python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
from memory_transformer_xl import MemoryTransformerXL from memory_transformer_xl.autoregressive_wrapper import AutoregressiveWrapper import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 16 MAX_BATCH_SIZE = 4 LEARNING_RATE = 1e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 PRIME_LENGTH = 512 GENERATE_LENGTH = 1024 SEQ_LEN = 512 NUM_SEGMENTS = 4 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate model model = MemoryTransformerXL( num_tokens = 256, dim = 512, depth = 8, seq_len = SEQ_LEN, mem_len = SEQ_LEN, lmem_len = SEQ_LEN // 4, heads = 8, memory_layers = [6,7,8] ) model = AutoregressiveWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len, segments): super().__init__() self.data = data self.seq_len = seq_len self.segments = segments self.total_len = seq_len * segments def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.total_len - 1, (1,)) full_seq = self.data[rand_start: rand_start + self.total_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.total_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN, NUM_SEGMENTS) val_dataset = TextSamplerDataset(data_val, SEQ_LEN, NUM_SEGMENTS) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() grad_accum_every = BATCH_SIZE / MAX_BATCH_SIZE for loss, is_last in model(next(train_loader), max_batch_size = MAX_BATCH_SIZE, return_loss = True): (loss / grad_accum_every).backward(retain_graph = True) print(f'training loss: {loss.item():.4f}') if is_last: torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): for loss, _ in model(next(val_loader), return_loss = True): print(f'validation loss: {loss.item():.4f}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] inp = inp[:PRIME_LENGTH] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp, GENERATE_LENGTH) output_str = decode_tokens(sample) print(output_str)
memory-transformer-xl-master
examples/enwik8_simple/train.py
import math from functools import partial from collections import namedtuple import torch from torch import nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence # structs Return = namedtuple('Return', ['loss', 'is_last_batch']) # helper functions def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > (1 - thres) sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # main class class AutoregressiveWrapper(nn.Module): def __init__(self, net, ignore_index = -100, pad_value = 0): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.seq_len = net.seq_len @torch.no_grad() def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, **kwargs): was_training = self.net.training num_dims = len(start_tokens.shape) if num_dims == 1: start_tokens = start_tokens[None, :] b, t = start_tokens.shape self.net.eval() out = start_tokens # take care of default masking full_mask_like = lambda x: torch.full_like(x, True, dtype=torch.bool, device=x.device) mask = kwargs.pop('mask', None) if mask is None: mask = full_mask_like(out) # take care of a primed sequence of any length mem = None *primes, out = out.split(self.seq_len, dim=1) *prime_masks, mask = mask.split(self.seq_len, dim=1) for prime, prime_mask in zip(primes, prime_masks): _, mem = self.net(prime, memories = mem, mask = prime_mask, **kwargs) # generate until hit sequence length input_len = out.shape[1] for _ in range(seq_len): logits, mem = self.net(out[:, -input_len:], memories = mem, mask = mask[:, -input_len:], **kwargs) logits = logits[:, -1, :] filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) # unlike most models, inputs start from sequence length of 1 once full sequence length is filled out = torch.cat((out, sample), dim=-1) mask = F.pad(mask, (0, 1), value=True) # append sample to accumulated output input_len = input_len % self.seq_len input_len += 1 if eos_token is not None and (sample == eos_token).all(): break out = out[:, t:] if num_dims == 1: out = out.squeeze(0) self.net.train(was_training) return out def forward(self, x, max_batch_size = None, return_loss = False, truncate_every = None, **kwargs): pad = partial(pad_sequence, batch_first = True, padding_value = self.pad_value) if not return_loss: if not isinstance(x, torch.Tensor): x = pad(x) return self.net(x, **kwargs) if isinstance(x, torch.Tensor): xi = x[:, :-1] xo = x[:, 1:] else: xi = pad(list(map(lambda t: t[:-1], x))) xo = pad(list(map(lambda t: t[1:], x))) # help auto-solve an area of confusion around input masks in auto-regressive # if user supplies a mask that is only off by one from the source sequence, resolve it for them mask = kwargs.pop('mask', None) if mask is not None and mask.shape[1] == x.shape[1]: mask = mask[:, :-1] segment_fn = lambda x: x.split(self.seq_len, dim=1) (xi, xo) = map(segment_fn, (xi, xo)) num_segments = len(xi) mask = segment_fn(mask) if mask is not None else ((None,) * num_segments) max_batch_size = x.shape[0] if max_batch_size is None else max_batch_size split_batch_fn = lambda x: x.split(max_batch_size, dim=0) grad_accumulate_every = math.ceil(x.shape[0] / max_batch_size) mems = [None] * grad_accumulate_every for ind, (xi_seg, xo_seg, mask_seg) in enumerate(zip(xi, xo, mask)): xi_seg, xo_seg = map(split_batch_fn, (xi_seg, xo_seg)) mask_seg = split_batch_fn(mask_seg) if mask_seg is not None else ((None,) * grad_accumulate_every) truncate = truncate_every is not None and ((ind + 1) % truncate_every) == 0 new_mems = [] for ind, (xi_seg_b, xo_seg_b, mask_seg_b, mem) in enumerate(zip(xi_seg, xo_seg, mask_seg, mems)): is_last = ind == (grad_accumulate_every - 1) logits, new_mem = self.net(xi_seg_b, mask = mask_seg_b, memories = mem, detach_lmem = truncate, **kwargs) new_mems.append(new_mem) loss = F.cross_entropy(logits.transpose(1, 2), xo_seg_b, ignore_index = self.ignore_index) yield Return(loss, is_last) mems = new_mems
