# Go through all possibilities for the `n_start_top`/`n_end_top` greater start and end logits.
for i in range(start_n_top):
for j in range(end_n_top):
start_index = int(start_indexes[i])
j_index = i * end_n_top + j
end_index = int(end_indexes[j_index])
# Don't consider out-of-scope answers (last part of the test should be unnecessary because of the
# p_mask but let's not take any risk)
if (
start_index >= len(offset_mapping)
or end_index >= len(offset_mapping)
or offset_mapping[start_index] is None
or offset_mapping[end_index] is None
):
continue
# Don't consider answers with a length negative or > max_answer_length.
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
continue
# Don't consider answer that don't have the maximum context available (if such information is
# provided).
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
continue
prelim_predictions.append(
{
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
"score": start_log_prob[i] + end_log_prob[j_index],
"start_log_prob": start_log_prob[i],
"end_log_prob": end_log_prob[j_index],
}
)
# Only keep the best `n_best_size` predictions.
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
# Use the offsets to gather the answer text in the original context.
context = example["context"]
for pred in predictions:
offsets = pred.pop("offsets")
pred["text"] = context[offsets[0] : offsets[1]]
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
# failure.
if len(predictions) == 0:
predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": -2e-6})
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
# the LogSumExp trick).
scores = np.array([pred.pop("score") for pred in predictions])
exp_scores = np.exp(scores - np.max(scores))
probs = exp_scores / exp_scores.sum()
# Include the probabilities in our predictions.
for prob, pred in zip(probs, predictions):
pred["probability"] = prob
# Pick the best prediction and set the probability for the null answer.
all_predictions[example["id"]] = predictions[0]["text"]
if version_2_with_negative:
scores_diff_json[example["id"]] = float(min_null_score)
# Make `predictions` JSON-serializable by casting np.float back to float.
all_nbest_json[example["id"]] = [
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
for pred in predictions
]
# If we have an output_dir, let's save all those dicts.
if output_dir is not None:
if not os.path.isdir(output_dir):
raise EnvironmentError(f"{output_dir} is not a directory.")
prediction_file = os.path.join(
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
)
nbest_file = os.path.join(
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
)
if version_2_with_negative:
null_odds_file = os.path.join(
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
)
logger.info(f"Saving predictions to {prediction_file}.")
with open(prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
logger.info(f"Saving nbest_preds to {nbest_file}.")
with open(nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if version_2_with_negative:
logger.info(f"Saving null_odds to {null_odds_file}.")
with open(null_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
return all_predictions, scores_diff_json
| transformers-main | examples/research_projects/quantization-qdqbert/utils_qa.py |
import os
import time
import numpy as np
import onnxruntime as ort
os.environ["ORT_TENSORRT_INT8_ENABLE"] = "1"
os.environ["ORT_TENSORRT_INT8_USE_NATIVE_CALIBRATION_TABLE"] = "0"
os.environ["ORT_TENSORRT_ENGINE_CACHE_ENABLE"] = "1"
sess_opt = ort.SessionOptions()
sess_opt.graph_optimization_level = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
print("Create inference session...")
execution_provider = ["TensorrtExecutionProvider", "CUDAExecutionProvider"]
sess = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider)
run_opt = ort.RunOptions()
sequence = 128
batch = 1
input_ids = np.ones((batch, sequence), dtype=np.int64)
attention_mask = np.ones((batch, sequence), dtype=np.int64)
token_type_ids = np.ones((batch, sequence), dtype=np.int64)
print("Warm up phase...")
sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print("Start inference...")
start_time = time.time()
max_iters = 2000
predict = {}
for iter in range(max_iters):
predict = sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1000 / max_iters))
| transformers-main | examples/research_projects/quantization-qdqbert/ort-infer-benchmark.py |
# coding=utf-8
# Copyright 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
absl_logger = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--onnx_model_path",
default=None,
type=str,
required=True,
help="Path to ONNX model: ",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
# Other parameters
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
required=True,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--version_2_with_negative",
action="store_true",
help="If true, the SQuAD examples contain some that do not have an answer.",
)
parser.add_argument(
"--null_score_diff_threshold",
type=float,
default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.",
)
parser.add_argument(
"--max_seq_length",
default=384,
type=int,
help=(
"The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded."
),
)
parser.add_argument(
"--doc_stride",
default=128,
type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.",
)
parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
)
parser.add_argument(
"--max_answer_length",
default=30,
type=int,
help=(
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
),
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--dataset_name",
type=str,
default=None,
required=True,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data."
)
parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision instead of 32-bit",
)
parser.add_argument(
"--int8",
action="store_true",
help="Whether to use INT8",
)
args = parser.parse_args()
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
logger.info("Training/evaluation parameters %s", args)
args.eval_batch_size = args.per_device_eval_batch_size
INPUT_SHAPE = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
STRICT_TYPES = True
engine_name = "temp_engine/bert-fp32.engine"
if args.fp16:
engine_name = "temp_engine/bert-fp16.engine"
if args.int8:
engine_name = "temp_engine/bert-int8.engine"
# import ONNX file
if not os.path.exists("temp_engine"):
os.makedirs("temp_engine")
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, "rb") as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
network_inputs = [network.get_input(i) for i in range(network.num_inputs)]
input_names = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
config.max_workspace_size = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fp16:
config.set_flag(trt.BuilderFlag.FP16)
if args.int8:
config.set_flag(trt.BuilderFlag.INT8)
profile = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
engine = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, "wb") as f:
f.write(engine.serialize())
# run inference with TRT
def model_infer(inputs, context, d_inputs, h_output0, h_output1, d_output0, d_output1, stream):
input_ids = np.asarray(inputs["input_ids"], dtype=np.int32)
attention_mask = np.asarray(inputs["attention_mask"], dtype=np.int32)
token_type_ids = np.asarray(inputs["token_type_ids"], dtype=np.int32)
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), stream)
cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), stream)
cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), stream)
# start time
start_time = time.time()
# Run inference
context.execute_async(
bindings=[int(d_inp) for d_inp in d_inputs] + [int(d_output0), int(d_output1)], stream_handle=stream.handle
)
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(h_output0, d_output0, stream)
cuda.memcpy_dtoh_async(h_output1, d_output1, stream)
# Synchronize the stream and take time
stream.synchronize()
# end time
end_time = time.time()
infer_time = end_time - start_time
outputs = (h_output0, h_output1)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError("Evaluation requires a dataset name")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
column_names = raw_datasets["validation"].column_names
question_column_name = "question" if "question" in column_names else column_names[0]
context_column_name = "context" if "context" in column_names else column_names[1]
answer_column_name = "answers" if "answers" in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
pad_on_right = tokenizer.padding_side == "right"
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(args.max_seq_length, tokenizer.model_max_length)
# Validation preprocessing
def prepare_validation_features(examples):
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
tokenized_examples = tokenizer(
examples[question_column_name if pad_on_right else context_column_name],
examples[context_column_name if pad_on_right else question_column_name],
truncation="only_second" if pad_on_right else "only_first",
max_length=max_seq_length,
stride=args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
tokenized_examples["example_id"] = []
for i in range(len(tokenized_examples["input_ids"])):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_examples.sequence_ids(i)
context_index = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
tokenized_examples["example_id"].append(examples["id"][sample_index])
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
tokenized_examples["offset_mapping"][i] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["offset_mapping"][i])
]
return tokenized_examples
eval_examples = raw_datasets["validation"]
# Validation Feature Creation
eval_dataset = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
data_collator = default_data_collator
eval_dataset_for_model = eval_dataset.remove_columns(["example_id", "offset_mapping"])
eval_dataloader = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
# Post-processing:
def post_processing_function(examples, features, predictions, stage="eval"):
# Post-processing: we match the start logits and end logits to answers in the original context.
predictions = postprocess_qa_predictions(
examples=examples,
features=features,
predictions=predictions,
version_2_with_negative=args.version_2_with_negative,
n_best_size=args.n_best_size,
max_answer_length=args.max_answer_length,
null_score_diff_threshold=args.null_score_diff_threshold,
output_dir=args.output_dir,
prefix=stage,
)
# Format the result to the format the metric expects.
if args.version_2_with_negative:
formatted_predictions = [
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
]
else:
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
metric = load_metric("squad_v2" if args.version_2_with_negative else "squad")
# Evaluation!
logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path)
with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def binding_nbytes(binding):
return trt.volume(engine.get_binding_shape(binding)) * engine.get_binding_dtype(binding).itemsize
# Allocate device memory for inputs and outputs.
d_inputs = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
h_output0 = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.float32)
h_output1 = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.float32)
d_output0 = cuda.mem_alloc(h_output0.nbytes)
d_output1 = cuda.mem_alloc(h_output1.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
stream = cuda.Stream()
# Evaluation
logger.info("***** Running Evaluation *****")
logger.info(f" Num examples = {len(eval_dataset)}")
logger.info(f" Batch size = {args.per_device_eval_batch_size}")
total_time = 0.0
niter = 0
start_time = timeit.default_timer()
all_preds = None
for step, batch in enumerate(eval_dataloader):
outputs, infer_time = model_infer(batch, context, d_inputs, h_output0, h_output1, d_output0, d_output1, stream)
total_time += infer_time
niter += 1
start_logits, end_logits = outputs
start_logits = torch.tensor(start_logits)
end_logits = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
start_logits = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
end_logits = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
logits = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
all_preds = nested_truncate(all_preds, len(eval_dataset))
evalTime = timeit.default_timer() - start_time
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter))
logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000))
logger.info("Total Number of Inference = %d", niter)
prediction = post_processing_function(eval_examples, eval_dataset, all_preds)
eval_metric = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f"Evaluation metrics: {eval_metric}")
| transformers-main | examples/research_projects/quantization-qdqbert/evaluate-hf-trt-qa.py |
# coding=utf-8
# Copyright 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Helper functions for training models with pytorch-quantization"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
logger = logging.getLogger(__name__)
name_width = 50 # max width of layer names
qname_width = 70 # max width of quantizer names
# ========================================== Quant Trainer API ==========================================
def add_arguments(parser):
"""Add arguments to parser for functions defined in quant_trainer."""
group = parser.add_argument_group("quant_trainer arguments")
group.add_argument("--wprec", type=int, default=8, help="weight precision")
group.add_argument("--aprec", type=int, default=8, help="activation precision")
group.add_argument("--quant-per-tensor", action="store_true", help="per tensor weight scaling")
group.add_argument("--quant-disable", action="store_true", help="disable all quantizers")
group.add_argument("--quant-disable-embeddings", action="store_true", help="disable all embeddings quantizers")
group.add_argument("--quant-disable-keyword", type=str, nargs="+", help="disable quantizers by keyword")
group.add_argument("--quant-disable-layer-module", type=str, help="disable quantizers by keyword under layer.")
group.add_argument("--quant-enable-layer-module", type=str, help="enable quantizers by keyword under layer")
group.add_argument("--calibrator", default="max", help="which quantization range calibrator to use")
group.add_argument("--percentile", default=None, type=float, help="percentile for PercentileCalibrator")
group.add_argument("--fuse-qkv", action="store_true", help="use the same scale factor for qkv")
group.add_argument("--clip-gelu", metavar="N", type=float, help="clip gelu output maximum value to N")
group.add_argument(
"--recalibrate-weights",
action="store_true",
help=(
"recalibrate weight amaxes by taking the max of the weights."
" amaxes will be computed with the current quantization granularity (axis)."
),
)
def set_default_quantizers(args):
"""Set default quantizers before creating the model."""
if args.calibrator == "max":
calib_method = "max"
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError("Specify --percentile when using percentile calibrator")
calib_method = "histogram"
elif args.calibrator == "mse":
calib_method = "histogram"
else:
raise ValueError(f"Invalid calibrator {args.calibrator}")
input_desc = QuantDescriptor(num_bits=args.aprec, calib_method=calib_method)
weight_desc = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)))
quant_nn.QuantLinear.set_default_quant_desc_input(input_desc)
quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc)
def configure_model(model, args, calib=False, eval=False):
"""Function called before the training loop."""
logger.info("Configuring Model for Quantization")
logger.info(f"using quantization package {pytorch_quantization.__file__}")
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(model, ["embeddings"], which="weight", _disabled=True)
if args.quant_disable:
set_quantizer_by_name(model, [""], _disabled=True)
if args.quant_disable_keyword:
set_quantizer_by_name(model, args.quant_disable_keyword, _disabled=True)
if args.quant_disable_layer_module:
set_quantizer_by_name(model, [r"layer.\d+." + args.quant_disable_layer_module], _disabled=True)
if args.quant_enable_layer_module:
set_quantizer_by_name(model, [r"layer.\d+." + args.quant_enable_layer_module], _disabled=False)
if args.recalibrate_weights:
recalibrate_weights(model)
if args.fuse_qkv:
fuse_qkv(model, args)
if args.clip_gelu:
clip_gelu(model, args.clip_gelu)
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(model)
def enable_calibration(model):
"""Enable calibration of all *_input_quantizer modules in model."""
logger.info("Enabling Calibration")
for name, module in model.named_modules():
if name.endswith("_quantizer"):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"{name:80}: {module}")
def finish_calibration(model, args):
"""Disable calibration and load amax for all "*_input_quantizer modules in model."""
logger.info("Loading calibrated amax")
for name, module in model.named_modules():
if name.endswith("_quantizer"):
if module._calibrator is not None:
if isinstance(module._calibrator, calib.MaxCalibrator):
module.load_calib_amax()
else:
module.load_calib_amax("percentile", percentile=args.percentile)
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(model)
# ========================================== Helper Function ==========================================
def fuse_qkv(model, args):
"""Adjust quantization ranges to match an implementation where the QKV projections are implemented with a single GEMM.
Force the weight and output scale factors to match by taking the max of (Q,K,V).
"""
def fuse3(qq, qk, qv):
for mod in [qq, qk, qv]:
if not hasattr(mod, "_amax"):
print(" WARNING: NO AMAX BUFFER")
return
q = qq._amax.detach().item()
k = qk._amax.detach().item()
v = qv._amax.detach().item()
amax = max(q, k, v)
qq._amax.fill_(amax)
qk._amax.fill_(amax)
qv._amax.fill_(amax)
logger.info(f" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}")
for name, mod in model.named_modules():
if name.endswith(".attention.self"):
logger.info(f"FUSE_QKV: {name:{name_width}}")
fuse3(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer)
if args.quant_per_tensor:
fuse3(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer)
def clip_gelu(model, maxval):
"""Clip activations generated by GELU to maxval when quantized.
Implemented by adjusting the amax of the following input_quantizer.
"""
for name, mod in model.named_modules():
if name.endswith(".output.dense") and not name.endswith("attention.output.dense"):
amax_init = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=maxval)
amax = mod._input_quantizer._amax.data.detach().item()
logger.info(f"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}")
def expand_amax(model):
"""Expand per-tensor amax to be per channel, where each channel is assigned the per-tensor amax."""
for name, mod in model.named_modules():
if hasattr(mod, "_weight_quantizer") and mod._weight_quantizer.axis is not None:
k = mod.weight.shape[0]
amax = mod._weight_quantizer._amax.detach()
mod._weight_quantizer._amax = torch.ones(k, dtype=amax.dtype, device=amax.device) * amax
print(f"expanding {name} {amax} -> {mod._weight_quantizer._amax}")
def recalibrate_weights(model):
"""Performs max calibration on the weights and updates amax."""
for name, mod in model.named_modules():
if hasattr(mod, "_weight_quantizer"):
if not hasattr(mod.weight_quantizer, "_amax"):
print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER")
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
axis_set = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis)
reduce_axis = set(range(len(mod.weight.size()))) - axis_set
amax = pytorch_quantization.utils.reduce_amax(mod.weight, axis=reduce_axis, keepdims=True).detach()
logger.info(f"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}")
mod._weight_quantizer._amax = amax
def print_model_summary(model, name_width=25, line_width=180, ignore=None):
"""Print model quantization configuration."""
if ignore is None:
ignore = []
elif not isinstance(ignore, list):
ignore = [ignore]
name_width = 0
for name, mod in model.named_modules():
if not hasattr(mod, "weight"):
continue
name_width = max(name_width, len(name))
for name, mod in model.named_modules():
input_q = getattr(mod, "_input_quantizer", None)
weight_q = getattr(mod, "_weight_quantizer", None)
if not hasattr(mod, "weight"):
continue
if type(mod) in ignore:
continue
if [True for s in ignore if type(s) is str and s in name]:
continue
act_str = f"Act:{input_q.extra_repr()}"
wgt_str = f"Wgt:{weight_q.extra_repr()}"
s = f"{name:{name_width}} {act_str} {wgt_str}"
if len(s) <= line_width:
logger.info(s)
else:
logger.info(f"{name:{name_width}} {act_str}")
logger.info(f'{" ":{name_width}} {wgt_str}')
def print_quant_summary(model):
"""Print summary of all quantizer modules in the model."""
count = 0
for name, mod in model.named_modules():
if isinstance(mod, pytorch_quantization.nn.TensorQuantizer):
print(f"{name:80} {mod}")
count += 1
print(f"{count} TensorQuantizers found in model")
def set_quantizer(name, mod, quantizer, k, v):
"""Set attributes for mod.quantizer."""
quantizer_mod = getattr(mod, quantizer, None)
if quantizer_mod is not None:
assert hasattr(quantizer_mod, k)
setattr(quantizer_mod, k, v)
else:
logger.warning(f"{name} has no {quantizer}")
def set_quantizers(name, mod, which="both", **kwargs):
"""Set quantizer attributes for mod."""
s = f"Warning: changing {which} quantizers of {name:{qname_width}}"
for k, v in kwargs.items():
s += f" {k}={v}"
if which in ["input", "both"]:
set_quantizer(name, mod, "_input_quantizer", k, v)
if which in ["weight", "both"]:
set_quantizer(name, mod, "_weight_quantizer", k, v)
logger.info(s)
def set_quantizer_by_name(model, names, **kwargs):
"""Set quantizer attributes for layers where name contains a substring in names."""
for name, mod in model.named_modules():
if hasattr(mod, "_input_quantizer") or hasattr(mod, "_weight_quantizer"):
for n in names:
if re.search(n, name):
set_quantizers(name, mod, **kwargs)
elif name.endswith("_quantizer"):
for n in names:
if re.search(n, name):
s = f"Warning: changing {name:{name_width}}"
for k, v in kwargs.items():
s += f" {k}={v}"
setattr(mod, k, v)
logger.info(s)
| transformers-main | examples/research_projects/quantization-qdqbert/quant_trainer.py |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
# Copyright 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for question answering.
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import quant_trainer
from datasets import load_dataset, load_metric
from trainer_quant_qa import QuestionAnsweringTrainer
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import (
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizerFast,
QDQBertConfig,
QDQBertForQuestionAnswering,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import SchedulerType, get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.9.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
do_calib: bool = field(default=False, metadata={"help": "Whether to run calibration of quantization ranges."})
num_calib_batch: int = field(
default=4,
metadata={"help": "Number of batches for calibration. 0 will disable calibration "},
)
save_onnx: bool = field(default=False, metadata={"help": "Whether to save model to onnx."})
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_seq_length: int = field(
default=384,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when"
" batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
version_2_with_negative: bool = field(
default=False, metadata={"help": "If true, some of the examples do not have an answer."}
)
null_score_diff_threshold: float = field(
default=0.0,
metadata={
"help": (
"The threshold used to select the null answer: if the best answer has a score that is less than "
"the score of the null answer minus this threshold, the null answer is selected for this example. "
"Only useful when `version_2_with_negative=True`."
)
},
)
doc_stride: int = field(
default=128,
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
)
n_best_size: int = field(
default=20,
metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
)
max_answer_length: int = field(
default=30,
metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
},
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_file is None
and self.validation_file is None
and self.test_file is None
):
raise ValueError("Need either a dataset name or a training/validation file/test_file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.test_file is not None:
extension = self.test_file.split(".")[-1]
assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
# quant_trainer arguments
quant_trainer.add_arguments(parser)
# if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# # If we pass only one argument to the script and it's the path to a json file,
# # let's parse it to get our arguments.
# model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
# else:
model_args, data_args, training_args, quant_trainer_args = parser.parse_args_into_dataclasses()
# setup QAT training args for scheduler (default to use cosine annealing learning rate schedule)
training_args.lr_scheduler_type = SchedulerType.COSINE
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files, field="data", cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# set default quantization parameters before building model
quant_trainer.set_default_quantizers(quant_trainer_args)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = QDQBertConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = QDQBertForQuestionAnswering.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# Tokenizer check: this script requires a fast tokenizer.
if not isinstance(tokenizer, PreTrainedTokenizerFast):
raise ValueError(
"This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
" https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
" this requirement"
)
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
if training_args.do_train or model_args.do_calib:
column_names = raw_datasets["train"].column_names
elif training_args.do_eval or model_args.save_onnx:
column_names = raw_datasets["validation"].column_names
else:
column_names = raw_datasets["test"].column_names
question_column_name = "question" if "question" in column_names else column_names[0]
context_column_name = "context" if "context" in column_names else column_names[1]
answer_column_name = "answers" if "answers" in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
pad_on_right = tokenizer.padding_side == "right"
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
# Training preprocessing
def prepare_train_features(examples):
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
tokenized_examples = tokenizer(
examples[question_column_name if pad_on_right else context_column_name],
examples[context_column_name if pad_on_right else question_column_name],
truncation="only_second" if pad_on_right else "only_first",
max_length=max_seq_length,
stride=data_args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length" if data_args.pad_to_max_length else False,
)
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# The offset mappings will give us a map from token to character position in the original context. This will
# help us compute the start_positions and end_positions.
offset_mapping = tokenized_examples.pop("offset_mapping")
# Let's label those examples!
tokenized_examples["start_positions"] = []
tokenized_examples["end_positions"] = []
for i, offsets in enumerate(offset_mapping):
# We will label impossible answers with the index of the CLS token.
input_ids = tokenized_examples["input_ids"][i]
cls_index = input_ids.index(tokenizer.cls_token_id)
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_examples.sequence_ids(i)
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
answers = examples[answer_column_name][sample_index]
# If no answers are given, set the cls_index as answer.
if len(answers["answer_start"]) == 0:
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
else:
# Start/end character index of the answer in the text.
start_char = answers["answer_start"][0]
end_char = start_char + len(answers["text"][0])
# Start token index of the current span in the text.
token_start_index = 0
while sequence_ids[token_start_index] != (1 if pad_on_right else 0):
token_start_index += 1
# End token index of the current span in the text.
token_end_index = len(input_ids) - 1
while sequence_ids[token_end_index] != (1 if pad_on_right else 0):
token_end_index -= 1
# Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
tokenized_examples["start_positions"].append(cls_index)
tokenized_examples["end_positions"].append(cls_index)
else:
# Otherwise move the token_start_index and token_end_index to the two ends of the answer.
# Note: we could go after the last offset if the answer is the last word (edge case).
while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
token_start_index += 1
tokenized_examples["start_positions"].append(token_start_index - 1)
while offsets[token_end_index][1] >= end_char:
token_end_index -= 1
tokenized_examples["end_positions"].append(token_end_index + 1)
return tokenized_examples
if training_args.do_train or model_args.do_calib:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
# We will select sample from whole data if agument is specified
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
# Create train feature from dataset
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
prepare_train_features,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if data_args.max_train_samples is not None:
# Number of samples might increase during Feature Creation, We select only specified max samples
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
# Validation preprocessing
def prepare_validation_features(examples):
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
tokenized_examples = tokenizer(
examples[question_column_name if pad_on_right else context_column_name],
examples[context_column_name if pad_on_right else question_column_name],
truncation="only_second" if pad_on_right else "only_first",
max_length=max_seq_length,
stride=data_args.doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length" if data_args.pad_to_max_length else False,
)
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
tokenized_examples["example_id"] = []
for i in range(len(tokenized_examples["input_ids"])):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
sequence_ids = tokenized_examples.sequence_ids(i)
context_index = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
sample_index = sample_mapping[i]
tokenized_examples["example_id"].append(examples["id"][sample_index])
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
tokenized_examples["offset_mapping"][i] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["offset_mapping"][i])
]
return tokenized_examples
if training_args.do_eval or model_args.save_onnx:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_examples = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
# We will select sample from whole data
max_eval_samples = min(len(eval_examples), data_args.max_eval_samples)
eval_examples = eval_examples.select(range(max_eval_samples))
# Validation Feature Creation
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if data_args.max_eval_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
if training_args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_examples = raw_datasets["test"]
if data_args.max_predict_samples is not None:
# We will select sample from whole data
predict_examples = predict_examples.select(range(data_args.max_predict_samples))
# Predict Feature Creation
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_examples.map(
prepare_validation_features,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
if data_args.max_predict_samples is not None:
# During Feature creation dataset samples might increase, we will select required samples again
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
# Data collator
# We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data
# collator.
data_collator = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
)
# Post-processing:
def post_processing_function(examples, features, predictions, stage="eval"):
# Post-processing: we match the start logits and end logits to answers in the original context.
predictions = postprocess_qa_predictions(
examples=examples,
features=features,
predictions=predictions,
version_2_with_negative=data_args.version_2_with_negative,
n_best_size=data_args.n_best_size,
max_answer_length=data_args.max_answer_length,
null_score_diff_threshold=data_args.null_score_diff_threshold,
output_dir=training_args.output_dir,
log_level=log_level,
prefix=stage,
)
# Format the result to the format the metric expects.
if data_args.version_2_with_negative:
formatted_predictions = [
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
]
else:
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
metric = load_metric("squad_v2" if data_args.version_2_with_negative else "squad")
def compute_metrics(p: EvalPrediction):
return metric.compute(predictions=p.predictions, references=p.label_ids)
# Initialize our Trainer
trainer = QuestionAnsweringTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train or model_args.do_calib else None,
eval_dataset=eval_dataset if training_args.do_eval or model_args.save_onnx else None,
eval_examples=eval_examples if training_args.do_eval or model_args.save_onnx else None,
tokenizer=tokenizer,
data_collator=data_collator,
post_process_function=post_processing_function,
compute_metrics=compute_metrics,
quant_trainer_args=quant_trainer_args,
)
# Calibration
if model_args.do_calib:
logger.info("*** Calibrate ***")
results = trainer.calibrate()
trainer.save_model()
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
quant_trainer.configure_model(trainer.model, quant_trainer_args)
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
quant_trainer.configure_model(trainer.model, quant_trainer_args, eval=True)
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Prediction
if training_args.do_predict:
logger.info("*** Predict ***")
results = trainer.predict(predict_dataset, predict_examples)
metrics = results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if training_args.push_to_hub:
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
trainer.push_to_hub(**kwargs)
if model_args.save_onnx:
logger.info("Exporting model to onnx")
results = trainer.save_onnx(output_dir=training_args.output_dir)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/quantization-qdqbert/run_quant_qa.py |
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=fill-mask
"""
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
import dataclasses
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
train_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
)
validation_ref_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated. Default to the max input length of the model."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
def __post_init__(self):
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def add_chinese_references(dataset, ref_file):
with open(ref_file, "r", encoding="utf-8") as f:
refs = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
assert len(dataset) == len(refs)
dataset_dict = {c: dataset[c] for c in dataset.column_names}
dataset_dict["chinese_ref"] = refs
return Dataset.from_dict(dataset_dict)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
if "validation" not in datasets.keys():
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.train_file.split(".")[-1]
if extension == "txt":
extension = "text"
datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if model_args.model_name_or_path:
model = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
logger.info("Training new model from scratch")
model = AutoModelForMaskedLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
column_names = datasets["train"].column_names
else:
column_names = datasets["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
padding = "max_length" if data_args.pad_to_max_length else False
def tokenize_function(examples):
# Remove empty lines
examples["text"] = [line for line in examples["text"] if len(line) > 0 and not line.isspace()]
return tokenizer(examples["text"], padding=padding, truncation=True, max_length=data_args.max_seq_length)
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=[text_column_name],
load_from_cache_file=not data_args.overwrite_cache,
)
# Add the chinese references if provided
if data_args.train_ref_file is not None:
tokenized_datasets["train"] = add_chinese_references(tokenized_datasets["train"], data_args.train_ref_file)
if data_args.validation_ref_file is not None:
tokenized_datasets["validation"] = add_chinese_references(
tokenized_datasets["validation"], data_args.validation_ref_file
)
# If we have ref files, need to avoid it removed by trainer
has_ref = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
training_args = dataclasses.replace(training_args, remove_unused_columns=False)
# Data collator
# This one will take care of randomly masking the tokens.
data_collator = DataCollatorForWholeWordMask(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
)
# Training
if training_args.do_train:
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
if trainer.is_world_process_zero():
with open(output_train_file, "w") as writer:
logger.info("***** Train results *****")
for key, value in sorted(train_result.metrics.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
eval_output = trainer.evaluate()
perplexity = math.exp(eval_output["eval_loss"])
results["perplexity"] = perplexity
output_eval_file = os.path.join(training_args.output_dir, "eval_results_mlm_wwm.txt")
if trainer.is_world_process_zero():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in sorted(results.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/mlm_wwm/run_mlm_wwm.py |
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def _is_chinese_char(cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def is_chinese(word: str):
# word like '180' or '身高' or '神'
for char in word:
char = ord(char)
if not _is_chinese_char(char):
return 0
return 1
def get_chinese_word(tokens: List[str]):
word_set = set()
for token in tokens:
chinese_word = len(token) > 1 and is_chinese(token)
if chinese_word:
word_set.add(token)
word_list = list(word_set)
return word_list
def add_sub_symbol(bert_tokens: List[str], chinese_word_set: set()):
if not chinese_word_set:
return bert_tokens
max_word_len = max([len(w) for w in chinese_word_set])
bert_word = bert_tokens
start, end = 0, len(bert_word)
while start < end:
single_word = True
if is_chinese(bert_word[start]):
l = min(end - start, max_word_len)
for i in range(l, 1, -1):
whole_word = "".join(bert_word[start : start + i])
if whole_word in chinese_word_set:
for j in range(start + 1, start + i):
bert_word[j] = "##" + bert_word[j]
start = start + i
single_word = False
break
if single_word:
start += 1
return bert_word
def prepare_ref(lines: List[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokenizer):
ltp_res = []
for i in range(0, len(lines), 100):
res = ltp_tokenizer.pipeline(lines[i : i + 100], tasks=["cws"]).cws
res = [get_chinese_word(r) for r in res]
ltp_res.extend(res)
assert len(ltp_res) == len(lines)
bert_res = []
for i in range(0, len(lines), 100):
res = bert_tokenizer(lines[i : i + 100], add_special_tokens=True, truncation=True, max_length=512)
bert_res.extend(res["input_ids"])
assert len(bert_res) == len(lines)
ref_ids = []
for input_ids, chinese_word in zip(bert_res, ltp_res):
input_tokens = []
for id in input_ids:
token = bert_tokenizer._convert_id_to_token(id)
input_tokens.append(token)
input_tokens = add_sub_symbol(input_tokens, chinese_word)
ref_id = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(input_tokens):
if token[:2] == "##":
clean_token = token[2:]
# save chinese tokens' pos
if len(clean_token) == 1 and _is_chinese_char(ord(clean_token)):
ref_id.append(i)
ref_ids.append(ref_id)
assert len(ref_ids) == len(bert_res)
return ref_ids
def main(args):
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name, "r", encoding="utf-8") as f:
data = f.readlines()
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
ltp_tokenizer = LTP(args.ltp) # faster in GPU device
bert_tokenizer = BertTokenizer.from_pretrained(args.bert)
ref_ids = prepare_ref(data, ltp_tokenizer, bert_tokenizer)
with open(args.save_path, "w", encoding="utf-8") as f:
data = [json.dumps(ref) + "\n" for ref in ref_ids]
f.writelines(data)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="prepare_chinese_ref")
parser.add_argument(
"--file_name",
required=False,
type=str,
default="./resources/chinese-demo.txt",
help="file need process, same as training data in lm",
)
parser.add_argument(
"--ltp",
required=False,
type=str,
default="./resources/ltp",
help="resources for LTP tokenizer, usually a path",
)
parser.add_argument(
"--bert",
required=False,
type=str,
default="./resources/robert",
help="resources for Bert tokenizer",
)
parser.add_argument(
"--save_path",
required=False,
type=str,
default="./resources/ref.txt",
help="path to save res",
)
args = parser.parse_args()
main(args)
| transformers-main | examples/research_projects/mlm_wwm/run_chinese_ref.py |
#!/usr/bin/env python
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
logger = getLogger(__name__)
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def generate_summaries_or_translations(
examples: List[str],
out_file: str,
model_name: str,
batch_size: int = 8,
device: str = DEFAULT_DEVICE,
fp16=False,
task="summarization",
prefix=None,
**generate_kwargs,
) -> Dict:
"""Save model.generate results to <out_file>, and return how long it took."""
fout = Path(out_file).open("w", encoding="utf-8")
model_name = str(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
if fp16:
model = model.half()
tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(f"Inferred tokenizer type: {tokenizer.__class__}") # if this is wrong, check config.model_type.
start_time = time.time()
# update config with task specific params
use_task_specific_params(model, task)
if prefix is None:
prefix = prefix or getattr(model.config, "prefix", "") or ""
for examples_chunk in tqdm(list(chunks(examples, batch_size))):
examples_chunk = [prefix + text for text in examples_chunk]
batch = tokenizer(examples_chunk, return_tensors="pt", truncation=True, padding="longest").to(device)
summaries = model.generate(
input_ids=batch.input_ids,
attention_mask=batch.attention_mask,
**generate_kwargs,
)
dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for hypothesis in dec:
fout.write(hypothesis + "\n")
fout.flush()
fout.close()
runtime = int(time.time() - start_time) # seconds
n_obs = len(examples)
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs, 4)}
def datetime_now():
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def run_generate(verbose=True):
"""
Takes input text, generates output, and then using reference calculates the BLEU scores.
The results are saved to a file and returned to the caller, and printed out unless ``verbose=False`` is passed.
Args:
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): print results to stdout
Returns:
a tuple: ``(scores, params}``
- ``scores``: a dict of scores data ``{'bleu': 39.6501, 'n_obs': 2000, 'runtime': 186, 'seconds_per_sample': 0.093}``
- ``params``: a dict of custom params, e.g. ``{'num_beams': 5, 'length_penalty': 0.8}``
"""
parser = argparse.ArgumentParser()
parser.add_argument("model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.")
parser.add_argument("input_path", type=str, help="like cnn_dm/test.source")
parser.add_argument("save_path", type=str, help="where to save summaries")
parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test.target")
parser.add_argument("--score_path", type=str, required=False, default="metrics.json", help="where to save metrics")
parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.")
parser.add_argument(
"--prefix", type=str, required=False, default=None, help="will be added to the begininng of src examples"
)
parser.add_argument("--task", type=str, default="summarization", help="used for task_specific_params + metrics")
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size")
parser.add_argument(
"--n_obs", type=int, default=-1, required=False, help="How many observations. Defaults to all."
)
parser.add_argument("--fp16", action="store_true")
parser.add_argument("--dump-args", action="store_true", help="print the custom hparams with the results")
parser.add_argument(
"--info",
nargs="?",
type=str,
const=datetime_now(),
help=(
"use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g."
" lang=en-ru. If no value is passed, the current datetime string will be used."
),
)
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
args, rest = parser.parse_known_args()
parsed_args = parse_numeric_n_bool_cl_kwargs(rest)
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}")
with open(args.input_path) as f:
examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in f.readlines()]
if args.n_obs > 0:
examples = examples[: args.n_obs]
Path(args.save_path).parent.mkdir(exist_ok=True)
if args.reference_path is None and Path(args.score_path).exists():
warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c.")
runtime_metrics = generate_summaries_or_translations(
examples,
args.save_path,
args.model_name,
batch_size=args.bs,
device=args.device,
fp16=args.fp16,
task=args.task,
prefix=args.prefix,
**parsed_args,
)
if args.reference_path is None:
return {}
# Compute scores
score_fn = calculate_bleu if "translation" in args.task else calculate_rouge
output_lns = [x.rstrip() for x in open(args.save_path).readlines()]
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][: len(output_lns)]
scores: dict = score_fn(output_lns, reference_lns)
scores.update(runtime_metrics)
if args.dump_args:
scores.update(parsed_args)
if args.info:
scores["info"] = args.info
if verbose:
print(scores)
if args.score_path is not None:
json.dump(scores, open(args.score_path, "w"))
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| transformers-main | examples/research_projects/seq2seq-distillation/run_eval.py |
import re
from filelock import FileLock
try:
import nltk
NLTK_AVAILABLE = True
except (ImportError, ModuleNotFoundError):
NLTK_AVAILABLE = False
if NLTK_AVAILABLE:
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
def add_newline_to_end_of_each_sentence(x: str) -> str:
"""This was added to get rougeLsum scores matching published rougeL scores for BART and PEGASUS."""
re.sub("<n>", "", x) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(x))
| transformers-main | examples/research_projects/seq2seq-distillation/sentence_splitter.py |
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
logger = logging.get_logger(__name__)
def copy_layers(src_layers: nn.ModuleList, dest_layers: nn.ModuleList, layers_to_copy: List[int]) -> None:
layers_to_copy = nn.ModuleList([src_layers[i] for i in layers_to_copy])
assert len(dest_layers) == len(layers_to_copy), f"{len(dest_layers)} != {len(layers_to_copy)}"
dest_layers.load_state_dict(layers_to_copy.state_dict())
LAYERS_TO_COPY = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
LAYERS_TO_SUPERVISE = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def pick_layers_to_copy(n_student, n_teacher):
try:
val = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first"
f" {n_student}"
)
return list(range(n_student))
def get_layers_to_supervise(n_student, n_teacher) -> List[int]:
"""Used or the --supervise_forward kwarg"""
if n_student > n_teacher:
raise ValueError(f"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}")
elif n_teacher == n_student:
return list(range(n_teacher))
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def create_student_by_copying_alternating_layers(
teacher: Union[str, PreTrainedModel],
save_path: Union[str, Path] = "student",
e: Union[int, None] = None,
d: Union[int, None] = None,
copy_first_teacher_layers=False,
e_layers_to_copy=None,
d_layers_to_copy=None,
**extra_config_kwargs,
) -> Tuple[PreTrainedModel, List[int], List[int]]:
"""Make a student by copying alternating layers from a teacher, save it to save_path.
Args:
teacher: str or PreTrainedModel if str, this will call AutoModelForSeq2SeqLM.from_pretrained(teacher) before
copying layers
save_path: where to save the student, defaults to student directory.
e: how many Encoder layers should the student have, default is fully copy of teacher
d: how many Decoder layers should the student have, default is fully copy of teacher
copy_first_teacher_layers: [bool] dont copy alternating layers, just the first e/d.
