python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
#! /usr/bin/env python3 # coding=utf-8 # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import csv import json import math import time import numpy as np import torch import torch.optim as optim import torch.utils.data as data from nltk.tokenize.treebank import TreebankWordDetokenizer from pplm_classification_head import ClassificationHead from torch import nn from torchtext import data as torchtext_data from torchtext import datasets from tqdm import tqdm, trange from transformers import GPT2LMHeadModel, GPT2Tokenizer torch.manual_seed(0) np.random.seed(0) EPSILON = 1e-10 example_sentence = "This is incredible! I love it, this is the best chicken I have ever had." max_length_seq = 100 class Discriminator(nn.Module): """Transformer encoder followed by a Classification Head""" def __init__(self, class_size, pretrained_model="gpt2-medium", cached_mode=False, device="cpu"): super().__init__() self.tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model) self.encoder = GPT2LMHeadModel.from_pretrained(pretrained_model) self.embed_size = self.encoder.transformer.config.hidden_size self.classifier_head = ClassificationHead(class_size=class_size, embed_size=self.embed_size) self.cached_mode = cached_mode self.device = device def get_classifier(self): return self.classifier_head def train_custom(self): for param in self.encoder.parameters(): param.requires_grad = False self.classifier_head.train() def avg_representation(self, x): mask = x.ne(0).unsqueeze(2).repeat(1, 1, self.embed_size).float().to(self.device).detach() hidden = self.encoder.transformer(x)["last_hidden_state"] masked_hidden = hidden * mask avg_hidden = torch.sum(masked_hidden, dim=1) / (torch.sum(mask, dim=1).detach() + EPSILON) return avg_hidden def forward(self, x): if self.cached_mode: avg_hidden = x.to(self.device) else: avg_hidden = self.avg_representation(x.to(self.device)) logits = self.classifier_head(avg_hidden) probs = nn.functional.log_softmax(logits, dim=-1) return probs class Dataset(data.Dataset): def __init__(self, X, y): """Reads source and target sequences from txt files.""" self.X = X self.y = y def __len__(self): return len(self.X) def __getitem__(self, index): """Returns one data pair (source and target).""" data = {} data["X"] = self.X[index] data["y"] = self.y[index] return data def collate_fn(data): def pad_sequences(sequences): lengths = [len(seq) for seq in sequences] padded_sequences = torch.zeros(len(sequences), max(lengths)).long() # padding value = 0 for i, seq in enumerate(sequences): end = lengths[i] padded_sequences[i, :end] = seq[:end] return padded_sequences, lengths item_info = {} for key in data[0].keys(): item_info[key] = [d[key] for d in data] x_batch, _ = pad_sequences(item_info["X"]) y_batch = torch.tensor(item_info["y"], dtype=torch.long) return x_batch, y_batch def cached_collate_fn(data): item_info = {} for key in data[0].keys(): item_info[key] = [d[key] for d in data] x_batch = torch.cat(item_info["X"], 0) y_batch = torch.tensor(item_info["y"], dtype=torch.long) return x_batch, y_batch def train_epoch(data_loader, discriminator, optimizer, epoch=0, log_interval=10, device="cpu"): samples_so_far = 0 discriminator.train_custom() for batch_idx, (input_t, target_t) in enumerate(data_loader): input_t, target_t = input_t.to(device), target_t.to(device) optimizer.zero_grad() output_t = discriminator(input_t) loss = nn.functional.nll_loss(output_t, target_t) loss.backward(retain_graph=True) optimizer.step() samples_so_far += len(input_t) if batch_idx % log_interval == 0: print( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch + 1, samples_so_far, len(data_loader.dataset), 100 * samples_so_far / len(data_loader.dataset), loss.item(), ) ) def evaluate_performance(data_loader, discriminator, device="cpu"): discriminator.eval() test_loss = 0 correct = 0 with torch.no_grad(): for input_t, target_t in data_loader: input_t, target_t = input_t.to(device), target_t.to(device) output_t = discriminator(input_t) # sum up batch loss test_loss += nn.functional.nll_loss(output_t, target_t, reduction="sum").item() # get the index of the max log-probability pred_t = output_t.argmax(dim=1, keepdim=True) correct += pred_t.eq(target_t.view_as(pred_t)).sum().item() test_loss /= len(data_loader.dataset) print( "Performance on test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format( test_loss, correct, len(data_loader.dataset), 100.0 * correct / len(data_loader.dataset) ) ) def predict(input_sentence, model, classes, cached=False, device="cpu"): input_t = model.tokenizer.encode(input_sentence) input_t = torch.tensor([input_t], dtype=torch.long, device=device) if cached: input_t = model.avg_representation(input_t) log_probs = model(input_t).data.cpu().numpy().flatten().tolist() print("Input sentence:", input_sentence) print( "Predictions:", ", ".join("{}: {:.4f}".format(c, math.exp(log_prob)) for c, log_prob in zip(classes, log_probs)), ) def get_cached_data_loader(dataset, batch_size, discriminator, shuffle=False, device="cpu"): data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, collate_fn=collate_fn) xs = [] ys = [] for batch_idx, (x, y) in enumerate(tqdm(data_loader, ascii=True)): with torch.no_grad(): x = x.to(device) avg_rep = discriminator.avg_representation(x).cpu().detach() avg_rep_list = torch.unbind(avg_rep.unsqueeze(1)) xs += avg_rep_list ys += y.cpu().numpy().tolist() data_loader = torch.utils.data.DataLoader( dataset=Dataset(xs, ys), batch_size=batch_size, shuffle=shuffle, collate_fn=cached_collate_fn ) return data_loader def train_discriminator( dataset, dataset_fp=None, pretrained_model="gpt2-medium", epochs=10, batch_size=64, log_interval=10, save_model=False, cached=False, no_cuda=False, ): device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu" print("Preprocessing {} dataset...".format(dataset)) start = time.time() if dataset == "SST": idx2class = ["positive", "negative", "very positive", "very negative", "neutral"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) text = torchtext_data.Field() label = torchtext_data.Field(sequential=False) train_data, val_data, test_data = datasets.SST.splits( text, label, fine_grained=True, train_subtrees=True, ) x = [] y = [] for i in trange(len(train_data), ascii=True): seq = TreebankWordDetokenizer().detokenize(vars(train_data[i])["text"]) seq = discriminator.tokenizer.encode(seq) seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) x.append(seq) y.append(class2idx[vars(train_data[i])["label"]]) train_dataset = Dataset(x, y) test_x = [] test_y = [] for i in trange(len(test_data), ascii=True): seq = TreebankWordDetokenizer().detokenize(vars(test_data[i])["text"]) seq = discriminator.tokenizer.encode(seq) seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) test_x.append(seq) test_y.append(class2idx[vars(test_data[i])["label"]]) test_dataset = Dataset(test_x, test_y) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 2, } elif dataset == "clickbait": idx2class = ["non_clickbait", "clickbait"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) with open("datasets/clickbait/clickbait_train_prefix.txt") as f: data = [] for i, line in enumerate(f): try: data.append(eval(line)) except Exception: print("Error evaluating line {}: {}".format(i, line)) continue x = [] y = [] with open("datasets/clickbait/clickbait_train_prefix.txt") as f: for i, line in enumerate(tqdm(f, ascii=True)): try: d = eval(line) seq = discriminator.tokenizer.encode(d["text"]) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(d["label"]) except Exception: print("Error evaluating / tokenizing line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 1, } elif dataset == "toxic": idx2class = ["non_toxic", "toxic"] class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) x = [] y = [] with open("datasets/toxic/toxic_train.txt") as f: for i, line in enumerate(tqdm(f, ascii=True)): try: d = eval(line) seq = discriminator.tokenizer.encode(d["text"]) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(int(np.sum(d["label"]) > 0)) except Exception: print("Error evaluating / tokenizing line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 0, } else: # if dataset == "generic": # This assumes the input dataset is a TSV with the following structure: # class \t text if dataset_fp is None: raise ValueError("When generic dataset is selected, dataset_fp needs to be specified aswell.") classes = set() with open(dataset_fp) as f: csv_reader = csv.reader(f, delimiter="\t") for row in tqdm(csv_reader, ascii=True): if row: classes.add(row[0]) idx2class = sorted(classes) class2idx = {c: i for i, c in enumerate(idx2class)} discriminator = Discriminator( class_size=len(idx2class), pretrained_model=pretrained_model, cached_mode=cached, device=device ).to(device) x = [] y = [] with open(dataset_fp) as f: csv_reader = csv.reader(f, delimiter="\t") for i, row in enumerate(tqdm(csv_reader, ascii=True)): if row: label = row[0] text = row[1] try: seq = discriminator.tokenizer.encode(text) if len(seq) < max_length_seq: seq = torch.tensor([50256] + seq, device=device, dtype=torch.long) else: print("Line {} is longer than maximum length {}".format(i, max_length_seq)) continue x.append(seq) y.append(class2idx[label]) except Exception: print("Error tokenizing line {}, skipping it".format(i)) pass full_dataset = Dataset(x, y) train_size = int(0.9 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size]) discriminator_meta = { "class_size": len(idx2class), "embed_size": discriminator.embed_size, "pretrained_model": pretrained_model, "class_vocab": class2idx, "default_class": 0, } end = time.time() print("Preprocessed {} data points".format(len(train_dataset) + len(test_dataset))) print("Data preprocessing took: {:.3f}s".format(end - start)) if cached: print("Building representation cache...") start = time.time() train_loader = get_cached_data_loader(train_dataset, batch_size, discriminator, shuffle=True, device=device) test_loader = get_cached_data_loader(test_dataset, batch_size, discriminator, device=device) end = time.time() print("Building representation cache took: {:.3f}s".format(end - start)) else: train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn ) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, collate_fn=collate_fn) if save_model: with open("{}_classifier_head_meta.json".format(dataset), "w") as meta_file: json.dump(discriminator_meta, meta_file) optimizer = optim.Adam(discriminator.parameters(), lr=0.0001) for epoch in range(epochs): start = time.time() print("\nEpoch", epoch + 1) train_epoch( discriminator=discriminator, data_loader=train_loader, optimizer=optimizer, epoch=epoch, log_interval=log_interval, device=device, ) evaluate_performance(data_loader=test_loader, discriminator=discriminator, device=device) end = time.time() print("Epoch took: {:.3f}s".format(end - start)) print("\nExample prediction") predict(example_sentence, discriminator, idx2class, cached=cached, device=device) if save_model: # torch.save(discriminator.state_dict(), # "{}_discriminator_{}.pt".format( # args.dataset, epoch + 1 # )) torch.save( discriminator.get_classifier().state_dict(), "{}_classifier_head_epoch_{}.pt".format(dataset, epoch + 1), ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Train a discriminator on top of GPT-2 representations") parser.add_argument( "--dataset", type=str, default="SST", choices=("SST", "clickbait", "toxic", "generic"), help=( "dataset to train the discriminator on." "In case of generic, the dataset is expected" "to be a TSBV file with structure: class \\t text" ), ) parser.add_argument( "--dataset_fp", type=str, default="", help="File path of the dataset to use. Needed only in case of generic datadset", ) parser.add_argument( "--pretrained_model", type=str, default="gpt2-medium", help="Pretrained model to use as encoder" ) parser.add_argument("--epochs", type=int, default=10, metavar="N", help="Number of training epochs") parser.add_argument( "--batch_size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)" ) parser.add_argument( "--log_interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--save_model", action="store_true", help="whether to save the model") parser.add_argument("--cached", action="store_true", help="whether to cache the input representations") parser.add_argument("--no_cuda", action="store_true", help="use to turn off cuda") args = parser.parse_args() train_discriminator(**(vars(args)))
transformers-main
examples/research_projects/pplm/run_pplm_discrim_train.py
from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import time import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange import transformers from src.modeling_highway_bert import DeeBertForSequenceClassification from src.modeling_highway_roberta import DeeRobertaForSequenceClassification from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertTokenizer, RobertaConfig, RobertaTokenizer, get_linear_schedule_with_warmup, ) from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes as output_modes from transformers import glue_processors as processors from transformers.trainer_utils import is_main_process try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CLASSES = { "bert": (BertConfig, DeeBertForSequenceClassification, BertTokenizer), "roberta": (RobertaConfig, DeeRobertaForSequenceClassification, RobertaTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def get_wanted_result(result): if "spearmanr" in result: print_result = result["spearmanr"] elif "f1" in result: print_result = result["f1"] elif "mcc" in result: print_result = result["mcc"] elif "acc" in result: print_result = result["acc"] else: raise ValueError("Primary metric unclear in the results") return print_result def train(args, train_dataset, model, tokenizer, train_highway=False): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] if train_highway: optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if ("highway" in n) and (not any(nd in n for nd in no_decay)) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if ("highway" in n) and (any(nd in n for nd in no_decay)) ], "weight_decay": 0.0, }, ] else: optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if ("highway" not in n) and (not any(nd in n for nd in no_decay)) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if ("highway" not in n) and (any(nd in n for nd in no_decay)) ], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility (even between python 2 and 3) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet"] else None ) # XLM, DistilBERT and RoBERTa don't use segment_ids inputs["train_highway"] = train_highway outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix="", output_layer=-1, eval_highway=False): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1: model = nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None exit_layer_counter = {(i + 1): 0 for i in range(model.num_layers)} st = time.time() for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet"] else None ) # XLM, DistilBERT and RoBERTa don't use segment_ids if output_layer >= 0: inputs["output_layer"] = output_layer outputs = model(**inputs) if eval_highway: exit_layer_counter[outputs[-1]] += 1 tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_time = time.time() - st logger.info("Eval time: {}".format(eval_time)) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(eval_task, preds, out_label_ids) results.update(result) if eval_highway: logger.info("Exit layer counter: {}".format(exit_layer_counter)) actual_cost = sum([l * c for l, c in exit_layer_counter.items()]) full_cost = len(eval_dataloader) * model.num_layers logger.info("Expected saving: {}".format(actual_cost / full_cost)) if args.early_exit_entropy >= 0: save_fname = ( args.plot_data_dir + "/" + args.model_name_or_path[2:] + "/entropy_{}.npy".format(args.early_exit_entropy) ) if not os.path.exists(os.path.dirname(save_fname)): os.makedirs(os.path.dirname(save_fname)) print_result = get_wanted_result(result) np.save(save_fname, np.array([exit_layer_counter, eval_time, actual_cost / full_cost, print_result])) logger.info("Entropy={}\tResult={:.2f}".format(args.early_exit_entropy, 100 * print_result)) output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return results def load_and_cache_examples(args, task, tokenizer, evaluate=False): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() output_mode = output_modes[task] # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), str(task), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta"]: # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] examples = ( processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) ) features = convert_examples_to_features( examples, tokenizer, label_list=label_list, max_length=args.max_seq_length, output_mode=output_mode, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) if features[0].token_type_ids is None: # For RoBERTa (a potential bug!) all_token_type_ids = torch.tensor([[0] * args.max_seq_length for f in features], dtype=torch.long) else: all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif output_mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name.", ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--plot_data_dir", default="./plotting/", type=str, required=False, help="The directory to store data for plotting figures.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--max_seq_length", default=128, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--eval_each_highway", action="store_true", help="Set this flag to evaluate each highway.") parser.add_argument( "--eval_after_first_stage", action="store_true", help="Set this flag to evaluate after training only bert (not highway).", ) parser.add_argument("--eval_highway", action="store_true", help="Set this flag if it's evaluating highway models") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--early_exit_entropy", default=-1, type=float, help="Entropy threshold for early exit.") parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed set_seed(args) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.model_type == "bert": model.bert.encoder.set_early_exit_entropy(args.early_exit_entropy) model.bert.init_highway_pooler() elif args.model_type == "roberta": model.roberta.encoder.set_early_exit_entropy(args.early_exit_entropy) model.roberta.init_highway_pooler() else: raise NotImplementedError() if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) if args.eval_after_first_stage: result = evaluate(args, model, tokenizer, prefix="") print_result = get_wanted_result(result) train(args, train_dataset, model, tokenizer, train_highway=True) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = [ os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" model = model_class.from_pretrained(checkpoint) if args.model_type == "bert": model.bert.encoder.set_early_exit_entropy(args.early_exit_entropy) elif args.model_type == "roberta": model.roberta.encoder.set_early_exit_entropy(args.early_exit_entropy) else: raise NotImplementedError() model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix, eval_highway=args.eval_highway) print_result = get_wanted_result(result) logger.info("Result: {}".format(print_result)) if args.eval_each_highway: last_layer_results = print_result each_layer_results = [] for i in range(model.num_layers): logger.info("\n") _result = evaluate( args, model, tokenizer, prefix=prefix, output_layer=i, eval_highway=args.eval_highway ) if i + 1 < model.num_layers: each_layer_results.append(get_wanted_result(_result)) each_layer_results.append(last_layer_results) save_fname = args.plot_data_dir + "/" + args.model_name_or_path[2:] + "/each_layer.npy" if not os.path.exists(os.path.dirname(save_fname)): os.makedirs(os.path.dirname(save_fname)) np.save(save_fname, np.array(each_layer_results)) info_str = "Score of each layer:" for i in range(model.num_layers): info_str += " {:.2f}".format(100 * each_layer_results[i]) logger.info(info_str) result = {k + "_{}".format(global_step): v for k, v in result.items()} results.update(result) return results if __name__ == "__main__": main()
transformers-main
examples/research_projects/deebert/run_glue_deebert.py
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() def get_setup_file(): parser = argparse.ArgumentParser() parser.add_argument("-f") args = parser.parse_args() return args.f class DeeBertTests(TestCasePlus): def setup(self) -> None: stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) def run_and_check(self, args): n_gpu = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0, "run_glue_deebert.py") with patch.object(sys, "argv", args): result = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(value, 0.666) @slow @require_torch_non_multi_gpu def test_glue_deebert_train(self): train_args = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(train_args) eval_args = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(eval_args) entropy_eval_args = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(entropy_eval_args)
transformers-main
examples/research_projects/deebert/test_glue_deebert.py
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). ", ROBERTA_START_DOCSTRING, ) class DeeRobertaModel(DeeBertModel): config_class = RobertaConfig base_model_prefix = "roberta" def __init__(self, config): super().__init__(config) self.embeddings = RobertaEmbeddings(config) self.init_weights() @add_start_docstrings( """RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. """, ROBERTA_START_DOCSTRING, ) class DeeRobertaForSequenceClassification(BertPreTrainedModel): config_class = RobertaConfig base_model_prefix = "roberta" def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.num_layers = config.num_hidden_layers self.roberta = DeeRobertaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) @add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_layer=-1, train_highway=False, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.RobertaConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. highway_exits (:obj:`tuple(tuple(torch.Tensor))`: Tuple of each early exit's results (total length: number of layers) Each tuple is again, a tuple of length 2 - the first entry is logits and the second entry is hidden states. """ exit_layer = self.num_layers try: outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: outputs = e.message exit_layer = e.exit_layer logits = outputs[0] if not self.training: original_entropy = entropy(logits) highway_entropy = [] highway_logits_all = [] if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) # work with highway exits highway_losses = [] for highway_exit in outputs[-1]: highway_logits = highway_exit[0] if not self.training: highway_logits_all.append(highway_logits) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() highway_loss = loss_fct(highway_logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() highway_loss = loss_fct(highway_logits.view(-1, self.num_labels), labels.view(-1)) highway_losses.append(highway_loss) if train_highway: outputs = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: outputs = (loss,) + outputs if not self.training: outputs = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: outputs = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
transformers-main
examples/research_projects/deebert/src/modeling_highway_roberta.py
transformers-main
examples/research_projects/deebert/src/__init__.py
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def entropy(x): """Calculate entropy of a pre-softmax logit Tensor""" exp_x = torch.exp(x) A = torch.sum(exp_x, dim=1) # sum of exp(x_i) B = torch.sum(x * exp_x, dim=1) # sum of x_i * exp(x_i) return torch.log(A) - B / A class DeeBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) self.highway = nn.ModuleList([BertHighway(config) for _ in range(config.num_hidden_layers)]) self.early_exit_entropy = [-1 for _ in range(config.num_hidden_layers)] def set_early_exit_entropy(self, x): if (type(x) is float) or (type(x) is int): for i in range(len(self.early_exit_entropy)): self.early_exit_entropy[i] = x else: self.early_exit_entropy = x def init_highway_pooler(self, pooler): loaded_model = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name]) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, ): all_hidden_states = () all_attentions = () all_highway_exits = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask ) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) current_outputs = (hidden_states,) if self.output_hidden_states: current_outputs = current_outputs + (all_hidden_states,) if self.output_attentions: current_outputs = current_outputs + (all_attentions,) highway_exit = self.highway[i](current_outputs) # logits, pooled_output if not self.training: highway_logits = highway_exit[0] highway_entropy = entropy(highway_logits) highway_exit = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy all_highway_exits = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: new_output = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(new_output, i + 1) else: all_highway_exits = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) outputs = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). ", BERT_START_DOCSTRING, ) class DeeBertModel(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = DeeBertEncoder(config) self.pooler = BertPooler(config) self.init_weights() def init_highway_pooler(self): self.encoder.init_highway_pooler(self.pooler) def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, ): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. highway_exits (:obj:`tuple(tuple(torch.Tensor))`: Tuple of each early exit's results (total length: number of layers) Each tuple is again, a tuple of length 2 - the first entry is logits and the second entry is hidden states. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] encoder_extended_attention_mask = encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype ) # fp16 compatibility encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class HighwayException(Exception): def __init__(self, message, exit_layer): self.message = message self.exit_layer = exit_layer # start from 1! class BertHighway(nn.Module): """A module to provide a shortcut from (the output of one non-final BertLayer in BertEncoder) to (cross-entropy computation in BertForSequenceClassification) """ def __init__(self, config): super().__init__() self.pooler = BertPooler(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) def forward(self, encoder_outputs): # Pooler pooler_input = encoder_outputs[0] pooler_output = self.pooler(pooler_input) # "return" pooler_output # BertModel bmodel_output = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification pooled_output = bmodel_output[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """, BERT_START_DOCSTRING, ) class DeeBertForSequenceClassification(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.num_layers = config.num_hidden_layers self.bert = DeeBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_layer=-1, train_highway=False, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. highway_exits (:obj:`tuple(tuple(torch.Tensor))`: Tuple of each early exit's results (total length: number of layers) Each tuple is again, a tuple of length 2 - the first entry is logits and the second entry is hidden states. """ exit_layer = self.num_layers try: outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: outputs = e.message exit_layer = e.exit_layer logits = outputs[0] if not self.training: original_entropy = entropy(logits) highway_entropy = [] highway_logits_all = [] if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) # work with highway exits highway_losses = [] for highway_exit in outputs[-1]: highway_logits = highway_exit[0] if not self.training: highway_logits_all.append(highway_logits) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() highway_loss = loss_fct(highway_logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() highway_loss = loss_fct(highway_logits.view(-1, self.num_labels), labels.view(-1)) highway_losses.append(highway_loss) if train_highway: outputs = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: outputs = (loss,) + outputs if not self.training: outputs = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: outputs = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
transformers-main
examples/research_projects/deebert/src/modeling_highway_bert.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The Microsoft and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for tapex on table-based question answering tasks. Adapted from script: https://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization.py """ import logging import os import sys from collections import defaultdict from dataclasses import dataclass, field from functools import partial from typing import List, Optional import nltk # Here to have a nice missing dependency error message early on import numpy as np import pandas as pd from datasets import load_dataset from filelock import FileLock import transformers from transformers import ( AutoConfig, BartForConditionalGeneration, DataCollatorForSeq2Seq, HfArgumentParser, Seq2SeqTrainer, Seq2SeqTrainingArguments, TapexTokenizer, set_seed, ) from transformers.file_utils import is_offline_mode from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") logger = logging.getLogger(__name__) try: nltk.data.find("tokenizers/punkt") except (LookupError, OSError): if is_offline_mode(): raise LookupError( "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" ) with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": ( "Pretrained tokenizer name or path if not the same as model_name. " "By default we use BART-large tokenizer for TAPEX-large." ) }, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default="wikitablequestions", metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."} ) validation_file: Optional[str] = field( default=None, metadata={ "help": ( "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." ) }, ) test_file: Optional[str] = field( default=None, metadata={ "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_source_length: Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) val_max_target_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to model maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) num_beams: Optional[int] = field( default=None, metadata={ "help": ( "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " "which is used during ``evaluate`` and ``predict``." ) }, ) ignore_pad_token_for_loss: bool = field( default=True, metadata={ "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." }, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if self.val_max_target_length is None: self.val_max_target_length = self.max_target_length def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # IMPORTANT: the initial BART model's decoding is penalized by no_repeat_ngram_size, and thus # we should disable it here to avoid problematic generation config.no_repeat_ngram_size = 0 config.max_length = 1024 config.early_stopping = False # load tapex tokenizer tokenizer = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, add_prefix_space=True, ) # load Bart based Tapex model (default tapex-large) model = BartForConditionalGeneration.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") # Preprocessing the datasets. # We need to tokenize inputs and targets. if training_args.do_train: column_names = datasets["train"].column_names elif training_args.do_eval: column_names = datasets["validation"].column_names elif training_args.do_predict: column_names = datasets["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return # Temporarily set max_target_length for training. max_target_length = data_args.max_target_length padding = "max_length" if data_args.pad_to_max_length else False if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): logger.warning( "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for" f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" ) def preprocess_tableqa_function(examples, is_training=False): """ The is_training FLAG is used to identify if we could use the supervision to truncate the table content if it is required. """ questions = [question.lower() for question in examples["question"]] example_tables = examples["table"] tables = [ pd.DataFrame.from_records(example_table["rows"], columns=example_table["header"]) for example_table in example_tables ] # using wikitablequestion's answer set answers = examples["answers"] # IMPORTANT: we cannot pass by answers during evaluation, answers passed during training are used to # truncate large tables in the train set! if is_training: model_inputs = tokenizer( table=tables, query=questions, answer=answers, max_length=data_args.max_source_length, padding=padding, truncation=True, ) else: model_inputs = tokenizer( table=tables, query=questions, max_length=data_args.max_source_length, padding=padding, truncation=True ) labels = tokenizer( answer=[", ".join(answer) for answer in answers], max_length=max_target_length, padding=padding, truncation=True, ) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and data_args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs # in training, we can use the answer as extra information to truncate large tables preprocess_tableqa_function_training = partial(preprocess_tableqa_function, is_training=True) if training_args.do_train: if "train" not in datasets: raise ValueError("--do_train requires a train dataset") train_dataset = datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) train_dataset = train_dataset.map( preprocess_tableqa_function_training, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: max_target_length = data_args.val_max_target_length if "validation" not in datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = datasets["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) eval_dataset = eval_dataset.map( preprocess_tableqa_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_predict: max_target_length = data_args.val_max_target_length if "test" not in datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = datasets["test"] if data_args.max_predict_samples is not None: predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) predict_dataset = predict_dataset.map( preprocess_tableqa_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if training_args.fp16 else None, ) def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [label.strip() for label in labels] return preds, labels def compute_metrics(eval_preds): preds, labels = eval_preds if isinstance(preds, tuple): preds = preds[0] decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) if data_args.ignore_pad_token_for_loss: # Replace -100 in the labels as we can't decode them. labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) delimiter = ", " # define example evaluation def evaluate_example(predict_str: str, ground_str: str): predict_spans = predict_str.split(delimiter) ground_spans = ground_str.split(delimiter) predict_values = defaultdict(lambda: 0) ground_values = defaultdict(lambda: 0) for span in predict_spans: try: predict_values[float(span)] += 1 except ValueError: predict_values[span.strip()] += 1 for span in ground_spans: try: ground_values[float(span)] += 1 except ValueError: ground_values[span.strip()] += 1 _is_correct = predict_values == ground_values return _is_correct def get_denotation_accuracy(predictions: List[str], references: List[str]): assert len(predictions) == len(references) correct_num = 0 for predict_str, ground_str in zip(predictions, references): is_correct = evaluate_example(predict_str.lower(), ground_str.lower()) if is_correct: correct_num += 1 return correct_num / len(predictions) accuracy = get_denotation_accuracy(decoded_preds, decoded_labels) result = {"denotation_accuracy": accuracy} return result # Initialize our Trainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics if training_args.predict_with_generate else None, ) if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate( max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval" ) max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.do_predict: logger.info("*** Predict ***") predict_results = trainer.predict( predict_dataset, metric_key_prefix="predict", max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, ) metrics = predict_results.metrics max_predict_samples = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) ) metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) trainer.log_metrics("predict", metrics) trainer.save_metrics("predict", metrics) if trainer.is_world_process_zero(): if training_args.predict_with_generate: predictions = tokenizer.batch_decode( predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True ) predictions = [pred.strip() for pred in predictions] output_prediction_file = os.path.join(training_args.output_dir, "tapex_predictions.txt") with open(output_prediction_file, "w") as writer: writer.write("\n".join(predictions)) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers-main
examples/research_projects/tapex/run_wikitablequestions_with_tapex.py
# coding=utf-8 # Copyright 2022 The Microsoft, The Google and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import enum import functools import math import re # The following script is adapted from the script of TaPas. # Original: https://github.com/google-research/tapas/master/wikisql_utils.py from typing import Any, List, Text EMPTY_ANSWER = "none" EMPTY_ANSWER_AGG = "none" def _split_thousands(delimiter, value): split = value.split(delimiter) return len(split) > 1 and any((len(x) == 3 for x in split)) def convert_to_float(value): """Converts value to a float using a series of increasingly complex heuristics. Args: value: object that needs to be converted. Allowed types include float/int/strings. Returns: A float interpretation of value. Raises: ValueError if the float conversion of value fails. """ if isinstance(value, float): return value if isinstance(value, int): return float(value) if not isinstance(value, str): raise ValueError("Argument value is not a string. Can't parse it as float") sanitized = value try: # Example: 1,000.7 if "." in sanitized and "," in sanitized: return float(sanitized.replace(",", "")) # 1,000 if "," in sanitized and _split_thousands(",", sanitized): return float(sanitized.replace(",", "")) # 5,5556 if "," in sanitized and sanitized.count(",") == 1 and not _split_thousands(",", sanitized): return float(sanitized.replace(",", ".")) # 0.0.0.1 if sanitized.count(".") > 1: return float(sanitized.replace(".", "")) # 0,0,0,1 if sanitized.count(",") > 1: return float(sanitized.replace(",", "")) return float(sanitized) except ValueError: # Avoid adding the sanitized value in the error message. raise ValueError("Unable to convert value to float") def _normalize_float(answer): if answer is None: return None try: value = convert_to_float(answer) if isinstance(value, float) and math.isnan(value): return None return value except ValueError: return answer.lower() _TYPE_CONVERTER = { "text": lambda x: x, "real": convert_to_float, } class _Aggregation(enum.Enum): """Aggregations as defined by WikiSQL. Indexes match the data.""" NONE = 0 MAX = 1 MIN = 2 COUNT = 3 SUM = 4 AVERAGE = 5 class _Operator(enum.Enum): """The boolean operators used by WikiSQL. Indexes match the data.""" EQUALS = 0 GREATER = 1 LESSER = 2 @dataclasses.dataclass class _Condition: """Represents an SQL where clauses (e.g A = "a" or B > 5).""" column: Text operator: _Operator cmp_value: Any _TOKENIZER = re.compile(r"\w+|[^\w\s]+", re.UNICODE | re.MULTILINE | re.DOTALL) def _normalize_for_match(x): return list(_TOKENIZER.findall(x.lower())) def _compare(operator, src, tgt): if operator == _Operator.EQUALS: return src == tgt elif operator == _Operator.GREATER: return src > tgt elif operator == _Operator.LESSER: return src < tgt raise ValueError(f"Unknown operator: {operator}") def _parse_value(table, column, cell_value): """Convert numeric values to floats and keeps everything else as string.""" types = table["types"] return _TYPE_CONVERTER[types[column]](cell_value) def _is_string(x): return isinstance(x, str) def _respect_conditions(table, row, conditions): """True if 'row' satisfies all 'conditions'.""" for cond in conditions: table_value = row[cond.column] cmp_value = _parse_value(table, cond.column, cond.cmp_value) if _is_string(table_value) and _is_string(cmp_value): table_value = _normalize_for_match(table_value) cmp_value = _normalize_for_match(cmp_value) if not isinstance(table_value, type(cmp_value)): raise ValueError("Type difference {} != {}".format(type(table_value), type(cmp_value))) if not _compare(cond.operator, table_value, cmp_value): return False return True def _get_float_answer(table, answer_coordinates, aggregation_op): """Applies operation to produce reference float answer.""" if not answer_coordinates: if aggregation_op == _Aggregation.COUNT: return 0.0 else: return EMPTY_ANSWER_AGG # Count can support non numeric answers. if aggregation_op == _Aggregation.COUNT: return float(len(answer_coordinates)) # If we have just one answer, if float returns it or try a conversion. values = [table["rows"][i][j] for (i, j) in answer_coordinates] if len(answer_coordinates) == 1: try: return convert_to_float(values[0]) except ValueError as e: if aggregation_op != _Aggregation.NONE: raise e if aggregation_op == _Aggregation.NONE: return None # Other aggregation only support numeric values. Bail out if we have strings. if not all((isinstance(v, (int, float)) for v in values)): return None if aggregation_op == _Aggregation.SUM: return float(sum(values)) elif aggregation_op == _Aggregation.AVERAGE: return sum(values) / len(answer_coordinates) else: raise ValueError(f"Unknown aggregation: {aggregation_op}") def _get_answer_coordinates(table, sql_query): """Retrieves references coordinates by executing SQL.""" # MAX and MIN are automatically supported by the model. aggregation_op_index = sql_query["agg"] if aggregation_op_index >= 3: aggregation_op = _Aggregation(aggregation_op_index) else: aggregation_op = _Aggregation.NONE target_column = sql_query["sel"] conditions = [ _Condition(column, _Operator(operator), cmp_value) for column, operator, cmp_value in zip( sql_query["conds"]["column_index"], sql_query["conds"]["operator_index"], sql_query["conds"]["condition"] ) ] indices = [] for row in range(len(table["rows"])): if _respect_conditions(table, table["rows"][row], conditions): indices.append((row, target_column)) if not indices: return [], aggregation_op if len(indices) == 1: return indices, aggregation_op # Parsing of MIN/MAX. if aggregation_op_index in (1, 2): operators = {2: min, 1: max} values = [(table["rows"][i][j], index) for index, (i, j) in enumerate(indices)] reduced = functools.reduce(operators[sql_query["agg"]], values) ret = [indices[reduced[1]]] return ret, _Aggregation.NONE return indices, aggregation_op def _get_answer_text(table, answer_coordinates, float_answer): if float_answer is not None: return [str(float_answer)] return [str(table["real_rows"][r][c]) for r, c in answer_coordinates] def retrieve_wikisql_query_answer_tapas(table, example) -> List: answer_coordinates, aggregation_op = _get_answer_coordinates(table, example) float_answer = _get_float_answer(table, answer_coordinates, aggregation_op) answer_text = _get_answer_text(table, answer_coordinates, float_answer) # keep the original data the same with TaPas if len(answer_text) == 0: answer_text = [EMPTY_ANSWER] return answer_text
transformers-main
examples/research_projects/tapex/wikisql_utils.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The Microsoft and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for tapex on table-based question answering tasks. Adapted from script: https://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization.py """ import logging import os import sys from collections import defaultdict from copy import deepcopy from dataclasses import dataclass, field from functools import partial from typing import List, Optional import nltk # Here to have a nice missing dependency error message early on import numpy as np import pandas as pd from datasets import load_dataset from filelock import FileLock from wikisql_utils import _TYPE_CONVERTER, retrieve_wikisql_query_answer_tapas import transformers from transformers import ( AutoConfig, BartForConditionalGeneration, DataCollatorForSeq2Seq, HfArgumentParser, Seq2SeqTrainer, Seq2SeqTrainingArguments, TapexTokenizer, set_seed, ) from transformers.file_utils import is_offline_mode from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") logger = logging.getLogger(__name__) try: nltk.data.find("tokenizers/punkt") except (LookupError, OSError): if is_offline_mode(): raise LookupError( "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" ) with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={ "help": ( "Pretrained tokenizer name or path if not the same as model_name. " "By default we use BART-large tokenizer for TAPEX-large." ) }, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default="wikisql", metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."} ) validation_file: Optional[str] = field( default=None, metadata={ "help": ( "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." ) }, ) test_file: Optional[str] = field( default=None, metadata={ "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_source_length: Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) val_max_target_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to model maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) num_beams: Optional[int] = field( default=None, metadata={ "help": ( "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " "which is used during ``evaluate`` and ``predict``." ) }, ) ignore_pad_token_for_loss: bool = field( default=True, metadata={ "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." }, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if self.val_max_target_length is None: self.val_max_target_length = self.max_target_length def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # IMPORTANT: the initial BART model's decoding is penalized by no_repeat_ngram_size, and thus # we should disable it here to avoid problematic generation config.no_repeat_ngram_size = 0 config.max_length = 1024 config.early_stopping = False # load tapex tokenizer tokenizer = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, add_prefix_space=True, ) # load Bart based Tapex model (default tapex-large) model = BartForConditionalGeneration.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") # Preprocessing the datasets. # We need to tokenize inputs and targets. if training_args.do_train: column_names = datasets["train"].column_names elif training_args.do_eval: column_names = datasets["validation"].column_names elif training_args.do_predict: column_names = datasets["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return # Temporarily set max_target_length for training. max_target_length = data_args.max_target_length padding = "max_length" if data_args.pad_to_max_length else False if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"): logger.warning( "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for" f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory" ) def preprocess_tableqa_function(examples, is_training=False): """ The is_training FLAG is used to identify if we could use the supervision to truncate the table content if it is required. """ # this function is specific for WikiSQL since the util function need the data structure # to retrieve the WikiSQL answer for each question def _convert_table_types(_table): """Runs the type converter over the table cells.""" ret_table = deepcopy(_table) types = ret_table["types"] ret_table["real_rows"] = ret_table["rows"] typed_rows = [] for row in ret_table["rows"]: typed_row = [] for column, cell_value in enumerate(row): typed_row.append(_TYPE_CONVERTER[types[column]](cell_value)) typed_rows.append(typed_row) ret_table["rows"] = typed_rows return ret_table questions = [question.lower() for question in examples["question"]] example_tables = examples["table"] example_sqls = examples["sql"] tables = [ pd.DataFrame.from_records(example_table["rows"], columns=example_table["header"]) for example_table in example_tables ] # using tapas utils to obtain wikisql answer answers = [] for example_sql, example_table in zip(example_sqls, example_tables): tapas_table = _convert_table_types(example_table) answer_list: List[str] = retrieve_wikisql_query_answer_tapas(tapas_table, example_sql) # you can choose other delimiters to split each answer answers.append(answer_list) # IMPORTANT: we cannot pass by answers during evaluation, answers passed during training are used to # truncate large tables in the train set! if is_training: model_inputs = tokenizer( table=tables, query=questions, answer=answers, max_length=data_args.max_source_length, padding=padding, truncation=True, ) else: model_inputs = tokenizer( table=tables, query=questions, max_length=data_args.max_source_length, padding=padding, truncation=True ) labels = tokenizer( answer=[", ".join(answer) for answer in answers], max_length=max_target_length, padding=padding, truncation=True, ) # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore # padding in the loss. if padding == "max_length" and data_args.ignore_pad_token_for_loss: labels["input_ids"] = [ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] ] model_inputs["labels"] = labels["input_ids"] return model_inputs # in training, we can use the answer as extra information to truncate large tables preprocess_tableqa_function_training = partial(preprocess_tableqa_function, is_training=True) if training_args.do_train: if "train" not in datasets: raise ValueError("--do_train requires a train dataset") train_dataset = datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) train_dataset = train_dataset.map( preprocess_tableqa_function_training, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: max_target_length = data_args.val_max_target_length if "validation" not in datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = datasets["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) eval_dataset = eval_dataset.map( preprocess_tableqa_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_predict: max_target_length = data_args.val_max_target_length if "test" not in datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = datasets["test"] if data_args.max_predict_samples is not None: predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) predict_dataset = predict_dataset.map( preprocess_tableqa_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Data collator label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id data_collator = DataCollatorForSeq2Seq( tokenizer, model=model, label_pad_token_id=label_pad_token_id, pad_to_multiple_of=8 if training_args.fp16 else None, ) def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [label.strip() for label in labels] return preds, labels def compute_metrics(eval_preds): preds, labels = eval_preds if isinstance(preds, tuple): preds = preds[0] decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) if data_args.ignore_pad_token_for_loss: # Replace -100 in the labels as we can't decode them. labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) delimiter = ", " # define example evaluation def evaluate_example(predict_str: str, ground_str: str): predict_spans = predict_str.split(delimiter) ground_spans = ground_str.split(delimiter) predict_values = defaultdict(lambda: 0) ground_values = defaultdict(lambda: 0) for span in predict_spans: try: predict_values[float(span)] += 1 except ValueError: predict_values[span.strip()] += 1 for span in ground_spans: try: ground_values[float(span)] += 1 except ValueError: ground_values[span.strip()] += 1 is_correct = predict_values == ground_values return is_correct def get_denotation_accuracy(predictions: List[str], references: List[str]): assert len(predictions) == len(references) correct_num = 0 for predict_str, ground_str in zip(predictions, references): is_correct = evaluate_example(predict_str.lower(), ground_str.lower()) if is_correct: correct_num += 1 return correct_num / len(predictions) accuracy = get_denotation_accuracy(decoded_preds, decoded_labels) result = {"denotation_accuracy": accuracy} return result # Initialize our Trainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics if training_args.predict_with_generate else None, ) if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate( max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval" ) max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.do_predict: logger.info("*** Predict ***") predict_results = trainer.predict( predict_dataset, metric_key_prefix="predict", max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, ) metrics = predict_results.metrics max_predict_samples = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) ) metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) trainer.log_metrics("predict", metrics) trainer.save_metrics("predict", metrics) if trainer.is_world_process_zero(): if training_args.predict_with_generate: predictions = tokenizer.batch_decode( predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True ) predictions = [pred.strip() for pred in predictions] output_prediction_file = os.path.join(training_args.output_dir, "tapex_predictions.txt") with open(output_prediction_file, "w") as writer: writer.write("\n".join(predictions)) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers-main
examples/research_projects/tapex/run_wikisql_with_tapex.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The Microsoft and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for tapex on table-based fact verification tasks. Adapted from script: https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py """ import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") logger = logging.getLogger(__name__) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: Optional[str] = field( default="tab_fact", metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default="tab_fact", metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}, ) max_seq_length: int = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) train_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the training data."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the validation data."} ) test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) def __post_init__(self): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.") else: train_extension = self.train_file.split(".")[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." validation_extension = self.validation_file.split(".")[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. data_files = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: train_extension = data_args.train_file.split(".")[-1] test_extension = data_args.test_file.split(".")[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." data_files["test"] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`.") for key in data_files.keys(): logger.info(f"load a local file for {key}: {data_files[key]}") if data_args.train_file.endswith(".csv"): # Loading a dataset from local csv files raw_datasets = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir) else: # Loading a dataset from local json files raw_datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels label_list = raw_datasets["train"].features["label"].names num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # load tapex tokenizer tokenizer = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, add_prefix_space=True, ) model = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Padding strategy if data_args.pad_to_max_length: padding = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch padding = False # Some models have set the order of the labels to use, so let's make sure we do use it. model.config.label2id = {"Refused": 0, "Entailed": 1} model.config.id2label = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) def preprocess_tabfact_function(examples): # Tokenize the texts def _convert_table_text_to_pandas(_table_text): """Runs the structured pandas table object for _table_text. An example _table_text can be: round#clubs remaining\nfirst round#156\n """ _table_content = [_table_row.split("#") for _table_row in _table_text.strip("\n").split("\n")] _table_pd = pd.DataFrame.from_records(_table_content[1:], columns=_table_content[0]) return _table_pd questions = examples["statement"] tables = list(map(_convert_table_text_to_pandas, examples["table_text"])) result = tokenizer(tables, questions, padding=padding, max_length=max_seq_length, truncation=True) result["label"] = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing"): raw_datasets = raw_datasets.map( preprocess_tabfact_function, batched=True, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset", ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = raw_datasets["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = raw_datasets["test"] if data_args.max_predict_samples is not None: predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p: EvalPrediction): preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions preds = np.argmax(preds, axis=1) return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: data_collator = default_data_collator elif training_args.fp16: data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) else: data_collator = None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(eval_dataset=eval_dataset) max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.do_predict: logger.info("*** Predict ***") # Removing the `label` columns because it contains -1 and Trainer won't like that. predict_dataset = predict_dataset.remove_columns("label") predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions predictions = np.argmax(predictions, axis=1) output_predict_file = os.path.join(training_args.output_dir, "predict_results_tabfact.txt") if trainer.is_world_process_zero(): with open(output_predict_file, "w") as writer: logger.info("***** Predict Results *****") writer.write("index\tprediction\n") for index, item in enumerate(predictions): item = label_list[item] writer.write(f"{index}\t{item}\n") kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers-main
examples/research_projects/tapex/run_tabfact_with_tapex.py
# Copyright 2020-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Once a model has been fine-pruned, the weights that are masked during the forward pass can be pruned once for all. For instance, once the a model from the :class:`~emmental.MaskedBertForSequenceClassification` is trained, it can be saved (and then loaded) as a standard :class:`~transformers.BertForSequenceClassification`. """ import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def main(args): pruning_method = args.pruning_method threshold = args.threshold model_name_or_path = args.model_name_or_path.rstrip("/") target_model_path = args.target_model_path print(f"Load fine-pruned model from {model_name_or_path}") model = torch.load(os.path.join(model_name_or_path, "pytorch_model.bin")) pruned_model = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: pruned_model[name] = tensor print(f"Copied layer {name}") elif "classifier" in name or "qa_output" in name: pruned_model[name] = tensor print(f"Copied layer {name}") elif "bias" in name: pruned_model[name] = tensor print(f"Copied layer {name}") else: if pruning_method == "magnitude": mask = MagnitudeBinarizer.apply(inputs=tensor, threshold=threshold) pruned_model[name] = tensor * mask print(f"Pruned layer {name}") elif pruning_method == "topK": if "mask_scores" in name: continue prefix_ = name[:-6] scores = model[f"{prefix_}mask_scores"] mask = TopKBinarizer.apply(scores, threshold) pruned_model[name] = tensor * mask print(f"Pruned layer {name}") elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue prefix_ = name[:-6] scores = model[f"{prefix_}mask_scores"] mask = ThresholdBinarizer.apply(scores, threshold, True) pruned_model[name] = tensor * mask print(f"Pruned layer {name}") elif pruning_method == "l0": if "mask_scores" in name: continue prefix_ = name[:-6] scores = model[f"{prefix_}mask_scores"] l, r = -0.1, 1.1 s = torch.sigmoid(scores) s_bar = s * (r - l) + l mask = s_bar.clamp(min=0.0, max=1.0) pruned_model[name] = tensor * mask print(f"Pruned layer {name}") else: raise ValueError("Unknown pruning method") if target_model_path is None: target_model_path = os.path.join( os.path.dirname(model_name_or_path), f"bertarized_{os.path.basename(model_name_or_path)}" ) if not os.path.isdir(target_model_path): shutil.copytree(model_name_or_path, target_model_path) print(f"\nCreated folder {target_model_path}") torch.save(pruned_model, os.path.join(target_model_path, "pytorch_model.bin")) print("\nPruned model saved! See you later!") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) args = parser.parse_args() main(args)
transformers-main
examples/research_projects/movement-pruning/bertarize.py
# Copyright 2020-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Count remaining (non-zero) weights in the encoder (i.e. the transformer layers). Sparsity and remaining weights levels are equivalent: sparsity % = 100 - remaining weights %. """ import argparse import os import torch from emmental.modules import ThresholdBinarizer, TopKBinarizer def main(args): serialization_dir = args.serialization_dir pruning_method = args.pruning_method threshold = args.threshold st = torch.load(os.path.join(serialization_dir, "pytorch_model.bin"), map_location="cpu") remaining_count = 0 # Number of remaining (not pruned) params in the encoder encoder_count = 0 # Number of params in the encoder print("name".ljust(60, " "), "Remaining Weights %", "Remaining Weight") for name, param in st.items(): if "encoder" not in name: continue if "mask_scores" in name: if pruning_method == "topK": mask_ones = TopKBinarizer.apply(param, threshold).sum().item() elif pruning_method == "sigmoied_threshold": mask_ones = ThresholdBinarizer.apply(param, threshold, True).sum().item() elif pruning_method == "l0": l, r = -0.1, 1.1 s = torch.sigmoid(param) s_bar = s * (r - l) + l mask = s_bar.clamp(min=0.0, max=1.0) mask_ones = (mask > 0.0).sum().item() else: raise ValueError("Unknown pruning method") remaining_count += mask_ones print(name.ljust(60, " "), str(round(100 * mask_ones / param.numel(), 3)).ljust(20, " "), str(mask_ones)) else: encoder_count += param.numel() if "bias" in name or "LayerNorm" in name: remaining_count += param.numel() print("") print("Remaining Weights (global) %: ", 100 * remaining_count / encoder_count) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, topK = Movement pruning, sigmoied_threshold = Soft movement" " pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--serialization_dir", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) args = parser.parse_args() main(args)
transformers-main
examples/research_projects/movement-pruning/counts_parameters.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-pruning Masked BERT for question-answering on SQuAD.""" import argparse import glob import logging import os import random import timeit import numpy as np import torch from emmental import MaskedBertConfig, MaskedBertForQuestionAnswering from torch import nn from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForQuestionAnswering, BertTokenizer, get_linear_schedule_with_warmup, squad_convert_examples_to_features, ) from transformers.data.metrics.squad_metrics import ( compute_predictions_log_probs, compute_predictions_logits, squad_evaluate, ) from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CLASSES = { "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer), "masked_bert": (MaskedBertConfig, MaskedBertForQuestionAnswering, BertTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def schedule_threshold( step: int, total_step: int, warmup_steps: int, initial_threshold: float, final_threshold: float, initial_warmup: int, final_warmup: int, final_lambda: float, ): if step <= initial_warmup * warmup_steps: threshold = initial_threshold elif step > (total_step - final_warmup * warmup_steps): threshold = final_threshold else: spars_warmup_steps = initial_warmup * warmup_steps spars_schedu_steps = (final_warmup + initial_warmup) * warmup_steps mul_coeff = 1 - (step - spars_warmup_steps) / (total_step - spars_schedu_steps) threshold = final_threshold + (initial_threshold - final_threshold) * (mul_coeff**3) regu_lambda = final_lambda * threshold / final_threshold return threshold, regu_lambda def regularization(model: nn.Module, mode: str): regu, counter = 0, 0 for name, param in model.named_parameters(): if "mask_scores" in name: if mode == "l1": regu += torch.norm(torch.sigmoid(param), p=1) / param.numel() elif mode == "l0": regu += torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1)).sum() / param.numel() else: ValueError("Don't know this mode.") counter += 1 return regu / counter def to_list(tensor): return tensor.detach().cpu().tolist() def train(args, train_dataset, model, tokenizer, teacher=None): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter(log_dir=args.output_dir) args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if "mask_score" in n and p.requires_grad], "lr": args.mask_scores_learning_rate, }, { "params": [ p for n, p in model.named_parameters() if "mask_score" not in n and p.requires_grad and not any(nd in n for nd in no_decay) ], "lr": args.learning_rate, "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if "mask_score" not in n and p.requires_grad and any(nd in n for nd in no_decay) ], "lr": args.learning_rate, "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) # Distillation if teacher is not None: logger.info(" Training with distillation") global_step = 1 # Global TopK if args.global_topk: threshold_mem = None epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): # set global_step to global_step of last saved checkpoint from model path try: checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] global_step = int(checkpoint_suffix) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) except ValueError: logger.info(" Starting fine-tuning.") tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) # Added here for reproducibility set_seed(args) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) threshold, regu_lambda = schedule_threshold( step=global_step, total_step=t_total, warmup_steps=args.warmup_steps, final_threshold=args.final_threshold, initial_threshold=args.initial_threshold, final_warmup=args.final_warmup, initial_warmup=args.initial_warmup, final_lambda=args.final_lambda, ) # Global TopK if args.global_topk: if threshold == 1.0: threshold = -1e2 # Or an indefinitely low quantity else: if (threshold_mem is None) or (global_step % args.global_topk_frequency_compute == 0): # Sort all the values to get the global topK concat = torch.cat( [param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name] ) n = concat.numel() kth = max(n - (int(n * threshold) + 1), 1) threshold_mem = concat.kthvalue(kth).values.item() threshold = threshold_mem else: threshold = threshold_mem inputs = { "input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2], "start_positions": batch[3], "end_positions": batch[4], } if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[5], "p_mask": batch[6]}) if args.version_2_with_negative: inputs.update({"is_impossible": batch[7]}) if hasattr(model, "config") and hasattr(model.config, "lang2id"): inputs.update( {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)} ) if "masked" in args.model_type: inputs["threshold"] = threshold outputs = model(**inputs) # model outputs are always tuple in transformers (see doc) loss, start_logits_stu, end_logits_stu = outputs # Distillation loss if teacher is not None: with torch.no_grad(): start_logits_tea, end_logits_tea = teacher( input_ids=inputs["input_ids"], token_type_ids=inputs["token_type_ids"], attention_mask=inputs["attention_mask"], ) loss_start = nn.functional.kl_div( input=nn.functional.log_softmax(start_logits_stu / args.temperature, dim=-1), target=nn.functional.softmax(start_logits_tea / args.temperature, dim=-1), reduction="batchmean", ) * (args.temperature**2) loss_end = nn.functional.kl_div( input=nn.functional.log_softmax(end_logits_stu / args.temperature, dim=-1), target=nn.functional.softmax(end_logits_tea / args.temperature, dim=-1), reduction="batchmean", ) * (args.temperature**2) loss_logits = (loss_start + loss_end) / 2.0 loss = args.alpha_distil * loss_logits + args.alpha_ce * loss # Regularization if args.regularization is not None: regu_ = regularization(model=model, mode=args.regularization) loss = loss + regu_lambda * regu_ if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: tb_writer.add_scalar("threshold", threshold, global_step) for name, param in model.named_parameters(): if not param.requires_grad: continue tb_writer.add_scalar("parameter_mean/" + name, param.data.mean(), global_step) tb_writer.add_scalar("parameter_std/" + name, param.data.std(), global_step) tb_writer.add_scalar("parameter_min/" + name, param.data.min(), global_step) tb_writer.add_scalar("parameter_max/" + name, param.data.max(), global_step) if "pooler" in name: continue tb_writer.add_scalar("grad_mean/" + name, param.grad.data.mean(), global_step) tb_writer.add_scalar("grad_std/" + name, param.grad.data.std(), global_step) if args.regularization is not None and "mask_scores" in name: if args.regularization == "l1": perc = (torch.sigmoid(param) > threshold).sum().item() / param.numel() elif args.regularization == "l0": perc = (torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1))).sum().item() / param.numel() tb_writer.add_scalar("retained_weights_perc/" + name, perc, global_step) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 # Log metrics if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Only evaluate when single GPU otherwise metrics may not average well if args.local_rank == -1 and args.evaluate_during_training: results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) learning_rate_scalar = scheduler.get_lr() tb_writer.add_scalar("lr", learning_rate_scalar[0], global_step) if len(learning_rate_scalar) > 1: for idx, lr in enumerate(learning_rate_scalar[1:]): tb_writer.add_scalar(f"lr/{idx+1}", lr, global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) if teacher is not None: tb_writer.add_scalar("loss/distil", loss_logits.item(), global_step) if args.regularization is not None: tb_writer.add_scalar("loss/regularization", regu_.item(), global_step) if (teacher is not None) or (args.regularization is not None): if (teacher is not None) and (args.regularization is not None): tb_writer.add_scalar( "loss/instant_ce", (loss.item() - regu_lambda * regu_.item() - args.alpha_distil * loss_logits.item()) / args.alpha_ce, global_step, ) elif teacher is not None: tb_writer.add_scalar( "loss/instant_ce", (loss.item() - args.alpha_distil * loss_logits.item()) / args.alpha_ce, global_step, ) else: tb_writer.add_scalar( "loss/instant_ce", loss.item() - regu_lambda * regu_.item(), global_step ) logging_loss = tr_loss # Save model checkpoint if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): model = nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) all_results = [] start_time = timeit.default_timer() # Global TopK if args.global_topk: threshold_mem = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2], } if args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] example_indices = batch[3] # XLNet and XLM use more arguments for their predictions if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[4], "p_mask": batch[5]}) # for lang_id-sensitive xlm models if hasattr(model, "config") and hasattr(model.config, "lang2id"): inputs.update( {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)} ) if "masked" in args.model_type: inputs["threshold"] = args.final_threshold if args.global_topk: if threshold_mem is None: concat = torch.cat( [param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name] ) n = concat.numel() kth = max(n - (int(n * args.final_threshold) + 1), 1) threshold_mem = concat.kthvalue(kth).values.item() inputs["threshold"] = threshold_mem outputs = model(**inputs) for i, example_index in enumerate(example_indices): eval_feature = features[example_index.item()] unique_id = int(eval_feature.unique_id) output = [to_list(output[i]) for output in outputs] # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler" # models only use two. if len(output) >= 5: start_logits = output[0] start_top_index = output[1] end_logits = output[2] end_top_index = output[3] cls_logits = output[4] result = SquadResult( unique_id, start_logits, end_logits, start_top_index=start_top_index, end_top_index=end_top_index, cls_logits=cls_logits, ) else: start_logits, end_logits = output result = SquadResult(unique_id, start_logits, end_logits) all_results.append(result) evalTime = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset)) # Compute predictions output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix)) output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix)) if args.version_2_with_negative: output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix)) else: output_null_log_odds_file = None # XLNet and XLM use a more complex post-processing procedure if args.model_type in ["xlnet", "xlm"]: start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top predictions = compute_predictions_log_probs( examples, features, all_results, args.n_best_size, args.max_answer_length, output_prediction_file, output_nbest_file, output_null_log_odds_file, start_n_top, end_n_top, args.version_2_with_negative, tokenizer, args.verbose_logging, ) else: predictions = compute_predictions_logits( examples, features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, args.verbose_logging, args.version_2_with_negative, args.null_score_diff_threshold, tokenizer, ) # Compute the F1 and exact scores. results = squad_evaluate(examples, predictions) return results def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): if args.local_rank not in [-1, 0] and not evaluate: # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() # Load data features from cache or dataset file input_dir = args.data_dir if args.data_dir else "." cached_features_file = os.path.join( input_dir, "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train", args.tokenizer_name if args.tokenizer_name else list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), list(filter(None, args.predict_file.split("/"))).pop() if evaluate else list(filter(None, args.train_file.split("/"))).pop(), ), ) # Init features and dataset from cache if it exists if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features_and_dataset = torch.load(cached_features_file) features, dataset, examples = ( features_and_dataset["features"], features_and_dataset["dataset"], features_and_dataset["examples"], ) else: logger.info("Creating features from dataset file at %s", input_dir) if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)): try: import tensorflow_datasets as tfds except ImportError: raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.") if args.version_2_with_negative: logger.warning("tensorflow_datasets does not handle version 2 of SQuAD.") tfds_examples = tfds.load("squad") examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate) else: processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() if evaluate: examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file) else: examples = processor.get_train_examples(args.data_dir, filename=args.train_file) features, dataset = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=not evaluate, return_dataset="pt", threads=args.threads, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file) if args.local_rank == 0 and not evaluate: # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() if output_examples: return dataset, examples, features return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--data_dir", default=None, type=str, help="The input data dir. Should contain the .json files for the task." + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--train_file", default=None, type=str, help="The input training file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--predict_file", default=None, type=str, help="The input evaluation file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument( "--max_query_length", default=64, type=int, help=( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ), ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") # Pruning parameters parser.add_argument( "--mask_scores_learning_rate", default=1e-2, type=float, help="The Adam initial learning rate of the mask scores.", ) parser.add_argument( "--initial_threshold", default=1.0, type=float, help="Initial value of the threshold (for scheduling)." ) parser.add_argument( "--final_threshold", default=0.7, type=float, help="Final value of the threshold (for scheduling)." ) parser.add_argument( "--initial_warmup", default=1, type=int, help=( "Run `initial_warmup` * `warmup_steps` steps of threshold warmup during which threshold stays" "at its `initial_threshold` value (sparsity schedule)." ), ) parser.add_argument( "--final_warmup", default=2, type=int, help=( "Run `final_warmup` * `warmup_steps` steps of threshold cool-down during which threshold stays" "at its final_threshold value (sparsity schedule)." ), ) parser.add_argument( "--pruning_method", default="topK", type=str, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)." ), ) parser.add_argument( "--mask_init", default="constant", type=str, help="Initialization method for the mask scores. Choices: constant, uniform, kaiming.", ) parser.add_argument( "--mask_scale", default=0.0, type=float, help="Initialization parameter for the chosen initialization method." ) parser.add_argument("--regularization", default=None, help="Add L0 or L1 regularization to the mask scores.") parser.add_argument( "--final_lambda", default=0.0, type=float, help="Regularization intensity (used in conjunction with `regularization`.", ) parser.add_argument("--global_topk", action="store_true", help="Global TopK on the Scores.") parser.add_argument( "--global_topk_frequency_compute", default=25, type=int, help="Frequency at which we compute the TopK global threshold.", ) # Distillation parameters (optional) parser.add_argument( "--teacher_type", default=None, type=str, help=( "Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for" " distillation." ), ) parser.add_argument( "--teacher_name_or_path", default=None, type=str, help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.", ) parser.add_argument( "--alpha_ce", default=0.5, type=float, help="Cross entropy loss linear weight. Only for distillation." ) parser.add_argument( "--alpha_distil", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation." ) parser.add_argument( "--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument( "--verbose_logging", action="store_true", help=( "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation." ), ) parser.add_argument( "--lang_id", default=0, type=int, help=( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ), ) parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features") args = parser.parse_args() # Regularization if args.regularization == "null": args.regularization = None if args.doc_stride >= args.max_seq_length - args.max_query_length: logger.warning( "WARNING - You've set a doc stride which may be superior to the document length in some " "examples. This could result in errors when building features from the examples. Please reduce the doc " "stride or increase the maximum length to ensure the features are correctly built." ) if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, pruning_method=args.pruning_method, mask_init=args.mask_init, mask_scale=args.mask_scale, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.teacher_type is not None: assert args.teacher_name_or_path is not None assert args.alpha_distil > 0.0 assert args.alpha_distil + args.alpha_ce > 0.0 teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type] teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path) teacher = teacher_model_class.from_pretrained( args.teacher_name_or_path, from_tf=False, config=teacher_config, cache_dir=args.cache_dir if args.cache_dir else None, ) teacher.to(args.device) else: teacher = None if args.local_rank == 0: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: import apex apex.amp.register_half_function(torch, "einsum") except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Save the trained model and the tokenizer if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) # , force_download=True) tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) model.to(args.device) # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory results = {} if args.do_eval and args.local_rank in [-1, 0]: if args.do_train: logger.info("Loading checkpoints saved during training for evaluation") checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = [ os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ] else: logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path) checkpoints = [args.model_name_or_path] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: # Reload the model global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" model = model_class.from_pretrained(checkpoint) # , force_download=True) model.to(args.device) # Evaluate result = evaluate(args, model, tokenizer, prefix=global_step) result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()} results.update(result) logger.info("Results: {}".format(results)) predict_file = list(filter(None, args.predict_file.split("/"))).pop() if not os.path.exists(os.path.join(args.output_dir, predict_file)): os.makedirs(os.path.join(args.output_dir, predict_file)) output_eval_file = os.path.join(args.output_dir, predict_file, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("%s = %s\n" % (key, str(results[key]))) return results if __name__ == "__main__": main()