**extra_config_kwargs: extra kwargs to pass to the student, by default the teacher config is used.
Returns:
student: new, smaller model. (Also saves it to save_path)
e_layers_to_copy: list of which teacher encoder layers were used
d_layers_to_copy: list of which teacher decoder layers were used
"""
_msg = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher."
assert (e is not None) or (d is not None), _msg
if isinstance(teacher, str):
AutoTokenizer.from_pretrained(teacher).save_pretrained(save_path) # purely for convenience
teacher = AutoModelForSeq2SeqLM.from_pretrained(teacher).eval()
else:
assert isinstance(teacher, PreTrainedModel), f"teacher must be a model or string got type {type(teacher)}"
init_kwargs = teacher.config.to_diff_dict()
try:
teacher_e, teacher_d = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
e = teacher_e
if d is None:
d = teacher_d
init_kwargs.update({"encoder_layers": e, "decoder_layers": d})
except AttributeError: # T5
if hasattr(teacher.config, "num_encoder_layers"):
teacher_e, teacher_d = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
teacher_e, teacher_d = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
e = teacher_e
if d is None:
d = teacher_d
if hasattr(teacher.config, "num_encoder_layers"):
init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d})
else:
init_kwargs.update({"num_layers": e, "num_decoder_layers": d})
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(extra_config_kwargs)
# Copy weights
student_cfg = teacher.config_class(**init_kwargs)
student = AutoModelForSeq2SeqLM.from_config(student_cfg)
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
info = student.load_state_dict(teacher.state_dict(), strict=False)
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
e_layers_to_copy, d_layers_to_copy = list(range(e)), list(range(d))
logger.info(
f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to"
f" {save_path}"
)
student.save_pretrained(save_path)
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
e_layers_to_copy: List[int] = pick_layers_to_copy(e, teacher_e)
if d_layers_to_copy is None:
d_layers_to_copy: List[int] = pick_layers_to_copy(d, teacher_d)
try:
if hasattr(
teacher, "prophetnet"
): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers, student.prophetnet.encoder.layers, e_layers_to_copy)
copy_layers(teacher.prophetnet.decoder.layers, student.prophetnet.decoder.layers, d_layers_to_copy)
else:
copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, e_layers_to_copy)
copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, d_layers_to_copy)
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block, student.encoder.block, e_layers_to_copy)
copy_layers(teacher.decoder.block, student.decoder.block, d_layers_to_copy)
logger.info(
f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}"
)
student.config.init_metadata = {
"teacher_type": teacher.config.model_type,
"copied_encoder_layers": e_layers_to_copy,
"copied_decoder_layers": d_layers_to_copy,
}
student.save_pretrained(save_path)
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| transformers-main | examples/research_projects/seq2seq-distillation/make_student.py |
import argparse
import logging
import os
import sys
import tempfile
from pathlib import Path
import lightning_base
import pytest
import pytorch_lightning as pl
import torch
from convert_pl_checkpoint_to_hf import convert_pl_to_hf
from distillation import distill_main
from finetune import SummarizationModule, main
from huggingface_hub import list_models
from parameterized import parameterized
from run_eval import generate_summaries_or_translations
from torch import nn
from transformers import AutoConfig, AutoModelForSeq2SeqLM
from transformers.testing_utils import CaptureStderr, CaptureStdout, TestCasePlus, require_torch_gpu, slow
from utils import label_smoothed_nll_loss, lmap, load_json
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
"max_tokens_per_batch": None,
"supervise_forward": True,
"normalize_hidden": True,
"label_smoothing": 0.2,
"eval_max_gen_length": None,
"eval_beams": 1,
"val_metric": "loss",
"save_top_k": 1,
"adafactor": True,
"early_stopping_patience": 2,
"logger_name": "default",
"length_penalty": 0.5,
"cache_dir": "",
"task": "summarization",
"num_workers": 2,
"alpha_hid": 0,
"freeze_embeds": True,
"enc_only": False,
"tgt_suffix": "",
"resume_from_checkpoint": None,
"sortish_sampler": True,
"student_decoder_layers": 1,
"val_check_interval": 1.0,
"output_dir": "",
"fp16": False, # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
"no_teacher": False,
"fp16_opt_level": "O1",
"gpus": 1 if CUDA_AVAILABLE else 0,
"n_tpu_cores": 0,
"max_grad_norm": 1.0,
"do_train": True,
"do_predict": True,
"accumulate_grad_batches": 1,
"server_ip": "",
"server_port": "",
"seed": 42,
"model_name_or_path": "sshleifer/bart-tiny-random",
"config_name": "",
"tokenizer_name": "facebook/bart-large",
"do_lower_case": False,
"learning_rate": 0.3,
"lr_scheduler": "linear",
"weight_decay": 0.0,
"adam_epsilon": 1e-08,
"warmup_steps": 0,
"max_epochs": 1,
"train_batch_size": 2,
"eval_batch_size": 2,
"max_source_length": 12,
"max_target_length": 12,
"val_max_target_length": 12,
"test_max_target_length": 12,
"fast_dev_run": False,
"no_cache": False,
"n_train": -1,
"n_val": -1,
"n_test": -1,
"student_encoder_layers": 1,
"freeze_encoder": False,
"auto_scale_batch_size": False,
"overwrite_output_dir": False,
"student": None,
}
def _dump_articles(path: Path, articles: list):
content = "\n".join(articles)
Path(path).open("w").writelines(content)
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
T5_TINIER = "sshleifer/t5-tinier-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
FSMT_TINY = "stas/tiny-wmt19-en-de"
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
def make_test_data_dir(tmp_dir):
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES)
_dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES)
return tmp_dir
class TestSummarizationDistiller(TestCasePlus):
@classmethod
def setUpClass(cls):
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
return cls
@slow
@require_torch_gpu
def test_hub_configs(self):
"""I put require_torch_gpu cause I only want this to run with self-scheduled."""
model_list = list_models()
org = "sshleifer"
model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
failures = []
for m in model_ids:
if m in allowed_to_be_broken:
continue
try:
AutoConfig.from_pretrained(m)
except Exception:
failures.append(m)
assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"
def test_distill_no_teacher(self):
updates = {"student_encoder_layers": 2, "student_decoder_layers": 1, "no_teacher": True}
self._test_distiller_cli(updates)
def test_distill_checkpointing_with_teacher(self):
updates = {
"student_encoder_layers": 2,
"student_decoder_layers": 1,
"max_epochs": 4,
"val_check_interval": 0.25,
"alpha_hid": 2.0,
"model_name_or_path": "IGNORE_THIS_IT_DOESNT_GET_USED",
}
model = self._test_distiller_cli(updates, check_contents=False)
ckpts = list(Path(model.output_dir).glob("*.ckpt"))
self.assertEqual(1, len(ckpts))
transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
self.assertEqual(len(transformer_ckpts), 2)
examples = lmap(str.strip, Path(model.hparams.data_dir).joinpath("test.source").open().readlines())
out_path = tempfile.mktemp() # XXX: not being cleaned up
generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
self.assertTrue(Path(out_path).exists())
out_path_new = self.get_auto_remove_tmp_dir()
convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
def test_loss_fn(self):
model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY)
input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
decoder_input_ids = target_ids[:, :-1].contiguous() # Why this line?
lm_labels = target_ids[:, 1:].clone() # why clone?
model_computed_loss = model(
input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
).loss
logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits
lprobs = nn.functional.log_softmax(logits, dim=-1)
smoothed_loss, nll_loss = label_smoothed_nll_loss(
lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
)
with self.assertRaises(AssertionError):
# TODO: understand why this breaks
self.assertEqual(nll_loss, model_computed_loss)
def test_distill_mbart(self):
updates = {
"student_encoder_layers": 2,
"student_decoder_layers": 1,
"num_train_epochs": 4,
"val_check_interval": 0.25,
"alpha_hid": 2.0,
"task": "translation",
"model_name_or_path": "IGNORE_THIS_IT_DOESNT_GET_USED",
"tokenizer_name": MBART_TINY,
"teacher": MBART_TINY,
"src_lang": "en_XX",
"tgt_lang": "ro_RO",
}
model = self._test_distiller_cli(updates, check_contents=False)
assert model.model.config.model_type == "mbart"
ckpts = list(Path(model.output_dir).glob("*.ckpt"))
self.assertEqual(1, len(ckpts))
transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
assert len(all_files) > 2
self.assertEqual(len(transformer_ckpts), 2)
def test_distill_t5(self):
updates = {
"student_encoder_layers": 1,
"student_decoder_layers": 1,
"alpha_hid": 2.0,
"teacher": T5_TINY,
"model_name_or_path": T5_TINY,
"tokenizer_name": T5_TINY,
}
self._test_distiller_cli(updates)
def test_distill_different_base_models(self):
updates = {
"teacher": T5_TINY,
"student": T5_TINIER,
"model_name_or_path": T5_TINIER,
"tokenizer_name": T5_TINIER,
}
self._test_distiller_cli(updates)
def _test_distiller_cli(self, updates, check_contents=True):
default_updates = {
"label_smoothing": 0.0,
"early_stopping_patience": -1,
"train_batch_size": 1,
"eval_batch_size": 2,
"max_epochs": 2,
"alpha_mlm": 0.2,
"alpha_ce": 0.8,
"do_predict": True,
"model_name_or_path": "sshleifer/tinier_bart",
"teacher": CHEAP_ARGS["model_name_or_path"],
"val_check_interval": 0.5,
}
default_updates.update(updates)
args_d: dict = CHEAP_ARGS.copy()
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
output_dir = self.get_auto_remove_tmp_dir()
args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
model = distill_main(argparse.Namespace(**args_d))
if not check_contents:
return model
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
ckpt_files = [p for p in contents if p.endswith("ckpt")]
assert len(ckpt_files) > 0
self.assertIn("test_generations.txt", contents)
self.assertIn("test_results.txt", contents)
metrics = load_json(model.metrics_save_path)
last_step_stats = metrics["val"][-1]
self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
self.assertEqual(len(metrics["val"]), desired_n_evals)
self.assertEqual(len(metrics["test"]), 1)
return model
class TestTheRest(TestCasePlus):
@parameterized.expand(
[T5_TINY, BART_TINY, MBART_TINY, MARIAN_TINY, FSMT_TINY],
)
def test_finetune(self, model):
args_d: dict = CHEAP_ARGS.copy()
task = "translation" if model in [MBART_TINY, MARIAN_TINY, FSMT_TINY] else "summarization"
args_d["label_smoothing"] = 0.1 if task == "translation" else 0
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
output_dir = self.get_auto_remove_tmp_dir()
args_d.update(
data_dir=tmp_dir,
model_name_or_path=model,
tokenizer_name=None,
train_batch_size=2,
eval_batch_size=2,
output_dir=output_dir,
do_predict=True,
task=task,
src_lang="en_XX",
tgt_lang="ro_RO",
freeze_encoder=True,
freeze_embeds=True,
)
assert "n_train" in args_d
args = argparse.Namespace(**args_d)
module = main(args)
input_embeds = module.model.get_input_embeddings()
assert not input_embeds.weight.requires_grad
if model == T5_TINY:
lm_head = module.model.lm_head
assert not lm_head.weight.requires_grad
assert (lm_head.weight == input_embeds.weight).all().item()
elif model == FSMT_TINY:
fsmt = module.model.model
embed_pos = fsmt.decoder.embed_positions
assert not embed_pos.weight.requires_grad
assert not fsmt.decoder.embed_tokens.weight.requires_grad
# check that embeds are not the same
assert fsmt.decoder.embed_tokens != fsmt.encoder.embed_tokens
else:
bart = module.model.model
embed_pos = bart.decoder.embed_positions
assert not embed_pos.weight.requires_grad
assert not bart.shared.weight.requires_grad
# check that embeds are the same
assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
assert bart.decoder.embed_tokens == bart.shared
example_batch = load_json(module.output_dir / "text_batch.json")
assert isinstance(example_batch, dict)
assert len(example_batch) >= 4
def test_finetune_extra_model_args(self):
args_d: dict = CHEAP_ARGS.copy()
task = "summarization"
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
args_d.update(
data_dir=tmp_dir,
tokenizer_name=None,
train_batch_size=2,
eval_batch_size=2,
do_predict=False,
task=task,
src_lang="en_XX",
tgt_lang="ro_RO",
freeze_encoder=True,
freeze_embeds=True,
)
# test models whose config includes the extra_model_args
model = BART_TINY
output_dir = self.get_auto_remove_tmp_dir()
args_d1 = args_d.copy()
args_d1.update(
model_name_or_path=model,
output_dir=output_dir,
)
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
args_d1[p] = 0.5
args = argparse.Namespace(**args_d1)
model = main(args)
for p in extra_model_params:
assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"
# test models whose config doesn't include the extra_model_args
model = T5_TINY
output_dir = self.get_auto_remove_tmp_dir()
args_d2 = args_d.copy()
args_d2.update(
model_name_or_path=model,
output_dir=output_dir,
)
unsupported_param = "encoder_layerdrop"
args_d2[unsupported_param] = 0.5
args = argparse.Namespace(**args_d2)
with pytest.raises(Exception) as excinfo:
model = main(args)
assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"
def test_finetune_lr_schedulers(self):
args_d: dict = CHEAP_ARGS.copy()
task = "summarization"
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
model = BART_TINY
output_dir = self.get_auto_remove_tmp_dir()
args_d.update(
data_dir=tmp_dir,
model_name_or_path=model,
output_dir=output_dir,
tokenizer_name=None,
train_batch_size=2,
eval_batch_size=2,
do_predict=False,
task=task,
src_lang="en_XX",
tgt_lang="ro_RO",
freeze_encoder=True,
freeze_embeds=True,
)
# emulate finetune.py
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
args = {"--help": True}
# --help test
with pytest.raises(SystemExit) as excinfo:
with CaptureStdout() as cs:
args = parser.parse_args(args)
assert False, "--help is expected to sys.exit"
assert excinfo.type == SystemExit
expected = lightning_base.arg_to_scheduler_metavar
assert expected in cs.out, "--help is expected to list the supported schedulers"
# --lr_scheduler=non_existing_scheduler test
unsupported_param = "non_existing_scheduler"
args = {f"--lr_scheduler={unsupported_param}"}
with pytest.raises(SystemExit) as excinfo:
with CaptureStderr() as cs:
args = parser.parse_args(args)
assert False, "invalid argument is expected to sys.exit"
assert excinfo.type == SystemExit
expected = f"invalid choice: '{unsupported_param}'"
assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"
# --lr_scheduler=existing_scheduler test
supported_param = "cosine"
args_d1 = args_d.copy()
args_d1["lr_scheduler"] = supported_param
args = argparse.Namespace(**args_d1)
model = main(args)
assert (
getattr(model.hparams, "lr_scheduler") == supported_param
), f"lr_scheduler={supported_param} shouldn't fail"
| transformers-main | examples/research_projects/seq2seq-distillation/_test_seq2seq_examples.py |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
MODEL_MODES = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeq2SeqLM,
"translation": AutoModelForSeq2SeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
arg_to_scheduler = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
arg_to_scheduler_choices = sorted(arg_to_scheduler.keys())
arg_to_scheduler_metavar = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class BaseTransformer(pl.LightningModule):
def __init__(
self,
hparams: argparse.Namespace,
num_labels=None,
mode="base",
config=None,
tokenizer=None,
model=None,
**config_kwargs,
):
"""Initialize a model, tokenizer and config."""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(hparams)
self.step_count = 0
self.output_dir = Path(self.hparams.output_dir)
cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
self.config = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path,
**({"num_labels": num_labels} if num_labels is not None else {}),
cache_dir=cache_dir,
**config_kwargs,
)
else:
self.config: PretrainedConfig = config
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(self.hparams, p, None):
assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute"
setattr(self.config, p, getattr(self.hparams, p))
if tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path,
cache_dir=cache_dir,
)
else:
self.tokenizer: PreTrainedTokenizer = tokenizer
self.model_type = MODEL_MODES[mode]
if model is None:
self.model = self.model_type.from_pretrained(
self.hparams.model_name_or_path,
from_tf=bool(".ckpt" in self.hparams.model_name_or_path),
config=self.config,
cache_dir=cache_dir,
)
else:
self.model = model
def load_hf_checkpoint(self, *args, **kwargs):
self.model = self.model_type.from_pretrained(*args, **kwargs)
def get_lr_scheduler(self):
get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler]
scheduler = get_schedule_func(
self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps()
)
scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return scheduler
def configure_optimizers(self):
"""Prepare optimizer and schedule (linear warmup and decay)"""
model = self.model
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.hparams.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
if self.hparams.adafactor:
optimizer = Adafactor(
optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False
)
else:
optimizer = AdamW(
optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon
)
self.opt = optimizer
scheduler = self.get_lr_scheduler()
return [optimizer], [scheduler]
def test_step(self, batch, batch_nb):
return self.validation_step(batch, batch_nb)
def test_epoch_end(self, outputs):
return self.validation_end(outputs)
def total_steps(self) -> int:
"""The number of total training steps that will be run. Used for lr scheduler purposes."""
num_devices = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores
effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def setup(self, mode):
if mode == "test":
self.dataset_size = len(self.test_dataloader().dataset)
else:
self.train_loader = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=True)
self.dataset_size = len(self.train_dataloader().dataset)
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False):
raise NotImplementedError("You must implement this for your task")
def train_dataloader(self):
return self.train_loader
def val_dataloader(self):
return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=False)
def test_dataloader(self):
return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=False)
def _feature_file(self, mode):
return os.path.join(
self.hparams.data_dir,
"cached_{}_{}_{}".format(
mode,
list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(),
str(self.hparams.max_seq_length),
),
)
@pl.utilities.rank_zero_only
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
save_path = self.output_dir.joinpath("best_tfmr")
self.model.config.save_step = self.step_count
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
@staticmethod
def add_model_specific_args(parser, root_dir):
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
)
parser.add_argument(
"--encoder_layerdrop",
type=float,
help="Encoder layer dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--decoder_layerdrop",
type=float,
help="Decoder layer dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--dropout",
type=float,
help="Dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--attention_dropout",
type=float,
help="Attention dropout probability (Optional). Goes into model.config",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--lr_scheduler",
default="linear",
choices=arg_to_scheduler_choices,
metavar=arg_to_scheduler_metavar,
type=str,
help="Learning rate scheduler",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader")
parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int)
parser.add_argument("--train_batch_size", default=32, type=int)
parser.add_argument("--eval_batch_size", default=32, type=int)
parser.add_argument("--adafactor", action="store_true")
class LoggingCallback(pl.Callback):
def on_batch_end(self, trainer, pl_module):
lr_scheduler = trainer.lr_schedulers[0]["scheduler"]
lrs = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())}
pl_module.logger.log_metrics(lrs)
def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
rank_zero_info("***** Validation results *****")
metrics = trainer.callback_metrics
# Log results
for key in sorted(metrics):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
rank_zero_info("***** Test results *****")
metrics = trainer.callback_metrics
# Log and save results to file
output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt")
with open(output_test_results_file, "w") as writer:
for key in sorted(metrics):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
writer.write("{} = {}\n".format(key, str(metrics[key])))
def add_generic_args(parser, root_dir) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O2",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=int)
parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=float, help="Max gradient norm")
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
parser.add_argument(
"--gradient_accumulation_steps",
dest="accumulate_grad_batches",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
)
def generic_train(
model: BaseTransformer,
args: argparse.Namespace,
early_stopping_callback=None,
logger=True, # can pass WandbLogger() here
extra_callbacks=[],
checkpoint_callback=None,
logging_callback=None,
**extra_train_kwargs,
):
pl.seed_everything(args.seed)
# init model
odir = Path(model.hparams.output_dir)
odir.mkdir(exist_ok=True)
# add custom checkpoints
if checkpoint_callback is None:
checkpoint_callback = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1
)
if early_stopping_callback:
extra_callbacks.append(early_stopping_callback)
if logging_callback is None:
logging_callback = LoggingCallback()
train_params = {}
# TODO: remove with PyTorch 1.6 since pl uses native amp
if args.fp16:
train_params["precision"] = 16
train_params["amp_level"] = args.fp16_opt_level
if args.gpus > 1:
train_params["distributed_backend"] = "ddp"
train_params["accumulate_grad_batches"] = args.accumulate_grad_batches
train_params["accelerator"] = extra_train_kwargs.get("accelerator", None)
train_params["profiler"] = extra_train_kwargs.get("profiler", None)
trainer = pl.Trainer.from_argparse_args(
args,
weights_summary=None,
callbacks=[logging_callback] + extra_callbacks,
logger=logger,
checkpoint_callback=checkpoint_callback,
**train_params,
)
if args.do_train:
trainer.fit(model)
return trainer
| transformers-main | examples/research_projects/seq2seq-distillation/lightning_base.py |
# as due to their complexity multi-gpu tests could impact other tests, and to aid debug we have those in a separate module.
import os
import sys
from pathlib import Path
import torch
from transformers.testing_utils import TestCasePlus, execute_subprocess_async, require_torch_multi_gpu
from utils import load_json
CUDA_AVAILABLE = torch.cuda.is_available()
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
CHEAP_ARGS = {
"max_tokens_per_batch": None,
"supervise_forward": True,
"normalize_hidden": True,
"label_smoothing": 0.2,
"eval_max_gen_length": None,
"eval_beams": 1,
"val_metric": "loss",
"save_top_k": 1,
"adafactor": True,
"early_stopping_patience": 2,
"logger_name": "default",
"length_penalty": 0.5,
"cache_dir": "",
"task": "summarization",
"num_workers": 2,
"alpha_hid": 0,
"freeze_embeds": True,
"enc_only": False,
"tgt_suffix": "",
"resume_from_checkpoint": None,
"sortish_sampler": True,
"student_decoder_layers": 1,
"val_check_interval": 1.0,
"output_dir": "",
"fp16": False, # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
"no_teacher": False,
"fp16_opt_level": "O1",
"gpus": 1 if CUDA_AVAILABLE else 0,
"n_tpu_cores": 0,
"max_grad_norm": 1.0,
"do_train": True,
"do_predict": True,
"accumulate_grad_batches": 1,
"server_ip": "",
"server_port": "",
"seed": 42,
"model_name_or_path": "sshleifer/bart-tiny-random",
"config_name": "",
"tokenizer_name": "facebook/bart-large",
"do_lower_case": False,
"learning_rate": 0.3,
"lr_scheduler": "linear",
"weight_decay": 0.0,
"adam_epsilon": 1e-08,
"warmup_steps": 0,
"max_epochs": 1,
"train_batch_size": 2,
"eval_batch_size": 2,
"max_source_length": 12,
"max_target_length": 12,
"val_max_target_length": 12,
"test_max_target_length": 12,
"fast_dev_run": False,
"no_cache": False,
"n_train": -1,
"n_val": -1,
"n_test": -1,
"student_encoder_layers": 1,
"freeze_encoder": False,
"auto_scale_batch_size": False,
"overwrite_output_dir": False,
"student": None,
}
def _dump_articles(path: Path, articles: list):
content = "\n".join(articles)
Path(path).open("w").writelines(content)
def make_test_data_dir(tmp_dir):
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES)
_dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES)
return tmp_dir
class TestSummarizationDistillerMultiGPU(TestCasePlus):
@classmethod
def setUpClass(cls):
return cls
@require_torch_multi_gpu
def test_multi_gpu(self):
updates = {
"no_teacher": True,
"freeze_encoder": True,
"gpus": 2,
"overwrite_output_dir": True,
"sortish_sampler": True,
}
self._test_distiller_cli_fork(updates, check_contents=False)
def _test_distiller_cli_fork(self, updates, check_contents=True):
default_updates = {
"label_smoothing": 0.0,
"early_stopping_patience": -1,
"train_batch_size": 1,
"eval_batch_size": 2,
"max_epochs": 2,
"alpha_mlm": 0.2,
"alpha_ce": 0.8,
"do_predict": True,
"model_name_or_path": "sshleifer/tinier_bart",
"teacher": CHEAP_ARGS["model_name_or_path"],
"val_check_interval": 0.5,
}
default_updates.update(updates)
args_d: dict = CHEAP_ARGS.copy()
tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())
output_dir = self.get_auto_remove_tmp_dir()
args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
def convert(k, v):
if k in ["tgt_suffix", "server_ip", "server_port", "out", "n_tpu_cores"]:
return ""
if v is False or v is None:
return ""
if v is True: # or len(str(v))==0:
return f"--{k}"
return f"--{k}={v}"
cli_args = [x for x in (convert(k, v) for k, v in args_d.items()) if len(x)]
cmd = [sys.executable, f"{self.test_file_dir}/distillation.py"] + cli_args
execute_subprocess_async(cmd, env=self.get_env())
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
ckpt_files = [p for p in contents if p.endswith("ckpt")]
assert len(ckpt_files) > 0
self.assertIn("test_generations.txt", contents)
self.assertIn("test_results.txt", contents)
# get the following from the module, (we don't have access to `model` here)
metrics_save_path = os.path.join(output_dir, "metrics.json")
val_metric = "rouge2"
metrics = load_json(metrics_save_path)
# {'test': [{'test_avg_loss': 10.63731575012207, 'test_avg_rouge1': 0.0, 'test_avg_rouge2': 0.0, 'test_avg_rougeL': 0.0, 'test_avg_gen_time': 0.1822289228439331, 'test_avg_gen_len': 142.0, 'step_count': 1}]}
print(metrics)
last_step_stats = metrics["val"][-1]
self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
self.assertIsInstance(last_step_stats[f"val_avg_{val_metric}"], float)
self.assertEqual(len(metrics["test"]), 1)
desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) / 2 + 1)
self.assertEqual(len(metrics["val"]), desired_n_evals)
| transformers-main | examples/research_projects/seq2seq-distillation/_test_seq2seq_examples_multi_gpu.py |
import itertools
import json
import linecache
import math
import os
import pickle
import socket
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List, Tuple, Union
import git
import numpy as np
import torch
import torch.distributed as dist
from rouge_score import rouge_scorer, scoring
from sacrebleu import corpus_bleu
from sentence_splitter import add_newline_to_end_of_each_sentence
from torch import nn
from torch.utils.data import Dataset, Sampler
from transformers import BartTokenizer, EvalPrediction, PreTrainedTokenizer, T5Tokenizer
from transformers.file_utils import cached_property
from transformers.models.bart.modeling_bart import shift_tokens_right
try:
from fairseq.data.data_utils import batch_by_size
FAIRSEQ_AVAILABLE = True
except (ImportError, ModuleNotFoundError):
FAIRSEQ_AVAILABLE = False
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
"""From fairseq"""
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(-1)
nll_loss = -lprobs.gather(dim=-1, index=target)
smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
if ignore_index is not None:
pad_mask = target.eq(ignore_index)
nll_loss.masked_fill_(pad_mask, 0.0)
smooth_loss.masked_fill_(pad_mask, 0.0)
else:
nll_loss = nll_loss.squeeze(-1)
smooth_loss = smooth_loss.squeeze(-1)
nll_loss = nll_loss.sum() # mean()? Scared to break other math.
smooth_loss = smooth_loss.sum()
eps_i = epsilon / lprobs.size(-1)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss, nll_loss
def lmap(f: Callable, x: Iterable) -> List:
"""list(map(f, x))"""
return list(map(f, x))
def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict:
"""Uses sacrebleu's corpus_bleu implementation."""
return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)}
def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) -> Callable[[EvalPrediction], Dict]:
def non_pad_len(tokens: np.ndarray) -> int:
return np.count_nonzero(tokens != tokenizer.pad_token_id)
def decode_pred(pred: EvalPrediction) -> Tuple[List[str], List[str]]:
pred_str = tokenizer.batch_decode(pred.predictions, skip_special_tokens=True)
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True)
pred_str = lmap(str.strip, pred_str)
label_str = lmap(str.strip, label_str)
return pred_str, label_str
def summarization_metrics(pred: EvalPrediction) -> Dict:
pred_str, label_str = decode_pred(pred)
rouge: Dict = calculate_rouge(pred_str, label_str)
summ_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
rouge.update({"gen_len": summ_len})
return rouge
def translation_metrics(pred: EvalPrediction) -> Dict:
pred_str, label_str = decode_pred(pred)
bleu: Dict = calculate_bleu(pred_str, label_str)
gen_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
bleu.update({"gen_len": gen_len})
return bleu
compute_metrics_fn = summarization_metrics if "summarization" in task_name else translation_metrics
return compute_metrics_fn
def trim_batch(
input_ids,
pad_token_id,
attention_mask=None,
):
"""Remove columns that are populated exclusively by pad_token_id"""
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class AbstractSeq2SeqDataset(Dataset):
def __init__(
self,
tokenizer,
data_dir,
max_source_length,
max_target_length,
type_path="train",
n_obs=None,
prefix="",
**dataset_kwargs,
):
super().__init__()
self.src_file = Path(data_dir).joinpath(type_path + ".source")
self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
self.len_file = Path(data_dir).joinpath(type_path + ".len")
if os.path.exists(self.len_file):
self.src_lens = pickle_load(self.len_file)
self.used_char_len = False
else:
self.src_lens = self.get_char_lens(self.src_file)
self.used_char_len = True
self.max_source_length = max_source_length
self.max_target_length = max_target_length
assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
self.tokenizer = tokenizer
self.prefix = prefix if prefix is not None else ""
if n_obs is not None:
self.src_lens = self.src_lens[:n_obs]
self.pad_token_id = self.tokenizer.pad_token_id
self.dataset_kwargs = dataset_kwargs
dataset_kwargs.update({"add_prefix_space": True} if isinstance(self.tokenizer, BartTokenizer) else {})
def __len__(self):
return len(self.src_lens)
@staticmethod
def get_char_lens(data_file):
return [len(x) for x in Path(data_file).open().readlines()]
@cached_property
def tgt_lens(self):
"""Length in characters of target documents"""
return self.get_char_lens(self.tgt_file)
def make_sortish_sampler(self, batch_size, distributed=False, shuffle=True, **kwargs):
if distributed:
return DistributedSortishSampler(self, batch_size, shuffle=shuffle, **kwargs)
else:
return SortishSampler(self.src_lens, batch_size, shuffle=shuffle)
def make_dynamic_sampler(self, max_tokens_per_batch=1024, **kwargs):
assert FAIRSEQ_AVAILABLE, "Dynamic batch size requires `pip install fairseq`"
assert not self.used_char_len, "You must call python make_len_file.py before calling make_dynamic_sampler"
sorted_indices = list(self.make_sortish_sampler(1024, shuffle=False))
def num_tokens_in_example(i):
return min(self.src_lens[i], self.max_target_length)
# call fairseq cython function
batch_sampler: List[List[int]] = batch_by_size(
sorted_indices,
num_tokens_fn=num_tokens_in_example,
max_tokens=max_tokens_per_batch,
required_batch_size_multiple=64,
)
shuffled_batches = [batch_sampler[i] for i in np.random.permutation(range(len(batch_sampler)))]
# move the largest batch to the front to OOM quickly (uses an approximation for padding)
approximate_toks_per_batch = [max(self.src_lens[i] for i in batch) * len(batch) for batch in shuffled_batches]
largest_batch_idx = np.argmax(approximate_toks_per_batch)
shuffled_batches[0], shuffled_batches[largest_batch_idx] = (
shuffled_batches[largest_batch_idx],
shuffled_batches[0],
)
return shuffled_batches
def __getitem__(self, item):
raise NotImplementedError("You must implement this")
def collate_fn(self, batch):
raise NotImplementedError("You must implement this")
class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
def __getitem__(self, index) -> Dict[str, torch.Tensor]:
"""Call tokenizer on src and tgt_lines"""
index = index + 1 # linecache starts at 1
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
assert source_line, f"empty source line for index {index}"
assert tgt_line, f"empty tgt line for index {index}"
source_inputs = self.encode_line(self.tokenizer, source_line, self.max_source_length)
target_inputs = self.encode_line(self.tokenizer, tgt_line, self.max_target_length)
source_ids = source_inputs["input_ids"].squeeze()
target_ids = target_inputs["input_ids"].squeeze()
src_mask = source_inputs["attention_mask"].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"labels": target_ids,
}
def encode_line(self, tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"):
"""Only used by LegacyDataset"""
return tokenizer(
[line],
max_length=max_length,
padding="max_length" if pad_to_max_length else None,
truncation=True,
return_tensors=return_tensors,
**self.dataset_kwargs,
)
def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
input_ids = torch.stack([x["input_ids"] for x in batch])
masks = torch.stack([x["attention_mask"] for x in batch])
target_ids = torch.stack([x["labels"] for x in batch])
pad_token_id = self.pad_token_id
y = trim_batch(target_ids, pad_token_id)
source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
batch = {
"input_ids": source_ids,
"attention_mask": source_mask,
"labels": y,
}
return batch
class Seq2SeqDataset(AbstractSeq2SeqDataset):
"""A dataset that calls prepare_seq2seq_batch."""
def __getitem__(self, index) -> Dict[str, str]:
index = index + 1 # linecache starts at 1
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
assert source_line, f"empty source line for index {index}"
assert tgt_line, f"empty tgt line for index {index}"
return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1}
def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
"""Call prepare_seq2seq_batch."""
batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch(
[x["src_texts"] for x in batch],
tgt_texts=[x["tgt_texts"] for x in batch],
max_length=self.max_source_length,
max_target_length=self.max_target_length,
return_tensors="pt",
**self.dataset_kwargs,
).data
batch_encoding["ids"] = torch.tensor([x["id"] for x in batch])
return batch_encoding
class Seq2SeqDataCollator:
def __init__(self, tokenizer, data_args, tpu_num_cores=None):
self.tokenizer = tokenizer
self.pad_token_id = tokenizer.pad_token_id
assert (
self.pad_token_id is not None
), f"pad_token_id is not defined for ({self.tokenizer.__class__.__name__}), it must be defined."
self.data_args = data_args
self.tpu_num_cores = tpu_num_cores
self.dataset_kwargs = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {}
if data_args.src_lang is not None:
self.dataset_kwargs["src_lang"] = data_args.src_lang
if data_args.tgt_lang is not None:
self.dataset_kwargs["tgt_lang"] = data_args.tgt_lang
def __call__(self, batch) -> Dict[str, torch.Tensor]:
if hasattr(self.tokenizer, "prepare_seq2seq_batch"):
batch = self._encode(batch)
input_ids, attention_mask, labels = (
batch["input_ids"],
batch["attention_mask"],
batch["labels"],
)
else:
input_ids = torch.stack([x["input_ids"] for x in batch])
attention_mask = torch.stack([x["attention_mask"] for x in batch])
labels = torch.stack([x["labels"] for x in batch])
labels = trim_batch(labels, self.pad_token_id)
input_ids, attention_mask = trim_batch(input_ids, self.pad_token_id, attention_mask=attention_mask)
if isinstance(self.tokenizer, T5Tokenizer):
decoder_input_ids = self._shift_right_t5(labels)
else:
decoder_input_ids = shift_tokens_right(labels, self.pad_token_id)
batch = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"labels": labels,
}
return batch
def _shift_right_t5(self, input_ids):
# shift inputs to the right
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = self.pad_token_id
return shifted_input_ids
def _encode(self, batch) -> Dict[str, torch.Tensor]:
batch_encoding = self.tokenizer.prepare_seq2seq_batch(
[x["src_texts"] for x in batch],
tgt_texts=[x["tgt_texts"] for x in batch],
max_length=self.data_args.max_source_length,
max_target_length=self.data_args.max_target_length,
padding="max_length" if self.tpu_num_cores is not None else "longest", # TPU hack
return_tensors="pt",
**self.dataset_kwargs,
)
return batch_encoding.data
class SortishSampler(Sampler):
"Go through the text data by order of src length with a bit of randomness. From fastai repo."
def __init__(self, data, batch_size, shuffle=True):
self.data, self.bs, self.shuffle = data, batch_size, shuffle
def __len__(self) -> int:
return len(self.data)
def __iter__(self):
return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle))
def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array:
"Go through the text data by order of src length with a bit of randomness. From fastai repo."
if not shuffle:
return np.argsort(np.array(data) * -1)
def key_fn(i):
return data[i]
idxs = np.random.permutation(len(data))
sz = bs * 50
ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx])
sz = bs
ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx]) # find the chunk with the largest key,
ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0] # then make sure it goes first.
sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=int)
sort_idx = np.concatenate((ck_idx[0], sort_idx))
return sort_idx
class DistributedSortishSampler(Sampler):
"""Copied from torch DistributedSampler"""
def __init__(self, dataset, batch_size, num_replicas=None, rank=None, add_extra_examples=True, shuffle=True):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
if add_extra_examples:
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
else:
self.total_size = len(dataset)
self.num_samples = len(self.available_indices)
self.batch_size = batch_size
self.add_extra_examples = add_extra_examples
self.shuffle = shuffle
def __iter__(self) -> Iterable:
g = torch.Generator()
g.manual_seed(self.epoch)
sortish_data = [self.dataset.src_lens[i] for i in self.available_indices]
sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size, shuffle=self.shuffle)
indices = [self.available_indices[i] for i in sortish_indices]
assert len(indices) == self.num_samples
return iter(indices)
@cached_property
def available_indices(self) -> np.array:
indices = list(range(len(self.dataset)))
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
available_indices = indices[self.rank : self.total_size : self.num_replicas]
return available_indices
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch
logger = getLogger(__name__)
def use_task_specific_params(model, task):
"""Update config with summarization specific params."""
task_specific_params = model.config.task_specific_params
if task_specific_params is not None:
pars = task_specific_params.get(task, {})
logger.info(f"using task specific params for {task}: {pars}")
model.config.update(pars)
def pickle_load(path):
"""pickle.load(path)"""
with open(path, "rb") as f:
return pickle.load(f)
def pickle_save(obj, path):
"""pickle.dump(obj, path)"""
with open(path, "wb") as f:
return pickle.dump(obj, f)
def flatten_list(summary_ids: List[List]):
return list(itertools.chain.from_iterable(summary_ids))
def save_git_info(folder_path: str) -> None:
"""Save git information to output_dir/git_log.json"""
repo_infos = get_git_info()
save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
def save_json(content, path, indent=4, **json_dump_kwargs):
with open(path, "w") as f:
json.dump(content, f, indent=indent, **json_dump_kwargs)
def load_json(path):
with open(path) as f:
return json.load(f)
def get_git_info():
try:
repo = git.Repo(search_parent_directories=True)
repo_infos = {
"repo_id": str(repo),
"repo_sha": str(repo.head.object.hexsha),
"repo_branch": str(repo.active_branch),
"hostname": str(socket.gethostname()),
}
return repo_infos
except TypeError:
return {
"repo_id": None,
"repo_sha": None,
"repo_branch": None,
"hostname": None,
}
ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
def extract_rouge_mid_statistics(dct):
new_dict = {}
for k1, v1 in dct.items():
mid = v1.mid
new_dict[k1] = {stat: round(getattr(mid, stat), 4) for stat in ["precision", "recall", "fmeasure"]}
return new_dict
def calculate_rouge(
pred_lns: List[str],
tgt_lns: List[str],
use_stemmer=True,
rouge_keys=ROUGE_KEYS,
return_precision_and_recall=False,
bootstrap_aggregation=True,
newline_sep=True,
) -> Dict:
"""Calculate rouge using rouge_scorer package.
Args:
pred_lns: list of summaries generated by model
tgt_lns: list of groundtruth summaries (e.g. contents of val.target)
use_stemmer: Bool indicating whether Porter stemmer should be used to
strip word suffixes to improve matching.
rouge_keys: which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum
return_precision_and_recall: (False) whether to also return precision and recall.
bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False
this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]``
newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL
on multi sentence summaries (CNN/DM dataset).
Returns:
Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys
"""
scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer)
aggregator = scoring.BootstrapAggregator()
for pred, tgt in zip(tgt_lns, pred_lns):
# rougeLsum expects "\n" separated sentences within a summary
if newline_sep:
pred = add_newline_to_end_of_each_sentence(pred)
tgt = add_newline_to_end_of_each_sentence(tgt)
scores = scorer.score(pred, tgt)
aggregator.add_scores(scores)
if bootstrap_aggregation:
result = aggregator.aggregate()
if return_precision_and_recall:
return extract_rouge_mid_statistics(result) # here we return dict
else:
return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()}
else:
return aggregator._scores # here we return defaultdict(list)
# Utilities for freezing parameters and checking whether they are frozen
def freeze_params(model: nn.Module):
"""Set requires_grad=False for each of model.parameters()"""
for par in model.parameters():
par.requires_grad = False
def freeze_embeds(model):
"""Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
model_type = model.config.model_type
if model_type == "t5":
freeze_params(model.shared)
for d in [model.encoder, model.decoder]:
freeze_params(d.embed_tokens)
elif model_type == "fsmt":
for d in [model.model.encoder, model.model.decoder]:
freeze_params(d.embed_positions)
freeze_params(d.embed_tokens)
else:
freeze_params(model.model.shared)
for d in [model.model.encoder, model.model.decoder]:
freeze_params(d.embed_positions)
freeze_params(d.embed_tokens)
def grad_status(model: nn.Module) -> Iterable:
return (par.requires_grad for par in model.parameters())
def any_requires_grad(model: nn.Module) -> bool:
return any(grad_status(model))
def assert_all_frozen(model):
model_grads: List[bool] = list(grad_status(model))
n_require_grad = sum(lmap(int, model_grads))
npars = len(model_grads)
assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"
def assert_not_all_frozen(model):
model_grads: List[bool] = list(grad_status(model))
npars = len(model_grads)
assert any(model_grads), f"none of {npars} weights require grad"
def parse_numeric_n_bool_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float, bool]]:
"""
Parse an argv list of unspecified command line args to a dict.
Assumes all values are either numeric or boolean in the form of true/false.
"""
result = {}
assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}"
num_pairs = len(unparsed_args) // 2
for pair_num in range(num_pairs):
i = 2 * pair_num
assert unparsed_args[i].startswith("--")
if unparsed_args[i + 1].lower() == "true":
value = True
elif unparsed_args[i + 1].lower() == "false":
value = False
else:
try:
value = int(unparsed_args[i + 1])
except ValueError:
value = float(unparsed_args[i + 1]) # this can raise another informative ValueError
result[unparsed_args[i][2:]] = value
return result
def write_txt_file(ordered_tgt, path):
f = Path(path).open("w")
for ln in ordered_tgt:
f.write(ln + "\n")
f.flush()
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def check_output_dir(args, expected_items=0):
"""
Checks whether to bail out if output_dir already exists and has more than expected_items in it
`args`: needs to have the following attributes of `args`:
- output_dir
- do_train
- overwrite_output_dir
`expected_items`: normally 0 (default) - i.e. empty dir, but in some cases a few files are expected (e.g. recovery from OOM)
"""
if (
os.path.exists(args.output_dir)
and len(os.listdir(args.output_dir)) > expected_items
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({args.output_dir}) already exists and "
f"has {len(os.listdir(args.output_dir))} items in it (expected {expected_items} items). "
"Use --overwrite_output_dir to overcome."
)
| transformers-main | examples/research_projects/seq2seq-distillation/utils.py |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils import save_json
def count_trainable_parameters(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return params
logger = logging.getLogger(__name__)
class Seq2SeqLoggingCallback(pl.Callback):
def on_batch_end(self, trainer, pl_module):
lrs = {f"lr_group_{i}": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)}
pl_module.logger.log_metrics(lrs)
@rank_zero_only
def _write_logs(
self, trainer: pl.Trainer, pl_module: pl.LightningModule, type_path: str, save_generations=True
) -> None:
logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****")
metrics = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]})
# Log results
od = Path(pl_module.hparams.output_dir)
if type_path == "test":
results_file = od / "test_results.txt"
generations_file = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
results_file = od / f"{type_path}_results/{trainer.global_step:05d}.txt"
generations_file = od / f"{type_path}_generations/{trainer.global_step:05d}.txt"
results_file.parent.mkdir(exist_ok=True)
generations_file.parent.mkdir(exist_ok=True)
with open(results_file, "a+") as writer:
for key in sorted(metrics):
if key in ["log", "progress_bar", "preds"]:
continue
val = metrics[key]
if isinstance(val, torch.Tensor):
val = val.item()
msg = f"{key}: {val:.6f}\n"
writer.write(msg)
if not save_generations:
return
if "preds" in metrics:
content = "\n".join(metrics["preds"])
generations_file.open("w+").write(content)
@rank_zero_only
def on_train_start(self, trainer, pl_module):
try:
npars = pl_module.model.model.num_parameters()
except AttributeError:
npars = pl_module.model.num_parameters()
n_trainable_pars = count_trainable_parameters(pl_module)
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6})
@rank_zero_only
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
save_json(pl_module.metrics, pl_module.metrics_save_path)
return self._write_logs(trainer, pl_module, "test")
@rank_zero_only
def on_validation_end(self, trainer: pl.Trainer, pl_module):
save_json(pl_module.metrics, pl_module.metrics_save_path)
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
def get_checkpoint_callback(output_dir, metric, save_top_k=1, lower_is_better=False):
"""Saves the best model by validation ROUGE2 score."""
if metric == "rouge2":
exp = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
exp = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "loss":
exp = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
f"seq2seq callbacks only support rouge2, bleu and loss, got {metric}, You can make your own by adding to"
" this function."
)
checkpoint_callback = ModelCheckpoint(
dirpath=output_dir,
filename=exp,
monitor=f"val_{metric}",
mode="min" if "loss" in metric else "max",
save_top_k=save_top_k,
)
return checkpoint_callback
def get_early_stopping_callback(metric, patience):
return EarlyStopping(
monitor=f"val_{metric}", # does this need avg?
mode="min" if "loss" in metric else "max",
patience=patience,
verbose=True,
)
| transformers-main | examples/research_projects/seq2seq-distillation/callbacks.py |
#!/usr/bin/env python
import os
from pathlib import Path
from typing import Dict, List
import fire
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.utils.logging import get_logger
logger = get_logger(__name__)
def remove_prefix(text: str, prefix: str):
if text.startswith(prefix):
return text[len(prefix) :]
return text # or whatever
def sanitize(sd):
return {remove_prefix(k, "model."): v for k, v in sd.items()}
def average_state_dicts(state_dicts: List[Dict[str, torch.Tensor]]):
new_sd = {}
for k in state_dicts[0].keys():
tensors = [sd[k] for sd in state_dicts]
new_t = sum(tensors) / len(tensors)
assert isinstance(new_t, torch.Tensor)
new_sd[k] = new_t
return new_sd
def convert_pl_to_hf(pl_ckpt_path: str, hf_src_model_dir: str, save_path: str) -> None:
"""Cleanup a pytorch-lightning .ckpt file or experiment dir and save a huggingface model with that state dict.
Silently allows extra pl keys (like teacher.) Puts all ckpt models into CPU RAM at once!
Args:
pl_ckpt_path (:obj:`str`): Path to a .ckpt file saved by pytorch_lightning or dir containing ckpt files.
If a directory is passed, all .ckpt files inside it will be averaged!
hf_src_model_dir (:obj:`str`): Path to a directory containing a correctly shaped checkpoint
save_path (:obj:`str`): Directory to save the new model
"""
hf_model = AutoModelForSeq2SeqLM.from_pretrained(hf_src_model_dir)
if os.path.isfile(pl_ckpt_path):
ckpt_files = [pl_ckpt_path]
else:
assert os.path.isdir(pl_ckpt_path)
ckpt_files = list(Path(pl_ckpt_path).glob("*.ckpt"))
assert ckpt_files, f"could not find any ckpt files inside the {pl_ckpt_path} directory"
if len(ckpt_files) > 1:
logger.info(f"averaging the weights of {ckpt_files}")
state_dicts = [sanitize(torch.load(x, map_location="cpu")["state_dict"]) for x in ckpt_files]
state_dict = average_state_dicts(state_dicts)
missing, unexpected = hf_model.load_state_dict(state_dict, strict=False)
assert not missing, f"missing keys: {missing}"
hf_model.save_pretrained(save_path)
try:
tok = AutoTokenizer.from_pretrained(hf_src_model_dir)
tok.save_pretrained(save_path)
except Exception:
pass
# dont copy tokenizer if cant
if __name__ == "__main__":
fire.Fire(convert_pl_to_hf)
| transformers-main | examples/research_projects/seq2seq-distillation/convert_pl_checkpoint_to_hf.py |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
TINY_BART = "sshleifer/bart-tiny-random"
TINY_T5 = "patrickvonplaten/t5-tiny-random"
@require_torch
class MakeStudentTester(unittest.TestCase):
@cached_property
def teacher_config(self):
return AutoConfig.from_pretrained(TINY_BART)
def test_valid_t5(self):
student, *_ = create_student_by_copying_alternating_layers(TINY_T5, tempfile.mkdtemp(), e=1, d=1)
self.assertEqual(student.config.num_hidden_layers, 1)
def test_asymmetric_t5(self):
student, *_ = create_student_by_copying_alternating_layers(TINY_T5, tempfile.mkdtemp(), e=1, d=None)
def test_same_decoder_small_encoder(self):
student, *_ = create_student_by_copying_alternating_layers(TINY_BART, tempfile.mkdtemp(), e=1, d=None)
self.assertEqual(student.config.encoder_layers, 1)
self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers)
def test_small_enc_small_dec(self):
student, *_ = create_student_by_copying_alternating_layers(TINY_BART, tempfile.mkdtemp(), e=1, d=1)
self.assertEqual(student.config.encoder_layers, 1)
self.assertEqual(student.config.decoder_layers, 1)
def test_raises_assert(self):
with self.assertRaises(AssertionError):
create_student_by_copying_alternating_layers(TINY_BART, tempfile.mkdtemp(), e=None, d=None)
| transformers-main | examples/research_projects/seq2seq-distillation/_test_make_student.py |
#!/usr/bin/env python
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
MARIAN_MODEL = "sshleifer/mar_enro_6_3_student"
class TestMbartCc25Enro(TestCasePlus):
def setUp(self):
super().setUp()
data_cached = cached_path(
"https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz",
extract_compressed_file=True,
)
self.data_dir = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def test_model_download(self):
"""This warms up the cache so that we can time the next test without including download time, which varies between machines."""
MarianMTModel.from_pretrained(MARIAN_MODEL)
# @timeout_decorator.timeout(1200)
@slow
@require_torch_gpu
def test_train_mbart_cc25_enro_script(self):
env_vars_to_replace = {
"$MAX_LEN": 64,
"$BS": 64,
"$GAS": 1,
"$ENRO_DIR": self.data_dir,
"facebook/mbart-large-cc25": MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
"--learning_rate=3e-5": "--learning_rate 3e-4",
"--num_train_epochs 6": "--num_train_epochs 1",
}
# Clean up bash script
bash_script = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py")[1].strip()
bash_script = bash_script.replace("\\\n", "").strip().replace('"$@"', "")
for k, v in env_vars_to_replace.items():
bash_script = bash_script.replace(k, str(v))
output_dir = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
args = f"""
--output_dir {output_dir}
--tokenizer_name Helsinki-NLP/opus-mt-en-ro
--sortish_sampler
--do_predict
--gpus 1
--freeze_encoder
--n_train 40000
--n_val 500
--n_test 500
--fp16_opt_level O1
--num_sanity_val_steps 0
--eval_beams 2
""".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
testargs = ["finetune.py"] + bash_script.split() + args
with patch.object(sys, "argv", testargs):
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
model = main(args)
# Check metrics
metrics = load_json(model.metrics_save_path)
first_step_stats = metrics["val"][0]
last_step_stats = metrics["val"][-1]
self.assertEqual(len(metrics["val"]), (args.max_epochs / args.val_check_interval))
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
self.assertGreater(last_step_stats["val_avg_gen_time"], 0.01)
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats["val_avg_gen_time"], 1.0)
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"], 2)
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats["val_avg_bleu"], 17)
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"]), 1.1)
# check lightning ckpt can be loaded and has a reasonable statedict
contents = os.listdir(output_dir)
ckpt_path = [x for x in contents if x.endswith(".ckpt")][0]
full_path = os.path.join(args.output_dir, ckpt_path)
ckpt = torch.load(full_path, map_location="cpu")
expected_key = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight"
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.float32
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["test"]) == 1
class TestDistilMarianNoTeacher(TestCasePlus):
@timeout_decorator.timeout(600)
@slow
@require_torch_gpu
def test_opus_mt_distill_script(self):
data_dir = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
env_vars_to_replace = {
"--fp16_opt_level=O1": "",
"$MAX_LEN": 128,
"$BS": 16,
"$GAS": 1,
"$ENRO_DIR": data_dir,
"$m": "sshleifer/student_marian_en_ro_6_1",
"val_check_interval=0.25": "val_check_interval=1.0",
}
# Clean up bash script
bash_script = (
(self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py")[1].strip()
)
bash_script = bash_script.replace("\\\n", "").strip().replace('"$@"', "")
bash_script = bash_script.replace("--fp16 ", " ")
for k, v in env_vars_to_replace.items():
bash_script = bash_script.replace(k, str(v))
output_dir = self.get_auto_remove_tmp_dir()
bash_script = bash_script.replace("--fp16", "")
epochs = 6
testargs = (
["distillation.py"]
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
"--gpus=1",
"--learning_rate=1e-3",
f"--num_train_epochs={epochs}",
"--warmup_steps=10",
"--val_check_interval=1.0",
"--do_predict",
]
)
with patch.object(sys, "argv", testargs):
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationDistiller.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
model = distill_main(args)
# Check metrics
metrics = load_json(model.metrics_save_path)
first_step_stats = metrics["val"][0]
last_step_stats = metrics["val"][-1]
assert len(metrics["val"]) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
# check lightning ckpt can be loaded and has a reasonable statedict
contents = os.listdir(output_dir)
ckpt_path = [x for x in contents if x.endswith(".ckpt")][0]
full_path = os.path.join(args.output_dir, ckpt_path)
ckpt = torch.load(full_path, map_location="cpu")
expected_key = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight"
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.float32
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["test"]) == 1
| transformers-main | examples/research_projects/seq2seq-distillation/_test_bash_script.py |
#!/usr/bin/env python
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, T5ForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeq2SeqDataset,
Seq2SeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
logger = logging.getLogger(__name__)
class SummarizationModule(BaseTransformer):
mode = "summarization"
loss_names = ["loss"]
metric_names = ROUGE_KEYS
default_val_metric = "rouge2"
def __init__(self, hparams, **kwargs):
if hparams.sortish_sampler and hparams.gpus > 1:
hparams.replace_sampler_ddp = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training")
if hparams.sortish_sampler:
raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously")
super().__init__(hparams, num_labels=None, mode=self.mode, **kwargs)
use_task_specific_params(self.model, "summarization")
save_git_info(self.hparams.output_dir)
self.metrics_save_path = Path(self.output_dir) / "metrics.json"
self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
pickle_save(self.hparams, self.hparams_save_path)
self.step_count = 0
self.metrics = defaultdict(list)
self.model_type = self.config.model_type
self.vocab_size = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size
self.dataset_kwargs: dict = {
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": self.model.config.prefix or "",
}
n_observations_per_split = {
"train": self.hparams.n_train,
"val": self.hparams.n_val,
"test": self.hparams.n_test,
}
self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
self.target_lens = {
"train": self.hparams.max_target_length,
"val": self.hparams.val_max_target_length,
"test": self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"
if self.hparams.freeze_embeds:
freeze_embeds(self.model)
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder())
assert_all_frozen(self.model.get_encoder())
self.hparams.git_sha = get_git_info()["repo_sha"]
self.num_workers = hparams.num_workers
self.decoder_start_token_id = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
self.model.config.decoder_start_token_id = self.decoder_start_token_id
self.dataset_class = (
Seq2SeqDataset if hasattr(self.tokenizer, "prepare_seq2seq_batch") else LegacySeq2SeqDataset
)
self.already_saved_batch = False
self.eval_beams = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
self.eval_max_length = self.hparams.eval_max_gen_length
else:
self.eval_max_length = self.model.config.max_length
self.val_metric = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def save_readable_batch(self, batch: Dict[str, torch.Tensor]) -> Dict[str, List[str]]:
"""A debugging utility"""
readable_batch = {
k: self.tokenizer.batch_decode(v.tolist()) if "mask" not in k else v.shape for k, v in batch.items()
}
save_json(readable_batch, Path(self.output_dir) / "text_batch.json")
save_json({k: v.tolist() for k, v in batch.items()}, Path(self.output_dir) / "tok_batch.json")
self.already_saved_batch = True
return readable_batch
def forward(self, input_ids, **kwargs):
return self.model(input_ids, **kwargs)
def ids_to_clean_text(self, generated_ids: List[int]):
gen_text = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
return lmap(str.strip, gen_text)
def _step(self, batch: dict) -> Tuple:
pad_token_id = self.tokenizer.pad_token_id
src_ids, src_mask = batch["input_ids"], batch["attention_mask"]
tgt_ids = batch["labels"]
if isinstance(self.model, T5ForConditionalGeneration):
decoder_input_ids = self.model._shift_right(tgt_ids)
else:
decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
batch["decoder_input_ids"] = decoder_input_ids
self.save_readable_batch(batch)
outputs = self(src_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, use_cache=False)
lm_logits = outputs["logits"]
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
ce_loss_fct = nn.CrossEntropyLoss(ignore_index=pad_token_id)
assert lm_logits.shape[-1] == self.vocab_size
loss = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
else:
lprobs = nn.functional.log_softmax(lm_logits, dim=-1)
loss, nll_loss = label_smoothed_nll_loss(
lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
)
return (loss,)
@property
def pad(self) -> int:
return self.tokenizer.pad_token_id
def training_step(self, batch, batch_idx) -> Dict:
loss_tensors = self._step(batch)
logs = dict(zip(self.loss_names, loss_tensors))
# tokens per batch
logs["tpb"] = batch["input_ids"].ne(self.pad).sum() + batch["labels"].ne(self.pad).sum()
logs["bs"] = batch["input_ids"].shape[0]
logs["src_pad_tok"] = batch["input_ids"].eq(self.pad).sum()
logs["src_pad_frac"] = batch["input_ids"].eq(self.pad).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def validation_step(self, batch, batch_idx) -> Dict:
return self._generative_step(batch)
def validation_epoch_end(self, outputs, prefix="val") -> Dict:
self.step_count += 1
losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
loss = losses["loss"]
generative_metrics = {
k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
}
metric_val = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
metric_tensor: torch.FloatTensor = torch.tensor(metric_val).type_as(loss)
generative_metrics.update({k: v.item() for k, v in losses.items()})
losses.update(generative_metrics)
all_metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
all_metrics["step_count"] = self.step_count
self.metrics[prefix].append(all_metrics) # callback writes this to self.metrics_save_path
preds = flatten_list([x["preds"] for x in outputs])
return {
"log": all_metrics,
"preds": preds,
f"{prefix}_loss": loss,
f"{prefix}_{self.val_metric}": metric_tensor,
}
def calc_generative_metrics(self, preds, target) -> Dict:
return calculate_rouge(preds, target)
def _generative_step(self, batch: dict) -> dict:
t0 = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
generated_ids = self.model.generate(
batch["input_ids"],
attention_mask=batch["attention_mask"],
use_cache=True,
decoder_start_token_id=self.decoder_start_token_id,
num_beams=self.eval_beams,
max_length=self.eval_max_length,
)
gen_time = (time.time() - t0) / batch["input_ids"].shape[0]
preds: List[str] = self.ids_to_clean_text(generated_ids)
target: List[str] = self.ids_to_clean_text(batch["labels"])
loss_tensors = self._step(batch)
base_metrics = dict(zip(self.loss_names, loss_tensors))
rouge: Dict = self.calc_generative_metrics(preds, target)
summ_len = np.mean(lmap(len, generated_ids))
base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **rouge)
return base_metrics
def test_step(self, batch, batch_idx):
return self._generative_step(batch)
def test_epoch_end(self, outputs):
return self.validation_epoch_end(outputs, prefix="test")
def get_dataset(self, type_path) -> Seq2SeqDataset:
n_obs = self.n_obs[type_path]
max_target_length = self.target_lens[type_path]
dataset = self.dataset_class(
self.tokenizer,
type_path=type_path,
n_obs=n_obs,
max_target_length=max_target_length,
**self.dataset_kwargs,
)
return dataset
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
dataset = self.get_dataset(type_path)
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
sampler = dataset.make_sortish_sampler(batch_size, distributed=self.hparams.gpus > 1)
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collate_fn,
shuffle=False,
num_workers=self.num_workers,
sampler=sampler,
)
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
batch_sampler = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1
)
return DataLoader(
dataset,
batch_sampler=batch_sampler,
collate_fn=dataset.collate_fn,
# shuffle=False,
num_workers=self.num_workers,
# batch_size=None,
)
else:
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collate_fn,
shuffle=shuffle,
num_workers=self.num_workers,
sampler=None,
)
def train_dataloader(self) -> DataLoader:
dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
return dataloader
def val_dataloader(self) -> DataLoader:
return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
def test_dataloader(self) -> DataLoader:
return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)
@staticmethod
def add_model_specific_args(parser, root_dir):
BaseTransformer.add_model_specific_args(parser, root_dir)
add_generic_args(parser, root_dir)
parser.add_argument(
"--max_source_length",
default=1024,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--max_target_length",
default=56,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--val_max_target_length",
default=142, # these defaults are optimized for CNNDM. For xsum, see README.md.
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--test_max_target_length",
default=142,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument("--freeze_encoder", action="store_true")
parser.add_argument("--freeze_embeds", action="store_true")
parser.add_argument("--sortish_sampler", action="store_true", default=False)
parser.add_argument("--overwrite_output_dir", action="store_true", default=False)
parser.add_argument("--max_tokens_per_batch", type=int, default=None)
parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_val", type=int, default=500, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument(
"--task", type=str, default="summarization", required=False, help="# examples. -1 means use all."
)
parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
parser.add_argument("--src_lang", type=str, default="", required=False)
parser.add_argument("--tgt_lang", type=str, default="", required=False)
parser.add_argument("--eval_beams", type=int, default=None, required=False)
parser.add_argument(
"--val_metric", type=str, default=None, required=False, choices=["bleu", "rouge2", "loss", None]
)
parser.add_argument("--eval_max_gen_length", type=int, default=None, help="never generate more than n tokens")
parser.add_argument("--save_top_k", type=int, default=1, required=False, help="How many checkpoints to save")
parser.add_argument(
"--early_stopping_patience",
type=int,
default=-1,
required=False,
help=(
"-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So"
" val_check_interval will effect it."
),
)
return parser
class TranslationModule(SummarizationModule):
mode = "translation"
loss_names = ["loss"]
metric_names = ["bleu"]
default_val_metric = "bleu"
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.dataset_kwargs["src_lang"] = hparams.src_lang
self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang
def calc_generative_metrics(self, preds, target) -> dict:
return calculate_bleu(preds, target)
def main(args, model=None) -> SummarizationModule:
Path(args.output_dir).mkdir(exist_ok=True)
check_output_dir(args, expected_items=3)
if model is None:
if "summarization" in args.task:
model: SummarizationModule = SummarizationModule(args)
else:
model: SummarizationModule = TranslationModule(args)
dataset = Path(args.data_dir).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir).startswith("/tmp")
or str(args.output_dir).startswith("/var")
):
logger = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
project = os.environ.get("WANDB_PROJECT", dataset)
logger = WandbLogger(name=model.output_dir.name, project=project)
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
if args.early_stopping_patience >= 0:
es_callback = get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
else:
es_callback = False
lower_is_better = args.val_metric == "loss"
trainer: pl.Trainer = generic_train(
model,
args,
logging_callback=Seq2SeqLoggingCallback(),
checkpoint_callback=get_checkpoint_callback(
args.output_dir, model.val_metric, args.save_top_k, lower_is_better
),
early_stopping_callback=es_callback,
logger=logger,
)
pickle_save(model.hparams, model.output_dir / "hparams.pkl")
if not args.do_predict:
return model
model.hparams.test_checkpoint = ""
checkpoints = sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt"), recursive=True))
if checkpoints:
model.hparams.test_checkpoint = checkpoints[-1]
trainer.resume_from_checkpoint = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams)
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
main(args)
| transformers-main | examples/research_projects/seq2seq-distillation/finetune.py |
#!/usr/bin/env python
import argparse
import gc
import os
import sys
from pathlib import Path
from typing import List # noqa: F401
import pytorch_lightning as pl
import torch
from finetune import SummarizationModule, TranslationModule
from finetune import main as ft_main
from make_student import create_student_by_copying_alternating_layers, get_layers_to_supervise
from torch import nn
from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5ForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import calculate_bleu, check_output_dir, freeze_params, label_smoothed_nll_loss, use_task_specific_params
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import generic_train # noqa
class SummarizationDistiller(SummarizationModule):
"""Supports T5, Bart, Pegasus and other models that inherit from Bart."""
loss_names = ["loss", "ce_loss", "mlm_loss", "hid_loss_enc", "hid_loss_dec"]
def __init__(self, hparams):
assert Path(hparams.data_dir).exists()
self.output_dir = Path(hparams.output_dir)
self.output_dir.mkdir(exist_ok=True)
save_dir = self.output_dir.joinpath("student")
hparams.model_name_or_path = str(save_dir) # Tell lightning we are training the student
teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval()
use_task_specific_params(teacher, hparams.task) # We copy good generation parameters to student by default
if hparams.student is not None:
student = AutoModelForSeq2SeqLM.from_pretrained(hparams.student)
use_task_specific_params(student, hparams.task)
e_layer_ids, d_layer_ids = None, None
else:
student, e_layer_ids, d_layer_ids = create_student_by_copying_alternating_layers(
teacher, e=hparams.student_encoder_layers, d=hparams.student_decoder_layers, save_path=save_dir
)
if hparams.length_penalty != -1:
student.config.length_penalty = hparams.length_penalty
hparams.tokenizer_name = hparams.teacher # Use teacher's tokenizer
super().__init__(hparams, model=student, config=student.config)
assert student.config.model_type == teacher.config.model_type, (
f"teacher, student model types should be the same, got {student.config.model_type} !="
f" {teacher.config.model_type}"
)
if student.config.model_type == "t5":
student_encoder_layers = len(student.get_encoder().block)
student_decoder_layers = len(student.get_decoder().block)
teacher_encoder_layers = len(teacher.get_encoder().block)
teacher_decoder_layers = len(teacher.get_decoder().block)
else:
student_encoder_layers = student.config.encoder_layers
student_decoder_layers = student.config.decoder_layers
teacher_encoder_layers = teacher.config.encoder_layers
teacher_decoder_layers = teacher.config.decoder_layers
self.different_base_models = not (hparams.student is None or hparams.teacher == hparams.student)
self.do_calc_hidden_loss = (not self.different_base_models) and hparams.alpha_hid > 0
self.different_encoder = self.different_base_models or (student_encoder_layers != teacher_encoder_layers)
# self.different_encoder determines whether we need to run the teacher encoder
self.teacher = teacher
freeze_params(self.teacher)
if not self.different_encoder: # To save RAM, delete teacher encoder and freeze student encoder.
try:
del self.teacher.model.encoder
except AttributeError: # T5
del self.teacher.encoder
if e_layer_ids is None:
e_layer_ids = list(range(student_encoder_layers))
if d_layer_ids is None:
d_layer_ids = list(range(student_decoder_layers))
self.e_layer_ids, self.d_layer_ids = e_layer_ids, d_layer_ids # type: List[int], List[int]
if self.do_calc_hidden_loss: # Intermediate supervision: Decide which layers to supervise
if hparams.supervise_forward:
self.e_matches = get_layers_to_supervise(
n_student=len(self.e_layer_ids), n_teacher=teacher_encoder_layers
)
self.d_matches = get_layers_to_supervise(
n_student=len(self.d_layer_ids), n_teacher=teacher_decoder_layers
)
else: # student layer should emulate hidden states of the teacher layer it was copied from
self.e_matches = self.e_layer_ids
self.d_matches = self.d_layer_ids
else:
self.e_matches = None
self.d_matches = None
self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
self.temperature = 2.0
self.alpha_mlm = hparams.alpha_mlm
self.alpha_ce = hparams.alpha_ce
self.alpha_hid = hparams.alpha_hid
gc.collect()
torch.cuda.empty_cache()
def calc_ce_loss(self, mask, s_logits, t_logits):
"""Copy pasted from distillbert (transformers/examples/distillation/)"""
# mask has False at padding_idx
sel_mask = mask[:, :, None].expand_as(s_logits)
vocab_size = s_logits.size(-1)
s_logits_slct = torch.masked_select(s_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask
t_logits_slct = torch.masked_select(t_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask
s_logits_slct = s_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask
t_logits_slct = t_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask
assert t_logits_slct.size() == s_logits_slct.size()
loss_ce = (
self.ce_loss_fct(
nn.functional.log_softmax(s_logits_slct / self.temperature, dim=-1),
nn.functional.softmax(t_logits_slct / self.temperature, dim=-1),
)
* (self.temperature) ** 2
)
return loss_ce
@staticmethod
def add_model_specific_args(parser, root_dir):
SummarizationModule.add_model_specific_args(parser, root_dir)
add_distill_args(parser)
return parser
def _step(self, batch: dict) -> tuple:
"""Compute the loss for a batch"""
pad_token_id = self.tokenizer.pad_token_id
input_ids, src_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"]
if isinstance(self.model, T5ForConditionalGeneration):
decoder_input_ids = self.model._shift_right(labels)
else:
decoder_input_ids = shift_tokens_right(labels, pad_token_id)
# noinspection PyCallingNonCallable
student_outputs = self(
input_ids,
attention_mask=src_mask,
decoder_input_ids=decoder_input_ids,
output_hidden_states=self.do_calc_hidden_loss,
output_attentions=False,
use_cache=False,
)
lm_logits = student_outputs["logits"]
# Same cross entropy vs. label smoothing logic as finetune.py
assert lm_logits.shape[-1] == self.model.config.vocab_size
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
loss_fct = nn.CrossEntropyLoss(ignore_index=pad_token_id)
student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1))
else:
lprobs = nn.functional.log_softmax(lm_logits, dim=-1)
student_lm_loss, _ = label_smoothed_nll_loss(
lprobs, labels, self.hparams.label_smoothing, ignore_index=pad_token_id
)
def zero_tensor():
return torch.tensor(0.0).type_as(student_lm_loss)
teacher_enc_outputs = student_outputs[
"encoder_last_hidden_state"
] # use this unless self.different_base_models
hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor()
if self.different_encoder: # compute encoder hidden state loss
all_teacher_encoder_outputs = self.teacher.get_encoder()(
input_ids,
attention_mask=src_mask,
output_hidden_states=self.do_calc_hidden_loss,
)
if self.different_base_models:
teacher_enc_outputs = all_teacher_encoder_outputs["last_hidden_state"]
elif self.do_calc_hidden_loss:
hid_loss_enc = self.calc_hidden_loss(
src_mask,
student_outputs["encoder_hidden_states"],
all_teacher_encoder_outputs["hidden_states"],
self.e_matches,
normalize_hidden=self.hparams.normalize_hidden,
)
teacher_outputs = self.teacher(
input_ids,
attention_mask=src_mask,
encoder_outputs=(teacher_enc_outputs,),
decoder_input_ids=decoder_input_ids,
output_hidden_states=self.do_calc_hidden_loss,
use_cache=False, # since we are not passing labels, never let this default to True
)
dec_mask = decoder_input_ids.ne(pad_token_id)
loss_ce = self.calc_ce_loss(dec_mask, lm_logits, teacher_outputs["logits"])
if self.do_calc_hidden_loss: # Intermediate supervision of decoder hidden states
hid_loss_dec = self.calc_hidden_loss(
dec_mask,
student_outputs["decoder_hidden_states"],
teacher_outputs["decoder_hidden_states"],
self.d_matches,
normalize_hidden=self.hparams.normalize_hidden,
)
blended_loss = (
self.alpha_ce * loss_ce
+ self.alpha_mlm * student_lm_loss
+ self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec)
)
return blended_loss, loss_ce, student_lm_loss, hid_loss_enc, hid_loss_dec
@staticmethod
def calc_hidden_loss(attention_mask, hidden_states, hidden_states_T, matches, normalize_hidden):
"""MSE(student_hid, teacher_hid[matches]). Called "Intermediate supervision" in paper. Inspired by TinyBERT."""
msg = "expected list or tuple for hidden_states, got tensor of shape: "
assert not isinstance(hidden_states, torch.Tensor), f"{msg}{hidden_states.shape}"
assert not isinstance(hidden_states_T, torch.Tensor), f"{msg}{hidden_states_T.shape}"
mask = attention_mask.to(hidden_states[0])
valid_count = mask.sum() * hidden_states[0].size(-1)
student_states = torch.stack([hidden_states[i] for i in range(len(matches))])
teacher_states = torch.stack([hidden_states_T[j] for j in matches])
assert student_states.shape == teacher_states.shape, f"{student_states.shape} != {teacher_states.shape}"
if normalize_hidden:
student_states = nn.functional.layer_norm(student_states, student_states.shape[1:])
teacher_states = nn.functional.layer_norm(teacher_states, teacher_states.shape[1:])
mse = nn.functional.mse_loss(student_states, teacher_states, reduction="none")
masked_mse = (mse * mask.unsqueeze(0).unsqueeze(-1)).sum() / valid_count
return masked_mse
def add_distill_args(parser):
# NOTE: if --student argument was specified and the teacher and student base models
# are different, the models still have to have the same tokenizer, specified by
# --tokenizer_name. So, for example, you can distill from t5_large to t5_small but not
# from bart to t5. This s because if the tokenizers are different, the output space
# for the two models is also different and their logits are not comparable.
parser.add_argument("--teacher", type=str)
parser.add_argument("--alpha_ce", default=0.8, type=float)
parser.add_argument("--alpha_mlm", default=0.2, type=float)
parser.add_argument("--alpha_hid", default=0.0, type=float, required=False)
parser.add_argument("--student", type=str, required=False)
parser.add_argument("--student_decoder_layers", default=12, type=int, required=False)
parser.add_argument("--student_encoder_layers", default=12, type=int, required=False)
parser.add_argument("--no_teacher", action="store_true", default=False)
parser.add_argument("--length_penalty", type=float, default=-1)
parser.add_argument("--supervise_forward", action="store_true", default=False)
parser.add_argument("--normalize_hidden", action="store_true", default=False)
class TranslationDistiller(SummarizationDistiller):
"""Supports T5, mBART, Marian, other models that inherit from Bart."""
mode = "translation"
metric_names = ["bleu"]
default_val_metric = "bleu"
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
assert hparams.src_lang is not None
assert hparams.tgt_lang is not None
self.dataset_kwargs["src_lang"] = hparams.src_lang
self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
def calc_generative_metrics(self, preds, target) -> dict:
return calculate_bleu(preds, target)
@staticmethod
def add_model_specific_args(parser, root_dir):
TranslationModule.add_model_specific_args(parser, root_dir)
add_distill_args(parser)
return parser
def create_module(args):
if args.no_teacher:
module_cls = TranslationModule if "translation" in args.task else SummarizationModule
else: # DISTILL WITH TEACHER
module_cls = TranslationDistiller if "translation" in args.task else SummarizationDistiller
args.setup_cls: str = module_cls.__name__
print(f"using module {args.setup_cls}")
model = module_cls(args)
return model
def distill_main(args):
Path(args.output_dir).mkdir(exist_ok=True)
check_output_dir(args, expected_items=3)
model = create_module(args)
return ft_main(args, model=model)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationDistiller.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
distill_main(args)
| transformers-main | examples/research_projects/seq2seq-distillation/distillation.py |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition in streaming mode"""
import logging
import os
import re
import sys
import warnings
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union
import datasets
import numpy as np
import torch
from datasets import IterableDatasetDict, interleave_datasets, load_dataset, load_metric
from torch.utils.data import IterableDataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForCTC,
AutoProcessor,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainerCallback,
TrainingArguments,
Wav2Vec2Processor,
set_seed,
)
from transformers.trainer_pt_utils import IterableDatasetShard
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risk.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.18.2", "To fix: pip install 'datasets>=1.18.2'")
logger = logging.getLogger(__name__)
def list_field(default=None, metadata=None):
return field(default_factory=lambda: default, metadata=metadata)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
tokenizer_name_or_path: Optional[str] = field(
default=None,
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_encoder: bool = field(
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
)
attention_dropout: float = field(
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
)
activation_dropout: float = field(
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
)
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
hidden_dropout: float = field(
default=0.0,
metadata={
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
},
)
final_dropout: float = field(
default=0.0,
metadata={"help": "The dropout probability for the final projection layer."},
)
mask_time_prob: float = field(
default=0.05,
metadata={
"help": (
"Probability of each feature vector along the time axis to be chosen as the start of the vector"
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
"vectors will be masked along the time axis."
)
},
)
mask_time_length: int = field(
default=10,
metadata={"help": "Length of vector span to mask along the time axis."},
)
mask_feature_prob: float = field(
default=0.0,
metadata={
"help": (
"Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
" to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
" bins will be masked along the time axis."
)
},
)
mask_feature_length: int = field(
default=10,
metadata={"help": "Length of vector span to mask along the feature axis."},
)
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
ctc_loss_reduction: Optional[str] = field(
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: str = field(
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
dataset_config_name: str = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_split_name: str = field(
default="train+validation",
metadata={
"help": (
"The name of the training data set split to use (via the datasets library). Defaults to "
"'train+validation'"
)
},
)
eval_split_name: str = field(
default="test",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
},
)
audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
text_column_name: str = field(
default="text",
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
},
)
shuffle_buffer_size: Optional[int] = field(
default=500,
metadata={
"help": (
"The number of streamed examples to download before shuffling them. The large the buffer, "
"the closer it is to real offline shuffling."
)
},
)
chars_to_ignore: Optional[List[str]] = list_field(
default=None,
metadata={"help": "A list of characters to remove from the transcripts."},
)
eval_metrics: List[str] = list_field(
default=["wer"],
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
)
max_duration_in_seconds: float = field(
default=20.0,
metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds."},
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": (
"Whether to only do data preprocessing and skip training. This is especially useful when data"
" preprocessing errors out in distributed training due to timeout. In this case, one should run the"
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
" can consequently be loaded in distributed training"
)
},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"If :obj:`True`, will use the token generated when running"
":obj:`huggingface-cli login` as HTTP bearer authorization for remote files."
)
},
)
phoneme_language: Optional[str] = field(
default=None,
metadata={
"help": (
"The target language that should be used be"
" passed to the tokenizer for tokenization. Note that"
" this is only relevant if the model classifies the"
" input audio to a sequence of phoneme sequences."
)
},
)
@dataclass
class DataCollatorCTCWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor (:class:`~transformers.AutoProcessor`)
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
max_length_labels (:obj:`int`, `optional`):
Maximum length of the ``labels`` returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
processor: AutoProcessor
padding: Union[bool, str] = "longest"
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
input_features = []
label_features = []
for feature in features:
if self.max_length and feature["input_values"].shape[-1] > self.max_length:
continue
input_features.append({"input_values": feature["input_values"]})
label_features.append({"input_ids": feature["labels"]})
batch = self.processor.pad(
input_features,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
labels_batch = self.processor.pad(
labels=label_features,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of_labels,
return_tensors="pt",
)
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
batch["labels"] = labels
return batch
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# 1. First, let's load the dataset
raw_datasets = IterableDatasetDict()
raw_column_names = {}
def load_streaming_dataset(split, sampling_rate, **kwargs):
if "+" in split:
dataset_splits = [load_dataset(split=split_name, **kwargs) for split_name in split.split("+")]
# `features` and `cast_column` won't be available after interleaving, so we'll use them here
features = dataset_splits[0].features
# make sure that the dataset decodes audio with a correct sampling rate
dataset_splits = [
dataset.cast_column(data_args.audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate))
for dataset in dataset_splits
]
interleaved_dataset = interleave_datasets(dataset_splits)
return interleaved_dataset, features
else:
dataset = load_dataset(split=split, **kwargs)
features = dataset.features
# make sure that the dataset decodes audio with a correct sampling rate
dataset = dataset.cast_column(
data_args.audio_column_name, datasets.features.Audio(sampling_rate=sampling_rate)
)
return dataset, features
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate and normalize the input
# via the `feature_extractor`
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
)
if training_args.do_train:
raw_datasets["train"], train_features = load_streaming_dataset(
path=data_args.dataset_name,
name=data_args.dataset_config_name,
split=data_args.train_split_name,
use_auth_token=data_args.use_auth_token,
streaming=True,
sampling_rate=feature_extractor.sampling_rate,
)
raw_column_names["train"] = list(train_features.keys())
if data_args.audio_column_name not in raw_column_names["train"]:
raise ValueError(
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
" Make sure to set `--audio_column_name` to the correct audio column - one of"
f" {', '.join(raw_column_names['train'])}."
)
if data_args.text_column_name not in raw_column_names["train"]:
raise ValueError(
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--text_column_name` to the correct text column - one of "
f"{', '.join(raw_column_names['train'])}."
)
if data_args.max_train_samples is not None:
raw_datasets["train"] = raw_datasets["train"].take(range(data_args.max_train_samples))
if training_args.do_eval:
raw_datasets["eval"], eval_features = load_streaming_dataset(
path=data_args.dataset_name,
name=data_args.dataset_config_name,
split=data_args.eval_split_name,
use_auth_token=data_args.use_auth_token,
streaming=True,
sampling_rate=feature_extractor.sampling_rate,
)
raw_column_names["eval"] = list(eval_features.keys())
if data_args.max_eval_samples is not None:
raw_datasets["eval"] = raw_datasets["eval"].take(range(data_args.max_eval_samples))
# 2. We remove some special characters from the datasets
# that make training complicated and do not help in transcribing the speech
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
# that could be easily picked up by the model
chars_to_ignore_regex = (
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
)
text_column_name = data_args.text_column_name
def remove_special_characters(batch):
if chars_to_ignore_regex is not None:
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
else:
batch["target_text"] = batch[text_column_name].lower() + " "
return batch
with training_args.main_process_first(desc="dataset map special characters removal"):
for split, dataset in raw_datasets.items():
raw_datasets[split] = dataset.map(
remove_special_characters,
).remove_columns([text_column_name])
# 3. Next, let's load the config as we might need it to create
# the tokenizer
config = AutoConfig.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
)
# 4. Now we can instantiate the tokenizer and model
# Note for distributed training, the .from_pretrained methods guarantee that only
# one local process can concurrently download model & vocab.
tokenizer_name_or_path = model_args.tokenizer_name_or_path
if tokenizer_name_or_path is None:
raise ValueError(
"Tokenizer has to be created before training in streaming mode. Please specify --tokenizer_name_or_path"
)
# load feature_extractor and tokenizer
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name_or_path,
config=config,
use_auth_token=data_args.use_auth_token,
)
# adapt config
config.update(
{
"feat_proj_dropout": model_args.feat_proj_dropout,
"attention_dropout": model_args.attention_dropout,
"hidden_dropout": model_args.hidden_dropout,
"final_dropout": model_args.final_dropout,
"mask_time_prob": model_args.mask_time_prob,
"mask_time_length": model_args.mask_time_length,
"mask_feature_prob": model_args.mask_feature_prob,
"mask_feature_length": model_args.mask_feature_length,
"gradient_checkpointing": training_args.gradient_checkpointing,
"layerdrop": model_args.layerdrop,
"ctc_loss_reduction": model_args.ctc_loss_reduction,
"pad_token_id": tokenizer.pad_token_id,
"vocab_size": len(tokenizer),
"activation_dropout": model_args.activation_dropout,
}
)
# create model
model = AutoModelForCTC.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
config=config,
use_auth_token=data_args.use_auth_token,
)
# freeze encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
# 5. Now we preprocess the datasets including loading the audio, resampling and normalization
audio_column_name = data_args.audio_column_name
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
phoneme_language = data_args.phoneme_language
# Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
def prepare_dataset(batch):
# load audio
sample = batch[audio_column_name]
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
batch["input_values"] = inputs.input_values[0]
batch["input_length"] = len(batch["input_values"])
# encode targets
additional_kwargs = {}
if phoneme_language is not None:
additional_kwargs["phonemizer_lang"] = phoneme_language
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
return batch
vectorized_datasets = IterableDatasetDict()
with training_args.main_process_first(desc="dataset map preprocessing"):
for split, dataset in raw_datasets.items():
vectorized_datasets[split] = (
dataset.map(prepare_dataset)
.remove_columns(raw_column_names[split] + ["target_text"])
.with_format("torch")
)
if split == "train":
vectorized_datasets[split] = vectorized_datasets[split].shuffle(
buffer_size=data_args.shuffle_buffer_size,
seed=training_args.seed,
)
# 6. Next, we can prepare the training.
# Let's use word error rate (WER) as our evaluation metric,
# instantiate a data collator and the trainer
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
pred_str = tokenizer.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
return metrics
# Now save everything to be able to create a single processor later
if is_main_process(training_args.local_rank):
# save feature extractor, tokenizer and config
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
try:
processor = AutoProcessor.from_pretrained(training_args.output_dir)
except (OSError, KeyError):
warnings.warn(
"Loading a processor from a feature extractor config that does not"
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
" attribute to your `preprocessor_config.json` file to suppress this warning: "
" `'processor_class': 'Wav2Vec2Processor'`",
FutureWarning,
)
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
# Instantiate custom data collator
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
data_collator = DataCollatorCTCWithPadding(processor=processor, max_length=max_input_length)
# trainer callback to reinitialize and reshuffle the streamable datasets at the beginning of each epoch
class ShuffleCallback(TrainerCallback):
def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs):
if isinstance(train_dataloader.dataset, IterableDatasetShard):
pass # set_epoch() is handled by the Trainer
elif isinstance(train_dataloader.dataset, IterableDataset):
train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1)
# Initialize Trainer
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
tokenizer=processor,
callbacks=[ShuffleCallback()],
)
# 7. Finally, we can start training
# Training
if training_args.do_train:
# use last checkpoint if exist
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
metrics = train_result.metrics
if data_args.max_train_samples:
metrics["train_samples"] = data_args.max_train_samples
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
if data_args.max_eval_samples:
metrics["eval_samples"] = data_args.max_eval_samples
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Write model card and (optionally) push to hub
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "automatic-speech-recognition",
"tags": ["automatic-speech-recognition", data_args.dataset_name],
"dataset_args": (
f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
f" {data_args.eval_split_name}"
),
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
}
if "common_voice" in data_args.dataset_name:
kwargs["language"] = config_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
return results
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/robust-speech-event/run_speech_recognition_ctc_streaming.py |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
import functools
import json
import logging
import os
import re
import sys
import warnings
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union
import bitsandbytes as bnb
import datasets
import numpy as np
import torch
from datasets import DatasetDict, load_dataset, load_metric
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForCTC,
AutoProcessor,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
Wav2Vec2Processor,
set_seed,
)
from transformers.trainer_pt_utils import get_parameter_names
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.16.0.dev0")
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
logger = logging.getLogger(__name__)
def list_field(default=None, metadata=None):
return field(default_factory=lambda: default, metadata=metadata)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
tokenizer_name_or_path: Optional[str] = field(
default=None,
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_encoder: bool = field(
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
)
attention_dropout: float = field(
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
)
activation_dropout: float = field(
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
)
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
hidden_dropout: float = field(
default=0.0,
metadata={
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
},
)
final_dropout: float = field(
default=0.0,
metadata={"help": "The dropout probability for the final projection layer."},
)
mask_time_prob: float = field(
default=0.05,
metadata={
"help": (
"Probability of each feature vector along the time axis to be chosen as the start of the vector"
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
"vectors will be masked along the time axis."