transformers-main
examples/research_projects/movement-pruning/masked_run_squad.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-pruning Masked BERT on sequence classification on GLUE.""" import argparse import glob import json import logging import os import random import numpy as np import torch from emmental import MaskedBertConfig, MaskedBertForSequenceClassification from torch import nn from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForSequenceClassification, BertTokenizer, get_linear_schedule_with_warmup, ) from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes as output_modes from transformers import glue_processors as processors try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CLASSES = { "bert": (BertConfig, BertForSequenceClassification, BertTokenizer), "masked_bert": (MaskedBertConfig, MaskedBertForSequenceClassification, BertTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def schedule_threshold( step: int, total_step: int, warmup_steps: int, initial_threshold: float, final_threshold: float, initial_warmup: int, final_warmup: int, final_lambda: float, ): if step <= initial_warmup * warmup_steps: threshold = initial_threshold elif step > (total_step - final_warmup * warmup_steps): threshold = final_threshold else: spars_warmup_steps = initial_warmup * warmup_steps spars_schedu_steps = (final_warmup + initial_warmup) * warmup_steps mul_coeff = 1 - (step - spars_warmup_steps) / (total_step - spars_schedu_steps) threshold = final_threshold + (initial_threshold - final_threshold) * (mul_coeff**3) regu_lambda = final_lambda * threshold / final_threshold return threshold, regu_lambda def regularization(model: nn.Module, mode: str): regu, counter = 0, 0 for name, param in model.named_parameters(): if "mask_scores" in name: if mode == "l1": regu += torch.norm(torch.sigmoid(param), p=1) / param.numel() elif mode == "l0": regu += torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1)).sum() / param.numel() else: ValueError("Don't know this mode.") counter += 1 return regu / counter def train(args, train_dataset, model, tokenizer, teacher=None): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter(log_dir=args.output_dir) args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if "mask_score" in n and p.requires_grad], "lr": args.mask_scores_learning_rate, }, { "params": [ p for n, p in model.named_parameters() if "mask_score" not in n and p.requires_grad and not any(nd in n for nd in no_decay) ], "lr": args.learning_rate, "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if "mask_score" not in n and p.requires_grad and any(nd in n for nd in no_decay) ], "lr": args.learning_rate, "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) # Distillation if teacher is not None: logger.info(" Training with distillation") global_step = 0 # Global TopK if args.global_topk: threshold_mem = None epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): # set global_step to global_step of last saved checkpoint from model path try: global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) except ValueError: global_step = 0 epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0], ) set_seed(args) # Added here for reproducibility for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) threshold, regu_lambda = schedule_threshold( step=global_step, total_step=t_total, warmup_steps=args.warmup_steps, final_threshold=args.final_threshold, initial_threshold=args.initial_threshold, final_warmup=args.final_warmup, initial_warmup=args.initial_warmup, final_lambda=args.final_lambda, ) # Global TopK if args.global_topk: if threshold == 1.0: threshold = -1e2 # Or an indefinitely low quantity else: if (threshold_mem is None) or (global_step % args.global_topk_frequency_compute == 0): # Sort all the values to get the global topK concat = torch.cat( [param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name] ) n = concat.numel() kth = max(n - (int(n * threshold) + 1), 1) threshold_mem = concat.kthvalue(kth).values.item() threshold = threshold_mem else: threshold = threshold_mem inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "masked_bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids if "masked" in args.model_type: inputs["threshold"] = threshold outputs = model(**inputs) loss, logits_stu = outputs # model outputs are always tuple in transformers (see doc) # Distillation loss if teacher is not None: if "token_type_ids" not in inputs: inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2] with torch.no_grad(): (logits_tea,) = teacher( input_ids=inputs["input_ids"], token_type_ids=inputs["token_type_ids"], attention_mask=inputs["attention_mask"], ) loss_logits = nn.functional.kl_div( input=nn.functional.log_softmax(logits_stu / args.temperature, dim=-1), target=nn.functional.softmax(logits_tea / args.temperature, dim=-1), reduction="batchmean", ) * (args.temperature**2) loss = args.alpha_distil * loss_logits + args.alpha_ce * loss # Regularization if args.regularization is not None: regu_ = regularization(model=model, mode=args.regularization) loss = loss + regu_lambda * regu_ if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0 or ( # last step in epoch but step is always smaller than gradient_accumulation_steps len(epoch_iterator) <= args.gradient_accumulation_steps and (step + 1) == len(epoch_iterator) ): if args.fp16: nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: tb_writer.add_scalar("threshold", threshold, global_step) for name, param in model.named_parameters(): if not param.requires_grad: continue tb_writer.add_scalar("parameter_mean/" + name, param.data.mean(), global_step) tb_writer.add_scalar("parameter_std/" + name, param.data.std(), global_step) tb_writer.add_scalar("parameter_min/" + name, param.data.min(), global_step) tb_writer.add_scalar("parameter_max/" + name, param.data.max(), global_step) tb_writer.add_scalar("grad_mean/" + name, param.grad.data.mean(), global_step) tb_writer.add_scalar("grad_std/" + name, param.grad.data.std(), global_step) if args.regularization is not None and "mask_scores" in name: if args.regularization == "l1": perc = (torch.sigmoid(param) > threshold).sum().item() / param.numel() elif args.regularization == "l0": perc = (torch.sigmoid(param - 2 / 3 * np.log(0.1 / 1.1))).sum().item() / param.numel() tb_writer.add_scalar("retained_weights_perc/" + name, perc, global_step) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr() logs["learning_rate"] = learning_rate_scalar[0] if len(learning_rate_scalar) > 1: for idx, lr in enumerate(learning_rate_scalar[1:]): logs[f"learning_rate/{idx+1}"] = lr logs["loss"] = loss_scalar if teacher is not None: logs["loss/distil"] = loss_logits.item() if args.regularization is not None: logs["loss/regularization"] = regu_.item() if (teacher is not None) or (args.regularization is not None): if (teacher is not None) and (args.regularization is not None): logs["loss/instant_ce"] = ( loss.item() - regu_lambda * logs["loss/regularization"] - args.alpha_distil * logs["loss/distil"] ) / args.alpha_ce elif teacher is not None: logs["loss/instant_ce"] = ( loss.item() - args.alpha_distil * logs["loss/distil"] ) / args.alpha_ce else: logs["loss/instant_ce"] = loss.item() - regu_lambda * logs["loss/regularization"] logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) print(json.dumps({**logs, **{"step": global_step}})) if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + "/MM") if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): model = nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None # Global TopK if args.global_topk: threshold_mem = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "masked_bert", "xlnet", "albert"] else None ) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids if "masked" in args.model_type: inputs["threshold"] = args.final_threshold if args.global_topk: if threshold_mem is None: concat = torch.cat( [param.view(-1) for name, param in model.named_parameters() if "mask_scores" in name] ) n = concat.numel() kth = max(n - (int(n * args.final_threshold) + 1), 1) threshold_mem = concat.kthvalue(kth).values.item() inputs["threshold"] = threshold_mem outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": from scipy.special import softmax probs = softmax(preds, axis=-1) entropy = np.exp((-probs * np.log(probs)).sum(axis=-1).mean()) preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(eval_task, preds, out_label_ids) results.update(result) if entropy is not None: result["eval_avg_entropy"] = entropy output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return results def load_and_cache_examples(args, task, tokenizer, evaluate=False): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() output_mode = output_modes[task] # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), str(task), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]: # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] examples = ( processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) ) features = convert_examples_to_features( examples, tokenizer, max_length=args.max_seq_length, label_list=label_list, output_mode=output_mode, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif output_mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--max_seq_length", default=128, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") # Pruning parameters parser.add_argument( "--mask_scores_learning_rate", default=1e-2, type=float, help="The Adam initial learning rate of the mask scores.", ) parser.add_argument( "--initial_threshold", default=1.0, type=float, help="Initial value of the threshold (for scheduling)." ) parser.add_argument( "--final_threshold", default=0.7, type=float, help="Final value of the threshold (for scheduling)." ) parser.add_argument( "--initial_warmup", default=1, type=int, help=( "Run `initial_warmup` * `warmup_steps` steps of threshold warmup during which threshold stays" "at its `initial_threshold` value (sparsity schedule)." ), ) parser.add_argument( "--final_warmup", default=2, type=int, help=( "Run `final_warmup` * `warmup_steps` steps of threshold cool-down during which threshold stays" "at its final_threshold value (sparsity schedule)." ), ) parser.add_argument( "--pruning_method", default="topK", type=str, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)." ), ) parser.add_argument( "--mask_init", default="constant", type=str, help="Initialization method for the mask scores. Choices: constant, uniform, kaiming.", ) parser.add_argument( "--mask_scale", default=0.0, type=float, help="Initialization parameter for the chosen initialization method." ) parser.add_argument("--regularization", default=None, help="Add L0 or L1 regularization to the mask scores.") parser.add_argument( "--final_lambda", default=0.0, type=float, help="Regularization intensity (used in conjunction with `regularization`.", ) parser.add_argument("--global_topk", action="store_true", help="Global TopK on the Scores.") parser.add_argument( "--global_topk_frequency_compute", default=25, type=int, help="Frequency at which we compute the TopK global threshold.", ) # Distillation parameters (optional) parser.add_argument( "--teacher_type", default=None, type=str, help=( "Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for" " distillation." ), ) parser.add_argument( "--teacher_name_or_path", default=None, type=str, help="Path to the already fine-tuned teacher model. Only for distillation.", ) parser.add_argument( "--alpha_ce", default=0.5, type=float, help="Cross entropy loss linear weight. Only for distillation." ) parser.add_argument( "--alpha_distil", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation." ) parser.add_argument( "--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") args = parser.parse_args() # Regularization if args.regularization == "null": args.regularization = None if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( f"Output directory ({args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to" " overcome." ) # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, pruning_method=args.pruning_method, mask_init=args.mask_init, mask_scale=args.mask_scale, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, do_lower_case=args.do_lower_case, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.teacher_type is not None: assert args.teacher_name_or_path is not None assert args.alpha_distil > 0.0 assert args.alpha_distil + args.alpha_ce > 0.0 teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type] teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path) teacher = teacher_model_class.from_pretrained( args.teacher_name_or_path, from_tf=False, config=teacher_config, cache_dir=args.cache_dir if args.cache_dir else None, ) teacher.to(args.device) else: teacher = None if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = [ os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) result = {k + "_{}".format(global_step): v for k, v in result.items()} results.update(result) return results if __name__ == "__main__": main()
transformers-main
examples/research_projects/movement-pruning/masked_run_glue.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Masked BERT model configuration. It replicates the class `~transformers.BertConfig` and adapts it to the specificities of MaskedBert (`pruning_method`, `mask_init` and `mask_scale`.""" import logging from transformers.configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) class MaskedBertConfig(PretrainedConfig): """ A class replicating the `~transformers.BertConfig` with additional parameters for pruning/masking configuration. """ model_type = "masked_bert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, pruning_method="topK", mask_init="constant", mask_scale=0.0, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.pruning_method = pruning_method self.mask_init = mask_init self.mask_scale = mask_scale
transformers-main
examples/research_projects/movement-pruning/emmental/configuration_bert_masked.py
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
transformers-main
examples/research_projects/movement-pruning/emmental/__init__.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Masked Version of BERT. It replaces the `torch.nn.Linear` layers with :class:`~emmental.MaskedLinear` and add an additional parameters in the forward pass to compute the adaptive mask. Built on top of `transformers.models.bert.modeling_bert`""" import logging import math import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from emmental import MaskedBertConfig from emmental.modules import MaskedLinear from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.modeling_utils import PreTrainedModel, prune_linear_layer from transformers.models.bert.modeling_bert import ACT2FN, load_tf_weights_in_bert logger = logging.getLogger(__name__) class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = MaskedLinear( config.hidden_size, self.all_head_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) self.key = MaskedLinear( config.hidden_size, self.all_head_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) self.value = MaskedLinear( config.hidden_size, self.all_head_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, threshold=None, ): mixed_query_layer = self.query(hidden_states, threshold=threshold) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states, threshold=threshold) mixed_value_layer = self.value(encoder_hidden_states, threshold=threshold) attention_mask = encoder_attention_mask else: mixed_key_layer = self.key(hidden_states, threshold=threshold) mixed_value_layer = self.value(hidden_states, threshold=threshold) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = MaskedLinear( config.hidden_size, config.hidden_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, threshold): hidden_states = self.dense(hidden_states, threshold=threshold) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads for head in heads: # Compute how many pruned heads are before the head and move the index accordingly head = head - sum(1 if h < head else 0 for h in self.pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index = torch.arange(len(mask))[mask].long() # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, threshold=None, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, threshold=threshold, ) attention_output = self.output(self_outputs[0], hidden_states, threshold=threshold) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = MaskedLinear( config.hidden_size, config.intermediate_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states, threshold): hidden_states = self.dense(hidden_states, threshold=threshold) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = MaskedLinear( config.intermediate_size, config.hidden_size, pruning_method=config.pruning_method, mask_init=config.mask_init, mask_scale=config.mask_scale, ) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, threshold): hidden_states = self.dense(hidden_states, threshold=threshold) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = BertAttention(config) self.is_decoder = config.is_decoder if self.is_decoder: self.crossattention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, threshold=None, ): self_attention_outputs = self.attention(hidden_states, attention_mask, head_mask, threshold=threshold) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.is_decoder and encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights intermediate_output = self.intermediate(attention_output, threshold=threshold) layer_output = self.output(intermediate_output, attention_output, threshold=threshold) outputs = (layer_output,) + outputs return outputs class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, threshold=None, ): all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, threshold=threshold, ) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # last-layer hidden state, (all hidden states), (all attentions) class BertPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class MaskedBertPreTrainedModel(PreTrainedModel): """An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MaskedBertConfig load_tf_weights = load_tf_weights_in_bert base_model_prefix = "bert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() MASKED_BERT_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~emmental.MaskedBertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ MASKED_BERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`transformers.BertTokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1`` corresponds to a `sentence B` token `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. """ @add_start_docstrings( "The bare Masked Bert Model transformer outputting raw hidden-states without any specific head on top.", MASKED_BERT_START_DOCSTRING, ) class MaskedBertModel(MaskedBertPreTrainedModel): """ The `MaskedBertModel` class replicates the :class:`~transformers.BertModel` class and adds specific inputs to compute the adaptive mask on the fly. Note that we freeze the embeddings modules from their pre-trained values. """ def __init__(self, config): super().__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.embeddings.requires_grad_(requires_grad=False) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, threshold=None, ): r""" threshold (:obj:`float`): Threshold value (see :class:`~emmental.MaskedLinear`). Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder: batch_size, seq_length = input_shape seq_ids = torch.arange(seq_length, device=device) causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] causal_mask = causal_mask.to( attention_mask.dtype ) # causal and attention masks must have same type with pytorch version < 1.3 extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( input_shape, attention_mask.shape ) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) if encoder_attention_mask.dim() == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] elif encoder_attention_mask.dim() == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] else: raise ValueError( "Wrong shape for encoder_hidden_shape (shape {}) or encoder_attention_mask (shape {})".format( encoder_hidden_shape, encoder_attention_mask.shape ) ) encoder_extended_attention_mask = encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype ) # fp16 compatibility encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = ( head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) ) # We can specify head_mask for each layer head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to float if need + fp16 compatibility else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, threshold=threshold, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) @add_start_docstrings( """Masked Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MASKED_BERT_START_DOCSTRING, ) class MaskedBertForSequenceClassification(MaskedBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MaskedBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, threshold=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). threshold (:obj:`float`): Threshold value (see :class:`~emmental.MaskedLinear`). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, threshold=threshold, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions) @add_start_docstrings( """Masked Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MASKED_BERT_START_DOCSTRING, ) class MaskedBertForMultipleChoice(MaskedBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.bert = MaskedBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, threshold=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) threshold (:obj:`float`): Threshold value (see :class:`~emmental.MaskedLinear`). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided): Classification loss. classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): `num_choices` is the second dimension of the input tensors. (see `input_ids` above). Classification scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ num_choices = input_ids.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, threshold=threshold, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) outputs = (loss,) + outputs return outputs # (loss), reshaped_logits, (hidden_states), (attentions) @add_start_docstrings( """Masked Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MASKED_BERT_START_DOCSTRING, ) class MaskedBertForTokenClassification(MaskedBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MaskedBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, threshold=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. threshold (:obj:`float`): Threshold value (see :class:`~emmental.MaskedLinear`). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) : Classification loss. scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`) Classification scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, threshold=threshold, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), scores, (hidden_states), (attentions) @add_start_docstrings( """Masked Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MASKED_BERT_START_DOCSTRING, ) class MaskedBertForQuestionAnswering(MaskedBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = MaskedBertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(MASKED_BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, threshold=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. threshold (:obj:`float`): Threshold value (see :class:`~emmental.MaskedLinear`). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~emmental.MaskedBertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`): Span-end scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, threshold=threshold, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) outputs = ( start_logits, end_logits, ) + outputs[2:] if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 outputs = (total_loss,) + outputs return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)
transformers-main
examples/research_projects/movement-pruning/emmental/modeling_bert_masked.py
# coding=utf-8 # Copyright 2020-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Masked Linear module: A fully connected layer that computes an adaptive binary mask on the fly. The mask (binary or not) is computed at each forward pass and multiplied against the weight matrix to prune a portion of the weights. The pruned weight matrix is then multiplied against the inputs (and if necessary, the bias is added). """ import math import torch from torch import nn from torch.nn import init from .binarizer import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer class MaskedLinear(nn.Linear): """ Fully Connected layer with on the fly adaptive mask. If needed, a score matrix is created to store the importance of each associated weight. """ def __init__( self, in_features: int, out_features: int, bias: bool = True, mask_init: str = "constant", mask_scale: float = 0.0, pruning_method: str = "topK", ): """ Args: in_features (`int`) Size of each input sample out_features (`int`) Size of each output sample bias (`bool`) If set to ``False``, the layer will not learn an additive bias. Default: ``True`` mask_init (`str`) The initialization method for the score matrix if a score matrix is needed. Choices: ["constant", "uniform", "kaiming"] Default: ``constant`` mask_scale (`float`) The initialization parameter for the chosen initialization method `mask_init`. Default: ``0.`` pruning_method (`str`) Method to compute the mask. Choices: ["topK", "threshold", "sigmoied_threshold", "magnitude", "l0"] Default: ``topK`` """ super(MaskedLinear, self).__init__(in_features=in_features, out_features=out_features, bias=bias) assert pruning_method in ["topK", "threshold", "sigmoied_threshold", "magnitude", "l0"] self.pruning_method = pruning_method if self.pruning_method in ["topK", "threshold", "sigmoied_threshold", "l0"]: self.mask_scale = mask_scale self.mask_init = mask_init self.mask_scores = nn.Parameter(torch.empty(self.weight.size())) self.init_mask() def init_mask(self): if self.mask_init == "constant": init.constant_(self.mask_scores, val=self.mask_scale) elif self.mask_init == "uniform": init.uniform_(self.mask_scores, a=-self.mask_scale, b=self.mask_scale) elif self.mask_init == "kaiming": init.kaiming_uniform_(self.mask_scores, a=math.sqrt(5)) def forward(self, input: torch.tensor, threshold: float): # Get the mask if self.pruning_method == "topK": mask = TopKBinarizer.apply(self.mask_scores, threshold) elif self.pruning_method in ["threshold", "sigmoied_threshold"]: sig = "sigmoied" in self.pruning_method mask = ThresholdBinarizer.apply(self.mask_scores, threshold, sig) elif self.pruning_method == "magnitude": mask = MagnitudeBinarizer.apply(self.weight, threshold) elif self.pruning_method == "l0": l, r, b = -0.1, 1.1, 2 / 3 if self.training: u = torch.zeros_like(self.mask_scores).uniform_().clamp(0.0001, 0.9999) s = torch.sigmoid((u.log() - (1 - u).log() + self.mask_scores) / b) else: s = torch.sigmoid(self.mask_scores) s_bar = s * (r - l) + l mask = s_bar.clamp(min=0.0, max=1.0) # Mask weights with computed mask weight_thresholded = mask * self.weight # Compute output (linear layer) with masked weights return nn.functional.linear(input, weight_thresholded, self.bias)
transformers-main
examples/research_projects/movement-pruning/emmental/modules/masked_nn.py
from .binarizer import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer from .masked_nn import MaskedLinear
transformers-main
examples/research_projects/movement-pruning/emmental/modules/__init__.py
# coding=utf-8 # Copyright 2020-present, AllenAI Authors, University of Illinois Urbana-Champaign, # Intel Nervana Systems and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Binarizers take a (real value) matrix as input and produce a binary (values in {0,1}) mask of the same shape. """ import torch from torch import autograd class ThresholdBinarizer(autograd.Function): """ Thresholdd binarizer. Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j} > \tau` where `\tau` is a real value threshold. Implementation is inspired from: https://github.com/arunmallya/piggyback Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights Arun Mallya, Dillon Davis, Svetlana Lazebnik """ @staticmethod def forward(ctx, inputs: torch.tensor, threshold: float, sigmoid: bool): """ Args: inputs (`torch.FloatTensor`) The input matrix from which the binarizer computes the binary mask. threshold (`float`) The threshold value (in R). sigmoid (`bool`) If set to ``True``, we apply the sigmoid function to the `inputs` matrix before comparing to `threshold`. In this case, `threshold` should be a value between 0 and 1. Returns: mask (`torch.FloatTensor`) Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is retained, 0 - the associated weight is pruned). """ nb_elems = inputs.numel() nb_min = int(0.005 * nb_elems) + 1 if sigmoid: mask = (torch.sigmoid(inputs) > threshold).type(inputs.type()) else: mask = (inputs > threshold).type(inputs.type()) if mask.sum() < nb_min: # We limit the pruning so that at least 0.5% (half a percent) of the weights are remaining k_threshold = inputs.flatten().kthvalue(max(nb_elems - nb_min, 1)).values mask = (inputs > k_threshold).type(inputs.type()) return mask @staticmethod def backward(ctx, gradOutput): return gradOutput, None, None class TopKBinarizer(autograd.Function): """ Top-k Binarizer. Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j}` is among the k% highest values of S. Implementation is inspired from: https://github.com/allenai/hidden-networks What's hidden in a randomly weighted neural network? Vivek Ramanujan*, Mitchell Wortsman*, Aniruddha Kembhavi, Ali Farhadi, Mohammad Rastegari """ @staticmethod def forward(ctx, inputs: torch.tensor, threshold: float): """ Args: inputs (`torch.FloatTensor`) The input matrix from which the binarizer computes the binary mask. threshold (`float`) The percentage of weights to keep (the rest is pruned). `threshold` is a float between 0 and 1. Returns: mask (`torch.FloatTensor`) Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is retained, 0 - the associated weight is pruned). """ # Get the subnetwork by sorting the inputs and using the top threshold % mask = inputs.clone() _, idx = inputs.flatten().sort(descending=True) j = int(threshold * inputs.numel()) # flat_out and mask access the same memory. flat_out = mask.flatten() flat_out[idx[j:]] = 0 flat_out[idx[:j]] = 1 return mask @staticmethod def backward(ctx, gradOutput): return gradOutput, None class MagnitudeBinarizer(object): """ Magnitude Binarizer. Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j}` is among the k% highest values of |S| (absolute value). Implementation is inspired from https://github.com/NervanaSystems/distiller/blob/2291fdcc2ea642a98d4e20629acb5a9e2e04b4e6/distiller/pruning/automated_gradual_pruner.py#L24 """ @staticmethod def apply(inputs: torch.tensor, threshold: float): """ Args: inputs (`torch.FloatTensor`) The input matrix from which the binarizer computes the binary mask. This input marix is typically the weight matrix. threshold (`float`) The percentage of weights to keep (the rest is pruned). `threshold` is a float between 0 and 1. Returns: mask (`torch.FloatTensor`) Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is retained, 0 - the associated weight is pruned). """ # Get the subnetwork by sorting the inputs and using the top threshold % mask = inputs.clone() _, idx = inputs.abs().flatten().sort(descending=True) j = int(threshold * inputs.numel()) # flat_out and mask access the same memory. flat_out = mask.flatten() flat_out[idx[j:]] = 0 flat_out[idx[:j]] = 1 return mask
transformers-main
examples/research_projects/movement-pruning/emmental/modules/binarizer.py
"""Finetuning script for RAG models. Adapted from examples.seq2seq.finetune.py""" import argparse import copy import json import logging import multiprocessing import os import random import shutil import sys import time from collections import defaultdict from pathlib import Path from typing import Any, Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch import torch.distributed as dist from datasets import concatenate_datasets, load_from_disk from torch.utils.data import DataLoader from transformers import ( AutoConfig, AutoTokenizer, BartForConditionalGeneration, BatchEncoding, DPRConfig, DPRContextEncoder, DPRContextEncoderTokenizerFast, RagConfig, RagSequenceForGeneration, RagTokenForGeneration, RagTokenizer, T5ForConditionalGeneration, ) from transformers import logging as transformers_logging from transformers.integrations import is_ray_available if is_ray_available(): import ray from distributed_ray_retriever import RagRayDistributedRetriever, RayRetriever from glob import glob from callbacks_rag import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from kb_encode_utils import add_index, embed_update from lightning_base import BaseTransformer, add_generic_args, generic_train from pynvml import nvmlDeviceGetCount, nvmlDeviceGetHandleByIndex, nvmlDeviceGetMemoryInfo, nvmlInit from utils_rag import ( Seq2SeqDataset, calculate_exact_match, get_git_info, is_rag_model, lmap, pickle_save, save_git_info, save_json, set_extra_model_params, ) logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) transformers_logging.set_verbosity_info() sys.path.insert(2, str(Path(__file__).resolve().parents[1])) isEmUpdateBusy = False isAddIndexBusy = False processes = [] threadHandle_index = None class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class GenerativeQAModule(BaseTransformer): mode = "generative_qa" loss_names = ["loss"] metric_names = ["em"] val_metric = "em" def __init__(self, hparams, **kwargs): # when loading from a pytorch lightning checkpoint, hparams are passed as dict if isinstance(hparams, dict): hparams = AttrDict(hparams) if hparams.model_type == "rag_sequence": self.model_class = RagSequenceForGeneration elif hparams.model_type == "rag_token": self.model_class = RagTokenForGeneration elif hparams.model_type == "bart": self.model_class = BartForConditionalGeneration else: self.model_class = T5ForConditionalGeneration self.is_rag_model = is_rag_model(hparams.model_type) config_class = RagConfig if self.is_rag_model else AutoConfig config = config_class.from_pretrained(hparams.model_name_or_path) # set retriever parameters config.index_name = hparams.index_name or config.index_name config.passages_path = hparams.passages_path or config.passages_path config.index_path = hparams.index_path or config.index_path config.use_dummy_dataset = hparams.use_dummy_dataset # set extra_model_params for generator configs and load_model extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "attention_dropout", "dropout") if self.is_rag_model: if hparams.prefix is not None: config.generator.prefix = hparams.prefix config.label_smoothing = hparams.label_smoothing hparams, config.generator = set_extra_model_params(extra_model_params, hparams, config.generator) if hparams.distributed_retriever == "ray": # The Ray retriever needs the handles to the retriever actors. retriever = RagRayDistributedRetriever.from_pretrained( hparams.model_name_or_path, hparams.actor_handles, config=config ) if hparams.end2end: ctx_encoder_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained( "facebook/dpr-ctx_encoder-multiset-base" ) retriever.set_ctx_encoder_tokenizer(ctx_encoder_tokenizer) else: logger.info("please use RAY as the distributed retrieval method") model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config, retriever=retriever) if hparams.end2end: ctx_encoder = DPRContextEncoder.from_pretrained(hparams.context_encoder_name) model.set_context_encoder_for_training(ctx_encoder) prefix = config.question_encoder.prefix else: if hparams.prefix is not None: config.prefix = hparams.prefix hparams, config = set_extra_model_params(extra_model_params, hparams, config) model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config) prefix = config.prefix tokenizer = ( RagTokenizer.from_pretrained(hparams.model_name_or_path) if self.is_rag_model else AutoTokenizer.from_pretrained(hparams.model_name_or_path) ) self.config_dpr = DPRConfig.from_pretrained(hparams.context_encoder_name) self.custom_config = hparams self.context_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained(hparams.context_encoder_name) super().__init__(hparams, config=config, tokenizer=tokenizer, model=model) save_git_info(self.hparams.output_dir) self.output_dir = Path(self.hparams.output_dir) self.dpr_ctx_check_dir = str(Path(self.hparams.output_dir)) + "/dpr_ctx_checkpoint" self.metrics_save_path = Path(self.output_dir) / "metrics.json" self.hparams_save_path = Path(self.output_dir) / "hparams.pkl" pickle_save(self.hparams, self.hparams_save_path) self.step_count = 0 self.metrics = defaultdict(list) self.dataset_kwargs: dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": prefix or "", } n_observations_per_split = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} self.target_lens = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}" self.hparams.git_sha = get_git_info()["repo_sha"] self.num_workers = hparams.num_workers self.distributed_port = self.hparams.distributed_port # For single GPU training, init_ddp_connection is not called. # So we need to initialize the retrievers here. if hparams.gpus <= 1: if hparams.distributed_retriever == "ray": self.model.retriever.init_retrieval() else: logger.info("please use RAY as the distributed retrieval method") self.distributed_retriever = hparams.distributed_retriever def forward(self, input_ids, **kwargs): return self.model(input_ids, **kwargs) def ids_to_clean_text(self, generated_ids: List[int]): gen_text = self.tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) return lmap(str.strip, gen_text) def _step(self, batch: dict) -> Tuple: source_ids, source_mask, target_ids = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"] rag_kwargs = {} if isinstance(self.model, T5ForConditionalGeneration): decoder_input_ids = self.model._shift_right(target_ids) lm_labels = target_ids elif isinstance(self.model, BartForConditionalGeneration): decoder_input_ids = target_ids[:, :-1].contiguous() lm_labels = target_ids[:, 1:].clone() else: assert self.is_rag_model generator = self.model.rag.generator if isinstance(generator, T5ForConditionalGeneration): decoder_start_token_id = generator.config.decoder_start_token_id decoder_input_ids = ( torch.cat( [torch.tensor([[decoder_start_token_id]] * target_ids.shape[0]).to(target_ids), target_ids], dim=1, ) if target_ids.shape[0] < self.target_lens["train"] else generator._shift_right(target_ids) ) elif isinstance(generator, BartForConditionalGeneration): decoder_input_ids = target_ids lm_labels = decoder_input_ids rag_kwargs["reduce_loss"] = True assert decoder_input_ids is not None outputs = self( source_ids, attention_mask=source_mask, decoder_input_ids=decoder_input_ids, use_cache=False, labels=lm_labels, **rag_kwargs, ) loss = outputs["loss"] return (loss,) @property def pad(self) -> int: raise NotImplementedError("pad not implemented") def training_step(self, batch, batch_idx) -> Dict: global isEmUpdateBusy # use to check whether the entire embedding update process is finished or not global isAddIndexBusy # use to check whether the entire indexing process is finished or not global processes # use to keep threads embedding update processes global threadHandle_index # use to keep thread in embedding indexing processes if (self.trainer.global_rank == 0) and (self.custom_config.end2end): if (not batch_idx == 0) and (batch_idx % self.custom_config.indexing_freq == 0): free_gpu_list = [] nvmlInit() deviceCount = nvmlDeviceGetCount() my_list = json.loads(self.custom_config.gpu_order) for i in range(deviceCount): handle = nvmlDeviceGetHandleByIndex(i) info = nvmlDeviceGetMemoryInfo(handle) if info.used / 1e6 < 15: position = my_list.index(i) free_gpu_list.append("cuda:" + str(position)) if len(free_gpu_list) >= self.custom_config.index_gpus: has_free_gpus = True else: has_free_gpus = False if (not isEmUpdateBusy) and has_free_gpus: model_copy = type(self.model.rag.ctx_encoder)( self.config_dpr ) # get a new instance #this will be load in the CPU model_copy.load_state_dict(self.model.rag.ctx_encoder.state_dict()) # copy weights processes = [] if len(free_gpu_list) > self.custom_config.index_gpus: cuda_devices = random.sample(free_gpu_list, self.custom_config.index_gpus) else: cuda_devices = free_gpu_list num_processes = len(cuda_devices) for rank in range(num_processes): logger.info("Iniitializing embedding calculation process rank{}".format(rank)) device = cuda_devices[rank] p = multiprocessing.Process( target=embed_update, args=( copy.deepcopy(model_copy), num_processes, device, rank, self.custom_config.shard_dir, self.custom_config.csv_path, ), ) processes.append(p) for p in processes: p.start() isEmUpdateBusy = True if isEmUpdateBusy and (not isAddIndexBusy): index_process_list = [processes[k].is_alive() for k in range(self.custom_config.index_gpus)] if ( sum(index_process_list) == 0 ): # If entire list is false, we can say all embedding calculation process has finished logger.info("Start adding the index") threadHandle_index = multiprocessing.Process( target=add_index, args=( self.custom_config.shard_dir, self.config.index_path, ), ) threadHandle_index.start() isAddIndexBusy = True # check when index building has started if isAddIndexBusy: # check still the index_building process is happening if not threadHandle_index.is_alive(): logger.info("Merging the dataset shards") saved_dataset_shards = [] for address in glob(str(self.custom_config.shard_dir) + "/*/"): saved_dataset_shards.append(load_from_disk(address)) concat = concatenate_datasets(saved_dataset_shards) concat.save_to_disk(self.config.passages_path) # here we update the main passage file on the disk logger.info("done updating the dataset") # To Do (@Aaron) : Useful in the future dynamic memory implementation. # if you load the index from the disk make sure to update the index file here, otherwise it is ok to update the index file from the worker. # logger.info("then updating the index") # shutil.copy(self.custom_config.temp_index, self.config.idex_path) logger.info("Loading new passages and iniitalzing new index") self.trainer.model.module.module.model.rag.retriever.re_load() self.trainer.model.module.module.model.rag.retriever.init_retrieval() isEmUpdateBusy = False isAddIndexBusy = False self.trainer.strategy.barrier("barrier") loss_tensors = self._step(batch) logs = dict(zip(self.loss_names, loss_tensors)) # tokens per batch tgt_pad_token_id = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer.pad_token_id ) src_pad_token_id = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer.pad_token_id ) logs["tpb"] = ( batch["input_ids"].ne(src_pad_token_id).sum() + batch["decoder_input_ids"].ne(tgt_pad_token_id).sum() ) self.log("loss", loss_tensors[0]) return loss_tensors[0] def validation_step(self, batch, batch_idx) -> Dict: return self._generative_step(batch) def validation_epoch_end(self, outputs, prefix="val") -> Dict: self.step_count += 1 losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names} loss = losses["loss"] gen_metrics = { k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"] } metrics_tensor: torch.FloatTensor = torch.tensor(gen_metrics[self.val_metric]).type_as(loss) gen_metrics.update({k: v.item() for k, v in losses.items()}) # fix for https://github.com/PyTorchLightning/pytorch-lightning/issues/2424 if dist.is_initialized(): dist.all_reduce(metrics_tensor, op=dist.ReduceOp.SUM) metrics_tensor = metrics_tensor / dist.get_world_size() gen_metrics.update({self.val_metric: metrics_tensor.item()}) losses.update(gen_metrics) metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()} metrics["step_count"] = self.step_count self.save_metrics(metrics, prefix) # writes to self.metrics_save_path log_dict = { f"{prefix}_avg_em": metrics[f"{prefix}_avg_em"], "step_count": metrics["step_count"], f"{prefix}_avg_loss": metrics[f"{prefix}_avg_loss"], f"{prefix}_loss": loss, f"{prefix}_em": metrics_tensor, } self.log_dict(log_dict) def save_metrics(self, latest_metrics, type_path) -> None: self.metrics[type_path].append(latest_metrics) save_json(self.metrics, self.metrics_save_path) def calc_generative_metrics(self, preds, target) -> Dict: return calculate_exact_match(preds, target) def _generative_step(self, batch: dict) -> dict: start_time = time.time() batch = BatchEncoding(batch).to(device=self.model.device) generated_ids = self.model.generate( batch["input_ids"], attention_mask=batch["attention_mask"], do_deduplication=False, # rag specific parameter use_cache=True, min_length=1, max_length=self.target_lens["val"], ) gen_time = (time.time() - start_time) / batch["input_ids"].shape[0] preds: List[str] = self.ids_to_clean_text(generated_ids) target: List[str] = self.ids_to_clean_text(batch["decoder_input_ids"]) # print(preds,target) loss_tensors = self._step(batch) base_metrics = dict(zip(self.loss_names, loss_tensors)) gen_metrics: Dict = self.calc_generative_metrics(preds, target) summ_len = np.mean(lmap(len, generated_ids)) base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **gen_metrics) return base_metrics def test_step(self, batch, batch_idx): return self._generative_step(batch) def test_epoch_end(self, outputs): return self.validation_epoch_end(outputs, prefix="test") def get_dataset(self, type_path) -> Seq2SeqDataset: n_obs = self.n_obs[type_path] max_target_length = self.target_lens[type_path] dataset = Seq2SeqDataset( self.tokenizer, type_path=type_path, n_obs=n_obs, max_target_length=max_target_length, **self.dataset_kwargs, ) return dataset def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader: dataset = self.get_dataset(type_path) dataloader = DataLoader( dataset, batch_size=batch_size, collate_fn=dataset.collate_fn, shuffle=shuffle, num_workers=self.num_workers, ) return dataloader def train_dataloader(self) -> DataLoader: dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True) return dataloader def val_dataloader(self) -> DataLoader: return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size) def test_dataloader(self) -> DataLoader: return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size) @pl.utilities.rank_zero_only def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: save_path = self.output_dir.joinpath("checkpoint{}".format(self.step_count)) self.model.config.save_step = self.step_count # self.model.save_pretrained(save_path) self.tokenizer.save_pretrained(save_path) if self.custom_config.end2end: modified_state_dict = self.model.state_dict() for key in self.model.state_dict().keys(): if key.split(".")[1] == "ctx_encoder": del modified_state_dict[key] self.model.save_pretrained(save_directory=save_path, state_dict=modified_state_dict) save_path_dpr = os.path.join(self.dpr_ctx_check_dir, "checkpoint{}".format(self.step_count)) self.model.rag.ctx_encoder.save_pretrained(save_path_dpr) self.context_tokenizer.save_pretrained(save_path_dpr) @staticmethod def add_model_specific_args(parser, root_dir): BaseTransformer.add_model_specific_args(parser, root_dir) add_generic_args(parser, root_dir) parser.add_argument( "--max_source_length", default=128, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--max_target_length", default=25, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--val_max_target_length", default=25, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--test_max_target_length", default=25, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default") parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.") parser.add_argument("--n_val", type=int, default=-1, required=False, help="# examples. -1 means use all.") parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.") parser.add_argument("--label_smoothing", type=float, default=0.0, required=False) parser.add_argument( "--prefix", type=str, default=None, help="Prefix added at the beginning of each text, typically used with T5-based models.", ) parser.add_argument( "--early_stopping_patience", type=int, default=-1, required=False, help=( "-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" " val_check_interval will effect it." ), ) parser.add_argument( "--distributed-port", type=int, default=-1, required=False, help="Port number for distributed training." ) parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token", "bart", "t5"], type=str, help=( "RAG model type: sequence or token, if none specified, the type is inferred from the" " model_name_or_path" ), ) parser.add_argument( "--context_encoder_name", default="facebook/dpr-ctx_encoder-multiset-base", type=str, help="Name of the pre-trained context encoder checkpoint from the DPR", ) parser.add_argument( "--csv_path", default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv"), type=str, help="path of the raw KB csv", ) parser.add_argument("--end2end", action="store_true", help="whether to train the system end2end or not") parser.add_argument("--index_gpus", type=int, help="how many GPUs used in re-encoding process") parser.add_argument( "--shard_dir", type=str, default=str(Path(__file__).parent / "test_run" / "kb-shards"), help="directory used to keep temporary shards during the re-encode process", ) parser.add_argument( "--gpu_order", type=str, help=( "order of the GPU used during the fine-tuning. Used to finding free GPUs during the re-encode" " process. I do not have many GPUs :)" ), ) parser.add_argument("--indexing_freq", type=int, help="frequency of re-encode process") return parser @staticmethod def add_retriever_specific_args(parser): parser.add_argument( "--index_name", type=str, default=None, help=( "Name of the index to use: 'hf' for a canonical dataset from the datasets library (default), 'custom'" " for a local index, or 'legacy' for the orignal one)" ), ) parser.add_argument( "--passages_path", type=str, default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset"), help=( "Path to the dataset of passages for custom index. More info about custom indexes in the RagRetriever" " documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" ), ) parser.add_argument( "--index_path", type=str, default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset_hnsw_index.faiss"), help=( "Path to the faiss index for custom index. More info about custom indexes in the RagRetriever" " documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" ), ) parser.add_argument( "--distributed_retriever", choices=["ray", "pytorch"], type=str, default="ray", help=( "What implementation to use for distributed retriever? If " "pytorch is selected, the index is loaded on training " "worker 0, and torch.distributed is used to handle " "communication between training worker 0, and the other " "training workers. If ray is selected, the Ray library is " "used to create load the index on separate processes, " "and Ray handles the communication between the training " "workers and the retrieval actors." ), ) parser.add_argument( "--use_dummy_dataset", type=bool, default=False, help=( "Whether to use the dummy version of the dataset index. More info about custom indexes in the" " RagRetriever documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" ), ) return parser @staticmethod def add_ray_specific_args(parser): # Ray cluster address. parser.add_argument( "--ray-address", default="auto", type=str, help=( "The address of the Ray cluster to connect to. If not " "specified, Ray will attempt to automatically detect the " "cluster. Has no effect if pytorch is used as the distributed " "retriever." ), ) parser.add_argument( "--num_retrieval_workers", type=int, default=1, help=( "The number of retrieval actors to use when Ray is selected" "for the distributed retriever. Has no effect when " "distributed_retriever is set to pytorch." ), ) return parser def main(args=None, model=None) -> GenerativeQAModule: parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd()) parser = GenerativeQAModule.add_retriever_specific_args(parser) args = args or parser.parse_args() Path(args.output_dir).mkdir(exist_ok=True) Path(args.output_dir + "/dpr_ctx_checkpoint").mkdir( exist_ok=True ) # save dpr_context encoder seprately for the future use print(args.shard_dir) if os.path.exists(args.shard_dir): # we do not need previous kb shards used in dataset re-conding and re-indexing shutil.rmtree(args.shard_dir) Path(args.shard_dir).mkdir(exist_ok=True) if os.path.exists( args.cache_dir ): # we do not need previous cache files used in dataset re-conding and re-indexing shutil.rmtree(args.cache_dir) Path(args.cache_dir).mkdir(exist_ok=True) named_actors = [] if args.distributed_retriever == "ray" and args.gpus > 1: if not is_ray_available(): raise RuntimeError("Please install Ray to use the Ray distributed retriever.") # Connect to an existing Ray cluster. try: ray.init(address=args.ray_address, namespace="rag") except (ConnectionError, ValueError): logger.warning( "Connection to Ray cluster failed. Make sure a Ray" "cluster is running by either using Ray's cluster " "launcher (`ray up`) or by manually starting Ray on " "each node via `ray start --head` for the head node " "and `ray start --address='<ip address>:6379'` for " "additional nodes. See " "https://docs.ray.io/en/master/cluster/index.html " "for more info." ) raise # Create Ray actors only for rank 0. if ("LOCAL_RANK" not in os.environ or os.environ["LOCAL_RANK"] == 0) and ( "NODE_RANK" not in os.environ or os.environ["NODE_RANK"] == 0 ): remote_cls = ray.remote(RayRetriever) named_actors = [ remote_cls.options(name="retrieval_worker_{}".format(i)).remote() for i in range(args.num_retrieval_workers) ] else: logger.info( "Getting named actors for NODE_RANK {}, LOCAL_RANK {}".format( os.environ["NODE_RANK"], os.environ["LOCAL_RANK"] ) ) named_actors = [ray.get_actor("retrieval_worker_{}".format(i)) for i in range(args.num_retrieval_workers)] args.actor_handles = named_actors assert args.actor_handles == named_actors if model is None: model: GenerativeQAModule = GenerativeQAModule(args) dataset = Path(args.data_dir).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir).startswith("/tmp") or str(args.output_dir).startswith("/var") ): training_logger = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger project = os.environ.get("WANDB_PROJECT", dataset) training_logger = WandbLogger(name=model.output_dir.name, project=project) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger training_logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}") es_callback = ( get_early_stopping_callback(model.val_metric, args.early_stopping_patience) if args.early_stopping_patience >= 0 else False ) trainer: pl.Trainer = generic_train( model, args, logging_callback=Seq2SeqLoggingCallback(), checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric), early_stopping_callback=es_callback, logger=training_logger, profiler=pl.profiler.AdvancedProfiler() if args.profile else None, ) pickle_save(model.hparams, model.output_dir / "hparams.pkl") if not args.do_predict: return model # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": multiprocessing.set_start_method("spawn") parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd()) parser = GenerativeQAModule.add_retriever_specific_args(parser) parser = GenerativeQAModule.add_ray_specific_args(parser) # Pytorch Lightning Profiler parser.add_argument( "--profile", action="store_true", help="If True, use pytorch_lightning.profiler.AdvancedProfiler to profile the Trainer.", ) args = parser.parse_args() main(args)
transformers-main
examples/research_projects/rag-end2end-retriever/finetune_rag.py
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, T5Tokenizer def encode_line(tokenizer, line, max_length, padding_side, pad_to_max_length=True, return_tensors="pt"): extra_kw = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) and not line.startswith(" ") else {} tokenizer.padding_side = padding_side return tokenizer( [line], max_length=max_length, padding="max_length" if pad_to_max_length else None, truncation=True, return_tensors=return_tensors, add_special_tokens=True, **extra_kw, ) def trim_batch( input_ids, pad_token_id, attention_mask=None, ): """Remove columns that are populated exclusively by pad_token_id""" keep_column_mask = input_ids.ne(pad_token_id).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class Seq2SeqDataset(Dataset): def __init__( self, tokenizer, data_dir, max_source_length, max_target_length, type_path="train", n_obs=None, src_lang=None, tgt_lang=None, prefix="", ): super().__init__() self.src_file = Path(data_dir).joinpath(type_path + ".source") self.tgt_file = Path(data_dir).joinpath(type_path + ".target") self.src_lens = self.get_char_lens(self.src_file) self.max_source_length = max_source_length self.max_target_length = max_target_length assert min(self.src_lens) > 0, f"found empty line in {self.src_file}" self.tokenizer = tokenizer self.prefix = prefix if n_obs is not None: self.src_lens = self.src_lens[:n_obs] self.src_lang = src_lang self.tgt_lang = tgt_lang def __len__(self): return len(self.src_lens) def __getitem__(self, index) -> Dict[str, torch.Tensor]: index = index + 1 # linecache starts at 1 source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n") tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n") assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer, T5Tokenizer): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right source_tokenizer = ( self.tokenizer.question_encoder if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer ) target_tokenizer = self.tokenizer.generator if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer source_inputs = encode_line(source_tokenizer, source_line, self.max_source_length, "right") target_inputs = encode_line(target_tokenizer, tgt_line, self.max_target_length, "right") source_ids = source_inputs["input_ids"].squeeze() target_ids = target_inputs["input_ids"].squeeze() src_mask = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def get_char_lens(data_file): return [len(x) for x in Path(data_file).open().readlines()] def collate_fn(self, batch) -> Dict[str, torch.Tensor]: input_ids = torch.stack([x["input_ids"] for x in batch]) masks = torch.stack([x["attention_mask"] for x in batch]) target_ids = torch.stack([x["decoder_input_ids"] for x in batch]) tgt_pad_token_id = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer.pad_token_id ) src_pad_token_id = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, RagTokenizer) else self.tokenizer.pad_token_id ) y = trim_batch(target_ids, tgt_pad_token_id) source_ids, source_mask = trim_batch(input_ids, src_pad_token_id, attention_mask=masks) batch = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch logger = getLogger(__name__) def flatten_list(summary_ids: List[List]): return list(itertools.chain.from_iterable(summary_ids)) def save_git_info(folder_path: str) -> None: """Save git information to output_dir/git_log.json""" repo_infos = get_git_info() save_json(repo_infos, os.path.join(folder_path, "git_log.json")) def save_json(content, path, indent=4, **json_dump_kwargs): with open(path, "w") as f: json.dump(content, f, indent=indent, **json_dump_kwargs) def load_json(path): with open(path) as f: return json.load(f) def get_git_info(): repo = git.Repo(search_parent_directories=True) repo_infos = { "repo_id": str(repo), "repo_sha": str(repo.head.object.hexsha), "repo_branch": str(repo.active_branch), "hostname": str(socket.gethostname()), } return repo_infos def lmap(f: Callable, x: Iterable) -> List: """list(map(f, x))""" return list(map(f, x)) def pickle_save(obj, path): """pickle.dump(obj, path)""" with open(path, "wb") as f: return pickle.dump(obj, f) def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r"\b(a|an|the)\b", " ", text) def white_space_fix(text): return " ".join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def calculate_exact_match(output_lns: List[str], reference_lns: List[str]) -> Dict: assert len(output_lns) == len(reference_lns) em = 0 for hypo, pred in zip(output_lns, reference_lns): em += exact_match_score(hypo, pred) if len(output_lns) > 0: em /= len(output_lns) return {"em": em} def is_rag_model(model_prefix): return model_prefix.startswith("rag") def set_extra_model_params(extra_params, hparams, config): equivalent_param = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead equivalent_param["dropout"] = "dropout_rate" for p in extra_params: if getattr(hparams, p, None): if not hasattr(config, p) and not hasattr(config, equivalent_param[p]): logger.info("config doesn't have a `{}` attribute".format(p)) delattr(hparams, p) continue set_p = p if hasattr(config, p) else equivalent_param[p] setattr(config, set_p, getattr(hparams, p)) delattr(hparams, p) return hparams, config
transformers-main
examples/research_projects/rag-end2end-retriever/utils_rag.py
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def count_trainable_parameters(model): model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) return params logger = logging.getLogger(__name__) def get_checkpoint_callback(output_dir, metric): """Saves the best model by validation EM score.""" if metric == "rouge2": exp = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": exp = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": exp = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": exp = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" " function." ) checkpoint_callback = ModelCheckpoint( dirpath=output_dir, filename=exp, monitor=f"val_{metric}", mode="max", save_top_k=1, every_n_epochs=1, # works only with PL > 1.3 ) return checkpoint_callback def get_early_stopping_callback(metric, patience): return EarlyStopping( monitor=f"val_{metric}", # does this need avg? mode="min" if "loss" in metric else "max", patience=patience, verbose=True, ) class Seq2SeqLoggingCallback(pl.Callback): def on_batch_end(self, trainer, pl_module): lrs = {f"lr_group_{i}": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(lrs) @rank_zero_only def _write_logs( self, trainer: pl.Trainer, pl_module: pl.LightningModule, type_path: str, save_generations=True ) -> None: logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****") metrics = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]}) # Log results od = Path(pl_module.hparams.output_dir) if type_path == "test": results_file = od / "test_results.txt" generations_file = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. results_file = od / f"{type_path}_results/{trainer.global_step:05d}.txt" generations_file = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=True) generations_file.parent.mkdir(exist_ok=True) with open(results_file, "a+") as writer: for key in sorted(metrics): if key in ["log", "progress_bar", "preds"]: continue val = metrics[key] if isinstance(val, torch.Tensor): val = val.item() msg = f"{key}: {val:.6f}\n" writer.write(msg) if not save_generations: return if "preds" in metrics: content = "\n".join(metrics["preds"]) generations_file.open("w+").write(content) @rank_zero_only def on_train_start(self, trainer, pl_module): try: npars = pl_module.model.model.num_parameters() except AttributeError: npars = pl_module.model.num_parameters() n_trainable_pars = count_trainable_parameters(pl_module) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6}) @rank_zero_only def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): save_json(pl_module.metrics, pl_module.metrics_save_path) return self._write_logs(trainer, pl_module, "test") @rank_zero_only def on_validation_end(self, trainer: pl.Trainer, pl_module): save_json(pl_module.metrics, pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
transformers-main
examples/research_projects/rag-end2end-retriever/callbacks_rag.py
import os from functools import partial from glob import glob import faiss from datasets import Features, Sequence, Value, concatenate_datasets, load_dataset, load_from_disk from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast def split_text(text, n=100, character=" "): """Split the text every ``n``-th occurrence of ``character``""" text = text.split(character) return [character.join(text[i : i + n]).strip() for i in range(0, len(text), n)] def split_documents(documents): """Split documents into passages""" titles, texts = [], [] for title, text in zip(documents["title"], documents["text"]): if text is not None: for passage in split_text(text): titles.append(title if title is not None else "") texts.append(passage) return {"title": titles, "text": texts} def embed_update(ctx_encoder, total_processes, device, process_num, shard_dir, csv_path): kb_dataset = load_dataset( "csv", data_files=[csv_path], split="train", delimiter="\t", column_names=["title", "text"] ) kb_dataset = kb_dataset.map( split_documents, batched=True, num_proc=1 ) # if you want you can load already splitted csv. kb_list = [kb_dataset.shard(total_processes, i, contiguous=True) for i in range(total_processes)] data_shrad = kb_list[process_num] arrow_folder = "data_" + str(process_num) passages_path = os.path.join(shard_dir, arrow_folder) context_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained("facebook/dpr-ctx_encoder-multiset-base") ctx_encoder = ctx_encoder.to(device=device) def embed( documents: dict, ctx_encoder: DPRContextEncoder, ctx_tokenizer: DPRContextEncoderTokenizerFast, device ) -> dict: """Compute the DPR embeddings of document passages""" input_ids = ctx_tokenizer( documents["title"], documents["text"], truncation=True, padding="longest", return_tensors="pt" )["input_ids"] embeddings = ctx_encoder(input_ids.to(device=device), return_dict=True).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} new_features = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))} ) # optional, save as float32 instead of float64 to save space dataset = data_shrad.map( partial(embed, ctx_encoder=ctx_encoder, ctx_tokenizer=context_tokenizer, device=device), batched=True, batch_size=16, features=new_features, ) dataset.save_to_disk(passages_path) def add_index(shard_dir, index_path): data_shard_list = [] for shard_address in glob(str(shard_dir) + "/*/"): data_shard_list.append(load_from_disk(shard_address)) concat = concatenate_datasets(data_shard_list) faiss.omp_set_num_threads(96) index = faiss.IndexHNSWFlat(768, 128, faiss.METRIC_INNER_PRODUCT) concat.add_faiss_index("embeddings", custom_index=index) concat.get_index("embeddings").save( index_path ) # since we load the index in to memory,we can directly update the index in the disk