)
},
)
mask_time_length: int = field(
default=10,
metadata={"help": "Length of vector span to mask along the time axis."},
)
mask_feature_prob: float = field(
default=0.0,
metadata={
"help": (
"Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
" to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
" bins will be masked along the time axis."
)
},
)
mask_feature_length: int = field(
default=10,
metadata={"help": "Length of vector span to mask along the feature axis."},
)
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
ctc_loss_reduction: Optional[str] = field(
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: str = field(
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
dataset_config_name: str = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_split_name: str = field(
default="train+validation",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
eval_split_name: str = field(
default="test",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
audio_column_name: str = field(
default="audio",
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
text_column_name: str = field(
default="text",
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
},
)
chars_to_ignore: Optional[List[str]] = list_field(
default=None,
metadata={"help": "A list of characters to remove from the transcripts."},
)
eval_metrics: List[str] = list_field(
default=["wer"],
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
)
max_duration_in_seconds: float = field(
default=20.0,
metadata={
"help": (
"Filter audio files that are longer than `max_duration_in_seconds` seconds to"
" 'max_duration_in_seconds`"
)
},
)
min_duration_in_seconds: float = field(
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
)
preprocessing_only: bool = field(
default=False,
metadata={
"help": (
"Whether to only do data preprocessing and skip training. This is especially useful when data"
" preprocessing errors out in distributed training due to timeout. In this case, one should run the"
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
" can consequently be loaded in distributed training"
)
},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"If :obj:`True`, will use the token generated when running"
":obj:`huggingface-cli login` as HTTP bearer authorization for remote files."
)
},
)
unk_token: str = field(
default="[UNK]",
metadata={"help": "The unk token for the tokenizer"},
)
pad_token: str = field(
default="[PAD]",
metadata={"help": "The padding token for the tokenizer"},
)
word_delimiter_token: str = field(
default="|",
metadata={"help": "The word delimiter token for the tokenizer"},
)
phoneme_language: Optional[str] = field(
default=None,
metadata={
"help": (
"The target language that should be used be"
" passed to the tokenizer for tokenization. Note that"
" this is only relevant if the model classifies the"
" input audio to a sequence of phoneme sequences."
)
},
)
@dataclass
class DataCollatorCTCWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor (:class:`~transformers.AutoProcessor`)
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
max_length_labels (:obj:`int`, `optional`):
Maximum length of the ``labels`` returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
processor: AutoProcessor
padding: Union[bool, str] = "longest"
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
input_features = [{"input_values": feature["input_values"]} for feature in features]
label_features = [{"input_ids": feature["labels"]} for feature in features]
batch = self.processor.pad(
input_features,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
labels_batch = self.processor.pad(
labels=label_features,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of_labels,
return_tensors="pt",
)
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
batch["labels"] = labels
return batch
def create_vocabulary_from_data(
datasets: DatasetDict,
word_delimiter_token: Optional[str] = None,
unk_token: Optional[str] = None,
pad_token: Optional[str] = None,
):
# Given training and test labels create vocabulary
def extract_all_chars(batch):
all_text = " ".join(batch["target_text"])
vocab = list(set(all_text))
return {"vocab": [vocab], "all_text": [all_text]}
vocabs = datasets.map(
extract_all_chars,
batched=True,
batch_size=-1,
keep_in_memory=True,
remove_columns=datasets["train"].column_names,
)
# take union of all unique characters in each dataset
vocab_set = functools.reduce(
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
)
vocab_dict = {v: k for k, v in enumerate(sorted(vocab_set))}
# replace white space with delimiter token
if word_delimiter_token is not None:
vocab_dict[word_delimiter_token] = vocab_dict[" "]
del vocab_dict[" "]
# add unk and pad token
if unk_token is not None:
vocab_dict[unk_token] = len(vocab_dict)
if pad_token is not None:
vocab_dict[pad_token] = len(vocab_dict)
return vocab_dict
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# 1. First, let's load the dataset
raw_datasets = DatasetDict()
if training_args.do_train:
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.train_split_name,
use_auth_token=data_args.use_auth_token,
)
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
" Make sure to set `--audio_column_name` to the correct audio column - one of"
f" {', '.join(raw_datasets['train'].column_names)}."
)
if data_args.text_column_name not in raw_datasets["train"].column_names:
raise ValueError(
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--text_column_name` to the correct text column - one of "
f"{', '.join(raw_datasets['train'].column_names)}."
)
if data_args.max_train_samples is not None:
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
if training_args.do_eval:
raw_datasets["eval"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.eval_split_name,
use_auth_token=data_args.use_auth_token,
)
if data_args.max_eval_samples is not None:
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
# 2. We remove some special characters from the datasets
# that make training complicated and do not help in transcribing the speech
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
# that could be easily picked up by the model
chars_to_ignore_regex = (
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
)
text_column_name = data_args.text_column_name
def remove_special_characters(batch):
if chars_to_ignore_regex is not None:
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
else:
batch["target_text"] = batch[text_column_name].lower() + " "
return batch
with training_args.main_process_first(desc="dataset map special characters removal"):
raw_datasets = raw_datasets.map(
remove_special_characters,
remove_columns=[text_column_name],
desc="remove special characters from datasets",
)
# save special tokens for tokenizer
word_delimiter_token = data_args.word_delimiter_token
unk_token = data_args.unk_token
pad_token = data_args.pad_token
# 3. Next, let's load the config as we might need it to create
# the tokenizer
# load config
config = AutoConfig.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
)
# 4. Next, if no tokenizer file is defined,
# we create the vocabulary of the model by extracting all unique characters from
# the training and evaluation datasets
# We need to make sure that only first rank saves vocabulary
# make sure all processes wait until vocab is created
tokenizer_name_or_path = model_args.tokenizer_name_or_path
tokenizer_kwargs = {}
if tokenizer_name_or_path is None:
# save vocab in training output dir
tokenizer_name_or_path = training_args.output_dir
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
with training_args.main_process_first():
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
os.remove(vocab_file)
with training_args.main_process_first(desc="dataset map vocabulary creation"):
if not os.path.isfile(vocab_file):
os.makedirs(tokenizer_name_or_path, exist_ok=True)
vocab_dict = create_vocabulary_from_data(
raw_datasets,
word_delimiter_token=word_delimiter_token,
unk_token=unk_token,
pad_token=pad_token,
)
# save vocab dict to be loaded into tokenizer
with open(vocab_file, "w") as file:
json.dump(vocab_dict, file)
# if tokenizer has just been created
# it is defined by `tokenizer_class` if present in config else by `model_type`
tokenizer_kwargs = {
"config": config if config.tokenizer_class is not None else None,
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
"unk_token": unk_token,
"pad_token": pad_token,
"word_delimiter_token": word_delimiter_token,
}
# 5. Now we can instantiate the feature extractor, tokenizer and model
# Note for distributed training, the .from_pretrained methods guarantee that only
# one local process can concurrently download model & vocab.
# load feature_extractor and tokenizer
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name_or_path,
use_auth_token=data_args.use_auth_token,
**tokenizer_kwargs,
)
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
)
# adapt config
config.update(
{
"feat_proj_dropout": model_args.feat_proj_dropout,
"attention_dropout": model_args.attention_dropout,
"hidden_dropout": model_args.hidden_dropout,
"final_dropout": model_args.final_dropout,
"mask_time_prob": model_args.mask_time_prob,
"mask_time_length": model_args.mask_time_length,
"mask_feature_prob": model_args.mask_feature_prob,
"mask_feature_length": model_args.mask_feature_length,
"gradient_checkpointing": training_args.gradient_checkpointing,
"layerdrop": model_args.layerdrop,
"ctc_loss_reduction": model_args.ctc_loss_reduction,
"pad_token_id": tokenizer.pad_token_id,
"vocab_size": len(tokenizer),
"activation_dropout": model_args.activation_dropout,
}
)
# create model
model = AutoModelForCTC.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
config=config,
use_auth_token=data_args.use_auth_token,
)
# freeze encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
# so that we just need to set the correct target sampling rate and normalize the input
# via the `feature_extractor`
# make sure that dataset decodes audio with correct sampling rate
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
if dataset_sampling_rate != feature_extractor.sampling_rate:
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
)
# derive max & min input length for sample rate & max duration
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
audio_column_name = data_args.audio_column_name
num_workers = data_args.preprocessing_num_workers
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
phoneme_language = data_args.phoneme_language
# Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
def prepare_dataset(batch):
# load audio
sample = batch[audio_column_name]
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
batch["input_values"] = inputs.input_values[0]
batch["input_length"] = len(batch["input_values"])
# encode targets
additional_kwargs = {}
if phoneme_language is not None:
additional_kwargs["phonemizer_lang"] = phoneme_language
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
return batch
with training_args.main_process_first(desc="dataset map preprocessing"):
vectorized_datasets = raw_datasets.map(
prepare_dataset,
remove_columns=next(iter(raw_datasets.values())).column_names,
num_proc=num_workers,
desc="preprocess datasets",
)
def is_audio_in_length_range(length):
return length > min_input_length and length < max_input_length
# filter data that is shorter than min_input_length
vectorized_datasets = vectorized_datasets.filter(
is_audio_in_length_range,
num_proc=num_workers,
input_columns=["input_length"],
)
# 7. Next, we can prepare the training.
# Let's use word error rate (WER) as our evaluation metric,
# instantiate a data collator and the trainer
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
# for large datasets it is advised to run the preprocessing on a
# single machine first with ``args.preprocessing_only`` since there will mostly likely
# be a timeout when running the script in distributed mode.
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
# cached dataset
if data_args.preprocessing_only:
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
return
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
pred_str = tokenizer.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
return metrics
# Now save everything to be able to create a single processor later
if is_main_process(training_args.local_rank):
# save feature extractor, tokenizer and config
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
try:
processor = AutoProcessor.from_pretrained(training_args.output_dir)
except (OSError, KeyError):
warnings.warn(
"Loading a processor from a feature extractor config that does not"
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
" attribute to your `preprocessor_config.json` file to suppress this warning: "
" `'processor_class': 'Wav2Vec2Processor'`",
FutureWarning,
)
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
# Instantiate custom data collator
data_collator = DataCollatorCTCWithPadding(processor=processor)
decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm])
decay_parameters = [name for name in decay_parameters if "bias" not in name]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if n in decay_parameters],
"weight_decay": training_args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if n not in decay_parameters],
"weight_decay": 0.0,
},
]
optimizer = bnb.optim.Adam8bit(
params=optimizer_grouped_parameters,
lr=training_args.learning_rate,
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
)
optimizers = (optimizer, None)
# Initialize Trainer
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
tokenizer=feature_extractor,
optimizers=optimizers,
)
# 8. Finally, we can start training
# Training
if training_args.do_train:
# use last checkpoint if exist
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples
if data_args.max_train_samples is not None
else len(vectorized_datasets["train"])
)
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = (
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
)
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Write model card and (optionally) push to hub
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "automatic-speech-recognition",
"tags": ["automatic-speech-recognition", data_args.dataset_name],
"dataset_args": (
f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
f" {data_args.eval_split_name}"
),
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
}
if "common_voice" in data_args.dataset_name:
kwargs["language"] = config_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
return results
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py |
#!/usr/bin/env python3
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def log_results(result: Dataset, args: Dict[str, str]):
"""DO NOT CHANGE. This function computes and logs the result metrics."""
log_outputs = args.log_outputs
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
# load metric
wer = load_metric("wer")
cer = load_metric("cer")
# compute metrics
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
# print & log results
result_str = f"WER: {wer_result}\nCER: {cer_result}"
print(result_str)
with open(f"{dataset_id}_eval_results.txt", "w") as f:
f.write(result_str)
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
pred_file = f"log_{dataset_id}_predictions.txt"
target_file = f"log_{dataset_id}_targets.txt"
with open(pred_file, "w") as p, open(target_file, "w") as t:
# mapping function to write output
def write_to_file(batch, i):
p.write(f"{i}" + "\n")
p.write(batch["prediction"] + "\n")
t.write(f"{i}" + "\n")
t.write(batch["target"] + "\n")
result.map(write_to_file, with_indices=True)
def normalize_text(text: str) -> str:
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
text = re.sub(chars_to_ignore_regex, "", text.lower())
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
for t in token_sequences_to_ignore:
text = " ".join(text.split(t))
return text
def main(args):
# load dataset
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
sampling_rate = feature_extractor.sampling_rate
# resample audio
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
# load eval pipeline
if args.device is None:
args.device = 0 if torch.cuda.is_available() else -1
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
# map function to decode audio
def map_to_pred(batch):
prediction = asr(
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
)
batch["prediction"] = prediction["text"]
batch["target"] = normalize_text(batch["sentence"])
return batch
# run inference on all examples
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
# compute and log_results
# do not change function below
log_results(result, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
args = parser.parse_args()
main(args)
| transformers-main | examples/research_projects/robust-speech-event/eval.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" This is the exact same script as `examples/question-answering/run_squad.py` (as of 2020, January 8th) with an additional and optional step of distillation."""
import argparse
import glob
import logging
import os
import random
import timeit
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
import transformers
from transformers import (
WEIGHTS_NAME,
AdamW,
BertConfig,
BertForQuestionAnswering,
BertTokenizer,
DistilBertConfig,
DistilBertForQuestionAnswering,
DistilBertTokenizer,
RobertaConfig,
RobertaForQuestionAnswering,
RobertaTokenizer,
XLMConfig,
XLMForQuestionAnswering,
XLMTokenizer,
XLNetConfig,
XLNetForQuestionAnswering,
XLNetTokenizer,
get_linear_schedule_with_warmup,
squad_convert_examples_to_features,
)
from transformers.data.metrics.squad_metrics import (
compute_predictions_log_probs,
compute_predictions_logits,
squad_evaluate,
)
from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor
from transformers.trainer_utils import is_main_process
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
MODEL_CLASSES = {
"bert": (BertConfig, BertForQuestionAnswering, BertTokenizer),
"xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
"xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
"distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
"roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer),
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def to_list(tensor):
return tensor.detach().cpu().tolist()
def train(args, train_dataset, model, tokenizer, teacher=None):
"""Train the model"""
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 1
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
try:
# set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
)
# Added here for reproductibility
set_seed(args)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
if teacher is not None:
teacher.eval()
batch = tuple(t.to(args.device) for t in batch)
inputs = {
"input_ids": batch[0],
"attention_mask": batch[1],
"start_positions": batch[3],
"end_positions": batch[4],
}
if args.model_type != "distilbert":
inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2]
if args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": batch[5], "p_mask": batch[6]})
if args.version_2_with_negative:
inputs.update({"is_impossible": batch[7]})
outputs = model(**inputs)
loss, start_logits_stu, end_logits_stu = outputs
# Distillation loss
if teacher is not None:
if "token_type_ids" not in inputs:
inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2]
with torch.no_grad():
start_logits_tea, end_logits_tea = teacher(
input_ids=inputs["input_ids"],
token_type_ids=inputs["token_type_ids"],
attention_mask=inputs["attention_mask"],
)
assert start_logits_tea.size() == start_logits_stu.size()
assert end_logits_tea.size() == end_logits_stu.size()
loss_fct = nn.KLDivLoss(reduction="batchmean")
loss_start = loss_fct(
nn.functional.log_softmax(start_logits_stu / args.temperature, dim=-1),
nn.functional.softmax(start_logits_tea / args.temperature, dim=-1),
) * (args.temperature**2)
loss_end = loss_fct(
nn.functional.log_softmax(end_logits_stu / args.temperature, dim=-1),
nn.functional.softmax(end_logits_tea / args.temperature, dim=-1),
) * (args.temperature**2)
loss_ce = (loss_start + loss_end) / 2.0
loss = args.alpha_ce * loss_ce + args.alpha_squad * loss
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
# Log metrics
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Only evaluate when single GPU otherwise metrics may not average well
if args.local_rank == -1 and args.evaluate_during_training:
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar("eval_{}".format(key), value, global_step)
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(dataset)
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu evaluate
if args.n_gpu > 1 and not isinstance(model, nn.DataParallel):
model = nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
all_results = []
start_time = timeit.default_timer()
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0], "attention_mask": batch[1]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2] # XLM don't use segment_ids
example_indices = batch[3]
if args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": batch[4], "p_mask": batch[5]})
outputs = model(**inputs)
for i, example_index in enumerate(example_indices):
eval_feature = features[example_index.item()]
unique_id = int(eval_feature.unique_id)
output = [to_list(output[i]) for output in outputs]
# Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
# models only use two.
if len(output) >= 5:
start_logits = output[0]
start_top_index = output[1]
end_logits = output[2]
end_top_index = output[3]
cls_logits = output[4]
result = SquadResult(
unique_id,
start_logits,
end_logits,
start_top_index=start_top_index,
end_top_index=end_top_index,
cls_logits=cls_logits,
)
else:
start_logits, end_logits = output
result = SquadResult(unique_id, start_logits, end_logits)
all_results.append(result)
evalTime = timeit.default_timer() - start_time
logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))
# Compute predictions
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
if args.version_2_with_negative:
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
else:
output_null_log_odds_file = None
if args.model_type in ["xlnet", "xlm"]:
# XLNet uses a more complex post-processing procedure
predictions = compute_predictions_log_probs(
examples,
features,
all_results,
args.n_best_size,
args.max_answer_length,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
model.config.start_n_top,
model.config.end_n_top,
args.version_2_with_negative,
tokenizer,
args.verbose_logging,
)
else:
predictions = compute_predictions_logits(
examples,
features,
all_results,
args.n_best_size,
args.max_answer_length,
args.do_lower_case,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
args.verbose_logging,
args.version_2_with_negative,
args.null_score_diff_threshold,
tokenizer,
)
# Compute the F1 and exact scores.
results = squad_evaluate(examples, predictions)
return results
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
if args.local_rank not in [-1, 0] and not evaluate:
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
torch.distributed.barrier()
# Load data features from cache or dataset file
input_file = args.predict_file if evaluate else args.train_file
cached_features_file = os.path.join(
os.path.dirname(input_file),
"cached_distillation_{}_{}_{}".format(
"dev" if evaluate else "train",
list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
),
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features_and_dataset = torch.load(cached_features_file)
try:
features, dataset, examples = (
features_and_dataset["features"],
features_and_dataset["dataset"],
features_and_dataset["examples"],
)
except KeyError:
raise DeprecationWarning(
"You seem to be loading features from an older version of this script please delete the "
"file %s in order for it to be created again" % cached_features_file
)
else:
logger.info("Creating features from dataset file at %s", input_file)
processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
if evaluate:
examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file)
else:
examples = processor.get_train_examples(args.data_dir, filename=args.train_file)
features, dataset = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate,
return_dataset="pt",
threads=args.threads,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file)
if args.local_rank == 0 and not evaluate:
# Make sure only the first process in distributed training process the dataset, and the others will use the cache
torch.distributed.barrier()
if output_examples:
return dataset, examples, features
return dataset
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_type",
default=None,
type=str,
required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()),
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
# Distillation parameters (optional)
parser.add_argument(
"--teacher_type",
default=None,
type=str,
help=(
"Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for"
" distillation."
),
)
parser.add_argument(
"--teacher_name_or_path",
default=None,
type=str,
help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.",
)
parser.add_argument(
"--alpha_ce", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation."
)
parser.add_argument(
"--alpha_squad", default=0.5, type=float, help="True SQuAD loss linear weight. Only for distillation."
)
parser.add_argument(
"--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation."
)
# Other parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
help="The input data dir. Should contain the .json files for the task."
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--train_file",
default=None,
type=str,
help="The input training file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--predict_file",
default=None,
type=str,
help="The input evaluation file. If a data dir is specified, will look for the file there"
+ "If no data dir or train/predict files are specified, will run with tensorflow_datasets.",
)
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
)
parser.add_argument(
"--version_2_with_negative",
action="store_true",
help="If true, the SQuAD examples contain some that do not have an answer.",
)
parser.add_argument(
"--null_score_diff_threshold",
type=float,
default=0.0,
help="If null_score - best_non_null is greater than the threshold predict null.",
)
parser.add_argument(
"--max_seq_length",
default=384,
type=int,
help=(
"The maximum total input sequence length after WordPiece tokenization. Sequences "
"longer than this will be truncated, and sequences shorter than this will be padded."
),
)
parser.add_argument(
"--doc_stride",
default=128,
type=int,
help="When splitting up a long document into chunks, how much stride to take between chunks.",
)
parser.add_argument(
"--max_query_length",
default=64,
type=int,
help=(
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
),
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument(
"--n_best_size",
default=20,
type=int,
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.",
)
parser.add_argument(
"--max_answer_length",
default=30,
type=int,
help=(
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
),
)
parser.add_argument(
"--verbose_logging",
action="store_true",
help=(
"If true, all of the warnings related to data processing will be printed. "
"A number of warnings are expected for a normal SQuAD evaluation."
),
)
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features")
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.teacher_type is not None:
assert args.teacher_name_or_path is not None
assert args.alpha_ce > 0.0
assert args.alpha_ce + args.alpha_squad > 0.0
assert args.teacher_type != "distilbert", "We constraint teachers not to be of type DistilBERT."
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
teacher_config = teacher_config_class.from_pretrained(
args.teacher_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None
)
teacher = teacher_model_class.from_pretrained(
args.teacher_name_or_path, config=teacher_config, cache_dir=args.cache_dir if args.cache_dir else None
)
teacher.to(args.device)
else:
teacher = None
if args.local_rank == 0:
# Make sure only the first process in distributed training will download model & vocab
torch.distributed.barrier()
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
# Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
# remove the need for this code, but it is still valid.
if args.fp16:
try:
import apex
apex.amp.register_half_function(torch, "einsum")
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Save the trained model and the tokenizer
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model.to(args.device)
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
if args.do_train:
logger.info("Loading checkpoints saved during training for evaluation")
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = [
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
# Evaluate
result = evaluate(args, model, tokenizer, prefix=global_step)
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()}
results.update(result)
logger.info("Results: {}".format(results))
return results
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/distillation/run_squad_w_distillation.py |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Dataset to distilled models
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class LmSeqsDataset(Dataset):
"""Custom Dataset wrapping language modeling sequences.
Each sample will be retrieved by indexing the list of token_ids and their corresponding lengths.
Input:
------
params: `NameSpace` parameters
data: `List[np.array[int]]
"""
def __init__(self, params, data):
self.params = params
self.token_ids = np.array(data)
self.lengths = np.array([len(t) for t in data])
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__(self, index):
return (self.token_ids[index], self.lengths[index])
def __len__(self):
return len(self.lengths)
def check(self):
"""
Some sanity checks
"""
assert len(self.token_ids) == len(self.lengths)
assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths)))
def remove_long_sequences(self):
"""
Sequences that are too long are split by chunk of max_model_input_size.
"""
max_len = self.params.max_model_input_size
indices = self.lengths > max_len
logger.info(f"Splitting {sum(indices)} too long sequences.")
def divide_chunks(l, n):
return [l[i : i + n] for i in range(0, len(l), n)]
new_tok_ids = []
new_lengths = []
if self.params.mlm:
cls_id, sep_id = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"]
else:
cls_id, sep_id = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"]
for seq_, len_ in zip(self.token_ids, self.lengths):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_)
new_lengths.append(len_)
else:
sub_seqs = []
for sub_s in divide_chunks(seq_, max_len - 2):
if sub_s[0] != cls_id:
sub_s = np.insert(sub_s, 0, cls_id)
if sub_s[-1] != sep_id:
sub_s = np.insert(sub_s, len(sub_s), sep_id)
assert len(sub_s) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(sub_s)
new_tok_ids.extend(sub_seqs)
new_lengths.extend([len(l) for l in sub_seqs])
self.token_ids = np.array(new_tok_ids)
self.lengths = np.array(new_lengths)
def remove_empty_sequences(self):
"""
Too short sequences are simply removed. This could be tuned.
"""
init_size = len(self)
indices = self.lengths > 11
self.token_ids = self.token_ids[indices]
self.lengths = self.lengths[indices]
new_size = len(self)
logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences.")
def remove_unknown_sequences(self):
"""
Remove sequences with a (too) high level of unknown tokens.
"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
unk_token_id = self.params.special_tok_ids["unk_token"]
init_size = len(self)
unk_occs = np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids])
indices = (unk_occs / self.lengths) < 0.5
self.token_ids = self.token_ids[indices]
self.lengths = self.lengths[indices]
new_size = len(self)
logger.info(f"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).")
def print_statistics(self):
"""
Print some statistics on the corpus. Only the master process.
"""
if not self.params.is_master:
return
logger.info(f"{len(self)} sequences")
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def batch_sequences(self, batch):
"""
Do the padding and transform into torch.tensor.
"""
token_ids = [t[0] for t in batch]
lengths = [t[1] for t in batch]
assert len(token_ids) == len(lengths)
# Max for paddings
max_seq_len_ = max(lengths)
# Pad token ids
if self.params.mlm:
pad_idx = self.params.special_tok_ids["pad_token"]
else:
pad_idx = self.params.special_tok_ids["unk_token"]
tk_ = [list(t.astype(int)) + [pad_idx] * (max_seq_len_ - len(t)) for t in token_ids]
assert len(tk_) == len(token_ids)
assert all(len(t) == max_seq_len_ for t in tk_)
tk_t = torch.tensor(tk_) # (bs, max_seq_len_)
lg_t = torch.tensor(lengths) # (bs)
return tk_t, lg_t
| transformers-main | examples/research_projects/distillation/lm_seqs_dataset.py |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Adapted from PyTorch Vision (https://github.com/pytorch/vision/blob/master/references/detection/group_by_aspect_ratio.py)
"""
import bisect
import copy
from collections import defaultdict
import numpy as np
from torch.utils.data import BatchSampler, Sampler
from utils import logger
def _quantize(x, bins):
bins = copy.deepcopy(bins)
bins = sorted(bins)
quantized = [bisect.bisect_right(bins, y) for y in x]
return quantized
def create_lengths_groups(lengths, k=0):
bins = np.arange(start=3, stop=k, step=4).tolist() if k > 0 else [10]
groups = _quantize(lengths, bins)
# count number of elements per group
counts = np.unique(groups, return_counts=True)[1]
fbins = [0] + bins + [np.inf]
logger.info("Using {} as bins for aspect lengths quantization".format(fbins))
logger.info("Count of instances per bin: {}".format(counts))
return groups
class GroupedBatchSampler(BatchSampler):
"""
Wraps another sampler to yield a mini-batch of indices.
It enforces that the batch only contain elements from the same group.
It also tries to provide mini-batches which follows an ordering which is
as close as possible to the ordering from the original sampler.
Arguments:
sampler (Sampler): Base sampler.
group_ids (list[int]): If the sampler produces indices in range [0, N),
`group_ids` must be a list of `N` ints which contains the group id of each sample.
The group ids must be a continuous set of integers starting from
0, i.e. they must be in the range [0, num_groups).
batch_size (int): Size of mini-batch.
"""
def __init__(self, sampler, group_ids, batch_size):
if not isinstance(sampler, Sampler):
raise ValueError(
"sampler should be an instance of torch.utils.data.Sampler, but got sampler={}".format(sampler)
)
self.sampler = sampler
self.group_ids = group_ids
self.batch_size = batch_size
def __iter__(self):
buffer_per_group = defaultdict(list)
samples_per_group = defaultdict(list)
num_batches = 0
for idx in self.sampler:
group_id = self.group_ids[idx]
buffer_per_group[group_id].append(idx)
samples_per_group[group_id].append(idx)
if len(buffer_per_group[group_id]) == self.batch_size:
yield buffer_per_group[group_id] # TODO
num_batches += 1
del buffer_per_group[group_id]
assert len(buffer_per_group[group_id]) < self.batch_size
# now we have run out of elements that satisfy
# the group criteria, let's return the remaining
# elements so that the size of the sampler is
# deterministic
expected_num_batches = len(self)
num_remaining = expected_num_batches - num_batches
if num_remaining > 0:
# for the remaining batches, group the batches by similar lengths
batch_idx = []
for group_id, idxs in sorted(buffer_per_group.items(), key=lambda x: x[0]):
batch_idx.extend(idxs)
if len(batch_idx) >= self.batch_size:
yield batch_idx[: self.batch_size]
batch_idx = batch_idx[self.batch_size :]
num_remaining -= 1
if len(batch_idx) > 0:
yield batch_idx
num_remaining -= 1
assert num_remaining == 0
def __len__(self):
"""
Return the number of mini-batches rather than the number of samples.
"""
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
| transformers-main | examples/research_projects/distillation/grouped_batch_sampler.py |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" The distiller to distil the student.
Adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
import math
import os
import time
import psutil
import torch
from grouped_batch_sampler import GroupedBatchSampler, create_lengths_groups
from lm_seqs_dataset import LmSeqsDataset
from torch import nn
from torch.optim import AdamW
from torch.utils.data import BatchSampler, DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from transformers import get_linear_schedule_with_warmup
from utils import logger
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
class Distiller:
def __init__(
self, params: dict, dataset: LmSeqsDataset, token_probs: torch.tensor, student: nn.Module, teacher: nn.Module
):
logger.info("Initializing Distiller")
self.params = params
self.dump_path = params.dump_path
self.multi_gpu = params.multi_gpu
self.fp16 = params.fp16
self.student = student
self.teacher = teacher
self.student_config = student.config
self.vocab_size = student.config.vocab_size
if params.n_gpu <= 1:
sampler = RandomSampler(dataset)
else:
sampler = DistributedSampler(dataset)
if params.group_by_size:
groups = create_lengths_groups(lengths=dataset.lengths, k=params.max_model_input_size)
sampler = GroupedBatchSampler(sampler=sampler, group_ids=groups, batch_size=params.batch_size)
else:
sampler = BatchSampler(sampler=sampler, batch_size=params.batch_size, drop_last=False)
self.dataloader = DataLoader(dataset=dataset, batch_sampler=sampler, collate_fn=dataset.batch_sequences)
self.temperature = params.temperature
assert self.temperature > 0.0
self.alpha_ce = params.alpha_ce
self.alpha_mlm = params.alpha_mlm
self.alpha_clm = params.alpha_clm
self.alpha_mse = params.alpha_mse
self.alpha_cos = params.alpha_cos
self.mlm = params.mlm
if self.mlm:
logger.info("Using MLM loss for LM step.")
self.mlm_mask_prop = params.mlm_mask_prop
assert 0.0 <= self.mlm_mask_prop <= 1.0
assert params.word_mask + params.word_keep + params.word_rand == 1.0
self.pred_probs = torch.FloatTensor([params.word_mask, params.word_keep, params.word_rand])
self.pred_probs = self.pred_probs.to(f"cuda:{params.local_rank}") if params.n_gpu > 0 else self.pred_probs
self.token_probs = token_probs.to(f"cuda:{params.local_rank}") if params.n_gpu > 0 else token_probs
if self.fp16:
self.pred_probs = self.pred_probs.half()
self.token_probs = self.token_probs.half()
else:
logger.info("Using CLM loss for LM step.")
self.epoch = 0
self.n_iter = 0
self.n_total_iter = 0
self.n_sequences_epoch = 0
self.total_loss_epoch = 0
self.last_loss = 0
self.last_loss_ce = 0
self.last_loss_mlm = 0
self.last_loss_clm = 0
if self.alpha_mse > 0.0:
self.last_loss_mse = 0
if self.alpha_cos > 0.0:
self.last_loss_cos = 0
self.last_log = 0
self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean")
self.lm_loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
if self.alpha_mse > 0.0:
self.mse_loss_fct = nn.MSELoss(reduction="sum")
if self.alpha_cos > 0.0:
self.cosine_loss_fct = nn.CosineEmbeddingLoss(reduction="mean")
logger.info("--- Initializing model optimizer")
assert params.gradient_accumulation_steps >= 1
self.num_steps_epoch = len(self.dataloader)
num_train_optimization_steps = (
int(self.num_steps_epoch / params.gradient_accumulation_steps * params.n_epoch) + 1
)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p for n, p in student.named_parameters() if not any(nd in n for nd in no_decay) and p.requires_grad
],
"weight_decay": params.weight_decay,
},
{
"params": [
p for n, p in student.named_parameters() if any(nd in n for nd in no_decay) and p.requires_grad
],
"weight_decay": 0.0,
},
]
logger.info(
"------ Number of trainable parameters (student): %i"
% sum([p.numel() for p in self.student.parameters() if p.requires_grad])
)
logger.info("------ Number of parameters (student): %i" % sum([p.numel() for p in self.student.parameters()]))
self.optimizer = AdamW(
optimizer_grouped_parameters, lr=params.learning_rate, eps=params.adam_epsilon, betas=(0.9, 0.98)
)
warmup_steps = math.ceil(num_train_optimization_steps * params.warmup_prop)
self.scheduler = get_linear_schedule_with_warmup(
self.optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_train_optimization_steps
)
if self.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
logger.info(f"Using fp16 training: {self.params.fp16_opt_level} level")
self.student, self.optimizer = amp.initialize(
self.student, self.optimizer, opt_level=self.params.fp16_opt_level
)
self.teacher = self.teacher.half()
if self.multi_gpu:
if self.fp16:
from apex.parallel import DistributedDataParallel
logger.info("Using apex.parallel.DistributedDataParallel for distributed training.")
self.student = DistributedDataParallel(self.student)
else:
from torch.nn.parallel import DistributedDataParallel
logger.info("Using nn.parallel.DistributedDataParallel for distributed training.")
self.student = DistributedDataParallel(
self.student,
device_ids=[params.local_rank],
output_device=params.local_rank,
find_unused_parameters=True,
)
self.is_master = params.is_master
if self.is_master:
logger.info("--- Initializing Tensorboard")
self.tensorboard = SummaryWriter(log_dir=os.path.join(self.dump_path, "log", "train"))
self.tensorboard.add_text(tag="config/training", text_string=str(self.params), global_step=0)
self.tensorboard.add_text(tag="config/student", text_string=str(self.student_config), global_step=0)
def prepare_batch_mlm(self, batch):
"""
Prepare the batch: from the token_ids and the lengths, compute the attention mask and the masked label for MLM.
Input:
------
batch: `Tuple`
token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded.
lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch.
Output:
-------
token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM.
attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention.
mlm_labels: `torch.tensor(bs, seq_length)` - The masked language modeling labels. There is a -100 where there is nothing to predict.
"""
token_ids, lengths = batch
token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths)
assert token_ids.size(0) == lengths.size(0)
attn_mask = torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None]
bs, max_seq_len = token_ids.size()
mlm_labels = token_ids.new(token_ids.size()).copy_(token_ids)
x_prob = self.token_probs[token_ids.flatten()]
n_tgt = math.ceil(self.mlm_mask_prop * lengths.sum().item())
tgt_ids = torch.multinomial(x_prob / x_prob.sum(), n_tgt, replacement=False)
pred_mask = torch.zeros(
bs * max_seq_len, dtype=torch.bool, device=token_ids.device
) # previously `dtype=torch.uint8`, cf pytorch 1.2.0 compatibility
pred_mask[tgt_ids] = 1
pred_mask = pred_mask.view(bs, max_seq_len)
pred_mask[token_ids == self.params.special_tok_ids["pad_token"]] = 0
# mask a number of words == 0 [8] (faster with fp16)
if self.fp16:
n1 = pred_mask.sum().item()
if n1 > 8:
pred_mask = pred_mask.view(-1)
n2 = max(n1 % 8, 8 * (n1 // 8))
if n2 != n1:
pred_mask[torch.nonzero(pred_mask).view(-1)[: n1 - n2]] = 0
pred_mask = pred_mask.view(bs, max_seq_len)
assert pred_mask.sum().item() % 8 == 0, pred_mask.sum().item()
_token_ids_real = token_ids[pred_mask]
_token_ids_rand = _token_ids_real.clone().random_(self.vocab_size)
_token_ids_mask = _token_ids_real.clone().fill_(self.params.special_tok_ids["mask_token"])
probs = torch.multinomial(self.pred_probs, len(_token_ids_real), replacement=True)
_token_ids = (
_token_ids_mask * (probs == 0).long()
+ _token_ids_real * (probs == 1).long()
+ _token_ids_rand * (probs == 2).long()
)
token_ids = token_ids.masked_scatter(pred_mask, _token_ids)
mlm_labels[~pred_mask] = -100 # previously `mlm_labels[1-pred_mask] = -1`, cf pytorch 1.2.0 compatibility
# sanity checks
assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size
return token_ids, attn_mask, mlm_labels
def prepare_batch_clm(self, batch):
"""
Prepare the batch: from the token_ids and the lengths, compute the attention mask and the labels for CLM.
Input:
------
batch: `Tuple`
token_ids: `torch.tensor(bs, seq_length)` - The token ids for each of the sequence. It is padded.
lengths: `torch.tensor(bs)` - The lengths of each of the sequences in the batch.
Output:
-------
token_ids: `torch.tensor(bs, seq_length)` - The token ids after the modifications for MLM.
attn_mask: `torch.tensor(bs, seq_length)` - The attention mask for the self-attention.
clm_labels: `torch.tensor(bs, seq_length)` - The causal language modeling labels. There is a -100 where there is nothing to predict.
"""
token_ids, lengths = batch
token_ids, lengths = self.round_batch(x=token_ids, lengths=lengths)
assert token_ids.size(0) == lengths.size(0)
attn_mask = torch.arange(token_ids.size(1), dtype=torch.long, device=lengths.device) < lengths[:, None]
clm_labels = token_ids.new(token_ids.size()).copy_(token_ids)
clm_labels[~attn_mask] = -100 # previously `clm_labels[1-attn_mask] = -1`, cf pytorch 1.2.0 compatibility
# sanity checks
assert 0 <= token_ids.min() <= token_ids.max() < self.vocab_size
return token_ids, attn_mask, clm_labels
def round_batch(self, x: torch.tensor, lengths: torch.tensor):
"""
For float16 only.
Sub-sample sentences in a batch, and add padding, so that each dimension is a multiple of 8.
Input:
------
x: `torch.tensor(bs, seq_length)` - The token ids.
lengths: `torch.tensor(bs, seq_length)` - The lengths of each of the sequence in the batch.
Output:
-------
x: `torch.tensor(new_bs, new_seq_length)` - The updated token ids.
lengths: `torch.tensor(new_bs, new_seq_length)` - The updated lengths.
"""
if not self.fp16 or len(lengths) < 8:
return x, lengths
# number of sentences == 0 [8]
bs1 = len(lengths)
bs2 = 8 * (bs1 // 8)
assert bs2 > 0 and bs2 % 8 == 0
if bs1 != bs2:
idx = torch.randperm(bs1)[:bs2]
lengths = lengths[idx]
slen = lengths.max().item()
x = x[idx, :slen]
else:
idx = None
# sequence length == 0 [8]
ml1 = x.size(1)
if ml1 % 8 != 0:
pad = 8 - (ml1 % 8)
ml2 = ml1 + pad
if self.mlm:
pad_id = self.params.special_tok_ids["pad_token"]
else:
pad_id = self.params.special_tok_ids["unk_token"]
padding_tensor = torch.zeros(bs2, pad, dtype=torch.long, device=x.device).fill_(pad_id)
x = torch.cat([x, padding_tensor], 1)
assert x.size() == (bs2, ml2)
assert x.size(0) % 8 == 0
assert x.size(1) % 8 == 0
return x, lengths
def train(self):
"""
The real training loop.
"""
if self.is_master:
logger.info("Starting training")
self.last_log = time.time()
self.student.train()
self.teacher.eval()
for _ in range(self.params.n_epoch):
if self.is_master:
logger.info(f"--- Starting epoch {self.epoch}/{self.params.n_epoch-1}")
if self.multi_gpu:
torch.distributed.barrier()
iter_bar = tqdm(self.dataloader, desc="-Iter", disable=self.params.local_rank not in [-1, 0])
for batch in iter_bar:
if self.params.n_gpu > 0:
batch = tuple(t.to(f"cuda:{self.params.local_rank}") for t in batch)
if self.mlm:
token_ids, attn_mask, lm_labels = self.prepare_batch_mlm(batch=batch)
else:
token_ids, attn_mask, lm_labels = self.prepare_batch_clm(batch=batch)
self.step(input_ids=token_ids, attention_mask=attn_mask, lm_labels=lm_labels)
iter_bar.update()
iter_bar.set_postfix(
{"Last_loss": f"{self.last_loss:.2f}", "Avg_cum_loss": f"{self.total_loss_epoch/self.n_iter:.2f}"}
)
iter_bar.close()
if self.is_master:
logger.info(f"--- Ending epoch {self.epoch}/{self.params.n_epoch-1}")
self.end_epoch()
if self.is_master:
logger.info("Save very last checkpoint as `pytorch_model.bin`.")
self.save_checkpoint(checkpoint_name="pytorch_model.bin")
logger.info("Training is finished")
def step(self, input_ids: torch.tensor, attention_mask: torch.tensor, lm_labels: torch.tensor):
"""
One optimization step: forward of student AND teacher, backward on the loss (for gradient accumulation),
and possibly a parameter update (depending on the gradient accumulation).
Input:
------
input_ids: `torch.tensor(bs, seq_length)` - The token ids.
attention_mask: `torch.tensor(bs, seq_length)` - The attention mask for self attention.
lm_labels: `torch.tensor(bs, seq_length)` - The language modeling labels (mlm labels for MLM and clm labels for CLM).
"""
if self.mlm:
student_outputs = self.student(
input_ids=input_ids, attention_mask=attention_mask
) # (bs, seq_length, voc_size)
with torch.no_grad():
teacher_outputs = self.teacher(
input_ids=input_ids, attention_mask=attention_mask
) # (bs, seq_length, voc_size)
else:
student_outputs = self.student(input_ids=input_ids, attention_mask=None) # (bs, seq_length, voc_size)
with torch.no_grad():
teacher_outputs = self.teacher(input_ids=input_ids, attention_mask=None) # (bs, seq_length, voc_size)
s_logits, s_hidden_states = student_outputs["logits"], student_outputs["hidden_states"]
t_logits, t_hidden_states = teacher_outputs["logits"], teacher_outputs["hidden_states"]
assert s_logits.size() == t_logits.size()
# https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
# https://github.com/peterliht/knowledge-distillation-pytorch/issues/2
if self.params.restrict_ce_to_mask:
mask = (lm_labels > -1).unsqueeze(-1).expand_as(s_logits) # (bs, seq_length, voc_size)
else:
mask = attention_mask.unsqueeze(-1).expand_as(s_logits) # (bs, seq_length, voc_size)
s_logits_slct = torch.masked_select(s_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask
s_logits_slct = s_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask
t_logits_slct = torch.masked_select(t_logits, mask) # (bs * seq_length * voc_size) modulo the 1s in mask
t_logits_slct = t_logits_slct.view(-1, s_logits.size(-1)) # (bs * seq_length, voc_size) modulo the 1s in mask
assert t_logits_slct.size() == s_logits_slct.size()
loss_ce = (
self.ce_loss_fct(
nn.functional.log_softmax(s_logits_slct / self.temperature, dim=-1),
nn.functional.softmax(t_logits_slct / self.temperature, dim=-1),
)
* (self.temperature) ** 2
)
loss = self.alpha_ce * loss_ce
if self.alpha_mlm > 0.0:
loss_mlm = self.lm_loss_fct(s_logits.view(-1, s_logits.size(-1)), lm_labels.view(-1))
loss += self.alpha_mlm * loss_mlm
if self.alpha_clm > 0.0:
shift_logits = s_logits[..., :-1, :].contiguous()
shift_labels = lm_labels[..., 1:].contiguous()
loss_clm = self.lm_loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
loss += self.alpha_clm * loss_clm
if self.alpha_mse > 0.0:
loss_mse = self.mse_loss_fct(s_logits_slct, t_logits_slct) / s_logits_slct.size(
0
) # Reproducing batchmean reduction
loss += self.alpha_mse * loss_mse
if self.alpha_cos > 0.0:
s_hidden_states = s_hidden_states[-1] # (bs, seq_length, dim)
t_hidden_states = t_hidden_states[-1] # (bs, seq_length, dim)
mask = attention_mask.unsqueeze(-1).expand_as(s_hidden_states) # (bs, seq_length, dim)
assert s_hidden_states.size() == t_hidden_states.size()
dim = s_hidden_states.size(-1)
s_hidden_states_slct = torch.masked_select(s_hidden_states, mask) # (bs * seq_length * dim)
s_hidden_states_slct = s_hidden_states_slct.view(-1, dim) # (bs * seq_length, dim)
t_hidden_states_slct = torch.masked_select(t_hidden_states, mask) # (bs * seq_length * dim)
t_hidden_states_slct = t_hidden_states_slct.view(-1, dim) # (bs * seq_length, dim)
target = s_hidden_states_slct.new(s_hidden_states_slct.size(0)).fill_(1) # (bs * seq_length,)
loss_cos = self.cosine_loss_fct(s_hidden_states_slct, t_hidden_states_slct, target)
loss += self.alpha_cos * loss_cos
self.total_loss_epoch += loss.item()
self.last_loss = loss.item()
self.last_loss_ce = loss_ce.item()
if self.alpha_mlm > 0.0:
self.last_loss_mlm = loss_mlm.item()
if self.alpha_clm > 0.0:
self.last_loss_clm = loss_clm.item()
if self.alpha_mse > 0.0:
self.last_loss_mse = loss_mse.item()
if self.alpha_cos > 0.0:
self.last_loss_cos = loss_cos.item()
self.optimize(loss)
self.n_sequences_epoch += input_ids.size(0)
def optimize(self, loss):
"""
Normalization on the loss (gradient accumulation or distributed training), followed by
backward pass on the loss, possibly followed by a parameter update (depending on the gradient accumulation).
Also update the metrics for tensorboard.
"""
# Check for NaN
if (loss != loss).data.any():
logger.error("NaN detected")
exit()
if self.multi_gpu:
loss = loss.mean()
if self.params.gradient_accumulation_steps > 1:
loss = loss / self.params.gradient_accumulation_steps
if self.fp16:
from apex import amp
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
self.iter()
if self.n_iter % self.params.gradient_accumulation_steps == 0:
if self.fp16:
nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), self.params.max_grad_norm)
else:
nn.utils.clip_grad_norm_(self.student.parameters(), self.params.max_grad_norm)
self.optimizer.step()
self.optimizer.zero_grad()
self.scheduler.step()
def iter(self):
"""
Update global counts, write to tensorboard and save checkpoint.
"""
self.n_iter += 1
self.n_total_iter += 1
if self.n_total_iter % self.params.log_interval == 0:
self.log_tensorboard()
self.last_log = time.time()
if self.n_total_iter % self.params.checkpoint_interval == 0:
self.save_checkpoint()
def log_tensorboard(self):
"""
Log into tensorboard. Only by the master process.
"""
if not self.is_master:
return
for param_name, param in self.student.named_parameters():
self.tensorboard.add_scalar(
tag="parameter_mean/" + param_name, scalar_value=param.data.mean(), global_step=self.n_total_iter
)
self.tensorboard.add_scalar(
tag="parameter_std/" + param_name, scalar_value=param.data.std(), global_step=self.n_total_iter
)
if param.grad is None:
continue
self.tensorboard.add_scalar(
tag="grad_mean/" + param_name, scalar_value=param.grad.data.mean(), global_step=self.n_total_iter
)
self.tensorboard.add_scalar(
tag="grad_std/" + param_name, scalar_value=param.grad.data.std(), global_step=self.n_total_iter
)
self.tensorboard.add_scalar(
tag="losses/cum_avg_loss_epoch",
scalar_value=self.total_loss_epoch / self.n_iter,
global_step=self.n_total_iter,
)
self.tensorboard.add_scalar(tag="losses/loss", scalar_value=self.last_loss, global_step=self.n_total_iter)
self.tensorboard.add_scalar(
tag="losses/loss_ce", scalar_value=self.last_loss_ce, global_step=self.n_total_iter
)
if self.alpha_mlm > 0.0:
self.tensorboard.add_scalar(
tag="losses/loss_mlm", scalar_value=self.last_loss_mlm, global_step=self.n_total_iter
)
if self.alpha_clm > 0.0:
self.tensorboard.add_scalar(
tag="losses/loss_clm", scalar_value=self.last_loss_clm, global_step=self.n_total_iter
)
if self.alpha_mse > 0.0:
self.tensorboard.add_scalar(
tag="losses/loss_mse", scalar_value=self.last_loss_mse, global_step=self.n_total_iter
)
if self.alpha_cos > 0.0:
self.tensorboard.add_scalar(
tag="losses/loss_cos", scalar_value=self.last_loss_cos, global_step=self.n_total_iter
)
self.tensorboard.add_scalar(
tag="learning_rate/lr", scalar_value=self.scheduler.get_lr()[0], global_step=self.n_total_iter
)
self.tensorboard.add_scalar(
tag="global/memory_usage",
scalar_value=psutil.virtual_memory()._asdict()["used"] / 1_000_000,
global_step=self.n_total_iter,
)
self.tensorboard.add_scalar(
tag="global/speed", scalar_value=time.time() - self.last_log, global_step=self.n_total_iter
)
def end_epoch(self):
"""
Finally arrived at the end of epoch (full pass on dataset).
Do some tensorboard logging and checkpoint saving.
"""
logger.info(f"{self.n_sequences_epoch} sequences have been trained during this epoch.")
if self.is_master:
self.save_checkpoint(checkpoint_name=f"model_epoch_{self.epoch}.pth")
self.tensorboard.add_scalar(
tag="epoch/loss", scalar_value=self.total_loss_epoch / self.n_iter, global_step=self.epoch
)
self.epoch += 1
self.n_sequences_epoch = 0
self.n_iter = 0
self.total_loss_epoch = 0
def save_checkpoint(self, checkpoint_name: str = "checkpoint.pth"):
"""
Save the current state. Only by the master process.
"""
if not self.is_master:
return
mdl_to_save = self.student.module if hasattr(self.student, "module") else self.student
mdl_to_save.config.save_pretrained(self.dump_path)
state_dict = mdl_to_save.state_dict()
torch.save(state_dict, os.path.join(self.dump_path, checkpoint_name))
| transformers-main | examples/research_projects/distillation/distiller.py |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Utils to train DistilBERT
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
def git_log(folder_path: str):
"""
Log commit info.
"""
repo = git.Repo(search_parent_directories=True)
repo_infos = {
"repo_id": str(repo),
"repo_sha": str(repo.head.object.hexsha),
"repo_branch": str(repo.active_branch),
}
with open(os.path.join(folder_path, "git_log.json"), "w") as f:
json.dump(repo_infos, f, indent=4)
def init_gpu_params(params):
"""
Handle single and multi-GPU / multi-node.
"""
if params.n_gpu <= 0:
params.local_rank = 0
params.master_port = -1
params.is_master = True
params.multi_gpu = False
return
assert torch.cuda.is_available()
logger.info("Initializing GPUs")
if params.n_gpu > 1:
assert params.local_rank != -1
params.world_size = int(os.environ["WORLD_SIZE"])
params.n_gpu_per_node = int(os.environ["N_GPU_NODE"])
params.global_rank = int(os.environ["RANK"])
# number of nodes / node ID
params.n_nodes = params.world_size // params.n_gpu_per_node
params.node_id = params.global_rank // params.n_gpu_per_node
params.multi_gpu = True
assert params.n_nodes == int(os.environ["N_NODES"])
assert params.node_id == int(os.environ["NODE_RANK"])
# local job (single GPU)
else:
assert params.local_rank == -1
params.n_nodes = 1
params.node_id = 0
params.local_rank = 0
params.global_rank = 0
params.world_size = 1
params.n_gpu_per_node = 1
params.multi_gpu = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
params.is_master = params.node_id == 0 and params.local_rank == 0
params.multi_node = params.n_nodes > 1
# summary
PREFIX = f"--- Global rank: {params.global_rank} - "
logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes)
logger.info(PREFIX + "Node ID : %i" % params.node_id)
logger.info(PREFIX + "Local rank : %i" % params.local_rank)
logger.info(PREFIX + "World size : %i" % params.world_size)
logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node)
logger.info(PREFIX + "Master : %s" % str(params.is_master))
logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node))
logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu))
logger.info(PREFIX + "Hostname : %s" % socket.gethostname())
# set GPU device
torch.cuda.set_device(params.local_rank)
# initialize multi-GPU
if params.multi_gpu:
logger.info("Initializing PyTorch distributed")
torch.distributed.init_process_group(
init_method="env://",
backend="nccl",
)
def set_seed(args):
"""
Set the random seed.
"""
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
| transformers-main | examples/research_projects/distillation/utils.py |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training the distilled model.
Supported architectures include: BERT -> DistilBERT, RoBERTa -> DistilRoBERTa, GPT2 -> DistilGPT2.
"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPT2Config,
GPT2LMHeadModel,
GPT2Tokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
MODEL_CLASSES = {
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"bert": (BertConfig, BertForMaskedLM, BertTokenizer),
"gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
}
def sanity_checks(args):
"""
A bunch of args sanity checks to perform even starting...
"""
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts)
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config)
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights)
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def freeze_pos_embeddings(student, args):
if args.student_type == "roberta":
student.roberta.embeddings.position_embeddings.weight.requires_grad = False
elif args.student_type == "gpt2":
student.transformer.wpe.weight.requires_grad = False
def freeze_token_type_embeddings(student, args):
if args.student_type == "roberta":
student.roberta.embeddings.token_type_embeddings.weight.requires_grad = False
def main():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--force", action="store_true", help="Overwrite dump_path if it already exists.")
parser.add_argument(
"--dump_path", type=str, required=True, help="The output directory (log, checkpoints, parameters, etc.)"
)
parser.add_argument(
"--data_file",
type=str,
required=True,
help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.",
)
parser.add_argument(
"--student_type",
type=str,
choices=["distilbert", "roberta", "gpt2"],
required=True,
help="The student type (DistilBERT, RoBERTa).",
)
parser.add_argument("--student_config", type=str, required=True, help="Path to the student configuration.")
parser.add_argument(
"--student_pretrained_weights", default=None, type=str, help="Load student initialization checkpoint."
)
parser.add_argument(
"--teacher_type", choices=["bert", "roberta", "gpt2"], required=True, help="Teacher type (BERT, RoBERTa)."
)
parser.add_argument("--teacher_name", type=str, required=True, help="The teacher model.")
parser.add_argument("--temperature", default=2.0, type=float, help="Temperature for the softmax temperature.")
parser.add_argument(
"--alpha_ce", default=0.5, type=float, help="Linear weight for the distillation loss. Must be >=0."
)
parser.add_argument(
"--alpha_mlm",
default=0.0,
type=float,
help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.",
)
parser.add_argument("--alpha_clm", default=0.5, type=float, help="Linear weight for the CLM loss. Must be >=0.")
parser.add_argument("--alpha_mse", default=0.0, type=float, help="Linear weight of the MSE loss. Must be >=0.")
parser.add_argument(
"--alpha_cos", default=0.0, type=float, help="Linear weight of the cosine embedding loss. Must be >=0."
)
parser.add_argument(
"--mlm", action="store_true", help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM."
)
parser.add_argument(
"--mlm_mask_prop",
default=0.15,
type=float,
help="Proportion of tokens for which we need to make a prediction.",
)
parser.add_argument("--word_mask", default=0.8, type=float, help="Proportion of tokens to mask out.")
parser.add_argument("--word_keep", default=0.1, type=float, help="Proportion of tokens to keep.")
parser.add_argument("--word_rand", default=0.1, type=float, help="Proportion of tokens to randomly replace.")
parser.add_argument(
"--mlm_smoothing",
default=0.7,
type=float,
help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).",
)
parser.add_argument("--token_counts", type=str, help="The token counts in the data_file for MLM.")
parser.add_argument(
"--restrict_ce_to_mask",
action="store_true",
help="If true, compute the distillation loss only the [MLM] prediction distribution.",
)
parser.add_argument(
"--freeze_pos_embs",
action="store_true",
help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.",
)
parser.add_argument(
"--freeze_token_type_embds",
action="store_true",
help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.",
)
parser.add_argument("--n_epoch", type=int, default=3, help="Number of pass on the whole dataset.")
parser.add_argument("--batch_size", type=int, default=5, help="Batch size (for each process).")
parser.add_argument(
"--group_by_size",
action="store_false",
help="If true, group sequences that have similar length into the same batch. Default is true.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=50,
help="Gradient accumulation for larger training batches.",
)
parser.add_argument("--warmup_prop", default=0.05, type=float, help="Linear warmup proportion.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--learning_rate", default=5e-4, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=5.0, type=float, help="Max gradient norm.")
parser.add_argument("--initializer_range", default=0.02, type=float, help="Random initialization range.")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument("--n_gpu", type=int, default=1, help="Number of GPUs in the node.")
parser.add_argument("--local_rank", type=int, default=-1, help="Distributed training - Local rank")
parser.add_argument("--seed", type=int, default=56, help="Random seed")
parser.add_argument("--log_interval", type=int, default=500, help="Tensorboard logging interval.")
parser.add_argument("--checkpoint_interval", type=int, default=4000, help="Checkpoint interval.")
args = parser.parse_args()
sanity_checks(args)
# ARGS #
init_gpu_params(args)
set_seed(args)
if args.is_master:
if os.path.exists(args.dump_path):
if not args.force:
raise ValueError(
f"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite"
" itUse `--force` if you want to overwrite it"
)
else:
shutil.rmtree(args.dump_path)
if not os.path.exists(args.dump_path):
os.makedirs(args.dump_path)
logger.info(f"Experiment will be dumped and logged in {args.dump_path}")
# SAVE PARAMS #
logger.info(f"Param: {args}")
with open(os.path.join(args.dump_path, "parameters.json"), "w") as f:
json.dump(vars(args), f, indent=4)
git_log(args.dump_path)
student_config_class, student_model_class, _ = MODEL_CLASSES[args.student_type]
teacher_config_class, teacher_model_class, teacher_tokenizer_class = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
tokenizer = teacher_tokenizer_class.from_pretrained(args.teacher_name)
special_tok_ids = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
idx = tokenizer.all_special_tokens.index(tok_symbol)
special_tok_ids[tok_name] = tokenizer.all_special_ids[idx]
logger.info(f"Special tokens {special_tok_ids}")
args.special_tok_ids = special_tok_ids
args.max_model_input_size = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(f"Loading data from {args.data_file}")
with open(args.data_file, "rb") as fp:
data = pickle.load(fp)
if args.mlm:
logger.info(f"Loading token counts from {args.token_counts} (already pre-computed)")
with open(args.token_counts, "rb") as fp:
counts = pickle.load(fp)
token_probs = np.maximum(counts, 1) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
token_probs[idx] = 0.0 # do not predict special tokens
token_probs = torch.from_numpy(token_probs)
else:
token_probs = None
train_lm_seq_dataset = LmSeqsDataset(params=args, data=data)
logger.info("Data loader created.")
# STUDENT #
logger.info(f"Loading student config from {args.student_config}")
stu_architecture_config = student_config_class.from_pretrained(args.student_config)
stu_architecture_config.output_hidden_states = True
if args.student_pretrained_weights is not None:
logger.info(f"Loading pretrained weights from {args.student_pretrained_weights}")
student = student_model_class.from_pretrained(args.student_pretrained_weights, config=stu_architecture_config)
else:
student = student_model_class(stu_architecture_config)
if args.n_gpu > 0:
student.to(f"cuda:{args.local_rank}")
logger.info("Student loaded.")
# TEACHER #
teacher = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=True)
if args.n_gpu > 0:
teacher.to(f"cuda:{args.local_rank}")
logger.info(f"Teacher loaded from {args.teacher_name}.")
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(student, args)
if args.freeze_token_type_embds:
freeze_token_type_embeddings(student, args)
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
distiller = Distiller(
params=args, dataset=train_lm_seq_dataset, token_probs=token_probs, student=student, teacher=teacher
)
distiller.train()
logger.info("Let's go get some drinks.")
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/distillation/train.py |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training the distilled model.
"""
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
logger = logging.getLogger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)"
)
parser.add_argument(
"--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset."
)
parser.add_argument(
"--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file."
)
parser.add_argument("--vocab_size", default=30522, type=int)
args = parser.parse_args()
logger.info(f"Loading data from {args.data_file}")
with open(args.data_file, "rb") as fp:
data = pickle.load(fp)
logger.info("Counting occurrences for MLM.")
counter = Counter()
for tk_ids in data:
counter.update(tk_ids)
counts = [0] * args.vocab_size
for k, v in counter.items():
counts[k] = v
logger.info(f"Dump to {args.token_counts_dump}")
with open(args.token_counts_dump, "wb") as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
| transformers-main | examples/research_projects/distillation/scripts/token_counts.py |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before distillation.
"""
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPT2Tokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser(
description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)."
)
parser.add_argument("--file_path", type=str, default="data/dump.txt", help="The path to the data.")
parser.add_argument("--tokenizer_type", type=str, default="bert", choices=["bert", "roberta", "gpt2"])
parser.add_argument("--tokenizer_name", type=str, default="bert-base-uncased", help="The tokenizer to use.")
parser.add_argument("--dump_file", type=str, default="data/dump", help="The dump file prefix.")
args = parser.parse_args()
logger.info(f"Loading Tokenizer ({args.tokenizer_name})")
if args.tokenizer_type == "bert":
tokenizer = BertTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map["cls_token"] # `[CLS]`
sep = tokenizer.special_tokens_map["sep_token"] # `[SEP]`
elif args.tokenizer_type == "roberta":
tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map["cls_token"] # `<s>`
sep = tokenizer.special_tokens_map["sep_token"] # `</s>`
elif args.tokenizer_type == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained(args.tokenizer_name)
bos = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>`
sep = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>`
logger.info(f"Loading text from {args.file_path}")
with open(args.file_path, "r", encoding="utf8") as fp:
data = fp.readlines()
logger.info("Start encoding")
logger.info(f"{len(data)} examples to process.")
rslt = []
iter = 0
interval = 10000
start = time.time()
for text in data:
text = f"{bos} {text.strip()} {sep}"
token_ids = tokenizer.encode(text, add_special_tokens=False)
rslt.append(token_ids)
iter += 1
if iter % interval == 0:
end = time.time()
logger.info(f"{iter} examples processed. - {(end-start):.2f}s/{interval}expl")
start = time.time()
logger.info("Finished binarization")
logger.info(f"{len(data)} examples processed.")
dp_file = f"{args.dump_file}.{args.tokenizer_name}.pickle"
vocab_size = tokenizer.vocab_size
if vocab_size < (1 << 16):
rslt_ = [np.uint16(d) for d in rslt]
else:
rslt_ = [np.int32(d) for d in rslt]
random.shuffle(rslt_)
logger.info(f"Dump to {dp_file}")
with open(dp_file, "wb") as handle:
pickle.dump(rslt_, handle, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/distillation/scripts/binarized_data.py |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training DistilBERT.
Specific to BERT -> DistilBERT.
"""
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=(
"Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned"
" Distillation"
)
)
parser.add_argument("--model_type", default="bert", choices=["bert"])
parser.add_argument("--model_name", default="bert-base-uncased", type=str)
parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str)
parser.add_argument("--vocab_transform", action="store_true")
args = parser.parse_args()
if args.model_type == "bert":
model = BertForMaskedLM.from_pretrained(args.model_name)
prefix = "bert"
else:
raise ValueError('args.model_type should be "bert".')
state_dict = model.state_dict()
compressed_sd = {}
for w in ["word_embeddings", "position_embeddings"]:
compressed_sd[f"distilbert.embeddings.{w}.weight"] = state_dict[f"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
compressed_sd[f"distilbert.embeddings.LayerNorm.{w}"] = state_dict[f"{prefix}.embeddings.LayerNorm.{w}"]
std_idx = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.q_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.k_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.v_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.attention.out_lin.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.sa_layer_norm.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.ffn.lin1.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.ffn.lin2.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
compressed_sd[f"distilbert.transformer.layer.{std_idx}.output_layer_norm.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
compressed_sd["vocab_projector.weight"] = state_dict["cls.predictions.decoder.weight"]
compressed_sd["vocab_projector.bias"] = state_dict["cls.predictions.bias"]
if args.vocab_transform:
for w in ["weight", "bias"]:
compressed_sd[f"vocab_transform.{w}"] = state_dict[f"cls.predictions.transform.dense.{w}"]
compressed_sd[f"vocab_layer_norm.{w}"] = state_dict[f"cls.predictions.transform.LayerNorm.{w}"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| transformers-main | examples/research_projects/distillation/scripts/extract_distilbert.py |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocessing script before training the distilled model.
Specific to RoBERTa -> DistilRoBERTa and GPT2 -> DistilGPT2.
"""
import argparse
import torch
from transformers import GPT2LMHeadModel, RobertaForMaskedLM
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=(
"Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned"
" Distillation"
)
)
parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"])
parser.add_argument("--model_name", default="roberta-large", type=str)
parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str)
parser.add_argument("--vocab_transform", action="store_true")
args = parser.parse_args()
if args.model_type == "roberta":
model = RobertaForMaskedLM.from_pretrained(args.model_name)
prefix = "roberta"
elif args.model_type == "gpt2":
model = GPT2LMHeadModel.from_pretrained(args.model_name)
prefix = "transformer"
state_dict = model.state_dict()
compressed_sd = {}
# Embeddings #
if args.model_type == "gpt2":
for param_name in ["wte.weight", "wpe.weight"]:
compressed_sd[f"{prefix}.{param_name}"] = state_dict[f"{prefix}.{param_name}"]
else:
for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]:
param_name = f"{prefix}.embeddings.{w}.weight"
compressed_sd[param_name] = state_dict[param_name]
for w in ["weight", "bias"]:
param_name = f"{prefix}.embeddings.LayerNorm.{w}"
compressed_sd[param_name] = state_dict[param_name]
# Transformer Blocks #
std_idx = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
if args.model_type == "gpt2":
for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]:
for w in ["weight", "bias"]:
compressed_sd[f"{prefix}.h.{std_idx}.{layer}.{w}"] = state_dict[
f"{prefix}.h.{teacher_idx}.{layer}.{w}"
]
compressed_sd[f"{prefix}.h.{std_idx}.attn.bias"] = state_dict[f"{prefix}.h.{teacher_idx}.attn.bias"]
else:
for layer in [
"attention.self.query",
"attention.self.key",
"attention.self.value",
"attention.output.dense",
"attention.output.LayerNorm",
"intermediate.dense",
"output.dense",
"output.LayerNorm",
]:
for w in ["weight", "bias"]:
compressed_sd[f"{prefix}.encoder.layer.{std_idx}.{layer}.{w}"] = state_dict[
f"{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}"
]
std_idx += 1
# Language Modeling Head ###s
if args.model_type == "roberta":
for layer in ["lm_head.decoder.weight", "lm_head.bias"]:
compressed_sd[f"{layer}"] = state_dict[f"{layer}"]
if args.vocab_transform:
for w in ["weight", "bias"]:
compressed_sd[f"lm_head.dense.{w}"] = state_dict[f"lm_head.dense.{w}"]
compressed_sd[f"lm_head.layer_norm.{w}"] = state_dict[f"lm_head.layer_norm.{w}"]
elif args.model_type == "gpt2":
for w in ["weight", "bias"]:
compressed_sd[f"{prefix}.ln_f.{w}"] = state_dict[f"{prefix}.ln_f.{w}"]
compressed_sd["lm_head.weight"] = state_dict["lm_head.weight"]
print(f"N layers selected for distillation: {std_idx}")
print(f"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(f"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| transformers-main | examples/research_projects/distillation/scripts/extract.py |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning LayoutLMv3 for token classification on FUNSD or CORD.
"""
# You can also adapt this script on your own token classification task and datasets. Pointers for this are left as
# comments.
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
from datasets import ClassLabel, load_dataset, load_metric
import transformers
from transformers import (
AutoConfig,
AutoModelForTokenClassification,
AutoProcessor,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.data.data_collator import default_data_collator
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.19.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt")
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default="microsoft/layoutlmv3-base",
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
processor_name: Optional[str] = field(
default=None, metadata={"help": "Name or path to the processor files if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."})
dataset_name: Optional[str] = field(
default="nielsr/funsd-layoutlmv3",
metadata={"help": "The name of the dataset to use (via the datasets library)."},
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a csv or JSON file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."},
)
text_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."}
)
label_column_name: Optional[str] = field(
default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_seq_length: int = field(
default=512,
metadata={
"help": (
"The maximum total input sequence length after tokenization. If set, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
label_all_tokens: bool = field(
default=False,
metadata={
"help": (
"Whether to put the label for one word on all tokens of generated by that word or just on the "
"one (in which case the other tokens will have a padding index)."
)
},
)
return_entity_level_metrics: bool = field(
default=False,
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
self.task_name = self.task_name.lower()
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name == "funsd":
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
"nielsr/funsd-layoutlmv3",
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
elif data_args.dataset_name == "cord":
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
"nielsr/cord-layoutlmv3",
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
raise ValueError("This script only supports either FUNSD or CORD out-of-the-box.")
if training_args.do_train:
column_names = dataset["train"].column_names
features = dataset["train"].features
else:
column_names = dataset["test"].column_names
features = dataset["test"].features
image_column_name = "image"
text_column_name = "words" if "words" in column_names else "tokens"
boxes_column_name = "bboxes"
label_column_name = (
f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1]
)
remove_columns = column_names
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
# If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere.
# Otherwise, we have to get the list of labels manually.
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
id2label = dict(enumerate(label_list))
label2id = {v: k for k, v in enumerate(label_list)}
else:
label_list = get_label_list(datasets["train"][label_column_name])
id2label = dict(enumerate(label_list))
label2id = {v: k for k, v in enumerate(label_list)}
num_labels = len(label_list)
# Load pretrained model and processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
processor = AutoProcessor.from_pretrained(
model_args.processor_name if model_args.processor_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=True,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
add_prefix_space=True,
apply_ocr=False,
)
model = AutoModelForTokenClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# Set the correspondences label/ID inside the model config
model.config.label2id = label2id
model.config.id2label = id2label
# Preprocessing the dataset
# The processor does everything for us (prepare the image using LayoutLMv3ImageProcessor
# and prepare the words, boxes and word-level labels using LayoutLMv3TokenizerFast)
def prepare_examples(examples):
images = examples[image_column_name]
words = examples[text_column_name]
boxes = examples[boxes_column_name]
word_labels = examples[label_column_name]
encoding = processor(
images,
words,
boxes=boxes,
word_labels=word_labels,
truncation=True,
padding="max_length",
max_length=data_args.max_seq_length,
)
return encoding
if training_args.do_train:
if "train" not in dataset:
raise ValueError("--do_train requires a train dataset")
train_dataset = dataset["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
prepare_examples,
batched=True,
remove_columns=remove_columns,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_eval:
validation_name = "test"
if validation_name not in dataset:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = dataset[validation_name]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_dataset.map(
prepare_examples,
batched=True,
remove_columns=remove_columns,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_predict:
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = datasets["test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_dataset.map(
prepare_examples,
batched=True,
remove_columns=remove_columns,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
)
# Metrics
metric = load_metric("seqeval")
def compute_metrics(p):
predictions, labels = p
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
true_labels = [
[label_list[l] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
results = metric.compute(predictions=true_predictions, references=true_labels)
if data_args.return_entity_level_metrics:
# Unpack nested dictionaries
final_results = {}
for key, value in results.items():
if isinstance(value, dict):
for n, v in value.items():
final_results[f"{key}_{n}"] = v
else:
final_results[key] = value
return final_results
else:
return {
"precision": results["overall_precision"],
"recall": results["overall_recall"],
"f1": results["overall_f1"],
"accuracy": results["overall_accuracy"],
}
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=processor,
data_collator=default_data_collator,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
trainer.save_model() # Saves the tokenizer too for easy upload
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
logger.info("*** Predict ***")
predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
predictions = np.argmax(predictions, axis=2)
# Remove ignored index (special tokens)
true_predictions = [
[label_list[p] for (p, l) in zip(prediction, label) if l != -100]
for prediction, label in zip(predictions, labels)
]
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
# Save predictions
output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt")
if trainer.is_world_process_zero():
with open(output_predictions_file, "w") as writer:
for prediction in true_predictions:
writer.write(" ".join(prediction) + "\n")
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/layoutlmv3/run_funsd_cord.py |
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
POOLING_BREAKDOWN = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class ImageEncoder(nn.Module):
def __init__(self, args):
super().__init__()
model = torchvision.models.resnet152(pretrained=True)
modules = list(model.children())[:-2]
self.model = nn.Sequential(*modules)
self.pool = nn.AdaptiveAvgPool2d(POOLING_BREAKDOWN[args.num_image_embeds])
def forward(self, x):
# Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048
out = self.pool(self.model(x))
out = torch.flatten(out, start_dim=2)
out = out.transpose(1, 2).contiguous()
return out # BxNx2048
class JsonlDataset(Dataset):
def __init__(self, data_path, tokenizer, transforms, labels, max_seq_length):
self.data = [json.loads(l) for l in open(data_path)]
self.data_dir = os.path.dirname(data_path)
self.tokenizer = tokenizer
self.labels = labels
self.n_classes = len(labels)
self.max_seq_length = max_seq_length
self.transforms = transforms
def __len__(self):
return len(self.data)
def __getitem__(self, index):
sentence = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"], add_special_tokens=True))
start_token, sentence, end_token = sentence[0], sentence[1:-1], sentence[-1]
sentence = sentence[: self.max_seq_length]
label = torch.zeros(self.n_classes)
label[[self.labels.index(tgt) for tgt in self.data[index]["label"]]] = 1
image = Image.open(os.path.join(self.data_dir, self.data[index]["img"])).convert("RGB")
image = self.transforms(image)
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def get_label_frequencies(self):
label_freqs = Counter()
for row in self.data:
label_freqs.update(row["label"])
return label_freqs
def collate_fn(batch):
lens = [len(row["sentence"]) for row in batch]
bsz, max_seq_len = len(batch), max(lens)
mask_tensor = torch.zeros(bsz, max_seq_len, dtype=torch.long)
text_tensor = torch.zeros(bsz, max_seq_len, dtype=torch.long)
for i_batch, (input_row, length) in enumerate(zip(batch, lens)):
text_tensor[i_batch, :length] = input_row["sentence"]
mask_tensor[i_batch, :length] = 1
img_tensor = torch.stack([row["image"] for row in batch])
tgt_tensor = torch.stack([row["label"] for row in batch])
img_start_token = torch.stack([row["image_start_token"] for row in batch])
img_end_token = torch.stack([row["image_end_token"] for row in batch])
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def get_mmimdb_labels():
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def get_image_transforms():
return transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.46777044, 0.44531429, 0.40661017],
std=[0.12221994, 0.12145835, 0.14380469],
),
]
)
| transformers-main | examples/research_projects/mm-imdb/utils_mmimdb.py |
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates.
# Copyright (c) HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for multimodal multiclass prediction on MM-IMDB dataset."""
import argparse
import glob
import json
import logging
import os
import random
import numpy as np
import torch
from sklearn.metrics import f1_score
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from utils_mmimdb import ImageEncoder, JsonlDataset, collate_fn, get_image_transforms, get_mmimdb_labels
import transformers
from transformers import (
WEIGHTS_NAME,
AdamW,
AutoConfig,
AutoModel,
AutoTokenizer,
MMBTConfig,
MMBTForClassification,
get_linear_schedule_with_warmup,
)
from transformers.trainer_utils import is_main_process
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_dataset, model, tokenizer, criterion):
"""Train the model"""
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=args.train_batch_size,
collate_fn=collate_fn,
num_workers=args.num_workers,
)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
best_f1, n_no_improve = 0, 0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
labels = batch[5]
inputs = {
"input_ids": batch[0],
"input_modal": batch[2],
"attention_mask": batch[1],
"modal_start_tokens": batch[3],
"modal_end_tokens": batch[4],
}
outputs = model(**inputs)
logits = outputs[0] # model outputs are always tuple in transformers (see doc)
loss = criterion(logits, labels)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logs = {}
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer, criterion)
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
logs["loss"] = loss_scalar
logging_loss = tr_loss
for key, value in logs.items():
tb_writer.add_scalar(key, value, global_step)
print(json.dumps({**logs, **{"step": global_step}}))
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
torch.save(model_to_save.state_dict(), os.path.join(output_dir, WEIGHTS_NAME))
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank == -1:
results = evaluate(args, model, tokenizer, criterion)
if results["micro_f1"] > best_f1:
best_f1 = results["micro_f1"]
n_no_improve = 0
else:
n_no_improve += 1
if n_no_improve > args.patience:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, criterion, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_output_dir = args.output_dir
eval_dataset = load_examples(args, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate_fn
)
# multi-gpu eval
if args.n_gpu > 1 and not isinstance(model, nn.DataParallel):
model = nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
batch = tuple(t.to(args.device) for t in batch)
labels = batch[5]
inputs = {
"input_ids": batch[0],
"input_modal": batch[2],
"attention_mask": batch[1],
"modal_start_tokens": batch[3],
"modal_end_tokens": batch[4],
}
outputs = model(**inputs)
logits = outputs[0] # model outputs are always tuple in transformers (see doc)
tmp_eval_loss = criterion(logits, labels)
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = torch.sigmoid(logits).detach().cpu().numpy() > 0.5
out_label_ids = labels.detach().cpu().numpy()
else:
preds = np.append(preds, torch.sigmoid(logits).detach().cpu().numpy() > 0.5, axis=0)
out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
result = {
"loss": eval_loss,
"macro_f1": f1_score(out_label_ids, preds, average="macro"),
"micro_f1": f1_score(out_label_ids, preds, average="micro"),
}
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def load_examples(args, tokenizer, evaluate=False):
path = os.path.join(args.data_dir, "dev.jsonl" if evaluate else "train.jsonl")
transforms = get_image_transforms()
labels = get_mmimdb_labels()
dataset = JsonlDataset(path, tokenizer, transforms, labels, args.max_seq_length - args.num_image_embeds - 2)
return dataset
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .jsonl files for MMIMDB.",
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
# Other parameters
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default=None,
type=str,
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--num_image_embeds", default=1, type=int, help="Number of Image Embeddings from the Image Encoder"
)
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
)
parser.add_argument(
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model."
)
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
)
parser.add_argument("--patience", default=5, type=int, help="Patience for Early Stopping.")