transformers-main
examples/research_projects/rag-end2end-retriever/kb_encode_utils.py
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version logger = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") MODEL_MODES = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeq2SeqLM, "translation": AutoModelForSeq2SeqLM, } # update this and the import above to support new schedulers from transformers.optimization arg_to_scheduler = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } arg_to_scheduler_choices = sorted(arg_to_scheduler.keys()) arg_to_scheduler_metavar = "{" + ", ".join(arg_to_scheduler_choices) + "}" class BaseTransformer(pl.LightningModule): def __init__( self, hparams: argparse.Namespace, num_labels=None, mode="base", config=None, tokenizer=None, model=None, **config_kwargs, ): """Initialize a model, tokenizer and config.""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(hparams) self.step_count = 0 self.output_dir = Path(self.hparams.output_dir) cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: self.config = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({"num_labels": num_labels} if num_labels is not None else {}), cache_dir=cache_dir, **config_kwargs, ) else: self.config: PretrainedConfig = config extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams, p, None): assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute" setattr(self.config, p, getattr(self.hparams, p)) if tokenizer is None: self.tokenizer = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=cache_dir, ) else: self.tokenizer: PreTrainedTokenizer = tokenizer self.model_type = MODEL_MODES[mode] if model is None: self.model = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool(".ckpt" in self.hparams.model_name_or_path), config=self.config, cache_dir=cache_dir, ) else: self.model = model def load_hf_checkpoint(self, *args, **kwargs): self.model = self.model_type.from_pretrained(*args, **kwargs) def get_lr_scheduler(self): get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler] scheduler = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() ) scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def configure_optimizers(self): """Prepare optimizer and schedule (linear warmup and decay)""" model = self.model no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] if self.hparams.adafactor: optimizer = Adafactor( optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False ) else: optimizer = AdamW( optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) self.opt = optimizer scheduler = self.get_lr_scheduler() return [optimizer], [scheduler] def test_step(self, batch, batch_nb): return self.validation_step(batch, batch_nb) def test_epoch_end(self, outputs): return self.validation_end(outputs) def total_steps(self) -> int: """The number of total training steps that will be run. Used for lr scheduler purposes.""" num_devices = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def setup(self, stage): if stage == "test": self.dataset_size = len(self.test_dataloader().dataset) else: self.train_loader = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=True) self.dataset_size = len(self.train_dataloader().dataset) def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False): raise NotImplementedError("You must implement this for your task") def train_dataloader(self): return self.train_loader def val_dataloader(self): return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=False) def test_dataloader(self): return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=False) def _feature_file(self, mode): return os.path.join( self.hparams.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(), str(self.hparams.max_seq_length), ), ) @pl.utilities.rank_zero_only def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: save_path = self.output_dir.joinpath("best_tfmr") self.model.config.save_step = self.step_count self.model.save_pretrained(save_path) self.tokenizer.save_pretrained(save_path) @staticmethod def add_model_specific_args(parser, root_dir): parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default=None, type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default=str(Path(__file__).parent / "test_run" / "cache"), type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--encoder_layerdrop", type=float, help="Encoder layer dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--decoder_layerdrop", type=float, help="Decoder layer dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--dropout", type=float, help="Dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--attention_dropout", type=float, help="Attention dropout probability (Optional). Goes into model.config", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--lr_scheduler", default="linear", choices=arg_to_scheduler_choices, metavar=arg_to_scheduler_metavar, type=str, help="Learning rate scheduler", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader") parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int) parser.add_argument("--train_batch_size", default=32, type=int) parser.add_argument("--eval_batch_size", default=32, type=int) parser.add_argument("--adafactor", action="store_true") class InitCallback(pl.Callback): # this process can also be done with PL ddp plugging. # But still it is experimental (check original RAG, I updated that with pluggin (shamanez)) def on_sanity_check_start(self, trainer, pl_module): if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class CheckParamCallback(pl.Callback): # check whether new added model paramters are differentiable def on_after_backward(self, trainer, pl_module): # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(name) class LoggingCallback(pl.Callback): def on_batch_end(self, trainer, pl_module): lr_scheduler = trainer.lr_schedulers[0]["scheduler"] lrs = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(lrs) def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): rank_zero_info("***** Validation results *****") metrics = trainer.callback_metrics # Log results for key in sorted(metrics): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): rank_zero_info("***** Test results *****") metrics = trainer.callback_metrics # Log and save results to file output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt") with open(output_test_results_file, "w") as writer: for key in sorted(metrics): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) writer.write("{} = {}\n".format(key, str(metrics[key]))) def add_generic_args(parser, root_dir) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir", default=str(Path(__file__).parent / "test_run" / "model_checkpoints"), type=str, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O2", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=int) parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=float, help="Max gradient norm") parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument( "--gradient_accumulation_steps", dest="accumulate_grad_batches", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--data_dir", default=str(Path(__file__).parent / "test_run" / "dummy-train-data"), type=str, help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) def generic_train( model: BaseTransformer, args: argparse.Namespace, early_stopping_callback=None, logger=True, # can pass WandbLogger() here extra_callbacks=[], checkpoint_callback=None, logging_callback=None, **extra_train_kwargs, ): pl.seed_everything(args.seed) # init model odir = Path(model.hparams.output_dir) odir.mkdir(exist_ok=True) # add custom checkpoints if checkpoint_callback is None: checkpoint_callback = pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(early_stopping_callback) if logging_callback is None: logging_callback = LoggingCallback() train_params = {} if args.fp16: train_params["precision"] = 16 if args.gpus > 1: train_params["accelerator"] = "auto" train_params["strategy"] = "ddp" train_params["accumulate_grad_batches"] = args.accumulate_grad_batches train_params["profiler"] = None train_params["devices"] = "auto" trainer = pl.Trainer.from_argparse_args( args, weights_summary=None, callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback], logger=logger, val_check_interval=1, num_sanity_val_steps=2, **train_params, ) if args.do_train: trainer.fit(model) else: print("RAG modeling tests with new set functions successfuly executed!") return trainer
transformers-main
examples/research_projects/rag-end2end-retriever/lightning_base.py
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex logger = logging.getLogger(__name__) class RayRetriever: def __init__(self): self.initialized = False def create_rag_retriever(self, config, question_encoder_tokenizer, generator_tokenizer, index): if not self.initialized: self.retriever = RagRetriever( config, question_encoder_tokenizer=question_encoder_tokenizer, generator_tokenizer=generator_tokenizer, index=index, init_retrieval=False, ) self.initialized = True def init_retrieval(self): self.retriever.index.init_index() def clear_object(self): # delete the old self.retriever object before assigning the new index del self.retriever self.initialized = False def retrieve(self, question_hidden_states, n_docs): doc_ids, retrieved_doc_embeds = self.retriever._main_retrieve(question_hidden_states, n_docs) doc_dicts = self.retriever.index.get_doc_dicts(doc_ids) return doc_ids, retrieved_doc_embeds, doc_dicts class RagRayDistributedRetriever(RagRetriever): """ A distributed retriever built on top of the ``Ray`` API, a library for building distributed applications (https://docs.ray.io/en/master/). package. During training, all training workers initialize their own instance of a `RagRayDistributedRetriever`, and each instance of this distributed retriever shares a common set of Retrieval Ray Actors (https://docs.ray.io/en/master/walkthrough.html#remote -classes-actors) that load the index on separate processes. Ray handles the communication between the `RagRayDistributedRetriever` instances and the remote Ray actors. If training is done in a non-distributed setup, the index will simply be loaded in the same process as the training worker and Ray will not be used. Args: config (:class:`~transformers.RagConfig`): The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build. question_encoder_tokenizer (:class:`~transformers.PreTrainedTokenizer`): The tokenizer that was used to tokenize the question. It is used to decode the question and then use the generator_tokenizer. generator_tokenizer (:class:`~transformers.PreTrainedTokenizer`): The tokenizer used for the generator part of the RagModel. retrieval_workers (:obj:`List[ray.ActorClass(RayRetriever)]`): A list of already initialized `RayRetriever` actors. These actor classes run on remote processes and are responsible for performing the index lookup. index (:class:`~transformers.retrieval_rag.Index`, optional, defaults to the one defined by the configuration): If specified, use this index instead of the one built using the configuration """ def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, retrieval_workers, index=None): if index is not None and index.is_initialized() and len(retrieval_workers) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( config, question_encoder_tokenizer=question_encoder_tokenizer, generator_tokenizer=generator_tokenizer, index=index, init_retrieval=False, ) self.retrieval_workers = retrieval_workers self.question_encoder_tokenizer = question_encoder_tokenizer self.generator_tokenizer = generator_tokenizer if len(self.retrieval_workers) > 0: ray.get( [ worker.create_rag_retriever.remote(config, question_encoder_tokenizer, generator_tokenizer, index) for worker in self.retrieval_workers ] ) def init_retrieval(self): """ Retriever initialization function, needs to be called from the training process. This function triggers retrieval initialization for all retrieval actors if using distributed setting, or loads index into current process if training is not distributed. """ logger.info("initializing retrieval") if len(self.retrieval_workers) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers]) else: # Non-distributed training. Load index into this same process. self.index.init_index() def retrieve(self, question_hidden_states, n_docs): """ Retrieves documents for specified ``question_hidden_states``. If running training with multiple workers, a random retrieval actor is selected to perform the index lookup and return the result. Args: question_hidden_states (:obj:`np.ndarray` of shape :obj:`(batch_size, vector_size)`): A batch of query vectors to retrieve with. n_docs (:obj:`int`): The number of docs retrieved per query. Output: retrieved_doc_embeds (:obj:`np.ndarray` of shape :obj:`(batch_size, n_docs, dim)` The retrieval embeddings of the retrieved docs per query. doc_ids (:obj:`np.ndarray` of shape :obj:`batch_size, n_docs`) The ids of the documents in the index doc_dicts (:obj:`List[dict]`): The retrieved_doc_embeds examples per query. """ if len(self.retrieval_workers) > 0: # Select a random retrieval actor. random_worker = self.retrieval_workers[random.randint(0, len(self.retrieval_workers) - 1)] doc_ids, retrieved_doc_embeds, doc_dicts = ray.get( random_worker.retrieve.remote(question_hidden_states, n_docs) ) else: doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs) doc_dicts = self.index.get_doc_dicts(doc_ids) return retrieved_doc_embeds, doc_ids, doc_dicts @classmethod def get_tokenizers(cls, retriever_name_or_path, indexed_dataset=None, **kwargs): return super(RagRayDistributedRetriever, cls).get_tokenizers(retriever_name_or_path, indexed_dataset, **kwargs) @classmethod def from_pretrained(cls, retriever_name_or_path, actor_handles, indexed_dataset=None, **kwargs): config = kwargs.pop("config", None) or RagConfig.from_pretrained(retriever_name_or_path, **kwargs) rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config) question_encoder_tokenizer = rag_tokenizer.question_encoder generator_tokenizer = rag_tokenizer.generator if indexed_dataset is not None: config.index_name = "custom" index = CustomHFIndex(config.retrieval_vector_size, indexed_dataset) else: index = cls._build_index(config) return cls( config, question_encoder_tokenizer=question_encoder_tokenizer, generator_tokenizer=generator_tokenizer, retrieval_workers=actor_handles, index=index, ) def re_load(self): logger.info("re-loading the new dataset with embeddings") # access from the training loop ray.get([worker.clear_object.remote() for worker in self.retrieval_workers]) # build the index object again index = self._build_index(self.config) ray.get( [ worker.create_rag_retriever.remote( self.config, self.question_encoder_tokenizer, self.generator_tokenizer, index ) for worker in self.retrieval_workers ] )
transformers-main
examples/research_projects/rag-end2end-retriever/distributed_ray_retriever.py
""" Evaluation script for RAG models.""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, f1_score # noqa: E402 # isort:skip logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def infer_model_type(model_name_or_path): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): return max(metric_fn(prediction, gt) for gt in ground_truths) def get_scores(args, preds_path, gold_data_path): hypos = [line.strip() for line in open(preds_path, "r").readlines()] answers = [] if args.gold_data_mode == "qa": data = pd.read_csv(gold_data_path, sep="\t", header=None) for answer_list in data[1]: ground_truths = ast.literal_eval(answer_list) answers.append(ground_truths) else: references = [line.strip() for line in open(gold_data_path, "r").readlines()] answers = [[reference] for reference in references] f1 = em = total = 0 for prediction, ground_truths in zip(hypos, answers): total += 1 em += metric_max_over_ground_truths(exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths(f1_score, prediction, ground_truths) em = 100.0 * em / total f1 = 100.0 * f1 / total logger.info(f"F1: {f1:.2f}") logger.info(f"EM: {em:.2f}") def get_precision_at_k(args, preds_path, gold_data_path): k = args.k hypos = [line.strip() for line in open(preds_path, "r").readlines()] references = [line.strip() for line in open(gold_data_path, "r").readlines()] em = total = 0 for hypo, reference in zip(hypos, references): hypo_provenance = set(hypo.split("\t")[:k]) ref_provenance = set(reference.split("\t")) total += 1 em += len(hypo_provenance & ref_provenance) / k em = 100.0 * em / total logger.info(f"Precision@{k}: {em: .2f}") def evaluate_batch_retrieval(args, rag_model, questions): def strip_title(title): if title.startswith('"'): title = title[1:] if title.endswith('"'): title = title[:-1] return title retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( questions, return_tensors="pt", padding=True, truncation=True, )["input_ids"].to(args.device) question_enc_outputs = rag_model.rag.question_encoder(retriever_input_ids) question_enc_pool_output = question_enc_outputs[0] result = rag_model.retriever( retriever_input_ids, question_enc_pool_output.cpu().detach().to(torch.float32).numpy(), prefix=rag_model.rag.generator.config.prefix, n_docs=rag_model.config.n_docs, return_tensors="pt", ) all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids) provenance_strings = [] for docs in all_docs: provenance = [strip_title(title) for title in docs["title"]] provenance_strings.append("\t".join(provenance)) return provenance_strings def evaluate_batch_e2e(args, rag_model, questions): with torch.no_grad(): inputs_dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( questions, return_tensors="pt", padding=True, truncation=True ) input_ids = inputs_dict.input_ids.to(args.device) attention_mask = inputs_dict.attention_mask.to(args.device) outputs = rag_model.generate( # rag_model overwrites generate input_ids, attention_mask=attention_mask, num_beams=args.num_beams, min_length=args.min_length, max_length=args.max_length, early_stopping=False, num_return_sequences=1, bad_words_ids=[[0, 0]], # BART likes to repeat BOS tokens, dont allow it to generate more than one ) answers = rag_model.retriever.generator_tokenizer.batch_decode(outputs, skip_special_tokens=True) if args.print_predictions: for q, a in zip(questions, answers): logger.info("Q: {} - A: {}".format(q, a)) return answers def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token", "bart"], type=str, help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ), ) parser.add_argument( "--index_name", default=None, choices=["exact", "compressed", "legacy"], type=str, help="RAG model retriever type", ) parser.add_argument( "--index_path", default=None, type=str, help="Path to the retrieval index", ) parser.add_argument("--n_docs", default=5, type=int, help="Number of retrieved docs") parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained checkpoints or model identifier from huggingface.co/models", ) parser.add_argument( "--eval_mode", choices=["e2e", "retrieval"], default="e2e", type=str, help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ), ) parser.add_argument("--k", default=1, type=int, help="k for the precision@k calculation") parser.add_argument( "--evaluation_set", default=None, type=str, required=True, help="Path to a file containing evaluation samples", ) parser.add_argument( "--gold_data_path", default=None, type=str, required=True, help="Path to a tab-separated file with gold samples", ) parser.add_argument( "--gold_data_mode", default="qa", type=str, choices=["qa", "ans"], help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ), ) parser.add_argument( "--predictions_path", type=str, default="predictions.txt", help="Name of the predictions file, to be stored in the checkpoints directory", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--recalculate", help="Recalculate predictions even if the prediction file exists", action="store_true", ) parser.add_argument( "--num_beams", default=4, type=int, help="Number of beams to be used when generating answers", ) parser.add_argument("--min_length", default=1, type=int, help="Min length of the generated answers") parser.add_argument("--max_length", default=50, type=int, help="Max length of the generated answers") parser.add_argument( "--print_predictions", action="store_true", help="If True, prints predictions while evaluating.", ) parser.add_argument( "--print_docs", action="store_true", help="If True, prints docs retried while generating.", ) args = parser.parse_args() args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") return args def main(args): model_kwargs = {} if args.model_type is None: args.model_type = infer_model_type(args.model_name_or_path) assert args.model_type is not None if args.model_type.startswith("rag"): model_class = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration model_kwargs["n_docs"] = args.n_docs if args.index_name is not None: model_kwargs["index_name"] = args.index_name if args.index_path is not None: model_kwargs["index_path"] = args.index_path else: model_class = BartForConditionalGeneration checkpoints = ( [f.path for f in os.scandir(args.model_name_or_path) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s", checkpoints) score_fn = get_scores if args.eval_mode == "e2e" else get_precision_at_k evaluate_batch_fn = evaluate_batch_e2e if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path)) score_fn(args, args.predictions_path, args.gold_data_path) continue logger.info("***** Running evaluation for {} *****".format(checkpoint)) logger.info(" Batch size = %d", args.eval_batch_size) logger.info(" Predictions will be stored under {}".format(args.predictions_path)) if args.model_type.startswith("rag"): retriever = RagRetriever.from_pretrained(checkpoint, **model_kwargs) model = model_class.from_pretrained(checkpoint, retriever=retriever, **model_kwargs) model.retriever.init_retrieval() else: model = model_class.from_pretrained(checkpoint, **model_kwargs) model.to(args.device) with open(args.evaluation_set, "r") as eval_file, open(args.predictions_path, "w") as preds_file: questions = [] for line in tqdm(eval_file): questions.append(line.strip()) if len(questions) == args.eval_batch_size: answers = evaluate_batch_fn(args, model, questions) preds_file.write("\n".join(answers) + "\n") preds_file.flush() questions = [] if len(questions) > 0: answers = evaluate_batch_fn(args, model, questions) preds_file.write("\n".join(answers)) preds_file.flush() score_fn(args, args.predictions_path, args.gold_data_path) if __name__ == "__main__": args = get_args() main(args)
transformers-main
examples/research_projects/rag-end2end-retriever/eval_rag.py
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser logger = logging.getLogger(__name__) torch.set_grad_enabled(False) device = "cuda" if torch.cuda.is_available() else "cpu" def split_text(text: str, n=100, character=" ") -> List[str]: """Split the text every ``n``-th occurrence of ``character``""" text = text.split(character) return [character.join(text[i : i + n]).strip() for i in range(0, len(text), n)] def split_documents(documents: dict) -> dict: """Split documents into passages""" titles, texts = [], [] for title, text in zip(documents["title"], documents["text"]): if text is not None: for passage in split_text(text): titles.append(title if title is not None else "") texts.append(passage) return {"title": titles, "text": texts} def embed(documents: dict, ctx_encoder: DPRContextEncoder, ctx_tokenizer: DPRContextEncoderTokenizerFast) -> dict: """Compute the DPR embeddings of document passages""" input_ids = ctx_tokenizer( documents["title"], documents["text"], truncation=True, padding="longest", return_tensors="pt" )["input_ids"] embeddings = ctx_encoder(input_ids.to(device=device), return_dict=True).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def main( rag_example_args: "RagExampleArguments", processing_args: "ProcessingArguments", index_hnsw_args: "IndexHnswArguments", ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way dataset = load_dataset( "csv", data_files=[rag_example_args.csv_path], split="train", delimiter="\t", column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words dataset = dataset.map(split_documents, batched=True, num_proc=processing_args.num_proc) # And compute the embeddings ctx_encoder = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=device) ctx_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) new_features = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))} ) # optional, save as float32 instead of float64 to save space dataset = dataset.map( partial(embed, ctx_encoder=ctx_encoder, ctx_tokenizer=ctx_tokenizer), batched=True, batch_size=processing_args.batch_size, features=new_features, ) # And finally save your dataset passages_path = os.path.join(rag_example_args.output_dir, "my_knowledge_dataset") dataset.save_to_disk(passages_path) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search index = faiss.IndexHNSWFlat(index_hnsw_args.d, index_hnsw_args.m, faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings", custom_index=index) # And save the index index_path = os.path.join(rag_example_args.output_dir, "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(index_path) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class RagExampleArguments: csv_path: str = field( default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv"), metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"}, ) question: Optional[str] = field( default=None, metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."}, ) rag_model_name: str = field( default="facebook/rag-sequence-nq", metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"}, ) dpr_ctx_encoder_model_name: str = field( default="facebook/dpr-ctx_encoder-multiset-base", metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) }, ) output_dir: Optional[str] = field( default=str(Path(__file__).parent / "test_run" / "dummy-kb"), metadata={"help": "Path to a directory where the dataset passages and the index will be saved"}, ) @dataclass class ProcessingArguments: num_proc: Optional[int] = field( default=None, metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." }, ) batch_size: int = field( default=16, metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." }, ) @dataclass class IndexHnswArguments: d: int = field( default=768, metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."}, ) m: int = field( default=128, metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) }, ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) parser = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) rag_example_args, processing_args, index_hnsw_args = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: rag_example_args.output_dir = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
transformers-main
examples/research_projects/rag-end2end-retriever/use_own_knowledge_dataset.py
import gym import numpy as np import torch from mujoco_py import GlfwContext from transformers import DecisionTransformerModel GlfwContext(offscreen=True) # Create a window to init GLFW. def get_action(model, states, actions, rewards, returns_to_go, timesteps): # we don't care about the past rewards in this model states = states.reshape(1, -1, model.config.state_dim) actions = actions.reshape(1, -1, model.config.act_dim) returns_to_go = returns_to_go.reshape(1, -1, 1) timesteps = timesteps.reshape(1, -1) if model.config.max_length is not None: states = states[:, -model.config.max_length :] actions = actions[:, -model.config.max_length :] returns_to_go = returns_to_go[:, -model.config.max_length :] timesteps = timesteps[:, -model.config.max_length :] # pad all tokens to sequence length attention_mask = torch.cat( [torch.zeros(model.config.max_length - states.shape[1]), torch.ones(states.shape[1])] ) attention_mask = attention_mask.to(dtype=torch.long, device=states.device).reshape(1, -1) states = torch.cat( [ torch.zeros( (states.shape[0], model.config.max_length - states.shape[1], model.config.state_dim), device=states.device, ), states, ], dim=1, ).to(dtype=torch.float32) actions = torch.cat( [ torch.zeros( (actions.shape[0], model.config.max_length - actions.shape[1], model.config.act_dim), device=actions.device, ), actions, ], dim=1, ).to(dtype=torch.float32) returns_to_go = torch.cat( [ torch.zeros( (returns_to_go.shape[0], model.config.max_length - returns_to_go.shape[1], 1), device=returns_to_go.device, ), returns_to_go, ], dim=1, ).to(dtype=torch.float32) timesteps = torch.cat( [ torch.zeros( (timesteps.shape[0], model.config.max_length - timesteps.shape[1]), device=timesteps.device ), timesteps, ], dim=1, ).to(dtype=torch.long) else: attention_mask = None _, action_preds, _ = model( states=states, actions=actions, rewards=rewards, returns_to_go=returns_to_go, timesteps=timesteps, attention_mask=attention_mask, return_dict=False, ) return action_preds[0, -1] # build the environment env = gym.make("Hopper-v3") state_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] max_ep_len = 1000 device = "cuda" scale = 1000.0 # normalization for rewards/returns TARGET_RETURN = 3600 / scale # evaluation conditioning targets, 3600 is reasonable from the paper LINK state_mean = np.array( [ 1.311279, -0.08469521, -0.5382719, -0.07201576, 0.04932366, 2.1066856, -0.15017354, 0.00878345, -0.2848186, -0.18540096, -0.28461286, ] ) state_std = np.array( [ 0.17790751, 0.05444621, 0.21297139, 0.14530419, 0.6124444, 0.85174465, 1.4515252, 0.6751696, 1.536239, 1.6160746, 5.6072536, ] ) state_mean = torch.from_numpy(state_mean).to(device=device) state_std = torch.from_numpy(state_std).to(device=device) # Create the decision transformer model model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-medium") model = model.to(device) model.eval() for ep in range(10): episode_return, episode_length = 0, 0 state = env.reset() target_return = torch.tensor(TARGET_RETURN, device=device, dtype=torch.float32).reshape(1, 1) states = torch.from_numpy(state).reshape(1, state_dim).to(device=device, dtype=torch.float32) actions = torch.zeros((0, act_dim), device=device, dtype=torch.float32) rewards = torch.zeros(0, device=device, dtype=torch.float32) timesteps = torch.tensor(0, device=device, dtype=torch.long).reshape(1, 1) for t in range(max_ep_len): env.render() # add padding actions = torch.cat([actions, torch.zeros((1, act_dim), device=device)], dim=0) rewards = torch.cat([rewards, torch.zeros(1, device=device)]) action = get_action( model, (states.to(dtype=torch.float32) - state_mean) / state_std, actions.to(dtype=torch.float32), rewards.to(dtype=torch.float32), target_return.to(dtype=torch.float32), timesteps.to(dtype=torch.long), ) actions[-1] = action action = action.detach().cpu().numpy() state, reward, done, _ = env.step(action) cur_state = torch.from_numpy(state).to(device=device).reshape(1, state_dim) states = torch.cat([states, cur_state], dim=0) rewards[-1] = reward pred_return = target_return[0, -1] - (reward / scale) target_return = torch.cat([target_return, pred_return.reshape(1, 1)], dim=1) timesteps = torch.cat([timesteps, torch.ones((1, 1), device=device, dtype=torch.long) * (t + 1)], dim=1) episode_return += reward episode_length += 1 if done: break
transformers-main
examples/research_projects/decision_transformer/run_decision_transformer.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and """ Fine-tuning a 🤗 Transformers pretrained speech model on the XTREME-S benchmark tasks""" import json import logging import os import re import sys from collections import OrderedDict, defaultdict from dataclasses import dataclass, field from typing import Dict, List, Optional, Union import datasets import numpy as np import torch from datasets import DatasetDict, load_dataset, load_metric import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, AutoModelForCTC, AutoModelForSpeechSeq2Seq, AutoProcessor, AutoTokenizer, HfArgumentParser, Seq2SeqTrainer, Seq2SeqTrainingArguments, Trainer, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.18.0.dev0") require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt") logger = logging.getLogger(__name__) def list_field(default=None, metadata=None): return field(default_factory=lambda: default, metadata=metadata) TASK_TO_TARGET_COLUMN_NAME = { "fleurs-asr": "transcription", "fleurs-lang_id": "lang_id", "mls": "transcription", "voxpopuli": "transcription", "covost2": "translation", "minds14": "intent_class", "babel": "transcription", } @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) tokenizer_name_or_path: Optional[str] = field( default=None, metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"}, ) cache_dir: Optional[str] = field( default=None, metadata={ "help": "Where do you want to store the pretrained models and datasets downloaded from huggingface.co" }, ) freeze_feature_encoder: bool = field( default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) attention_dropout: float = field( default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."} ) activation_dropout: float = field( default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."}) hidden_dropout: float = field( default=0.0, metadata={ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." }, ) final_dropout: float = field( default=0.0, metadata={"help": "The dropout probability for the final projection layer."}, ) mask_time_prob: float = field( default=0.05, metadata={ "help": ( "Probability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis." ) }, ) mask_time_length: int = field( default=10, metadata={"help": "Length of vector span to mask along the time axis."}, ) mask_feature_prob: float = field( default=0.0, metadata={ "help": ( "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan" " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature" " bins will be masked along the time axis." ) }, ) mask_feature_length: int = field( default=10, metadata={"help": "Length of vector span to mask along the feature axis."}, ) layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."}) ctc_zero_infinity: bool = field( default=False, metadata={"help": "Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`."}, ) ctc_loss_reduction: Optional[str] = field( default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."} ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: str = field( default="google/xtreme_s", metadata={"help": "The name of the dataset to use (via the datasets library). Defaults to 'google/xtreme_s'"}, ) task: str = field( default=None, metadata={ "help": ( "The task name of the benchmark to use (via the datasets library). Should be on of: " "'fleurs-asr', 'mls', 'voxpopuli', 'covost2', 'minds14', 'fleurs-lang_id', 'babel'." ) }, ) language: str = field( default="all", metadata={"help": "The language id as defined in the datasets config name or `all` for all languages."}, ) language_group: str = field( default=None, metadata={ "help": ( "The language group to select a subset of languages to train on. " "This option is only used the 'fleurs-asr' task. Should be one of: " "'western_european_we', 'eastern_european_ee', 'central_asia_middle_north_african_cmn', " "'sub_saharan_african_ssa', 'south_asian_sa', 'south_east_asian_sea', 'chinese_japanase_korean_cjk'." ) }, ) train_split_name: str = field( default="train", metadata={ "help": "The name of the training dataset split to use (via the datasets library). Defaults to 'train'" }, ) eval_split_name: str = field( default="validation", metadata={ "help": ( "The name of the evaluation dataset split to use (via the datasets library). Defaults to 'validation'" ) }, ) predict_split_name: str = field( default="test", metadata={ "help": "The name of the prediction dataset split to use (via the datasets library). Defaults to 'test'" }, ) audio_column_name: str = field( default="audio", metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, ) target_column_name: str = field( default=None, metadata={ "help": ( "The name of the dataset column containing the target data (transcription/translation/label). If None," " the name will be inferred from the task. Defaults to None." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) chars_to_ignore: Optional[List[str]] = list_field( default=', ? . ! - ; : " “ % ‘ ” �'.split(" "), metadata={"help": "A list of characters to remove from the transcripts."}, ) max_duration_in_seconds: float = field( default=30.0, metadata={ "help": ( "Filter audio files that are longer than `max_duration_in_seconds` seconds to" " 'max_duration_in_seconds`" ) }, ) min_duration_in_seconds: float = field( default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} ) preprocessing_only: bool = field( default=False, metadata={ "help": ( "Whether to only do data preprocessing and skip training. This is especially useful when data" " preprocessing errors out in distributed training due to timeout. In this case, one should run the" " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets" " can consequently be loaded in distributed training" ) }, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "If :obj:`True`, will use the token generated when running" ":obj:`huggingface-cli login` as HTTP bearer authorization for remote files." ) }, ) unk_token: str = field( default="[UNK]", metadata={"help": "The unk token for the tokenizer"}, ) pad_token: str = field( default="[PAD]", metadata={"help": "The padding token for the tokenizer"}, ) word_delimiter_token: str = field( default="|", metadata={"help": "The word delimiter token for the tokenizer"}, ) phoneme_language: Optional[str] = field( default=None, metadata={ "help": ( "The target language that should be used be" " passed to the tokenizer for tokenization. Note that" " this is only relevant if the model classifies the" " input audio to a sequence of phoneme sequences." ) }, ) per_lang_metrics: bool = field( default=True, metadata={ "help": ( "If `True`, compute the test metrics separately for each language, and average the results. " "If `False` compute the average test metrics in a single pass for all languages at once." ) }, ) @dataclass class SpeechDataCollatorWithPadding: processor: AutoProcessor decoder_start_token_id: Optional[int] = None padding: Union[bool, str] = "longest" pad_labels: Optional[int] = True pad_to_multiple_of: Optional[int] = None pad_to_multiple_of_labels: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods input_features = [{"input_values": feature["input_values"]} for feature in features] batch = self.processor.pad( input_features, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) if self.pad_labels: label_features = [{"input_ids": feature["labels"]} for feature in features] labels_batch = self.processor.pad( labels=label_features, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of_labels, return_tensors="pt", ) # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) # if bos token is appended in previous tokenization step, # cut bos token here as it's append later anyways if ( self.decoder_start_token_id is not None and (labels[:, 0] == self.decoder_start_token_id).all().cpu().item() ): labels = labels[:, 1:] batch["labels"] = labels else: batch["labels"] = torch.tensor([feature["labels"] for feature in features]) return batch def create_vocabulary_from_data( datasets: DatasetDict, word_delimiter_token: Optional[str] = None, unk_token: Optional[str] = None, pad_token: Optional[str] = None, ): # Given training and test labels create vocabulary def extract_all_chars(batch): all_text = " ".join(batch["target_text"]) vocab = list(set(all_text)) return {"vocab": [vocab], "all_text": [all_text]} vocabs = datasets.map( extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=datasets["train"].column_names, ) # take union of all unique characters in each dataset vocab_set = ( (set(vocabs["train"]["vocab"][0]) if "train" in vocabs else set()) | (set(vocabs["eval"]["vocab"][0]) if "eval" in vocabs else set()) | (set(vocabs["predict"]["vocab"][0]) if "predict" in vocabs else set()) ) vocab_dict = {v: k for k, v in enumerate(sorted(vocab_set))} # replace white space with delimiter token if word_delimiter_token is not None: vocab_dict[word_delimiter_token] = vocab_dict[" "] del vocab_dict[" "] # add unk and pad token if unk_token is not None: vocab_dict[unk_token] = len(vocab_dict) if pad_token is not None: vocab_dict[pad_token] = len(vocab_dict) return vocab_dict def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # 1. First, let's load the dataset raw_datasets = DatasetDict() task_name = data_args.task lang_id = data_args.language if task_name is None: raise ValueError( "Set --task should be set to '<xtreme_s_task>' (e.g. 'fleurs-asr', 'mls', 'covost2', 'minds14') " ) if lang_id is None: raise ValueError( "Set --language should be set to the language id of the sub dataset " "config to be used (e.g. 'pl', 'en.tr', 'fr-FR') or 'all'" " for multi-lingual fine-tuning." ) if data_args.language_group is not None: if data_args.task != "fleurs-asr": raise ValueError("--language_group should only be used with --task=fleurs-asr") if data_args.language != "all": raise ValueError("--language_group should only be used with --language=all") if data_args.target_column_name is None: target_column_name = TASK_TO_TARGET_COLUMN_NAME[task_name] else: target_column_name = data_args.target_column_name # here we differentiate between tasks with text as the target and classification tasks is_text_target = target_column_name in ("transcription", "translation") config_name = ".".join([task_name.split("-")[0], lang_id]) if training_args.do_train: raw_datasets["train"] = load_dataset( data_args.dataset_name, config_name, split=data_args.train_split_name, use_auth_token=data_args.use_auth_token, cache_dir=model_args.cache_dir, ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'." " Make sure to set `--audio_column_name` to the correct audio column - one of" f" {', '.join(raw_datasets['train'].column_names)}." ) if target_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--target_column_name {target_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--target_column_name` to the correct text column - one of " f"{', '.join(raw_datasets['train'].column_names)}." ) if data_args.max_train_samples is not None: raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) if training_args.do_eval: raw_datasets["eval"] = load_dataset( data_args.dataset_name, config_name, split=data_args.eval_split_name, use_auth_token=data_args.use_auth_token, cache_dir=model_args.cache_dir, ) if data_args.max_eval_samples is not None: raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) if training_args.do_predict: raw_datasets["predict"] = load_dataset( data_args.dataset_name, config_name, split=data_args.predict_split_name, use_auth_token=data_args.use_auth_token, cache_dir=model_args.cache_dir, ) if data_args.max_predict_samples is not None: raw_datasets["predict"] = raw_datasets["predict"].select(range(data_args.max_predict_samples)) lang_list = next(iter(raw_datasets.values())).features["lang_id"].names if not is_text_target: label_list = next(iter(raw_datasets.values())).features[target_column_name].names num_labels = len(label_list) num_workers = data_args.preprocessing_num_workers lang_group = data_args.language_group if lang_group is not None: with training_args.main_process_first(desc="language group filter"): lang_group_id = next(iter(raw_datasets.values())).features["lang_group_id"].str2int(lang_group) raw_datasets = raw_datasets.filter( lambda lang_group: lang_group == lang_group_id, num_proc=num_workers, input_columns=["lang_group_id"], ) # 2. We remove some special characters from the datasets # that make training complicated and do not help in transcribing the speech # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic # that could be easily picked up by the model chars_to_ignore_regex = ( f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None ) def remove_special_characters(batch): if chars_to_ignore_regex is not None: batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[target_column_name]).lower() + " " else: batch["target_text"] = batch[target_column_name].lower() + " " return batch if is_text_target: with training_args.main_process_first(desc="dataset map special characters removal"): raw_datasets = raw_datasets.map( remove_special_characters, remove_columns=[target_column_name], desc="remove special characters from datasets", ) # save special tokens for tokenizer word_delimiter_token = data_args.word_delimiter_token unk_token = data_args.unk_token pad_token = data_args.pad_token # 3. Next, let's load the config as we might need it to create # the tokenizer config = AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token ) if is_text_target: # 4. (Optional, for ASR and translation) If no tokenizer file is defined, # we create the vocabulary of the model by extracting all unique characters from # the training and evaluation datasets # We need to make sure that only first rank saves vocabulary # make sure all processes wait until vocab is created tokenizer_name_or_path = model_args.tokenizer_name_or_path tokenizer_kwargs = {} if tokenizer_name_or_path is None: # save vocab in training output dir tokenizer_name_or_path = training_args.output_dir vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json") with training_args.main_process_first(): if training_args.overwrite_output_dir and os.path.isfile(vocab_file): os.remove(vocab_file) with training_args.main_process_first(desc="dataset map vocabulary creation"): if not os.path.isfile(vocab_file): os.makedirs(tokenizer_name_or_path, exist_ok=True) vocab_dict = create_vocabulary_from_data( raw_datasets, word_delimiter_token=word_delimiter_token, unk_token=unk_token, pad_token=pad_token, ) # save vocab dict to be loaded into tokenizer with open(vocab_file, "w") as file: json.dump(vocab_dict, file) # if tokenizer has just been created # it is defined by `tokenizer_class` if present in config else by `model_type` if not config.is_encoder_decoder: tokenizer_kwargs = { "config": config if config.tokenizer_class is not None else None, "tokenizer_type": config.model_type if config.tokenizer_class is None else None, "unk_token": unk_token, "pad_token": pad_token, "word_delimiter_token": word_delimiter_token, } else: tokenizer_kwargs = {} # 5. Now we can instantiate the feature extractor, tokenizer and model # Note for distributed training, the .from_pretrained methods guarantee that only # one local process can concurrently download model & vocab. # load feature_extractor and tokenizer if is_text_target: tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, use_auth_token=data_args.use_auth_token, **tokenizer_kwargs, ) feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token ) # adapt config # (speech translation requires pre-configured seq2seq models) if task_name != "covost2": config.update( { "feat_proj_dropout": model_args.feat_proj_dropout, "attention_dropout": model_args.attention_dropout, "hidden_dropout": model_args.hidden_dropout, "final_dropout": model_args.final_dropout, "mask_time_prob": model_args.mask_time_prob, "mask_time_length": model_args.mask_time_length, "mask_feature_prob": model_args.mask_feature_prob, "mask_feature_length": model_args.mask_feature_length, "gradient_checkpointing": training_args.gradient_checkpointing, "layerdrop": model_args.layerdrop, "ctc_zero_infinity": model_args.ctc_zero_infinity, "ctc_loss_reduction": model_args.ctc_loss_reduction, "activation_dropout": model_args.activation_dropout, } ) if training_args.do_train: if is_text_target: config.pad_token_id = tokenizer.pad_token_id config.vocab_size = len(tokenizer) else: label_to_id = {v: i for i, v in enumerate(label_list)} config.label2id = label_to_id config.id2label = {id: label for label, id in label_to_id.items()} config.num_labels = num_labels # create model if target_column_name == "transcription": model = AutoModelForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, config=config, use_auth_token=data_args.use_auth_token, ) elif config.is_encoder_decoder: model = AutoModelForSpeechSeq2Seq.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, config=config, use_auth_token=data_args.use_auth_token, ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") else: model = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, config=config, use_auth_token=data_args.use_auth_token, ) # freeze encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() # 6. Now we preprocess the datasets including loading the audio, resampling and normalization # Thankfully, `datasets` takes care of automatically loading and resampling the audio, # so that we just need to set the correct target sampling rate and normalize the input # via the `feature_extractor` # make sure that dataset decodes audio with correct sampling rate dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate if dataset_sampling_rate != feature_extractor.sampling_rate: raw_datasets = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) ) # derive max & min input length for sample rate & max duration max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate audio_column_name = data_args.audio_column_name # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification phoneme_language = data_args.phoneme_language # Preprocessing the datasets. # We need to read the audio files as arrays and tokenize the targets. def prepare_dataset(batch): # load audio sample = batch[audio_column_name] inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) batch["input_values"] = inputs.input_values[0] batch["length"] = len(batch["input_values"]) # encode targets additional_kwargs = {} if phoneme_language is not None: additional_kwargs["phonemizer_lang"] = phoneme_language if is_text_target: batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids else: batch["labels"] = batch[target_column_name] batch["lang"] = batch["lang_id"] return batch with training_args.main_process_first(desc="dataset map preprocessing"): vectorized_datasets = raw_datasets.map( prepare_dataset, remove_columns=next(iter(raw_datasets.values())).column_names, num_proc=num_workers, desc="preprocess datasets", ) if training_args.do_train: def is_audio_in_length_range(length): return length > min_input_length and length < max_input_length # filter data that is shorter than min_input_length vectorized_datasets["train"] = vectorized_datasets["train"].filter( is_audio_in_length_range, num_proc=num_workers, input_columns=["length"], ) # 7. Next, we can prepare for the training step. # Let's use the appropriate XTREME-S evaluation metric, # instantiate a data collator and the trainer # Define evaluation metrics during training, *i.e.* word error rate, character error rate eval_metric = load_metric("xtreme_s", task_name) # for large datasets it is advised to run the preprocessing on a # single machine first with ``args.preprocessing_only`` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step ``args.preprocessing_only`` can then be set to `False` to load the # cached dataset if data_args.preprocessing_only: logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}") return def asr_logits_argmax(logits, labels): return logits.argmax(dim=-1) def compute_asr_metric(pred): pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id pred_str = tokenizer.batch_decode(pred.predictions) # we do not want to group tokens when computing the metrics label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False) metric = eval_metric.compute(predictions=pred_str, references=label_str) return metric def compute_classification_metric(pred): pred_ids = np.argmax(pred.predictions, axis=1) metric = eval_metric.compute(predictions=pred_ids, references=pred.label_ids) return metric # Now save everything to be able to create a single processor later if is_main_process(training_args.local_rank): # save feature extractor, tokenizer and config feature_extractor.save_pretrained(training_args.output_dir) if is_text_target: tokenizer.save_pretrained(training_args.output_dir) config.save_pretrained(training_args.output_dir) # wait until configs are saved in the main process before loading the processor if training_args.local_rank != -1: torch.distributed.barrier() if is_text_target: processor = AutoProcessor.from_pretrained(training_args.output_dir) else: processor = AutoFeatureExtractor.from_pretrained(training_args.output_dir) # Instantiate custom data collator data_collator = SpeechDataCollatorWithPadding(processor=processor, pad_labels=is_text_target) # Initialize Trainer if target_column_name == "translation": trainer = Seq2SeqTrainer( model=model, data_collator=data_collator, args=training_args, preprocess_logits_for_metrics=asr_logits_argmax if training_args.predict_with_generate else None, compute_metrics=compute_asr_metric if training_args.predict_with_generate else None, train_dataset=vectorized_datasets["train"] if training_args.do_train else None, eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, tokenizer=feature_extractor, ) else: trainer = Trainer( model=model, data_collator=data_collator, args=training_args, preprocess_logits_for_metrics=asr_logits_argmax if is_text_target else None, compute_metrics=compute_asr_metric if is_text_target else compute_classification_metric, train_dataset=vectorized_datasets["train"] if training_args.do_train else None, eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, tokenizer=feature_extractor, ) # 8. Finally, we can start training # Training if training_args.do_train: # use last checkpoint if exist if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(vectorized_datasets["train"]) ) metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation on the test set results = {} if training_args.do_predict: logger.info(f"*** Evaluating on the `{data_args.predict_split_name}` set ***") if data_args.per_lang_metrics: # separate the `test` dataset into language-specific subsets and compute metrics for each of them metrics = {} average_metrics = defaultdict(list) for lang_id in range(len(lang_list)): lang_name = lang_list[lang_id] with training_args.main_process_first(desc="per-language dataset filter"): lang_dataset = vectorized_datasets["predict"].filter( lambda lang: lang == lang_id, num_proc=num_workers, input_columns=["lang"], ) lang_metrics = trainer.evaluate(lang_dataset) redundant_metrics = ["eval_runtime", "eval_samples_per_second", "eval_steps_per_second", "eval_epoch"] for metric_name, value in lang_metrics.items(): average_metrics[metric_name].append(value) if metric_name not in redundant_metrics: metrics[f"{metric_name}_{lang_name}"] = value for metric_name, value in average_metrics.items(): metrics[metric_name] = np.mean(value) else: metrics = trainer.evaluate(vectorized_datasets["predict"]) max_predict_samples = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(vectorized_datasets["predict"]) ) metrics["predict_samples"] = min(max_predict_samples, len(vectorized_datasets["predict"])) # make sure that the `predict` metrics end up in the log history for the model card trainer.log(OrderedDict(sorted(metrics.items()))) trainer.log_metrics("predict", metrics) trainer.save_metrics("predict", metrics) # Write model card and (optionally) push to hub kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": task_name, "tags": [task_name, data_args.dataset_name], "dataset_args": ( f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:" f" {data_args.eval_split_name}, Predict split: {data_args.predict_split_name}" ), "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}", "language": data_args.language, } if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) return results if __name__ == "__main__": main()
transformers-main
examples/research_projects/xtreme-s/run_xtreme_s.py
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from eli5_utils import ( embed_questions_for_retrieval, make_qa_s2s_model, qa_s2s_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer MODEL_TYPE = "bart" LOAD_DENSE_INDEX = True @st.cache(allow_output_mutation=True) def load_models(): if LOAD_DENSE_INDEX: qar_tokenizer = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased") qar_model = AutoModel.from_pretrained("yjernite/retribert-base-uncased").to("cuda:0") _ = qar_model.eval() else: qar_tokenizer, qar_model = (None, None) if MODEL_TYPE == "bart": s2s_tokenizer = AutoTokenizer.from_pretrained("yjernite/bart_eli5") s2s_model = AutoModelForSeq2SeqLM.from_pretrained("yjernite/bart_eli5").to("cuda:0") save_dict = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth") s2s_model.load_state_dict(save_dict["model"]) _ = s2s_model.eval() else: s2s_tokenizer, s2s_model = make_qa_s2s_model( model_name="t5-small", from_file="seq2seq_models/eli5_t5_model_1024_4.pth", device="cuda:0" ) return (qar_tokenizer, qar_model, s2s_tokenizer, s2s_model) @st.cache(allow_output_mutation=True) def load_indexes(): if LOAD_DENSE_INDEX: faiss_res = faiss.StandardGpuResources() wiki40b_passages = datasets.load_dataset(path="wiki_snippets", name="wiki40b_en_100_0")["train"] wiki40b_passage_reps = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat", dtype="float32", mode="r", shape=(wiki40b_passages.num_rows, 128), ) wiki40b_index_flat = faiss.IndexFlatIP(128) wiki40b_gpu_index_flat = faiss.index_cpu_to_gpu(faiss_res, 1, wiki40b_index_flat) wiki40b_gpu_index_flat.add(wiki40b_passage_reps) # TODO fix for larger GPU else: wiki40b_passages, wiki40b_gpu_index_flat = (None, None) es_client = Elasticsearch([{"host": "localhost", "port": "9200"}]) return (wiki40b_passages, wiki40b_gpu_index_flat, es_client) @st.cache(allow_output_mutation=True) def load_train_data(): eli5 = datasets.load_dataset("eli5", name="LFQA_reddit") eli5_train = eli5["train_eli5"] eli5_train_q_reps = np.memmap( "eli5_questions_reps.dat", dtype="float32", mode="r", shape=(eli5_train.num_rows, 128) ) eli5_train_q_index = faiss.IndexFlatIP(128) eli5_train_q_index.add(eli5_train_q_reps) return (eli5_train, eli5_train_q_index) passages, gpu_dense_index, es_client = load_indexes() qar_tokenizer, qar_model, s2s_tokenizer, s2s_model = load_models() eli5_train, eli5_train_q_index = load_train_data() def find_nearest_training(question, n_results=10): q_rep = embed_questions_for_retrieval([question], qar_tokenizer, qar_model) D, I = eli5_train_q_index.search(q_rep, n_results) nn_examples = [eli5_train[int(i)] for i in I[0]] return nn_examples def make_support(question, source="wiki40b", method="dense", n_results=10): if source == "none": support_doc, hit_lst = (" <P> ".join(["" for _ in range(11)]).strip(), []) else: if method == "dense": support_doc, hit_lst = query_qa_dense_index( question, qar_model, qar_tokenizer, passages, gpu_dense_index, n_results ) else: support_doc, hit_lst = query_es_index( question, es_client, index_name="english_wiki40b_snippets_100w", n_results=n_results, ) support_list = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] question_doc = "question: {} context: {}".format(question, support_doc) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _: None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _: None), } ) def answer_question( question_doc, s2s_model, s2s_tokenizer, min_len=64, max_len=256, sampling=False, n_beams=2, top_p=0.95, temp=0.8 ): with torch.no_grad(): answer = qa_s2s_generate( question_doc, s2s_model, s2s_tokenizer, num_answers=1, num_beams=n_beams, min_len=min_len, max_len=max_len, do_sample=sampling, temp=temp, top_p=top_p, top_k=None, max_input_length=1024, device="cuda:0", )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar header_html = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" header_full = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia description = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) action_list = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] demo_options = st.sidebar.checkbox("Demo options") if demo_options: action_st = st.sidebar.selectbox( "", action_list, index=3, ) action = action_list.index(action_st) show_type = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) show_passages = show_type == "Show full text of passages" else: action = 3 show_passages = True retrieval_options = st.sidebar.checkbox("Retrieval options") if retrieval_options: retriever_info = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) wiki_source = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) index_type = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: wiki_source = "wiki40b" index_type = "dense" sampled = "beam" n_beams = 2 min_len = 64 max_len = 256 top_p = None temp = None generate_options = st.sidebar.checkbox("Generation options") if generate_options: generate_info = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) sampled = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) min_len = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) max_len = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": n_beams = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: top_p = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) temp = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) n_beams = None # start main text questions_list = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] question_s = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": question = st.text_input("Enter your question here:", "") else: question = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": _, support_list_dense = make_support(question, source=wiki_source, method="dense", n_results=10) _, support_list_sparse = make_support(question, source=wiki_source, method="sparse", n_results=10) support_list = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] support_list = support_list[:10] question_doc = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: question_doc, support_list = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: answer, support_list = answer_question( question_doc, s2s_model, s2s_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): wiki_url = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) sec_titles = res[1].strip() if sec_titles == "": sections = "[{}]({})".format(res[0], wiki_url) else: sec_list = sec_titles.split(" & ") sections = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: nn_train_list = find_nearest_training(question) train_exple = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) answers_st = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) disclaimer = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
transformers-main
examples/research_projects/longform-qa/eli5_app.py
import functools import math import os # noqa: F401 from random import choice, randint from time import time import datasets # noqa: F401 import faiss # noqa: F401 import numpy as np import pandas as pd import torch import torch.utils.checkpoint as checkpoint from elasticsearch import Elasticsearch # noqa: F401 from elasticsearch.helpers import bulk, streaming_bulk # noqa: F401 from torch import nn from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler from tqdm import tqdm from transformers import AdamW, AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer, get_linear_schedule_with_warmup pd.set_option("display.max_colwidth", None) ############### # Sparse index ############### def make_es_index_snippets(es_client, passages_dset, index_name="english_wiki_kilt_snippets_100w"): index_config = { "settings": { "number_of_shards": 1, "analysis": {"analyzer": {"stop_standard": {"type": "standard", " stopwords": "_english_"}}}, }, "mappings": { "properties": { "article_title": {"type": "text", "analyzer": "standard", "similarity": "BM25"}, "section_title": {"type": "text", "analyzer": "standard", "similarity": "BM25"}, "passage_text": {"type": "text", "analyzer": "standard", "similarity": "BM25"}, } }, } es_client.indices.create(index=index_name, body=index_config) number_of_docs = passages_dset.num_rows progress = tqdm(unit="docs", total=number_of_docs) successes = 0 def passage_generator(): for passage in passages_dset: yield passage # create the ES index for ok, action in streaming_bulk( client=es_client, index=index_name, actions=passage_generator(), ): progress.update(1) successes += ok print("Indexed %d documents" % (successes,)) def query_es_index(question, es_client, index_name="english_wiki_kilt_snippets_100w", n_results=10, min_length=20): q = question.lower() banned = ["how", "why", "what", "where", "which", "do", "does", "is", "?", "eli5", "eli5:"] q = " ".join([w for w in q.split() if w not in banned]) response = es_client.search( index=index_name, body={ "query": { "multi_match": { "query": q, "fields": ["article_title", "section_title", "passage_text^2"], "type": "cross_fields", } }, "size": 2 * n_results, }, ) hits = response["hits"]["hits"] support_doc = "<P> " + " <P> ".join([hit["_source"]["passage_text"] for hit in hits]) res_list = [{k: hit["_source"][k] for k in hit["_source"] if k != "passage_text"} for hit in hits] for r, hit in zip(res_list, hits): r["passage_id"] = hit["_id"] r["score"] = hit["_score"] r["passage_text"] = hit["_source"]["passage_text"] res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results] return support_doc, res_list ############### # ELI5 retriever training ############### class ELI5DatasetQARetriver(Dataset): def __init__(self, examples_array, extra_answer_threshold=3, min_answer_length=64, training=True, n_samples=None): self.data = examples_array self.answer_thres = extra_answer_threshold self.min_length = min_answer_length self.training = training self.n_samples = self.data.num_rows if n_samples is None else n_samples def __len__(self): return self.n_samples def make_example(self, idx): example = self.data[idx] question = example["title"] if self.training: answers = [a for i, (a, sc) in enumerate(zip(example["answers"]["text"], example["answers"]["score"]))] answer_tab = choice(answers).split(" ") start_idx = randint(0, max(0, len(answer_tab) - self.min_length)) answer_span = " ".join(answer_tab[start_idx:]) else: answer_span = example["answers"]["text"][0] return (question, answer_span) def __getitem__(self, idx): return self.make_example(idx % self.data.num_rows) class RetrievalQAEmbedder(nn.Module): def __init__(self, sent_encoder, dim): super(RetrievalQAEmbedder, self).__init__() self.sent_encoder = sent_encoder self.output_dim = 128 self.project_q = nn.Linear(dim, self.output_dim, bias=False) self.project_a = nn.Linear(dim, self.output_dim, bias=False) self.ce_loss = nn.CrossEntropyLoss(reduction="mean") def embed_sentences_checkpointed(self, input_ids, attention_mask, checkpoint_batch_size=-1): # reproduces BERT forward pass with checkpointing if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size: return self.sent_encoder(input_ids, attention_mask=attention_mask)[1] else: # prepare implicit variables device = input_ids.device input_shape = input_ids.size() token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) head_mask = [None] * self.sent_encoder.config.num_hidden_layers extended_attention_mask: torch.Tensor = self.sent_encoder.get_extended_attention_mask( attention_mask, input_shape ) # define function for checkpointing def partial_encode(*inputs): encoder_outputs = self.sent_encoder.encoder( inputs[0], attention_mask=inputs[1], head_mask=head_mask, ) sequence_output = encoder_outputs[0] pooled_output = self.sent_encoder.pooler(sequence_output) return pooled_output # run embedding layer on everything at once embedding_output = self.sent_encoder.embeddings( input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None ) # run encoding and pooling on one mini-batch at a time pooled_output_list = [] for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)): b_embedding_output = embedding_output[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size] b_attention_mask = extended_attention_mask[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size] pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask) pooled_output_list.append(pooled_output) return torch.cat(pooled_output_list, dim=0) def embed_questions(self, q_ids, q_mask, checkpoint_batch_size=-1): q_reps = self.embed_sentences_checkpointed(q_ids, q_mask, checkpoint_batch_size) return self.project_q(q_reps) def embed_answers(self, a_ids, a_mask, checkpoint_batch_size=-1): a_reps = self.embed_sentences_checkpointed(a_ids, a_mask, checkpoint_batch_size) return self.project_a(a_reps) def forward(self, q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=-1): device = q_ids.device q_reps = self.embed_questions(q_ids, q_mask, checkpoint_batch_size) a_reps = self.embed_answers(a_ids, a_mask, checkpoint_batch_size) compare_scores = torch.mm(q_reps, a_reps.t()) loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device)) loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device)) loss = (loss_qa + loss_aq) / 2 return loss def make_qa_retriever_model(model_name="google/bert_uncased_L-8_H-512_A-8", from_file=None, device="cuda:0"): tokenizer = AutoTokenizer.from_pretrained(model_name) bert_model = AutoModel.from_pretrained(model_name).to(device) # run bert_model on a dummy batch to get output dimension d_ids = torch.LongTensor( [[bert_model.config.bos_token_id if bert_model.config.bos_token_id is not None else 1]] ).to(device) d_mask = torch.LongTensor([[1]]).to(device) sent_dim = bert_model(d_ids, attention_mask=d_mask)[1].shape[-1] qa_embedder = RetrievalQAEmbedder(bert_model, sent_dim).to(device) if from_file is not None: param_dict = torch.load(from_file) # has model weights, optimizer, and scheduler states qa_embedder.load_state_dict(param_dict["model"]) return tokenizer, qa_embedder def make_qa_retriever_batch(qa_list, tokenizer, max_len=64, device="cuda:0"): q_ls = [q for q, a in qa_list] a_ls = [a for q, a in qa_list] q_toks = tokenizer(q_ls, max_length=max_len, padding="max_length", truncation=True) q_ids, q_mask = ( torch.LongTensor(q_toks["input_ids"]).to(device), torch.LongTensor(q_toks["attention_mask"]).to(device), ) a_toks = tokenizer(a_ls, max_length=max_len, padding="max_length", truncation=True) a_ids, a_mask = ( torch.LongTensor(a_toks["input_ids"]).to(device), torch.LongTensor(a_toks["attention_mask"]).to(device), ) return (q_ids, q_mask, a_ids, a_mask) def train_qa_retriever_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0): model.train() # make iterator train_sampler = RandomSampler(dataset) model_collate_fn = functools.partial( make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0" ) data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True) # accumulate loss since last print loc_steps = 0 loc_loss = 0.0 st_time = time() for step, batch in enumerate(epoch_iterator): q_ids, q_mask, a_ids, a_mask = batch pre_loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size) loss = pre_loss.sum() # optimizer loss.backward() optimizer.step() scheduler.step() model.zero_grad() # some printing within the epoch loc_loss += loss.item() loc_steps += 1 if step % args.print_freq == 0 or step == 1: print( "{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format( e, step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time, ) ) loc_loss = 0 loc_steps = 0 def train_qa_retriever_joint_epoch(model, dataset_list, tokenizer, optimizer, scheduler, args, e=0): model.train() model_collate_fn = functools.partial( make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0" ) # make iterator train_samplers = [RandomSampler(dataset) for dataset in dataset_list] data_loaders = [ DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) for dataset, train_sampler in zip(dataset_list, train_samplers) ] iterators = [iter(dloader) for dloader in data_loaders] joint_iter = zip(*iterators) # accumulate loss since last print loc_steps = 0 loc_loss = 0.0 st_time = time() for step, (batches,) in enumerate(zip(joint_iter)): for batch in batches: q_ids, q_mask, a_ids, a_mask = batch loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size) # optimizer loss.backward() optimizer.step() scheduler.step() model.zero_grad() # some printing within the epoch loc_loss += loss.item() loc_steps += 1 if step % args.print_freq == 0: print( "{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format( e, step, len(dataset_list[0]) // args.batch_size, loc_loss / loc_steps, time() - st_time, ) ) loc_loss = 0 loc_steps = 0 def evaluate_qa_retriever(model, dataset, tokenizer, args): model.eval() # make iterator eval_sampler = SequentialSampler(dataset) model_collate_fn = functools.partial( make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0" ) data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=eval_sampler, collate_fn=model_collate_fn) epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True) tot_loss = 0.0 with torch.no_grad(): for step, batch in enumerate(epoch_iterator): q_ids, q_mask, a_ids, a_mask = batch loss = model(q_ids, q_mask, a_ids, a_mask) tot_loss += loss.item() return tot_loss / (step + 1) def train_qa_retriever(qar_model, qar_tokenizer, qar_train_dset, qar_valid_dset, qar_args): qar_optimizer = AdamW(qar_model.parameters(), lr=qar_args.learning_rate, eps=1e-8) qar_scheduler = get_linear_schedule_with_warmup( qar_optimizer, num_warmup_steps=100, num_training_steps=(qar_args.num_epochs + 1) * math.ceil(len(qar_train_dset) / qar_args.batch_size), ) for e in range(qar_args.num_epochs): train_qa_retriever_epoch(qar_model, qar_train_dset, qar_tokenizer, qar_optimizer, qar_scheduler, qar_args, e) m_save_dict = { "model": qar_model.state_dict(), "optimizer": qar_optimizer.state_dict(), "scheduler": qar_scheduler.state_dict(), } print("Saving model {}".format(qar_args.model_save_name)) torch.save(m_save_dict, "{}_{}.pth".format(qar_args.model_save_name, e)) eval_loss = evaluate_qa_retriever(qar_model, qar_valid_dset, qar_tokenizer, qar_args) print("Evaluation loss epoch {:4d}: {:.3f}".format(e, eval_loss)) ############### # ELI5 seq2seq model training ############### class ELI5DatasetS2S(Dataset): def __init__( self, examples_array, make_doc_fun=None, extra_answer_threshold=3, document_cache=None, training=True ): self.training = training self.data = examples_array self.make_doc_function = make_doc_fun self.document_cache = {} if document_cache is None else document_cache assert not (make_doc_fun is None and document_cache is None) # make index of specific question-answer pairs from multi-answers if self.training: self.qa_id_list = [ (i, j) for i, qa in enumerate(self.data) for j, (a, sc) in enumerate(zip(qa["answers"]["text"], qa["answers"]["score"])) if j == 0 or sc >= extra_answer_threshold ] else: self.qa_id_list = [(i, 0) for i in range(self.data.num_rows)] def __len__(self): return len(self.qa_id_list) def make_example(self, idx): i, j = self.qa_id_list[idx] example = self.data[i] question = example["title"] + " " + example["selftext"] answer = example["answers"]["text"][j] q_id = example["q_id"] if self.make_doc_function is not None: self.document_cache[q_id] = self.document_cache.get(q_id, self.make_doc_function(example["title"])) document = self.document_cache[q_id] in_st = "question: {} context: {}".format( question.lower().replace(" --t--", "").strip(), document.lower().strip(), ) out_st = answer return (in_st, out_st) def __getitem__(self, idx): return self.make_example(idx) def make_qa_s2s_model(model_name="facebook/bart-large", from_file=None, device="cuda:0"): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) if from_file is not None: param_dict = torch.load(from_file) # has model weights, optimizer, and scheduler states model.load_state_dict(param_dict["model"]) return tokenizer, model def make_qa_s2s_batch(qa_list, tokenizer, max_len=64, max_a_len=360, device="cuda:0"): q_ls = [q for q, a in qa_list] a_ls = [a for q, a in qa_list] q_toks = tokenizer(q_ls, max_length=max_len, padding="max_length", truncation=True) q_ids, q_mask = ( torch.LongTensor(q_toks["input_ids"]).to(device), torch.LongTensor(q_toks["attention_mask"]).to(device), ) a_toks = tokenizer(a_ls, max_length=min(max_len, max_a_len), padding="max_length", truncation=True) a_ids, a_mask = ( torch.LongTensor(a_toks["input_ids"]).to(device), torch.LongTensor(a_toks["attention_mask"]).to(device), ) lm_labels = a_ids[:, 1:].contiguous().clone() lm_labels[a_mask[:, 1:].contiguous() == 0] = -100 model_inputs = { "input_ids": q_ids, "attention_mask": q_mask, "decoder_input_ids": a_ids[:, :-1].contiguous(), "lm_labels": lm_labels, } return model_inputs def train_qa_s2s_epoch(model, dataset, tokenizer, optimizer, scheduler, args, e=0, curriculum=False): model.train() # make iterator if curriculum: train_sampler = SequentialSampler(dataset) else: train_sampler = RandomSampler(dataset) model_collate_fn = functools.partial( make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0" ) data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True) # accumulate loss since last print loc_steps = 0 loc_loss = 0.0 st_time = time() for step, batch_inputs in enumerate(epoch_iterator): pre_loss = model(**batch_inputs)[0] loss = pre_loss.sum() / pre_loss.shape[0] loss.backward() # optimizer if step % args.backward_freq == 0: optimizer.step() scheduler.step() model.zero_grad() # some printing within the epoch loc_loss += loss.item() loc_steps += 1 if step % args.print_freq == 0 or step == 1: print( "{:2d} {:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format( e, step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time, ) ) loc_loss = 0 loc_steps = 0 def eval_qa_s2s_epoch(model, dataset, tokenizer, args): model.eval() # make iterator train_sampler = SequentialSampler(dataset) model_collate_fn = functools.partial( make_qa_s2s_batch, tokenizer=tokenizer, max_len=args.max_length, device="cuda:0" ) data_loader = DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, collate_fn=model_collate_fn) epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True) # accumulate loss since last print loc_steps = 0 loc_loss = 0.0 st_time = time() with torch.no_grad(): for step, batch_inputs in enumerate(epoch_iterator): pre_loss = model(**batch_inputs)[0] loss = pre_loss.sum() / pre_loss.shape[0] loc_loss += loss.item() loc_steps += 1 if step % args.print_freq == 0: print( "{:5d} of {:5d} \t L: {:.3f} \t -- {:.3f}".format( step, len(dataset) // args.batch_size, loc_loss / loc_steps, time() - st_time, ) ) print( "Total \t L: {:.3f} \t -- {:.3f}".format( loc_loss / loc_steps, time() - st_time, ) ) def train_qa_s2s(qa_s2s_model, qa_s2s_tokenizer, s2s_train_dset, s2s_valid_dset, s2s_args): s2s_optimizer = AdamW(qa_s2s_model.parameters(), lr=s2s_args.learning_rate, eps=1e-8) s2s_scheduler = get_linear_schedule_with_warmup( s2s_optimizer, num_warmup_steps=400, num_training_steps=(s2s_args.num_epochs + 1) * math.ceil(len(s2s_train_dset) / s2s_args.batch_size), ) for e in range(s2s_args.num_epochs): train_qa_s2s_epoch( qa_s2s_model, s2s_train_dset, qa_s2s_tokenizer, s2s_optimizer, s2s_scheduler, s2s_args, e, curriculum=(e == 0), ) m_save_dict = { "model": qa_s2s_model.state_dict(), "optimizer": s2s_optimizer.state_dict(), "scheduler": s2s_scheduler.state_dict(), } print("Saving model {}".format(s2s_args.model_save_name)) eval_qa_s2s_epoch(qa_s2s_model, s2s_valid_dset, qa_s2s_tokenizer, s2s_args) torch.save(m_save_dict, "{}_{}.pth".format(s2s_args.model_save_name, e)) # generate answer from input "question: ... context: <p> ..." def qa_s2s_generate( question_doc, qa_s2s_model, qa_s2s_tokenizer, num_answers=1, num_beams=None, min_len=64, max_len=256, do_sample=False, temp=1.0, top_p=None, top_k=None, max_input_length=512, device="cuda:0", ): model_inputs = make_qa_s2s_batch( [(question_doc, "A")], qa_s2s_tokenizer, max_input_length, device=device, ) n_beams = num_answers if num_beams is None else max(num_beams, num_answers) generated_ids = qa_s2s_model.generate( input_ids=model_inputs["input_ids"], attention_mask=model_inputs["attention_mask"], min_length=min_len, max_length=max_len, do_sample=do_sample, early_stopping=True, num_beams=1 if do_sample else n_beams, temperature=temp, top_k=top_k, top_p=top_p, eos_token_id=qa_s2s_tokenizer.eos_token_id, no_repeat_ngram_size=3, num_return_sequences=num_answers, decoder_start_token_id=qa_s2s_tokenizer.bos_token_id, ) return [qa_s2s_tokenizer.decode(ans_ids, skip_special_tokens=True).strip() for ans_ids in generated_ids] ############### # ELI5-trained retrieval model usage ############### def embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length=128, device="cuda:0"): a_toks = tokenizer(passages, max_length=max_length, padding="max_length", truncation=True) a_ids, a_mask = ( torch.LongTensor(a_toks["input_ids"]).to(device), torch.LongTensor(a_toks["attention_mask"]).to(device), ) with torch.no_grad(): a_reps = qa_embedder.embed_answers(a_ids, a_mask).cpu().type(torch.float) return a_reps.numpy() def embed_questions_for_retrieval(q_ls, tokenizer, qa_embedder, device="cuda:0"): q_toks = tokenizer(q_ls, max_length=128, padding="max_length", truncation=True) q_ids, q_mask = ( torch.LongTensor(q_toks["input_ids"]).to(device), torch.LongTensor(q_toks["attention_mask"]).to(device), ) with torch.no_grad(): q_reps = qa_embedder.embed_questions(q_ids, q_mask).cpu().type(torch.float) return q_reps.numpy() def make_qa_dense_index( qa_embedder, tokenizer, passages_dset, batch_size=512, max_length=128, index_name="kilt_passages_reps.dat", dtype="float32", device="cuda:0", ): st_time = time() fp = np.memmap(index_name, dtype=dtype, mode="w+", shape=(passages_dset.num_rows, 128)) n_batches = math.ceil(passages_dset.num_rows / batch_size) for i in range(n_batches): passages = list(passages_dset[i * batch_size : (i + 1) * batch_size]["passage_text"]) reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder, max_length, device) fp[i * batch_size : (i + 1) * batch_size] = reps if i % 50 == 0: print(i, time() - st_time) def evaluate_retriever(qa_list, retriever_func, scoring_func, n_ret=10, verbose=False): total_retriever_time = 0.0 total_retriever_score = 0.0 st_time = time() for i, (question, answer) in enumerate(qa_list): r_time = time() retrieved_passages = retriever_func(question, n_ret) total_retriever_time += time() - r_time total_retriever_score += scoring_func(retrieved_passages, answer) if verbose and ((i + 1) % 500 == 0 or i <= 1): print( "{:03d}: S-{:.4f} T-{:.4f} | {:.2f}".format( i + 1, total_retriever_score / (i + 1), total_retriever_time / (i + 1), time() - st_time ) ) return {"idf_recall": total_retriever_score / (i + 1), "retrieval_time": total_retriever_time / (i + 1)} # build a support document for the question out of Wikipedia snippets def query_qa_dense_index( question, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20, device="cuda:0" ): q_rep = embed_questions_for_retrieval([question], tokenizer, qa_embedder, device=device) D, I = wiki_index.search(q_rep, 2 * n_results) res_passages = [wiki_passages[int(i)] for i in I[0]] support_doc = "<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages] res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results] for r, sc in zip(res_list, D[0]): r["score"] = float(sc) return support_doc, res_list def batch_query_qa_dense_index(questions, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10): q_rep = embed_questions_for_retrieval(questions, tokenizer, qa_embedder) D, I = wiki_index.search(q_rep, n_results) res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I] support_doc_lst = [ "<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) for res_passages in res_passages_lst ] all_res_lists = [] for res_passages, dl in zip(res_passages_lst, D): res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages] for r, sc in zip(res_list, dl): r["score"] = float(sc) all_res_lists += [res_list[:]] return support_doc_lst, all_res_lists # find nearest neighbors of an answer or declarative text in Wikipedia snippets def query_qa_dense_index_nn(passage, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10, min_length=20): a_rep = embed_passages_for_retrieval([passage], tokenizer, qa_embedder) D, I = wiki_index.search(a_rep, 2 * n_results) res_passages = [wiki_passages[int(i)] for i in I[0]] support_doc = "<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages] res_list = [res for res in res_list if len(res["passage_text"].split()) > min_length][:n_results] for r, sc, i in zip(res_list, D[0], I[0]): r["passage_id"] = int(i) r["score"] = float(sc) return support_doc, res_list def batch_query_qa_dense_index_nn(passages, qa_embedder, tokenizer, wiki_passages, wiki_index, n_results=10): a_reps = embed_passages_for_retrieval(passages, tokenizer, qa_embedder) D, I = wiki_index.search(a_reps, n_results) res_passages_lst = [[wiki_passages[int(i)] for i in i_lst] for i_lst in I] support_doc_lst = [ "<P> " + " <P> ".join([p["passage_text"] for p in res_passages]) for res_passages in res_passages_lst ] all_res_lists = [] for res_passages, dl, il in zip(res_passages_lst, D, I): res_list = [{k: p[k] for k in wiki_passages.column_names} for p in res_passages] for r, sc, i in zip(res_list, dl, il): r["passage_id"] = int(i) r["score"] = float(sc) all_res_lists += [res_list[:]] return support_doc_lst, all_res_lists