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument("--num_workers", type=int, default=8, help="number of worker threads for dataloading")
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend="nccl")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set seed
set_seed(args)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Setup model
labels = get_mmimdb_labels()
num_labels = len(labels)
transformer_config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir,
)
transformer = AutoModel.from_pretrained(
args.model_name_or_path, config=transformer_config, cache_dir=args.cache_dir
)
img_encoder = ImageEncoder(args)
config = MMBTConfig(transformer_config, num_labels=num_labels)
model = MMBTForClassification(config, transformer, img_encoder)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_examples(args, tokenizer, evaluate=False)
label_frequences = train_dataset.get_label_frequencies()
label_frequences = [label_frequences[l] for l in labels]
label_weights = (
torch.tensor(label_frequences, device=args.device, dtype=torch.float) / len(train_dataset)
) ** -1
criterion = nn.BCEWithLogitsLoss(pos_weight=label_weights)
global_step, tr_loss = train(args, train_dataset, model, tokenizer, criterion)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
torch.save(model_to_save.state_dict(), os.path.join(args.output_dir, WEIGHTS_NAME))
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = MMBTForClassification(config, transformer, img_encoder)
model.load_state_dict(torch.load(os.path.join(args.output_dir, WEIGHTS_NAME)))
tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = [
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
]
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
model = MMBTForClassification(config, transformer, img_encoder)
model.load_state_dict(torch.load(checkpoint))
model.to(args.device)
result = evaluate(args, model, tokenizer, criterion, prefix=prefix)
result = {k + "_{}".format(global_step): v for k, v in result.items()}
results.update(result)
return results
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/mm-imdb/run_mmimdb.py |
"""Finetuning script for RAG models. Adapted from examples.seq2seq.finetune.py"""
import argparse
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Any, Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
import torch.distributed as dist
import torch.distributed as torch_distrib
from pytorch_lightning.plugins.training_type import DDPPlugin
from torch.utils.data import DataLoader
from transformers import (
AutoConfig,
AutoTokenizer,
BartForConditionalGeneration,
BatchEncoding,
RagConfig,
RagSequenceForGeneration,
RagTokenForGeneration,
RagTokenizer,
T5ForConditionalGeneration,
)
from transformers import logging as transformers_logging
from transformers.integrations import is_ray_available
if is_ray_available():
import ray
from distributed_ray_retriever import RagRayDistributedRetriever, RayRetriever
from callbacks_rag import ( # noqa: E402 # isort:skipq
get_checkpoint_callback,
get_early_stopping_callback,
Seq2SeqLoggingCallback,
)
from distributed_pytorch_retriever import RagPyTorchDistributedRetriever # noqa: E402 # isort:skip
from utils_rag import ( # noqa: E402 # isort:skip
calculate_exact_match,
flatten_list,
get_git_info,
is_rag_model,
lmap,
pickle_save,
save_git_info,
save_json,
set_extra_model_params,
Seq2SeqDataset,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
transformers_logging.set_verbosity_info()
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
class CustomDDP(DDPPlugin):
def init_ddp_connection(self, global_rank=None, world_size=None) -> None:
module = self.model
global_rank = global_rank if global_rank is not None else self.cluster_environment.global_rank()
world_size = world_size if world_size is not None else self.cluster_environment.world_size()
os.environ["MASTER_ADDR"] = self.cluster_environment.master_address()
os.environ["MASTER_PORT"] = str(self.cluster_environment.master_port())
if not torch.distributed.is_initialized():
logger.info(f"initializing ddp: GLOBAL_RANK: {global_rank}, MEMBER: {global_rank + 1}/{world_size}")
torch_distrib.init_process_group(self.torch_distributed_backend, rank=global_rank, world_size=world_size)
if module.is_rag_model:
self.distributed_port = module.hparams.distributed_port
if module.distributed_retriever == "pytorch":
module.model.rag.retriever.init_retrieval(self.distributed_port)
elif module.distributed_retriever == "ray" and global_rank == 0:
# For the Ray retriever, only initialize it once when global
# rank is 0.
module.model.rag.retriever.init_retrieval()
class GenerativeQAModule(BaseTransformer):
mode = "generative_qa"
loss_names = ["loss"]
metric_names = ["em"]
val_metric = "em"
def __init__(self, hparams, **kwargs):
# when loading from a pytorch lightning checkpoint, hparams are passed as dict
if isinstance(hparams, dict):
hparams = AttrDict(hparams)
if hparams.model_type == "rag_sequence":
self.model_class = RagSequenceForGeneration
elif hparams.model_type == "rag_token":
self.model_class = RagTokenForGeneration
elif hparams.model_type == "bart":
self.model_class = BartForConditionalGeneration
else:
self.model_class = T5ForConditionalGeneration
self.is_rag_model = is_rag_model(hparams.model_type)
config_class = RagConfig if self.is_rag_model else AutoConfig
config = config_class.from_pretrained(hparams.model_name_or_path)
# set retriever parameters
config.index_name = hparams.index_name or config.index_name
config.passages_path = hparams.passages_path or config.passages_path
config.index_path = hparams.index_path or config.index_path
config.use_dummy_dataset = hparams.use_dummy_dataset
# set extra_model_params for generator configs and load_model
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "attention_dropout", "dropout")
if self.is_rag_model:
if hparams.prefix is not None:
config.generator.prefix = hparams.prefix
config.label_smoothing = hparams.label_smoothing
hparams, config.generator = set_extra_model_params(extra_model_params, hparams, config.generator)
if hparams.distributed_retriever == "pytorch":
retriever = RagPyTorchDistributedRetriever.from_pretrained(hparams.model_name_or_path, config=config)
elif hparams.distributed_retriever == "ray":
# The Ray retriever needs the handles to the retriever actors.
retriever = RagRayDistributedRetriever.from_pretrained(
hparams.model_name_or_path, hparams.actor_handles, config=config
)
model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config, retriever=retriever)
prefix = config.question_encoder.prefix
else:
if hparams.prefix is not None:
config.prefix = hparams.prefix
hparams, config = set_extra_model_params(extra_model_params, hparams, config)
model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config)
prefix = config.prefix
tokenizer = (
RagTokenizer.from_pretrained(hparams.model_name_or_path)
if self.is_rag_model
else AutoTokenizer.from_pretrained(hparams.model_name_or_path)
)
super().__init__(hparams, config=config, tokenizer=tokenizer, model=model)
save_git_info(self.hparams.output_dir)
self.output_dir = Path(self.hparams.output_dir)
self.metrics_save_path = Path(self.output_dir) / "metrics.json"
self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
pickle_save(self.hparams, self.hparams_save_path)
self.step_count = 0
self.metrics = defaultdict(list)
self.dataset_kwargs: dict = {
"data_dir": self.hparams.data_dir,
"max_source_length": self.hparams.max_source_length,
"prefix": prefix or "",
}
n_observations_per_split = {
"train": self.hparams.n_train,
"val": self.hparams.n_val,
"test": self.hparams.n_test,
}
self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
self.target_lens = {
"train": self.hparams.max_target_length,
"val": self.hparams.val_max_target_length,
"test": self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"
self.hparams.git_sha = get_git_info()["repo_sha"]
self.num_workers = hparams.num_workers
self.distributed_port = self.hparams.distributed_port
# For single GPU training, init_ddp_connection is not called.
# So we need to initialize the retrievers here.
if hparams.gpus <= 1:
if hparams.distributed_retriever == "ray":
self.model.retriever.init_retrieval()
elif hparams.distributed_retriever == "pytorch":
self.model.retriever.init_retrieval(self.distributed_port)
self.distributed_retriever = hparams.distributed_retriever
def forward(self, input_ids, **kwargs):
return self.model(input_ids, **kwargs)
def ids_to_clean_text(self, generated_ids: List[int]):
gen_text = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
return lmap(str.strip, gen_text)
def _step(self, batch: dict) -> Tuple:
source_ids, source_mask, target_ids = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"]
rag_kwargs = {}
if isinstance(self.model, T5ForConditionalGeneration):
decoder_input_ids = self.model._shift_right(target_ids)
lm_labels = target_ids
elif isinstance(self.model, BartForConditionalGeneration):
decoder_input_ids = target_ids[:, :-1].contiguous()
lm_labels = target_ids[:, 1:].clone()
else:
assert self.is_rag_model
generator = self.model.rag.generator
if isinstance(generator, T5ForConditionalGeneration):
decoder_start_token_id = generator.config.decoder_start_token_id
decoder_input_ids = (
torch.cat(
[torch.tensor([[decoder_start_token_id]] * target_ids.shape[0]).to(target_ids), target_ids],
dim=1,
)
if target_ids.shape[0] < self.target_lens["train"]
else generator._shift_right(target_ids)
)
elif isinstance(generator, BartForConditionalGeneration):
decoder_input_ids = target_ids
lm_labels = decoder_input_ids
rag_kwargs["reduce_loss"] = True
assert decoder_input_ids is not None
outputs = self(
source_ids,
attention_mask=source_mask,
decoder_input_ids=decoder_input_ids,
use_cache=False,
labels=lm_labels,
**rag_kwargs,
)
loss = outputs["loss"]
return (loss,)
@property
def pad(self) -> int:
raise NotImplementedError("pad not implemented")
def training_step(self, batch, batch_idx) -> Dict:
loss_tensors = self._step(batch)
logs = {name: loss.detach() for name, loss in zip(self.loss_names, loss_tensors)}
# tokens per batch
tgt_pad_token_id = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer, RagTokenizer)
else self.tokenizer.pad_token_id
)
src_pad_token_id = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer, RagTokenizer)
else self.tokenizer.pad_token_id
)
logs["tpb"] = (
batch["input_ids"].ne(src_pad_token_id).sum() + batch["decoder_input_ids"].ne(tgt_pad_token_id).sum()
)
return {"loss": loss_tensors[0], "log": logs}
def validation_step(self, batch, batch_idx) -> Dict:
return self._generative_step(batch)
def validation_epoch_end(self, outputs, prefix="val") -> Dict:
self.step_count += 1
losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
loss = losses["loss"]
gen_metrics = {
k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
}
metrics_tensor: torch.FloatTensor = torch.tensor(gen_metrics[self.val_metric]).type_as(loss)
gen_metrics.update({k: v.item() for k, v in losses.items()})
# fix for https://github.com/PyTorchLightning/pytorch-lightning/issues/2424
if dist.is_initialized():
dist.all_reduce(metrics_tensor, op=dist.ReduceOp.SUM)
metrics_tensor = metrics_tensor / dist.get_world_size()
gen_metrics.update({self.val_metric: metrics_tensor.item()})
losses.update(gen_metrics)
metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
metrics["step_count"] = self.step_count
self.save_metrics(metrics, prefix) # writes to self.metrics_save_path
preds = flatten_list([x["preds"] for x in outputs])
return {"log": metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": metrics_tensor}
def save_metrics(self, latest_metrics, type_path) -> None:
self.metrics[type_path].append(latest_metrics)
save_json(self.metrics, self.metrics_save_path)
def calc_generative_metrics(self, preds, target) -> Dict:
return calculate_exact_match(preds, target)
def _generative_step(self, batch: dict) -> dict:
start_time = time.time()
batch = BatchEncoding(batch).to(device=self.model.device)
generated_ids = self.model.generate(
batch["input_ids"],
attention_mask=batch["attention_mask"],
do_deduplication=False, # rag specific parameter
use_cache=True,
min_length=1,
max_length=self.target_lens["val"],
)
gen_time = (time.time() - start_time) / batch["input_ids"].shape[0]
preds: List[str] = self.ids_to_clean_text(generated_ids)
target: List[str] = self.ids_to_clean_text(batch["decoder_input_ids"])
loss_tensors = self._step(batch)
base_metrics = dict(zip(self.loss_names, loss_tensors))
gen_metrics: Dict = self.calc_generative_metrics(preds, target)
summ_len = np.mean(lmap(len, generated_ids))
base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **gen_metrics)
return base_metrics
def test_step(self, batch, batch_idx):
return self._generative_step(batch)
def test_epoch_end(self, outputs):
return self.validation_epoch_end(outputs, prefix="test")
def get_dataset(self, type_path) -> Seq2SeqDataset:
n_obs = self.n_obs[type_path]
max_target_length = self.target_lens[type_path]
dataset = Seq2SeqDataset(
self.tokenizer,
type_path=type_path,
n_obs=n_obs,
max_target_length=max_target_length,
**self.dataset_kwargs,
)
return dataset
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
dataset = self.get_dataset(type_path)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collate_fn,
shuffle=shuffle,
num_workers=self.num_workers,
)
return dataloader
def train_dataloader(self) -> DataLoader:
dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
return dataloader
def val_dataloader(self) -> DataLoader:
return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
def test_dataloader(self) -> DataLoader:
return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)
@pl.utilities.rank_zero_only
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
save_path = self.output_dir.joinpath("checkpoint{}".format(self.step_count))
self.model.config.save_step = self.step_count
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
@staticmethod
def add_model_specific_args(parser, root_dir):
BaseTransformer.add_model_specific_args(parser, root_dir)
add_generic_args(parser, root_dir)
parser.add_argument(
"--max_source_length",
default=128,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--max_target_length",
default=25,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--val_max_target_length",
default=25,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--test_max_target_length",
default=25,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_val", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
parser.add_argument(
"--prefix",
type=str,
default=None,
help="Prefix added at the beginning of each text, typically used with T5-based models.",
)
parser.add_argument(
"--early_stopping_patience",
type=int,
default=-1,
required=False,
help=(
"-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So"
" val_check_interval will effect it."
),
)
parser.add_argument(
"--distributed-port", type=int, default=-1, required=False, help="Port number for distributed training."
)
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token", "bart", "t5"],
type=str,
help=(
"RAG model type: sequence or token, if none specified, the type is inferred from the"
" model_name_or_path"
),
)
return parser
@staticmethod
def add_retriever_specific_args(parser):
parser.add_argument(
"--index_name",
type=str,
default=None,
help=(
"Name of the index to use: 'hf' for a canonical dataset from the datasets library (default), 'custom'"
" for a local index, or 'legacy' for the orignal one)"
),
)
parser.add_argument(
"--passages_path",
type=str,
default=None,
help=(
"Path to the dataset of passages for custom index. More info about custom indexes in the RagRetriever"
" documentation as well as in `examples/rag/use_own_knowledge_dataset.py`"
),
)
parser.add_argument(
"--index_path",
type=str,
default=None,
help=(
"Path to the faiss index for custom index. More info about custom indexes in the RagRetriever"
" documentation as well as in `examples/rag/use_own_knowledge_dataset.py`"
),
)
parser.add_argument(
"--distributed_retriever",
choices=["ray", "pytorch"],
type=str,
default="pytorch",
help=(
"What implementation to use for distributed retriever? If "
"pytorch is selected, the index is loaded on training "
"worker 0, and torch.distributed is used to handle "
"communication between training worker 0, and the other "
"training workers. If ray is selected, the Ray library is "
"used to create load the index on separate processes, "
"and Ray handles the communication between the training "
"workers and the retrieval actors."
),
)
parser.add_argument(
"--use_dummy_dataset",
type=bool,
default=False,
help=(
"Whether to use the dummy version of the dataset index. More info about custom indexes in the"
" RagRetriever documentation as well as in `examples/rag/use_own_knowledge_dataset.py`"
),
)
return parser
@staticmethod
def add_ray_specific_args(parser):
# Ray cluster address.
parser.add_argument(
"--ray-address",
default="auto",
type=str,
help=(
"The address of the Ray cluster to connect to. If not "
"specified, Ray will attempt to automatically detect the "
"cluster. Has no effect if pytorch is used as the distributed "
"retriever."
),
)
parser.add_argument(
"--num_retrieval_workers",
type=int,
default=1,
help=(
"The number of retrieval actors to use when Ray is selected"
"for the distributed retriever. Has no effect when "
"distributed_retriever is set to pytorch."
),
)
return parser
def main(args=None, model=None) -> GenerativeQAModule:
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd())
parser = GenerativeQAModule.add_retriever_specific_args(parser)
args = args or parser.parse_args()
Path(args.output_dir).mkdir(exist_ok=True)
named_actors = []
if args.distributed_retriever == "ray" and args.gpus > 1:
if not is_ray_available():
raise RuntimeError("Please install Ray to use the Ray distributed retriever.")
# Connect to an existing Ray cluster.
try:
ray.init(address=args.ray_address, namespace="rag")
except (ConnectionError, ValueError):
logger.warning(
"Connection to Ray cluster failed. Make sure a Ray"
"cluster is running by either using Ray's cluster "
"launcher (`ray up`) or by manually starting Ray on "
"each node via `ray start --head` for the head node "
"and `ray start --address='<ip address>:6379'` for "
"additional nodes. See "
"https://docs.ray.io/en/master/cluster/index.html "
"for more info."
)
raise
# Create Ray actors only for rank 0.
if ("LOCAL_RANK" not in os.environ or int(os.environ["LOCAL_RANK"]) == 0) and (
"NODE_RANK" not in os.environ or int(os.environ["NODE_RANK"]) == 0
):
remote_cls = ray.remote(RayRetriever)
named_actors = [
remote_cls.options(name="retrieval_worker_{}".format(i)).remote()
for i in range(args.num_retrieval_workers)
]
else:
logger.info(
"Getting named actors for NODE_RANK {}, LOCAL_RANK {}".format(
os.environ["NODE_RANK"], os.environ["LOCAL_RANK"]
)
)
named_actors = [ray.get_actor("retrieval_worker_{}".format(i)) for i in range(args.num_retrieval_workers)]
args.actor_handles = named_actors
assert args.actor_handles == named_actors
if model is None:
model: GenerativeQAModule = GenerativeQAModule(args)
dataset = Path(args.data_dir).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir).startswith("/tmp")
or str(args.output_dir).startswith("/var")
):
training_logger = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
project = os.environ.get("WANDB_PROJECT", dataset)
training_logger = WandbLogger(name=model.output_dir.name, project=project)
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
training_logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
es_callback = (
get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
if args.early_stopping_patience >= 0
else False
)
trainer: pl.Trainer = generic_train(
model,
args,
logging_callback=Seq2SeqLoggingCallback(),
checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric),
early_stopping_callback=es_callback,
logger=training_logger,
custom_ddp_plugin=CustomDDP() if args.gpus > 1 else None,
profiler=pl.profiler.AdvancedProfiler() if args.profile else None,
)
pickle_save(model.hparams, model.output_dir / "hparams.pkl")
if not args.do_predict:
return model
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd())
parser = GenerativeQAModule.add_retriever_specific_args(parser)
parser = GenerativeQAModule.add_ray_specific_args(parser)
# Pytorch Lightning Profiler
parser.add_argument(
"--profile",
action="store_true",
help="If True, use pytorch_lightning.profiler.AdvancedProfiler to profile the Trainer.",
)
args = parser.parse_args()
main(args)
| transformers-main | examples/research_projects/rag/finetune_rag.py |
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, T5Tokenizer
def encode_line(tokenizer, line, max_length, padding_side, pad_to_max_length=True, return_tensors="pt"):
extra_kw = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) and not line.startswith(" ") else {}
tokenizer.padding_side = padding_side
return tokenizer(
[line],
max_length=max_length,
padding="max_length" if pad_to_max_length else None,
truncation=True,
return_tensors=return_tensors,
add_special_tokens=True,
**extra_kw,
)
def trim_batch(
input_ids,
pad_token_id,
attention_mask=None,
):
"""Remove columns that are populated exclusively by pad_token_id"""
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class Seq2SeqDataset(Dataset):
def __init__(
self,
tokenizer,
data_dir,
max_source_length,
max_target_length,
type_path="train",
n_obs=None,
src_lang=None,
tgt_lang=None,
prefix="",
):
super().__init__()
self.src_file = Path(data_dir).joinpath(type_path + ".source")
self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
self.src_lens = self.get_char_lens(self.src_file)
self.max_source_length = max_source_length
self.max_target_length = max_target_length
assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
self.tokenizer = tokenizer
self.prefix = prefix
if n_obs is not None:
self.src_lens = self.src_lens[:n_obs]
self.src_lang = src_lang
self.tgt_lang = tgt_lang
def __len__(self):
return len(self.src_lens)
def __getitem__(self, index) -> Dict[str, torch.Tensor]:
index = index + 1 # linecache starts at 1
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
assert source_line, f"empty source line for index {index}"
assert tgt_line, f"empty tgt line for index {index}"
# Need to add eos token manually for T5
if isinstance(self.tokenizer, T5Tokenizer):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
source_tokenizer = (
self.tokenizer.question_encoder if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer
)
target_tokenizer = self.tokenizer.generator if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer
source_inputs = encode_line(source_tokenizer, source_line, self.max_source_length, "right")
target_inputs = encode_line(target_tokenizer, tgt_line, self.max_target_length, "right")
source_ids = source_inputs["input_ids"].squeeze()
target_ids = target_inputs["input_ids"].squeeze()
src_mask = source_inputs["attention_mask"].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def get_char_lens(data_file):
return [len(x) for x in Path(data_file).open().readlines()]
def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
input_ids = torch.stack([x["input_ids"] for x in batch])
masks = torch.stack([x["attention_mask"] for x in batch])
target_ids = torch.stack([x["decoder_input_ids"] for x in batch])
tgt_pad_token_id = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer, RagTokenizer)
else self.tokenizer.pad_token_id
)
src_pad_token_id = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer, RagTokenizer)
else self.tokenizer.pad_token_id
)
y = trim_batch(target_ids, tgt_pad_token_id)
source_ids, source_mask = trim_batch(input_ids, src_pad_token_id, attention_mask=masks)
batch = {
"input_ids": source_ids,
"attention_mask": source_mask,
"decoder_input_ids": y,
}
return batch
logger = getLogger(__name__)
def flatten_list(summary_ids: List[List]):
return list(itertools.chain.from_iterable(summary_ids))
def save_git_info(folder_path: str) -> None:
"""Save git information to output_dir/git_log.json"""
repo_infos = get_git_info()
save_json(repo_infos, os.path.join(folder_path, "git_log.json"))
def save_json(content, path, indent=4, **json_dump_kwargs):
with open(path, "w") as f:
json.dump(content, f, indent=indent, **json_dump_kwargs)
def load_json(path):
with open(path) as f:
return json.load(f)
def get_git_info():
repo = git.Repo(search_parent_directories=True)
repo_infos = {
"repo_id": str(repo),
"repo_sha": str(repo.head.object.hexsha),
"repo_branch": str(repo.active_branch),
"hostname": str(socket.gethostname()),
}
return repo_infos
def lmap(f: Callable, x: Iterable) -> List:
"""list(map(f, x))"""
return list(map(f, x))
def pickle_save(obj, path):
"""pickle.dump(obj, path)"""
with open(path, "wb") as f:
return pickle.dump(obj, f)
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return normalize_answer(prediction) == normalize_answer(ground_truth)
def calculate_exact_match(output_lns: List[str], reference_lns: List[str]) -> Dict:
assert len(output_lns) == len(reference_lns)
em = 0
for hypo, pred in zip(output_lns, reference_lns):
em += exact_match_score(hypo, pred)
if len(output_lns) > 0:
em /= len(output_lns)
return {"em": em}
def is_rag_model(model_prefix):
return model_prefix.startswith("rag")
def set_extra_model_params(extra_params, hparams, config):
equivalent_param = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
equivalent_param["dropout"] = "dropout_rate"
for p in extra_params:
if getattr(hparams, p, None):
if not hasattr(config, p) and not hasattr(config, equivalent_param[p]):
logger.info("config doesn't have a `{}` attribute".format(p))
delattr(hparams, p)
continue
set_p = p if hasattr(config, p) else equivalent_param[p]
setattr(config, set_p, getattr(hparams, p))
delattr(hparams, p)
return hparams, config
| transformers-main | examples/research_projects/rag/utils_rag.py |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def count_trainable_parameters(model):
model_parameters = filter(lambda p: p.requires_grad, model.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return params
logger = logging.getLogger(__name__)
def get_checkpoint_callback(output_dir, metric):
"""Saves the best model by validation EM score."""
if metric == "rouge2":
exp = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
exp = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "em":
exp = "{val_avg_em:.4f}-{step_count}"
else:
raise NotImplementedError(
f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"
" function."
)
checkpoint_callback = ModelCheckpoint(
dirpath=output_dir,
filename=exp,
monitor=f"val_{metric}",
mode="max",
save_top_k=3,
every_n_epochs=1, # maybe save a checkpoint every time val is run, not just end of epoch.
)
return checkpoint_callback
def get_early_stopping_callback(metric, patience):
return EarlyStopping(
monitor=f"val_{metric}", # does this need avg?
mode="min" if "loss" in metric else "max",
patience=patience,
verbose=True,
)
class Seq2SeqLoggingCallback(pl.Callback):
def on_batch_end(self, trainer, pl_module):
lrs = {f"lr_group_{i}": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)}
pl_module.logger.log_metrics(lrs)
@rank_zero_only
def _write_logs(
self, trainer: pl.Trainer, pl_module: pl.LightningModule, type_path: str, save_generations=True
) -> None:
logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****")
metrics = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]})
# Log results
od = Path(pl_module.hparams.output_dir)
if type_path == "test":
results_file = od / "test_results.txt"
generations_file = od / "test_generations.txt"
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
results_file = od / f"{type_path}_results/{trainer.global_step:05d}.txt"
generations_file = od / f"{type_path}_generations/{trainer.global_step:05d}.txt"
results_file.parent.mkdir(exist_ok=True)
generations_file.parent.mkdir(exist_ok=True)
with open(results_file, "a+") as writer:
for key in sorted(metrics):
if key in ["log", "progress_bar", "preds"]:
continue
val = metrics[key]
if isinstance(val, torch.Tensor):
val = val.item()
msg = f"{key}: {val:.6f}\n"
writer.write(msg)
if not save_generations:
return
if "preds" in metrics:
content = "\n".join(metrics["preds"])
generations_file.open("w+").write(content)
@rank_zero_only
def on_train_start(self, trainer, pl_module):
try:
npars = pl_module.model.model.num_parameters()
except AttributeError:
npars = pl_module.model.num_parameters()
n_trainable_pars = count_trainable_parameters(pl_module)
# mp stands for million parameters
trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6})
@rank_zero_only
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
save_json(pl_module.metrics, pl_module.metrics_save_path)
return self._write_logs(trainer, pl_module, "test")
@rank_zero_only
def on_validation_end(self, trainer: pl.Trainer, pl_module):
save_json(pl_module.metrics, pl_module.metrics_save_path)
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| transformers-main | examples/research_projects/rag/callbacks_rag.py |
"""
This script reads DPR retriever training data and parses each datapoint. We save a line per datapoint.
Each line consists of the query followed by a tab-separated list of Wikipedia page titles constituting
positive contexts for a given query.
"""
import argparse
import json
from tqdm import tqdm
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--src_path",
type=str,
default="biencoder-nq-dev.json",
help="Path to raw DPR training data",
)
parser.add_argument(
"--evaluation_set",
type=str,
help="where to store parsed evaluation_set file",
)
parser.add_argument(
"--gold_data_path",
type=str,
help="where to store parsed gold_data_path file",
)
args = parser.parse_args()
with open(args.src_path, "r") as src_file, open(args.evaluation_set, "w") as eval_file, open(
args.gold_data_path, "w"
) as gold_file:
dpr_records = json.load(src_file)
for dpr_record in tqdm(dpr_records):
question = dpr_record["question"]
contexts = [context["title"] for context in dpr_record["positive_ctxs"]]
eval_file.write(question + "\n")
gold_file.write("\t".join(contexts) + "\n")
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/rag/parse_dpr_relevance_data.py |
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
logger = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
MODEL_MODES = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeq2SeqLM,
"translation": AutoModelForSeq2SeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
arg_to_scheduler = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
arg_to_scheduler_choices = sorted(arg_to_scheduler.keys())
arg_to_scheduler_metavar = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class BaseTransformer(pl.LightningModule):
def __init__(
self,
hparams: argparse.Namespace,
num_labels=None,
mode="base",
config=None,
tokenizer=None,
model=None,
**config_kwargs,
):
"""Initialize a model, tokenizer and config."""
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(hparams)
self.step_count = 0
self.output_dir = Path(self.hparams.output_dir)
cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
self.config = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path,
**({"num_labels": num_labels} if num_labels is not None else {}),
cache_dir=cache_dir,
**config_kwargs,
)
else:
self.config: PretrainedConfig = config
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
for p in extra_model_params:
if getattr(self.hparams, p, None):
assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute"
setattr(self.config, p, getattr(self.hparams, p))
if tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path,
cache_dir=cache_dir,
)
else:
self.tokenizer: PreTrainedTokenizer = tokenizer
self.model_type = MODEL_MODES[mode]
if model is None:
self.model = self.model_type.from_pretrained(
self.hparams.model_name_or_path,
from_tf=bool(".ckpt" in self.hparams.model_name_or_path),
config=self.config,
cache_dir=cache_dir,
)
else:
self.model = model
def load_hf_checkpoint(self, *args, **kwargs):
self.model = self.model_type.from_pretrained(*args, **kwargs)
def get_lr_scheduler(self):
get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler]
scheduler = get_schedule_func(
self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps()
)
scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1}
return scheduler
def configure_optimizers(self):
"""Prepare optimizer and schedule (linear warmup and decay)"""
model = self.model
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.hparams.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
if self.hparams.adafactor:
optimizer = Adafactor(
optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False
)
else:
optimizer = AdamW(
optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon
)
self.opt = optimizer
scheduler = self.get_lr_scheduler()
return [optimizer], [scheduler]
def test_step(self, batch, batch_nb):
return self.validation_step(batch, batch_nb)
def test_epoch_end(self, outputs):
return self.validation_end(outputs)
def total_steps(self) -> int:
"""The number of total training steps that will be run. Used for lr scheduler purposes."""
num_devices = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores
effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def setup(self, stage):
if stage == "test":
self.dataset_size = len(self.test_dataloader().dataset)
else:
self.train_loader = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=True)
self.dataset_size = len(self.train_dataloader().dataset)
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False):
raise NotImplementedError("You must implement this for your task")
def train_dataloader(self):
return self.train_loader
def val_dataloader(self):
return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=False)
def test_dataloader(self):
return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=False)
def _feature_file(self, mode):
return os.path.join(
self.hparams.data_dir,
"cached_{}_{}_{}".format(
mode,
list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(),
str(self.hparams.max_seq_length),
),
)
@pl.utilities.rank_zero_only
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
save_path = self.output_dir.joinpath("best_tfmr")
self.model.config.save_step = self.step_count
self.model.save_pretrained(save_path)
self.tokenizer.save_pretrained(save_path)
@staticmethod
def add_model_specific_args(parser, root_dir):
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
)
parser.add_argument(
"--tokenizer_name",
default=None,
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from huggingface.co",
)
parser.add_argument(
"--encoder_layerdrop",
type=float,
help="Encoder layer dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--decoder_layerdrop",
type=float,
help="Decoder layer dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--dropout",
type=float,
help="Dropout probability (Optional). Goes into model.config",
)
parser.add_argument(
"--attention_dropout",
type=float,
help="Attention dropout probability (Optional). Goes into model.config",
)
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument(
"--lr_scheduler",
default="linear",
choices=arg_to_scheduler_choices,
metavar=arg_to_scheduler_metavar,
type=str,
help="Learning rate scheduler",
)
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader")
parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int)
parser.add_argument("--train_batch_size", default=32, type=int)
parser.add_argument("--eval_batch_size", default=32, type=int)
parser.add_argument("--adafactor", action="store_true")
class InitCallback(pl.Callback):
# This method is better that using a custom DDP plugging with the latest pytorch-lightning (@shamanez)
def on_sanity_check_start(self, trainer, pl_module):
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class LoggingCallback(pl.Callback):
def on_batch_end(self, trainer, pl_module):
lr_scheduler = trainer.lr_schedulers[0]["scheduler"]
lrs = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())}
pl_module.logger.log_metrics(lrs)
def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
rank_zero_info("***** Validation results *****")
metrics = trainer.callback_metrics
# Log results
for key in sorted(metrics):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule):
rank_zero_info("***** Test results *****")
metrics = trainer.callback_metrics
# Log and save results to file
output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt")
with open(output_test_results_file, "w") as writer:
for key in sorted(metrics):
if key not in ["log", "progress_bar"]:
rank_zero_info("{} = {}\n".format(key, str(metrics[key])))
writer.write("{} = {}\n".format(key, str(metrics[key])))
def add_generic_args(parser, root_dir) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O2",
help=(
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html"
),
)
parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=int)
parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=float, help="Max gradient norm")
parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.")
parser.add_argument(
"--gradient_accumulation_steps",
dest="accumulate_grad_batches",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
)
def generic_train(
model: BaseTransformer,
args: argparse.Namespace,
early_stopping_callback=None,
logger=True, # can pass WandbLogger() here
custom_ddp_plugin=None,
extra_callbacks=[],
checkpoint_callback=None,
logging_callback=None,
**extra_train_kwargs,
):
pl.seed_everything(args.seed)
# init model
odir = Path(model.hparams.output_dir)
odir.mkdir(exist_ok=True)
# add custom checkpoints
if checkpoint_callback is None:
checkpoint_callback = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1
)
if early_stopping_callback:
extra_callbacks.append(early_stopping_callback)
if logging_callback is None:
logging_callback = LoggingCallback()
train_params = {}
# TODO: remove with PyTorch 1.6 since pl uses native amp
if args.fp16:
train_params["precision"] = 16
# train_params["amp_level"] = args.fp16_opt_level
if args.gpus > 1:
train_params["accelerator"] = "auto" # "ddp"
train_params["strategy"] = "ddp"
train_params["accumulate_grad_batches"] = args.accumulate_grad_batches
train_params["profiler"] = None # extra_train_kwargs.get("profiler", None) #get unwanted logs
train_params["devices"] = "auto"
trainer = pl.Trainer.from_argparse_args(
args,
weights_summary=None,
callbacks=[logging_callback] + extra_callbacks + [checkpoint_callback] + [InitCallback()],
# plugins=[custom_ddp_plugin],
logger=logger,
**train_params,
)
if args.do_train:
trainer.fit(model)
return trainer
| transformers-main | examples/research_projects/rag/lightning_base.py |
import os
import sys
sys.path.insert(1, os.path.dirname(os.path.realpath(__file__)))
| transformers-main | examples/research_projects/rag/__init__.py |
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
logger = logging.getLogger(__name__)
class RayRetriever:
def __init__(self):
self.initialized = False
def create_rag_retriever(self, config, question_encoder_tokenizer, generator_tokenizer, index):
if not self.initialized:
self.retriever = RagRetriever(
config,
question_encoder_tokenizer=question_encoder_tokenizer,
generator_tokenizer=generator_tokenizer,
index=index,
init_retrieval=False,
)
self.initialized = True
def init_retrieval(self):
self.retriever.index.init_index()
def retrieve(self, question_hidden_states, n_docs):
doc_ids, retrieved_doc_embeds = self.retriever._main_retrieve(question_hidden_states, n_docs)
return doc_ids, retrieved_doc_embeds
class RagRayDistributedRetriever(RagRetriever):
"""
A distributed retriever built on top of the ``Ray`` API, a library
for building distributed applications (https://docs.ray.io/en/master/).
package. During training, all training workers initialize their own
instance of a `RagRayDistributedRetriever`, and each instance of
this distributed retriever shares a common set of Retrieval Ray
Actors (https://docs.ray.io/en/master/walkthrough.html#remote
-classes-actors) that load the index on separate processes. Ray
handles the communication between the `RagRayDistributedRetriever`
instances and the remote Ray actors. If training is done in a
non-distributed setup, the index will simply be loaded in the same
process as the training worker and Ray will not be used.
Args:
config (:class:`~transformers.RagConfig`):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
question_encoder_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer that was used to tokenize the question.
It is used to decode the question and then use the generator_tokenizer.
generator_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
retrieval_workers (:obj:`List[ray.ActorClass(RayRetriever)]`): A list of already initialized `RayRetriever` actors.
These actor classes run on remote processes and are responsible for performing the index lookup.
index (:class:`~transformers.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
If specified, use this index instead of the one built using the configuration
"""
def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, retrieval_workers, index=None):
if index is not None and index.is_initialized() and len(retrieval_workers) > 0:
raise ValueError(
"When using Ray for distributed fine-tuning, "
"you'll need to provide the paths instead, "
"as the dataset and the index are loaded "
"separately. More info in examples/rag/use_own_knowledge_dataset.py "
)
super().__init__(
config,
question_encoder_tokenizer=question_encoder_tokenizer,
generator_tokenizer=generator_tokenizer,
index=index,
init_retrieval=False,
)
self.retrieval_workers = retrieval_workers
if len(self.retrieval_workers) > 0:
ray.get(
[
worker.create_rag_retriever.remote(config, question_encoder_tokenizer, generator_tokenizer, index)
for worker in self.retrieval_workers
]
)
def init_retrieval(self):
"""
Retriever initialization function, needs to be called from the
training process. This function triggers retrieval initialization
for all retrieval actors if using distributed setting, or loads
index into current process if training is not distributed.
"""
logger.info("initializing retrieval")
if len(self.retrieval_workers) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers])
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def retrieve(self, question_hidden_states, n_docs):
"""
Retrieves documents for specified ``question_hidden_states``. If
running training with multiple workers, a random retrieval actor is
selected to perform the index lookup and return the result.
Args:
question_hidden_states (:obj:`np.ndarray` of shape :obj:`(batch_size, vector_size)`):
A batch of query vectors to retrieve with.
n_docs (:obj:`int`):
The number of docs retrieved per query.
Output:
retrieved_doc_embeds (:obj:`np.ndarray` of shape :obj:`(batch_size, n_docs, dim)`
The retrieval embeddings of the retrieved docs per query.
doc_ids (:obj:`np.ndarray` of shape :obj:`batch_size, n_docs`)
The ids of the documents in the index
doc_dicts (:obj:`List[dict]`):
The retrieved_doc_embeds examples per query.
"""
if len(self.retrieval_workers) > 0:
# Select a random retrieval actor.
random_worker = self.retrieval_workers[random.randint(0, len(self.retrieval_workers) - 1)]
doc_ids, retrieved_doc_embeds = ray.get(random_worker.retrieve.remote(question_hidden_states, n_docs))
else:
doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs)
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(doc_ids)
@classmethod
def get_tokenizers(cls, retriever_name_or_path, indexed_dataset=None, **kwargs):
return super(RagRayDistributedRetriever, cls).get_tokenizers(retriever_name_or_path, indexed_dataset, **kwargs)
@classmethod
def from_pretrained(cls, retriever_name_or_path, actor_handles, indexed_dataset=None, **kwargs):
config = kwargs.pop("config", None) or RagConfig.from_pretrained(retriever_name_or_path, **kwargs)
rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config)
question_encoder_tokenizer = rag_tokenizer.question_encoder
generator_tokenizer = rag_tokenizer.generator
if indexed_dataset is not None:
config.index_name = "custom"
index = CustomHFIndex(config.retrieval_vector_size, indexed_dataset)
else:
index = cls._build_index(config)
return cls(
config,
question_encoder_tokenizer=question_encoder_tokenizer,
generator_tokenizer=generator_tokenizer,
retrieval_workers=actor_handles,
index=index,
)
| transformers-main | examples/research_projects/rag/distributed_ray_retriever.py |
""" Evaluation script for RAG models."""
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, f1_score # noqa: E402 # isort:skip
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def infer_model_type(model_name_or_path):
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
return max(metric_fn(prediction, gt) for gt in ground_truths)
def get_scores(args, preds_path, gold_data_path):
hypos = [line.strip() for line in open(preds_path, "r").readlines()]
answers = []
if args.gold_data_mode == "qa":
data = pd.read_csv(gold_data_path, sep="\t", header=None)
for answer_list in data[1]:
ground_truths = ast.literal_eval(answer_list)
answers.append(ground_truths)
else:
references = [line.strip() for line in open(gold_data_path, "r").readlines()]
answers = [[reference] for reference in references]
f1 = em = total = 0
for prediction, ground_truths in zip(hypos, answers):
total += 1
em += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths)
f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths)
em = 100.0 * em / total
f1 = 100.0 * f1 / total
logger.info(f"F1: {f1:.2f}")
logger.info(f"EM: {em:.2f}")
def get_precision_at_k(args, preds_path, gold_data_path):
k = args.k
hypos = [line.strip() for line in open(preds_path, "r").readlines()]
references = [line.strip() for line in open(gold_data_path, "r").readlines()]
em = total = 0
for hypo, reference in zip(hypos, references):
hypo_provenance = set(hypo.split("\t")[:k])
ref_provenance = set(reference.split("\t"))
total += 1
em += len(hypo_provenance & ref_provenance) / k
em = 100.0 * em / total
logger.info(f"Precision@{k}: {em: .2f}")
def evaluate_batch_retrieval(args, rag_model, questions):
def strip_title(title):
if title.startswith('"'):
title = title[1:]
if title.endswith('"'):
title = title[:-1]
return title
retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
questions,
return_tensors="pt",
padding=True,
truncation=True,
)["input_ids"].to(args.device)
question_enc_outputs = rag_model.rag.question_encoder(retriever_input_ids)
question_enc_pool_output = question_enc_outputs[0]
result = rag_model.retriever(
retriever_input_ids,
question_enc_pool_output.cpu().detach().to(torch.float32).numpy(),
prefix=rag_model.rag.generator.config.prefix,
n_docs=rag_model.config.n_docs,
return_tensors="pt",
)
all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids)
provenance_strings = []
for docs in all_docs:
provenance = [strip_title(title) for title in docs["title"]]
provenance_strings.append("\t".join(provenance))
return provenance_strings
def evaluate_batch_e2e(args, rag_model, questions):
with torch.no_grad():
inputs_dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
questions, return_tensors="pt", padding=True, truncation=True
)
input_ids = inputs_dict.input_ids.to(args.device)
attention_mask = inputs_dict.attention_mask.to(args.device)
outputs = rag_model.generate( # rag_model overwrites generate
input_ids,
attention_mask=attention_mask,
num_beams=args.num_beams,
min_length=args.min_length,
max_length=args.max_length,
early_stopping=False,
num_return_sequences=1,
bad_words_ids=[[0, 0]], # BART likes to repeat BOS tokens, dont allow it to generate more than one
)
answers = rag_model.retriever.generator_tokenizer.batch_decode(outputs, skip_special_tokens=True)
if args.print_predictions:
for q, a in zip(questions, answers):
logger.info("Q: {} - A: {}".format(q, a))
return answers
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token", "bart"],
type=str,
help=(
"RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"
" model_name_or_path"
),
)
parser.add_argument(
"--index_name",
default=None,
choices=["exact", "compressed", "legacy"],
type=str,
help="RAG model retriever type",
)
parser.add_argument(
"--index_path",
default=None,
type=str,
help="Path to the retrieval index",
)
parser.add_argument("--n_docs", default=5, type=int, help="Number of retrieved docs")
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained checkpoints or model identifier from huggingface.co/models",
)
parser.add_argument(
"--eval_mode",
choices=["e2e", "retrieval"],
default="e2e",
type=str,
help=(
"Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"
" precision@k."
),
)
parser.add_argument("--k", default=1, type=int, help="k for the precision@k calculation")
parser.add_argument(
"--evaluation_set",
default=None,
type=str,
required=True,
help="Path to a file containing evaluation samples",
)
parser.add_argument(
"--gold_data_path",
default=None,
type=str,
required=True,
help="Path to a tab-separated file with gold samples",
)
parser.add_argument(
"--gold_data_mode",
default="qa",
type=str,
choices=["qa", "ans"],
help=(
"Format of the gold data file"
"qa - a single line in the following format: question [tab] answer_list"
"ans - a single line of the gold file contains the expected answer string"
),
)
parser.add_argument(
"--predictions_path",
type=str,
default="predictions.txt",
help="Name of the predictions file, to be stored in the checkpoints directory",
)
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument(
"--eval_batch_size",
default=8,
type=int,
help="Batch size per GPU/CPU for evaluation.",
)
parser.add_argument(
"--recalculate",
help="Recalculate predictions even if the prediction file exists",
action="store_true",
)
parser.add_argument(
"--num_beams",
default=4,
type=int,
help="Number of beams to be used when generating answers",
)
parser.add_argument("--min_length", default=1, type=int, help="Min length of the generated answers")
parser.add_argument("--max_length", default=50, type=int, help="Max length of the generated answers")
parser.add_argument(
"--print_predictions",
action="store_true",
help="If True, prints predictions while evaluating.",
)
parser.add_argument(
"--print_docs",
action="store_true",
help="If True, prints docs retried while generating.",
)
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return args
def main(args):
model_kwargs = {}
if args.model_type is None:
args.model_type = infer_model_type(args.model_name_or_path)
assert args.model_type is not None
if args.model_type.startswith("rag"):
model_class = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration
model_kwargs["n_docs"] = args.n_docs
if args.index_name is not None:
model_kwargs["index_name"] = args.index_name
if args.index_path is not None:
model_kwargs["index_path"] = args.index_path
else:
model_class = BartForConditionalGeneration
checkpoints = (
[f.path for f in os.scandir(args.model_name_or_path) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("Evaluate the following checkpoints: %s", checkpoints)
score_fn = get_scores if args.eval_mode == "e2e" else get_precision_at_k
evaluate_batch_fn = evaluate_batch_e2e if args.eval_mode == "e2e" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path) and (not args.recalculate):
logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path))
score_fn(args, args.predictions_path, args.gold_data_path)
continue
logger.info("***** Running evaluation for {} *****".format(checkpoint))
logger.info(" Batch size = %d", args.eval_batch_size)
logger.info(" Predictions will be stored under {}".format(args.predictions_path))
if args.model_type.startswith("rag"):
retriever = RagRetriever.from_pretrained(checkpoint, **model_kwargs)
model = model_class.from_pretrained(checkpoint, retriever=retriever, **model_kwargs)
model.retriever.init_retrieval()
else:
model = model_class.from_pretrained(checkpoint, **model_kwargs)
model.to(args.device)
with open(args.evaluation_set, "r") as eval_file, open(args.predictions_path, "w") as preds_file:
questions = []
for line in tqdm(eval_file):
questions.append(line.strip())
if len(questions) == args.eval_batch_size:
answers = evaluate_batch_fn(args, model, questions)
preds_file.write("\n".join(answers) + "\n")
preds_file.flush()
questions = []
if len(questions) > 0:
answers = evaluate_batch_fn(args, model, questions)
preds_file.write("\n".join(answers))
preds_file.flush()
score_fn(args, args.predictions_path, args.gold_data_path)
if __name__ == "__main__":
args = get_args()
main(args)
| transformers-main | examples/research_projects/rag/eval_rag.py |
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
logger = logging.getLogger(__name__)
class RagPyTorchDistributedRetriever(RagRetriever):
"""
A distributed retriever built on top of the ``torch.distributed`` communication package. During training all workers
initialize their own instance of the retriever, however, only the main worker loads the index into memory. The index is stored
in cpu memory. The index will also work well in a non-distributed setup.
Args:
config (:class:`~transformers.RagConfig`):
The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build.
question_encoder_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer that was used to tokenize the question.