transformers-main
examples/research_projects/longform-qa/eli5_utils.py
import argparse import logging import sys from unittest.mock import patch import run_glue_with_pabee from transformers.testing_utils import TestCasePlus logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() def get_setup_file(): parser = argparse.ArgumentParser() parser.add_argument("-f") args = parser.parse_args() return args.f class PabeeTests(TestCasePlus): def test_run_glue(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_glue_with_pabee.py --model_type albert --model_name_or_path albert-base-v2 --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir {tmp_dir} --overwrite_output_dir --task_name mrpc --do_train --do_eval --per_gpu_train_batch_size=2 --per_gpu_eval_batch_size=1 --learning_rate=2e-5 --max_steps=50 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(sys, "argv", testargs): result = run_glue_with_pabee.main() for value in result.values(): self.assertGreaterEqual(value, 0.75)
transformers-main
examples/research_projects/bert-loses-patience/test_run_glue_with_pabee.py
# coding=utf-8 # Copyright 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and Microsoft Corporation. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training and inference using the library models for sequence classification on GLUE (Bert, Albert) with PABEE.""" import argparse import glob import json import logging import os import random import numpy as np import torch from pabee.modeling_pabee_albert import AlbertForSequenceClassificationWithPabee from pabee.modeling_pabee_bert import BertForSequenceClassificationWithPabee from torch import nn from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange import transformers from transformers import ( WEIGHTS_NAME, AdamW, AlbertConfig, AlbertTokenizer, BertConfig, BertTokenizer, get_linear_schedule_with_warmup, ) from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes as output_modes from transformers import glue_processors as processors from transformers.trainer_utils import is_main_process try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CLASSES = { "bert": (BertConfig, BertForSequenceClassificationWithPabee, BertTokenizer), "albert": (AlbertConfig, AlbertForSequenceClassificationWithPabee, AlbertTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): # set global_step to gobal_step of last saved checkpoint from model path global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0]) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info( " Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch, ) tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0], ) set_seed(args) # Added here for reproductibility for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], } inputs["token_type_ids"] = batch[2] outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs["learning_rate"] = learning_rate_scalar logs["loss"] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) print(json.dumps({**logs, **{"step": global_step}})) if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix="", patience=0): if args.model_type == "albert": model.albert.set_regression_threshold(args.regression_threshold) model.albert.set_patience(patience) model.albert.reset_stats() elif args.model_type == "bert": model.bert.set_regression_threshold(args.regression_threshold) model.bert.set_patience(patience) model.bert.reset_stats() else: raise NotImplementedError() # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): model = nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], } inputs["token_type_ids"] = batch[2] outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(eval_task, preds, out_label_ids) results.update(result) output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) print(" %s = %s" % (key, str(result[key]))) writer.write("%s = %s\n" % (key, str(result[key]))) if args.eval_all_checkpoints and patience != 0: if args.model_type == "albert": model.albert.log_stats() elif args.model_type == "bert": model.bert.log_stats() else: raise NotImplementedError() return results def load_and_cache_examples(args, task, tokenizer, evaluate=False): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() output_mode = output_modes[task] # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), str(task), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]: # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] examples = ( processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) ) features = convert_examples_to_features( examples, tokenizer, label_list=label_list, max_length=args.max_seq_length, output_mode=output_mode, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif output_mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name.", ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--patience", default="0", type=str, required=False, ) parser.add_argument( "--regression_threshold", default=0, type=float, required=False, ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--max_seq_length", default=128, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--per_gpu_eval_batch_size", default=1, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument( "--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument( "--local_rank", type=int, default=-1, help="For distributed training: local_rank", ) parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed set_seed(args) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) if args.patience != "0" and args.per_gpu_eval_batch_size != 1: raise ValueError("The eval batch size must be 1 with PABEE inference on.") # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) print("Total Model Parameters:", sum(param.numel() for param in model.parameters())) output_layers_param_num = sum(param.numel() for param in model.classifiers.parameters()) print("Output Layers Parameters:", output_layers_param_num) single_output_layer_param_num = sum(param.numel() for param in model.classifiers[0].parameters()) print( "Added Output Layers Parameters:", output_layers_param_num - single_output_layer_param_num, ) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: patience_list = [int(x) for x in args.patience.split(",")] tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = [ os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) print(f"Evaluation for checkpoint {prefix}") for patience in patience_list: result = evaluate(args, model, tokenizer, prefix=prefix, patience=patience) result = {k + "_{}".format(global_step): v for k, v in result.items()} results.update(result) return results if __name__ == "__main__": main()
transformers-main
examples/research_projects/bert-loses-patience/run_glue_with_pabee.py
transformers-main
examples/research_projects/bert-loses-patience/pabee/__init__.py
# coding=utf-8 # Copyright 2020 Google AI, Google Brain, the HuggingFace Inc. team and Microsoft Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ALBERT model with Patience-based Early Exit. """ import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.albert.modeling_albert import ( ALBERT_INPUTS_DOCSTRING, ALBERT_START_DOCSTRING, AlbertModel, AlbertPreTrainedModel, AlbertTransformer, ) logger = logging.getLogger(__name__) class AlbertTransformerWithPabee(AlbertTransformer): def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None): if current_layer == 0: hidden_states = self.embedding_hidden_mapping_in(hidden_states) else: hidden_states = hidden_states[0] layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) # Index of the hidden group group_idx = int(current_layer / (self.config.num_hidden_layers / self.config.num_hidden_groups)) layer_group_output = self.albert_layer_groups[group_idx]( hidden_states, attention_mask, head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group], ) hidden_states = layer_group_output[0] return (hidden_states,) @add_start_docstrings( "The bare ALBERT Model transformer with PABEE outputting raw hidden-states without any specific head on top.", ALBERT_START_DOCSTRING, ) class AlbertModelWithPabee(AlbertModel): def __init__(self, config): super().__init__(config) self.encoder = AlbertTransformerWithPabee(config) self.init_weights() self.patience = 0 self.inference_instances_num = 0 self.inference_layers_num = 0 self.regression_threshold = 0 def set_regression_threshold(self, threshold): self.regression_threshold = threshold def set_patience(self, patience): self.patience = patience def reset_stats(self): self.inference_instances_num = 0 self.inference_layers_num = 0 def log_stats(self): avg_inf_layers = self.inference_layers_num / self.inference_instances_num message = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(message) @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_dropout=None, output_layers=None, regression=False, ): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = embedding_output if self.training: res = [] for i in range(self.config.num_hidden_layers): encoder_outputs = self.encoder.adaptive_forward( encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask, ) pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) logits = output_layers[i](output_dropout(pooled_output)) res.append(logits) elif self.patience == 0: # Use all layers for inference encoder_outputs = self.encoder(encoder_outputs, extended_attention_mask, head_mask=head_mask) pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)] else: patient_counter = 0 patient_result = None calculated_layer_num = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 encoder_outputs = self.encoder.adaptive_forward( encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask, ) pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) logits = output_layers[i](pooled_output) if regression: labels = logits.detach() if patient_result is not None: patient_labels = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: patient_counter = 0 else: labels = logits.detach().argmax(dim=1) if patient_result is not None: patient_labels = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(patient_labels)): patient_counter += 1 else: patient_counter = 0 patient_result = logits if patient_counter == self.patience: break res = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Albert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForSequenceClassificationWithPabee(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModelWithPabee(config) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifiers = nn.ModuleList( [nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)] ) self.init_weights() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification (or regression if config.num_labels==1) loss. logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import AlbertTokenizer from pabee import AlbertForSequenceClassificationWithPabee from torch import nn import torch tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertForSequenceClassificationWithPabee.from_pretrained('albert-base-v2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ logits = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_dropout=self.dropout, output_layers=self.classifiers, regression=self.num_labels == 1, ) outputs = (logits[-1],) if labels is not None: total_loss = None total_weights = 0 for ix, logits_item in enumerate(logits): if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits_item.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1)) if total_loss is None: total_loss = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 outputs = (total_loss / total_weights,) + outputs return outputs
transformers-main
examples/research_projects/bert-loses-patience/pabee/modeling_pabee_albert.py
# coding=utf-8 # Copyright 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and Microsoft Corporation. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BERT model with Patience-based Early Exit. """ import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) logger = logging.getLogger(__name__) class BertEncoderWithPabee(BertEncoder): def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None): layer_outputs = self.layer[current_layer](hidden_states, attention_mask, head_mask[current_layer]) hidden_states = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class BertModelWithPabee(BertModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as a decoder the model needs to be initialized with the :obj:`is_decoder` argument of the configuration set to :obj:`True`; an :obj:`encoder_hidden_states` is expected as an input to the forward pass. .. _`Attention is all you need`: https://arxiv.org/abs/1706.03762 """ def __init__(self, config): super().__init__(config) self.encoder = BertEncoderWithPabee(config) self.init_weights() self.patience = 0 self.inference_instances_num = 0 self.inference_layers_num = 0 self.regression_threshold = 0 def set_regression_threshold(self, threshold): self.regression_threshold = threshold def set_patience(self, patience): self.patience = patience def reset_stats(self): self.inference_instances_num = 0 self.inference_layers_num = 0 def log_stats(self): avg_inf_layers = self.inference_layers_num / self.inference_instances_num message = ( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(message) @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_dropout=None, output_layers=None, regression=False, ): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = embedding_output if self.training: res = [] for i in range(self.config.num_hidden_layers): encoder_outputs = self.encoder.adaptive_forward( encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask ) pooled_output = self.pooler(encoder_outputs) logits = output_layers[i](output_dropout(pooled_output)) res.append(logits) elif self.patience == 0: # Use all layers for inference encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, ) pooled_output = self.pooler(encoder_outputs[0]) res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)] else: patient_counter = 0 patient_result = None calculated_layer_num = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 encoder_outputs = self.encoder.adaptive_forward( encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask ) pooled_output = self.pooler(encoder_outputs) logits = output_layers[i](pooled_output) if regression: labels = logits.detach() if patient_result is not None: patient_labels = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: patient_counter = 0 else: labels = logits.detach().argmax(dim=1) if patient_result is not None: patient_labels = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(patient_labels)): patient_counter += 1 else: patient_counter = 0 patient_result = logits if patient_counter == self.patience: break res = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, BERT_START_DOCSTRING, ) class BertForSequenceClassificationWithPabee(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModelWithPabee(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifiers = nn.ModuleList( [nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)] ) self.init_weights() @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import BertTokenizer, BertForSequenceClassification from pabee import BertForSequenceClassificationWithPabee from torch import nn import torch tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassificationWithPabee.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ logits = self.bert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_dropout=self.dropout, output_layers=self.classifiers, regression=self.num_labels == 1, ) outputs = (logits[-1],) if labels is not None: total_loss = None total_weights = 0 for ix, logits_item in enumerate(logits): if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits_item.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1)) if total_loss is None: total_loss = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 outputs = (total_loss / total_weights,) + outputs return outputs
transformers-main
examples/research_projects/bert-loses-patience/pabee/modeling_pabee_bert.py
#!/usr/bin/env python3 """ This script is adapted from the Bertology pruning code (https://github.com/huggingface/transformers/blob/783d7d2629e97c5f0c5f9ef01b8c66410275c204/examples/research_projects/bertology/run_bertology.py) to prune GPT-like models. The author is @altsoph. """ import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPT2LMHeadModel logger = logging.getLogger(__name__) def save_model(model, dirpath): # save results if os.path.exists(dirpath): if os.path.exists(os.path.join(dirpath, "config.json")) and os.path.isfile( os.path.join(dirpath, "config.json") ): os.remove(os.path.join(dirpath, "config.json")) if os.path.exists(os.path.join(dirpath, "pytorch_model.bin")) and os.path.isfile( os.path.join(dirpath, "pytorch_model.bin") ): os.remove(os.path.join(dirpath, "pytorch_model.bin")) else: os.makedirs(dirpath) model.save_pretrained(dirpath) def entropy(p, unlogit=False): """Compute the entropy of a probability distribution""" exponent = 2 if unlogit: p = torch.pow(p, exponent) plogp = p * torch.log(p) plogp[p == 0] = 0 return -plogp.sum(dim=-1) def print_2d_tensor(tensor): """Print a 2D tensor""" logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor)))) for row in range(len(tensor)): if tensor.dtype != torch.long: logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data)) else: logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data)) def compute_heads_importance( args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None, actually_pruned=False ): """This method shows how to compute: - head attention entropy - head importance scores according to http://arxiv.org/abs/1905.10650 """ # Prepare our tensors n_layers, n_heads = model.config.num_hidden_layers, model.config.num_attention_heads head_importance = torch.zeros(n_layers, n_heads).to(args.device) attn_entropy = torch.zeros(n_layers, n_heads).to(args.device) if head_mask is None: head_mask = torch.ones(n_layers, n_heads).to(args.device) head_mask.requires_grad_(requires_grad=True) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: head_mask = None tot_tokens = 0.0 total_loss = 0.0 for step, inputs in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): inputs = tuple(t.to(args.device) for t in inputs) (input_ids,) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) outputs = model(input_ids, labels=input_ids, head_mask=head_mask) # (loss), lm_logits, presents, (all hidden_states), (attentions) loss, _, all_attentions = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(all_attentions): masked_entropy = entropy(attn.detach(), True) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(input_ids).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: exponent = 2 norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies") print_2d_tensor(attn_entropy) if compute_importance: logger.info("Head importance scores") print_2d_tensor(head_importance) logger.info("Head ranked by importance scores") head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device) head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange( head_importance.numel(), device=args.device ) head_ranks = head_ranks.view_as(head_importance) print_2d_tensor(head_ranks) return attn_entropy, head_importance, total_loss def mask_heads(args, model, eval_dataloader): """This method shows how to mask head (set some heads to zero), to test the effect on the network, based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650) """ _, head_importance, loss = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False) original_score = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold) new_head_mask = torch.ones_like(head_importance) num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount)) current_score = original_score while current_score >= original_score * args.masking_threshold: head_mask = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads head_importance[head_mask == 0.0] = float("Inf") current_heads_to_mask = head_importance.view(-1).sort()[1] if len(current_heads_to_mask) <= num_to_mask: print("BREAK BY num_to_mask") break # mask heads current_heads_to_mask = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist())) new_head_mask = new_head_mask.view(-1) new_head_mask[current_heads_to_mask] = 0.0 new_head_mask = new_head_mask.view_as(head_mask) new_head_mask = new_head_mask.clone().detach() print_2d_tensor(new_head_mask) # Compute metric and head importance again _, head_importance, loss = compute_heads_importance( args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask ) current_score = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)", current_score, new_head_mask.sum(), new_head_mask.sum() / new_head_mask.numel() * 100, ) logger.info("Final head mask") print_2d_tensor(head_mask) np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy()) return head_mask def prune_heads(args, model, eval_dataloader, head_mask): """This method shows how to prune head (remove heads weights) based on the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650) """ # Try pruning and test time speedup # Pruning is like masking but we actually remove the masked weights before_time = datetime.now() _, _, loss = compute_heads_importance( args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask ) score_masking = 1 / loss original_time = datetime.now() - before_time original_num_params = sum(p.numel() for p in model.parameters()) heads_to_prune = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(head_mask)) } for k, v in heads_to_prune.items(): if isinstance(v, int): heads_to_prune[k] = [ v, ] assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(heads_to_prune) pruned_num_params = sum(p.numel() for p in model.parameters()) before_time = datetime.now() _, _, loss = compute_heads_importance( args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=None, actually_pruned=True, ) score_pruning = 1 / loss new_time = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", original_num_params, pruned_num_params, pruned_num_params / original_num_params * 100, ) logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning) logger.info("Pruning: speed ratio (original timing / new timing): %f percents", original_time / new_time * 100) save_model(model, args.output_dir) def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name_or_path", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name_or_path", ) parser.add_argument( "--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance", action="store_true", help="Don't normalize all importance scores between 0 and 1", ) parser.add_argument( "--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold", default=0.9, type=float, help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).", ) parser.add_argument( "--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.") parser.add_argument( "--max_seq_length", default=128, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ), ) parser.add_argument("--batch_size", default=1, type=int, help="Batch size.") parser.add_argument("--seed", type=int, default=42) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") args = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) args.device = torch.device("cuda", args.local_rank) args.n_gpu = 1 torch.distributed.init_process_group(backend="nccl") # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1))) model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) elif args.n_gpu > 1: model = nn.DataParallel(model) # Print/save training arguments os.makedirs(args.output_dir, exist_ok=True) torch.save(args, os.path.join(args.output_dir, "run_args.bin")) logger.info("Training/evaluation parameters %s", args) # Prepare dataset numpy_data = np.concatenate( [ np.loadtxt(args.data_dir, dtype=np.int64), ] ) train_tensor_dataset = (torch.from_numpy(numpy_data),) train_data = TensorDataset(*train_tensor_dataset) train_sampler = RandomSampler(train_data) eval_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.batch_size) # Compute head entropy and importance score compute_heads_importance(args, model, eval_dataloader) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: head_mask = mask_heads(args, model, eval_dataloader) prune_heads(args, model, eval_dataloader, head_mask) if __name__ == "__main__": main()
transformers-main
examples/research_projects/bertology/run_prune_gpt.py
#!/usr/bin/env python3 # Copyright 2018 CMU and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Bertology: this script shows how you can explore the internals of the models in the library to: - compute the entropy of the head attentions - compute the importance of each head - prune (remove) the low importance head. Some parts of this script are adapted from the code of Michel et al. (http://arxiv.org/abs/1905.10650) which is available at https://github.com/pmichel31415/are-16-heads-really-better-than-1 """ import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, SequentialSampler, Subset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, GlueDataset, default_data_collator, glue_compute_metrics, glue_output_modes, glue_processors, set_seed, ) from transformers.trainer_utils import is_main_process logger = logging.getLogger(__name__) def entropy(p): """Compute the entropy of a probability distribution""" plogp = p * torch.log(p) plogp[p == 0] = 0 return -plogp.sum(dim=-1) def print_2d_tensor(tensor): """Print a 2D tensor""" logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor)))) for row in range(len(tensor)): if tensor.dtype != torch.long: logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data)) else: logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data)) def compute_heads_importance( args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None, actually_pruned=False ): """This method shows how to compute: - head attention entropy - head importance scores according to http://arxiv.org/abs/1905.10650 """ # Prepare our tensors n_layers, n_heads = model.config.num_hidden_layers, model.config.num_attention_heads head_importance = torch.zeros(n_layers, n_heads).to(args.device) attn_entropy = torch.zeros(n_layers, n_heads).to(args.device) if head_mask is None: head_mask = torch.ones(n_layers, n_heads).to(args.device) head_mask.requires_grad_(requires_grad=True) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: head_mask = None preds = None labels = None tot_tokens = 0.0 for step, inputs in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): for k, v in inputs.items(): inputs[k] = v.to(args.device) # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) outputs = model(**inputs, head_mask=head_mask) loss, logits, all_attentions = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask if compute_entropy: for layer, attn in enumerate(all_attentions): masked_entropy = entropy(attn.detach()) * inputs["attention_mask"].float().unsqueeze(1) attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() # Also store our logits/labels if we want to compute metrics afterwards if preds is None: preds = logits.detach().cpu().numpy() labels = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) labels = np.append(labels, inputs["labels"].detach().cpu().numpy(), axis=0) tot_tokens += inputs["attention_mask"].float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: exponent = 2 norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent) head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20 if not args.dont_normalize_global_importance: head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print/save matrices np.save(os.path.join(args.output_dir, "attn_entropy.npy"), attn_entropy.detach().cpu().numpy()) np.save(os.path.join(args.output_dir, "head_importance.npy"), head_importance.detach().cpu().numpy()) logger.info("Attention entropies") print_2d_tensor(attn_entropy) logger.info("Head importance scores") print_2d_tensor(head_importance) logger.info("Head ranked by importance scores") head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device) head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange( head_importance.numel(), device=args.device ) head_ranks = head_ranks.view_as(head_importance) print_2d_tensor(head_ranks) return attn_entropy, head_importance, preds, labels def mask_heads(args, model, eval_dataloader): """This method shows how to mask head (set some heads to zero), to test the effect on the network, based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650) """ _, head_importance, preds, labels = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) original_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold) new_head_mask = torch.ones_like(head_importance) num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount)) current_score = original_score while current_score >= original_score * args.masking_threshold: head_mask = new_head_mask.clone() # save current head mask # heads from least important to most - keep only not-masked heads head_importance[head_mask == 0.0] = float("Inf") current_heads_to_mask = head_importance.view(-1).sort()[1] if len(current_heads_to_mask) <= num_to_mask: break # mask heads current_heads_to_mask = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist())) new_head_mask = new_head_mask.view(-1) new_head_mask[current_heads_to_mask] = 0.0 new_head_mask = new_head_mask.view_as(head_mask) new_head_mask = new_head_mask.clone().detach() print_2d_tensor(new_head_mask) # Compute metric and head importance again _, head_importance, preds, labels = compute_heads_importance( args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask ) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) current_score = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)", current_score, new_head_mask.sum(), new_head_mask.sum() / new_head_mask.numel() * 100, ) logger.info("Final head mask") print_2d_tensor(head_mask) np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy()) return head_mask def prune_heads(args, model, eval_dataloader, head_mask): """This method shows how to prune head (remove heads weights) based on the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650) """ # Try pruning and test time speedup # Pruning is like masking but we actually remove the masked weights before_time = datetime.now() _, _, preds, labels = compute_heads_importance( args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask ) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) score_masking = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] original_time = datetime.now() - before_time original_num_params = sum(p.numel() for p in model.parameters()) heads_to_prune = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(head_mask)) } assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item() model.prune_heads(heads_to_prune) pruned_num_params = sum(p.numel() for p in model.parameters()) before_time = datetime.now() _, _, preds, labels = compute_heads_importance( args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=None, actually_pruned=True, ) preds = np.argmax(preds, axis=1) if args.output_mode == "classification" else np.squeeze(preds) score_pruning = glue_compute_metrics(args.task_name, preds, labels)[args.metric_name] new_time = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)", original_num_params, pruned_num_params, pruned_num_params / original_num_params * 100, ) logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning) logger.info("Pruning: speed ratio (new timing / original timing): %f percents", original_time / new_time * 100) def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(glue_processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name_or_path", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name_or_path", ) parser.add_argument( "--cache_dir", default=None, type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance", action="store_true", help="Don't normalize all importance scores between 0 and 1", ) parser.add_argument( "--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold", default=0.9, type=float, help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).", ) parser.add_argument( "--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.") parser.add_argument( "--max_seq_length", default=128, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ), ) parser.add_argument("--batch_size", default=1, type=int, help="Batch size.") parser.add_argument("--seed", type=int, default=42) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") args = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) args.device = torch.device("cuda", args.local_rank) args.n_gpu = 1 torch.distributed.init_process_group(backend="nccl") # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1))) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seeds set_seed(args.seed) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in glue_processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = glue_processors[args.task_name]() args.output_mode = glue_output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, output_attentions=True, cache_dir=args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, cache_dir=args.cache_dir, ) model = AutoModelForSequenceClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir, ) # Distributed and parallel training model.to(args.device) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) elif args.n_gpu > 1: model = nn.DataParallel(model) # Print/save training arguments os.makedirs(args.output_dir, exist_ok=True) torch.save(args, os.path.join(args.output_dir, "run_args.bin")) logger.info("Training/evaluation parameters %s", args) # Prepare dataset for the GLUE task eval_dataset = GlueDataset(args, tokenizer=tokenizer, mode="dev") if args.data_subset > 0: eval_dataset = Subset(eval_dataset, list(range(min(args.data_subset, len(eval_dataset))))) eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader( eval_dataset, sampler=eval_sampler, batch_size=args.batch_size, collate_fn=default_data_collator ) # Compute head entropy and importance score compute_heads_importance(args, model, eval_dataloader) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: head_mask = mask_heads(args, model, eval_dataloader) prune_heads(args, model, eval_dataloader, head_mask) if __name__ == "__main__": main()
transformers-main
examples/research_projects/bertology/run_bertology.py
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="fsner", version="0.0.1", author="msi sayef", author_email="[email protected]", description="Few-shot Named Entity Recognition", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/huggingface/transformers/tree/main/examples/research_projects/fsner", project_urls={ "Bug Tracker": "https://github.com/huggingface/transformers/issues", }, classifiers=[ "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), python_requires=">=3.6", install_requires=["torch>=1.9.0", "transformers>=4.9.2"], )
transformers-main
examples/research_projects/fsner/setup.py
import torch from transformers import AutoTokenizer class FSNERTokenizerUtils(object): def __init__(self, pretrained_model_name_or_path): self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) def tokenize(self, x): """ Wrapper function for tokenizing query and supports Args: x (`List[str] or List[List[str]]`): List of strings for query or list of lists of strings for supports. Returns: `transformers.tokenization_utils_base.BatchEncoding` dict with additional keys and values for start_token_id, end_token_id and sizes of example lists for each entity type """ if isinstance(x, list) and all(isinstance(_x, list) for _x in x): d = None for l in x: t = self.tokenizer( l, padding="max_length", max_length=384, truncation=True, return_tensors="pt", ) t["sizes"] = torch.tensor([len(l)]) if d is not None: for k in d.keys(): d[k] = torch.cat((d[k], t[k]), 0) else: d = t d["start_token_id"] = torch.tensor(self.tokenizer.convert_tokens_to_ids("[E]")) d["end_token_id"] = torch.tensor(self.tokenizer.convert_tokens_to_ids("[/E]")) elif isinstance(x, list) and all(isinstance(_x, str) for _x in x): d = self.tokenizer( x, padding="max_length", max_length=384, truncation=True, return_tensors="pt", ) else: raise Exception( "Type of parameter x was not recognized! Only `list of strings` for query or `list of lists of" " strings` for supports are supported." ) return d def extract_entity_from_scores(self, query, W_query, p_start, p_end, thresh=0.70): """ Extracts entities from query and scores given a threshold. Args: query (`List[str]`): List of query strings. W_query (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of query sequence tokens in the vocabulary. p_start (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Scores of each token as being start token of an entity p_end (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Scores of each token as being end token of an entity thresh (`float`): Score threshold value Returns: A list of lists of tuples(decoded entity, score) """ final_outputs = [] for idx in range(len(W_query["input_ids"])): start_indexes = end_indexes = range(p_start.shape[1]) output = [] for start_id in start_indexes: for end_id in end_indexes: if start_id < end_id: output.append( ( start_id, end_id, p_start[idx][start_id].item(), p_end[idx][end_id].item(), ) ) output.sort(key=lambda tup: (tup[2] * tup[3]), reverse=True) temp = [] for k in range(len(output)): if output[k][2] * output[k][3] >= thresh: c_start_pos, c_end_pos = output[k][0], output[k][1] decoded = self.tokenizer.decode(W_query["input_ids"][idx][c_start_pos:c_end_pos]) temp.append((decoded, output[k][2] * output[k][3])) final_outputs.append(temp) return final_outputs
transformers-main
examples/research_projects/fsner/src/fsner/tokenizer_utils.py
from .model import FSNERModel from .tokenizer_utils import FSNERTokenizerUtils __all__ = ["FSNERModel", "FSNERTokenizerUtils"]
transformers-main
examples/research_projects/fsner/src/fsner/__init__.py
import torch from transformers import AutoModel class FSNERModel(torch.nn.Module): """ The FSNER model implements a few-shot named entity recognition method from the paper `Example-Based Named Entity Recognition <https://arxiv.org/abs/2008.10570>`__ by Morteza Ziyadi, Yuting Sun, Abhishek Goswami, Jade Huang, Weizhu Chen. To identify entity spans in a new domain, it uses a train-free few-shot learning approach inspired by question-answering. """ def __init__(self, pretrained_model_name_or_path="sayef/fsner-bert-base-uncased"): super(FSNERModel, self).__init__() self.bert = AutoModel.from_pretrained(pretrained_model_name_or_path, return_dict=True) self.cos = torch.nn.CosineSimilarity(3, 1e-08) self.softmax = torch.nn.Softmax(dim=1) def BERT(self, **inputs): return self.bert(**inputs).last_hidden_state def VectorSum(self, token_embeddings): return token_embeddings.sum(2, keepdim=True) def Atten(self, q_rep, S_rep, T=1): return self.softmax(T * self.cos(q_rep, S_rep)) def forward(self, W_query, W_supports): """ Find scores of each token being start and end token for an entity. Args: W_query (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of query sequence tokens in the vocabulary. W_supports (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of support sequence tokens in the vocabulary. Returns: p_start (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Scores of each token as being start token of an entity p_end (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Scores of each token as being end token of an entity """ support_sizes = W_supports["sizes"].tolist() start_token_id = W_supports["start_token_id"].item() end_token_id = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] q = self.BERT(**W_query) S = self.BERT(**W_supports) p_starts = None p_ends = None start_token_masks = W_supports["input_ids"] == start_token_id end_token_masks = W_supports["input_ids"] == end_token_id for i, size in enumerate(support_sizes): if i == 0: s = 0 else: s = support_sizes[i - 1] s_start = S[s : s + size][start_token_masks[s : s + size]] s_end = S[s : s + size][end_token_masks[s : s + size]] p_start = torch.matmul(q[i], s_start.T).sum(1).softmax(0) p_end = torch.matmul(q[i], s_end.T).sum(1).softmax(0) if p_starts is not None: p_starts = torch.vstack((p_starts, p_start)) p_ends = torch.vstack((p_ends, p_end)) else: p_starts = p_start p_ends = p_end return p_starts, p_ends
transformers-main
examples/research_projects/fsner/src/fsner/model.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, CTRL, BERT, RoBERTa, XLNet). GPT, GPT-2 and CTRL are fine-tuned using a causal language modeling (CLM) loss. BERT and RoBERTa are fine-tuned using a masked language modeling (MLM) loss. XLNet is fine-tuned using a permutation language modeling (PLM) loss. """ import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ train_data_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a text file)."} ) train_data_files: Optional[str] = field( default=None, metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) }, ) eval_data_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) train_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input train ref data file for whole word mask in Chinese."}, ) eval_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."}, ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) mlm: bool = field( default=False, metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) whole_word_mask: bool = field(default=False, metadata={"help": "Whether ot not to use whole word mask."}) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) plm_probability: float = field( default=1 / 6, metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) }, ) max_span_length: int = field( default=5, metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) block_size: int = field( default=-1, metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def get_dataset( args: DataTrainingArguments, tokenizer: PreTrainedTokenizer, evaluate: bool = False, cache_dir: Optional[str] = None, ): def _dataset(file_path, ref_path=None): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask") return LineByLineWithRefDataset( tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, ref_path=ref_path, ) return LineByLineTextDataset(tokenizer=tokenizer, file_path=file_path, block_size=args.block_size) else: return TextDataset( tokenizer=tokenizer, file_path=file_path, block_size=args.block_size, overwrite_cache=args.overwrite_cache, cache_dir=cache_dir, ) if evaluate: return _dataset(args.eval_data_file, args.eval_ref_file) elif args.train_data_files: return ConcatDataset([_dataset(f) for f in glob(args.train_data_files)]) else: return _dataset(args.train_data_file, args.train_ref_file) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: model = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) else: logger.info("Training new model from scratch") model = AutoModelWithLMHead.from_config(config) model.resize_token_embeddings(len(tokenizer)) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: data_args.block_size = tokenizer.max_len # Our input block size will be the max possible for the model else: data_args.block_size = min(data_args.block_size, tokenizer.max_len) # Get datasets train_dataset = ( get_dataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None ) eval_dataset = ( get_dataset(data_args, tokenizer=tokenizer, evaluate=True, cache_dir=model_args.cache_dir) if training_args.do_eval else None ) if config.model_type == "xlnet": data_collator = DataCollatorForPermutationLanguageModeling( tokenizer=tokenizer, plm_probability=data_args.plm_probability, max_span_length=data_args.max_span_length, ) else: if data_args.mlm and data_args.whole_word_mask: data_collator = DataCollatorForWholeWordMask( tokenizer=tokenizer, mlm_probability=data_args.mlm_probability ) else: data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, prediction_loss_only=True, ) # Training if training_args.do_train: model_path = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) else None ) trainer.train(model_path=model_path) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") eval_output = trainer.evaluate() perplexity = math.exp(eval_output["eval_loss"]) result = {"perplexity": perplexity} output_eval_file = os.path.join(training_args.output_dir, "eval_results_lm.txt") if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) results.update(result) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers-main
examples/legacy/run_language_modeling.py
#!/usr/bin/env python import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def fill_mask(masked_input, model, tokenizer, topk=5): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("<mask>") == 1 input_ids = torch.tensor(tokenizer.encode(masked_input, add_special_tokens=True)).unsqueeze(0) # Batch size 1 logits = model(input_ids)[0] # The last hidden-state is the first element of the output tuple masked_index = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() logits = logits[0, masked_index, :] prob = logits.softmax(dim=0) values, indices = prob.topk(k=topk, dim=0) topk_predicted_token_bpe = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(indices))] ) masked_token = tokenizer.mask_token topk_filled_outputs = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" ")): predicted_token = predicted_token_bpe.replace("\u2581", " ") if " {0}".format(masked_token) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(masked_token), predicted_token), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(masked_token, predicted_token), values[index].item(), predicted_token, ) ) return topk_filled_outputs tokenizer = CamembertTokenizer.from_pretrained("camembert-base") model = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() masked_input = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
transformers-main
examples/legacy/run_camembert.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Transformer XL model evaluation script. Adapted from https://github.com/kimiyoung/transformer-xl. In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/eval.py This script with default values evaluates a pretrained Transformer-XL on WikiText 103 """ import argparse import logging import math import time import torch from transformers import TransfoXLCorpus, TransfoXLLMHeadModel logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) logger = logging.getLogger(__name__) def main(): parser = argparse.ArgumentParser(description="PyTorch Transformer Language Model") parser.add_argument("--model_name", type=str, default="transfo-xl-wt103", help="pretrained model name") parser.add_argument( "--split", type=str, default="test", choices=["all", "valid", "test"], help="which split to evaluate" ) parser.add_argument("--batch_size", type=int, default=10, help="batch size") parser.add_argument("--tgt_len", type=int, default=128, help="number of tokens to predict") parser.add_argument("--ext_len", type=int, default=0, help="length of the extended context") parser.add_argument("--mem_len", type=int, default=1600, help="length of the retained previous heads") parser.add_argument("--clamp_len", type=int, default=1000, help="max positional embedding index") parser.add_argument("--no_cuda", action="store_true", help="Do not use CUDA even though CUA is available") parser.add_argument("--work_dir", type=str, required=True, help="path to the work_dir") parser.add_argument("--no_log", action="store_true", help="do not log the eval result") parser.add_argument("--same_length", action="store_true", help="set same length attention with masking") parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") args = parser.parse_args() assert args.ext_len >= 0, "extended context length must be non-negative" if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") logger.info("device: {}".format(device)) # Load a pre-processed dataset # You can also build the corpus yourself using TransfoXLCorpus methods # The pre-processing involve computing word frequencies to prepare the Adaptive input and SoftMax # and tokenizing the dataset # The pre-processed corpus is a convertion (using the conversion script ) corpus = TransfoXLCorpus.from_pretrained(args.model_name) va_iter = corpus.get_iterator("valid", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len) te_iter = corpus.get_iterator("test", args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len) # Load a pre-trained model model = TransfoXLLMHeadModel.from_pretrained(args.model_name) model.to(device) logger.info( "Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}".format( args.batch_size, args.tgt_len, args.ext_len, args.mem_len, args.clamp_len ) ) model.reset_memory_length(args.mem_len) if args.clamp_len > 0: model.clamp_len = args.clamp_len if args.same_length: model.same_length = True ############################################################################### # Evaluation code ############################################################################### def evaluate(eval_iter): # Turn on evaluation mode which disables dropout. model.eval() total_len, total_loss = 0, 0.0 start_time = time.time() with torch.no_grad(): mems = None for idx, (data, target, seq_len) in enumerate(eval_iter): ret = model(data, lm_labels=target, mems=mems) loss, _, mems = ret loss = loss.mean() total_loss += seq_len * loss.item() total_len += seq_len total_time = time.time() - start_time logger.info("Time : {:.2f}s, {:.2f}ms/segment".format(total_time, 1000 * total_time / (idx + 1))) return total_loss / total_len # Run on test data. if args.split == "all": test_loss = evaluate(te_iter) valid_loss = evaluate(va_iter) elif args.split == "valid": valid_loss = evaluate(va_iter) test_loss = None elif args.split == "test": test_loss = evaluate(te_iter) valid_loss = None def format_log(loss, split): log_str = "| {0} loss {1:5.2f} | {0} ppl {2:9.3f} ".format(split, loss, math.exp(loss)) return log_str log_str = "" if valid_loss is not None: log_str += format_log(valid_loss, "valid") if test_loss is not None: log_str += format_log(test_loss, "test") logger.info("=" * 100) logger.info(log_str) logger.info("=" * 100) if __name__ == "__main__": main()
transformers-main
examples/legacy/run_transfo_xl.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ OpenAI GPT model fine-tuning script. Adapted from https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/train.py It self adapted from https://github.com/openai/finetune-transformer-lm/blob/master/train.py This script with default values fine-tunes and evaluate a pretrained OpenAI GPT on the RocStories dataset: python run_openai_gpt.py \ --model_name openai-gpt \ --do_train \ --do_eval \ --train_dataset "$ROC_STORIES_DIR/cloze_test_val__spring2016 - cloze_test_ALL_val.csv" \ --eval_dataset "$ROC_STORIES_DIR/cloze_test_test__spring2016 - cloze_test_ALL_test.csv" \ --output_dir ../log \ --train_batch_size 16 \ """ import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) logger = logging.getLogger(__name__) def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) def load_rocstories_dataset(dataset_path): """Output a list of tuples(story, 1st continuation, 2nd continuation, label)""" with open(dataset_path, encoding="utf_8") as f: f = csv.reader(f) output = [] next(f) # skip the first line for line in tqdm(f): output.append((" ".join(line[1:5]), line[5], line[6], int(line[-1]) - 1)) return output def pre_process_datasets(encoded_datasets, input_len, cap_length, start_token, delimiter_token, clf_token): """Pre-process datasets containing lists of tuples(story, 1st continuation, 2nd continuation, label) To Transformer inputs of shape (n_batch, n_alternative, length) comprising for each batch, continuation: input_ids[batch, alternative, :] = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token] """ tensor_datasets = [] for dataset in encoded_datasets: n_batch = len(dataset) input_ids = np.zeros((n_batch, 2, input_len), dtype=np.int64) mc_token_ids = np.zeros((n_batch, 2), dtype=np.int64) lm_labels = np.full((n_batch, 2, input_len), fill_value=-100, dtype=np.int64) mc_labels = np.zeros((n_batch,), dtype=np.int64) for ( i, (story, cont1, cont2, mc_label), ) in enumerate(dataset): with_cont1 = [start_token] + story[:cap_length] + [delimiter_token] + cont1[:cap_length] + [clf_token] with_cont2 = [start_token] + story[:cap_length] + [delimiter_token] + cont2[:cap_length] + [clf_token] input_ids[i, 0, : len(with_cont1)] = with_cont1 input_ids[i, 1, : len(with_cont2)] = with_cont2 mc_token_ids[i, 0] = len(with_cont1) - 1 mc_token_ids[i, 1] = len(with_cont2) - 1 lm_labels[i, 0, : len(with_cont1)] = with_cont1 lm_labels[i, 1, : len(with_cont2)] = with_cont2 mc_labels[i] = mc_label all_inputs = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(t) for t in all_inputs)) return tensor_datasets def main(): parser = argparse.ArgumentParser() parser.add_argument("--model_name", type=str, default="openai-gpt", help="pretrained model name") parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--train_dataset", type=str, default="") parser.add_argument("--eval_dataset", type=str, default="") parser.add_argument("--seed", type=int, default=42) parser.add_argument("--num_train_epochs", type=int, default=3) parser.add_argument("--train_batch_size", type=int, default=8) parser.add_argument("--eval_batch_size", type=int, default=16) parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", type=int, default=1) parser.add_argument( "--max_steps", default=-1, type=int, help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", type=float, default=6.25e-5) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--lr_schedule", type=str, default="warmup_linear") parser.add_argument("--weight_decay", type=float, default=0.01) parser.add_argument("--lm_coef", type=float, default=0.9) parser.add_argument("--n_valid", type=int, default=374) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") args = parser.parse_args() print(args) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(device, n_gpu)) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True.") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset special_tokens = ["_start_", "_delimiter_", "_classify_"] tokenizer = OpenAIGPTTokenizer.from_pretrained(args.model_name) tokenizer.add_tokens(special_tokens) special_tokens_ids = tokenizer.convert_tokens_to_ids(special_tokens) model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name) model.resize_token_embeddings(len(tokenizer)) model.to(device) # Load and encode the datasets def tokenize_and_encode(obj): """Tokenize and encode a nested object""" if isinstance(obj, str): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(obj)) elif isinstance(obj, int): return obj return [tokenize_and_encode(o) for o in obj] logger.info("Encoding dataset...") train_dataset = load_rocstories_dataset(args.train_dataset) eval_dataset = load_rocstories_dataset(args.eval_dataset) datasets = (train_dataset, eval_dataset) encoded_datasets = tokenize_and_encode(datasets) # Compute the max input length for the Transformer max_length = model.config.n_positions // 2 - 2 input_length = max( len(story[:max_length]) + max(len(cont1[:max_length]), len(cont2[:max_length])) + 3 for dataset in encoded_datasets for story, cont1, cont2, _ in dataset ) input_length = min(input_length, model.config.n_positions) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders tensor_datasets = pre_process_datasets(encoded_datasets, input_length, max_length, *special_tokens_ids) train_tensor_dataset, eval_tensor_dataset = tensor_datasets[0], tensor_datasets[1] train_data = TensorDataset(*train_tensor_dataset) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) eval_data = TensorDataset(*eval_tensor_dataset) eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) # Prepare optimizer if args.do_train: if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs param_optimizer = list(model.named_parameters()) no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.do_train: nb_tr_steps, tr_loss, exp_average_loss = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_steps = 0 tqdm_bar = tqdm(train_dataloader, desc="Training") for step, batch in enumerate(tqdm_bar): batch = tuple(t.to(device) for t in batch) input_ids, mc_token_ids, lm_labels, mc_labels = batch losses = model(input_ids, mc_token_ids=mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels) loss = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() exp_average_loss = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 tqdm_bar.desc = "Training loss: {:.2e} lr: {:.2e}".format(exp_average_loss, scheduler.get_lr()[0]) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr(model, "module") else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME) output_config_file = os.path.join(args.output_dir, CONFIG_NAME) torch.save(model_to_save.state_dict(), output_model_file) model_to_save.config.to_json_file(output_config_file) tokenizer.save_vocabulary(args.output_dir) # Load a trained model and vocabulary that you have fine-tuned model = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir) tokenizer = OpenAIGPTTokenizer.from_pretrained(args.output_dir) model.to(device) if args.do_eval: model.eval() eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for batch in tqdm(eval_dataloader, desc="Evaluating"): batch = tuple(t.to(device) for t in batch) input_ids, mc_token_ids, lm_labels, mc_labels = batch with torch.no_grad(): _, mc_loss, _, mc_logits = model( input_ids, mc_token_ids=mc_token_ids, lm_labels=lm_labels, mc_labels=mc_labels ) mc_logits = mc_logits.detach().cpu().numpy() mc_labels = mc_labels.to("cpu").numpy() tmp_eval_accuracy = accuracy(mc_logits, mc_labels) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps eval_accuracy = eval_accuracy / nb_eval_examples train_loss = tr_loss / nb_tr_steps if args.do_train else None result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if __name__ == "__main__": main()
transformers-main
examples/legacy/run_openai_gpt.py
#!/usr/bin/env python import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _is_chinese_char(cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def is_chinese(word: str): # word like '180' or '身高' or '神' for char in word: char = ord(char) if not _is_chinese_char(char): return 0 return 1 def get_chinese_word(tokens: List[str]): word_set = set() for token in tokens: chinese_word = len(token) > 1 and is_chinese(token) if chinese_word: word_set.add(token) word_list = list(word_set) return word_list def add_sub_symbol(bert_tokens: List[str], chinese_word_set: set()): if not chinese_word_set: return bert_tokens max_word_len = max([len(w) for w in chinese_word_set]) bert_word = bert_tokens start, end = 0, len(bert_word) while start < end: single_word = True if is_chinese(bert_word[start]): l = min(end - start, max_word_len) for i in range(l, 1, -1): whole_word = "".join(bert_word[start : start + i]) if whole_word in chinese_word_set: for j in range(start + 1, start + i): bert_word[j] = "##" + bert_word[j] start = start + i single_word = False break if single_word: start += 1 return bert_word def prepare_ref(lines: List[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokenizer): ltp_res = [] for i in range(0, len(lines), 100): res = ltp_tokenizer.seg(lines[i : i + 100])[0] res = [get_chinese_word(r) for r in res] ltp_res.extend(res) assert len(ltp_res) == len(lines) bert_res = [] for i in range(0, len(lines), 100): res = bert_tokenizer(lines[i : i + 100], add_special_tokens=True, truncation=True, max_length=512) bert_res.extend(res["input_ids"]) assert len(bert_res) == len(lines) ref_ids = [] for input_ids, chinese_word in zip(bert_res, ltp_res): input_tokens = [] for id in input_ids: token = bert_tokenizer._convert_id_to_token(id) input_tokens.append(token) input_tokens = add_sub_symbol(input_tokens, chinese_word) ref_id = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(input_tokens): if token[:2] == "##": clean_token = token[2:] # save chinese tokens' pos if len(clean_token) == 1 and _is_chinese_char(ord(clean_token)): ref_id.append(i) ref_ids.append(ref_id) assert len(ref_ids) == len(bert_res) return ref_ids def main(args): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, "r", encoding="utf-8") as f: data = f.readlines() data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # avoid delimiter like '\u2029' ltp_tokenizer = LTP(args.ltp) # faster in GPU device bert_tokenizer = BertTokenizer.from_pretrained(args.bert) ref_ids = prepare_ref(data, ltp_tokenizer, bert_tokenizer) with open(args.save_path, "w", encoding="utf-8") as f: data = [json.dumps(ref) + "\n" for ref in ref_ids] f.writelines(data) if __name__ == "__main__": parser = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") args = parser.parse_args() main(args)
transformers-main
examples/legacy/run_chinese_ref.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner. Finetuning the library models for multiple choice on SWAG (Bert). """ import argparse import csv import glob import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange import transformers from transformers import ( WEIGHTS_NAME, AdamW, AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, get_linear_schedule_with_warmup, ) from transformers.trainer_utils import is_main_process try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) class SwagExample(object): """A single training/test example for the SWAG dataset.""" def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None): self.swag_id = swag_id self.context_sentence = context_sentence self.start_ending = start_ending self.endings = [ ending_0, ending_1, ending_2, ending_3, ] self.label = label def __str__(self): return self.__repr__() def __repr__(self): attributes = [ "swag_id: {}".format(self.swag_id), "context_sentence: {}".format(self.context_sentence), "start_ending: {}".format(self.start_ending), "ending_0: {}".format(self.endings[0]), "ending_1: {}".format(self.endings[1]), "ending_2: {}".format(self.endings[2]), "ending_3: {}".format(self.endings[3]), ] if self.label is not None: attributes.append("label: {}".format(self.label)) return ", ".join(attributes) class InputFeatures(object): def __init__(self, example_id, choices_features, label): self.example_id = example_id self.choices_features = [ {"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids} for _, input_ids, input_mask, segment_ids in choices_features ] self.label = label def read_swag_examples(input_file, is_training=True): with open(input_file, "r", encoding="utf-8") as f: lines = list(csv.reader(f)) if is_training and lines[0][-1] != "label": raise ValueError("For training, the input file must contain a label column.") examples = [ SwagExample( swag_id=line[2], context_sentence=line[4], start_ending=line[5], # in the swag dataset, the # common beginning of each # choice is stored in "sent2". ending_0=line[7], ending_1=line[8], ending_2=line[9], ending_3=line[10], label=int(line[11]) if is_training else None, ) for line in lines[1:] # we skip the line with the column names ] return examples def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training): """Loads a data file into a list of `InputBatch`s.""" # Swag is a multiple choice task. To perform this task using Bert, # we will use the formatting proposed in "Improving Language # Understanding by Generative Pre-Training" and suggested by # @jacobdevlin-google in this issue # https://github.com/google-research/bert/issues/38. # # Each choice will correspond to a sample on which we run the # inference. For a given Swag example, we will create the 4 # following inputs: # - [CLS] context [SEP] choice_1 [SEP] # - [CLS] context [SEP] choice_2 [SEP] # - [CLS] context [SEP] choice_3 [SEP] # - [CLS] context [SEP] choice_4 [SEP] # The model will output a single value for each input. To get the # final decision of the model, we will run a softmax over these 4 # outputs. features = [] for example_index, example in tqdm(enumerate(examples)): context_tokens = tokenizer.tokenize(example.context_sentence) start_ending_tokens = tokenizer.tokenize(example.start_ending) choices_features = [] for ending_index, ending in enumerate(example.endings): # We create a copy of the context tokens in order to be # able to shrink it according to ending_tokens context_tokens_choice = context_tokens[:] ending_tokens = start_ending_tokens + tokenizer.tokenize(ending) # Modifies `context_tokens_choice` and `ending_tokens` in # place so that the total length is less than the # specified length. Account for [CLS], [SEP], [SEP] with # "- 3" _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3) tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"] segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length choices_features.append((tokens, input_ids, input_mask, segment_ids)) label = example.label if example_index < 5: logger.info("*** Example ***") logger.info("swag_id: {}".format(example.swag_id)) for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features): logger.info("choice: {}".format(choice_idx)) logger.info("tokens: {}".format(" ".join(tokens))) logger.info("input_ids: {}".format(" ".join(map(str, input_ids)))) logger.info("input_mask: {}".format(" ".join(map(str, input_mask)))) logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids)))) if is_training: logger.info("label: {}".format(label)) features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label)) return features def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) def select_field(features, field): return [[choice[field] for choice in feature.choices_features] for feature in features] def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Load data features from cache or dataset file input_file = args.predict_file if evaluate else args.train_file cached_features_file = os.path.join( os.path.dirname(input_file), "cached_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", input_file) examples = read_swag_examples(input_file) features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long) all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long) all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long) all_label = torch.tensor([f.label for f in features], dtype=torch.long) if evaluate: dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) else: dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) if output_examples: return dataset, examples, features return dataset def train(args, train_dataset, model, tokenizer): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], # 'token_type_ids': None if args.model_type == 'xlm' else batch[2], "token_type_ids": batch[2], "labels": batch[3], } # if args.model_type in ['xlnet', 'xlm']: # inputs.update({'cls_index': batch[5], # 'p_mask': batch[6]}) outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_vocabulary(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss, eval_accuracy = 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], # 'token_type_ids': None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids "token_type_ids": batch[2], "labels": batch[3], } # if args.model_type in ['xlnet', 'xlm']: # inputs.update({'cls_index': batch[4], # 'p_mask': batch[5]}) outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() logits = logits.detach().cpu().numpy() label_ids = inputs["labels"].to("cpu").numpy() tmp_eval_accuracy = accuracy(logits, label_ids) eval_accuracy += tmp_eval_accuracy nb_eval_steps += 1 nb_eval_examples += inputs["input_ids"].size(0) eval_loss = eval_loss / nb_eval_steps eval_accuracy = eval_accuracy / nb_eval_examples result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy} output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info("%s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return result def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv" ) parser.add_argument( "--predict_file", default=None, type=str, required=True, help="SWAG csv for predictions. E.g., val.csv or test.csv", ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, ) model = AutoModelForMultipleChoice.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Save the trained model and the tokenizer if args.local_rank == -1 or torch.distributed.get_rank() == 0: logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = AutoModelForMultipleChoice.from_pretrained(args.output_dir) tokenizer = AutoTokenizer.from_pretrained(args.output_dir) model.to(args.device) # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory results = {} if args.do_eval and args.local_rank in [-1, 0]: if args.do_train: checkpoints = [args.output_dir] else: # if do_train is False and do_eval is true, load model directly from pretrained. checkpoints = [args.model_name_or_path] if args.eval_all_checkpoints: checkpoints = [ os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: # Reload the model global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" model = AutoModelForMultipleChoice.from_pretrained(checkpoint) tokenizer = AutoTokenizer.from_pretrained(checkpoint) model.to(args.device) # Evaluate result = evaluate(args, model, tokenizer, prefix=global_step) result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()} results.update(result) logger.info("Results: {}".format(results)) return results if __name__ == "__main__": main()
transformers-main
examples/legacy/run_swag.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet).""" import argparse import glob import logging import os import random import timeit import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange import transformers from transformers import ( MODEL_FOR_QUESTION_ANSWERING_MAPPING, WEIGHTS_NAME, AdamW, AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer, get_linear_schedule_with_warmup, squad_convert_examples_to_features, ) from transformers.data.metrics.squad_metrics import ( compute_predictions_log_probs, compute_predictions_logits, squad_evaluate, ) from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor from transformers.trainer_utils import is_main_process try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def to_list(tensor): return tensor.detach().cpu().tolist() def train(args, train_dataset, model, tokenizer): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 1 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): try: # set global_step to gobal_step of last saved checkpoint from model path checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] global_step = int(checkpoint_suffix) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) except ValueError: logger.info(" Starting fine-tuning.") tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) # Added here for reproductibility set_seed(args) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2], "start_positions": batch[3], "end_positions": batch[4], } if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart", "longformer"]: del inputs["token_type_ids"] if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[5], "p_mask": batch[6]}) if args.version_2_with_negative: inputs.update({"is_impossible": batch[7]}) if hasattr(model, "config") and hasattr(model.config, "lang2id"): inputs.update( {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)} ) outputs = model(**inputs) # model outputs are always tuple in transformers (see doc) loss = outputs[0] if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 # Log metrics if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Only evaluate when single GPU otherwise metrics may not average well if args.local_rank == -1 and args.evaluate_during_training: results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss # Save model checkpoint if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) all_results = [] start_time = timeit.default_timer() for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "token_type_ids": batch[2], } if args.model_type in ["xlm", "roberta", "distilbert", "camembert", "bart", "longformer"]: del inputs["token_type_ids"] feature_indices = batch[3] # XLNet and XLM use more arguments for their predictions if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[4], "p_mask": batch[5]}) # for lang_id-sensitive xlm models if hasattr(model, "config") and hasattr(model.config, "lang2id"): inputs.update( {"langs": (torch.ones(batch[0].shape, dtype=torch.int64) * args.lang_id).to(args.device)} ) outputs = model(**inputs) for i, feature_index in enumerate(feature_indices): eval_feature = features[feature_index.item()] unique_id = int(eval_feature.unique_id) output = [to_list(output[i]) for output in outputs.to_tuple()] # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler" # models only use two. if len(output) >= 5: start_logits = output[0] start_top_index = output[1] end_logits = output[2] end_top_index = output[3] cls_logits = output[4] result = SquadResult( unique_id, start_logits, end_logits, start_top_index=start_top_index, end_top_index=end_top_index, cls_logits=cls_logits, ) else: start_logits, end_logits = output result = SquadResult(unique_id, start_logits, end_logits) all_results.append(result) evalTime = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset)) # Compute predictions output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix)) output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix)) if args.version_2_with_negative: output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix)) else: output_null_log_odds_file = None # XLNet and XLM use a more complex post-processing procedure if args.model_type in ["xlnet", "xlm"]: start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top predictions = compute_predictions_log_probs( examples, features, all_results, args.n_best_size, args.max_answer_length, output_prediction_file, output_nbest_file, output_null_log_odds_file, start_n_top, end_n_top, args.version_2_with_negative, tokenizer, args.verbose_logging, ) else: predictions = compute_predictions_logits( examples, features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, args.verbose_logging, args.version_2_with_negative, args.null_score_diff_threshold, tokenizer, ) # Compute the F1 and exact scores. results = squad_evaluate(examples, predictions) return results def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): if args.local_rank not in [-1, 0] and not evaluate: # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() # Load data features from cache or dataset file input_dir = args.data_dir if args.data_dir else "." cached_features_file = os.path.join( input_dir, "cached_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), ), ) # Init features and dataset from cache if it exists if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features_and_dataset = torch.load(cached_features_file) features, dataset, examples = ( features_and_dataset["features"], features_and_dataset["dataset"], features_and_dataset["examples"], ) else: logger.info("Creating features from dataset file at %s", input_dir) if not args.data_dir and ((evaluate and not args.predict_file) or (not evaluate and not args.train_file)): try: import tensorflow_datasets as tfds except ImportError: raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.") if args.version_2_with_negative: logger.warning("tensorflow_datasets does not handle version 2 of SQuAD.") tfds_examples = tfds.load("squad") examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate) else: processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() if evaluate: examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file) else: examples = processor.get_train_examples(args.data_dir, filename=args.train_file) features, dataset = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=not evaluate, return_dataset="pt", threads=args.threads, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file) if args.local_rank == 0 and not evaluate: # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() if output_examples: return dataset, examples, features return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_TYPES), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--data_dir", default=None, type=str, help="The input data dir. Should contain the .json files for the task." + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--train_file", default=None, type=str, help="The input training file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--predict_file", default=None, type=str, help="The input evaluation file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument( "--max_query_length", default=64, type=int, help=( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ), ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument( "--verbose_logging", action="store_true", help=( "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation." ), ) parser.add_argument( "--lang_id", default=0, type=int, help=( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ), ) parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features") args = parser.parse_args() if args.doc_stride >= args.max_seq_length - args.max_query_length: logger.warning( "WARNING - You've set a doc stride which may be superior to the document length in some " "examples. This could result in errors when building features from the examples. Please reduce the doc " "stride or increase the maximum length to ensure the features are correctly built." ) if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() args.model_type = args.model_type.lower() config = AutoConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, use_fast=False, # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling ) model = AutoModelForQuestionAnswering.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.local_rank == 0: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: import apex apex.amp.register_half_function(torch, "einsum") except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Save the trained model and the tokenizer if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` # Take care of distributed/parallel training model_to_save = model.module if hasattr(model, "module") else model model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = AutoModelForQuestionAnswering.from_pretrained(args.output_dir) # , force_download=True) # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling # So we use use_fast=False here for now until Fast-tokenizer-compatible-examples are out tokenizer = AutoTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case, use_fast=False) model.to(args.device) # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory results = {} if args.do_eval and args.local_rank in [-1, 0]: if args.do_train: logger.info("Loading checkpoints saved during training for evaluation") checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = [ os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ] else: logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path) checkpoints = [args.model_name_or_path] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: # Reload the model global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" model = AutoModelForQuestionAnswering.from_pretrained(checkpoint) # , force_download=True) model.to(args.device) # Evaluate result = evaluate(args, model, tokenizer, prefix=global_step) result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()} results.update(result) logger.info("Results: {}".format(results)) return results if __name__ == "__main__": main()
transformers-main
examples/legacy/question-answering/run_squad.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for question-answering.""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import transformers from transformers import ( AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer, DataCollatorWithPadding, HfArgumentParser, SquadDataset, Trainer, TrainingArguments, ) from transformers import SquadDataTrainingArguments as DataTrainingArguments from transformers.trainer_utils import is_main_process logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Prepare Question-Answering task # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=False, # SquadDataset is not compatible with Fast tokenizers which have a smarter overflow handeling ) model = AutoModelForQuestionAnswering.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # Get datasets is_language_sensitive = hasattr(model.config, "lang2id") train_dataset = ( SquadDataset( data_args, tokenizer=tokenizer, is_language_sensitive=is_language_sensitive, cache_dir=model_args.cache_dir ) if training_args.do_train else None ) eval_dataset = ( SquadDataset( data_args, tokenizer=tokenizer, mode="dev", is_language_sensitive=is_language_sensitive, cache_dir=model_args.cache_dir, ) if training_args.do_eval else None ) # Data collator data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=data_collator, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers-main
examples/legacy/question-answering/run_squad_trainer.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for multiple choice (Bert, Roberta, XLNet).""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process logger = logging.getLogger(__name__) def simple_accuracy(preds, labels): return (preds == labels).mean() @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ task_name: str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys())}) data_dir: str = field(metadata={"help": "Should contain the data files for the task."}) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) try: processor = processors[data_args.task_name]() label_list = processor.get_labels() num_labels = len(label_list) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) model = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # Get datasets train_dataset = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=tokenizer, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) eval_dataset = ( MultipleChoiceDataset( data_dir=data_args.data_dir, tokenizer=tokenizer, task=data_args.task_name, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def compute_metrics(p: EvalPrediction) -> Dict: preds = np.argmax(p.predictions, axis=1) return {"acc": simple_accuracy(preds, p.label_ids)} # Data collator data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, data_collator=data_collator, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") if trainer.is_world_master(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) results.update(result) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers-main
examples/legacy/multiple_choice/run_multiple_choice.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Multiple choice fine-tuning: utilities to work with multiple choice tasks of reading comprehension """ import csv import glob import json import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional import tqdm from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available logger = logging.getLogger(__name__) @dataclass(frozen=True) class InputExample: """ A single training/test example for multiple choice Args: example_id: Unique id for the example. question: string. The untokenized text of the second sequence (question). contexts: list of str. The untokenized text of the first sequence (context of corresponding question). endings: list of str. multiple choice's options. Its length must be equal to contexts' length. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ example_id: str question: str contexts: List[str] endings: List[str] label: Optional[str] @dataclass(frozen=True) class InputFeatures: """ A single set of features of data. Property names are the same names as the corresponding inputs to a model. """ example_id: str input_ids: List[List[int]] attention_mask: Optional[List[List[int]]] token_type_ids: Optional[List[List[int]]] label: Optional[int] class Split(Enum): train = "train" dev = "dev" test = "test" if is_torch_available(): import torch from torch.utils.data import Dataset class MultipleChoiceDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ features: List[InputFeatures] def __init__( self, data_dir: str, tokenizer: PreTrainedTokenizer, task: str, max_seq_length: Optional[int] = None, overwrite_cache=False, mode: Split = Split.train, ): processor = processors[task]() cached_features_file = os.path.join( data_dir, "cached_{}_{}_{}_{}".format( mode.value, tokenizer.__class__.__name__, str(max_seq_length), task, ), ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" with FileLock(lock_path): if os.path.exists(cached_features_file) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}") self.features = torch.load(cached_features_file) else: logger.info(f"Creating features from dataset file at {data_dir}") label_list = processor.get_labels() if mode == Split.dev: examples = processor.get_dev_examples(data_dir) elif mode == Split.test: examples = processor.get_test_examples(data_dir) else: examples = processor.get_train_examples(data_dir) logger.info("Training examples: %s", len(examples)) self.features = convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, ) logger.info("Saving features into cached file %s", cached_features_file) torch.save(self.features, cached_features_file) def __len__(self): return len(self.features) def __getitem__(self, i) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class TFMultipleChoiceDataset: """ This will be superseded by a framework-agnostic approach soon. """ features: List[InputFeatures] def __init__( self, data_dir: str, tokenizer: PreTrainedTokenizer, task: str, max_seq_length: Optional[int] = 128, overwrite_cache=False, mode: Split = Split.train, ): processor = processors[task]() logger.info(f"Creating features from dataset file at {data_dir}") label_list = processor.get_labels() if mode == Split.dev: examples = processor.get_dev_examples(data_dir) elif mode == Split.test: examples = processor.get_test_examples(data_dir) else: examples = processor.get_train_examples(data_dir) logger.info("Training examples: %s", len(examples)) self.features = convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) self.dataset = tf.data.Dataset.from_generator( gen, ( { "example_id": tf.int32, "input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32, }, tf.int64, ), ( { "example_id": tf.TensorShape([]), "input_ids": tf.TensorShape([None, None]), "attention_mask": tf.TensorShape([None, None]), "token_type_ids": tf.TensorShape([None, None]), }, tf.TensorShape([]), ), ) def get_dataset(self): self.dataset = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) return self.dataset def __len__(self): return len(self.features) def __getitem__(self, i) -> InputFeatures: return self.features[i] class DataProcessor: """Base class for data converters for multiple choice data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for the test set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() class RaceProcessor(DataProcessor): """Processor for the RACE data set.""" def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} train".format(data_dir)) high = os.path.join(data_dir, "train/high") middle = os.path.join(data_dir, "train/middle") high = self._read_txt(high) middle = self._read_txt(middle) return self._create_examples(high + middle, "train") def get_dev_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} dev".format(data_dir)) high = os.path.join(data_dir, "dev/high") middle = os.path.join(data_dir, "dev/middle") high = self._read_txt(high) middle = self._read_txt(middle) return self._create_examples(high + middle, "dev") def get_test_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} test".format(data_dir)) high = os.path.join(data_dir, "test/high") middle = os.path.join(data_dir, "test/middle") high = self._read_txt(high) middle = self._read_txt(middle) return self._create_examples(high + middle, "test") def get_labels(self): """See base class.""" return ["0", "1", "2", "3"] def _read_txt(self, input_dir): lines = [] files = glob.glob(input_dir + "/*txt") for file in tqdm.tqdm(files, desc="read files"): with open(file, "r", encoding="utf-8") as fin: data_raw = json.load(fin) data_raw["race_id"] = file lines.append(data_raw) return lines def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for _, data_raw in enumerate(lines): race_id = "%s-%s" % (set_type, data_raw["race_id"]) article = data_raw["article"] for i in range(len(data_raw["answers"])): truth = str(ord(data_raw["answers"][i]) - ord("A")) question = data_raw["questions"][i] options = data_raw["options"][i] examples.append( InputExample( example_id=race_id, question=question, contexts=[article, article, article, article], # this is not efficient but convenient endings=[options[0], options[1], options[2], options[3]], label=truth, ) ) return examples class SynonymProcessor(DataProcessor): """Processor for the Synonym data set.""" def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} train".format(data_dir)) return self._create_examples(self._read_csv(os.path.join(data_dir, "mctrain.csv")), "train") def get_dev_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} dev".format(data_dir)) return self._create_examples(self._read_csv(os.path.join(data_dir, "mchp.csv")), "dev") def get_test_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} dev".format(data_dir)) return self._create_examples(self._read_csv(os.path.join(data_dir, "mctest.csv")), "test") def get_labels(self): """See base class.""" return ["0", "1", "2", "3", "4"] def _read_csv(self, input_file): with open(input_file, "r", encoding="utf-8") as f: return list(csv.reader(f)) def _create_examples(self, lines: List[List[str]], type: str): """Creates examples for the training and dev sets.""" examples = [ InputExample( example_id=line[0], question="", # in the swag dataset, the # common beginning of each # choice is stored in "sent2". contexts=[line[1], line[1], line[1], line[1], line[1]], endings=[line[2], line[3], line[4], line[5], line[6]], label=line[7], ) for line in lines # we skip the line with the column names ] return examples class SwagProcessor(DataProcessor): """Processor for the SWAG data set.""" def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} train".format(data_dir)) return self._create_examples(self._read_csv(os.path.join(data_dir, "train.csv")), "train") def get_dev_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} dev".format(data_dir)) return self._create_examples(self._read_csv(os.path.join(data_dir, "val.csv")), "dev") def get_test_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} dev".format(data_dir)) raise ValueError( "For swag testing, the input file does not contain a label column. It can not be tested in current code" "setting!" ) return self._create_examples(self._read_csv(os.path.join(data_dir, "test.csv")), "test") def get_labels(self): """See base class.""" return ["0", "1", "2", "3"] def _read_csv(self, input_file): with open(input_file, "r", encoding="utf-8") as f: return list(csv.reader(f)) def _create_examples(self, lines: List[List[str]], type: str): """Creates examples for the training and dev sets.""" if type == "train" and lines[0][-1] != "label": raise ValueError("For training, the input file must contain a label column.") examples = [ InputExample( example_id=line[2], question=line[5], # in the swag dataset, the # common beginning of each # choice is stored in "sent2". contexts=[line[4], line[4], line[4], line[4]], endings=[line[7], line[8], line[9], line[10]], label=line[11], ) for line in lines[1:] # we skip the line with the column names ] return examples class ArcProcessor(DataProcessor): """Processor for the ARC data set (request from allennlp).""" def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} train".format(data_dir)) return self._create_examples(self._read_json(os.path.join(data_dir, "train.jsonl")), "train") def get_dev_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {} dev".format(data_dir)) return self._create_examples(self._read_json(os.path.join(data_dir, "dev.jsonl")), "dev") def get_test_examples(self, data_dir): logger.info("LOOKING AT {} test".format(data_dir)) return self._create_examples(self._read_json(os.path.join(data_dir, "test.jsonl")), "test") def get_labels(self): """See base class.""" return ["0", "1", "2", "3"] def _read_json(self, input_file): with open(input_file, "r", encoding="utf-8") as fin: lines = fin.readlines() return lines def _create_examples(self, lines, type): """Creates examples for the training and dev sets.""" # There are two types of labels. They should be normalized def normalize(truth): if truth in "ABCD": return ord(truth) - ord("A") elif truth in "1234": return int(truth) - 1 else: logger.info("truth ERROR! %s", str(truth)) return None examples = [] three_choice = 0 four_choice = 0 five_choice = 0 other_choices = 0 # we deleted example which has more than or less than four choices for line in tqdm.tqdm(lines, desc="read arc data"): data_raw = json.loads(line.strip("\n")) if len(data_raw["question"]["choices"]) == 3: three_choice += 1 continue elif len(data_raw["question"]["choices"]) == 5: five_choice += 1 continue elif len(data_raw["question"]["choices"]) != 4: other_choices += 1 continue four_choice += 1 truth = str(normalize(data_raw["answerKey"])) assert truth != "None" question_choices = data_raw["question"] question = question_choices["stem"] id = data_raw["id"] options = question_choices["choices"] if len(options) == 4: examples.append( InputExample( example_id=id, question=question, contexts=[ options[0]["para"].replace("_", ""), options[1]["para"].replace("_", ""), options[2]["para"].replace("_", ""), options[3]["para"].replace("_", ""), ], endings=[options[0]["text"], options[1]["text"], options[2]["text"], options[3]["text"]], label=truth, ) ) if type == "train": assert len(examples) > 1 assert examples[0].label is not None logger.info("len examples: %s}", str(len(examples))) logger.info("Three choices: %s", str(three_choice)) logger.info("Five choices: %s", str(five_choice)) logger.info("Other choices: %s", str(other_choices)) logger.info("four choices: %s", str(four_choice)) return examples def convert_examples_to_features( examples: List[InputExample], label_list: List[str], max_length: int, tokenizer: PreTrainedTokenizer, ) -> List[InputFeatures]: """ Loads a data file into a list of `InputFeatures` """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) choices_inputs = [] for ending_idx, (context, ending) in enumerate(zip(example.contexts, example.endings)): text_a = context if example.question.find("_") != -1: # this is for cloze question text_b = example.question.replace("_", ending) else: text_b = example.question + " " + ending inputs = tokenizer( text_a, text_b, add_special_tokens=True, max_length=max_length, padding="max_length", truncation=True, return_overflowing_tokens=True, ) if "num_truncated_tokens" in inputs and inputs["num_truncated_tokens"] > 0: logger.info( "Attention! you are cropping tokens (swag task is ok). " "If you are training ARC and RACE and you are poping question + options," "you need to try to use a bigger max seq length!" ) choices_inputs.append(inputs) label = label_map[example.label] input_ids = [x["input_ids"] for x in choices_inputs] attention_mask = ( [x["attention_mask"] for x in choices_inputs] if "attention_mask" in choices_inputs[0] else None ) token_type_ids = ( [x["token_type_ids"] for x in choices_inputs] if "token_type_ids" in choices_inputs[0] else None ) features.append( InputFeatures( example_id=example.example_id, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label, ) ) for f in features[:2]: logger.info("*** Example ***") logger.info("feature: %s" % f) return features processors = {"race": RaceProcessor, "swag": SwagProcessor, "arc": ArcProcessor, "syn": SynonymProcessor} MULTIPLE_CHOICE_TASKS_NUM_LABELS = {"race", 4, "swag", 4, "arc", 4, "syn", 5}
transformers-main
examples/legacy/multiple_choice/utils_multiple_choice.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for sequence classification.""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def get_tfds( train_file: str, eval_file: str, test_file: str, tokenizer: PreTrainedTokenizer, label_column_id: int, max_seq_length: Optional[int] = None, ): files = {} if train_file is not None: files[datasets.Split.TRAIN] = [train_file] if eval_file is not None: files[datasets.Split.VALIDATION] = [eval_file] if test_file is not None: files[datasets.Split.TEST] = [test_file] ds = datasets.load_dataset("csv", data_files=files) features_name = list(ds[list(files.keys())[0]].features.keys()) label_name = features_name.pop(label_column_id) label_list = list(set(ds[list(files.keys())[0]][label_name])) label2id = {label: i for i, label in enumerate(label_list)} input_names = tokenizer.model_input_names transformed_ds = {} if len(features_name) == 1: for k in files.keys(): transformed_ds[k] = ds[k].map( lambda example: tokenizer.batch_encode_plus( example[features_name[0]], truncation=True, max_length=max_seq_length, padding="max_length" ), batched=True, ) elif len(features_name) == 2: for k in files.keys(): transformed_ds[k] = ds[k].map( lambda example: tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=True, max_length=max_seq_length, padding="max_length", ), batched=True, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: d = {k: v for k, v in ex.items() if k in input_names} label = label2id[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: d = {k: v for k, v in ex.items() if k in input_names} label = label2id[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: d = {k: v for k, v in ex.items() if k in input_names} label = label2id[ex[label_name]] yield (d, label) train_ds = ( tf.data.Dataset.from_generator( gen_train, ({k: tf.int32 for k in input_names}, tf.int64), ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: train_ds = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN]))) val_ds = ( tf.data.Dataset.from_generator( gen_val, ({k: tf.int32 for k in input_names}, tf.int64), ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: val_ds = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION]))) test_ds = ( tf.data.Dataset.from_generator( gen_test, ({k: tf.int32 for k in input_names}, tf.int64), ({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: test_ds = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST]))) return train_ds, val_ds, test_ds, label2id logger = logging.getLogger(__name__) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ label_column_id: int = field(metadata={"help": "Which column contains the label"}) train_file: str = field(default=None, metadata={"help": "The path of the training file"}) dev_file: Optional[str] = field(default=None, metadata={"help": "The path of the development file"}) test_file: Optional[str] = field(default=None, metadata={"help": "The path of the test file"}) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, " f"16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) train_dataset, eval_dataset, test_ds, label2id = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=tokenizer, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(label2id), label2id=label2id, id2label={id: label for label, id in label2id.items()}, finetuning_task="text-classification", cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): model = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool(".bin" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) def compute_metrics(p: EvalPrediction) -> Dict: preds = np.argmax(p.predictions, axis=1) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer trainer = TFTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(f" {key} = {value}") writer.write(f"{key} = {value}\n") results.update(result) return results if __name__ == "__main__": main()
transformers-main
examples/legacy/text-classification/run_tf_text_classification.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for named entity recognition on CoNLL-2003. """ import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) task_type: Optional[str] = field( default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ data_dir: str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) labels: Optional[str] = field( default=None, metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}, ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) module = import_module("tasks") try: token_classification_task_clazz = getattr(module, model_args.task_type) token_classification_task: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Prepare CONLL-2003 task labels = token_classification_task.get_labels(data_args.labels) label_map: Dict[int, str] = dict(enumerate(labels)) num_labels = len(labels) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, id2label=label_map, label2id={label: i for i, label in enumerate(labels)}, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast, ) model = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # Get datasets train_dataset = ( TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) eval_dataset = ( TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: preds = np.argmax(predictions, axis=2) batch_size, seq_len = preds.shape out_label_list = [[] for _ in range(batch_size)] preds_list = [[] for _ in range(batch_size)] for i in range(batch_size): for j in range(seq_len): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) return preds_list, out_label_list def compute_metrics(p: EvalPrediction) -> Dict: preds_list, out_label_list = align_predictions(p.predictions, p.label_ids) return { "accuracy_score": accuracy_score(out_label_list, preds_list), "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } # Data collator data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8) if training_args.fp16 else None # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset, compute_metrics=compute_metrics, data_collator=data_collator, ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") if trainer.is_world_process_zero(): with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) results.update(result) # Predict if training_args.do_predict: test_dataset = TokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.test, ) predictions, label_ids, metrics = trainer.predict(test_dataset) preds_list, _ = align_predictions(predictions, label_ids) output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt") if trainer.is_world_process_zero(): with open(output_test_results_file, "w") as writer: for key, value in metrics.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) # Save predictions output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") if trainer.is_world_process_zero(): with open(output_test_predictions_file, "w") as writer: with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f: token_classification_task.write_predictions_to_file(writer, f, preds_list) return results def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers-main
examples/legacy/token-classification/run_ner.py
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask logger = logging.getLogger(__name__) class NER(TokenClassificationTask): def __init__(self, label_idx=-1): # in NER datasets, the last column is usually reserved for NER label self.label_idx = label_idx def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> List[InputExample]: if isinstance(mode, Split): mode = mode.value file_path = os.path.join(data_dir, f"{mode}.txt") guid_index = 1 examples = [] with open(file_path, encoding="utf-8") as f: words = [] labels = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels)) guid_index += 1 words = [] labels = [] else: splits = line.split(" ") words.append(splits[0]) if len(splits) > 1: labels.append(splits[self.label_idx].replace("\n", "")) else: # Examples could have no label for mode = "test" labels.append("O") if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels)) return examples def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: List): example_id = 0 for line in test_input_reader: if line.startswith("-DOCSTART-") or line == "" or line == "\n": writer.write(line) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n" writer.write(output_line) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0]) def get_labels(self, path: str) -> List[str]: if path: with open(path, "r") as f: labels = f.read().splitlines() if "O" not in labels: labels = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class Chunk(NER): def __init__(self): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2) def get_labels(self, path: str) -> List[str]: if path: with open(path, "r") as f: labels = f.read().splitlines() if "O" not in labels: labels = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class POS(TokenClassificationTask): def read_examples_from_file(self, data_dir, mode: Union[Split, str]) -> List[InputExample]: if isinstance(mode, Split): mode = mode.value file_path = os.path.join(data_dir, f"{mode}.txt") guid_index = 1 examples = [] with open(file_path, encoding="utf-8") as f: for sentence in parse_incr(f): words = [] labels = [] for token in sentence: words.append(token["form"]) labels.append(token["upos"]) assert len(words) == len(labels) if words: examples.append(InputExample(guid=f"{mode}-{guid_index}", words=words, labels=labels)) guid_index += 1 return examples def write_predictions_to_file(self, writer: TextIO, test_input_reader: TextIO, preds_list: List): example_id = 0 for sentence in parse_incr(test_input_reader): s_p = preds_list[example_id] out = "" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0)}) ' out += "\n" writer.write(out) example_id += 1 def get_labels(self, path: str) -> List[str]: if path: with open(path, "r") as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
transformers-main
examples/legacy/token-classification/tasks.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """ import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available logger = logging.getLogger(__name__) @dataclass class InputExample: """ A single training/test example for token classification. Args: guid: Unique id for the example. words: list. The words of the sequence. labels: (Optional) list. The labels for each word of the sequence. This should be specified for train and dev examples, but not for test examples. """ guid: str words: List[str] labels: Optional[List[str]] @dataclass class InputFeatures: """ A single set of features of data. Property names are the same names as the corresponding inputs to a model. """ input_ids: List[int] attention_mask: List[int] token_type_ids: Optional[List[int]] = None label_ids: Optional[List[int]] = None class Split(Enum): train = "train" dev = "dev" test = "test" class TokenClassificationTask: @staticmethod def read_examples_from_file(data_dir, mode: Union[Split, str]) -> List[InputExample]: raise NotImplementedError @staticmethod def get_labels(path: str) -> List[str]: raise NotImplementedError @staticmethod def convert_examples_to_features( examples: List[InputExample], label_list: List[str], max_seq_length: int, tokenizer: PreTrainedTokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, pad_token_segment_id=0, pad_token_label_id=-100, sequence_a_segment_id=0, mask_padding_with_zero=True, ) -> List[InputFeatures]: """Loads a data file into a list of `InputFeatures` `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) """ # TODO clean up all this to leverage built-in features of tokenizers label_map = {label: i for i, label in enumerate(label_list)} features = [] for ex_index, example in enumerate(examples): if ex_index % 10_000 == 0: logger.info("Writing example %d of %d", ex_index, len(examples)) tokens = [] label_ids = [] for word, label in zip(example.words, example.labels): word_tokens = tokenizer.tokenize(word) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(word_tokens) > 0: tokens.extend(word_tokens) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = tokenizer.num_special_tokens_to_add() if len(tokens) > max_seq_length - special_tokens_count: tokens = tokens[: (max_seq_length - special_tokens_count)] label_ids = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] segment_ids = [sequence_a_segment_id] * len(tokens) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens label_ids = [pad_token_label_id] + label_ids segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids label_ids = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s", example.guid) logger.info("tokens: %s", " ".join([str(x) for x in tokens])) logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) if "token_type_ids" not in tokenizer.model_input_names: segment_ids = None features.append( InputFeatures( input_ids=input_ids, attention_mask=input_mask, token_type_ids=segment_ids, label_ids=label_ids ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class TokenClassificationDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ features: List[InputFeatures] pad_token_label_id: int = nn.CrossEntropyLoss().ignore_index # Use cross entropy ignore_index as padding label id so that only # real label ids contribute to the loss later. def __init__( self, token_classification_task: TokenClassificationTask, data_dir: str, tokenizer: PreTrainedTokenizer, labels: List[str], model_type: str, max_seq_length: Optional[int] = None, overwrite_cache=False, mode: Split = Split.train, ): # Load data features from cache or dataset file cached_features_file = os.path.join( data_dir, "cached_{}_{}_{}".format(mode.value, tokenizer.__class__.__name__, str(max_seq_length)), ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" with FileLock(lock_path): if os.path.exists(cached_features_file) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}") self.features = torch.load(cached_features_file) else: logger.info(f"Creating features from dataset file at {data_dir}") examples = token_classification_task.read_examples_from_file(data_dir, mode) # TODO clean up all this to leverage built-in features of tokenizers self.features = token_classification_task.convert_examples_to_features( examples, labels, max_seq_length, tokenizer, cls_token_at_end=bool(model_type in ["xlnet"]), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, cls_token_segment_id=2 if model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=False, # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 pad_on_left=bool(tokenizer.padding_side == "left"), pad_token=tokenizer.pad_token_id, pad_token_segment_id=tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) logger.info(f"Saving features into cached file {cached_features_file}") torch.save(self.features, cached_features_file) def __len__(self): return len(self.features) def __getitem__(self, i) -> InputFeatures: return self.features[i] if is_tf_available(): import tensorflow as tf class TFTokenClassificationDataset: """ This will be superseded by a framework-agnostic approach soon. """ features: List[InputFeatures] pad_token_label_id: int = -100 # Use cross entropy ignore_index as padding label id so that only # real label ids contribute to the loss later. def __init__( self, token_classification_task: TokenClassificationTask, data_dir: str, tokenizer: PreTrainedTokenizer, labels: List[str], model_type: str, max_seq_length: Optional[int] = None, overwrite_cache=False, mode: Split = Split.train, ): examples = token_classification_task.read_examples_from_file(data_dir, mode) # TODO clean up all this to leverage built-in features of tokenizers self.features = token_classification_task.convert_examples_to_features( examples, labels, max_seq_length, tokenizer, cls_token_at_end=bool(model_type in ["xlnet"]), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, cls_token_segment_id=2 if model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=False, # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 pad_on_left=bool(tokenizer.padding_side == "left"), pad_token=tokenizer.pad_token_id, pad_token_segment_id=tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: self.dataset = tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64), ( {"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, tf.TensorShape([None]), ), ) else: self.dataset = tf.data.Dataset.from_generator( gen, ({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64), ( { "input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None]), "token_type_ids": tf.TensorShape([None]), }, tf.TensorShape([None]), ), ) def get_dataset(self): self.dataset = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) return self.dataset def __len__(self): return len(self.features) def __getitem__(self, i) -> InputFeatures: return self.features[i]
transformers-main
examples/legacy/token-classification/utils_ner.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for named entity recognition.""" import logging import os from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import classification_report, f1_score, precision_score, recall_score from utils_ner import Split, TFTokenClassificationDataset, TokenClassificationTask from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, TFAutoModelForTokenClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) task_type: Optional[str] = field( default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."}) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ data_dir: str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) labels: Optional[str] = field( metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} ) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) module = import_module("tasks") try: token_classification_task_clazz = getattr(module, model_args.task_type) token_classification_task: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info( "n_replicas: %s, distributed training: %s, 16-bits training: %s", training_args.n_replicas, bool(training_args.n_replicas > 1), training_args.fp16, ) logger.info("Training/evaluation parameters %s", training_args) # Prepare Token Classification task labels = token_classification_task.get_labels(data_args.labels) label_map: Dict[int, str] = dict(enumerate(labels)) num_labels = len(labels) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, id2label=label_map, label2id={label: i for i, label in enumerate(labels)}, cache_dir=model_args.cache_dir, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast, ) with training_args.strategy.scope(): model = TFAutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool(".bin" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, ) # Get datasets train_dataset = ( TFTokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.train, ) if training_args.do_train else None ) eval_dataset = ( TFTokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.dev, ) if training_args.do_eval else None ) def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]: preds = np.argmax(predictions, axis=2) batch_size, seq_len = preds.shape out_label_list = [[] for _ in range(batch_size)] preds_list = [[] for _ in range(batch_size)] for i in range(batch_size): for j in range(seq_len): if label_ids[i, j] != -100: out_label_list[i].append(label_map[label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) return preds_list, out_label_list def compute_metrics(p: EvalPrediction) -> Dict: preds_list, out_label_list = align_predictions(p.predictions, p.label_ids) return { "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } # Initialize our Trainer trainer = TFTrainer( model=model, args=training_args, train_dataset=train_dataset.get_dataset() if train_dataset else None, eval_dataset=eval_dataset.get_dataset() if eval_dataset else None, compute_metrics=compute_metrics, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir) # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") result = trainer.evaluate() output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results *****") for key, value in result.items(): logger.info(" %s = %s", key, value) writer.write("%s = %s\n" % (key, value)) results.update(result) # Predict if training_args.do_predict: test_dataset = TFTokenClassificationDataset( token_classification_task=token_classification_task, data_dir=data_args.data_dir, tokenizer=tokenizer, labels=labels, model_type=config.model_type, max_seq_length=data_args.max_seq_length, overwrite_cache=data_args.overwrite_cache, mode=Split.test, ) predictions, label_ids, metrics = trainer.predict(test_dataset.get_dataset()) preds_list, labels_list = align_predictions(predictions, label_ids) report = classification_report(labels_list, preds_list) logger.info("\n%s", report) output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt") with open(output_test_results_file, "w") as writer: writer.write("%s\n" % report) # Save predictions output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt") with open(output_test_predictions_file, "w") as writer: with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f: example_id = 0 for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": writer.write(line) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n" writer.write(output_line) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0]) return results if __name__ == "__main__": main()
transformers-main
examples/legacy/token-classification/run_tf_ner.py
import sys from transformers import AutoTokenizer dataset = sys.argv[1] model_name_or_path = sys.argv[2] max_len = int(sys.argv[3]) subword_len_counter = 0 tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) max_len -= tokenizer.num_special_tokens_to_add() with open(dataset, "rt") as f_p: for line in f_p: line = line.rstrip() if not line: print(line) subword_len_counter = 0 continue token = line.split()[0] current_subwords_len = len(tokenizer.tokenize(token)) # Token contains strange control characters like \x96 or \x95 # Just filter out the complete line if current_subwords_len == 0: continue if (subword_len_counter + current_subwords_len) > max_len: print("") print(line) subword_len_counter = current_subwords_len continue subword_len_counter += current_subwords_len print(line)
transformers-main
examples/legacy/token-classification/scripts/preprocess.py
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seq2seq_trainer import Seq2SeqTrainer from seq2seq_training_args import Seq2SeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( Seq2SeqDataCollator, Seq2SeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."}) freeze_embeds: bool = field(default=False, metadata={"help": "Whether to freeze the embeddings."}) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ data_dir: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) task: Optional[str] = field( default="summarization", metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, ) max_source_length: Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) val_max_target_length: Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) test_max_target_length: Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."}) n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."}) n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."}) src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."}) tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."}) eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."}) ignore_pad_token_for_loss: bool = field( default=True, metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, ) def handle_metrics(split, metrics, output_dir): """ Log and save metrics Args: - split: one of train, val, test - metrics: metrics dict - output_dir: where to save the metrics """ logger.info(f"***** {split} metrics *****") for key in sorted(metrics.keys()): logger.info(f" {key} = {metrics[key]}") save_json(metrics, os.path.join(output_dir, f"{split}_results.json")) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() check_output_dir(training_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED), training_args.fp16, ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(training_args, p, None): assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(config, p, getattr(training_args, p)) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=".ckpt" in model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(model, data_args.task) # set num_beams for evaluation if data_args.eval_beams is None: data_args.eval_beams = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(tokenizer, MBartTokenizer): model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang] else: model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang) if model_args.freeze_embeds: freeze_embeds(model) if model_args.freeze_encoder: freeze_params(model.get_encoder()) assert_all_frozen(model.get_encoder()) dataset_class = Seq2SeqDataset # Get datasets train_dataset = ( dataset_class( tokenizer, type_path="train", data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_train else None ) eval_dataset = ( dataset_class( tokenizer, type_path="val", data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) test_dataset = ( dataset_class( tokenizer, type_path="test", data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_predict else None ) # Initialize our Trainer compute_metrics_fn = ( build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None ) trainer = Seq2SeqTrainer( model=model, args=training_args, data_args=data_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=Seq2SeqDataCollator( tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores ), compute_metrics=compute_metrics_fn, tokenizer=tokenizer, ) all_metrics = {} # Training if training_args.do_train: logger.info("*** Train ***") train_result = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) metrics = train_result.metrics metrics["train_n_objs"] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train", metrics, training_args.output_dir) all_metrics.update(metrics) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(metric_key_prefix="val") metrics["val_n_objs"] = data_args.n_val metrics["val_loss"] = round(metrics["val_loss"], 4) if trainer.is_world_process_zero(): handle_metrics("val", metrics, training_args.output_dir) all_metrics.update(metrics) if training_args.do_predict: logger.info("*** Predict ***") test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test") metrics = test_output.metrics metrics["test_n_objs"] = data_args.n_test if trainer.is_world_process_zero(): metrics["test_loss"] = round(metrics["test_loss"], 4) handle_metrics("test", metrics, training_args.output_dir) all_metrics.update(metrics) if training_args.predict_with_generate: test_preds = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True ) test_preds = lmap(str.strip, test_preds) write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) if trainer.is_world_process_zero(): save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json")) return all_metrics def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers-main
examples/legacy/seq2seq/finetune_trainer.py
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params logger = getLogger(__name__) DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu" def generate_summaries_or_translations( examples: List[str], out_file: str, model_name: str, batch_size: int = 8, device: str = DEFAULT_DEVICE, fp16=False, task="summarization", prefix=None, **generate_kwargs, ) -> Dict: """Save model.generate results to <out_file>, and return how long it took.""" fout = Path(out_file).open("w", encoding="utf-8") model_name = str(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) if fp16: model = model.half() tokenizer = AutoTokenizer.from_pretrained(model_name) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}") # if this is wrong, check config.model_type. start_time = time.time() # update config with task specific params use_task_specific_params(model, task) if prefix is None: prefix = prefix or getattr(model.config, "prefix", "") or "" for examples_chunk in tqdm(list(chunks(examples, batch_size))): examples_chunk = [prefix + text for text in examples_chunk] batch = tokenizer(examples_chunk, return_tensors="pt", truncation=True, padding="longest").to(device) summaries = model.generate( input_ids=batch.input_ids, attention_mask=batch.attention_mask, **generate_kwargs, ) dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False) for hypothesis in dec: fout.write(hypothesis + "\n") fout.flush() fout.close() runtime = int(time.time() - start_time) # seconds n_obs = len(examples) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs, 4)} def datetime_now(): return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") def run_generate(verbose=True): """ Takes input text, generates output, and then using reference calculates the BLEU scores. The results are saved to a file and returned to the caller, and printed out unless ``verbose=False`` is passed. Args: verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): print results to stdout Returns: a tuple: ``(scores, params}`` - ``scores``: a dict of scores data ``{'bleu': 39.6501, 'n_obs': 2000, 'runtime': 186, 'seconds_per_sample': 0.093}`` - ``params``: a dict of custom params, e.g. ``{'num_beams': 5, 'length_penalty': 0.8}`` """ parser = argparse.ArgumentParser() parser.add_argument("model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.") parser.add_argument("input_path", type=str, help="like cnn_dm/test.source") parser.add_argument("save_path", type=str, help="where to save summaries") parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test.target") parser.add_argument("--score_path", type=str, required=False, default="metrics.json", help="where to save metrics") parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.") parser.add_argument( "--prefix", type=str, required=False, default=None, help="will be added to the begininng of src examples" ) parser.add_argument("--task", type=str, default="summarization", help="used for task_specific_params + metrics") parser.add_argument("--bs", type=int, default=8, required=False, help="batch size") parser.add_argument( "--n_obs", type=int, default=-1, required=False, help="How many observations. Defaults to all." ) parser.add_argument("--fp16", action="store_true") parser.add_argument("--dump-args", action="store_true", help="print the custom hparams with the results") parser.add_argument( "--info", nargs="?", type=str, const=datetime_now(), help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ), ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate args, rest = parser.parse_known_args() parsed_args = parse_numeric_n_bool_cl_kwargs(rest) if parsed_args and verbose: print(f"parsed the following generate kwargs: {parsed_args}") examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path).readlines()] if args.n_obs > 0: examples = examples[: args.n_obs] Path(args.save_path).parent.mkdir(exist_ok=True) if args.reference_path is None and Path(args.score_path).exists(): warnings.warn(f"score_path {args.score_path} will be overwritten unless you type ctrl-c.") if args.device == "cpu" and args.fp16: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu") runtime_metrics = generate_summaries_or_translations( examples, args.save_path, args.model_name, batch_size=args.bs, device=args.device, fp16=args.fp16, task=args.task, prefix=args.prefix, **parsed_args, ) if args.reference_path is None: return {} # Compute scores score_fn = calculate_bleu if "translation" in args.task else calculate_rouge output_lns = [x.rstrip() for x in open(args.save_path).readlines()] reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][: len(output_lns)] scores: dict = score_fn(output_lns, reference_lns) scores.update(runtime_metrics) if args.dump_args: scores.update(parsed_args) if args.info: scores["info"] = args.info if verbose: print(scores) if args.score_path is not None: json.dump(scores, open(args.score_path, "w")) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
transformers-main
examples/legacy/seq2seq/run_eval.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge PRED = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] TGT = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def test_disaggregated_scores_are_determinstic(): no_aggregation = calculate_rouge(PRED, TGT, bootstrap_aggregation=False, rouge_keys=["rouge2", "rougeL"]) assert isinstance(no_aggregation, defaultdict) no_aggregation_just_r2 = calculate_rouge(PRED, TGT, bootstrap_aggregation=False, rouge_keys=["rouge2"]) assert ( pd.DataFrame(no_aggregation["rouge2"]).fmeasure.mean() == pd.DataFrame(no_aggregation_just_r2["rouge2"]).fmeasure.mean() ) def test_newline_cnn_improvement(): k = "rougeLsum" score = calculate_rouge(PRED, TGT, newline_sep=True, rouge_keys=[k])[k] score_no_sep = calculate_rouge(PRED, TGT, newline_sep=False, rouge_keys=[k])[k] assert score > score_no_sep def test_newline_irrelevant_for_other_metrics(): k = ["rouge1", "rouge2", "rougeL"] score_sep = calculate_rouge(PRED, TGT, newline_sep=True, rouge_keys=k) score_no_sep = calculate_rouge(PRED, TGT, newline_sep=False, rouge_keys=k) assert score_sep == score_no_sep def test_single_sent_scores_dont_depend_on_newline_sep(): pred = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .', ] tgt = [ "Margot Frank, died in 1945, a month earlier than previously thought.", 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of' " the final seconds on board Flight 9525.", ] assert calculate_rouge(pred, tgt, newline_sep=True) == calculate_rouge(pred, tgt, newline_sep=False) def test_pegasus_newline(): pred = [ """" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" """ ] tgt = [ """ Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] prev_score = calculate_rouge(pred, tgt, rouge_keys=["rougeLsum"], newline_sep=False)["rougeLsum"] new_score = calculate_rouge(pred, tgt, rouge_keys=["rougeLsum"])["rougeLsum"] assert new_score > prev_score def test_rouge_cli(): data_dir = Path("examples/seq2seq/test_data/wmt_en_ro") metrics = calculate_rouge_path(data_dir.joinpath("test.source"), data_dir.joinpath("test.target")) assert isinstance(metrics, dict) metrics_default_dict = calculate_rouge_path( data_dir.joinpath("test.source"), data_dir.joinpath("test.target"), bootstrap_aggregation=False ) assert isinstance(metrics_default_dict, defaultdict)
transformers-main
examples/legacy/seq2seq/old_test_calculate_rouge.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from filelock import FileLock try: import nltk NLTK_AVAILABLE = True except (ImportError, ModuleNotFoundError): NLTK_AVAILABLE = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def add_newline_to_end_of_each_sentence(x: str) -> str: """This was added to get rougeLsum scores matching published rougeL scores for BART and PEGASUS.""" re.sub("<n>", "", x) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(x))
transformers-main
examples/legacy/seq2seq/sentence_splitter.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from dataclasses import dataclass, field from typing import Optional from seq2seq_trainer import arg_to_scheduler from transformers import TrainingArguments logger = logging.getLogger(__name__) @dataclass class Seq2SeqTrainingArguments(TrainingArguments): """ Parameters: label_smoothing (:obj:`float`, `optional`, defaults to 0): The label smoothing epsilon to apply (if not zero). sortish_sampler (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to SortishSamler or not. It sorts the inputs according to lenghts in-order to minimizing the padding size. predict_with_generate (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to use generate to calculate generative metrics (ROUGE, BLEU). """ label_smoothing: Optional[float] = field( default=0.0, metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) sortish_sampler: bool = field(default=False, metadata={"help": "Whether to SortishSamler or not."}) predict_with_generate: bool = field( default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) adafactor: bool = field(default=False, metadata={"help": "whether to use adafactor"}) encoder_layerdrop: Optional[float] = field( default=None, metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) decoder_layerdrop: Optional[float] = field( default=None, metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) dropout: Optional[float] = field(default=None, metadata={"help": "Dropout probability. Goes into model.config."}) attention_dropout: Optional[float] = field( default=None, metadata={"help": "Attention dropout probability. Goes into model.config."} ) lr_scheduler: Optional[str] = field( default="linear", metadata={"help": f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys())}"}, )
transformers-main
examples/legacy/seq2seq/seq2seq_training_args.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(DEFAULT_REPO), "Tatoeba directory does not exist.") class TatoebaConversionTester(unittest.TestCase): @cached_property def resolver(self): tmp_dir = tempfile.mkdtemp() return TatoebaConverter(save_dir=tmp_dir) @slow def test_resolver(self): self.resolver.convert_models(["heb-eng"]) @slow def test_model_card(self): content, mmeta = self.resolver.write_model_card("opus-mt-he-en", dry_run=True) assert mmeta["long_pair"] == "heb-eng"
transformers-main
examples/legacy/seq2seq/old_test_tatoeba_conversion.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeq2SeqDataset, Seq2SeqDataset BERT_BASE_CASED = "bert-base-cased" PEGASUS_XSUM = "google/pegasus-xsum" ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."] SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] T5_TINY = "patrickvonplaten/t5-tiny-random" BART_TINY = "sshleifer/bart-tiny-random" MBART_TINY = "sshleifer/tiny-mbart" MARIAN_TINY = "sshleifer/tiny-marian-en-de" def _dump_articles(path: Path, articles: list): content = "\n".join(articles) Path(path).open("w").writelines(content) def make_test_data_dir(tmp_dir): for split in ["train", "val", "test"]: _dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES) _dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES) return tmp_dir class TestAll(TestCasePlus): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ], ) @slow def test_seq2seq_dataset_truncation(self, tok_name): tokenizer = AutoTokenizer.from_pretrained(tok_name) tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES) max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES) max_src_len = 4 max_tgt_len = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated src_lang, tgt_lang = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. train_dataset = Seq2SeqDataset( tokenizer, data_dir=tmp_dir, type_path="train", max_source_length=max_src_len, max_target_length=max_tgt_len, # ignored src_lang=src_lang, tgt_lang=tgt_lang, ) dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(batch, dict) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def test_legacy_dataset_truncation(self, tok): tokenizer = AutoTokenizer.from_pretrained(tok) tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES) max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES) trunc_target = 4 train_dataset = LegacySeq2SeqDataset( tokenizer, data_dir=tmp_dir, type_path="train", max_source_length=20, max_target_length=trunc_target, ) dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def test_pack_dataset(self): tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") tmp_dir = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) orig_examples = tmp_dir.joinpath("train.source").open().readlines() save_dir = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(tokenizer, tmp_dir, 128, save_dir) orig_paths = {x.name for x in tmp_dir.iterdir()} new_paths = {x.name for x in save_dir.iterdir()} packed_examples = save_dir.joinpath("train.source").open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(packed_examples) < len(orig_examples) assert len(packed_examples) == 1 assert len(packed_examples[0]) == sum(len(x) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE, reason="This test requires fairseq") def test_dynamic_batch_size(self): if not FAIRSEQ_AVAILABLE: return ds, max_tokens, tokenizer = self._get_dataset(max_len=64) required_batch_size_multiple = 64 batch_sampler = ds.make_dynamic_sampler(max_tokens, required_batch_size_multiple=required_batch_size_multiple) batch_sizes = [len(x) for x in batch_sampler] assert len(set(batch_sizes)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(batch_sizes) == len(ds) # no dropped or added examples data_loader = DataLoader(ds, batch_sampler=batch_sampler, collate_fn=ds.collate_fn, num_workers=2) failures = [] num_src_per_batch = [] for batch in data_loader: src_shape = batch["input_ids"].shape bs = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple num_src_tokens = np.product(batch["input_ids"].shape) num_src_per_batch.append(num_src_tokens) if num_src_tokens > (max_tokens * 1.1): failures.append(num_src_tokens) assert num_src_per_batch[0] == max(num_src_per_batch) if failures: raise AssertionError(f"too many tokens in {len(failures)} batches") def test_sortish_sampler_reduces_padding(self): ds, _, tokenizer = self._get_dataset(max_len=512) bs = 2 sortish_sampler = ds.make_sortish_sampler(bs, shuffle=False) naive_dl = DataLoader(ds, batch_size=bs, collate_fn=ds.collate_fn, num_workers=2) sortish_dl = DataLoader(ds, batch_size=bs, collate_fn=ds.collate_fn, num_workers=2, sampler=sortish_sampler) pad = tokenizer.pad_token_id def count_pad_tokens(data_loader, k="input_ids"): return [batch[k].eq(pad).sum().item() for batch in data_loader] assert sum(count_pad_tokens(sortish_dl, k="labels")) < sum(count_pad_tokens(naive_dl, k="labels")) assert sum(count_pad_tokens(sortish_dl)) < sum(count_pad_tokens(naive_dl)) assert len(sortish_dl) == len(naive_dl) def _get_dataset(self, n_obs=1000, max_len=128): if os.getenv("USE_REAL_DATA", False): data_dir = "examples/seq2seq/wmt_en_ro" max_tokens = max_len * 2 * 64 if not Path(data_dir).joinpath("train.len").exists(): save_len_file(MARIAN_TINY, data_dir) else: data_dir = "examples/seq2seq/test_data/wmt_en_ro" max_tokens = max_len * 4 save_len_file(MARIAN_TINY, data_dir) tokenizer = AutoTokenizer.from_pretrained(MARIAN_TINY) ds = Seq2SeqDataset( tokenizer, data_dir=data_dir, type_path="train", max_source_length=max_len, max_target_length=max_len, n_obs=n_obs, ) return ds, max_tokens, tokenizer def test_distributed_sortish_sampler_splits_indices_between_procs(self): ds, max_tokens, tokenizer = self._get_dataset() ids1 = set(DistributedSortishSampler(ds, 256, num_replicas=2, rank=0, add_extra_examples=False)) ids2 = set(DistributedSortishSampler(ds, 256, num_replicas=2, rank=1, add_extra_examples=False)) assert ids1.intersection(ids2) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ], ) def test_dataset_kwargs(self, tok_name): tokenizer = AutoTokenizer.from_pretrained(tok_name, use_fast=False) if tok_name == MBART_TINY: train_dataset = Seq2SeqDataset( tokenizer, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()), type_path="train", max_source_length=4, max_target_length=8, src_lang="EN", tgt_lang="FR", ) kwargs = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: train_dataset = Seq2SeqDataset( tokenizer, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()), type_path="train", max_source_length=4, max_target_length=8, ) kwargs = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(kwargs) == 1 if tok_name == BART_TINY else len(kwargs) == 0