It is used to decode the question and then use the generator_tokenizer.
generator_tokenizer (:class:`~transformers.PreTrainedTokenizer`):
The tokenizer used for the generator part of the RagModel.
index (:class:`~transformers.models.rag.retrieval_rag.Index`, optional, defaults to the one defined by the configuration):
If specified, use this index instead of the one built using the configuration
"""
def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, index=None):
super().__init__(
config,
question_encoder_tokenizer=question_encoder_tokenizer,
generator_tokenizer=generator_tokenizer,
index=index,
init_retrieval=False,
)
self.process_group = None
def init_retrieval(self, distributed_port: int):
"""
Retriever initialization function, needs to be called from the training process. The function sets some common parameters
and environment variables. On top of that, (only) the main process in the process group loads the index into memory.
Args:
distributed_port (:obj:`int`):
The port on which the main communication of the training run is carried out. We set the port for retrieval-related
communication as ``distributed_port + 1``.
"""
logger.info("initializing retrieval")
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("dist initialized")
# needs to be set manually
os.environ["GLOO_SOCKET_IFNAME"] = self._infer_socket_ifname()
# avoid clash with the NCCL port
os.environ["MASTER_PORT"] = str(distributed_port + 1)
self.process_group = dist.new_group(ranks=None, backend="gloo")
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("dist not initialized / main")
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group)
def _is_main(self):
return dist.get_rank(group=self.process_group) == 0
def _scattered(self, scatter_list, target_shape, target_type=torch.float32):
target_tensor = torch.empty(target_shape, dtype=target_type)
dist.scatter(target_tensor, src=0, scatter_list=scatter_list, group=self.process_group)
return target_tensor
def _infer_socket_ifname(self):
addrs = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
ifname = next((addr for addr in addrs if addr.startswith("e")), None)
return ifname
def retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, List[dict]]:
"""
Retrieves documents for specified ``question_hidden_states``. The main process, which has the access to the index stored in memory, gathers queries
from all the processes in the main training process group, performs the retrieval and scatters back the results.
Args:
question_hidden_states (:obj:`np.ndarray` of shape :obj:`(batch_size, vector_size)`):
A batch of query vectors to retrieve with.
n_docs (:obj:`int`):
The number of docs retrieved per query.
Output:
retrieved_doc_embeds (:obj:`np.ndarray` of shape :obj:`(batch_size, n_docs, dim)`
The retrieval embeddings of the retrieved docs per query.
doc_ids (:obj:`np.ndarray` of shape :obj:`batch_size, n_docs`)
The ids of the documents in the index
doc_dicts (:obj:`List[dict]`):
The retrieved_doc_embeds examples per query.
"""
# single GPU training
if not dist.is_initialized():
doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs)
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(doc_ids)
# distributed training
world_size = dist.get_world_size(group=self.process_group)
# gather logic
gather_list = None
if self._is_main():
gather_list = [torch.empty(question_hidden_states.shape, dtype=torch.float32) for _ in range(world_size)]
dist.gather(torch.tensor(question_hidden_states), dst=0, gather_list=gather_list, group=self.process_group)
# scatter logic
n_queries = question_hidden_states.shape[0]
scatter_ids = []
scatter_vectors = []
if self._is_main():
assert len(gather_list) == world_size
ids, vectors = self._main_retrieve(torch.cat(gather_list).numpy(), n_docs)
ids, vectors = torch.tensor(ids), torch.tensor(vectors)
scatter_ids = self._chunk_tensor(ids, n_queries)
scatter_vectors = self._chunk_tensor(vectors, n_queries)
doc_ids = self._scattered(scatter_ids, [n_queries, n_docs], target_type=torch.int64)
retrieved_doc_embeds = self._scattered(scatter_vectors, [n_queries, n_docs, question_hidden_states.shape[1]])
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(doc_ids)
| transformers-main | examples/research_projects/rag/distributed_pytorch_retriever.py |
import json
import os
import shutil
import sys
import tempfile
import unittest
from unittest import TestCase
from unittest.mock import patch
import faiss
import numpy as np
from datasets import Dataset
from transformers import BartConfig, BartTokenizer, DPRConfig, DPRQuestionEncoderTokenizer, RagConfig
from transformers.file_utils import is_datasets_available, is_faiss_available, is_psutil_available, is_torch_available
from transformers.integrations import is_ray_available
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_ray
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # noqa: E402 # isort:skip
if is_torch_available():
from distributed_pytorch_retriever import RagPyTorchDistributedRetriever # noqa: E402 # isort:skip
else:
RagPyTorchDistributedRetriever = None
if is_ray_available():
import ray # noqa: E402 # isort:skip
from distributed_ray_retriever import RagRayDistributedRetriever, RayRetriever # noqa: E402 # isort:skip
else:
ray = None
RagRayDistributedRetriever = None
RayRetriever = None
def require_distributed_retrieval(test_case):
"""
Decorator marking a test that requires a set of dependencies necessary for pefrorm retrieval with
:class:`~transformers.RagRetriever`.
These tests are skipped when respective libraries are not installed.
"""
if not (is_datasets_available() and is_faiss_available() and is_psutil_available()):
test_case = unittest.skip("test requires Datasets, Faiss, psutil")(test_case)
return test_case
@require_distributed_retrieval
class RagRetrieverTest(TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
self.retrieval_vector_size = 8
# DPR tok
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
os.makedirs(dpr_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
# BART tok
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
os.makedirs(bart_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))
def get_bart_tokenizer(self) -> BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def get_dummy_dataset(self):
dataset = Dataset.from_dict(
{
"id": ["0", "1"],
"text": ["foo", "bar"],
"title": ["Foo", "Bar"],
"embeddings": [np.ones(self.retrieval_vector_size), 2 * np.ones(self.retrieval_vector_size)],
}
)
dataset.add_faiss_index("embeddings", string_factory="Flat", metric_type=faiss.METRIC_INNER_PRODUCT)
return dataset
def get_dummy_pytorch_distributed_retriever(
self, init_retrieval: bool, port=12345
) -> RagPyTorchDistributedRetriever:
dataset = self.get_dummy_dataset()
config = RagConfig(
retrieval_vector_size=self.retrieval_vector_size,
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
)
with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
mock_load_dataset.return_value = dataset
retriever = RagPyTorchDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
)
if init_retrieval:
retriever.init_retrieval(port)
return retriever
def get_dummy_ray_distributed_retriever(self, init_retrieval: bool) -> RagRayDistributedRetriever:
# Have to run in local mode because sys.path modifications at top of
# file are not propogated to remote workers.
# https://stackoverflow.com/questions/54338013/parallel-import-a-python-file-from-sibling-folder
ray.init(local_mode=True)
config = RagConfig(
retrieval_vector_size=self.retrieval_vector_size,
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
)
remote_cls = ray.remote(RayRetriever)
workers = [remote_cls.remote() for _ in range(1)]
with patch("transformers.models.rag.retrieval_rag.load_dataset") as mock_load_dataset:
mock_load_dataset.return_value = self.get_dummy_dataset()
retriever = RagRayDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
retrieval_workers=workers,
)
if init_retrieval:
retriever.init_retrieval()
return retriever
def get_dummy_custom_hf_index_pytorch_retriever(self, init_retrieval: bool, from_disk: bool, port=12345):
dataset = self.get_dummy_dataset()
config = RagConfig(
retrieval_vector_size=self.retrieval_vector_size,
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
index_name="custom",
)
if from_disk:
config.passages_path = os.path.join(self.tmpdirname, "dataset")
config.index_path = os.path.join(self.tmpdirname, "index.faiss")
dataset.get_index("embeddings").save(os.path.join(self.tmpdirname, "index.faiss"))
dataset.drop_index("embeddings")
dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset"))
del dataset
retriever = RagPyTorchDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
)
else:
retriever = RagPyTorchDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
index=CustomHFIndex(config.retrieval_vector_size, dataset),
)
if init_retrieval:
retriever.init_retrieval(port)
return retriever
def get_dummy_custom_hf_index_ray_retriever(self, init_retrieval: bool, from_disk: bool):
# Have to run in local mode because sys.path modifications at top of
# file are not propogated to remote workers.
# https://stackoverflow.com/questions/54338013/parallel-import-a-python-file-from-sibling-folder
ray.init(local_mode=True)
dataset = self.get_dummy_dataset()
config = RagConfig(
retrieval_vector_size=self.retrieval_vector_size,
question_encoder=DPRConfig().to_dict(),
generator=BartConfig().to_dict(),
index_name="custom",
)
remote_cls = ray.remote(RayRetriever)
workers = [remote_cls.remote() for _ in range(1)]
if from_disk:
config.passages_path = os.path.join(self.tmpdirname, "dataset")
config.index_path = os.path.join(self.tmpdirname, "index.faiss")
dataset.get_index("embeddings").save(os.path.join(self.tmpdirname, "index.faiss"))
dataset.drop_index("embeddings")
dataset.save_to_disk(os.path.join(self.tmpdirname, "dataset"))
del dataset
retriever = RagRayDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
retrieval_workers=workers,
index=CustomHFIndex.load_from_disk(
vector_size=config.retrieval_vector_size,
dataset_path=config.passages_path,
index_path=config.index_path,
),
)
else:
retriever = RagRayDistributedRetriever(
config,
question_encoder_tokenizer=self.get_dpr_tokenizer(),
generator_tokenizer=self.get_bart_tokenizer(),
retrieval_workers=workers,
index=CustomHFIndex(config.retrieval_vector_size, dataset),
)
if init_retrieval:
retriever.init_retrieval()
return retriever
def distributed_retriever_check(self, retriever: RagRetriever, hidden_states: np.array, n_docs: int) -> None:
retrieved_doc_embeds, doc_ids, doc_dicts = retriever.retrieve(hidden_states, n_docs=n_docs)
self.assertEqual(retrieved_doc_embeds.shape, (2, n_docs, self.retrieval_vector_size))
self.assertEqual(len(doc_dicts), 2)
self.assertEqual(sorted(doc_dicts[0]), ["embeddings", "id", "text", "title"])
self.assertEqual(len(doc_dicts[0]["id"]), n_docs)
self.assertEqual(doc_dicts[0]["id"][0], "1") # max inner product is reached with second doc
self.assertEqual(doc_dicts[1]["id"][0], "0") # max inner product is reached with first doc
self.assertListEqual(doc_ids.tolist(), [[1], [0]])
def test_pytorch_distributed_retriever_retrieve(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
self.distributed_retriever_check(
self.get_dummy_pytorch_distributed_retriever(init_retrieval=True), hidden_states, n_docs
)
def test_custom_hf_index_pytorch_retriever_retrieve(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
self.distributed_retriever_check(
self.get_dummy_custom_hf_index_pytorch_retriever(init_retrieval=True, from_disk=False),
hidden_states,
n_docs,
)
def test_custom_pytorch_distributed_retriever_retrieve_from_disk(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
self.distributed_retriever_check(
self.get_dummy_custom_hf_index_pytorch_retriever(init_retrieval=True, from_disk=True),
hidden_states,
n_docs,
)
@require_ray
def test_ray_distributed_retriever_retrieve(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
self.distributed_retriever_check(
self.get_dummy_ray_distributed_retriever(init_retrieval=True), hidden_states, n_docs
)
ray.shutdown()
@require_ray
def test_custom_hf_index_ray_retriever_retrieve(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
with self.assertRaises(ValueError):
self.distributed_retriever_check(
self.get_dummy_custom_hf_index_ray_retriever(init_retrieval=True, from_disk=False),
hidden_states,
n_docs,
)
ray.shutdown()
@require_ray
def test_custom_ray_distributed_retriever_retrieve_from_disk(self):
n_docs = 1
hidden_states = np.array(
[np.ones(self.retrieval_vector_size), -np.ones(self.retrieval_vector_size)], dtype=np.float32
)
self.distributed_retriever_check(
self.get_dummy_custom_hf_index_ray_retriever(init_retrieval=True, from_disk=True), hidden_states, n_docs
)
ray.shutdown()
| transformers-main | examples/research_projects/rag/test_distributed_retriever.py |
"""
A script creating a RAG checkpoint from a generator and a question encoder checkpoints.
"""
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def consolidate(
model_type,
generator_name_or_path: str,
question_encoder_name_or_path: str,
dest_dir: Path,
config_name_or_path: str = None,
generator_tokenizer_name_or_path: str = None,
question_encoder_tokenizer_name_or_path: str = None,
):
if config_name_or_path is None:
config_name_or_path = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base"
if generator_tokenizer_name_or_path is None:
generator_tokenizer_name_or_path = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
question_encoder_tokenizer_name_or_path = question_encoder_name_or_path
model_class = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration
# Save model.
rag_config = RagConfig.from_pretrained(config_name_or_path)
gen_config = AutoConfig.from_pretrained(generator_name_or_path)
question_encoder_config = AutoConfig.from_pretrained(question_encoder_name_or_path)
rag_config.generator = gen_config
rag_config.question_encoder = question_encoder_config
rag_model = model_class.from_pretrained_question_encoder_generator(
question_encoder_name_or_path, generator_name_or_path, config=rag_config
)
rag_model.save_pretrained(dest_dir)
# Sanity check.
model_class.from_pretrained(dest_dir)
# Save tokenizers.
gen_tokenizer = AutoTokenizer.from_pretrained(generator_tokenizer_name_or_path)
gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/")
question_encoder_tokenizer = AutoTokenizer.from_pretrained(question_encoder_tokenizer_name_or_path)
question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token"],
required=True,
type=str,
help="RAG model type: rag_sequence, rag_token",
)
parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.")
parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier")
parser.add_argument(
"--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier"
)
parser.add_argument(
"--generator_tokenizer_name_or_path",
type=str,
help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``",
)
parser.add_argument(
"--question_encoder_tokenizer_name_or_path",
type=str,
help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``",
)
parser.add_argument(
"--config_name_or_path",
type=str,
help=(
"Identifier of the model config to use, if not provided, resolves to a base config for a given"
" ``model_type``"
),
)
args = parser.parse_args()
dest_dir = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| transformers-main | examples/research_projects/rag/consolidate_rag_checkpoint.py |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class RagFinetuneExampleTests(TestCasePlus):
def _create_dummy_data(self, data_dir):
os.makedirs(data_dir, exist_ok=True)
contents = {"source": "What is love ?", "target": "life"}
n_lines = {"train": 12, "val": 2, "test": 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
content = "\n".join([contents[field]] * n_lines[split])
with open(os.path.join(data_dir, f"{split}.{field}"), "w") as f:
f.write(content)
def _run_finetune(self, gpus: int, distributed_retriever: str = "pytorch"):
tmp_dir = self.get_auto_remove_tmp_dir()
output_dir = os.path.join(tmp_dir, "output")
data_dir = os.path.join(tmp_dir, "data")
self._create_dummy_data(data_dir=data_dir)
testargs = f"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(f"--gpus={gpus}")
if is_apex_available():
testargs.append("--fp16")
else:
testargs.append("--gpus=0")
testargs.append("--distributed_backend=ddp_cpu")
testargs.append("--num_processes=2")
cmd = [sys.executable, str(Path(finetune_rag.__file__).resolve())] + testargs
execute_subprocess_async(cmd, env=self.get_env())
metrics_save_path = os.path.join(output_dir, "metrics.json")
with open(metrics_save_path) as f:
result = json.load(f)
return result
@require_torch_gpu
def test_finetune_gpu(self):
result = self._run_finetune(gpus=1)
self.assertGreaterEqual(result["test"][0]["test_avg_em"], 0.2)
@require_torch_multi_gpu
def test_finetune_multigpu(self):
result = self._run_finetune(gpus=2)
self.assertGreaterEqual(result["test"][0]["test_avg_em"], 0.2)
@require_torch_gpu
@require_ray
def test_finetune_gpu_ray_retrieval(self):
result = self._run_finetune(gpus=1, distributed_retriever="ray")
self.assertGreaterEqual(result["test"][0]["test_avg_em"], 0.2)
@require_torch_multi_gpu
@require_ray
def test_finetune_multigpu_ray_retrieval(self):
result = self._run_finetune(gpus=1, distributed_retriever="ray")
self.assertGreaterEqual(result["test"][0]["test_avg_em"], 0.2)
| transformers-main | examples/research_projects/rag/_test_finetune_rag.py |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import (
DPRContextEncoder,
DPRContextEncoderTokenizerFast,
HfArgumentParser,
RagRetriever,
RagSequenceForGeneration,
RagTokenizer,
)
logger = logging.getLogger(__name__)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
def split_text(text: str, n=100, character=" ") -> List[str]:
"""Split the text every ``n``-th occurrence of ``character``"""
text = text.split(character)
return [character.join(text[i : i + n]).strip() for i in range(0, len(text), n)]
def split_documents(documents: dict) -> dict:
"""Split documents into passages"""
titles, texts = [], []
for title, text in zip(documents["title"], documents["text"]):
if text is not None:
for passage in split_text(text):
titles.append(title if title is not None else "")
texts.append(passage)
return {"title": titles, "text": texts}
def embed(documents: dict, ctx_encoder: DPRContextEncoder, ctx_tokenizer: DPRContextEncoderTokenizerFast) -> dict:
"""Compute the DPR embeddings of document passages"""
input_ids = ctx_tokenizer(
documents["title"], documents["text"], truncation=True, padding="longest", return_tensors="pt"
)["input_ids"]
embeddings = ctx_encoder(input_ids.to(device=device), return_dict=True).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def main(
rag_example_args: "RagExampleArguments",
processing_args: "ProcessingArguments",
index_hnsw_args: "IndexHnswArguments",
):
######################################
logger.info("Step 1 - Create the dataset")
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
dataset = load_dataset(
"csv", data_files=[rag_example_args.csv_path], split="train", delimiter="\t", column_names=["title", "text"]
)
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
dataset = dataset.map(split_documents, batched=True, num_proc=processing_args.num_proc)
# And compute the embeddings
ctx_encoder = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=device)
ctx_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name)
new_features = Features(
{"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))}
) # optional, save as float32 instead of float64 to save space
dataset = dataset.map(
partial(embed, ctx_encoder=ctx_encoder, ctx_tokenizer=ctx_tokenizer),
batched=True,
batch_size=processing_args.batch_size,
features=new_features,
)
# And finally save your dataset
passages_path = os.path.join(rag_example_args.output_dir, "my_knowledge_dataset")
dataset.save_to_disk(passages_path)
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset")
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
index = faiss.IndexHNSWFlat(index_hnsw_args.d, index_hnsw_args.m, faiss.METRIC_INNER_PRODUCT)
dataset.add_faiss_index("embeddings", custom_index=index)
# And save the index
index_path = os.path.join(rag_example_args.output_dir, "my_knowledge_dataset_hnsw_index.faiss")
dataset.get_index("embeddings").save(index_path)
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
######################################
logger.info("Step 3 - Load RAG")
######################################
# Easy way to load the model
retriever = RagRetriever.from_pretrained(
rag_example_args.rag_model_name, index_name="custom", indexed_dataset=dataset
)
model = RagSequenceForGeneration.from_pretrained(rag_example_args.rag_model_name, retriever=retriever)
tokenizer = RagTokenizer.from_pretrained(rag_example_args.rag_model_name)
# For distributed fine-tuning you'll need to provide the paths instead, as the dataset and the index are loaded separately.
# retriever = RagRetriever.from_pretrained(rag_model_name, index_name="custom", passages_path=passages_path, index_path=index_path)
######################################
logger.info("Step 4 - Have fun")
######################################
question = rag_example_args.question or "What does Moses' rod turn into ?"
input_ids = tokenizer.question_encoder(question, return_tensors="pt")["input_ids"]
generated = model.generate(input_ids)
generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
logger.info("Q: " + question)
logger.info("A: " + generated_string)
@dataclass
class RagExampleArguments:
csv_path: str = field(
default=str(Path(__file__).parent / "test_data" / "my_knowledge_dataset.csv"),
metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"},
)
question: Optional[str] = field(
default=None,
metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."},
)
rag_model_name: str = field(
default="facebook/rag-sequence-nq",
metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"},
)
dpr_ctx_encoder_model_name: str = field(
default="facebook/dpr-ctx_encoder-multiset-base",
metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
},
)
output_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to a directory where the dataset passages and the index will be saved"},
)
@dataclass
class ProcessingArguments:
num_proc: Optional[int] = field(
default=None,
metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
},
)
batch_size: int = field(
default=16,
metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
},
)
@dataclass
class IndexHnswArguments:
d: int = field(
default=768,
metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."},
)
m: int = field(
default=128,
metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
},
)
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
parser = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
rag_example_args, processing_args, index_hnsw_args = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
rag_example_args.output_dir = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| transformers-main | examples/research_projects/rag/use_own_knowledge_dataset.py |
# Parts of the code are adapted from the snippets provided in the TorchAudio Wav2Vec forced alignment tutorial.
# The full tutorial can be found here: https://pytorch.org/audio/stable/tutorials/forced_alignment_tutorial.html
import argparse
import os
from dataclasses import dataclass
import torch
import torchaudio
from tqdm import tqdm
from transformers import AutoConfig, AutoModelForCTC, AutoProcessor
class Wav2Vec2Aligner:
def __init__(self, model_name, input_wavs_sr, cuda):
self.cuda = cuda
self.config = AutoConfig.from_pretrained(model_name)
self.model = AutoModelForCTC.from_pretrained(model_name)
self.model.eval()
if self.cuda:
self.model.to(device="cuda")
self.processor = AutoProcessor.from_pretrained(model_name)
self.resampler = torchaudio.transforms.Resample(input_wavs_sr, 16_000)
blank_id = 0
vocab = list(self.processor.tokenizer.get_vocab().keys())
for i in range(len(vocab)):
if vocab[i] == "[PAD]" or vocab[i] == "<pad>":
blank_id = i
print("Blank Token id [PAD]/<pad>", blank_id)
self.blank_id = blank_id
def speech_file_to_array_fn(self, wav_path):
speech_array, sampling_rate = torchaudio.load(wav_path)
speech = self.resampler(speech_array).squeeze().numpy()
return speech
def align_single_sample(self, item):
blank_id = self.blank_id
transcript = "|".join(item["sent"].split(" "))
if not os.path.isfile(item["wav_path"]):
print(item["wav_path"], "not found in wavs directory")
speech_array = self.speech_file_to_array_fn(item["wav_path"])
inputs = self.processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)
if self.cuda:
inputs = inputs.to(device="cuda")
with torch.no_grad():
logits = self.model(inputs.input_values).logits
# get the emission probability at frame level
emissions = torch.log_softmax(logits, dim=-1)
emission = emissions[0].cpu().detach()
# get labels from vocab
labels = ([""] + list(self.processor.tokenizer.get_vocab().keys()))[
:-1
] # logits don't align with the tokenizer's vocab
dictionary = {c: i for i, c in enumerate(labels)}
tokens = []
for c in transcript:
if c in dictionary:
tokens.append(dictionary[c])
def get_trellis(emission, tokens, blank_id=0):
"""
Build a trellis matrix of shape (num_frames + 1, num_tokens + 1)
that represents the probabilities of each source token being at a certain time step
"""
num_frames = emission.size(0)
num_tokens = len(tokens)
# Trellis has extra diemsions for both time axis and tokens.
# The extra dim for tokens represents <SoS> (start-of-sentence)
# The extra dim for time axis is for simplification of the code.
trellis = torch.full((num_frames + 1, num_tokens + 1), -float("inf"))
trellis[:, 0] = 0
for t in range(num_frames):
trellis[t + 1, 1:] = torch.maximum(
# Score for staying at the same token
trellis[t, 1:] + emission[t, blank_id],
# Score for changing to the next token
trellis[t, :-1] + emission[t, tokens],
)
return trellis
trellis = get_trellis(emission, tokens, blank_id)
@dataclass
class Point:
token_index: int
time_index: int
score: float
def backtrack(trellis, emission, tokens, blank_id=0):
"""
Walk backwards from the last (sentence_token, time_step) pair to build the optimal sequence alignment path
"""
# Note:
# j and t are indices for trellis, which has extra dimensions
# for time and tokens at the beginning.
# When referring to time frame index `T` in trellis,
# the corresponding index in emission is `T-1`.
# Similarly, when referring to token index `J` in trellis,
# the corresponding index in transcript is `J-1`.
j = trellis.size(1) - 1
t_start = torch.argmax(trellis[:, j]).item()
path = []
for t in range(t_start, 0, -1):
# 1. Figure out if the current position was stay or change
# Note (again):
# `emission[J-1]` is the emission at time frame `J` of trellis dimension.
# Score for token staying the same from time frame J-1 to T.
stayed = trellis[t - 1, j] + emission[t - 1, blank_id]
# Score for token changing from C-1 at T-1 to J at T.
changed = trellis[t - 1, j - 1] + emission[t - 1, tokens[j - 1]]
# 2. Store the path with frame-wise probability.
prob = emission[t - 1, tokens[j - 1] if changed > stayed else 0].exp().item()
# Return token index and time index in non-trellis coordinate.
path.append(Point(j - 1, t - 1, prob))
# 3. Update the token
if changed > stayed:
j -= 1
if j == 0:
break
else:
raise ValueError("Failed to align")
return path[::-1]
path = backtrack(trellis, emission, tokens, blank_id)
@dataclass
class Segment:
label: str
start: int
end: int
score: float
def __repr__(self):
return f"{self.label}\t{self.score:4.2f}\t{self.start*20:5d}\t{self.end*20:5d}"
@property
def length(self):
return self.end - self.start
def merge_repeats(path):
"""
Merge repeated tokens into a single segment. Note: this shouldn't affect repeated characters from the
original sentences (e.g. `ll` in `hello`)
"""
i1, i2 = 0, 0
segments = []
while i1 < len(path):
while i2 < len(path) and path[i1].token_index == path[i2].token_index:
i2 += 1
score = sum(path[k].score for k in range(i1, i2)) / (i2 - i1)
segments.append(
Segment(
transcript[path[i1].token_index],
path[i1].time_index,
path[i2 - 1].time_index + 1,
score,
)
)
i1 = i2
return segments
segments = merge_repeats(path)
with open(item["out_path"], "w") as out_align:
for seg in segments:
out_align.write(str(seg) + "\n")
def align_data(self, wav_dir, text_file, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# load text file
lines = open(text_file, encoding="utf8").readlines()
items = []
for line in lines:
if len(line.strip().split("\t")) != 2:
print("Script must be in format: 00001 this is my sentence")
exit()
wav_name, sentence = line.strip().split("\t")
wav_path = os.path.join(wav_dir, wav_name + ".wav")
out_path = os.path.join(output_dir, wav_name + ".txt")
items.append({"sent": sentence, "wav_path": wav_path, "out_path": out_path})
print("Number of samples found in script file", len(items))
for item in tqdm(items):
self.align_single_sample(item)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name", type=str, default="arijitx/wav2vec2-xls-r-300m-bengali", help="wav2vec model name"
)
parser.add_argument("--wav_dir", type=str, default="./wavs", help="directory containing wavs")
parser.add_argument("--text_file", type=str, default="script.txt", help="file containing text")
parser.add_argument("--input_wavs_sr", type=int, default=16000, help="sampling rate of input audios")
parser.add_argument(
"--output_dir", type=str, default="./out_alignment", help="output directory containing the alignment files"
)
parser.add_argument("--cuda", action="store_true")
args = parser.parse_args()
aligner = Wav2Vec2Aligner(args.model_name, args.input_wavs_sr, args.cuda)
aligner.align_data(args.wav_dir, args.text_file, args.output_dir)
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/wav2vec2/alignment.py |
#!/usr/bin/env python3
import logging
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import librosa
import torch
from datasets import DatasetDict, load_dataset
from packaging import version
from torch import nn
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
Wav2Vec2ForPreTraining,
is_apex_available,
trainer_utils,
)
from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_extractor: Optional[bool] = field(
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
verbose_logging: Optional[bool] = field(
default=False,
metadata={"help": "Whether to log verbose messages or not."},
)
max_gumbel_temperature: Optional[float] = field(
default=2.0, metadata={"help": "Maximum temperature for gumbel softmax."}
)
min_gumbel_temperature: Optional[float] = field(
default=0.5, metadata={"help": "Minimum temperature for gumbel softmax."}
)
gumbel_temperature_decay: Optional[float] = field(
default=0.999995, metadata={"help": "Decay of gumbel temperature during training."}
)
def configure_logger(model_args: ModelArguments, training_args: TrainingArguments):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logging_level = logging.WARNING
if model_args.verbose_logging:
logging_level = logging.DEBUG
elif trainer_utils.is_main_process(training_args.local_rank):
logging_level = logging.INFO
logger.setLevel(logging_level)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_split_name: Optional[str] = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
validation_split_name: Optional[str] = field(
default="validation",
metadata={
"help": (
"The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"
)
},
)
speech_file_column: Optional[str] = field(
default="file",
metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
validation_split_percentage: Optional[int] = field(
default=1,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_duration_in_seconds: Optional[float] = field(
default=20.0, metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"}
)
@dataclass
class DataCollatorForWav2Vec2Pretraining:
"""
Data collator that will dynamically pad the inputs received and prepare masked indices
for self-supervised pretraining.
Args:
model (:class:`~transformers.Wav2Vec2ForPreTraining`):
The Wav2Vec2 model used for pretraining. The data collator needs to have access
to config and ``_get_feat_extract_output_lengths`` function for correct padding.
feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`):
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
model: Wav2Vec2ForPreTraining
feature_extractor: Wav2Vec2FeatureExtractor
padding: Union[bool, str] = "longest"
pad_to_multiple_of: Optional[int] = None
max_length: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# reformat list to dict and set to pytorch format
batch = self.feature_extractor.pad(
features,
max_length=self.max_length,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
mask_indices_seq_length = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1])
batch_size = batch["input_values"].shape[0]
# make sure that no loss is computed on padded inputs
if batch["attention_mask"] is not None:
# compute real output lengths according to convolution formula
output_lengths = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to(
torch.long
)
attention_mask = torch.zeros(
(batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device
)
# these two operations makes sure that all values
# before the output lengths indices are attended to
attention_mask[
(torch.arange(attention_mask.shape[0], device=batch["input_values"].device), output_lengths - 1)
] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
# sample randomly masked indices
batch["mask_time_indices"] = _compute_mask_indices(
(batch_size, mask_indices_seq_length),
self.model.config.mask_time_prob,
self.model.config.mask_time_length,
attention_mask=attention_mask,
min_masks=2,
)
return batch
class Wav2Vec2PreTrainer(Trainer):
"""
Subclassed :class:`~transformers.Trainer` for Wav2Vec2-like pretraining. Trainer can decay gumbel softmax temperature during training.
"""
def __init__(self, *args, max_gumbel_temp=1, min_gumbel_temp=0, gumbel_temp_decay=1.0, **kwargs):
super().__init__(*args, **kwargs)
self.num_update_step = 0
self.max_gumbel_temp = max_gumbel_temp
self.min_gumbel_temp = min_gumbel_temp
self.gumbel_temp_decay = gumbel_temp_decay
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (:obj:`nn.Module`):
The model to train.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
Return:
:obj:`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
inputs = self._prepare_inputs(inputs)
if self.use_amp:
with autocast():
loss = self.compute_loss(model, inputs)
else:
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1 or self.deepspeed:
if model.module.config.ctc_loss_reduction == "mean":
loss = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
loss = loss.sum() / (inputs["mask_time_indices"]).sum()
else:
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']")
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(loss)
else:
loss.backward()
self.num_update_step += 1
# make sure gumbel softmax temperature is decayed
if self.args.n_gpu > 1 or self.deepspeed:
model.module.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)
)
else:
model.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)
)
return loss.detach()
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
configure_logger(model_args, training_args)
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
if "validation" not in datasets.keys():
# make sure only "validation" and "train" keys remain"
datasets = DatasetDict()
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
)
else:
# make sure only "validation" and "train" keys remain"
datasets = DatasetDict()
datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split="validation",
cache_dir=model_args.cache_dir,
)
datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"{data_args.train_split_name}",
cache_dir=model_args.cache_dir,
)
# only normalized-inputs-training is supported
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=True
)
def prepare_dataset(batch):
# check that all files have the correct sampling rate
batch["speech"], _ = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate)
return batch
# load audio files into numpy arrays
vectorized_datasets = datasets.map(
prepare_dataset, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets["train"].column_names
)
# filter audio files that are too long
vectorized_datasets = vectorized_datasets.filter(
lambda data: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
)
def normalize(batch):
return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate)
# normalize and transform to `BatchFeatures`
vectorized_datasets = vectorized_datasets.map(
normalize,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
remove_columns=vectorized_datasets["train"].column_names,
)
# pretraining is only supported for "newer" stable layer norm architecture
# apply_spec_augment has to be True, mask_feature_prob has to be 0.0
config = Wav2Vec2Config.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
gradient_checkpointing=training_args.gradient_checkpointing,
)
if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
raise ValueError(
"PreTraining is only supported for ``config.do_stable_layer_norm=True`` and"
" ``config.feat_extract_norm='layer'"
)
model = Wav2Vec2ForPreTraining(config)
data_collator = DataCollatorForWav2Vec2Pretraining(model=model, feature_extractor=feature_extractor)
trainer = Wav2Vec2PreTrainer(
model=model,
data_collator=data_collator,
args=training_args,
train_dataset=vectorized_datasets["train"],
eval_dataset=vectorized_datasets["validation"],
tokenizer=feature_extractor,
max_gumbel_temp=model_args.max_gumbel_temperature,
min_gumbel_temp=model_args.min_gumbel_temperature,
gumbel_temp_decay=model_args.gumbel_temperature_decay,
)
trainer.train()
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/wav2vec2/run_pretrain.py |
#!/usr/bin/env python3
import logging
import pathlib
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Callable, Dict, List, Optional, Set, Union
import datasets
import librosa
import numpy as np
import torch
from lang_trans import arabic
from packaging import version
from torch import nn
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
Wav2Vec2CTCTokenizer,
Wav2Vec2FeatureExtractor,
Wav2Vec2ForCTC,
Wav2Vec2Processor,
is_apex_available,
trainer_utils,
)
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_extractor: Optional[bool] = field(
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
verbose_logging: Optional[bool] = field(
default=False,
metadata={"help": "Whether to log verbose messages or not."},
)
def configure_logger(model_args: ModelArguments, training_args: TrainingArguments):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logging_level = logging.WARNING
if model_args.verbose_logging:
logging_level = logging.DEBUG
elif trainer_utils.is_main_process(training_args.local_rank):
logging_level = logging.INFO
logger.setLevel(logging_level)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_split_name: Optional[str] = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
validation_split_name: Optional[str] = field(
default="validation",
metadata={
"help": (
"The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"
)
},
)
target_text_column: Optional[str] = field(
default="text",
metadata={"help": "Column in the dataset that contains label (target text). Defaults to 'text'"},
)
speech_file_column: Optional[str] = field(
default="file",
metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"},
)
target_feature_extractor_sampling_rate: Optional[bool] = field(
default=False,
metadata={"help": "Resample loaded audio to target feature extractor's sampling rate or not."},
)
max_duration_in_seconds: Optional[float] = field(
default=None,
metadata={"help": "Filters out examples longer than specified. Defaults to no filtering."},
)
orthography: Optional[str] = field(
default="librispeech",
metadata={
"help": (
"Orthography used for normalization and tokenization: 'librispeech' (default), 'timit', or"
" 'buckwalter'."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
@dataclass
class Orthography:
"""
Orthography scheme used for text normalization and tokenization.
Args:
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to accept lowercase input and lowercase the output when decoding.
vocab_file (:obj:`str`, `optional`):
File containing the vocabulary.
word_delimiter_token (:obj:`str`, `optional`, defaults to :obj:`"|"`):
The token used for delimiting words; it needs to be in the vocabulary.
translation_table (:obj:`Dict[str, str]`, `optional`, defaults to :obj:`{}`):
Table to use with `str.translate()` when preprocessing text (e.g., "-" -> " ").
words_to_remove (:obj:`Set[str]`, `optional`, defaults to :obj:`set()`):
Words to remove when preprocessing text (e.g., "sil").
untransliterator (:obj:`Callable[[str], str]`, `optional`):
Function that untransliterates text back into native writing system.
"""
do_lower_case: bool = False
vocab_file: Optional[str] = None
word_delimiter_token: Optional[str] = "|"
translation_table: Optional[Dict[str, str]] = field(default_factory=dict)
words_to_remove: Optional[Set[str]] = field(default_factory=set)
untransliterator: Optional[Callable[[str], str]] = None
@classmethod
def from_name(cls, name: str):
if name == "librispeech":
return cls()
if name == "timit":
return cls(
do_lower_case=True,
# break compounds like "quarter-century-old" and replace pauses "--"
translation_table=str.maketrans({"-": " "}),
)
if name == "buckwalter":
translation_table = {
"-": " ", # sometimes used to represent pauses
"^": "v", # fixing "tha" in arabic_speech_corpus dataset
}
return cls(
vocab_file=pathlib.Path(__file__).parent.joinpath("vocab/buckwalter.json"),
word_delimiter_token="/", # "|" is Arabic letter alef with madda above
translation_table=str.maketrans(translation_table),
words_to_remove={"sil"}, # fixing "sil" in arabic_speech_corpus dataset
untransliterator=arabic.buckwalter.untransliterate,
)
raise ValueError(f"Unsupported orthography: '{name}'.")
def preprocess_for_training(self, text: str) -> str:
# TODO(elgeish) return a pipeline (e.g., from jiwer) instead? Or rely on branch predictor as is
if len(self.translation_table) > 0:
text = text.translate(self.translation_table)
if len(self.words_to_remove) == 0:
text = " ".join(text.split()) # clean up whitespaces
else:
text = " ".join(w for w in text.split() if w not in self.words_to_remove) # and clean up whilespaces
return text
def create_processor(self, model_args: ModelArguments) -> Wav2Vec2Processor:
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir
)
if self.vocab_file:
tokenizer = Wav2Vec2CTCTokenizer(
self.vocab_file,
cache_dir=model_args.cache_dir,
do_lower_case=self.do_lower_case,
word_delimiter_token=self.word_delimiter_token,
)
else:
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
do_lower_case=self.do_lower_case,
word_delimiter_token=self.word_delimiter_token,
)
return Wav2Vec2Processor(feature_extractor, tokenizer)
@dataclass
class DataCollatorCTCWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor (:class:`~transformers.Wav2Vec2Processor`)
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
max_length_labels (:obj:`int`, `optional`):
Maximum length of the ``labels`` returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
processor: Wav2Vec2Processor
padding: Union[bool, str] = True
max_length: Optional[int] = None
max_length_labels: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
input_features = [{"input_values": feature["input_values"]} for feature in features]
label_features = [{"input_ids": feature["labels"]} for feature in features]
batch = self.processor.pad(
input_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
labels_batch = self.processor.pad(
labels=label_features,
padding=self.padding,
max_length=self.max_length_labels,
pad_to_multiple_of=self.pad_to_multiple_of_labels,
return_tensors="pt",
)
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
batch["labels"] = labels
return batch
class CTCTrainer(Trainer):
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (:obj:`nn.Module`):
The model to train.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
Return:
:obj:`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
inputs = self._prepare_inputs(inputs)
if self.use_amp:
with autocast():
loss = self.compute_loss(model, inputs)
else:
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
loss = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
loss = loss.sum() / (inputs["labels"] >= 0).sum()
else:
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']")
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(loss)
else:
loss.backward()
return loss.detach()
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
configure_logger(model_args, training_args)
orthography = Orthography.from_name(data_args.orthography.lower())
processor = orthography.create_processor(model_args)
model = Wav2Vec2ForCTC.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
gradient_checkpointing=training_args.gradient_checkpointing,
vocab_size=len(processor.tokenizer),
)
train_dataset = datasets.load_dataset(
data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name
)
val_dataset = datasets.load_dataset(
data_args.dataset_name, data_args.dataset_config_name, split=data_args.validation_split_name
)
wer_metric = datasets.load_metric("wer")
target_sr = processor.feature_extractor.sampling_rate if data_args.target_feature_extractor_sampling_rate else None
vocabulary_chars_str = "".join(t for t in processor.tokenizer.get_vocab().keys() if len(t) == 1)
vocabulary_text_cleaner = re.compile( # remove characters not in vocabulary
rf"[^\s{re.escape(vocabulary_chars_str)}]", # allow space in addition to chars in vocabulary
flags=re.IGNORECASE if processor.tokenizer.do_lower_case else 0,
)
text_updates = []
def prepare_example(example): # TODO(elgeish) make use of multiprocessing?
example["speech"], example["sampling_rate"] = librosa.load(example[data_args.speech_file_column], sr=target_sr)
if data_args.max_duration_in_seconds is not None:
example["duration_in_seconds"] = len(example["speech"]) / example["sampling_rate"]
# Normalize and clean up text; order matters!
updated_text = orthography.preprocess_for_training(example[data_args.target_text_column])
updated_text = vocabulary_text_cleaner.sub("", updated_text)
if updated_text != example[data_args.target_text_column]:
text_updates.append((example[data_args.target_text_column], updated_text))
example[data_args.target_text_column] = updated_text
return example
train_dataset = train_dataset.map(prepare_example, remove_columns=[data_args.speech_file_column])
val_dataset = val_dataset.map(prepare_example, remove_columns=[data_args.speech_file_column])
if data_args.max_duration_in_seconds is not None:
def filter_by_max_duration(example):
return example["duration_in_seconds"] <= data_args.max_duration_in_seconds
old_train_size = len(train_dataset)
old_val_size = len(val_dataset)
train_dataset = train_dataset.filter(filter_by_max_duration, remove_columns=["duration_in_seconds"])
val_dataset = val_dataset.filter(filter_by_max_duration, remove_columns=["duration_in_seconds"])
if len(train_dataset) > old_train_size:
logger.warning(
f"Filtered out {len(train_dataset) - old_train_size} train example(s) longer than"
f" {data_args.max_duration_in_seconds} second(s)."
)
if len(val_dataset) > old_val_size:
logger.warning(
f"Filtered out {len(val_dataset) - old_val_size} validation example(s) longer than"
f" {data_args.max_duration_in_seconds} second(s)."