transformers-main
examples/legacy/seq2seq/old_test_datasets.py
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from utils import ( Seq2SeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) logger = getLogger(__name__) def eval_data_dir( data_dir, save_dir: str, model_name: str, bs: int = 8, max_source_length: int = 1024, type_path="val", n_obs=None, fp16=False, task="summarization", local_rank=None, num_return_sequences=1, dataset_kwargs: Dict = None, prefix="", **generate_kwargs, ) -> Dict: """Run evaluation on part of the data for one gpu and save to {save_dir}/rank_{rank}_output.json""" model_name = str(model_name) assert local_rank is not None torch.distributed.init_process_group(backend="nccl", rank=local_rank) save_dir = Path(save_dir) save_path = save_dir.joinpath(f"rank_{local_rank}_output.json") torch.cuda.set_device(local_rank) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).cuda() if fp16: model = model.half() # determine if we need to increase num_beams use_task_specific_params(model, task) # update config with task specific params num_beams = generate_kwargs.pop("num_beams", model.config.num_beams) # AttributeError risk? if num_return_sequences > num_beams: num_beams = num_return_sequences tokenizer = AutoTokenizer.from_pretrained(model_name) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}") # if this is wrong, check config.model_type. if max_source_length is None: max_source_length = tokenizer.model_max_length if prefix is None: prefix = prefix or getattr(model.config, "prefix", "") or "" ds = Seq2SeqDataset( tokenizer, data_dir, max_source_length, max_target_length=1024, type_path=type_path, n_obs=n_obs, prefix=prefix, **dataset_kwargs, ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. sampler = ds.make_sortish_sampler(bs, distributed=True, add_extra_examples=False, shuffle=True) data_loader = DataLoader(ds, sampler=sampler, batch_size=bs, collate_fn=ds.collate_fn) results = [] for batch in tqdm(data_loader): summaries = model.generate( input_ids=batch["input_ids"].to(model.device), attention_mask=batch["attention_mask"].to(model.device), num_return_sequences=num_return_sequences, num_beams=num_beams, **generate_kwargs, ) preds = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False) ids = batch["ids"] if num_return_sequences > 1: preds = chunks(preds, num_return_sequences) # batch size chunks, each of size num_return_seq for i, pred in enumerate(preds): results.append({"pred": pred, "id": ids[i].item()}) save_json(results, save_path) return results, sampler.num_replicas def run_generate(): parser = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir", type=str, help="like cnn_dm/test.source") parser.add_argument( "--model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.", default="sshleifer/distilbart-xsum-12-3", ) parser.add_argument("--save_dir", type=str, help="where to save", default="tmp_gen") parser.add_argument("--max_source_length", type=int, default=None) parser.add_argument( "--type_path", type=str, default="test", help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task", type=str, default="summarization", help="used for task_specific_params + metrics") parser.add_argument("--bs", type=int, default=8, required=False, help="batch size") parser.add_argument( "--local_rank", type=int, default=-1, required=False, help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs", type=int, default=None, required=False, help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences", type=int, default=1, required=False, help="How many sequences to return" ) parser.add_argument( "--sync_timeout", type=int, default=600, required=False, help="How long should master process wait for other processes to finish.", ) parser.add_argument("--src_lang", type=str, default=None, required=False) parser.add_argument("--tgt_lang", type=str, default=None, required=False) parser.add_argument( "--prefix", type=str, required=False, default=None, help="will be added to the begininng of src examples" ) parser.add_argument("--fp16", action="store_true") parser.add_argument("--debug", action="store_true") start_time = time.time() args, rest = parser.parse_known_args() generate_kwargs = parse_numeric_n_bool_cl_kwargs(rest) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}") json_save_dir = Path(args.save_dir + "_tmp") Path(json_save_dir).mkdir(exist_ok=True) # this handles locking. intermediate_files = list(json_save_dir.glob("rank_*.json")) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them.") # In theory, a node could finish and save before another node hits this. If this happens, we can address later. dataset_kwargs = {} if args.src_lang is not None: dataset_kwargs["src_lang"] = args.src_lang if args.tgt_lang is not None: dataset_kwargs["tgt_lang"] = args.tgt_lang Path(args.save_dir).mkdir(exist_ok=True) results, num_replicas = eval_data_dir( args.data_dir, json_save_dir, args.model_name, type_path=args.type_path, bs=args.bs, fp16=args.fp16, task=args.task, local_rank=args.local_rank, n_obs=args.n_obs, max_source_length=args.max_source_length, num_return_sequences=args.num_return_sequences, prefix=args.prefix, dataset_kwargs=dataset_kwargs, **generate_kwargs, ) if args.local_rank <= 0: save_dir = Path(args.save_dir) save_dir.mkdir(exist_ok=True) partial_results = gather_results_from_each_node(num_replicas, json_save_dir, args.sync_timeout) preds = combine_partial_results(partial_results) if args.num_return_sequences > 1: save_path = save_dir.joinpath("pseudolabel_results.json") print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/") save_json(preds, save_path) return tgt_file = Path(args.data_dir).joinpath(args.type_path + ".target") with open(tgt_file) as f: labels = [x.rstrip() for x in f.readlines()][: len(preds)] # Calculate metrics, save metrics, and save _generations.txt calc_bleu = "translation" in args.task score_fn = calculate_bleu if calc_bleu else calculate_rouge metric_name = "bleu" if calc_bleu else "rouge" metrics: Dict = score_fn(preds, labels) metrics["n_obs"] = len(preds) runtime = time.time() - start_time metrics["seconds_per_sample"] = round(runtime / metrics["n_obs"], 4) metrics["n_gpus"] = num_replicas # TODO(@stas00): add whatever metadata to metrics metrics_save_path = save_dir.joinpath(f"{args.type_path}_{metric_name}.json") save_json(metrics, metrics_save_path, indent=None) print(metrics) write_txt_file(preds, save_dir.joinpath(f"{args.type_path}_generations.txt")) if args.debug: write_txt_file(labels, save_dir.joinpath(f"{args.type_path}.target")) else: shutil.rmtree(json_save_dir) def combine_partial_results(partial_results) -> List: """Concatenate partial results into one file, then sort it by id.""" records = [] for partial_result in partial_results: records.extend(partial_result) records = sorted(records, key=lambda x: x["id"]) preds = [x["pred"] for x in records] return preds def gather_results_from_each_node(num_replicas, save_dir, timeout) -> List[Dict[str, List]]: # WAIT FOR lots of .json files start_wait = time.time() logger.info("waiting for all nodes to finish") json_data = None while (time.time() - start_wait) < timeout: json_files = list(save_dir.glob("rank_*.json")) if len(json_files) < num_replicas: continue try: # make sure all json files are fully saved json_data = lmap(load_json, json_files) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes") # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
transformers-main
examples/legacy/seq2seq/run_distributed_eval.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fire from utils import calculate_rouge, save_json def calculate_rouge_path(pred_path, tgt_path, save_path=None, **kwargs): """Kwargs will be passed to calculate_rouge""" pred_lns = [x.strip() for x in open(pred_path).readlines()] tgt_lns = [x.strip() for x in open(tgt_path).readlines()][: len(pred_lns)] metrics = calculate_rouge(pred_lns, tgt_lns, **kwargs) if save_path is not None: save_json(metrics, save_path, indent=None) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
transformers-main
examples/legacy/seq2seq/rouge_cli.py
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import itertools import operator import sys from collections import OrderedDict from run_eval import datetime_now, run_generate from utils import ROUGE_KEYS # A table of supported tasks and the list of scores in the order of importance to be sorted by. # To add a new task, simply list the score names that `run_eval.run_generate()` returns task_score_names = { "translation": ["bleu"], "summarization": ROUGE_KEYS, } def parse_search_arg(search): groups = search.split() entries = dict((g.split("=") for g in groups)) entry_names = list(entries.keys()) sets = [[f"--{k} {v}" for v in vs.split(":")] for k, vs in entries.items()] matrix = [list(x) for x in itertools.product(*sets)] return matrix, entry_names def run_search(): """ Run parametric search over the desired hparam space with help of ``run_eval.py``. All the arguments except ``--search`` are passed to ``run_eval.py`` as is. The values inside of "--search" are parsed, reformatted and fed to ``run_eval.py`` as additional args. The format for the ``--search`` value is a simple string with hparams and colon separated values to try, e.g.: ``` --search "num_beams=5:10 length_penalty=0.8:1.0:1.2 early_stopping=true:false" ``` which will generate ``12`` ``(2*3*2)`` searches for a product of each hparam. For example the example that was just used will invoke ``run_eval.py`` repeatedly with: ``` --num_beams 5 --length_penalty 0.8 --early_stopping true --num_beams 5 --length_penalty 0.8 --early_stopping false [...] --num_beams 10 --length_penalty 1.2 --early_stopping false ``` On completion, this function prints a markdown table of the results sorted by the best BLEU score and the winning arguments. """ prog = sys.argv[0] parser = argparse.ArgumentParser( usage=( "\n\nImportant: this script accepts all arguments `run_eval.py` accepts and then a few extra, therefore" " refer to `run_eval.py -h` for the complete list." ) ) parser.add_argument( "--search", type=str, required=False, help='param space to search, e.g. "num_beams=5:10 length_penalty=0.8:1.0:1.2"', ) parser.add_argument( "--bs", type=int, default=8, required=False, help="initial batch size (may get reduced if it's too big)" ) parser.add_argument("--task", type=str, help="used for task_specific_params + metrics") parser.add_argument( "--info", nargs="?", type=str, const=datetime_now(), help=( "add custom notes to be printed before the results table. If no value is passed, the current datetime" " string will be used." ), ) args, args_main = parser.parse_known_args() # we share some of the args args_main.extend(["--task", args.task]) args_normal = [prog] + args_main # to support variations like translation_en_to_de" task = "translation" if "translation" in args.task else "summarization" matrix, col_names = parse_search_arg(args.search) col_names[0:0] = task_score_names[task] # score cols first col_widths = {col: len(str(col)) for col in col_names} results = [] for r in matrix: hparams = dict((x.replace("--", "").split() for x in r)) args_exp = " ".join(r).split() args_exp.extend(["--bs", str(args.bs)]) # in case we need to reduce its size due to CUDA OOM sys.argv = args_normal + args_exp # XXX: need to trap CUDA OOM and lower args.bs if that happens and retry scores = run_generate(verbose=False) # make sure scores are first in the table result = OrderedDict() for score in task_score_names[task]: result[score] = scores[score] result.update(hparams) results.append(result) # find widest entries for k, v in result.items(): l = len(str(v)) if l > col_widths[k]: col_widths[k] = l results_sorted = sorted(results, key=operator.itemgetter(*task_score_names[task]), reverse=True) print(" | ".join([f"{col:{col_widths[col]}}" for col in col_names])) print(" | ".join([f"{'-'*col_widths[col]}" for col in col_names])) for row in results_sorted: print(" | ".join([f"{row[col]:{col_widths[col]}}" for col in col_names])) best = results_sorted[0] for score in task_score_names[task]: del best[score] best_args = [f"--{k} {v}" for k, v in best.items()] dyn_args = ["--bs", str(args.bs)] if args.info: print(f"\nInfo: {args.info}") print("\nBest score args:") print(" ".join(args_main + best_args + dyn_args)) return results_sorted if __name__ == "__main__": # Usage: # [normal-run_eval_search.py cmd plus] \ # --search="num_beams=1:5:10 length_penalty=0.8:1:1.2 early_stopping=true:false" # # Example: # PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py $MODEL_NAME \ # $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target \ # --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation \ # --search="num_beams=1:5:10 length_penalty=0.8:1:1.2 early_stopping=true:false" run_search()
transformers-main
examples/legacy/seq2seq/run_eval_search.py
# coding=utf-8 # Copyright 2020 Huggingface # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu filename = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: bleu_data = json.load(f) @require_torch class ModelEvalTester(unittest.TestCase): def get_tokenizer(self, mname): return FSMTTokenizer.from_pretrained(mname) def get_model(self, mname): model = FSMTForConditionalGeneration.from_pretrained(mname).to(torch_device) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def test_bleu_scores(self, pair, min_bleu_score): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality mname = f"facebook/wmt19-{pair}" tokenizer = self.get_tokenizer(mname) model = self.get_model(mname) src_sentences = bleu_data[pair]["src"] tgt_sentences = bleu_data[pair]["tgt"] batch = tokenizer(src_sentences, return_tensors="pt", truncation=True, padding="longest").to(torch_device) outputs = model.generate( input_ids=batch.input_ids, num_beams=8, ) decoded_sentences = tokenizer.batch_decode( outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False ) scores = calculate_bleu(decoded_sentences, tgt_sentences) print(scores) self.assertGreaterEqual(scores["bleu"], min_bleu_score)
transformers-main
examples/legacy/seq2seq/old_test_fsmt_bleu_score.py
import os import sys sys.path.insert(1, os.path.dirname(os.path.realpath(__file__)))
transformers-main
examples/legacy/seq2seq/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # as due to their complexity multi-gpu tests could impact other tests, and to aid debug we have those in a separate module. import os import sys from transformers.testing_utils import TestCasePlus, execute_subprocess_async, get_gpu_count, require_torch_gpu, slow from .utils import load_json class TestSummarizationDistillerMultiGPU(TestCasePlus): @classmethod def setUpClass(cls): return cls @slow @require_torch_gpu def test_distributed_eval(self): output_dir = self.get_auto_remove_tmp_dir() args = f""" --model_name Helsinki-NLP/opus-mt-en-ro --save_dir {output_dir} --data_dir {self.test_file_dir_str}/test_data/wmt_en_ro --num_beams 2 --task translation """.split() # we want this test to run even if there is only one GPU, but if there are more we use them all n_gpu = get_gpu_count() distributed_args = f""" -m torch.distributed.launch --nproc_per_node={n_gpu} {self.test_file_dir}/run_distributed_eval.py """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) metrics_save_path = os.path.join(output_dir, "test_bleu.json") metrics = load_json(metrics_save_path) # print(metrics) self.assertGreaterEqual(metrics["bleu"], 25)
transformers-main
examples/legacy/seq2seq/old_test_seq2seq_examples_multi_gpu.py
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import fire from tqdm import tqdm def download_wmt_dataset(src_lang="ro", tgt_lang="en", dataset="wmt16", save_dir=None) -> None: """Download a dataset using the datasets package and save it to the format expected by finetune.py Format of save_dir: train.source, train.target, val.source, val.target, test.source, test.target. Args: src_lang: <str> source language tgt_lang: <str> target language dataset: <str> wmt16, wmt17, etc. wmt16 is a good start as it's small. To get the full list run `import datasets; print([d.id for d in datasets.list_datasets() if "wmt" in d.id])` save_dir: <str>, where to save the datasets, defaults to f'{dataset}-{src_lang}-{tgt_lang}' Usage: >>> download_wmt_dataset('ro', 'en', dataset='wmt16') # saves to wmt16-ro-en """ try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets") pair = f"{src_lang}-{tgt_lang}" print(f"Converting {dataset}-{pair}") ds = datasets.load_dataset(dataset, pair) if save_dir is None: save_dir = f"{dataset}-{pair}" save_dir = Path(save_dir) save_dir.mkdir(exist_ok=True) for split in ds.keys(): print(f"Splitting {split} with {ds[split].num_rows} records") # to save to val.source, val.target like summary datasets fn = "val" if split == "validation" else split src_path = save_dir.joinpath(f"{fn}.source") tgt_path = save_dir.joinpath(f"{fn}.target") src_fp = src_path.open("w+") tgt_fp = tgt_path.open("w+") # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split]): ex = x["translation"] src_fp.write(ex[src_lang] + "\n") tgt_fp.write(ex[tgt_lang] + "\n") print(f"Saved {dataset} dataset to {save_dir}") if __name__ == "__main__": fire.Fire(download_wmt_dataset)
transformers-main
examples/legacy/seq2seq/download_wmt.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json import linecache import math import os import pickle import socket from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List, Tuple, Union import git import numpy as np import torch import torch.distributed as dist from rouge_score import rouge_scorer, scoring from sacrebleu import corpus_bleu from sentence_splitter import add_newline_to_end_of_each_sentence from torch import nn from torch.utils.data import Dataset, Sampler from transformers import BartTokenizer, EvalPrediction, PreTrainedTokenizer, T5Tokenizer from transformers.models.bart.modeling_bart import shift_tokens_right from transformers.utils import cached_property try: from fairseq.data.data_utils import batch_by_size FAIRSEQ_AVAILABLE = True except (ImportError, ModuleNotFoundError): FAIRSEQ_AVAILABLE = False def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100): """From fairseq""" if target.dim() == lprobs.dim() - 1: target = target.unsqueeze(-1) nll_loss = -lprobs.gather(dim=-1, index=target) smooth_loss = -lprobs.sum(dim=-1, keepdim=True) if ignore_index is not None: pad_mask = target.eq(ignore_index) nll_loss.masked_fill_(pad_mask, 0.0) smooth_loss.masked_fill_(pad_mask, 0.0) else: nll_loss = nll_loss.squeeze(-1) smooth_loss = smooth_loss.squeeze(-1) nll_loss = nll_loss.sum() # mean()? Scared to break other math. smooth_loss = smooth_loss.sum() eps_i = epsilon / lprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss, nll_loss def lmap(f: Callable, x: Iterable) -> List: """list(map(f, x))""" return list(map(f, x)) def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict: """Uses sacrebleu's corpus_bleu implementation.""" return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)} def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) -> Callable[[EvalPrediction], Dict]: def non_pad_len(tokens: np.ndarray) -> int: return np.count_nonzero(tokens != tokenizer.pad_token_id) def decode_pred(pred: EvalPrediction) -> Tuple[List[str], List[str]]: pred_ids = pred.predictions label_ids = pred.label_ids pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) label_ids[label_ids == -100] = tokenizer.pad_token_id label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True) pred_str = lmap(str.strip, pred_str) label_str = lmap(str.strip, label_str) return pred_str, label_str def summarization_metrics(pred: EvalPrediction) -> Dict: pred_str, label_str = decode_pred(pred) rouge: Dict = calculate_rouge(pred_str, label_str) summ_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1) rouge.update({"gen_len": summ_len}) return rouge def translation_metrics(pred: EvalPrediction) -> Dict: pred_str, label_str = decode_pred(pred) bleu: Dict = calculate_bleu(pred_str, label_str) gen_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1) bleu.update({"gen_len": gen_len}) return bleu compute_metrics_fn = summarization_metrics if "summarization" in task_name else translation_metrics return compute_metrics_fn def trim_batch( input_ids, pad_token_id, attention_mask=None, ): """Remove columns that are populated exclusively by pad_token_id""" keep_column_mask = input_ids.ne(pad_token_id).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class AbstractSeq2SeqDataset(Dataset): def __init__( self, tokenizer, data_dir, max_source_length, max_target_length, type_path="train", n_obs=None, prefix="", **dataset_kwargs, ): super().__init__() self.src_file = Path(data_dir).joinpath(type_path + ".source") self.tgt_file = Path(data_dir).joinpath(type_path + ".target") self.len_file = Path(data_dir).joinpath(type_path + ".len") if os.path.exists(self.len_file): self.src_lens = pickle_load(self.len_file) self.used_char_len = False else: self.src_lens = self.get_char_lens(self.src_file) self.used_char_len = True self.max_source_length = max_source_length self.max_target_length = max_target_length assert min(self.src_lens) > 0, f"found empty line in {self.src_file}" self.tokenizer = tokenizer self.prefix = prefix if prefix is not None else "" if n_obs is not None: self.src_lens = self.src_lens[:n_obs] self.pad_token_id = self.tokenizer.pad_token_id self.dataset_kwargs = dataset_kwargs dataset_kwargs.update({"add_prefix_space": True} if isinstance(self.tokenizer, BartTokenizer) else {}) def __len__(self): return len(self.src_lens) @staticmethod def get_char_lens(data_file): return [len(x) for x in Path(data_file).open().readlines()] @cached_property def tgt_lens(self): """Length in characters of target documents""" return self.get_char_lens(self.tgt_file) def make_sortish_sampler(self, batch_size, distributed=False, shuffle=True, **kwargs): if distributed: return DistributedSortishSampler(self, batch_size, shuffle=shuffle, **kwargs) else: return SortishSampler(self.src_lens, batch_size, shuffle=shuffle) def make_dynamic_sampler(self, max_tokens_per_batch=1024, **kwargs): assert FAIRSEQ_AVAILABLE, "Dynamic batch size requires `pip install fairseq`" assert not self.used_char_len, "You must call python make_len_file.py before calling make_dynamic_sampler" sorted_indices = list(self.make_sortish_sampler(1024, shuffle=False)) def num_tokens_in_example(i): return min(self.src_lens[i], self.max_target_length) # call fairseq cython function batch_sampler: List[List[int]] = batch_by_size( sorted_indices, num_tokens_fn=num_tokens_in_example, max_tokens=max_tokens_per_batch, required_batch_size_multiple=64, ) shuffled_batches = [batch_sampler[i] for i in np.random.permutation(range(len(batch_sampler)))] # move the largest batch to the front to OOM quickly (uses an approximation for padding) approximate_toks_per_batch = [max(self.src_lens[i] for i in batch) * len(batch) for batch in shuffled_batches] largest_batch_idx = np.argmax(approximate_toks_per_batch) shuffled_batches[0], shuffled_batches[largest_batch_idx] = ( shuffled_batches[largest_batch_idx], shuffled_batches[0], ) return shuffled_batches def __getitem__(self, item): raise NotImplementedError("You must implement this") def collate_fn(self, batch): raise NotImplementedError("You must implement this") class LegacySeq2SeqDataset(AbstractSeq2SeqDataset): def __getitem__(self, index) -> Dict[str, torch.Tensor]: """Call tokenizer on src and tgt_lines""" index = index + 1 # linecache starts at 1 source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n") tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n") assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" source_inputs = self.encode_line(self.tokenizer, source_line, self.max_source_length) target_inputs = self.encode_line(self.tokenizer, tgt_line, self.max_target_length) source_ids = source_inputs["input_ids"].squeeze() target_ids = target_inputs["input_ids"].squeeze() src_mask = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "labels": target_ids, } def encode_line(self, tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"): """Only used by LegacyDataset""" return tokenizer( [line], max_length=max_length, padding="max_length" if pad_to_max_length else None, truncation=True, return_tensors=return_tensors, **self.dataset_kwargs, ) def collate_fn(self, batch) -> Dict[str, torch.Tensor]: input_ids = torch.stack([x["input_ids"] for x in batch]) masks = torch.stack([x["attention_mask"] for x in batch]) target_ids = torch.stack([x["labels"] for x in batch]) pad_token_id = self.pad_token_id y = trim_batch(target_ids, pad_token_id) source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks) batch = { "input_ids": source_ids, "attention_mask": source_mask, "labels": y, } return batch class Seq2SeqDataset(AbstractSeq2SeqDataset): """A dataset that calls prepare_seq2seq_batch.""" def __getitem__(self, index) -> Dict[str, str]: index = index + 1 # linecache starts at 1 source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n") tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n") assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1} def collate_fn(self, batch) -> Dict[str, torch.Tensor]: """Call prepare_seq2seq_batch.""" batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch( [x["src_texts"] for x in batch], tgt_texts=[x["tgt_texts"] for x in batch], max_length=self.max_source_length, max_target_length=self.max_target_length, return_tensors="pt", **self.dataset_kwargs, ).data batch_encoding["ids"] = torch.tensor([x["id"] for x in batch]) return batch_encoding class Seq2SeqDataCollator: def __init__(self, tokenizer, data_args, decoder_start_token_id, tpu_num_cores=None): self.tokenizer = tokenizer self.pad_token_id = tokenizer.pad_token_id self.decoder_start_token_id = decoder_start_token_id assert ( self.pad_token_id is not None ), f"pad_token_id is not defined for ({self.tokenizer.__class__.__name__}), it must be defined." self.data_args = data_args self.tpu_num_cores = tpu_num_cores self.dataset_kwargs = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {} if data_args.src_lang is not None: self.dataset_kwargs["src_lang"] = data_args.src_lang if data_args.tgt_lang is not None: self.dataset_kwargs["tgt_lang"] = data_args.tgt_lang def __call__(self, batch) -> Dict[str, torch.Tensor]: if hasattr(self.tokenizer, "prepare_seq2seq_batch"): batch = self._encode(batch) input_ids, attention_mask, labels = ( batch["input_ids"], batch["attention_mask"], batch["labels"], ) else: input_ids = torch.stack([x["input_ids"] for x in batch]) attention_mask = torch.stack([x["attention_mask"] for x in batch]) labels = torch.stack([x["labels"] for x in batch]) labels = trim_batch(labels, self.pad_token_id) input_ids, attention_mask = trim_batch(input_ids, self.pad_token_id, attention_mask=attention_mask) if isinstance(self.tokenizer, T5Tokenizer): decoder_input_ids = self._shift_right_t5(labels) else: decoder_input_ids = shift_tokens_right(labels, self.pad_token_id, self.decoder_start_token_id) batch = { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "labels": labels, } return batch def _shift_right_t5(self, input_ids): # shift inputs to the right shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = self.pad_token_id return shifted_input_ids def _encode(self, batch) -> Dict[str, torch.Tensor]: batch_encoding = self.tokenizer.prepare_seq2seq_batch( [x["src_texts"] for x in batch], tgt_texts=[x["tgt_texts"] for x in batch], max_length=self.data_args.max_source_length, max_target_length=self.data_args.max_target_length, padding="max_length" if self.tpu_num_cores is not None else "longest", # TPU hack return_tensors="pt", **self.dataset_kwargs, ) return batch_encoding.data class SortishSampler(Sampler): "Go through the text data by order of src length with a bit of randomness. From fastai repo." def __init__(self, data, batch_size, shuffle=True): self.data, self.bs, self.shuffle = data, batch_size, shuffle def __len__(self) -> int: return len(self.data) def __iter__(self): return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle)) def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array: "Go through the text data by order of src length with a bit of randomness. From fastai repo." if not shuffle: return np.argsort(np.array(data) * -1) def key_fn(i): return data[i] idxs = np.random.permutation(len(data)) sz = bs * 50 ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)] sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx]) sz = bs ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)] max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx]) # find the chunk with the largest key, ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0] # then make sure it goes first. sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=int) sort_idx = np.concatenate((ck_idx[0], sort_idx)) return sort_idx class DistributedSortishSampler(Sampler): """Copied from torch DistributedSampler""" def __init__(self, dataset, batch_size, num_replicas=None, rank=None, add_extra_examples=True, shuffle=True): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 if add_extra_examples: self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas else: self.total_size = len(dataset) self.num_samples = len(self.available_indices) self.batch_size = batch_size self.add_extra_examples = add_extra_examples self.shuffle = shuffle def __iter__(self) -> Iterable: g = torch.Generator() g.manual_seed(self.epoch) sortish_data = [self.dataset.src_lens[i] for i in self.available_indices] sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size, shuffle=self.shuffle) indices = [self.available_indices[i] for i in sortish_indices] assert len(indices) == self.num_samples return iter(indices) @cached_property def available_indices(self) -> np.array: indices = list(range(len(self.dataset))) # add extra samples to make it evenly divisible indices += indices[: (self.total_size - len(indices))] assert len(indices) == self.total_size # subsample available_indices = indices[self.rank : self.total_size : self.num_replicas] return available_indices def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch logger = getLogger(__name__) def use_task_specific_params(model, task): """Update config with summarization specific params.""" task_specific_params = model.config.task_specific_params if task_specific_params is not None: pars = task_specific_params.get(task, {}) logger.info(f"setting model.config to task specific params for {task}:\n {pars}") logger.info("note: command line args may override some of these") model.config.update(pars) def pickle_load(path): """pickle.load(path)""" with open(path, "rb") as f: return pickle.load(f) def pickle_save(obj, path): """pickle.dump(obj, path)""" with open(path, "wb") as f: return pickle.dump(obj, f) def flatten_list(summary_ids: List[List]): return list(itertools.chain.from_iterable(summary_ids)) def save_git_info(folder_path: str) -> None: """Save git information to output_dir/git_log.json""" repo_infos = get_git_info() save_json(repo_infos, os.path.join(folder_path, "git_log.json")) def save_json(content, path, indent=4, **json_dump_kwargs): with open(path, "w") as f: json.dump(content, f, indent=indent, sort_keys=True, **json_dump_kwargs) def load_json(path): with open(path) as f: return json.load(f) def get_git_info(): try: repo = git.Repo(search_parent_directories=True) repo_infos = { "repo_id": str(repo), "repo_sha": str(repo.head.object.hexsha), "repo_branch": str(repo.active_branch), "hostname": str(socket.gethostname()), } return repo_infos except TypeError: return { "repo_id": None, "repo_sha": None, "repo_branch": None, "hostname": None, } ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"] def extract_rouge_mid_statistics(dct): new_dict = {} for k1, v1 in dct.items(): mid = v1.mid new_dict[k1] = {stat: round(getattr(mid, stat), 4) for stat in ["precision", "recall", "fmeasure"]} return new_dict def calculate_rouge( pred_lns: List[str], tgt_lns: List[str], use_stemmer=True, rouge_keys=ROUGE_KEYS, return_precision_and_recall=False, bootstrap_aggregation=True, newline_sep=True, ) -> Dict: """Calculate rouge using rouge_scorer package. Args: pred_lns: list of summaries generated by model tgt_lns: list of groundtruth summaries (e.g. contents of val.target) use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes to improve matching. rouge_keys: which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum return_precision_and_recall: (False) whether to also return precision and recall. bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]`` newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL on multi sentence summaries (CNN/DM dataset). Returns: Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys """ scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer) aggregator = scoring.BootstrapAggregator() for pred, tgt in zip(tgt_lns, pred_lns): # rougeLsum expects "\n" separated sentences within a summary if newline_sep: pred = add_newline_to_end_of_each_sentence(pred) tgt = add_newline_to_end_of_each_sentence(tgt) scores = scorer.score(pred, tgt) aggregator.add_scores(scores) if bootstrap_aggregation: result = aggregator.aggregate() if return_precision_and_recall: return extract_rouge_mid_statistics(result) # here we return dict else: return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()} else: return aggregator._scores # here we return defaultdict(list) # Utilities for freezing parameters and checking whether they are frozen def freeze_params(model: nn.Module): """Set requires_grad=False for each of model.parameters()""" for par in model.parameters(): par.requires_grad = False def freeze_embeds(model): """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5.""" model_type = model.config.model_type if model_type in ["t5", "mt5"]: freeze_params(model.shared) for d in [model.encoder, model.decoder]: freeze_params(d.embed_tokens) elif model_type == "fsmt": for d in [model.model.encoder, model.model.decoder]: freeze_params(d.embed_positions) freeze_params(d.embed_tokens) else: freeze_params(model.model.shared) for d in [model.model.encoder, model.model.decoder]: freeze_params(d.embed_positions) freeze_params(d.embed_tokens) def grad_status(model: nn.Module) -> Iterable: return (par.requires_grad for par in model.parameters()) def any_requires_grad(model: nn.Module) -> bool: return any(grad_status(model)) def assert_all_frozen(model): model_grads: List[bool] = list(grad_status(model)) n_require_grad = sum(lmap(int, model_grads)) npars = len(model_grads) assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad" def assert_not_all_frozen(model): model_grads: List[bool] = list(grad_status(model)) npars = len(model_grads) assert any(model_grads), f"none of {npars} weights require grad" def parse_numeric_n_bool_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float, bool]]: """ Parse an argv list of unspecified command line args to a dict. Assumes all values are either numeric or boolean in the form of true/false. """ result = {} assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}" num_pairs = len(unparsed_args) // 2 for pair_num in range(num_pairs): i = 2 * pair_num assert unparsed_args[i].startswith("--") if unparsed_args[i + 1].lower() == "true": value = True elif unparsed_args[i + 1].lower() == "false": value = False else: try: value = int(unparsed_args[i + 1]) except ValueError: value = float(unparsed_args[i + 1]) # this can raise another informative ValueError result[unparsed_args[i][2:]] = value return result def write_txt_file(ordered_tgt, path): f = Path(path).open("w") for ln in ordered_tgt: f.write(ln + "\n") f.flush() def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def check_output_dir(args, expected_items=0): """ Checks whether to bail out if output_dir already exists and has more than expected_items in it `args`: needs to have the following attributes of `args`: - output_dir - do_train - overwrite_output_dir `expected_items`: normally 0 (default) - i.e. empty dir, but in some cases a few files are expected (e.g. recovery from OOM) """ if ( os.path.exists(args.output_dir) and len(os.listdir(args.output_dir)) > expected_items and args.do_train and not args.overwrite_output_dir ): raise ValueError( f"Output directory ({args.output_dir}) already exists and " f"has {len(os.listdir(args.output_dir))} items in it (expected {expected_items} items). " "Use --overwrite_output_dir to overcome." )
transformers-main
examples/legacy/seq2seq/utils.py
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fill examples with bitext up to max_tokens without breaking up examples. [['I went', 'yo fui'], ['to the store', 'a la tienda'] ] => ['I went to the store', 'yo fui a la tienda'] """ import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def pack_examples(tok, src_examples, tgt_examples, max_tokens=1024): finished_src, finished_tgt = [], [] sorted_examples = list(zip(src_examples, tgt_examples)) new_src, new_tgt = sorted_examples[0] def is_too_big(strang): return tok(strang, return_tensors="pt").input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): cand_src = new_src + " " + src cand_tgt = new_tgt + " " + tgt if is_too_big(cand_src) or is_too_big(cand_tgt): # cant fit, finalize example finished_src.append(new_src) finished_tgt.append(new_tgt) new_src, new_tgt = src, tgt else: # can fit, keep adding new_src, new_tgt = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(new_src) finished_tgt.append(new_tgt) return finished_src, finished_tgt def pack_data_dir(tok, data_dir: Path, max_tokens, save_path): save_path = Path(save_path) save_path.mkdir(exist_ok=True) for split in ["train"]: src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target" src_docs = [x.rstrip() for x in Path(src_path).open().readlines()] tgt_docs = [x.rstrip() for x in Path(tgt_path).open().readlines()] packed_src, packed_tgt = pack_examples(tok, src_docs, tgt_docs, max_tokens) print(f"packed {split} split from {len(src_docs)} examples -> {len(packed_src)}.") Path(save_path / f"{split}.source").open("w").write("\n".join(packed_src)) Path(save_path / f"{split}.target").open("w").write("\n".join(packed_tgt)) for split in ["val", "test"]: src_path, tgt_path = data_dir / f"{split}.source", data_dir / f"{split}.target" shutil.copyfile(src_path, save_path / f"{split}.source") shutil.copyfile(tgt_path, save_path / f"{split}.target") def packer_cli(): parser = argparse.ArgumentParser() parser.add_argument("--tok_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.") parser.add_argument("--max_seq_len", type=int, default=128) parser.add_argument("--data_dir", type=str) parser.add_argument("--save_path", type=str) args = parser.parse_args() tokenizer = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(tokenizer, Path(args.data_dir), args.max_seq_len, args.save_path) if __name__ == "__main__": packer_cli()
transformers-main
examples/legacy/seq2seq/pack_dataset.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS logger = logging.get_logger(__name__) arg_to_scheduler = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class Seq2SeqTrainer(Trainer): def __init__(self, config=None, data_args=None, *args, **kwargs): super().__init__(*args, **kwargs) if config is None: assert isinstance(self.model, PreTrainedModel), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) self.config = self.model.config else: self.config = config self.data_args = data_args self.vocab_size = self.config.tgt_vocab_size if isinstance(self.config, FSMTConfig) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" " padding.." ) if self.args.label_smoothing == 0: self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss self.loss_fn = label_smoothed_nll_loss def create_optimizer_and_scheduler(self, num_training_steps: int): """ Setup the optimizer and the learning rate scheduler. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass. """ if self.optimizer is None: no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer_cls = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: optimizer_cls = Adafactor optimizer_kwargs = {"scale_parameter": False, "relative_step": False} else: optimizer_cls = AdamW optimizer_kwargs = { "betas": (self.args.adam_beta1, self.args.adam_beta2), "eps": self.args.adam_epsilon, } optimizer_kwargs["lr"] = self.args.learning_rate if self.sharded_ddp: self.optimizer = OSS( params=optimizer_grouped_parameters, optim=optimizer_cls, **optimizer_kwargs, ) else: self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) if self.lr_scheduler is None: self.lr_scheduler = self._get_lr_scheduler(num_training_steps) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.") def _get_lr_scheduler(self, num_training_steps): schedule_func = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": scheduler = schedule_func(self.optimizer) elif self.args.lr_scheduler == "constant_w_warmup": scheduler = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps) else: scheduler = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps ) return scheduler def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset, torch.utils.data.IterableDataset): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset) ) def _compute_loss(self, model, inputs, labels): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token logits = model(**inputs, use_cache=False)[0] loss = self.loss_fn(logits.view(-1, logits.shape[-1]), labels.view(-1)) else: # compute usual loss via models loss, logits = model(**inputs, labels=labels, use_cache=False)[:2] else: # compute label smoothed loss logits = model(**inputs, use_cache=False)[0] lprobs = torch.nn.functional.log_softmax(logits, dim=-1) loss, _ = self.loss_fn(lprobs, labels, self.args.label_smoothing, ignore_index=self.config.pad_token_id) return loss, logits def compute_loss(self, model, inputs): labels = inputs.pop("labels") loss, _ = self._compute_loss(model, inputs, labels) return loss def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on :obj:`model` using obj:`inputs`. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to evaluate. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (:obj:`bool`): Whether or not to return the loss only. Return: Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ inputs = self._prepare_inputs(inputs) gen_kwargs = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: generated_tokens = self.model.generate( inputs["input_ids"], attention_mask=inputs["attention_mask"], **gen_kwargs, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"]) labels = inputs.pop("labels") with torch.no_grad(): # compute loss on predict data loss, logits = self._compute_loss(model, inputs, labels) loss = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) logits = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"]) return (loss, logits, labels) def _pad_tensors_to_max_len(self, tensor, max_length): # If PAD token is not defined at least EOS token has to be defined pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f" padded to `max_length`={max_length}" ) padded_tensor = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) padded_tensor[:, : tensor.shape[-1]] = tensor return padded_tensor
transformers-main
examples/legacy/seq2seq/seq2seq_trainer.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() def _dump_articles(path: Path, articles: list): content = "\n".join(articles) Path(path).open("w").writelines(content) T5_TINY = "patrickvonplaten/t5-tiny-random" BART_TINY = "sshleifer/bart-tiny-random" MBART_TINY = "sshleifer/tiny-mbart" stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class TestTheRest(TestCasePlus): def run_eval_tester(self, model): input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source" output_file_name = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(input_file_name, articles) score_path = str(Path(self.get_auto_remove_tmp_dir()) / "scores.json") task = "translation_en_to_de" if model == T5_TINY else "summarization" testargs = f""" run_eval_search.py {model} {input_file_name} {output_file_name} --score_path {score_path} --task {task} --num_beams 2 --length_penalty 2.0 """.split() with patch.object(sys, "argv", testargs): run_generate() assert Path(output_file_name).exists() # os.remove(Path(output_file_name)) # test one model to quickly (no-@slow) catch simple problems and do an # extensive testing of functionality with multiple models as @slow separately def test_run_eval(self): self.run_eval_tester(T5_TINY) # any extra models should go into the list here - can be slow @parameterized.expand([BART_TINY, MBART_TINY]) @slow def test_run_eval_slow(self, model): self.run_eval_tester(model) # testing with 2 models to validate: 1. translation (t5) 2. summarization (mbart) @parameterized.expand([T5_TINY, MBART_TINY]) @slow def test_run_eval_search(self, model): input_file_name = Path(self.get_auto_remove_tmp_dir()) / "utest_input.source" output_file_name = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() text = { "en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } tmp_dir = Path(self.get_auto_remove_tmp_dir()) score_path = str(tmp_dir / "scores.json") reference_path = str(tmp_dir / "val.target") _dump_articles(input_file_name, text["en"]) _dump_articles(reference_path, text["de"]) task = "translation_en_to_de" if model == T5_TINY else "summarization" testargs = f""" run_eval_search.py {model} {str(input_file_name)} {str(output_file_name)} --score_path {score_path} --reference_path {reference_path} --task {task} """.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"]) with patch.object(sys, "argv", testargs): with CaptureStdout() as cs: run_search() expected_strings = [" num_beams | length_penalty", model, "Best score args"] un_expected_strings = ["Info"] if "translation" in task: expected_strings.append("bleu") else: expected_strings.extend(ROUGE_KEYS) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(output_file_name).exists() os.remove(Path(output_file_name))
transformers-main
examples/legacy/seq2seq/old_test_seq2seq_examples.py
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fire from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer def save_randomly_initialized_version(config_name: str, save_dir: str, **config_kwargs): """Save a randomly initialized version of a model using a pretrained config. Args: config_name: which config to use save_dir: where to save the resulting model and tokenizer config_kwargs: Passed to AutoConfig Usage:: save_randomly_initialized_version("facebook/bart-large-cnn", "distilbart_random_cnn_6_3", encoder_layers=6, decoder_layers=3, num_beams=3) """ cfg = AutoConfig.from_pretrained(config_name, **config_kwargs) model = AutoModelForSeq2SeqLM.from_config(cfg) model.save_pretrained(save_dir) AutoTokenizer.from_pretrained(config_name).save_pretrained(save_dir) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
transformers-main
examples/legacy/seq2seq/save_randomly_initialized_model.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A simple launcher script for TPU training Inspired by https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py :: >>> python xla_spawn.py --num_cores=NUM_CORES_YOU_HAVE YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other arguments of your training script) """ import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def parse_args(): """ Helper function parsing the command line options @retval ArgumentParser """ parser = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores", type=int, default=1, help="Number of TPU cores to use (1 or 8).") # positional parser.add_argument( "training_script", type=str, help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ), ) # rest from the training program parser.add_argument("training_script_args", nargs=REMAINDER) return parser.parse_args() def main(): args = parse_args() # Import training_script as a module. script_fpath = Path(args.training_script) sys.path.append(str(script_fpath.parent.resolve())) mod_name = script_fpath.stem mod = importlib.import_module(mod_name) # Patch sys.argv sys.argv = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores)] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores) if __name__ == "__main__": main()
transformers-main
examples/legacy/seq2seq/xla_spawn.py
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import Seq2SeqDataset, pickle_save def save_len_file( tokenizer_name, data_dir, max_source_length=1024, max_target_length=1024, consider_target=False, **kwargs ): """Save max(src_len, tgt_len) for each example to allow dynamic batching.""" tok = AutoTokenizer.from_pretrained(tokenizer_name) train_ds = Seq2SeqDataset(tok, data_dir, max_source_length, max_target_length, type_path="train", **kwargs) pad = tok.pad_token_id def get_lens(ds): dl = tqdm( DataLoader(ds, batch_size=512, num_workers=8, shuffle=False, collate_fn=ds.collate_fn), desc=str(ds.len_file), ) max_lens = [] for batch in dl: src_lens = batch["input_ids"].ne(pad).sum(1).tolist() tgt_lens = batch["labels"].ne(pad).sum(1).tolist() if consider_target: for src, tgt in zip(src_lens, tgt_lens): max_lens.append(max(src, tgt)) else: max_lens.extend(src_lens) return max_lens train_lens = get_lens(train_ds) val_ds = Seq2SeqDataset(tok, data_dir, max_source_length, max_target_length, type_path="val", **kwargs) val_lens = get_lens(val_ds) pickle_save(train_lens, train_ds.len_file) pickle_save(val_lens, val_ds.len_file) if __name__ == "__main__": fire.Fire(save_len_file)
transformers-main
examples/legacy/seq2seq/save_len_file.py
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import fire import torch from tqdm import tqdm def convert(src_path: str, map_location: str = "cpu", save_path: Union[str, None] = None) -> None: """Convert a pytorch_model.bin or model.pt file to torch.float16 for faster downloads, less disk space.""" state_dict = torch.load(src_path, map_location=map_location) for k, v in tqdm(state_dict.items()): if not isinstance(v, torch.Tensor): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin") state_dict[k] = v.half() if save_path is None: # overwrite src_path save_path = src_path torch.save(state_dict, save_path) if __name__ == "__main__": fire.Fire(convert)
transformers-main
examples/legacy/seq2seq/convert_model_to_fp16.py
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import fire def minify(src_dir: str, dest_dir: str, n: int): """Write first n lines of each file f in src_dir to dest_dir/f""" src_dir = Path(src_dir) dest_dir = Path(dest_dir) dest_dir.mkdir(exist_ok=True) for path in src_dir.iterdir(): new = [x.rstrip() for x in list(path.open().readlines())][:n] dest_path = dest_dir.joinpath(path.name) print(dest_path) dest_path.open("w").write("\n".join(new)) if __name__ == "__main__": fire.Fire(minify)
transformers-main
examples/legacy/seq2seq/minify_dataset.py
#!/usr/bin/env python import io import json import subprocess pairs = [ ["en", "ru"], ["ru", "en"], ["en", "de"], ["de", "en"], ] n_objs = 8 def get_all_data(pairs, n_objs): text = {} for src, tgt in pairs: pair = f"{src}-{tgt}" cmd = f"sacrebleu -t wmt19 -l {pair} --echo src".split() src_lines = subprocess.run(cmd, stdout=subprocess.PIPE).stdout.decode("utf-8").splitlines() cmd = f"sacrebleu -t wmt19 -l {pair} --echo ref".split() tgt_lines = subprocess.run(cmd, stdout=subprocess.PIPE).stdout.decode("utf-8").splitlines() text[pair] = {"src": src_lines[:n_objs], "tgt": tgt_lines[:n_objs]} return text text = get_all_data(pairs, n_objs) filename = "./fsmt_val_data.json" with io.open(filename, "w", encoding="utf-8") as f: bleu_data = json.dump(text, f, indent=2, ensure_ascii=False)
transformers-main
examples/legacy/seq2seq/test_data/fsmt/build-eval-data.py
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask logger = logging.getLogger(__name__) class NERTransformer(BaseTransformer): """ A training module for NER. See BaseTransformer for the core options. """ mode = "token-classification" def __init__(self, hparams): if type(hparams) == dict: hparams = Namespace(**hparams) module = import_module("tasks") try: token_classification_task_clazz = getattr(module, hparams.task_type) self.token_classification_task: TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) self.labels = self.token_classification_task.get_labels(hparams.labels) self.pad_token_label_id = CrossEntropyLoss().ignore_index super().__init__(hparams, len(self.labels), self.mode) def forward(self, **inputs): return self.model(**inputs) def training_step(self, batch, batch_num): "Compute loss and log." inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids outputs = self(**inputs) loss = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def prepare_data(self): "Called to initialize data. Use the call to construct features" args = self.hparams for mode in ["train", "dev", "test"]: cached_features_file = self._feature_file(mode) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) examples = self.token_classification_task.read_examples_from_file(args.data_dir, mode) features = self.token_classification_task.convert_examples_to_features( examples, self.labels, args.max_seq_length, self.tokenizer, cls_token_at_end=bool(self.config.model_type in ["xlnet"]), cls_token=self.tokenizer.cls_token, cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0, sep_token=self.tokenizer.sep_token, sep_token_extra=False, pad_on_left=bool(self.config.model_type in ["xlnet"]), pad_token=self.tokenizer.pad_token_id, pad_token_segment_id=self.tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) def get_dataloader(self, mode: int, batch_size: int, shuffle: bool = False) -> DataLoader: "Load datasets. Called after prepare data." cached_features_file = self._feature_file(mode) logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) if features[0].token_type_ids is not None: all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) else: all_token_type_ids = torch.tensor([0 for f in features], dtype=torch.long) # HACK(we will not use this anymore soon) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) return DataLoader( TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_label_ids), batch_size=batch_size ) def validation_step(self, batch, batch_nb): """Compute validation""" "" inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids outputs = self(**inputs) tmp_eval_loss, logits = outputs[:2] preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _eval_end(self, outputs): "Evaluation called for both Val and Test" val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean() preds = np.concatenate([x["pred"] for x in outputs], axis=0) preds = np.argmax(preds, axis=2) out_label_ids = np.concatenate([x["target"] for x in outputs], axis=0) label_map = dict(enumerate(self.labels)) out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(out_label_list, preds_list), "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } ret = dict(results.items()) ret["log"] = results return ret, preds_list, out_label_list def validation_epoch_end(self, outputs): # when stable ret, preds, targets = self._eval_end(outputs) logs = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def test_epoch_end(self, outputs): # updating to test_epoch_end instead of deprecated test_end ret, predictions, targets = self._eval_end(outputs) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 logs = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def add_model_specific_args(parser, root_dir): # Add NER specific options BaseTransformer.add_model_specific_args(parser, root_dir) parser.add_argument( "--task_type", default="NER", type=str, help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length", default=128, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--labels", default="", type=str, help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.", ) parser.add_argument( "--gpus", default=0, type=int, help="The number of GPUs allocated for this, it is by default 0 meaning none", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": parser = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) parser = NERTransformer.add_model_specific_args(parser, os.getcwd()) args = parser.parse_args() model = NERTransformer(args) trainer = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 checkpoints = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) model = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
transformers-main
examples/legacy/pytorch-lightning/run_ner.py
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors logger = logging.getLogger(__name__) class GLUETransformer(BaseTransformer): mode = "sequence-classification" def __init__(self, hparams): if type(hparams) == dict: hparams = Namespace(**hparams) hparams.glue_output_mode = glue_output_modes[hparams.task] num_labels = glue_tasks_num_labels[hparams.task] super().__init__(hparams, num_labels, self.mode) def forward(self, **inputs): return self.model(**inputs) def training_step(self, batch, batch_idx): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: inputs["token_type_ids"] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None outputs = self(**inputs) loss = outputs[0] lr_scheduler = self.trainer.lr_schedulers[0]["scheduler"] tensorboard_logs = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def prepare_data(self): "Called to initialize data. Use the call to construct features" args = self.hparams processor = processors[args.task]() self.labels = processor.get_labels() for mode in ["train", "dev"]: cached_features_file = self._feature_file(mode) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) examples = ( processor.get_dev_examples(args.data_dir) if mode == "dev" else processor.get_train_examples(args.data_dir) ) features = convert_examples_to_features( examples, self.tokenizer, max_length=args.max_seq_length, label_list=self.labels, output_mode=args.glue_output_mode, ) logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) def get_dataloader(self, mode: str, batch_size: int, shuffle: bool = False) -> DataLoader: "Load datasets. Called after prepare data." # We test on dev set to compare to benchmarks without having to submit to GLUE server mode = "dev" if mode == "test" else mode cached_features_file = self._feature_file(mode) logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if self.hparams.glue_output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif self.hparams.glue_output_mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) return DataLoader( TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels), batch_size=batch_size, shuffle=shuffle, ) def validation_step(self, batch, batch_idx): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: inputs["token_type_ids"] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None outputs = self(**inputs) tmp_eval_loss, logits = outputs[:2] preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _eval_end(self, outputs) -> tuple: val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean().detach().cpu().item() preds = np.concatenate([x["pred"] for x in outputs], axis=0) if self.hparams.glue_output_mode == "classification": preds = np.argmax(preds, axis=1) elif self.hparams.glue_output_mode == "regression": preds = np.squeeze(preds) out_label_ids = np.concatenate([x["target"] for x in outputs], axis=0) out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] results = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task, preds, out_label_ids)} ret = dict(results.items()) ret["log"] = results return ret, preds_list, out_label_list def validation_epoch_end(self, outputs: list) -> dict: ret, preds, targets = self._eval_end(outputs) logs = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def test_epoch_end(self, outputs) -> dict: ret, predictions, targets = self._eval_end(outputs) logs = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def add_model_specific_args(parser, root_dir): BaseTransformer.add_model_specific_args(parser, root_dir) parser.add_argument( "--max_seq_length", default=128, type=int, help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ), ) parser.add_argument( "--task", default="", type=str, required=True, help="The GLUE task to run", ) parser.add_argument( "--gpus", default=0, type=int, help="The number of GPUs allocated for this, it is by default 0 meaning none", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) return parser def main(): parser = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) parser = GLUETransformer.add_model_specific_args(parser, os.getcwd()) args = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: args.output_dir = os.path.join( "./results", f"{args.task}_{time.strftime('%Y%m%d_%H%M%S')}", ) os.makedirs(args.output_dir) model = GLUETransformer(args) trainer = generic_train(model, args) # Optionally, predict on dev set and write to output_dir if args.do_predict: checkpoints = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) model = model.load_from_checkpoint(checkpoints[-1]) return trainer.test(model) if __name__ == "__main__": main()
transformers-main
examples/legacy/pytorch-lightning/run_glue.py
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version logger = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") MODEL_MODES = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeq2SeqLM, "translation": AutoModelForSeq2SeqLM, } # update this and the import above to support new schedulers from transformers.optimization arg_to_scheduler = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } arg_to_scheduler_choices = sorted(arg_to_scheduler.keys()) arg_to_scheduler_metavar = "{" + ", ".join(arg_to_scheduler_choices) + "}" class BaseTransformer(pl.LightningModule): def __init__( self, hparams: argparse.Namespace, num_labels=None, mode="base", config=None, tokenizer=None, model=None, **config_kwargs, ): """Initialize a model, tokenizer and config.""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(hparams) self.step_count = 0 self.output_dir = Path(self.hparams.output_dir) cache_dir = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: self.config = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path, **({"num_labels": num_labels} if num_labels is not None else {}), cache_dir=cache_dir, **config_kwargs, ) else: self.config: PretrainedConfig = config extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams, p, None): assert hasattr(self.config, p), f"model config doesn't have a `{p}` attribute" setattr(self.config, p, getattr(self.hparams, p)) if tokenizer is None: self.tokenizer = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path, cache_dir=cache_dir, ) else: self.tokenizer: PreTrainedTokenizer = tokenizer self.model_type = MODEL_MODES[mode] if model is None: self.model = self.model_type.from_pretrained( self.hparams.model_name_or_path, from_tf=bool(".ckpt" in self.hparams.model_name_or_path), config=self.config, cache_dir=cache_dir, ) else: self.model = model def load_hf_checkpoint(self, *args, **kwargs): self.model = self.model_type.from_pretrained(*args, **kwargs) def get_lr_scheduler(self): get_schedule_func = arg_to_scheduler[self.hparams.lr_scheduler] scheduler = get_schedule_func( self.opt, num_warmup_steps=self.hparams.warmup_steps, num_training_steps=self.total_steps() ) scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def configure_optimizers(self): """Prepare optimizer and schedule (linear warmup and decay)""" model = self.model no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] if self.hparams.adafactor: optimizer = Adafactor( optimizer_grouped_parameters, lr=self.hparams.learning_rate, scale_parameter=False, relative_step=False ) else: optimizer = AdamW( optimizer_grouped_parameters, lr=self.hparams.learning_rate, eps=self.hparams.adam_epsilon ) self.opt = optimizer scheduler = self.get_lr_scheduler() return [optimizer], [scheduler] def test_step(self, batch, batch_nb): return self.validation_step(batch, batch_nb) def test_epoch_end(self, outputs): return self.validation_end(outputs) def total_steps(self) -> int: """The number of total training steps that will be run. Used for lr scheduler purposes.""" num_devices = max(1, self.hparams.gpus) # TODO: consider num_tpu_cores effective_batch_size = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def setup(self, mode): if mode == "test": self.dataset_size = len(self.test_dataloader().dataset) else: self.train_loader = self.get_dataloader("train", self.hparams.train_batch_size, shuffle=True) self.dataset_size = len(self.train_dataloader().dataset) def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False): raise NotImplementedError("You must implement this for your task") def train_dataloader(self): return self.train_loader def val_dataloader(self): return self.get_dataloader("dev", self.hparams.eval_batch_size, shuffle=False) def test_dataloader(self): return self.get_dataloader("test", self.hparams.eval_batch_size, shuffle=False) def _feature_file(self, mode): return os.path.join( self.hparams.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, self.hparams.model_name_or_path.split("/"))).pop(), str(self.hparams.max_seq_length), ), ) @pl.utilities.rank_zero_only def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: save_path = self.output_dir.joinpath("best_tfmr") self.model.config.save_step = self.step_count self.model.save_pretrained(save_path) self.tokenizer.save_pretrained(save_path) @staticmethod def add_model_specific_args(parser, root_dir): parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default=None, type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--encoder_layerdrop", type=float, help="Encoder layer dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--decoder_layerdrop", type=float, help="Decoder layer dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--dropout", type=float, help="Dropout probability (Optional). Goes into model.config", ) parser.add_argument( "--attention_dropout", type=float, help="Attention dropout probability (Optional). Goes into model.config", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--lr_scheduler", default="linear", choices=arg_to_scheduler_choices, metavar=arg_to_scheduler_metavar, type=str, help="Learning rate scheduler", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--num_workers", default=4, type=int, help="kwarg passed to DataLoader") parser.add_argument("--num_train_epochs", dest="max_epochs", default=3, type=int) parser.add_argument("--train_batch_size", default=32, type=int) parser.add_argument("--eval_batch_size", default=32, type=int) parser.add_argument("--adafactor", action="store_true") class LoggingCallback(pl.Callback): def on_batch_end(self, trainer, pl_module): lr_scheduler = trainer.lr_schedulers[0]["scheduler"] lrs = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(lrs) def on_validation_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): rank_zero_info("***** Validation results *****") metrics = trainer.callback_metrics # Log results for key in sorted(metrics): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) def on_test_end(self, trainer: pl.Trainer, pl_module: pl.LightningModule): rank_zero_info("***** Test results *****") metrics = trainer.callback_metrics # Log and save results to file output_test_results_file = os.path.join(pl_module.hparams.output_dir, "test_results.txt") with open(output_test_results_file, "w") as writer: for key in sorted(metrics): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(key, str(metrics[key]))) writer.write("{} = {}\n".format(key, str(metrics[key]))) def add_generic_args(parser, root_dir) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O2", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--n_tpu_cores", dest="tpu_cores", type=int) parser.add_argument("--max_grad_norm", dest="gradient_clip_val", default=1.0, type=float, help="Max gradient norm") parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument( "--gradient_accumulation_steps", dest="accumulate_grad_batches", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) def generic_train( model: BaseTransformer, args: argparse.Namespace, early_stopping_callback=None, logger=True, # can pass WandbLogger() here extra_callbacks=[], checkpoint_callback=None, logging_callback=None, **extra_train_kwargs, ): pl.seed_everything(args.seed) # init model odir = Path(model.hparams.output_dir) odir.mkdir(exist_ok=True) # add custom checkpoints if checkpoint_callback is None: checkpoint_callback = pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix="checkpoint", monitor="val_loss", mode="min", save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(early_stopping_callback) if logging_callback is None: logging_callback = LoggingCallback() train_params = {} # TODO: remove with PyTorch 1.6 since pl uses native amp if args.fp16: train_params["precision"] = 16 train_params["amp_level"] = args.fp16_opt_level if args.gpus > 1: train_params["distributed_backend"] = "ddp" train_params["accumulate_grad_batches"] = args.accumulate_grad_batches train_params["accelerator"] = extra_train_kwargs.get("accelerator", None) train_params["profiler"] = extra_train_kwargs.get("profiler", None) trainer = pl.Trainer.from_argparse_args( args, weights_summary=None, callbacks=[logging_callback] + extra_callbacks, logger=logger, checkpoint_callback=checkpoint_callback, **train_params, ) if args.do_train: trainer.fit(model) return trainer
transformers-main
examples/legacy/pytorch-lightning/lightning_base.py
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow SRC_DIRS = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_t5_mlm_flax logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() def get_setup_file(): parser = argparse.ArgumentParser() parser.add_argument("-f") args = parser.parse_args() return args.f def get_results(output_dir, split="eval"): path = os.path.join(output_dir, f"{split}_results.json") if os.path.exists(path): with open(path, "r") as f: return json.load(f) raise ValueError(f"can't find {path}") stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class ExamplesTests(TestCasePlus): def test_run_glue(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(sys, "argv", testargs): run_flax_glue.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.75) @slow def test_run_clm(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(sys, "argv", testargs): run_clm_flax.main() result = get_results(tmp_dir) self.assertLess(result["eval_perplexity"], 100) @slow def test_run_summarization(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(sys, "argv", testargs): run_summarization_flax.main() result = get_results(tmp_dir, split="test") self.assertGreaterEqual(result["test_rouge1"], 10) self.assertGreaterEqual(result["test_rouge2"], 2) self.assertGreaterEqual(result["test_rougeL"], 7) self.assertGreaterEqual(result["test_rougeLsum"], 7) @slow def test_run_mlm(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(sys, "argv", testargs): run_mlm_flax.main() result = get_results(tmp_dir) self.assertLess(result["eval_perplexity"], 42) @slow def test_run_t5_mlm(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(sys, "argv", testargs): run_t5_mlm_flax.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.42) @slow def test_run_ner(self): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu epochs = 7 if get_gpu_count() > 1 else 2 tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(sys, "argv", testargs): run_flax_ner.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.75) self.assertGreaterEqual(result["eval_f1"], 0.3) @slow def test_run_qa(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(sys, "argv", testargs): run_qa.main() result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_f1"], 30) self.assertGreaterEqual(result["eval_exact"], 30)
transformers-main
examples/flax/test_flax_examples.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. git_repo_path = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def pytest_addoption(parser): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(parser) def pytest_terminal_summary(terminalreporter): from transformers.testing_utils import pytest_terminal_summary_main make_reports = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(terminalreporter, id=make_reports)
transformers-main
examples/flax/conftest.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for question answering. """ # You can also adapt this script on your own question answering task. Pointers for this are left as comments. import json import logging import math import os import random import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from pathlib import Path from typing import Any, Callable, Dict, Optional, Tuple import datasets import evaluate import jax import jax.numpy as jnp import numpy as np import optax from datasets import load_dataset from flax import struct, traverse_util from flax.jax_utils import pad_shard_unpad, replicate, unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard from huggingface_hub import Repository, create_repo from tqdm import tqdm from utils_qa import postprocess_qa_predictions import transformers from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, FlaxAutoModelForQuestionAnswering, HfArgumentParser, PreTrainedTokenizerFast, is_tensorboard_available, ) from transformers.utils import check_min_version, send_example_telemetry logger = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.32.0.dev0") Array = Any Dataset = datasets.arrow_dataset.Dataset PRNGKey = Any # region Arguments @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" "should only be set to `True` for repositories you trust and in which you have read the code, as it will" "execute code present on the Hub on your local machine." ) }, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: int = field( default=384, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when" " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) version_2_with_negative: bool = field( default=False, metadata={"help": "If true, some of the examples do not have an answer."} ) null_score_diff_threshold: float = field( default=0.0, metadata={ "help": ( "The threshold used to select the null answer: if the best answer has a score that is less than " "the score of the null answer minus this threshold, the null answer is selected for this example. " "Only useful when `version_2_with_negative=True`." ) }, ) doc_stride: int = field( default=128, metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, ) n_best_size: int = field( default=20, metadata={"help": "The total number of n-best predictions to generate when looking for an answer."}, ) max_answer_length: int = field( default=30, metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) }, ) def __post_init__(self): if ( self.dataset_name is None and self.train_file is None and self.validation_file is None and self.test_file is None ): raise ValueError("Need either a dataset name or a training/validation file/test_file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if self.test_file is not None: extension = self.test_file.split(".")[-1] assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." # endregion # region Create a train state def create_train_state( model: FlaxAutoModelForQuestionAnswering, learning_rate_fn: Callable[[int], float], num_labels: int, training_args: TrainingArguments, ) -> train_state.TrainState: """Create initial training state.""" class TrainState(train_state.TrainState): """Train state with an Optax optimizer. The two functions below differ depending on whether the task is classification or regression. Args: logits_fn: Applied to last layer to obtain the logits. loss_fn: Function to compute the loss. """ logits_fn: Callable = struct.field(pytree_node=False) loss_fn: Callable = struct.field(pytree_node=False) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) tx = optax.adamw( learning_rate=learning_rate_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) def cross_entropy_loss(logits, labels): start_loss = optax.softmax_cross_entropy(logits[0], onehot(labels[0], num_classes=num_labels)) end_loss = optax.softmax_cross_entropy(logits[1], onehot(labels[1], num_classes=num_labels)) xentropy = (start_loss + end_loss) / 2.0 return jnp.mean(xentropy) return TrainState.create( apply_fn=model.__call__, params=model.params, tx=tx, logits_fn=lambda logits: logits, loss_fn=cross_entropy_loss, ) # endregion # region Create learning rate function def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.array]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn # endregion # region train data iterator def train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int): """Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices.""" steps_per_epoch = len(dataset) // batch_size perms = jax.random.permutation(rng, len(dataset)) perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch. perms = perms.reshape((steps_per_epoch, batch_size)) for perm in perms: batch = dataset[perm] batch = {k: np.array(v) for k, v in batch.items()} batch = shard(batch) yield batch # endregion # region eval data iterator def eval_data_collator(dataset: Dataset, batch_size: int): """Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop.""" batch_idx = np.arange(len(dataset)) steps_per_epoch = math.ceil(len(dataset) / batch_size) batch_idx = np.array_split(batch_idx, steps_per_epoch) for idx in batch_idx: batch = dataset[idx] batch = {k: np.array(v) for k, v in batch.items()} yield batch # endregion def main(): # region Argument parsing # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_qa", model_args, data_args, framework="flax") # endregion # region Logging # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # endregion # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # region Load Data # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) else: # Loading the dataset from local csv or json file. data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] raw_datasets = load_dataset( extension, data_files=data_files, field="data", cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # endregion # region Load pretrained model and tokenizer # # Load pretrained model and tokenizer config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=True, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # endregion # region Tokenizer check: this script requires a fast tokenizer. if not isinstance(tokenizer, PreTrainedTokenizerFast): raise ValueError( "This example script only works for models that have a fast tokenizer. Checkout the big table of models at" " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet" " this requirement" ) # endregion # region Preprocessing the datasets # Preprocessing is slightly different for training and evaluation. if training_args.do_train: column_names = raw_datasets["train"].column_names elif training_args.do_eval: column_names = raw_datasets["validation"].column_names else: column_names = raw_datasets["test"].column_names question_column_name = "question" if "question" in column_names else column_names[0] context_column_name = "context" if "context" in column_names else column_names[1] answer_column_name = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). pad_on_right = tokenizer.padding_side == "right" if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Training preprocessing def prepare_train_features(examples): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The offset mappings will give us a map from token to character position in the original context. This will # help us compute the start_positions and end_positions. offset_mapping = tokenized_examples.pop("offset_mapping") # Let's label those examples! tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] for i, offsets in enumerate(offset_mapping): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] answers = examples[answer_column_name][sample_index] # If no answers are given, set the cls_index as answer. if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Start/end character index of the answer in the text. start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != (1 if pad_on_right else 0): token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != (1 if pad_on_right else 0): token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index). if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Otherwise move the token_start_index and token_end_index to the two ends of the answer. # Note: we could go after the last offset if the answer is the last word (edge case). while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char: token_start_index += 1 tokenized_examples["start_positions"].append(token_start_index - 1) while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append(token_end_index + 1) return tokenized_examples processed_raw_datasets = {} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = raw_datasets["train"] if data_args.max_train_samples is not None: # We will select sample from whole data if agument is specified max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) # Create train feature from dataset train_dataset = train_dataset.map( prepare_train_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.max_train_samples is not None: # Number of samples might increase during Feature Creation, We select only specified max samples max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) processed_raw_datasets["train"] = train_dataset # Validation preprocessing def prepare_validation_features(examples): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. tokenized_examples = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=max_seq_length, stride=data_args.doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. tokenized_examples["example_id"] = [] for i in range(len(tokenized_examples["input_ids"])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). sequence_ids = tokenized_examples.sequence_ids(i) context_index = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. sample_index = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. tokenized_examples["offset_mapping"][i] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i]) ] return tokenized_examples if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset") eval_examples = raw_datasets["validation"] if data_args.max_eval_samples is not None: # We will select sample from whole data max_eval_samples = min(len(eval_examples), data_args.max_eval_samples) eval_examples = eval_examples.select(range(max_eval_samples)) # Validation Feature Creation eval_dataset = eval_examples.map( prepare_validation_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.max_eval_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) processed_raw_datasets["validation"] = eval_dataset if training_args.do_predict: if "test" not in raw_datasets: raise ValueError("--do_predict requires a test dataset") predict_examples = raw_datasets["test"] if data_args.max_predict_samples is not None: # We will select sample from whole data predict_examples = predict_examples.select(range(data_args.max_predict_samples)) # Predict Feature Creation predict_dataset = predict_examples.map( prepare_validation_features, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.max_predict_samples is not None: # During Feature creation dataset samples might increase, we will select required samples again max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) processed_raw_datasets["test"] = predict_dataset # endregion # region Metrics and Post-processing: def post_processing_function(examples, features, predictions, stage="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. predictions = postprocess_qa_predictions( examples=examples, features=features, predictions=predictions, version_2_with_negative=data_args.version_2_with_negative, n_best_size=data_args.n_best_size, max_answer_length=data_args.max_answer_length, null_score_diff_threshold=data_args.null_score_diff_threshold, output_dir=training_args.output_dir, prefix=stage, ) # Format the result to the format the metric expects. if data_args.version_2_with_negative: formatted_predictions = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()] references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=formatted_predictions, label_ids=references) metric = evaluate.load("squad_v2" if data_args.version_2_with_negative else "squad") def compute_metrics(p: EvalPrediction): return metric.compute(predictions=p.predictions, references=p.label_ids) # Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor def create_and_fill_np_array(start_or_end_logits, dataset, max_len): """ Create and fill numpy array of size len_of_validation_data * max_length_of_output_tensor Args: start_or_end_logits(:obj:`tensor`): This is the output predictions of the model. We can only enter either start or end logits. eval_dataset: Evaluation dataset max_len(:obj:`int`): The maximum length of the output tensor. ( See the model.eval() part for more details ) """ step = 0 # create a numpy array and fill it with -100. logits_concat = np.full((len(dataset), max_len), -100, dtype=np.float64) # Now since we have create an array now we will populate it with the outputs of the model. for i, output_logit in enumerate(start_or_end_logits): # populate columns # We have to fill it such that we have to take the whole tensor and replace it on the newly created array # And after every iteration we have to change the step batch_size = output_logit.shape[0] cols = output_logit.shape[1] if step + batch_size < len(dataset): logits_concat[step : step + batch_size, :cols] = output_logit else: logits_concat[step:, :cols] = output_logit[: len(dataset) - step] step += batch_size return logits_concat # endregion # region Training steps and logging init train_dataset = processed_raw_datasets["train"] eval_dataset = processed_raw_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Define a summary writer has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(training_args.output_dir) summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)}) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) num_epochs = int(training_args.num_train_epochs) rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) train_batch_size = int(training_args.per_device_train_batch_size) * jax.local_device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.local_device_count() # endregion # region Load model model = FlaxAutoModelForQuestionAnswering.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), ) learning_rate_fn = create_learning_rate_fn( len(train_dataset), train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) state = create_train_state(model, learning_rate_fn, num_labels=max_seq_length, training_args=training_args) # endregion # region Define train step functions def train_step( state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey ) -> Tuple[train_state.TrainState, float]: """Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`.""" dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) start_positions = batch.pop("start_positions") end_positions = batch.pop("end_positions") targets = (start_positions, end_positions) def loss_fn(params): logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True) loss = state.loss_fn(logits, targets) return loss grad_fn = jax.value_and_grad(loss_fn) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch") return new_state, metrics, new_dropout_rng p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) # endregion # region Define eval step functions def eval_step(state, batch): logits = state.apply_fn(**batch, params=state.params, train=False) return state.logits_fn(logits) p_eval_step = jax.pmap(eval_step, axis_name="batch") # endregion # region Define train and eval loop logger.info(f"===== Starting training ({num_epochs} epochs) =====") train_time = 0 # make sure weights are replicated on each device state = replicate(state) train_time = 0 step_per_epoch = len(train_dataset) // train_batch_size total_steps = step_per_epoch * num_epochs epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) for epoch in epochs: train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # train for step, batch in enumerate( tqdm( train_data_collator(input_rng, train_dataset, train_batch_size), total=step_per_epoch, desc="Training...", position=1, ), 1, ): state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs) train_metrics.append(train_metric) cur_step = epoch * step_per_epoch + step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) train_metrics = [] if ( training_args.do_eval and (cur_step % training_args.eval_steps == 0 or cur_step % step_per_epoch == 0) and cur_step > 0 ): eval_metrics = {} all_start_logits = [] all_end_logits = [] # evaluate for batch in tqdm( eval_data_collator(eval_dataset, eval_batch_size), total=math.ceil(len(eval_dataset) / eval_batch_size), desc="Evaluating ...", position=2, ): _ = batch.pop("example_id") _ = batch.pop("offset_mapping") predictions = pad_shard_unpad(p_eval_step)( state, batch, min_device_batch=per_device_eval_batch_size ) start_logits = np.array(predictions[0]) end_logits = np.array(predictions[1]) all_start_logits.append(start_logits) all_end_logits.append(end_logits) max_len = max([x.shape[1] for x in all_start_logits]) # Get the max_length of the tensor # concatenate the numpy array start_logits_concat = create_and_fill_np_array(all_start_logits, eval_dataset, max_len) end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset, max_len) # delete the list of numpy arrays del all_start_logits del all_end_logits outputs_numpy = (start_logits_concat, end_logits_concat) prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy) eval_metrics = compute_metrics(prediction) logger.info(f"Step... ({cur_step}/{total_steps} | Evaluation metrics: {eval_metrics})") if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps): # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(unreplicate(state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}" # endregion # Eval after training if training_args.do_eval: eval_metrics = {} all_start_logits = [] all_end_logits = [] eval_loader = eval_data_collator(eval_dataset, eval_batch_size) for batch in tqdm( eval_loader, total=math.ceil(len(eval_dataset) / eval_batch_size), desc="Evaluating ...", position=2 ): _ = batch.pop("example_id") _ = batch.pop("offset_mapping") predictions = pad_shard_unpad(p_eval_step)(state, batch, min_device_batch=per_device_eval_batch_size) start_logits = np.array(predictions[0]) end_logits = np.array(predictions[1]) all_start_logits.append(start_logits) all_end_logits.append(end_logits) max_len = max([x.shape[1] for x in all_start_logits]) # Get the max_length of the tensor # concatenate the numpy array start_logits_concat = create_and_fill_np_array(all_start_logits, eval_dataset, max_len) end_logits_concat = create_and_fill_np_array(all_end_logits, eval_dataset, max_len) # delete the list of numpy arrays del all_start_logits del all_end_logits outputs_numpy = (start_logits_concat, end_logits_concat) prediction = post_processing_function(eval_examples, eval_dataset, outputs_numpy) eval_metrics = compute_metrics(prediction) if jax.process_index() == 0: eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers-main
examples/flax/question-answering/run_qa.py
# coding=utf-8 # Copyright 2020 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Post-processing utilities for question answering. """ import collections import json import logging import os from typing import Optional, Tuple import numpy as np from tqdm.auto import tqdm logger = logging.getLogger(__name__) def postprocess_qa_predictions( examples, features, predictions: Tuple[np.ndarray, np.ndarray], version_2_with_negative: bool = False, n_best_size: int = 20, max_answer_length: int = 30, null_score_diff_threshold: float = 0.0, output_dir: Optional[str] = None, prefix: Optional[str] = None, log_level: Optional[int] = logging.WARNING, ): """ Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the original contexts. This is the base postprocessing functions for models that only return start and end logits. Args: examples: The non-preprocessed dataset (see the main script for more information). features: The processed dataset (see the main script for more information). predictions (:obj:`Tuple[np.ndarray, np.ndarray]`): The predictions of the model: two arrays containing the start logits and the end logits respectively. Its first dimension must match the number of elements of :obj:`features`. version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the underlying dataset contains examples with no answers. n_best_size (:obj:`int`, `optional`, defaults to 20): The total number of n-best predictions to generate when looking for an answer. max_answer_length (:obj:`int`, `optional`, defaults to 30): The maximum length of an answer that can be generated. This is needed because the start and end predictions are not conditioned on one another. null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0): The threshold used to select the null answer: if the best answer has a score that is less than the score of the null answer minus this threshold, the null answer is selected for this example (note that the score of the null answer for an example giving several features is the minimum of the scores for the null answer on each feature: all features must be aligned on the fact they `want` to predict a null answer). Only useful when :obj:`version_2_with_negative` is :obj:`True`. output_dir (:obj:`str`, `optional`): If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null answers, are saved in `output_dir`. prefix (:obj:`str`, `optional`): If provided, the dictionaries mentioned above are saved with `prefix` added to their names. log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``): ``logging`` log level (e.g., ``logging.WARNING``) """ if len(predictions) != 2: raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).") all_start_logits, all_end_logits = predictions if len(predictions[0]) != len(features): raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.") # Build a map example to its corresponding features. example_id_to_index = {k: i for i, k in enumerate(examples["id"])} features_per_example = collections.defaultdict(list) for i, feature in enumerate(features): features_per_example[example_id_to_index[feature["example_id"]]].append(i) # The dictionaries we have to fill. all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() if version_2_with_negative: scores_diff_json = collections.OrderedDict() # Logging. logger.setLevel(log_level) logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.") # Let's loop over all the examples! for example_index, example in enumerate(tqdm(examples)): # Those are the indices of the features associated to the current example. feature_indices = features_per_example[example_index] min_null_prediction = None prelim_predictions = [] # Looping through all the features associated to the current example. for feature_index in feature_indices: # We grab the predictions of the model for this feature. start_logits = all_start_logits[feature_index] end_logits = all_end_logits[feature_index] # This is what will allow us to map some the positions in our logits to span of texts in the original # context. offset_mapping = features[feature_index]["offset_mapping"] # Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context # available in the current feature. token_is_max_context = features[feature_index].get("token_is_max_context", None) # Update minimum null prediction. feature_null_score = start_logits[0] + end_logits[0] if min_null_prediction is None or min_null_prediction["score"] > feature_null_score: min_null_prediction = { "offsets": (0, 0), "score": feature_null_score, "start_logit": start_logits[0], "end_logit": end_logits[0], } # Go through all possibilities for the `n_best_size` greater start and end logits. start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist() end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist() for start_index in start_indexes: for end_index in end_indexes: # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond # to part of the input_ids that are not in the context. if ( start_index >= len(offset_mapping) or end_index >= len(offset_mapping) or offset_mapping[start_index] is None or len(offset_mapping[start_index]) < 2 or offset_mapping[end_index] is None or len(offset_mapping[end_index]) < 2 ): continue # Don't consider answers with a length that is either < 0 or > max_answer_length. if end_index < start_index or end_index - start_index + 1 > max_answer_length: continue # Don't consider answer that don't have the maximum context available (if such information is # provided). if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False): continue prelim_predictions.append( { "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]), "score": start_logits[start_index] + end_logits[end_index], "start_logit": start_logits[start_index], "end_logit": end_logits[end_index], } ) if version_2_with_negative and min_null_prediction is not None: # Add the minimum null prediction prelim_predictions.append(min_null_prediction) null_score = min_null_prediction["score"] # Only keep the best `n_best_size` predictions. predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size] # Add back the minimum null prediction if it was removed because of its low score. if ( version_2_with_negative and min_null_prediction is not None and not any(p["offsets"] == (0, 0) for p in predictions) ): predictions.append(min_null_prediction) # Use the offsets to gather the answer text in the original context. context = example["context"] for pred in predictions: offsets = pred.pop("offsets") pred["text"] = context[offsets[0] : offsets[1]] # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid # failure. if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""): predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0}) # Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using # the LogSumExp trick). scores = np.array([pred.pop("score") for pred in predictions]) exp_scores = np.exp(scores - np.max(scores)) probs = exp_scores / exp_scores.sum() # Include the probabilities in our predictions. for prob, pred in zip(probs, predictions): pred["probability"] = prob # Pick the best prediction. If the null answer is not possible, this is easy. if not version_2_with_negative: all_predictions[example["id"]] = predictions[0]["text"] else: # Otherwise we first need to find the best non-empty prediction. i = 0 while predictions[i]["text"] == "": i += 1 best_non_null_pred = predictions[i] # Then we compare to the null prediction using the threshold. score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"] scores_diff_json[example["id"]] = float(score_diff) # To be JSON-serializable. if score_diff > null_score_diff_threshold: all_predictions[example["id"]] = "" else: all_predictions[example["id"]] = best_non_null_pred["text"] # Make `predictions` JSON-serializable by casting np.float back to float. all_nbest_json[example["id"]] = [ {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()} for pred in predictions ] # If we have an output_dir, let's save all those dicts. if output_dir is not None: if not os.path.isdir(output_dir): raise EnvironmentError(f"{output_dir} is not a directory.") prediction_file = os.path.join( output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json" ) nbest_file = os.path.join( output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json" ) if version_2_with_negative: null_odds_file = os.path.join( output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json" ) logger.info(f"Saving predictions to {prediction_file}.") with open(prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") logger.info(f"Saving nbest_preds to {nbest_file}.") with open(nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: logger.info(f"Saving null_odds to {null_odds_file}.") with open(null_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions def postprocess_qa_predictions_with_beam_search( examples, features, predictions: Tuple[np.ndarray, np.ndarray], version_2_with_negative: bool = False, n_best_size: int = 20, max_answer_length: int = 30, start_n_top: int = 5, end_n_top: int = 5, output_dir: Optional[str] = None, prefix: Optional[str] = None, log_level: Optional[int] = logging.WARNING, ): """ Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as cls token predictions. Args: examples: The non-preprocessed dataset (see the main script for more information). features: The processed dataset (see the main script for more information). predictions (:obj:`Tuple[np.ndarray, np.ndarray]`): The predictions of the model: two arrays containing the start logits and the end logits respectively. Its first dimension must match the number of elements of :obj:`features`. version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the underlying dataset contains examples with no answers. n_best_size (:obj:`int`, `optional`, defaults to 20): The total number of n-best predictions to generate when looking for an answer. max_answer_length (:obj:`int`, `optional`, defaults to 30): The maximum length of an answer that can be generated. This is needed because the start and end predictions are not conditioned on one another. start_n_top (:obj:`int`, `optional`, defaults to 5): The number of top start logits too keep when searching for the :obj:`n_best_size` predictions. end_n_top (:obj:`int`, `optional`, defaults to 5): The number of top end logits too keep when searching for the :obj:`n_best_size` predictions. output_dir (:obj:`str`, `optional`): If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if :obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null answers, are saved in `output_dir`. prefix (:obj:`str`, `optional`): If provided, the dictionaries mentioned above are saved with `prefix` added to their names. log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``): ``logging`` log level (e.g., ``logging.WARNING``) """ if len(predictions) != 5: raise ValueError("`predictions` should be a tuple with five elements.") start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions if len(predictions[0]) != len(features): raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.") # Build a map example to its corresponding features. example_id_to_index = {k: i for i, k in enumerate(examples["id"])} features_per_example = collections.defaultdict(list) for i, feature in enumerate(features): features_per_example[example_id_to_index[feature["example_id"]]].append(i) # The dictionaries we have to fill. all_predictions = collections.OrderedDict() all_nbest_json = collections.OrderedDict() scores_diff_json = collections.OrderedDict() if version_2_with_negative else None # Logging. logger.setLevel(log_level) logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.") # Let's loop over all the examples! for example_index, example in enumerate(tqdm(examples)): # Those are the indices of the features associated to the current example. feature_indices = features_per_example[example_index] min_null_score = None prelim_predictions = [] # Looping through all the features associated to the current example. for feature_index in feature_indices: # We grab the predictions of the model for this feature. start_log_prob = start_top_log_probs[feature_index] start_indexes = start_top_index[feature_index] end_log_prob = end_top_log_probs[feature_index] end_indexes = end_top_index[feature_index] feature_null_score = cls_logits[feature_index] # This is what will allow us to map some the positions in our logits to span of texts in the original # context. offset_mapping = features[feature_index]["offset_mapping"] # Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context # available in the current feature. token_is_max_context = features[feature_index].get("token_is_max_context", None) # Update minimum null prediction if min_null_score is None or feature_null_score < min_null_score: min_null_score = feature_null_score # Go through all possibilities for the `n_start_top`/`n_end_top` greater start and end logits. for i in range(start_n_top): for j in range(end_n_top): start_index = int(start_indexes[i]) j_index = i * end_n_top + j end_index = int(end_indexes[j_index]) # Don't consider out-of-scope answers (last part of the test should be unnecessary because of the # p_mask but let's not take any risk) if ( start_index >= len(offset_mapping) or end_index >= len(offset_mapping) or offset_mapping[start_index] is None or len(offset_mapping[start_index]) < 2 or offset_mapping[end_index] is None or len(offset_mapping[end_index]) < 2 ): continue # Don't consider answers with a length negative or > max_answer_length. if end_index < start_index or end_index - start_index + 1 > max_answer_length: continue # Don't consider answer that don't have the maximum context available (if such information is # provided). if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False): continue prelim_predictions.append( { "offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]), "score": start_log_prob[i] + end_log_prob[j_index], "start_log_prob": start_log_prob[i], "end_log_prob": end_log_prob[j_index], } ) # Only keep the best `n_best_size` predictions. predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size] # Use the offsets to gather the answer text in the original context. context = example["context"] for pred in predictions: offsets = pred.pop("offsets") pred["text"] = context[offsets[0] : offsets[1]] # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid # failure. if len(predictions) == 0: # Without predictions min_null_score is going to be None and None will cause an exception later min_null_score = -2e-6 predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": min_null_score}) # Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using # the LogSumExp trick). scores = np.array([pred.pop("score") for pred in predictions]) exp_scores = np.exp(scores - np.max(scores)) probs = exp_scores / exp_scores.sum() # Include the probabilities in our predictions. for prob, pred in zip(probs, predictions): pred["probability"] = prob # Pick the best prediction and set the probability for the null answer. all_predictions[example["id"]] = predictions[0]["text"] if version_2_with_negative: scores_diff_json[example["id"]] = float(min_null_score) # Make `predictions` JSON-serializable by casting np.float back to float. all_nbest_json[example["id"]] = [ {k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()} for pred in predictions ] # If we have an output_dir, let's save all those dicts. if output_dir is not None: if not os.path.isdir(output_dir): raise EnvironmentError(f"{output_dir} is not a directory.") prediction_file = os.path.join( output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json" ) nbest_file = os.path.join( output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json" ) if version_2_with_negative: null_odds_file = os.path.join( output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json" ) logger.info(f"Saving predictions to {prediction_file}.") with open(prediction_file, "w") as writer: writer.write(json.dumps(all_predictions, indent=4) + "\n") logger.info(f"Saving nbest_preds to {nbest_file}.") with open(nbest_file, "w") as writer: writer.write(json.dumps(all_nbest_json, indent=4) + "\n") if version_2_with_negative: logger.info(f"Saving null_odds to {null_odds_file}.") with open(null_odds_file, "w") as writer: writer.write(json.dumps(scores_diff_json, indent=4) + "\n") return all_predictions, scores_diff_json
transformers-main
examples/flax/question-answering/utils_qa.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for summarization. """ # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. import json import logging import math import os import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from functools import partial from pathlib import Path from typing import Callable, Optional import datasets import evaluate import jax import jax.numpy as jnp import nltk # Here to have a nice missing dependency error message early on import numpy as np import optax from datasets import Dataset, load_dataset from filelock import FileLock from flax import jax_utils, traverse_util from flax.jax_utils import pad_shard_unpad, unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key from huggingface_hub import Repository, create_repo from tqdm import tqdm import transformers from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, AutoConfig, AutoTokenizer, FlaxAutoModelForSeq2SeqLM, HfArgumentParser, is_tensorboard_available, ) from transformers.utils import is_offline_mode, send_example_telemetry logger = logging.getLogger(__name__) try: nltk.data.find("tokenizers/punkt") except (LookupError, OSError): if is_offline_mode(): raise LookupError( "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" ) with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) label_smoothing_factor: float = field( default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."} ) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) gradient_checkpointing: bool = field( default=False, metadata={ "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass." }, ) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" "should only be set to `True` for repositories you trust and in which you have read the code, as it will" "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) text_column: Optional[str] = field( default=None, metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, ) summary_column: Optional[str] = field( default=None, metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."}, ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input predict data file to do prediction on (a text file)."}, ) max_source_length: Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) val_max_target_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." "This argument is also used to override the `max_length` param of `model.generate`, which is used " "during evaluation." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) source_prefix: Optional[str] = field( default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} ) predict_with_generate: bool = field( default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) num_beams: Optional[int] = field( default=None, metadata={ "help": ( "Number of beams to use for evaluation. This argument will be passed to `model.generate`, " "which is used during evaluation." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __post_init__(self): if ( self.dataset_name is None and self.train_file is None and self.validation_file is None and self.test_file is None ): raise ValueError("Need either a dataset name or a training, validation, or test file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if self.test_file is not None: extension = self.test_file.split(".")[-1] assert extension in ["csv", "json"], "`test_file` should be a csv or a json file." if self.val_max_target_length is None: self.val_max_target_length = self.max_target_length summarization_name_mapping = { "amazon_reviews_multi": ("review_body", "review_title"), "big_patent": ("description", "abstract"), "cnn_dailymail": ("article", "highlights"), "orange_sum": ("text", "summary"), "pn_summary": ("article", "summary"), "psc": ("extract_text", "summary_text"), "samsum": ("dialogue", "summary"), "thaisum": ("body", "summary"), "xglue": ("news_body", "news_title"), "xsum": ("document", "summary"), "wiki_summary": ("article", "highlights"), } class TrainState(train_state.TrainState): dropout_rng: jnp.ndarray def replicate(self): return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True): """ Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. """ if shuffle: batch_idx = jax.random.permutation(rng, len(dataset)) batch_idx = np.asarray(batch_idx) else: batch_idx = np.arange(len(dataset)) if drop_last: steps_per_epoch = len(dataset) // batch_size batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) else: steps_per_epoch = math.ceil(len(dataset) / batch_size) batch_idx = np.array_split(batch_idx, steps_per_epoch) for idx in batch_idx: batch = dataset[idx] batch = {k: np.array(v) for k, v in batch.items()} yield batch def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.array]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_summarization", model_args, data_args, framework="flax") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files this script will use the first column for the full texts and the second column for the # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments). # if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False, token=model_args.token, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] dataset = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer if model_args.config_name: config = AutoConfig.from_pretrained( model_args.config_name, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = FlaxAutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: model = FlaxAutoModelForSeq2SeqLM.from_config( config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), trust_remote_code=model_args.trust_remote_code, ) if training_args.gradient_checkpointing: model.enable_gradient_checkpointing() if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") prefix = data_args.source_prefix if data_args.source_prefix is not None else "" # Preprocessing the datasets. # We need to tokenize inputs and targets. if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") column_names = dataset["train"].column_names elif training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset") column_names = dataset["validation"].column_names elif training_args.do_predict: if "test" not in dataset: raise ValueError("--do_predict requires a test dataset") column_names = dataset["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return # Get the column names for input/target. dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None) if data_args.text_column is None: text_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: text_column = data_args.text_column if text_column not in column_names: raise ValueError( f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}" ) if data_args.summary_column is None: summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: summary_column = data_args.summary_column if summary_column not in column_names: raise ValueError( f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}" ) # Temporarily set max_target_length for training. max_target_length = data_args.max_target_length # In Flax, for seq2seq models we need to pass `decoder_input_ids` # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here # for that dynamically import the `shift_tokens_right` function from the model file model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"]) shift_tokens_right_fn = getattr(model_module, "shift_tokens_right") # Setting padding="max_length" as we need fixed length inputs for jitted functions def preprocess_function(examples): inputs = examples[text_column] targets = examples[summary_column] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer( inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np" ) # Setup the tokenizer for targets labels = tokenizer( text_target=targets, max_length=max_target_length, padding="max_length", truncation=True, return_tensors="np", ) model_inputs["labels"] = labels["input_ids"] decoder_input_ids = shift_tokens_right_fn( labels["input_ids"], config.pad_token_id, config.decoder_start_token_id ) model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids) # We need decoder_attention_mask so we can ignore pad tokens from loss model_inputs["decoder_attention_mask"] = labels["attention_mask"] return model_inputs if training_args.do_train: train_dataset = dataset["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) train_dataset = train_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on train dataset", ) if training_args.do_eval: max_target_length = data_args.val_max_target_length eval_dataset = dataset["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) eval_dataset = eval_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on validation dataset", ) if training_args.do_predict: max_target_length = data_args.val_max_target_length predict_dataset = dataset["test"] if data_args.max_predict_samples is not None: max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) predict_dataset = predict_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on prediction dataset", ) # Metric metric = evaluate.load("rouge") def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [label.strip() for label in labels] # rougeLSum expects newline after each sentence preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] return preds, labels def compute_metrics(preds, labels): decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) result = {k: round(v * 100, 4) for k, v in result.items()} prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] result["gen_len"] = np.mean(prediction_lens) return result # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) rng, dropout_rng = jax.random.split(rng) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() steps_per_epoch = len(train_dataset) // train_batch_size total_train_steps = steps_per_epoch * num_epochs # Create learning rate schedule linear_decay_lr_schedule_fn = create_learning_rate_fn( len(train_dataset), train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer adamw = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) # label smoothed cross entropy def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0): """ The label smoothing implementation is adapted from Flax's official example: https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104 """ vocab_size = logits.shape[-1] confidence = 1.0 - label_smoothing_factor low_confidence = (1.0 - confidence) / (vocab_size - 1) normalizing_constant = -( confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20) ) soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence) loss = optax.softmax_cross_entropy(logits, soft_labels) loss = loss - normalizing_constant # ignore padded tokens from loss loss = loss * padding_mask loss = loss.sum() num_labels = padding_mask.sum() return loss, num_labels # Define gradient update step fn def train_step(state, batch, label_smoothing_factor=0.0): dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) def compute_loss(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) return loss, num_labels grad_fn = jax.value_and_grad(compute_loss, has_aux=True) (loss, num_labels), grad = grad_fn(state.params) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) # true grad = total grad / total samples grad = jax.lax.psum(grad, "batch") grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} return new_state, metrics # Define eval fn def eval_step(params, batch, label_smoothing_factor=0.0): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] loss, num_labels = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) metrics = {"loss": loss} return metrics # Define generation function max_length = ( data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length ) num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def generate_step(params, batch): model.params = params output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs) return output_ids.sequences # Create parallel version of the train and eval step p_train_step = jax.pmap( partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,) ) p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch") p_generate_step = jax.pmap(generate_step, "batch") # Replicate the train state on each device state = state.replicate() logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {num_epochs}") logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") logger.info(f" Total optimization steps = {total_train_steps}") train_time = 0 epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() # Create sampling rng rng, input_rng = jax.random.split(rng) train_metrics = [] # Generate an epoch by shuffling sampling indices from the train dataset train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True) steps_per_epoch = len(train_dataset) // train_batch_size # train for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False): batch = next(train_loader) batch = shard(batch) state, train_metric = p_train_step(state, batch) train_metrics.append(train_metric) train_time += time.time() - train_start train_metric = unreplicate(train_metric) epochs.write( f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) # ======================== Evaluating ============================== eval_metrics = [] eval_preds = [] eval_labels = [] eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False) eval_steps = math.ceil(len(eval_dataset) / eval_batch_size) for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): # Model forward batch = next(eval_loader) labels = batch["labels"] metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, batch, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # generation if data_args.predict_with_generate: generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch) eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) eval_labels.extend(labels) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) # compute ROUGE metrics rouge_desc = "" if data_args.predict_with_generate: rouge_metrics = compute_metrics(eval_preds, eval_labels) eval_metrics.update(rouge_metrics) rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()]) # Print metrics and update progress bar desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})" epochs.write(desc) epochs.desc = desc # Save metrics if has_tensorboard and jax.process_index() == 0: cur_step = epoch * (len(train_dataset) // train_batch_size) write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False) # ======================== Prediction loop ============================== if training_args.do_predict: logger.info("*** Predict ***") pred_metrics = [] pred_generations = [] pred_labels = [] pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size, drop_last=False) pred_steps = math.ceil(len(predict_dataset) / eval_batch_size) for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False): # Model forward batch = next(pred_loader) labels = batch["labels"] metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, batch, min_device_batch=per_device_eval_batch_size ) pred_metrics.append(metrics) # generation if data_args.predict_with_generate: generated_ids = pad_shard_unpad(p_generate_step)(state.params, batch) pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) pred_labels.extend(labels) # normalize prediction metrics pred_metrics = get_metrics(pred_metrics) pred_metrics = jax.tree_util.tree_map(jnp.mean, pred_metrics) # compute ROUGE metrics rouge_desc = "" if data_args.predict_with_generate: rouge_metrics = compute_metrics(pred_generations, pred_labels) pred_metrics.update(rouge_metrics) rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()]) # Print metrics desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})" logger.info(desc) # save final metrics in json if jax.process_index() == 0: rouge_metrics = {f"test_{metric_name}": value for metric_name, value in rouge_metrics.items()} path = os.path.join(training_args.output_dir, "test_results.json") with open(path, "w") as f: json.dump(rouge_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers-main
examples/flax/summarization/run_summarization_flax.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning a 🤗 Flax Transformers model for sequence classification on GLUE.""" import json import logging import math import os import random import sys import time import warnings from dataclasses import dataclass, field from pathlib import Path from typing import Any, Callable, Dict, Optional, Tuple import datasets import evaluate import jax import jax.numpy as jnp import numpy as np import optax from datasets import load_dataset from flax import struct, traverse_util from flax.jax_utils import pad_shard_unpad, replicate, unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard from huggingface_hub import Repository, create_repo from tqdm import tqdm import transformers from transformers import ( AutoConfig, AutoTokenizer, FlaxAutoModelForSequenceClassification, HfArgumentParser, PretrainedConfig, TrainingArguments, is_tensorboard_available, ) from transformers.utils import check_min_version, send_example_telemetry logger = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.32.0.dev0") Array = Any Dataset = datasets.arrow_dataset.Dataset PRNGKey = Any task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) use_slow_tokenizer: Optional[bool] = field( default=False, metadata={"help": "If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library)."}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" "should only be set to `True` for repositories you trust and in which you have read the code, as it will" "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ task_name: Optional[str] = field( default=None, metadata={"help": f"The name of the glue task to train on. choices {list(task_to_keys.keys())}"} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a csv or JSON file)."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."}, ) text_column_name: Optional[str] = field( default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."} ) label_column_name: Optional[str] = field( default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."} ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: int = field( default=None, metadata={ "help": ( "The maximum total input sequence length after tokenization. If set, sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) def __post_init__(self): if self.task_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." self.task_name = self.task_name.lower() if type(self.task_name) == str else self.task_name def create_train_state( model: FlaxAutoModelForSequenceClassification, learning_rate_fn: Callable[[int], float], is_regression: bool, num_labels: int, weight_decay: float, ) -> train_state.TrainState: """Create initial training state.""" class TrainState(train_state.TrainState): """Train state with an Optax optimizer. The two functions below differ depending on whether the task is classification or regression. Args: logits_fn: Applied to last layer to obtain the logits. loss_fn: Function to compute the loss. """ logits_fn: Callable = struct.field(pytree_node=False) loss_fn: Callable = struct.field(pytree_node=False) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) tx = optax.adamw( learning_rate=learning_rate_fn, b1=0.9, b2=0.999, eps=1e-6, weight_decay=weight_decay, mask=decay_mask_fn ) if is_regression: def mse_loss(logits, labels): return jnp.mean((logits[..., 0] - labels) ** 2) return TrainState.create( apply_fn=model.__call__, params=model.params, tx=tx, logits_fn=lambda logits: logits[..., 0], loss_fn=mse_loss, ) else: # Classification. def cross_entropy_loss(logits, labels): xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels)) return jnp.mean(xentropy) return TrainState.create( apply_fn=model.__call__, params=model.params, tx=tx, logits_fn=lambda logits: logits.argmax(-1), loss_fn=cross_entropy_loss, ) def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.array]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def glue_train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int): """Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices.""" steps_per_epoch = len(dataset) // batch_size perms = jax.random.permutation(rng, len(dataset)) perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch. perms = perms.reshape((steps_per_epoch, batch_size)) for perm in perms: batch = dataset[perm] batch = {k: np.array(v) for k, v in batch.items()} batch = shard(batch) yield batch def glue_eval_data_collator(dataset: Dataset, batch_size: int): """Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop.""" batch_idx = np.arange(len(dataset)) steps_per_epoch = math.ceil(len(dataset) / batch_size) batch_idx = np.array_split(batch_idx, steps_per_epoch) for idx in batch_idx: batch = dataset[idx] batch = {k: np.array(v) for k, v in batch.items()} yield batch def main(): parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_glue", model_args, data_args, framework="flax") # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named # label if at least two columns are provided. # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.task_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( "glue", data_args.task_name, token=model_args.token, ) else: # Loading the dataset from local csv or json file. data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = (data_args.train_file if data_args.train_file is not None else data_args.valid_file).split(".")[-1] raw_datasets = load_dataset( extension, data_files=data_files, token=model_args.token, ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels if data_args.task_name is not None: is_regression = data_args.task_name == "stsb" if not is_regression: label_list = raw_datasets["train"].features["label"].names num_labels = len(label_list) else: num_labels = 1 else: # Trying to have good defaults here, don't hesitate to tweak to your needs. is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique label_list = raw_datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # Load pretrained model and tokenizer config = AutoConfig.from_pretrained( model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, use_fast=not model_args.use_slow_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = FlaxAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, config=config, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # Preprocessing the datasets if data_args.task_name is not None: sentence1_key, sentence2_key = task_to_keys[data_args.task_name] else: # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None # Some models have set the order of the labels to use, so let's make sure we do use it. label_to_id = None if ( model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id and data_args.task_name is not None and not is_regression ): # Some have all caps in their config, some don't. label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()} if sorted(label_name_to_id.keys()) == sorted(label_list): logger.info( f"The configuration of the model provided the following label correspondence: {label_name_to_id}. " "Using it!" ) label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}." "\nIgnoring the model labels as a result.", ) elif data_args.task_name is None: label_to_id = {v: i for i, v in enumerate(label_list)} def preprocess_function(examples): # Tokenize the texts texts = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*texts, padding="max_length", max_length=data_args.max_seq_length, truncation=True) if "label" in examples: if label_to_id is not None: # Map labels to IDs (not necessary for GLUE tasks) result["labels"] = [label_to_id[l] for l in examples["label"]] else: # In all cases, rename the column to labels because the model will expect that. result["labels"] = examples["label"] return result processed_datasets = raw_datasets.map( preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Define a summary writer has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(training_args.output_dir) summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)}) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) num_epochs = int(training_args.num_train_epochs) rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) train_batch_size = int(training_args.per_device_train_batch_size) * jax.local_device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() learning_rate_fn = create_learning_rate_fn( len(train_dataset), train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) state = create_train_state( model, learning_rate_fn, is_regression, num_labels=num_labels, weight_decay=training_args.weight_decay ) # define step functions def train_step( state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey ) -> Tuple[train_state.TrainState, float]: """Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`.""" dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) targets = batch.pop("labels") def loss_fn(params): logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss = state.loss_fn(logits, targets) return loss grad_fn = jax.value_and_grad(loss_fn) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch") return new_state, metrics, new_dropout_rng p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) def eval_step(state, batch): logits = state.apply_fn(**batch, params=state.params, train=False)[0] return state.logits_fn(logits) p_eval_step = jax.pmap(eval_step, axis_name="batch") if data_args.task_name is not None: metric = evaluate.load("glue", data_args.task_name) else: metric = evaluate.load("accuracy") logger.info(f"===== Starting training ({num_epochs} epochs) =====") train_time = 0 # make sure weights are replicated on each device state = replicate(state) steps_per_epoch = len(train_dataset) // train_batch_size total_steps = steps_per_epoch * num_epochs epochs = tqdm(range(num_epochs), desc=f"Epoch ... (0/{num_epochs})", position=0) for epoch in epochs: train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # train train_loader = glue_train_data_collator(input_rng, train_dataset, train_batch_size) for step, batch in enumerate( tqdm( train_loader, total=steps_per_epoch, desc="Training...", position=1, ), ): state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs) train_metrics.append(train_metric) cur_step = (epoch * steps_per_epoch) + (step + 1) if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) train_metrics = [] if (cur_step % training_args.eval_steps == 0 or cur_step % steps_per_epoch == 0) and cur_step > 0: # evaluate eval_loader = glue_eval_data_collator(eval_dataset, eval_batch_size) for batch in tqdm( eval_loader, total=math.ceil(len(eval_dataset) / eval_batch_size), desc="Evaluating ...", position=2, ): labels = batch.pop("labels") predictions = pad_shard_unpad(p_eval_step)( state, batch, min_device_batch=per_device_eval_batch_size ) metric.add_batch(predictions=np.array(predictions), references=labels) eval_metric = metric.compute() logger.info(f"Step... ({cur_step}/{total_steps} | Eval metrics: {eval_metric})") if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metric, cur_step) if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps): # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(unreplicate(state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}" # save the eval metrics in json if jax.process_index() == 0: eval_metric = {f"eval_{metric_name}": value for metric_name, value in eval_metric.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metric, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers-main
examples/flax/text-classification/run_flax_glue.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a text file or a dataset. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=fill-mask """ import json import logging import math import os import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from itertools import chain # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments. from pathlib import Path from typing import Dict, List, Optional, Tuple import flax import jax import jax.numpy as jnp import numpy as np import optax from datasets import load_dataset from flax import jax_utils, traverse_util from flax.jax_utils import pad_shard_unpad from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard from huggingface_hub import Repository, create_repo from tqdm import tqdm from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoTokenizer, FlaxAutoModelForMaskedLM, HfArgumentParser, PreTrainedTokenizerBase, TensorType, is_tensorboard_available, set_seed, ) from transformers.utils import send_example_telemetry MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) gradient_checkpointing: bool = field( default=False, metadata={ "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass." }, ) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" "should only be set to `True` for repositories you trust and in which you have read the code, as it will" "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) train_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, ) validation_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) }, ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." @flax.struct.dataclass class FlaxDataCollatorForLanguageModeling: """ Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they are not all of the same length. Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. mlm_probability (:obj:`float`, `optional`, defaults to 0.15): The probability with which to (randomly) mask tokens in the input. .. note:: For best performance, this data collator should be used with a dataset having items that are dictionaries or BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the argument :obj:`return_special_tokens_mask=True`. """ tokenizer: PreTrainedTokenizerBase mlm_probability: float = 0.15 def __post_init__(self): if self.tokenizer.mask_token is None: raise ValueError( "This tokenizer does not have a mask token which is necessary for masked language modeling. " "You should pass `mlm=False` to train on causal language modeling instead." ) def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]: # Handle dict or lists with proper padding and conversion to tensor. batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY) # If special token mask has been preprocessed, pop it from the dict. special_tokens_mask = batch.pop("special_tokens_mask", None) batch["input_ids"], batch["labels"] = self.mask_tokens( batch["input_ids"], special_tokens_mask=special_tokens_mask ) return batch def mask_tokens( self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray] ) -> Tuple[np.ndarray, np.ndarray]: """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """ labels = inputs.copy() # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) probability_matrix = np.full(labels.shape, self.mlm_probability) special_tokens_mask = special_tokens_mask.astype("bool") probability_matrix[special_tokens_mask] = 0.0 masked_indices = np.random.binomial(1, probability_matrix).astype("bool") labels[~masked_indices] = -100 # We only compute loss on masked tokens # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) # 10% of the time, we replace masked input tokens with random word indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool") indices_random &= masked_indices & ~indices_replaced random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4") inputs[indices_random] = random_words[indices_random] # The rest of the time (10% of the time) we keep the masked input tokens unchanged return inputs, labels def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray: """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned.""" num_samples = len(samples_idx) if drop_last: samples_to_remove = num_samples % batch_size if samples_to_remove != 0: samples_idx = samples_idx[:-samples_to_remove] sections_split = num_samples // batch_size samples_idx = samples_idx.reshape((sections_split, batch_size)) else: sections_split = math.ceil(num_samples / batch_size) samples_idx = np.array_split(samples_idx, sections_split) return samples_idx def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_mlm", model_args, data_args, framework="flax") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=logging.INFO, datefmt="[%X]", ) # Log on each process the small summary: logger = logging.getLogger(__name__) # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] if extension == "txt": extension = "text" datasets = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, ) datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: config = AutoConfig.from_pretrained( model_args.config_name, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = datasets["train"].column_names else: column_names = datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) if data_args.line_by_line: # When using line_by_line, we just tokenize each nonempty line. padding = "max_length" if data_args.pad_to_max_length else False def tokenize_function(examples): # Remove empty lines examples = [line for line in examples if len(line) > 0 and not line.isspace()] return tokenizer( examples, return_special_tokens_mask=True, padding=padding, truncation=True, max_length=max_seq_length, ) tokenized_datasets = datasets.map( tokenize_function, input_columns=[text_column_name], batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) else: # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more # efficient when it receives the `special_tokens_mask`. def tokenize_function(examples): return tokenizer(examples[text_column_name], return_special_tokens_mask=True) tokenized_datasets = datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Main data processing function that will concatenate all texts from our dataset and generate chunks of # max_seq_length. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= max_seq_length: total_length = (total_length // max_seq_length) * max_seq_length # Split by chunks of max_len. result = { k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)] for k, t in concatenated_examples.items() } return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value # might be slower to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map tokenized_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Data collator # This one will take care of randomly masking the tokens. data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) if model_args.model_name_or_path: model = FlaxAutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: model = FlaxAutoModelForMaskedLM.from_config( config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), trust_remote_code=model_args.trust_remote_code, ) if training_args.gradient_checkpointing: model.enable_gradient_checkpointing() # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs # Create learning rate schedule warmup_fn = optax.linear_schedule( init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps ) decay_fn = optax.linear_schedule( init_value=training_args.learning_rate, end_value=0, transition_steps=num_train_steps - training_args.warmup_steps, ) linear_decay_lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer if training_args.adafactor: # We use the default parameters here to initialize adafactor, # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 optimizer = optax.adafactor( learning_rate=linear_decay_lr_schedule_fn, ) else: optimizer = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer) # Define gradient update step fn def train_step(state, batch, dropout_rng): dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) def loss_fn(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] # compute loss, ignore padded input tokens label_mask = jnp.where(labels > 0, 1.0, 0.0) loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask # take average loss = loss.sum() num_labels = label_mask.sum() return loss, num_labels grad_fn = jax.value_and_grad(loss_fn, has_aux=True) (loss, num_labels), grad = grad_fn(state.params) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) # true grad = total grad / total samples grad = jax.lax.psum(grad, "batch") grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) new_state = state.apply_gradients(grads=grad) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} return new_state, metrics, new_dropout_rng # Create parallel version of the train step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) # Define eval fn def eval_step(params, batch): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] # compute loss, ignore padded input tokens label_mask = jnp.where(labels > 0, 1.0, 0.0) loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask # compute accuracy accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask # summarize metrics metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()} metrics = jax.lax.psum(metrics, axis_name="batch") return metrics p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) # Replicate the train state on each device state = jax_utils.replicate(state) train_time = 0 epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # Generate an epoch by shuffling sampling indices from the train dataset num_train_samples = len(tokenized_datasets["train"]) # Avoid using jax.numpy here in case of TPU training train_samples_idx = np.random.permutation(np.arange(num_train_samples)) train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size) # Gather the indexes for creating the batch and do a training step for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)): samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples, pad_to_multiple_of=16) # Model forward model_inputs = shard(model_inputs.data) state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs) train_metrics.append(train_metric) cur_step = epoch * (num_train_samples // train_batch_size) + step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = jax_utils.unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) train_metrics = [] if cur_step % training_args.eval_steps == 0 and cur_step > 0: # ======================== Evaluating ============================== num_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False) eval_metrics = [] for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples, pad_to_multiple_of=16) # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics) eval_normalizer = eval_metrics.pop("normalizer") eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics) # Update progress bar epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})" # Save metrics if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if cur_step % training_args.save_steps == 0 and cur_step > 0: # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) # Eval after training if training_args.do_eval: num_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False) eval_metrics = [] for _, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples, pad_to_multiple_of=16) # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(lambda metric: jnp.sum(metric).item(), eval_metrics) eval_normalizer = eval_metrics.pop("normalizer") eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics) try: perplexity = math.exp(eval_metrics["loss"]) except OverflowError: perplexity = float("inf") eval_metrics["perplexity"] = perplexity if jax.process_index() == 0: eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers-main