)
logger.info(f"Split sizes: {len(train_dataset)} train and {len(val_dataset)} validation.")
logger.warning(f"Updated {len(text_updates)} transcript(s) using '{data_args.orthography}' orthography rules.")
if logger.isEnabledFor(logging.DEBUG):
for original_text, updated_text in text_updates:
logger.debug(f'Updated text: "{original_text}" -> "{updated_text}"')
text_updates = None
def prepare_dataset(batch):
# check that all files have the correct sampling rate
assert (
len(set(batch["sampling_rate"])) == 1
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."
processed_batch = processor(
audio=batch["speech"], text=batch[data_args.target_text_column], sampling_rate=batch["sampling_rate"][0]
)
batch.update(processed_batch)
return batch
train_dataset = train_dataset.map(
prepare_dataset,
batch_size=training_args.per_device_train_batch_size,
batched=True,
num_proc=data_args.preprocessing_num_workers,
)
val_dataset = val_dataset.map(
prepare_dataset,
batch_size=training_args.per_device_train_batch_size,
batched=True,
num_proc=data_args.preprocessing_num_workers,
)
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
if logger.isEnabledFor(logging.DEBUG):
for reference, predicted in zip(label_str, pred_str):
logger.debug(f'reference: "{reference}"')
logger.debug(f'predicted: "{predicted}"')
if orthography.untransliterator is not None:
logger.debug(f'reference (untransliterated): "{orthography.untransliterator(reference)}"')
logger.debug(f'predicted (untransliterated): "{orthography.untransliterator(predicted)}"')
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
trainer = CTCTrainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=processor.feature_extractor,
)
trainer.train()
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/wav2vec2/run_asr.py |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
git_repo_path = Path(__file__).resolve().parents[3] / "src"
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
models = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"}
ZERO2 = "zero2"
ZERO3 = "zero3"
stages = [ZERO2, ZERO3]
def custom_name_func(func, param_num, param):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
return f"{func.__name__}_{param_based_name}"
# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class TestDeepSpeedWav2Vec2(TestCasePlus):
@parameterized.expand(params, name_func=custom_name_func)
def test_fp32_non_distributed(self, stage, model):
self.run_and_check(
stage=stage,
model=model,
distributed=False,
fp16=False,
)
@require_torch_multi_gpu
@parameterized.expand(params, name_func=custom_name_func)
def test_fp32_distributed(self, stage, model):
self.run_and_check(
stage=stage,
model=model,
distributed=True,
fp16=False,
)
@parameterized.expand(params, name_func=custom_name_func)
def test_fp16_non_distributed(self, stage, model):
self.run_and_check(
stage=stage,
model=model,
distributed=False,
fp16=True,
)
@require_torch_multi_gpu
@parameterized.expand(params, name_func=custom_name_func)
def test_fp16_distributed(self, stage, model):
self.run_and_check(
stage=stage,
model=model,
distributed=True,
fp16=True,
)
def do_checks(self, output_dir):
# XXX: run_asr is premature and doesn't save any results
# so all we check for now is that the process didn't fail
pass
# XXX: need to do better validation beyond just that the run was successful
def run_and_check(
self,
stage: str,
model: str,
eval_steps: int = 10,
distributed: bool = True,
quality_checks: bool = True,
fp16: bool = True,
):
model_name = models[model]
output_dir = self.run_trainer(
stage=stage,
model_name=model_name,
eval_steps=eval_steps,
num_train_epochs=1,
distributed=distributed,
fp16=fp16,
)
self.do_checks(output_dir)
return output_dir
def run_trainer(
self,
stage: str,
model_name: str,
eval_steps: int = 10,
num_train_epochs: int = 1,
distributed: bool = True,
fp16: bool = True,
):
output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False)
args = f"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(num_train_epochs)}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fp16:
args.extend(["--fp16"])
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split()
script = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"]
launcher = self.get_launcher(distributed)
cmd = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
return output_dir
def get_launcher(self, distributed=False):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
num_gpus = min(2, get_gpu_count()) if distributed else 1
return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
| transformers-main | examples/research_projects/wav2vec2/test_wav2vec2_deepspeed.py |
#!/usr/bin/env python3
import json
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import datasets
import numpy as np
import torch
import torchaudio
from packaging import version
from torch import nn
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
Wav2Vec2CTCTokenizer,
Wav2Vec2FeatureExtractor,
Wav2Vec2ForCTC,
Wav2Vec2Processor,
is_apex_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast
logger = logging.getLogger(__name__)
def list_field(default=None, metadata=None):
return field(default_factory=lambda: default, metadata=metadata)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_extractor: Optional[bool] = field(
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
attention_dropout: Optional[float] = field(
default=0.1, metadata={"help": "The dropout ratio for the attention probabilities."}
)
activation_dropout: Optional[float] = field(
default=0.1, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
)
hidden_dropout: Optional[float] = field(
default=0.1,
metadata={
"help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler."
},
)
feat_proj_dropout: Optional[float] = field(
default=0.1,
metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."},
)
mask_time_prob: Optional[float] = field(
default=0.05,
metadata={
"help": (
"Propability of each feature vector along the time axis to be chosen as the start of the vector"
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
"vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``."
)
},
)
layerdrop: Optional[float] = field(default=0.0, metadata={"help": "The LayerDrop probability."})
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_split_name: Optional[str] = field(
default="train+validation",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_val_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
)
},
)
chars_to_ignore: List[str] = list_field(
default=[",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�"],
metadata={"help": "A list of characters to remove from the transcripts."},
)
@dataclass
class DataCollatorCTCWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor (:class:`~transformers.Wav2Vec2Processor`)
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
max_length_labels (:obj:`int`, `optional`):
Maximum length of the ``labels`` returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
processor: Wav2Vec2Processor
padding: Union[bool, str] = True
max_length: Optional[int] = None
max_length_labels: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lenghts and need
# different padding methods
input_features = [{"input_values": feature["input_values"]} for feature in features]
label_features = [{"input_ids": feature["labels"]} for feature in features]
batch = self.processor.pad(
input_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
labels_batch = self.processor.pad(
labels=label_features,
padding=self.padding,
max_length=self.max_length_labels,
pad_to_multiple_of=self.pad_to_multiple_of_labels,
return_tensors="pt",
)
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
batch["labels"] = labels
return batch
class CTCTrainer(Trainer):
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (:obj:`nn.Module`):
The model to train.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
Return:
:obj:`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
inputs = self._prepare_inputs(inputs)
if self.use_amp:
with autocast():
loss = self.compute_loss(model, inputs)
else:
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
loss = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
loss = loss.sum() / (inputs["labels"] >= 0).sum()
else:
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']")
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(loss)
else:
loss.backward()
return loss.detach()
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets:
train_dataset = datasets.load_dataset(
"common_voice", data_args.dataset_config_name, split=data_args.train_split_name
)
eval_dataset = datasets.load_dataset("common_voice", data_args.dataset_config_name, split="test")
# Create and save tokenizer
chars_to_ignore_regex = f'[{"".join(data_args.chars_to_ignore)}]'
def remove_special_characters(batch):
batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " "
return batch
train_dataset = train_dataset.map(remove_special_characters, remove_columns=["sentence"])
eval_dataset = eval_dataset.map(remove_special_characters, remove_columns=["sentence"])
def extract_all_chars(batch):
all_text = " ".join(batch["text"])
vocab = list(set(all_text))
return {"vocab": [vocab], "all_text": [all_text]}
vocab_train = train_dataset.map(
extract_all_chars,
batched=True,
batch_size=-1,
keep_in_memory=True,
remove_columns=train_dataset.column_names,
)
vocab_test = train_dataset.map(
extract_all_chars,
batched=True,
batch_size=-1,
keep_in_memory=True,
remove_columns=eval_dataset.column_names,
)
vocab_list = list(set(vocab_train["vocab"][0]) | set(vocab_test["vocab"][0]))
vocab_dict = {v: k for k, v in enumerate(vocab_list)}
vocab_dict["|"] = vocab_dict[" "]
del vocab_dict[" "]
vocab_dict["[UNK]"] = len(vocab_dict)
vocab_dict["[PAD]"] = len(vocab_dict)
with open("vocab.json", "w") as vocab_file:
json.dump(vocab_dict, vocab_file)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
tokenizer = Wav2Vec2CTCTokenizer(
"vocab.json",
unk_token="[UNK]",
pad_token="[PAD]",
word_delimiter_token="|",
)
feature_extractor = Wav2Vec2FeatureExtractor(
feature_size=1, sampling_rate=16_000, padding_value=0.0, do_normalize=True, return_attention_mask=True
)
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
model = Wav2Vec2ForCTC.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
activation_dropout=model_args.activation_dropout,
attention_dropout=model_args.attention_dropout,
hidden_dropout=model_args.hidden_dropout,
feat_proj_dropout=model_args.feat_proj_dropout,
mask_time_prob=model_args.mask_time_prob,
gradient_checkpointing=training_args.gradient_checkpointing,
layerdrop=model_args.layerdrop,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
vocab_size=len(processor.tokenizer),
)
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if data_args.max_val_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays and tokenize the targets.
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
batch["sampling_rate"] = 16_000
batch["target_text"] = batch["text"]
return batch
train_dataset = train_dataset.map(
speech_file_to_array_fn,
remove_columns=train_dataset.column_names,
num_proc=data_args.preprocessing_num_workers,
)
eval_dataset = eval_dataset.map(
speech_file_to_array_fn,
remove_columns=eval_dataset.column_names,
num_proc=data_args.preprocessing_num_workers,
)
def prepare_dataset(batch):
# check that all files have the correct sampling rate
assert (
len(set(batch["sampling_rate"])) == 1
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."
processed_batch = processor(
audio=batch["speech"], text=batch["target_text"], sampling_rate=batch["sampling_rate"][0]
)
batch.update(processed_batch)
return batch
train_dataset = train_dataset.map(
prepare_dataset,
remove_columns=train_dataset.column_names,
batch_size=training_args.per_device_train_batch_size,
batched=True,
num_proc=data_args.preprocessing_num_workers,
)
eval_dataset = eval_dataset.map(
prepare_dataset,
remove_columns=eval_dataset.column_names,
batch_size=training_args.per_device_train_batch_size,
batched=True,
num_proc=data_args.preprocessing_num_workers,
)
# Metric
wer_metric = datasets.load_metric("wer")
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
# Data collator
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
# Initialize our Trainer
trainer = CTCTrainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=processor.feature_extractor,
)
# Training
if training_args.do_train:
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
# Save the feature_extractor and the tokenizer
if is_main_process(training_args.local_rank):
processor.save_pretrained(training_args.output_dir)
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
return results
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/wav2vec2/run_common_voice.py |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import List, Optional
import torch
from datasets import Dataset
from torch import nn
from tqdm.auto import tqdm
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
utils,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
DESCRIPTION = """
Distills an NLI-based zero-shot classifier to a smaller, more efficient model with a fixed set of candidate class
names. Useful for speeding up zero-shot classification in cases where labeled training data is not available, but
when only a single fixed set of classes is needed. Takes a teacher NLI model, student classifier model, unlabeled
dataset, and set of K possible class names. Yields a single classifier with K outputs corresponding to the provided
class names.
"""
logger = logging.getLogger(__name__)
@dataclass
class TeacherModelArguments:
teacher_name_or_path: Optional[str] = field(
default="roberta-large-mnli", metadata={"help": "The NLI/zero-shot teacher model to be distilled."}
)
hypothesis_template: Optional[str] = field(
default="This example is {}.",
metadata={
"help": (
"Template used to turn class names into mock hypotheses for teacher NLI model. Must include {{}}"
"where class name is inserted."
)
},
)
teacher_batch_size: Optional[int] = field(
default=32, metadata={"help": "Batch size for generating teacher predictions."}
)
multi_label: Optional[bool] = field(
default=False,
metadata={
"help": (
"Allow multiple classes to be true rather than forcing them to sum to 1 (sometimes called"
"multi-class multi-label classification)."
)
},
)
temperature: Optional[float] = field(
default=1.0, metadata={"help": "Temperature applied to teacher softmax for distillation."}
)
@dataclass
class StudentModelArguments:
student_name_or_path: Optional[str] = field(
default="distilbert-base-uncased", metadata={"help": "The NLI/zero-shot teacher model to be distilled."}
)
@dataclass
class DataTrainingArguments:
data_file: str = field(metadata={"help": "Text file with one unlabeled instance per line."})
class_names_file: str = field(metadata={"help": "Text file with one class name per line."})
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the Rust tokenizers library) or not."},
)
@dataclass
class DistillTrainingArguments(TrainingArguments):
output_dir: Optional[str] = field(
default=None,
metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
)
per_device_train_batch_size: int = field(
default=32, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
)
per_device_eval_batch_size: int = field(
default=128, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
)
num_train_epochs: float = field(default=1.0, metadata={"help": "Total number of training epochs to perform."})
do_train: bool = field(default=True, metadata={"help": "Whether to run training of student model."})
do_eval: bool = field(
default=True,
metadata={
"help": (
"Whether to evaluate the agreement of the final student predictions and the teacher predictions"
"after training."
)
},
)
save_total_limit: Optional[int] = field(
default=0,
metadata={
"help": (
"Limit the total amount of checkpoints."
"Deletes the older checkpoints in the output_dir. Default is 0 (no checkpoints)."
)
},
)
class DistillationTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
target_p = inputs["labels"]
outputs = model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
logits = outputs[0]
loss = -torch.sum(target_p * logits.log_softmax(dim=-1), axis=-1).mean()
if return_outputs:
return loss, outputs
return loss
def read_lines(path):
lines = []
with open(path, "r") as f:
for line in f:
line = line.strip()
if len(line) > 0:
lines.append(line)
return lines
def get_premise_hypothesis_pairs(examples, class_names, hypothesis_template):
premises = []
hypotheses = []
for example in examples:
for name in class_names:
premises.append(example)
hypotheses.append(hypothesis_template.format(name))
return premises, hypotheses
def get_entailment_id(config):
for label, ind in config.label2id.items():
if label.lower().startswith("entail"):
return ind
logger.warning("Could not identify entailment dimension from teacher config label2id. Setting to -1.")
return -1
def get_teacher_predictions(
model_path: str,
examples: List[str],
class_names: List[str],
hypothesis_template: str,
batch_size: int,
temperature: float,
multi_label: bool,
use_fast_tokenizer: bool,
no_cuda: bool,
fp16: bool,
):
"""
Gets predictions by the same method as the zero-shot pipeline but with DataParallel & more efficient batching
"""
model = AutoModelForSequenceClassification.from_pretrained(model_path)
model_config = model.config
if not no_cuda and torch.cuda.is_available():
model = nn.DataParallel(model.cuda())
batch_size *= len(model.device_ids)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=use_fast_tokenizer)
premises, hypotheses = get_premise_hypothesis_pairs(examples, class_names, hypothesis_template)
logits = []
for i in tqdm(range(0, len(premises), batch_size)):
batch_premises = premises[i : i + batch_size]
batch_hypotheses = hypotheses[i : i + batch_size]
encodings = tokenizer(
batch_premises,
batch_hypotheses,
padding=True,
truncation="only_first",
return_tensors="pt",
)
with torch.cuda.amp.autocast(enabled=fp16):
with torch.no_grad():
outputs = model(**encodings)
logits.append(outputs.logits.detach().cpu().float())
entail_id = get_entailment_id(model_config)
contr_id = -1 if entail_id == 0 else 0
logits = torch.cat(logits, dim=0) # N*K x 3
nli_logits = logits.reshape(len(examples), len(class_names), -1)[..., [contr_id, entail_id]] # N x K x 2
if multi_label:
# softmax over (contr, entail) logits for each class independently
nli_prob = (nli_logits / temperature).softmax(-1)
else:
# softmax over entail logits across classes s.t. class probabilities sum to 1.
nli_prob = (nli_logits / temperature).softmax(1)
return nli_prob[..., 1] # N x K
def main():
parser = HfArgumentParser(
(DataTrainingArguments, TeacherModelArguments, StudentModelArguments, DistillTrainingArguments),
description=DESCRIPTION,
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
data_args, teacher_args, student_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
data_args, teacher_args, student_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
utils.logging.set_verbosity_info()
utils.logging.enable_default_handler()
utils.logging.enable_explicit_format()
if training_args.local_rank != -1:
raise ValueError("Distributed training is not currently supported.")
if training_args.tpu_num_cores is not None:
raise ValueError("TPU acceleration is not currently supported.")
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# 1. read in data
examples = read_lines(data_args.data_file)
class_names = read_lines(data_args.class_names_file)
# 2. get teacher predictions and load into dataset
logger.info("Generating predictions from zero-shot teacher model")
teacher_soft_preds = get_teacher_predictions(
teacher_args.teacher_name_or_path,
examples,
class_names,
teacher_args.hypothesis_template,
teacher_args.teacher_batch_size,
teacher_args.temperature,
teacher_args.multi_label,
data_args.use_fast_tokenizer,
training_args.no_cuda,
training_args.fp16,
)
dataset = Dataset.from_dict(
{
"text": examples,
"labels": teacher_soft_preds,
}
)
# 3. create student
logger.info("Initializing student model")
model = AutoModelForSequenceClassification.from_pretrained(
student_args.student_name_or_path, num_labels=len(class_names)
)
tokenizer = AutoTokenizer.from_pretrained(student_args.student_name_or_path, use_fast=data_args.use_fast_tokenizer)
model.config.id2label = dict(enumerate(class_names))
model.config.label2id = {label: i for i, label in enumerate(class_names)}
# 4. train student on teacher predictions
dataset = dataset.map(tokenizer, input_columns="text")
dataset.set_format("torch")
def compute_metrics(p, return_outputs=False):
preds = p.predictions.argmax(-1)
proxy_labels = p.label_ids.argmax(-1) # "label_ids" are actually distributions
return {"agreement": (preds == proxy_labels).mean().item()}
trainer = DistillationTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=dataset,
compute_metrics=compute_metrics,
)
if training_args.do_train:
logger.info("Training student model on teacher predictions")
trainer.train()
if training_args.do_eval:
agreement = trainer.evaluate(eval_dataset=dataset)["eval_agreement"]
logger.info(f"Agreement of student and teacher predictions: {agreement * 100:0.2f}%")
trainer.save_model()
if __name__ == "__main__":
main()
| transformers-main | examples/research_projects/zero-shot-distillation/distill_classifier.py |
#! /usr/bin/env python3
# coding=utf-8
# Copyright (c) 2019 Uber Technologies, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example command with bag of words:
python run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95
Example command with discriminator:
python run_pplm.py -D sentiment --class_label 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95
"""
import argparse
import json
from operator import add
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from pplm_classification_head import ClassificationHead
from torch import nn
from tqdm import trange
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from transformers.file_utils import cached_path
PPLM_BOW = 1
PPLM_DISCRIM = 2
PPLM_BOW_DISCRIM = 3
SMALL_CONST = 1e-15
BIG_CONST = 1e10
BAG_OF_WORDS_ARCHIVE_MAP = {
"legal": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt",
"military": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt",
"politics": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt",
"religion": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt",
"science": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt",
"space": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt",
"technology": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt",
}
DISCRIMINATOR_MODELS_PARAMS = {
"clickbait": {
"url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifier_head.pt",
"class_size": 2,
"embed_size": 1024,
"class_vocab": {"non_clickbait": 0, "clickbait": 1},
"default_class": 1,
"pretrained_model": "gpt2-medium",
},
"sentiment": {
"url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/SST_classifier_head.pt",
"class_size": 5,
"embed_size": 1024,
"class_vocab": {"very_positive": 2, "very_negative": 3},
"default_class": 3,
"pretrained_model": "gpt2-medium",
},
}
def top_k_filter(logits, k, probs=False):
"""
Masks everything but the k top entries as -infinity (1e10).
Used to mask logits such that e^-infinity -> 0 won't contribute to the
sum of the denominator.
"""
if k == 0:
return logits
else:
values = torch.topk(logits, k)[0]
batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
if probs:
return torch.where(logits < batch_mins, torch.ones_like(logits) * 0.0, logits)
return torch.where(logits < batch_mins, torch.ones_like(logits) * -BIG_CONST, logits)
def perturb_past(
past,
model,
last,
unpert_past=None,
unpert_logits=None,
accumulated_hidden=None,
grad_norms=None,
stepsize=0.01,
one_hot_bows_vectors=None,
classifier=None,
class_label=None,
loss_type=0,
num_iterations=3,
horizon_length=1,
window_length=0,
decay=False,
gamma=1.5,
kl_scale=0.01,
device="cuda",
):
# Generate inital perturbed past
grad_accumulator = [(np.zeros(p.shape).astype("float32")) for p in past]
if accumulated_hidden is None:
accumulated_hidden = 0
if decay:
decay_mask = torch.arange(0.0, 1.0 + SMALL_CONST, 1.0 / (window_length))[1:]
else:
decay_mask = 1.0
# TODO fix this comment (SUMANTH)
# Generate a mask is gradient perturbated is based on a past window
_, _, _, curr_length, _ = past[0].shape
if curr_length > window_length and window_length > 0:
ones_key_val_shape = tuple(past[0].shape[:-2]) + (window_length,) + tuple(past[0].shape[-1:])
zeros_key_val_shape = tuple(past[0].shape[:-2]) + (curr_length - window_length,) + tuple(past[0].shape[-1:])
ones_mask = torch.ones(ones_key_val_shape)
ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3)
ones_mask = ones_mask.permute(0, 1, 2, 4, 3)
window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)), dim=-2).to(device)
else:
window_mask = torch.ones_like(past[0]).to(device)
# accumulate perturbations for num_iterations
loss_per_iter = []
new_accumulated_hidden = None
for i in range(num_iterations):
print("Iteration ", i + 1)
curr_perturbation = [torch.from_numpy(p_).requires_grad_(True).to(device=device) for p_ in grad_accumulator]
# make sure p_.grad is not None
for p_ in curr_perturbation:
p_.retain_grad()
# Compute hidden using perturbed past
perturbed_past = list(map(add, past, curr_perturbation))
_, _, _, curr_length, _ = curr_perturbation[0].shape
lm_output = model(last, past_key_values=perturbed_past)
all_logits, all_hidden = lm_output["logits"], lm_output["hidden_states"]
hidden = all_hidden[-1]
new_accumulated_hidden = accumulated_hidden + torch.sum(hidden, dim=1).detach()
# TODO: Check the layer-norm consistency of this with trained discriminator (Sumanth)
logits = all_logits[:, -1, :]
probs = nn.functional.softmax(logits, dim=-1)
loss = 0.0
loss_list = []
if loss_type == PPLM_BOW or loss_type == PPLM_BOW_DISCRIM:
for one_hot_bow in one_hot_bows_vectors:
bow_logits = torch.mm(probs, torch.t(one_hot_bow))
bow_loss = -torch.log(torch.sum(bow_logits))
loss += bow_loss
loss_list.append(bow_loss)
print(" pplm_bow_loss:", loss.data.cpu().numpy())
if loss_type == 2 or loss_type == 3:
ce_loss = nn.CrossEntropyLoss()
# TODO why we need to do this assignment and not just using unpert_past? (Sumanth)
curr_unpert_past = unpert_past
curr_probs = torch.unsqueeze(probs, dim=1)
wte = model.resize_token_embeddings()
for _ in range(horizon_length):
inputs_embeds = torch.matmul(curr_probs, wte.weight.data)
lm_output = model(past_key_values=curr_unpert_past, inputs_embeds=inputs_embeds)
curr_all_logits, curr_unpert_past, curr_all_hidden = (
lm_output["logits"],
lm_output["past_key_values"],
lm_output["hidden_states"],
)
curr_logits = curr_all_logits[:, -1, :]
curr_probs = nn.functional.softmax(curr_logits, dim=-1)
curr_probs = torch.unsqueeze(curr_probs, dim=1)
curr_hidden = curr_all_hidden[-1]
new_accumulated_hidden = new_accumulated_hidden + torch.sum(curr_hidden, dim=1)
prediction = classifier(new_accumulated_hidden / (curr_length + 1 + horizon_length))
label = torch.tensor(prediction.shape[0] * [class_label], device=device, dtype=torch.long)
discrim_loss = ce_loss(prediction, label)
print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy())
loss += discrim_loss
loss_list.append(discrim_loss)
kl_loss = 0.0
if kl_scale > 0.0:
unpert_probs = nn.functional.softmax(unpert_logits[:, -1, :], dim=-1)
unpert_probs = unpert_probs + SMALL_CONST * (unpert_probs <= SMALL_CONST).float().to(device).detach()
correction = SMALL_CONST * (probs <= SMALL_CONST).float().to(device).detach()
corrected_probs = probs + correction.detach()
kl_loss = kl_scale * ((corrected_probs * (corrected_probs / unpert_probs).log()).sum())
print(" kl_loss", kl_loss.data.cpu().numpy())
loss += kl_loss
loss_per_iter.append(loss.data.cpu().numpy())
print(" pplm_loss", (loss - kl_loss).data.cpu().numpy())
# compute gradients
loss.backward()
# calculate gradient norms
if grad_norms is not None and loss_type == PPLM_BOW:
grad_norms = [
torch.max(grad_norms[index], torch.norm(p_.grad * window_mask))
for index, p_ in enumerate(curr_perturbation)
]
else:
grad_norms = [
(torch.norm(p_.grad * window_mask) + SMALL_CONST) for index, p_ in enumerate(curr_perturbation)
]
# normalize gradients
grad = [
-stepsize * (p_.grad * window_mask / grad_norms[index] ** gamma).data.cpu().numpy()
for index, p_ in enumerate(curr_perturbation)
]
# accumulate gradient
grad_accumulator = list(map(add, grad, grad_accumulator))
# reset gradients, just to make sure
for p_ in curr_perturbation:
p_.grad.data.zero_()
# removing past from the graph
new_past = []
for p_ in past:
new_past.append(p_.detach())
past = new_past
# apply the accumulated perturbations to the past
grad_accumulator = [torch.from_numpy(p_).requires_grad_(True).to(device=device) for p_ in grad_accumulator]
pert_past = list(map(add, past, grad_accumulator))
return pert_past, new_accumulated_hidden, grad_norms, loss_per_iter
def get_classifier(
name: Optional[str], class_label: Union[str, int], device: str
) -> Tuple[Optional[ClassificationHead], Optional[int]]:
if name is None:
return None, None
params = DISCRIMINATOR_MODELS_PARAMS[name]
classifier = ClassificationHead(class_size=params["class_size"], embed_size=params["embed_size"]).to(device)
if "url" in params:
resolved_archive_file = cached_path(params["url"])
elif "path" in params:
resolved_archive_file = params["path"]
else:
raise ValueError("Either url or path have to be specified in the discriminator model parameters")
classifier.load_state_dict(torch.load(resolved_archive_file, map_location=device))
classifier.eval()
if isinstance(class_label, str):
if class_label in params["class_vocab"]:
label_id = params["class_vocab"][class_label]
else:
label_id = params["default_class"]
print("class_label {} not in class_vocab".format(class_label))
print("available values are: {}".format(params["class_vocab"]))
print("using default class {}".format(label_id))
elif isinstance(class_label, int):
if class_label in set(params["class_vocab"].values()):
label_id = class_label
else:
label_id = params["default_class"]
print("class_label {} not in class_vocab".format(class_label))
print("available values are: {}".format(params["class_vocab"]))
print("using default class {}".format(label_id))
else:
label_id = params["default_class"]
return classifier, label_id
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str], tokenizer) -> List[List[List[int]]]:
bow_indices = []
for id_or_path in bag_of_words_ids_or_paths:
if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP:
filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path])
else:
filepath = id_or_path
with open(filepath, "r") as f:
words = f.read().strip().split("\n")
bow_indices.append([tokenizer.encode(word.strip(), add_prefix_space=True) for word in words])
return bow_indices
def build_bows_one_hot_vectors(bow_indices, tokenizer, device="cuda"):
if bow_indices is None:
return None
one_hot_bows_vectors = []
for single_bow in bow_indices:
single_bow = list(filter(lambda x: len(x) <= 1, single_bow))
single_bow = torch.tensor(single_bow).to(device)
num_words = single_bow.shape[0]
one_hot_bow = torch.zeros(num_words, tokenizer.vocab_size).to(device)
one_hot_bow.scatter_(1, single_bow, 1)
one_hot_bows_vectors.append(one_hot_bow)
return one_hot_bows_vectors
def full_text_generation(
model,
tokenizer,
context=None,
num_samples=1,
device="cuda",
bag_of_words=None,
discrim=None,
class_label=None,
length=100,
stepsize=0.02,
temperature=1.0,
top_k=10,
sample=False,
num_iterations=3,
grad_length=10000,
horizon_length=1,
window_length=0,
decay=False,
gamma=1.5,
gm_scale=0.9,
kl_scale=0.01,
repetition_penalty=1.0,
**kwargs,
):
classifier, class_id = get_classifier(discrim, class_label, device)
bow_indices = []
if bag_of_words:
bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), tokenizer)
if bag_of_words and classifier:
print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.")
loss_type = PPLM_BOW_DISCRIM
elif bag_of_words:
loss_type = PPLM_BOW
print("Using PPLM-BoW")
elif classifier is not None:
loss_type = PPLM_DISCRIM
print("Using PPLM-Discrim")
else:
raise Exception("Specify either a bag of words or a discriminator")
unpert_gen_tok_text, _, _ = generate_text_pplm(
model=model,
tokenizer=tokenizer,
context=context,
device=device,
length=length,
sample=sample,
perturb=False,
repetition_penalty=repetition_penalty,
)
if device == "cuda":
torch.cuda.empty_cache()
pert_gen_tok_texts = []
discrim_losses = []
losses_in_time = []
for i in range(num_samples):
pert_gen_tok_text, discrim_loss, loss_in_time = generate_text_pplm(
model=model,
tokenizer=tokenizer,
context=context,
device=device,
perturb=True,
bow_indices=bow_indices,
classifier=classifier,
class_label=class_id,
loss_type=loss_type,
length=length,
stepsize=stepsize,
temperature=temperature,
top_k=top_k,
sample=sample,
num_iterations=num_iterations,
grad_length=grad_length,
horizon_length=horizon_length,
window_length=window_length,
decay=decay,
gamma=gamma,
gm_scale=gm_scale,
kl_scale=kl_scale,
repetition_penalty=repetition_penalty,
)
pert_gen_tok_texts.append(pert_gen_tok_text)
if classifier is not None:
discrim_losses.append(discrim_loss.data.cpu().numpy())
losses_in_time.append(loss_in_time)
if device == "cuda":
torch.cuda.empty_cache()
return unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
def generate_text_pplm(
model,
tokenizer,
context=None,
past=None,
device="cuda",
perturb=True,
bow_indices=None,
classifier=None,
class_label=None,
loss_type=0,
length=100,
stepsize=0.02,
temperature=1.0,
top_k=10,
sample=False,
num_iterations=3,
grad_length=10000,
horizon_length=1,
window_length=0,
decay=False,
gamma=1.5,
gm_scale=0.9,
kl_scale=0.01,
repetition_penalty=1.0,
):
output_so_far = None
if context:
context_t = torch.tensor(context, device=device, dtype=torch.long)
while len(context_t.shape) < 2:
context_t = context_t.unsqueeze(0)
output_so_far = context_t
# collect one hot vectors for bags of words
one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices, tokenizer, device)
grad_norms = None
last = None
unpert_discrim_loss = 0
loss_in_time = []
for i in trange(length, ascii=True):
# Get past/probs for current output, except for last word
# Note that GPT takes 2 inputs: past + current_token
# run model forward to obtain unperturbed
if past is None and output_so_far is not None:
last = output_so_far[:, -1:]
if output_so_far.shape[1] > 1:
past = model(output_so_far[:, :-1])["past_key_values"]
lm_output = model(output_so_far)
unpert_logits, unpert_past, unpert_all_hidden = (
lm_output["logits"],
lm_output["past_key_values"],
lm_output["hidden_states"],
)
unpert_last_hidden = unpert_all_hidden[-1]
# check if we are abowe grad max length
if i >= grad_length:
current_stepsize = stepsize * 0
else:
current_stepsize = stepsize
# modify the past if necessary
if not perturb or num_iterations == 0:
pert_past = past
else:
accumulated_hidden = unpert_last_hidden[:, :-1, :]
accumulated_hidden = torch.sum(accumulated_hidden, dim=1)
if past is not None:
pert_past, _, grad_norms, loss_this_iter = perturb_past(
past,
model,
last,
unpert_past=unpert_past,
unpert_logits=unpert_logits,
accumulated_hidden=accumulated_hidden,
grad_norms=grad_norms,
stepsize=current_stepsize,
one_hot_bows_vectors=one_hot_bows_vectors,
classifier=classifier,
class_label=class_label,
loss_type=loss_type,
num_iterations=num_iterations,
horizon_length=horizon_length,
window_length=window_length,
decay=decay,
gamma=gamma,
kl_scale=kl_scale,
device=device,
)
loss_in_time.append(loss_this_iter)
else:
pert_past = past
lm_output = model(last, past_key_values=pert_past)
pert_logits, past = (
lm_output["logits"],
lm_output["past_key_values"],
)
pert_logits = pert_logits[:, -1, :] / temperature # + SMALL_CONST
for token_idx in set(output_so_far[0].tolist()):
if pert_logits[0, token_idx] < 0:
pert_logits[0, token_idx] *= repetition_penalty
else:
pert_logits[0, token_idx] /= repetition_penalty
pert_probs = nn.functional.softmax(pert_logits, dim=-1)
if classifier is not None:
ce_loss = nn.CrossEntropyLoss()
prediction = classifier(torch.mean(unpert_last_hidden, dim=1))
label = torch.tensor([class_label], device=device, dtype=torch.long)
unpert_discrim_loss = ce_loss(prediction, label)
print("unperturbed discrim loss", unpert_discrim_loss.data.cpu().numpy())
else:
unpert_discrim_loss = 0
# Fuse the modified model and original model
if perturb:
unpert_probs = nn.functional.softmax(unpert_logits[:, -1, :], dim=-1)
pert_probs = (pert_probs**gm_scale) * (unpert_probs ** (1 - gm_scale)) # + SMALL_CONST
pert_probs = top_k_filter(pert_probs, k=top_k, probs=True) # + SMALL_CONST
# rescale
if torch.sum(pert_probs) <= 1:
pert_probs = pert_probs / torch.sum(pert_probs)
else:
pert_logits = top_k_filter(pert_logits, k=top_k) # + SMALL_CONST
pert_probs = nn.functional.softmax(pert_logits, dim=-1)
# sample or greedy
if sample:
last = torch.multinomial(pert_probs, num_samples=1)
else:
_, last = torch.topk(pert_probs, k=1, dim=-1)
# update context/output_so_far appending the new token
output_so_far = last if output_so_far is None else torch.cat((output_so_far, last), dim=1)
print(tokenizer.decode(output_so_far.tolist()[0]))
return output_so_far, unpert_discrim_loss, loss_in_time
def set_generic_model_params(discrim_weights, discrim_meta):
if discrim_weights is None:
raise ValueError("When using a generic discriminator, discrim_weights need to be specified")
if discrim_meta is None:
raise ValueError("When using a generic discriminator, discrim_meta need to be specified")
with open(discrim_meta, "r") as discrim_meta_file:
meta = json.load(discrim_meta_file)
meta["path"] = discrim_weights
DISCRIMINATOR_MODELS_PARAMS["generic"] = meta
def run_pplm_example(
pretrained_model="gpt2-medium",
cond_text="",
uncond=False,
num_samples=1,
bag_of_words=None,
discrim=None,
discrim_weights=None,
discrim_meta=None,
class_label=-1,
length=100,
stepsize=0.02,
temperature=1.0,
top_k=10,
sample=False,
num_iterations=3,
grad_length=10000,
horizon_length=1,
window_length=0,
decay=False,
gamma=1.5,
gm_scale=0.9,
kl_scale=0.01,
seed=0,
no_cuda=False,
colorama=False,
repetition_penalty=1.0,
):
# set Random seed
torch.manual_seed(seed)
np.random.seed(seed)
# set the device
device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu"
if discrim == "generic":
set_generic_model_params(discrim_weights, discrim_meta)
if discrim is not None:
pretrained_model = DISCRIMINATOR_MODELS_PARAMS[discrim]["pretrained_model"]
print("discrim = {}, pretrained_model set to discriminator's = {}".format(discrim, pretrained_model))
# load pretrained model
model = GPT2LMHeadModel.from_pretrained(pretrained_model, output_hidden_states=True)
model.to(device)
model.eval()
# load tokenizer
tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model)
# Freeze GPT-2 weights
for param in model.parameters():
param.requires_grad = False
# figure out conditioning text
if uncond:
tokenized_cond_text = tokenizer.encode([tokenizer.bos_token])
else:
raw_text = cond_text
while not raw_text:
print("Did you forget to add `--cond_text`? ")
raw_text = input("Model prompt >>> ")
tokenized_cond_text = tokenizer.encode(tokenizer.bos_token + raw_text)
print("= Prefix of sentence =")
print(tokenizer.decode(tokenized_cond_text))
print()
# generate unperturbed and perturbed texts
# full_text_generation returns:
# unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
unpert_gen_tok_text, pert_gen_tok_texts, _, _ = full_text_generation(
model=model,
tokenizer=tokenizer,
context=tokenized_cond_text,
device=device,
num_samples=num_samples,
bag_of_words=bag_of_words,
discrim=discrim,
class_label=class_label,
length=length,
stepsize=stepsize,
temperature=temperature,
top_k=top_k,
sample=sample,
num_iterations=num_iterations,
grad_length=grad_length,
horizon_length=horizon_length,
window_length=window_length,
decay=decay,
gamma=gamma,
gm_scale=gm_scale,
kl_scale=kl_scale,
repetition_penalty=repetition_penalty,
)
# untokenize unperturbed text
unpert_gen_text = tokenizer.decode(unpert_gen_tok_text.tolist()[0])
print("=" * 80)
print("= Unperturbed generated text =")
print(unpert_gen_text)
print()
generated_texts = []
bow_word_ids = set()
if bag_of_words and colorama:
bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), tokenizer)
for single_bow_list in bow_indices:
# filtering all words in the list composed of more than 1 token
filtered = list(filter(lambda x: len(x) <= 1, single_bow_list))
# w[0] because we are sure w has only 1 item because previous fitler
bow_word_ids.update(w[0] for w in filtered)
# iterate through the perturbed texts
for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts):
try:
# untokenize unperturbed text
if colorama:
import colorama
pert_gen_text = ""
for word_id in pert_gen_tok_text.tolist()[0]:
if word_id in bow_word_ids:
pert_gen_text += "{}{}{}".format(
colorama.Fore.RED,
tokenizer.decode([word_id]),
colorama.Style.RESET_ALL,
)
else:
pert_gen_text += tokenizer.decode([word_id])
else:
pert_gen_text = tokenizer.decode(pert_gen_tok_text.tolist()[0])
print("= Perturbed generated text {} =".format(i + 1))
print(pert_gen_text)
print()
except Exception as exc:
print("Ignoring error while generating perturbed text:", exc)
# keep the prefix, perturbed seq, original seq for each index
generated_texts.append((tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text))
return
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--pretrained_model",
"-M",
type=str,
default="gpt2-medium",
help="pretrained model name or path to local checkpoint",
)
parser.add_argument("--cond_text", type=str, default="The lake", help="Prefix texts to condition on")
parser.add_argument("--uncond", action="store_true", help="Generate from end-of-text as prefix")
parser.add_argument(
"--num_samples",
type=int,
default=1,
help="Number of samples to generate from the modified latents",
)
parser.add_argument(
"--bag_of_words",
"-B",
type=str,
default=None,
help=(
"Bags of words used for PPLM-BoW. "
"Either a BOW id (see list in code) or a filepath. "
"Multiple BoWs separated by ;"
),
)
parser.add_argument(
"--discrim",
"-D",
type=str,
default=None,
choices=("clickbait", "sentiment", "toxicity", "generic"),
help="Discriminator to use",
)
parser.add_argument(
"--discrim_weights",
type=str,
default=None,
help="Weights for the generic discriminator",
)
parser.add_argument(
"--discrim_meta",
type=str,
default=None,
help="Meta information for the generic discriminator",
)
parser.add_argument(
"--class_label",
type=int,
default=-1,
help="Class label used for the discriminator",
)
parser.add_argument("--length", type=int, default=100)
parser.add_argument("--stepsize", type=float, default=0.02)
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_k", type=int, default=10)
parser.add_argument("--sample", action="store_true", help="Generate from end-of-text as prefix")
parser.add_argument("--num_iterations", type=int, default=3)
parser.add_argument("--grad_length", type=int, default=10000)
parser.add_argument(
"--window_length",
type=int,
default=0,
help="Length of past which is being optimized; 0 corresponds to infinite window length",
)
parser.add_argument(
"--horizon_length",
type=int,
default=1,
help="Length of future to optimize over",
)
parser.add_argument("--decay", action="store_true", help="whether to decay or not")
parser.add_argument("--gamma", type=float, default=1.5)
parser.add_argument("--gm_scale", type=float, default=0.9)
parser.add_argument("--kl_scale", type=float, default=0.01)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--no_cuda", action="store_true", help="no cuda")
parser.add_argument("--colorama", action="store_true", help="colors keywords")
parser.add_argument(
"--repetition_penalty",
type=float,
default=1.0,
help="Penalize repetition. More than 1.0 -> less repetition",
)
args = parser.parse_args()
run_pplm_example(**vars(args))
| transformers-main | examples/research_projects/pplm/run_pplm.py |
from torch import nn
class ClassificationHead(nn.Module):
"""Classification Head for transformer encoders"""
def __init__(self, class_size, embed_size):
super().__init__()
self.class_size = class_size
self.embed_size = embed_size
# self.mlp1 = nn.Linear(embed_size, embed_size)
# self.mlp2 = (nn.Linear(embed_size, class_size))
self.mlp = nn.Linear(embed_size, class_size)
def forward(self, hidden_state):
# hidden_state = nn.functional.relu(self.mlp1(hidden_state))
# hidden_state = self.mlp2(hidden_state)
logits = self.mlp(hidden_state)
return logits
| transformers-main | examples/research_projects/pplm/pplm_classification_head.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.