examples/flax/language-modeling/run_mlm_flax.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pre-training/Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=text-generation """ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. import json import logging import math import os import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from itertools import chain from pathlib import Path from typing import Callable, Optional import datasets import jax import jax.numpy as jnp import numpy as np import optax from datasets import Dataset, load_dataset from flax import jax_utils, traverse_util from flax.jax_utils import pad_shard_unpad, unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key from huggingface_hub import Repository, create_repo from tqdm import tqdm import transformers from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, AutoConfig, AutoTokenizer, FlaxAutoModelForCausalLM, HfArgumentParser, is_tensorboard_available, set_seed, ) from transformers.testing_utils import CaptureLogger from transformers.utils import send_example_telemetry logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" "should only be set to `True` for repositories you trust and in which you have read the code, as it will" "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) block_size: Optional[int] = field( default=None, metadata={ "help": ( "Optional input sequence length after tokenization. " "The training dataset will be truncated in block of this size for training. " "Default to the model max input length for single sentence inputs (take into account special tokens)." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) keep_linebreaks: bool = field( default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("train_file` should be a csv, json or text file.") if self.validation_file is not None: extension = self.validation_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("`validation_file` should be a csv, json or text file.") class TrainState(train_state.TrainState): dropout_rng: jnp.ndarray def replicate(self): return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False, drop_last=True): """ Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete, and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`. """ if shuffle: batch_idx = jax.random.permutation(rng, len(dataset)) batch_idx = np.asarray(batch_idx) else: batch_idx = np.arange(len(dataset)) if drop_last: steps_per_epoch = len(dataset) // batch_size batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) else: steps_per_epoch = math.ceil(len(dataset) / batch_size) batch_idx = np.array_split(batch_idx, steps_per_epoch) for idx in batch_idx: batch = dataset[idx] batch = {k: np.array(v) for k, v in batch.items()} yield batch def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.array]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_clm", model_args, data_args, framework="flax") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False, token=model_args.token, ) if "validation" not in dataset.keys(): dataset["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, ) dataset["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, ) else: data_files = {} dataset_args = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] if extension == "txt": extension = "text" dataset_args["keep_linebreaks"] = data_args.keep_linebreaks dataset = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, **dataset_args, token=model_args.token, ) if "validation" not in dataset.keys(): dataset["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, **dataset_args, token=model_args.token, ) dataset["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, **dataset_args, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: config = AutoConfig.from_pretrained( model_args.config_name, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = FlaxAutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: model = FlaxAutoModelForCausalLM.from_config( config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), trust_remote_code=model_args.trust_remote_code, ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = dataset["train"].column_names else: column_names = dataset["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base") def tokenize_function(examples): with CaptureLogger(tok_logger) as cl: output = tokenizer(examples[text_column_name]) # clm input could be much much longer than block_size if "Token indices sequence length is longer than the" in cl.out: tok_logger.warning( "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits" " before being passed to the model." ) return output tokenized_datasets = dataset.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.block_size is None: block_size = tokenizer.model_max_length if block_size > config.max_position_embeddings: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " "Picking 1024 instead. You can change that default value by passing --block_size xxx." ) block_size = 1024 else: if data_args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model" f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(data_args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_train: if "train" not in tokenized_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = lm_datasets["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) if training_args.do_eval: if "validation" not in tokenized_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = lm_datasets["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) rng, dropout_rng = jax.random.split(rng) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() steps_per_epoch = len(train_dataset) // train_batch_size total_train_steps = steps_per_epoch * num_epochs # Create learning rate schedule linear_decay_lr_schedule_fn = create_learning_rate_fn( len(train_dataset), train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer if training_args.adafactor: # We use the default parameters here to initialize adafactor, # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 optimizer = optax.adafactor( learning_rate=linear_decay_lr_schedule_fn, ) else: optimizer = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng) def loss_fn(logits, labels): shift_logits = logits[..., :-1, :] shift_labels = labels[..., 1:] loss = optax.softmax_cross_entropy(shift_logits, onehot(shift_labels, shift_logits.shape[-1])) return loss.mean() # Define gradient update step fn def train_step(state, batch): dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) def compute_loss(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss = loss_fn(logits, labels) return loss grad_fn = jax.value_and_grad(compute_loss) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} metrics = jax.lax.pmean(metrics, axis_name="batch") return new_state, metrics # Define eval fn def eval_step(params, batch): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] loss = loss_fn(logits, labels) # summarize metrics metrics = {"loss": loss} metrics = jax.lax.pmean(metrics, axis_name="batch") return metrics # Create parallel version of the train and eval step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) p_eval_step = jax.pmap(eval_step, "batch") # Replicate the train state on each device state = state.replicate() logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {num_epochs}") logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") logger.info(f" Total optimization steps = {total_train_steps}") train_time = 0 train_metrics = [] epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() # Create sampling rng rng, input_rng = jax.random.split(rng) # Generate an epoch by shuffling sampling indices from the train dataset train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True) steps_per_epoch = len(train_dataset) // train_batch_size # train for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False): batch = next(train_loader) batch = shard(batch) state, train_metric = p_train_step(state, batch) train_metrics.append(train_metric) cur_step = epoch * (len(train_dataset) // train_batch_size) + step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:" f" {train_metric['learning_rate'].mean()})" ) train_metrics = [] if cur_step % training_args.eval_steps == 0 and cur_step > 0: # ======================== Evaluating ============================== eval_metrics = [] eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False) eval_steps = math.ceil(len(eval_dataset) / eval_batch_size) for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): # Model forward batch = next(eval_loader) metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, batch, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) try: eval_metrics["perplexity"] = math.exp(eval_metrics["loss"]) except OverflowError: eval_metrics["perplexity"] = float("inf") # Print metrics and update progress bar desc = ( f"Step... ({cur_step} | Eval Loss: {eval_metrics['loss']} | Eval Perplexity:" f" {eval_metrics['perplexity']})" ) epochs.write(desc) epochs.desc = desc # Save metrics if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if cur_step % training_args.save_steps == 0 and cur_step > 0: # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(unreplicate(state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) # Eval after training if training_args.do_eval: eval_metrics = [] eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size, drop_last=False) eval_steps = math.ceil(len(eval_dataset) / eval_batch_size) for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): # Model forward batch = next(eval_loader) metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, batch, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(lambda x: jnp.mean(x).item(), eval_metrics) try: eval_metrics["perplexity"] = math.exp(eval_metrics["loss"]) except OverflowError: eval_metrics["perplexity"] = float("inf") if jax.process_index() == 0: eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers-main
examples/flax/language-modeling/run_clm_flax.py
#!/usr/bin/env python3 import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class SentencePieceUnigramTokenizer(BaseTokenizer): """ This class is a copy of `DeDLOC's tokenizer implementation <https://github.com/yandex-research/DeDLOC/blob/main/sahajbert/tokenizer/tokenizer_model.py>`__ . Custom SentencePiece Unigram Tokenizer with NMT, NKFC, spaces and lower-casing characters normalization Represents the Unigram algorithm, with the pretokenization used by SentencePiece """ def __init__( self, replacement: str = "▁", add_prefix_space: bool = True, unk_token: Union[str, AddedToken] = "<unk>", eos_token: Union[str, AddedToken] = "</s>", pad_token: Union[str, AddedToken] = "<pad>", ): self.special_tokens = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } self.special_tokens_list = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): self.special_tokens_list[token_dict["id"]] = token_dict["token"] tokenizer = Tokenizer(Unigram()) tokenizer.normalizer = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}"), " "), normalizers.Lowercase(), ] ) tokenizer.pre_tokenizer = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space), pre_tokenizers.Digits(individual_digits=True), pre_tokenizers.Punctuation(), ] ) tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) tokenizer.post_processor = TemplateProcessing( single=f"$A {self.special_tokens['eos']['token']}", special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])], ) parameters = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(tokenizer, parameters) def train( self, files: Union[str, List[str]], vocab_size: int = 8000, show_progress: bool = True, ): """Train the model using the given files""" trainer = trainers.UnigramTrainer( vocab_size=vocab_size, special_tokens=self.special_tokens_list, show_progress=show_progress, ) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) self.add_unk_id() def train_from_iterator( self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int = 8000, show_progress: bool = True, ): """Train the model using the given iterator""" trainer = trainers.UnigramTrainer( vocab_size=vocab_size, special_tokens=self.special_tokens_list, show_progress=show_progress, ) self._tokenizer.train_from_iterator(iterator, trainer=trainer) self.add_unk_id() def add_unk_id(self): tokenizer_json = json.loads(self._tokenizer.to_str()) tokenizer_json["model"]["unk_id"] = self.special_tokens["unk"]["id"] self._tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))
transformers-main
examples/flax/language-modeling/t5_tokenizer_model.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pretraining the library models for T5-like span-masked language modeling on a text file or a dataset. Here is the full list of checkpoints on the hub that can be pretrained by this script: https://huggingface.co/models?filter=t5 """ import json import logging import math import os import sys import time import warnings from dataclasses import asdict, dataclass, field # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments. from enum import Enum from itertools import chain from pathlib import Path from typing import Dict, List, Optional import flax import jax import jax.numpy as jnp import numpy as np import optax from datasets import load_dataset from flax import jax_utils, traverse_util from flax.jax_utils import pad_shard_unpad from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard from huggingface_hub import Repository, create_repo from tqdm import tqdm from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_MASKED_LM_MAPPING, AutoTokenizer, BatchEncoding, FlaxT5ForConditionalGeneration, HfArgumentParser, PreTrainedTokenizerBase, T5Config, is_tensorboard_available, set_seed, ) from transformers.models.t5.modeling_flax_t5 import shift_tokens_right from transformers.utils import send_example_telemetry MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) train_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, ) validation_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total input sequence length after tokenization and masking. Sequences longer than this" " will be truncated. Default to the max input length of the model." ) }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for span masked language modeling loss"} ) mean_noise_span_length: float = field( default=3.0, metadata={"help": "Mean span length of masked tokens"}, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def compute_input_and_target_lengths(inputs_length, noise_density, mean_noise_span_length): """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2466>`__ . Training parameters to avoid padding with random_spans_noise_mask. When training a model with random_spans_noise_mask, we would like to set the other training hyperparmeters in a way that avoids padding. This function helps us compute these hyperparameters. We assume that each noise span in the input is replaced by extra_tokens_per_span_inputs sentinel tokens, and each non-noise span in the targets is replaced by extra_tokens_per_span_targets sentinel tokens. This function tells us the required number of tokens in the raw example (for split_tokens()) as well as the length of the encoded targets. Note that this function assumes the inputs and targets will have EOS appended and includes that in the reported length. Args: inputs_length: an integer - desired length of the tokenized inputs sequence noise_density: a float mean_noise_span_length: a float Returns: tokens_length: length of original text in tokens targets_length: an integer - length in tokens of encoded targets sequence """ def _tokens_length_to_inputs_length_targets_length(tokens_length): num_noise_tokens = int(round(tokens_length * noise_density)) num_nonnoise_tokens = tokens_length - num_noise_tokens num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length)) # inputs contain all nonnoise tokens, sentinels for all noise spans # and one EOS token. _input_length = num_nonnoise_tokens + num_noise_spans + 1 _output_length = num_noise_tokens + num_noise_spans + 1 return _input_length, _output_length tokens_length = inputs_length while _tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0] <= inputs_length: tokens_length += 1 inputs_length, targets_length = _tokens_length_to_inputs_length_targets_length(tokens_length) # minor hack to get the targets length to be equal to inputs length # which is more likely to have been set to a nice round number. if noise_density == 0.5 and targets_length > inputs_length: tokens_length -= 1 targets_length -= 1 return tokens_length, targets_length @flax.struct.dataclass class FlaxDataCollatorForT5MLM: """ Data collator used for T5 span-masked language modeling. It is made sure that after masking the inputs are of length `data_args.max_seq_length` and targets are also of fixed length. For more information on how T5 span-masked language modeling works, one can take a look at the `official paper <https://arxiv.org/pdf/1910.10683.pdf>`__ or the `official code for preprocessing <https://github.com/google-research/text-to-text-transfer-transformer/blob/master/t5/data/preprocessors.py>`__ . Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data. noise_density (:obj:`float`): The probability with which to (randomly) mask tokens in the input. mean_noise_span_length (:obj:`float`): The average span length of the masked tokens. input_length (:obj:`int`): The expected input length after masking. target_length (:obj:`int`): The expected target length after masking. pad_token_id: (:obj:`int`): The pad token id of the model decoder_start_token_id: (:obj:`int): The decoder start token id of the model """ tokenizer: PreTrainedTokenizerBase noise_density: float mean_noise_span_length: float input_length: int target_length: int pad_token_id: int decoder_start_token_id: int def __call__(self, examples: List[Dict[str, np.ndarray]]) -> BatchEncoding: # convert list to dict and tensorize input batch = BatchEncoding( {k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()} ) input_ids = batch["input_ids"] batch_size, expandend_input_length = input_ids.shape mask_indices = np.asarray([self.random_spans_noise_mask(expandend_input_length) for i in range(batch_size)]) labels_mask = ~mask_indices input_ids_sentinel = self.create_sentinel_ids(mask_indices.astype(np.int8)) labels_sentinel = self.create_sentinel_ids(labels_mask.astype(np.int8)) batch["input_ids"] = self.filter_input_ids(input_ids, input_ids_sentinel) batch["labels"] = self.filter_input_ids(input_ids, labels_sentinel) if batch["input_ids"].shape[-1] != self.input_length: raise ValueError( f"`input_ids` are incorrectly preprocessed. `input_ids` length is {batch['input_ids'].shape[-1]}, but" f" should be {self.input_length}." ) if batch["labels"].shape[-1] != self.target_length: raise ValueError( f"`labels` are incorrectly preprocessed. `labels` length is {batch['labels'].shape[-1]}, but should be" f" {self.target_length}." ) # to check that tokens are correctly preprocessed, one can run `self.tokenizer.batch_decode(input_ids)` and `self.tokenizer.batch_decode(labels)` here... batch["decoder_input_ids"] = shift_tokens_right( batch["labels"], self.pad_token_id, self.decoder_start_token_id ) return batch def create_sentinel_ids(self, mask_indices): """ Sentinel ids creation given the indices that should be masked. The start indices of each mask are replaced by the sentinel ids in increasing order. Consecutive mask indices to be deleted are replaced with `-1`. """ start_indices = mask_indices - np.roll(mask_indices, 1, axis=-1) * mask_indices start_indices[:, 0] = mask_indices[:, 0] sentinel_ids = np.where(start_indices != 0, np.cumsum(start_indices, axis=-1), start_indices) sentinel_ids = np.where(sentinel_ids != 0, (len(self.tokenizer) - sentinel_ids), 0) sentinel_ids -= mask_indices - start_indices return sentinel_ids def filter_input_ids(self, input_ids, sentinel_ids): """ Puts sentinel mask on `input_ids` and fuse consecutive mask tokens into a single mask token by deleting. This will reduce the sequence length from `expanded_inputs_length` to `input_length`. """ batch_size = input_ids.shape[0] input_ids_full = np.where(sentinel_ids != 0, sentinel_ids, input_ids) # input_ids tokens and sentinel tokens are >= 0, tokens < 0 are # masked tokens coming after sentinel tokens and should be removed input_ids = input_ids_full[input_ids_full >= 0].reshape((batch_size, -1)) input_ids = np.concatenate( [input_ids, np.full((batch_size, 1), self.tokenizer.eos_token_id, dtype=np.int32)], axis=-1 ) return input_ids def random_spans_noise_mask(self, length): """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2682>`__ . Noise mask consisting of random spans of noise tokens. The number of noise tokens and the number of noise spans and non-noise spans are determined deterministically as follows: num_noise_tokens = round(length * noise_density) num_nonnoise_spans = num_noise_spans = round(num_noise_tokens / mean_noise_span_length) Spans alternate between non-noise and noise, beginning with non-noise. Subject to the above restrictions, all masks are equally likely. Args: length: an int32 scalar (length of the incoming token sequence) noise_density: a float - approximate density of output mask mean_noise_span_length: a number Returns: a boolean tensor with shape [length] """ orig_length = length num_noise_tokens = int(np.round(length * self.noise_density)) num_nonnoise_tokens = length - num_noise_tokens # avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens. num_noise_tokens = min(max(num_noise_tokens, 1), length - 1) # num_noise_tokens should be less than num_noise_tokens and num_nonnoise_tokens num_noise_spans = int(np.round(min(num_noise_tokens, num_nonnoise_tokens) / self.mean_noise_span_length)) # avoid degeneracy by ensuring positive number of noise spans num_noise_spans = max(num_noise_spans, 1) # pick the lengths of the noise spans and the non-noise spans def _random_segmentation(num_items, num_segments): """Partition a sequence of items randomly into non-empty segments. Args: num_items: an integer scalar > 0 num_segments: an integer scalar in [1, num_items] Returns: a Tensor with shape [num_segments] containing positive integers that add up to num_items """ mask_indices = np.arange(num_items - 1) < (num_segments - 1) np.random.shuffle(mask_indices) first_in_segment = np.pad(mask_indices, [[1, 0]]) segment_id = np.cumsum(first_in_segment) # count length of sub segments assuming that list is sorted _, segment_length = np.unique(segment_id, return_counts=True) return segment_length noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans) nonnoise_span_lengths = _random_segmentation(num_nonnoise_tokens, num_noise_spans) interleaved_span_lengths = np.reshape( np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1), [num_noise_spans * 2] ) span_starts = np.cumsum(interleaved_span_lengths)[:-1] span_start_indicator = np.zeros((length,), dtype=np.int8) span_start_indicator[span_starts] = True span_num = np.cumsum(span_start_indicator) is_noise = np.equal(span_num % 2, 1) return is_noise[:orig_length] def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray: """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned.""" num_samples = len(samples_idx) if drop_last: samples_to_remove = num_samples % batch_size if samples_to_remove != 0: samples_idx = samples_idx[:-samples_to_remove] sections_split = num_samples // batch_size samples_idx = samples_idx.reshape((sections_split, batch_size)) else: sections_split = math.ceil(num_samples / batch_size) samples_idx = np.array_split(samples_idx, sections_split) return samples_idx def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_t5_mlm", model_args, data_args, framework="flax") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=logging.INFO, datefmt="[%X]", ) # Log on each process the small summary: logger = logging.getLogger(__name__) # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] if extension == "txt": extension = "text" datasets = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, ) datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.config_name: config = T5Config.from_pretrained( model_args.config_name, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer), token=model_args.token, ) elif model_args.model_name_or_path: config = T5Config.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, ) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = datasets["train"].column_names else: column_names = datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. # Since we make sure that all sequences are of the same length, no attention_mask is needed. def tokenize_function(examples): return tokenizer(examples[text_column_name], return_attention_mask=False) tokenized_datasets = datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token. # To ensure that the input length is `max_seq_length`, we need to increase the maximum length # according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly. expanded_inputs_length, targets_length = compute_input_and_target_lengths( inputs_length=max_seq_length, noise_density=data_args.mlm_probability, mean_noise_span_length=data_args.mean_noise_span_length, ) # Main data processing function that will concatenate all texts from our dataset and generate chunks of expanded_inputs_length. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= expanded_inputs_length: total_length = (total_length // expanded_inputs_length) * expanded_inputs_length # Split by chunks of max_len. result = { k: [t[i : i + expanded_inputs_length] for i in range(0, total_length, expanded_inputs_length)] for k, t in concatenated_examples.items() } return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value # might be slower to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map tokenized_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) if model_args.model_name_or_path: model = FlaxT5ForConditionalGeneration.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), token=model_args.token, ) else: config.vocab_size = len(tokenizer) model = FlaxT5ForConditionalGeneration( config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), ) # Data collator # This one will take care of randomly masking the tokens. data_collator = FlaxDataCollatorForT5MLM( tokenizer=tokenizer, noise_density=data_args.mlm_probability, mean_noise_span_length=data_args.mean_noise_span_length, input_length=max_seq_length, target_length=targets_length, pad_token_id=model.config.pad_token_id, decoder_start_token_id=model.config.decoder_start_token_id, ) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs num_of_hosts = jax.process_count() current_host_idx = jax.process_index() # Create learning rate schedule warmup_fn = optax.linear_schedule( init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps ) decay_fn = optax.linear_schedule( init_value=training_args.learning_rate, end_value=0, transition_steps=num_train_steps - training_args.warmup_steps, ) linear_decay_lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer if training_args.adafactor: # We use the default parameters here to initialize adafactor, # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 optimizer = optax.adafactor( learning_rate=linear_decay_lr_schedule_fn, ) else: optimizer = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer) # Define gradient update step fn def train_step(state, batch, dropout_rng): dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) def loss_fn(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] # compute loss loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean() return loss grad_fn = jax.value_and_grad(loss_fn) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) metrics = jax.lax.pmean( {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch" ) return new_state, metrics, new_dropout_rng # Create parallel version of the train step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) # Define eval fn def eval_step(params, batch): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] # compute loss loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) # compute accuracy accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) # summarize metrics metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()} metrics = jax.lax.pmean(metrics, axis_name="batch") return metrics p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) # Replicate the train state on each device state = jax_utils.replicate(state) train_time = 0 epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # Generate an epoch by shuffling sampling indices from the train dataset num_train_samples = len(tokenized_datasets["train"]) # Avoid using jax.numpy here in case of TPU training train_samples_idx = np.random.permutation(np.arange(num_train_samples)) train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size) # Gather the indexes for creating the batch and do a training step for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)): samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) local_host_model_inputs = { key: np.split(model_inputs.data[key], num_of_hosts, axis=0)[current_host_idx] for key, value in model_inputs.data.items() } # Model forward model_inputs = shard(local_host_model_inputs) state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs) train_metrics.append(train_metric) cur_step = epoch * (num_train_samples // train_batch_size) + step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = jax_utils.unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step} | Loss: {train_metric['loss'].mean()}, Learning Rate:" f" {train_metric['learning_rate'].mean()})" ) train_metrics = [] if cur_step % training_args.eval_steps == 0 and cur_step > 0: # ======================== Evaluating ============================== num_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False) eval_metrics = [] for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # get eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) # Update progress bar epochs.write(f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})") # Save metrics if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if cur_step % training_args.save_steps == 0 and cur_step > 0: # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) # Eval after training if training_args.do_eval: num_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False) eval_metrics = [] for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # get eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(lambda metric: jnp.mean(metric).item(), eval_metrics) if jax.process_index() == 0: eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers-main
examples/flax/language-modeling/run_t5_mlm_flax.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pretraining the library models for denoising language modeling on a text file or a dataset. Here is the full list of checkpoints on the hub that can be pretrained by this script: https://huggingface.co/models?filter=bart """ # You can also adapt this script on your own denoising language modeling task. Pointers for this are left as comments. import json import logging import math import os import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from itertools import chain from pathlib import Path from typing import Dict, List, Optional import flax import jax import jax.numpy as jnp import nltk import numpy as np import optax from datasets import load_dataset from flax import jax_utils, traverse_util from flax.jax_utils import pad_shard_unpad from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard from huggingface_hub import Repository, create_repo from tqdm import tqdm from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_MASKED_LM_MAPPING, AutoTokenizer, BartConfig, BatchEncoding, FlaxBartForConditionalGeneration, HfArgumentParser, PreTrainedTokenizerBase, is_tensorboard_available, set_seed, ) from transformers.models.bart.modeling_flax_bart import shift_tokens_right from transformers.utils import send_example_telemetry MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) train_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, ) validation_ref_file: Optional[str] = field( default=None, metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": ( "The maximum total input sequence length after tokenization and masking. Sequences longer than this" " will be truncated. Default to the max input length of the model." ) }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.3, metadata={"help": "Ratio of tokens to mask for span masked language modeling loss"} ) permute_sentence_ratio: float = field( default=1.0, metadata={"help": "Ratio of sentences to be permuted in each document"} ) poisson_lambda: float = field( default=3.0, metadata={"help": "Mean of Poisson distribution used to generate span-lengths to be masked"} ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("train_file` should be a csv, json or text file.") if self.validation_file is not None: extension = self.validation_file.split(".")[-1] if extension not in ["csv", "json", "txt"]: raise ValueError("`validation_file` should be a csv, json or text file.") @flax.struct.dataclass class FlaxDataCollatorForBartDenoisingLM: """ Data collator used for BART denoising language modeling. The code is largely copied from `<https://github.com/morganmcg1/rotobart/blob/main/data_collator.py#L223>`__. For more information on how BART denoising language modeling works, one can take a look at the `official paper <https://arxiv.org/pdf/1910.13461.pdf>`__ or the `official code for preprocessing <https://github.com/facebookresearch/fairseq/blob/main/fairseq/data/denoising_dataset.py>`__ . Args: tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): The tokenizer used for encoding the data mask_ratio (:obj:`float`): The probability with which to (randomly) mask tokens in the input poisson_lambda (:obj:`float`): Mean parameter of Poisson distribution used to generate span-lengths to be masked permute_sentence_ratio (:obj:`float`): Ratio of sentences to be permuted in each document decoder_start_token_id: (:obj:`int): The decoder start token id of the model """ tokenizer: PreTrainedTokenizerBase decoder_start_token_id: int mask_ratio: float = 0.3 poisson_lambda: float = 3.0 permute_sentence_ratio: float = 1.0 def __post_init__(self): if self.tokenizer.mask_token is None or self.tokenizer.eos_token is None: raise ValueError( "This tokenizer does not have a mask token or eos token token which is necessary for denoising" " language modeling. " ) def __call__(self, examples: List[Dict[str, List[int]]]) -> BatchEncoding: # convert list to dict and tensorize input batch = BatchEncoding( {k: np.array([examples[i][k] for i in range(len(examples))]) for k, v in examples[0].items()} ) batch["labels"] = batch["input_ids"].copy() batch["decoder_input_ids"] = shift_tokens_right( batch["labels"], self.tokenizer.pad_token_id, self.decoder_start_token_id ) # permuting sentences do_permute = False if self.permute_sentence_ratio > 0.0: batch["input_ids"] = self.permute_sentences(batch["input_ids"]) do_permute = True # masking span of tokens (text infilling in the paper) if self.mask_ratio: batch["input_ids"], batch["labels"] = self.span_mask_tokens( batch["input_ids"], batch["labels"], do_permute ) # ignore pad tokens batch["attention_mask"] = (batch["input_ids"] != self.tokenizer.pad_token_id).astype(int) batch["decoder_attention_mask"] = (batch["decoder_input_ids"] != self.tokenizer.pad_token_id).astype(int) return batch def permute_sentences(self, input_ids): """ Shuffle sentences in each document. """ results = input_ids.copy() # find end locations of sentences end_sentence_mask = input_ids == self.tokenizer.pad_token_id sentence_ends = np.argwhere(end_sentence_mask) sentence_ends[:, 1] += 1 example_has_multiple_sentences, num_sentences = np.unique(sentence_ends[:, 0], return_counts=True) num_sentences_map = dict(zip(example_has_multiple_sentences, num_sentences)) num_to_permute = np.ceil(num_sentences * self.permute_sentence_ratio).astype(int) num_to_permute_map = dict(zip(example_has_multiple_sentences, num_to_permute)) sentence_ends = np.split(sentence_ends[:, 1], np.unique(sentence_ends[:, 0], return_index=True)[1][1:]) sentence_ends_map = dict(zip(example_has_multiple_sentences, sentence_ends)) for i in range(input_ids.shape[0]): if i not in example_has_multiple_sentences: continue substitutions = np.random.permutation(num_sentences_map[i])[: num_to_permute_map[i]] ordering = np.arange(0, num_sentences_map[i]) ordering[substitutions] = substitutions[np.random.permutation(num_to_permute_map[i])] # write shuffled sentences into results index = 0 for j in ordering: sentence = input_ids[i, (sentence_ends_map[i][j - 1] if j > 0 else 0) : sentence_ends_map[i][j]] results[i, index : index + sentence.shape[0]] = sentence index += sentence.shape[0] return results def span_mask_tokens(self, input_ids, labels, do_permute): """ Sampling text spans with span lengths drawn from a Poisson distribution and masking them. """ special_tokens_mask_labels = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist() ] special_tokens_mask_inputs = [ self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in input_ids.tolist() ] special_tokens_mask_labels = np.array(special_tokens_mask_labels, dtype=bool) special_tokens_mask_inputs = np.array(special_tokens_mask_inputs, dtype=bool) # determine how many tokens we need to mask in total is_token_mask = ~(input_ids == self.tokenizer.pad_token_id) & ~special_tokens_mask_inputs num_tokens_to_mask = int(math.ceil(is_token_mask.astype(float).sum() * self.mask_ratio)) if num_tokens_to_mask == 0: return input_ids, labels # generate a sufficient number of span lengths span_lengths = np.random.poisson(lam=self.poisson_lambda, size=(num_tokens_to_mask,)) while np.cumsum(span_lengths, 0)[-1] < num_tokens_to_mask: span_lengths = np.concatenate( [span_lengths, np.random.poisson(lam=self.poisson_lambda, size=(num_tokens_to_mask,))] ) # remove all spans of length 0 # note that BART inserts additional mask tokens where length == 0, # which we do not implement for now as it adds additional complexity span_lengths = span_lengths[span_lengths > 0] # trim to about num_tokens_to_mask tokens cutoff_idx = np.argmin(np.abs(np.cumsum(span_lengths, 0) - num_tokens_to_mask)) + 1 span_lengths = span_lengths[:cutoff_idx] # randomly choose starting positions for masking token_indices = np.argwhere(is_token_mask == 1) span_starts = np.random.permutation(token_indices.shape[0])[: span_lengths.shape[0]] # prepare mask masked_indices = np.array(token_indices[span_starts]) mask = np.full_like(input_ids, fill_value=False) # mask starting positions for mi in masked_indices: mask[tuple(mi)] = True span_lengths -= 1 # fill up spans max_index = input_ids.shape[1] - 1 remaining = (span_lengths > 0) & (masked_indices[:, 1] < max_index) while np.any(remaining): masked_indices[remaining, 1] += 1 for mi in masked_indices: mask[tuple(mi)] = True span_lengths -= 1 remaining = (span_lengths > 0) & (masked_indices[:, 1] < max_index) # place the mask tokens mask[np.where(special_tokens_mask_inputs)] = False input_ids[np.where(mask)] = self.tokenizer.mask_token_id if not do_permute: labels[np.where(mask == 0)] = -100 else: labels[np.where(special_tokens_mask_labels)] = -100 # remove mask tokens that are not starts of spans to_remove = (mask == 1) & np.roll((mask == 1), 1, 1) new_input_ids = np.full_like(input_ids, fill_value=self.tokenizer.pad_token_id) for i, example in enumerate(input_ids): new_example = example[~to_remove[i]] new_input_ids[i, : new_example.shape[0]] = new_example return new_input_ids, labels def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray: """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned.""" num_samples = len(samples_idx) if drop_last: samples_to_remove = num_samples % batch_size if samples_to_remove != 0: samples_idx = samples_idx[:-samples_to_remove] sections_split = num_samples // batch_size samples_idx = samples_idx.reshape((sections_split, batch_size)) else: sections_split = math.ceil(num_samples / batch_size) samples_idx = np.array_split(samples_idx, sections_split) return samples_idx def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_bart_dlm", model_args, data_args, framework="flax") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=logging.INFO, datefmt="[%X]", ) # Log on each process the small summary: logger = logging.getLogger(__name__) # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.train_file.split(".")[-1] if extension == "txt": extension = "text" datasets = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) if "validation" not in datasets.keys(): datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, ) datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.config_name: config = BartConfig.from_pretrained( model_args.config_name, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer), token=model_args.token, ) elif model_args.model_name_or_path: config = BartConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, ) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = datasets["train"].column_names else: column_names = datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Use Punkt Sentence Tokenizer to divide a document into a list of sentences nltk.download("punkt") sentence_tokenizer = nltk.data.load("tokenizers/punkt/english.pickle") def sentence_split_function(example): sents = sentence_tokenizer.tokenize(example["text"]) # use pad token as end of sentence indicator new_text = tokenizer.bos_token + f"{tokenizer.pad_token}".join(sents) + tokenizer.eos_token return {"text": new_text} split_datasets = datasets.map( sentence_split_function, batched=False, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) # Tokenize every text, then concatenate them together before splitting them in smaller parts. # Since we make sure that all sequences are of the same length, no attention_mask is needed. def tokenize_function(examples): return tokenizer(examples[text_column_name], add_special_tokens=False, return_attention_mask=False) tokenized_datasets = split_datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=text_column_name, load_from_cache_file=not data_args.overwrite_cache, ) # Main data processing function that will concatenate all texts from our dataset and generate chunks of # max_seq_length. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= max_seq_length: total_length = (total_length // max_seq_length) * max_seq_length # Split by chunks of max_len. result = { k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)] for k, t in concatenated_examples.items() } return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value # might be slower to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map tokenized_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) if model_args.model_name_or_path: model = FlaxBartForConditionalGeneration.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), token=model_args.token, ) else: config.vocab_size = len(tokenizer) model = FlaxBartForConditionalGeneration( config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), ) # Data collator # This one will take care of randomly masking the tokens and permuting the sentences. data_collator = FlaxDataCollatorForBartDenoisingLM( tokenizer=tokenizer, decoder_start_token_id=model.config.decoder_start_token_id, mask_ratio=data_args.mlm_probability, poisson_lambda=data_args.poisson_lambda, permute_sentence_ratio=data_args.permute_sentence_ratio, ) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs # Create learning rate schedule warmup_fn = optax.linear_schedule( init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps ) decay_fn = optax.linear_schedule( init_value=training_args.learning_rate, end_value=0, transition_steps=num_train_steps - training_args.warmup_steps, ) linear_decay_lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer if training_args.adafactor: # We use the default parameters here to initialize adafactor, # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 optimizer = optax.adafactor( learning_rate=linear_decay_lr_schedule_fn, ) else: optimizer = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer) # Define gradient update step fn def train_step(state, batch, dropout_rng): dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) def loss_fn(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] # compute loss, ignore padded input tokens and special tokens label_mask = jnp.where(labels > 0, 1.0, 0.0) loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask # take average loss = loss.sum() num_labels = label_mask.sum() return loss, num_labels grad_fn = jax.value_and_grad(loss_fn, has_aux=True) (loss, num_labels), grad = grad_fn(state.params) num_labels = jax.lax.psum(num_labels, "batch") # true loss = total loss / total samples loss = jax.lax.psum(loss, "batch") loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) # true grad = total grad / total samples grad = jax.lax.psum(grad, "batch") grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) new_state = state.apply_gradients(grads=grad) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} return new_state, metrics, new_dropout_rng # Create parallel version of the train step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) # Define eval fn def eval_step(params, batch): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] # compute loss, ignore padded input tokens and special tokens label_mask = jnp.where(labels > 0, 1.0, 0.0) loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask # compute accuracy accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask # summarize metrics metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()} metrics = jax.lax.psum(metrics, axis_name="batch") return metrics p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) # Replicate the train state on each device state = jax_utils.replicate(state) train_time = 0 epochs = tqdm(range(num_epochs), desc="Epoch ... ", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # Generate an epoch by shuffling sampling indices from the train dataset num_train_samples = len(tokenized_datasets["train"]) # Avoid using jax.numpy here in case of TPU training train_samples_idx = np.random.permutation(np.arange(num_train_samples)) train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size) # Gather the indexes for creating the batch and do a training step for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)): samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward model_inputs = shard(model_inputs.data) state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs) train_metrics.append(train_metric) cur_step = epoch * (num_train_samples // train_batch_size) + step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = jax_utils.unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) train_metrics = [] if cur_step % training_args.eval_steps == 0 and cur_step > 0: # ======================== Evaluating ============================== num_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) eval_metrics = [] for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics) eval_normalizer = eval_metrics.pop("normalizer") eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics) # Update progress bar epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})" # Save metrics if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if cur_step % training_args.save_steps == 0 and cur_step > 0: # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) # Eval after training if training_args.do_eval: num_eval_samples = len(tokenized_datasets["validation"]) # Avoid using jax.numpy here in case of TPU training eval_samples_idx = np.arange(num_eval_samples) eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) eval_metrics = [] for _, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] model_inputs = data_collator(samples) # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(lambda metric: jnp.sum(metric).item(), eval_metrics) eval_normalizer = eval_metrics.pop("normalizer") eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics) try: perplexity = math.exp(eval_metrics["loss"]) except OverflowError: perplexity = float("inf") eval_metrics["perplexity"] = perplexity if jax.process_index() == 0: eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers-main
examples/flax/language-modeling/run_bart_dlm_flax.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning a 🤗 Flax Transformers model on token classification tasks (NER, POS, CHUNKS)""" import json import logging import math import os import random import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from itertools import chain from pathlib import Path from typing import Any, Callable, Dict, Optional, Tuple import datasets import evaluate import jax import jax.numpy as jnp import numpy as np import optax from datasets import ClassLabel, load_dataset from flax import struct, traverse_util from flax.jax_utils import pad_shard_unpad, replicate, unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard from huggingface_hub import Repository, create_repo from tqdm import tqdm import transformers from transformers import ( AutoConfig, AutoTokenizer, FlaxAutoModelForTokenClassification, HfArgumentParser, is_tensorboard_available, ) from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version logger = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.32.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt") Array = Any Dataset = datasets.arrow_dataset.Dataset PRNGKey = Any @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" "should only be set to `True` for repositories you trust and in which you have read the code, as it will" "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."}) dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a csv or JSON file)."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."}, ) text_column_name: Optional[str] = field( default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."} ) label_column_name: Optional[str] = field( default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."} ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: int = field( default=None, metadata={ "help": ( "The maximum total input sequence length after tokenization. If set, sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) label_all_tokens: bool = field( default=False, metadata={ "help": ( "Whether to put the label for one word on all tokens of generated by that word or just on the " "one (in which case the other tokens will have a padding index)." ) }, ) return_entity_level_metrics: bool = field( default=False, metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."}, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." self.task_name = self.task_name.lower() def create_train_state( model: FlaxAutoModelForTokenClassification, learning_rate_fn: Callable[[int], float], num_labels: int, training_args: TrainingArguments, ) -> train_state.TrainState: """Create initial training state.""" class TrainState(train_state.TrainState): """Train state with an Optax optimizer. The two functions below differ depending on whether the task is classification or regression. Args: logits_fn: Applied to last layer to obtain the logits. loss_fn: Function to compute the loss. """ logits_fn: Callable = struct.field(pytree_node=False) loss_fn: Callable = struct.field(pytree_node=False) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) # find out all LayerNorm parameters layer_norm_candidates = ["layernorm", "layer_norm", "ln"] layer_norm_named_params = { layer[-2:] for layer_norm_name in layer_norm_candidates for layer in flat_params.keys() if layer_norm_name in "".join(layer).lower() } flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) tx = optax.adamw( learning_rate=learning_rate_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) def cross_entropy_loss(logits, labels): xentropy = optax.softmax_cross_entropy(logits, onehot(labels, num_classes=num_labels)) return jnp.mean(xentropy) return TrainState.create( apply_fn=model.__call__, params=model.params, tx=tx, logits_fn=lambda logits: logits.argmax(-1), loss_fn=cross_entropy_loss, ) def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.array]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def train_data_collator(rng: PRNGKey, dataset: Dataset, batch_size: int): """Returns shuffled batches of size `batch_size` from truncated `train dataset`, sharded over all local devices.""" steps_per_epoch = len(dataset) // batch_size perms = jax.random.permutation(rng, len(dataset)) perms = perms[: steps_per_epoch * batch_size] # Skip incomplete batch. perms = perms.reshape((steps_per_epoch, batch_size)) for perm in perms: batch = dataset[perm] batch = {k: np.array(v) for k, v in batch.items()} batch = shard(batch) yield batch def eval_data_collator(dataset: Dataset, batch_size: int): """Returns batches of size `batch_size` from `eval dataset`. Sharding handled by `pad_shard_unpad` in the eval loop.""" batch_idx = np.arange(len(dataset)) steps_per_epoch = math.ceil(len(dataset) / batch_size) batch_idx = np.array_split(batch_idx, steps_per_epoch) for idx in batch_idx: batch = dataset[idx] batch = {k: np.array(v) for k, v in batch.items()} yield batch def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_ner", model_args, data_args, framework="flax") # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called # 'tokens' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) else: # Loading the dataset from local csv or json file. data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = (data_args.train_file if data_args.train_file is not None else data_args.valid_file).split(".")[-1] raw_datasets = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. if raw_datasets["train"] is not None: column_names = raw_datasets["train"].column_names features = raw_datasets["train"].features else: column_names = raw_datasets["validation"].column_names features = raw_datasets["validation"].features if data_args.text_column_name is not None: text_column_name = data_args.text_column_name elif "tokens" in column_names: text_column_name = "tokens" else: text_column_name = column_names[0] if data_args.label_column_name is not None: label_column_name = data_args.label_column_name elif f"{data_args.task_name}_tags" in column_names: label_column_name = f"{data_args.task_name}_tags" else: label_column_name = column_names[1] # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the # unique labels. def get_label_list(labels): unique_labels = set() for label in labels: unique_labels = unique_labels | set(label) label_list = list(unique_labels) label_list.sort() return label_list if isinstance(features[label_column_name].feature, ClassLabel): label_list = features[label_column_name].feature.names # No need to convert the labels since they are already ints. label_to_id = {i: i for i in range(len(label_list))} else: label_list = get_label_list(raw_datasets["train"][label_column_name]) label_to_id = {l: i for i, l in enumerate(label_list)} num_labels = len(label_list) # Load pretrained model and tokenizer config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, label2id=label_to_id, id2label={i: l for l, i in label_to_id.items()}, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path if config.model_type in {"gpt2", "roberta"}: tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, add_prefix_space=True, ) else: tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = FlaxAutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # Preprocessing the datasets # Tokenize all texts and align the labels with them. def tokenize_and_align_labels(examples): tokenized_inputs = tokenizer( examples[text_column_name], max_length=data_args.max_seq_length, padding="max_length", truncation=True, # We use this argument because the texts in our dataset are lists of words (with a label for each word). is_split_into_words=True, ) labels = [] for i, label in enumerate(examples[label_column_name]): word_ids = tokenized_inputs.word_ids(batch_index=i) previous_word_idx = None label_ids = [] for word_idx in word_ids: # Special tokens have a word id that is None. We set the label to -100 so they are automatically # ignored in the loss function. if word_idx is None: label_ids.append(-100) # We set the label for the first token of each word. elif word_idx != previous_word_idx: label_ids.append(label_to_id[label[word_idx]]) # For the other tokens in a word, we set the label to either the current label or -100, depending on # the label_all_tokens flag. else: label_ids.append(label_to_id[label[word_idx]] if data_args.label_all_tokens else -100) previous_word_idx = word_idx labels.append(label_ids) tokenized_inputs["labels"] = labels return tokenized_inputs processed_raw_datasets = raw_datasets.map( tokenize_and_align_labels, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, remove_columns=raw_datasets["train"].column_names, desc="Running tokenizer on dataset", ) train_dataset = processed_raw_datasets["train"] eval_dataset = processed_raw_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # Define a summary writer has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(training_args.output_dir) summary_writer.hparams({**training_args.to_dict(), **vars(model_args), **vars(data_args)}) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) num_epochs = int(training_args.num_train_epochs) rng = jax.random.PRNGKey(training_args.seed) dropout_rngs = jax.random.split(rng, jax.local_device_count()) train_batch_size = training_args.per_device_train_batch_size * jax.local_device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = training_args.per_device_eval_batch_size * jax.local_device_count() learning_rate_fn = create_learning_rate_fn( len(train_dataset), train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) state = create_train_state(model, learning_rate_fn, num_labels=num_labels, training_args=training_args) # define step functions def train_step( state: train_state.TrainState, batch: Dict[str, Array], dropout_rng: PRNGKey ) -> Tuple[train_state.TrainState, float]: """Trains model with an optimizer (both in `state`) on `batch`, returning a pair `(new_state, loss)`.""" dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) targets = batch.pop("labels") def loss_fn(params): logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss = state.loss_fn(logits, targets) return loss grad_fn = jax.value_and_grad(loss_fn) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad) metrics = jax.lax.pmean({"loss": loss, "learning_rate": learning_rate_fn(state.step)}, axis_name="batch") return new_state, metrics, new_dropout_rng p_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,)) def eval_step(state, batch): logits = state.apply_fn(**batch, params=state.params, train=False)[0] return state.logits_fn(logits) p_eval_step = jax.pmap(eval_step, axis_name="batch") metric = evaluate.load("seqeval") def get_labels(y_pred, y_true): # Transform predictions and references tensos to numpy arrays # Remove ignored index (special tokens) true_predictions = [ [label_list[p] for (p, l) in zip(pred, gold_label) if l != -100] for pred, gold_label in zip(y_pred, y_true) ] true_labels = [ [label_list[l] for (p, l) in zip(pred, gold_label) if l != -100] for pred, gold_label in zip(y_pred, y_true) ] return true_predictions, true_labels def compute_metrics(): results = metric.compute() if data_args.return_entity_level_metrics: # Unpack nested dictionaries final_results = {} for key, value in results.items(): if isinstance(value, dict): for n, v in value.items(): final_results[f"{key}_{n}"] = v else: final_results[key] = value return final_results else: return { "precision": results["overall_precision"], "recall": results["overall_recall"], "f1": results["overall_f1"], "accuracy": results["overall_accuracy"], } logger.info(f"===== Starting training ({num_epochs} epochs) =====") train_time = 0 # make sure weights are replicated on each device state = replicate(state) train_time = 0 step_per_epoch = len(train_dataset) // train_batch_size total_steps = step_per_epoch * num_epochs epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) for epoch in epochs: train_start = time.time() train_metrics = [] # Create sampling rng rng, input_rng = jax.random.split(rng) # train for step, batch in enumerate( tqdm( train_data_collator(input_rng, train_dataset, train_batch_size), total=step_per_epoch, desc="Training...", position=1, ) ): state, train_metric, dropout_rngs = p_train_step(state, batch, dropout_rngs) train_metrics.append(train_metric) cur_step = (epoch * step_per_epoch) + (step + 1) if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_metric = unreplicate(train_metric) train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step}/{total_steps} | Training Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) train_metrics = [] if cur_step % training_args.eval_steps == 0 and cur_step > 0: eval_metrics = {} # evaluate for batch in tqdm( eval_data_collator(eval_dataset, eval_batch_size), total=math.ceil(len(eval_dataset) / eval_batch_size), desc="Evaluating ...", position=2, ): labels = batch.pop("labels") predictions = pad_shard_unpad(p_eval_step)( state, batch, min_device_batch=per_device_eval_batch_size ) predictions = np.array(predictions) labels[np.array(chain(*batch["attention_mask"])) == 0] = -100 preds, refs = get_labels(predictions, labels) metric.add_batch( predictions=preds, references=refs, ) eval_metrics = compute_metrics() if data_args.return_entity_level_metrics: logger.info(f"Step... ({cur_step}/{total_steps} | Validation metrics: {eval_metrics}") else: logger.info( f"Step... ({cur_step}/{total_steps} | Validation f1: {eval_metrics['f1']}, Validation Acc:" f" {eval_metrics['accuracy']})" ) if has_tensorboard and jax.process_index() == 0: write_eval_metric(summary_writer, eval_metrics, cur_step) if (cur_step % training_args.save_steps == 0 and cur_step > 0) or (cur_step == total_steps): # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(unreplicate(state.params)) model.save_pretrained(training_args.output_dir, params=params) tokenizer.save_pretrained(training_args.output_dir) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) epochs.desc = f"Epoch ... {epoch + 1}/{num_epochs}" # Eval after training if training_args.do_eval: eval_metrics = {} eval_loader = eval_data_collator(eval_dataset, eval_batch_size) for batch in tqdm(eval_loader, total=len(eval_dataset) // eval_batch_size, desc="Evaluating ...", position=2): labels = batch.pop("labels") predictions = pad_shard_unpad(p_eval_step)(state, batch, min_device_batch=per_device_eval_batch_size) predictions = np.array(predictions) labels[np.array(chain(*batch["attention_mask"])) == 0] = -100 preds, refs = get_labels(predictions, labels) metric.add_batch(predictions=preds, references=refs) eval_metrics = compute_metrics() if jax.process_index() == 0: eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} path = os.path.join(training_args.output_dir, "eval_results.json") with open(path, "w") as f: json.dump(eval_metrics, f, indent=4, sort_keys=True) if __name__ == "__main__": main()
transformers-main
examples/flax/token-classification/run_flax_ner.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pre-training/Fine-tuning ViT for image classification . Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=vit """ import logging import os import sys import time import warnings from dataclasses import asdict, dataclass, field from enum import Enum from pathlib import Path from typing import Callable, Optional import jax import jax.numpy as jnp import optax # for dataset and preprocessing import torch import torchvision import torchvision.transforms as transforms from flax import jax_utils from flax.jax_utils import pad_shard_unpad, unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key from huggingface_hub import Repository, create_repo from tqdm import tqdm import transformers from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, FlaxAutoModelForImageClassification, HfArgumentParser, is_tensorboard_available, set_seed, ) from transformers.utils import send_example_telemetry logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class TrainingArguments: output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory. " "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) push_to_hub: bool = field( default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} ) hub_model_id: str = field( default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} ) hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) def __post_init__(self): if self.output_dir is not None: self.output_dir = os.path.expanduser(self.output_dir) def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates the token values by removing their value. """ d = asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): d[k] = [x.value for x in v] if k.endswith("_token"): d[k] = f"<{k.upper()}>" return d @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option" "should only be set to `True` for repositories you trust and in which you have read the code, as it will" "execute code present on the Hub on your local machine." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ train_dir: str = field( metadata={"help": "Path to the root training directory which contains one subdirectory per class."} ) validation_dir: str = field( metadata={"help": "Path to the root validation directory which contains one subdirectory per class."}, ) image_size: Optional[int] = field(default=224, metadata={"help": " The size (resolution) of each image."}) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) class TrainState(train_state.TrainState): dropout_rng: jnp.ndarray def replicate(self): return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.array]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification", model_args, data_args, framework="flax") if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: transformers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # set seed for random transforms and torch dataloaders set_seed(training_args.seed) # Handle the repository creation if training_args.push_to_hub: # Retrieve of infer repo_name repo_name = training_args.hub_model_id if repo_name is None: repo_name = Path(training_args.output_dir).absolute().name # Create repo and retrieve repo_id repo_id = create_repo(repo_name, exist_ok=True, token=training_args.hub_token).repo_id # Clone repo locally repo = Repository(training_args.output_dir, clone_from=repo_id, token=training_args.hub_token) # Initialize datasets and pre-processing transforms # We use torchvision here for faster pre-processing # Note that here we are using some default pre-processing, for maximum accuray # one should tune this part and carefully select what transformations to use. normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) train_dataset = torchvision.datasets.ImageFolder( data_args.train_dir, transforms.Compose( [ transforms.RandomResizedCrop(data_args.image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] ), ) eval_dataset = torchvision.datasets.ImageFolder( data_args.validation_dir, transforms.Compose( [ transforms.Resize(data_args.image_size), transforms.CenterCrop(data_args.image_size), transforms.ToTensor(), normalize, ] ), ) # Load pretrained model and tokenizer if model_args.config_name: config = AutoConfig.from_pretrained( model_args.config_name, num_labels=len(train_dataset.classes), image_size=data_args.image_size, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained( model_args.model_name_or_path, num_labels=len(train_dataset.classes), image_size=data_args.image_size, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.model_name_or_path: model = FlaxAutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: model = FlaxAutoModelForImageClassification.from_config( config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype), trust_remote_code=model_args.trust_remote_code, ) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) eval_batch_size = per_device_eval_batch_size * jax.device_count() steps_per_epoch = len(train_dataset) // train_batch_size total_train_steps = steps_per_epoch * num_epochs def collate_fn(examples): pixel_values = torch.stack([example[0] for example in examples]) labels = torch.tensor([example[1] for example in examples]) batch = {"pixel_values": pixel_values, "labels": labels} batch = {k: v.numpy() for k, v in batch.items()} return batch # Create data loaders train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=train_batch_size, shuffle=True, num_workers=data_args.preprocessing_num_workers, persistent_workers=True, drop_last=True, collate_fn=collate_fn, ) eval_loader = torch.utils.data.DataLoader( eval_dataset, batch_size=eval_batch_size, shuffle=False, num_workers=data_args.preprocessing_num_workers, persistent_workers=True, drop_last=False, collate_fn=collate_fn, ) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) rng, dropout_rng = jax.random.split(rng) # Create learning rate schedule linear_decay_lr_schedule_fn = create_learning_rate_fn( len(train_dataset), train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) # create adam optimizer adamw = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, ) # Setup train state state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) def loss_fn(logits, labels): loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) return loss.mean() # Define gradient update step fn def train_step(state, batch): dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) def compute_loss(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss = loss_fn(logits, labels) return loss grad_fn = jax.value_and_grad(compute_loss) loss, grad = grad_fn(state.params) grad = jax.lax.pmean(grad, "batch") new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} metrics = jax.lax.pmean(metrics, axis_name="batch") return new_state, metrics # Define eval fn def eval_step(params, batch): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] loss = loss_fn(logits, labels) # summarize metrics accuracy = (jnp.argmax(logits, axis=-1) == labels).mean() metrics = {"loss": loss, "accuracy": accuracy} metrics = jax.lax.pmean(metrics, axis_name="batch") return metrics # Create parallel version of the train and eval step p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) p_eval_step = jax.pmap(eval_step, "batch") # Replicate the train state on each device state = state.replicate() logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {num_epochs}") logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") logger.info(f" Total optimization steps = {total_train_steps}") train_time = 0 epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) for epoch in epochs: # ======================== Training ================================ train_start = time.time() # Create sampling rng rng, input_rng = jax.random.split(rng) train_metrics = [] steps_per_epoch = len(train_dataset) // train_batch_size train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) # train for batch in train_loader: batch = shard(batch) state, train_metric = p_train_step(state, batch) train_metrics.append(train_metric) train_step_progress_bar.update(1) train_time += time.time() - train_start train_metric = unreplicate(train_metric) train_step_progress_bar.close() epochs.write( f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) # ======================== Evaluating ============================== eval_metrics = [] eval_steps = len(eval_dataset) // eval_batch_size eval_step_progress_bar = tqdm(total=eval_steps, desc="Evaluating...", position=2, leave=False) for batch in eval_loader: # Model forward metrics = pad_shard_unpad(p_eval_step, static_return=True)( state.params, batch, min_device_batch=per_device_eval_batch_size ) eval_metrics.append(metrics) eval_step_progress_bar.update(1) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) # Print metrics and update progress bar eval_step_progress_bar.close() desc = ( f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {round(eval_metrics['loss'].item(), 4)} | " f"Eval Accuracy: {round(eval_metrics['accuracy'].item(), 4)})" ) epochs.write(desc) epochs.desc = desc # Save metrics if has_tensorboard and jax.process_index() == 0: cur_step = epoch * (len(train_dataset) // train_batch_size) write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) model.save_pretrained(training_args.output_dir, params=params) if training_args.push_to_hub: repo.push_to_hub(commit_message=f"Saving weights and logs of epoch {epoch}", blocking=False) if __name__ == "__main__": main()
transformers-main
examples/flax/vision/run_image_classification.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Create a VisionEncoderDecoderModel instance from pretrained encoder/decoder models. The cross-attention will be randomly initialized. """ from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ output_dir: str = field( metadata={"help": "The output directory where the model will be written."}, ) encoder_model_name_or_path: str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) }, ) decoder_model_name_or_path: str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) }, ) encoder_config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) decoder_config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def main(): parser = HfArgumentParser((ModelArguments,)) (model_args,) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: encoder_config = AutoConfig.from_pretrained(model_args.encoder_config_name) # Use pretrained encoder model's config else: encoder_config = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path) # Use explicit specified decoder config if model_args.decoder_config_name: decoder_config = AutoConfig.from_pretrained(model_args.decoder_config_name) # Use pretrained decoder model's config else: decoder_config = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed decoder_config.is_decoder = True decoder_config.add_cross_attention = True model = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path, decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path, encoder_config=encoder_config, decoder_config=decoder_config, ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens decoder_start_token_id = decoder_config.decoder_start_token_id pad_token_id = decoder_config.pad_token_id if decoder_start_token_id is None: decoder_start_token_id = decoder_config.bos_token_id if pad_token_id is None: pad_token_id = decoder_config.eos_token_id # This is necessary to make Flax's generate() work model.config.eos_token_id = decoder_config.eos_token_id model.config.decoder_start_token_id = decoder_start_token_id model.config.pad_token_id = pad_token_id image_processor = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path) tokenizer.pad_token = tokenizer.convert_ids_to_tokens(model.config.pad_token_id) model.save_pretrained(model_args.output_dir) image_processor.save_pretrained(model_args.output_dir) tokenizer.save_pretrained(model_args.output_dir) if __name__ == "__main__": main()
transformers-main
examples/flax/image-captioning/create_model_from_encoder_decoder_models.py