memory-transformer-xl-master
memory_transformer_xl/autoregressive_wrapper.py
from memory_transformer_xl.memory_transformer_xl import MemoryTransformerXL
memory-transformer-xl-master
memory_transformer_xl/__init__.py
import torch from torch import nn import torch.nn.functional as F from mogrifier import Mogrifier import math from collections import namedtuple from functools import partial from inspect import isfunction # structs Memory = namedtuple('Memory', ['short', 'long']) # helper functions def to(t): return {'dtype': t.dtype, 'device': t.device} def cast_tuple(el): return el if isinstance(el, tuple) else (el,) def default(x, val): if x is not None: return x return val if not isfunction(val) else val() def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def reshape_dim(t, dim, split_dims): shape = list(t.shape) num_dims = len(shape) dim = (dim + num_dims) % num_dims shape[dim:dim+1] = split_dims return t.reshape(shape) def split_at_index(dim, index, t): pre_slices = (slice(None),) * dim l = (*pre_slices, slice(None, index)) r = (*pre_slices, slice(index, None)) return t[l], t[r] def queue_fifo(*args, length, dim=-2): queue = torch.cat(args, dim=dim) if length > 0: return split_at_index(dim, -length, queue) device = queue.device shape = list(queue.shape) shape[dim] = 0 return queue, torch.empty(shape, device = device) def shift(x): *_, i, j = x.shape zero_pad = torch.zeros((*_, i, i), **to(x)) x = torch.cat([x, zero_pad], -1) l = i + j - 1 x = x.view(*_, -1) zero_pad = torch.zeros(*_, -x.size(-1) % l, **to(x)) shifted = torch.cat([x, zero_pad], -1).view(*_, -1, l) return shifted[..., :i, i - 1:] def iterate_tensor(t): length = t.shape[0] for ind in range(length): yield t[ind] def init_parameter(shape, dim): t = torch.zeros(shape) std = 1 / math.sqrt(dim) t.uniform_(-std, std) return nn.Parameter(t) # helper classes class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): x = self.norm(x) return self.fn(x, **kwargs) # neuromodulated bistable recurrent cell and other gating classes class nBRC(nn.Module): def __init__(self, dims, hidden_dims): super().__init__() self.Ua = nn.Linear(dims, hidden_dims) self.Wa = nn.Linear(dims, hidden_dims) self.Uc = nn.Linear(dims, hidden_dims) self.Wc = nn.Linear(dims, hidden_dims) self.U = nn.Linear(dims, hidden_dims) def forward(self, x, h): l = lambda linear, tensor: F.linear(tensor, linear.weight.clone(), linear.bias.clone()) a = 1 + torch.tanh(l(self.Ua, x) + l(self.Wa, h)) c = torch.sigmoid(l(self.Uc, x) + l(self.Wc, h)) return c * h + (1 - c) * torch.tanh(l(self.U, x) + a * h) class GRUGating(nn.Module): def __init__(self, dim, fn, mogrify = False): super().__init__() self.dim = dim self.fn = fn self.gru = nBRC(dim, dim) self.mogrify = Mogrifier(dim, factorize_k = dim // 4) if mogrify else None def forward(self, x, **kwargs): shape = x.shape dim = self.dim y = self.fn(x, **kwargs) if self.mogrify is not None: y, x = self.mogrify(y, x) gated_output = self.gru( y.reshape(-1, dim), x.reshape(-1, dim) ) return gated_output.reshape(shape) # feedforward class GELU_(nn.Module): def forward(self, x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) GELU = nn.GELU if hasattr(nn, 'GELU') else GELU_ class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0., activation = None, glu = False): super().__init__() activation = default(activation, GELU) self.glu = glu self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1)) self.act = activation() self.dropout = nn.Dropout(dropout) self.w2 = nn.Linear(dim * mult, dim) def forward(self, x, **kwargs): if not self.glu: x = self.w1(x) x = self.act(x) else: x, v = self.w1(x).chunk(2, dim=-1) x = self.act(x) * v x = self.dropout(x) x = self.w2(x) return x # attention. class SelfAttention(nn.Module): def __init__(self, dim, seq_len, mem_len, lmem_len, heads = 8, attn_dropout = 0., dropout = 0., memory_attn_dropout = 0., one_kv_head = False, num_mem_kv = 4): super().__init__() assert (dim % heads) == 0, 'dimension must be divisible by the number of heads' self.heads = heads self.dim_head = dim // heads self.seq_len = seq_len self.mem_len = mem_len self.lmem_len = lmem_len self.scale = self.dim_head ** (-0.5) self.to_q = nn.Linear(dim, dim, bias = False) kv_dim = self.dim_head if one_kv_head else dim self.to_kv = nn.Linear(dim, kv_dim * 2, bias = False) self.to_out = nn.Linear(dim, dim) self.mem_kv = init_parameter((1, num_mem_kv, dim), dim) self.attn_dropout = nn.Dropout(attn_dropout) self.dropout = nn.Dropout(dropout) self.memory_attn_dropout = nn.Dropout(memory_attn_dropout) def forward(self, x, memories = None, pos_emb = None, input_mask = None, calc_memory = True, **kwargs): b, t, e, h, dim_h = *x.shape, self.heads, self.dim_head memories = default(memories, (None, None)) mem, lmem = memories init_mem = lambda: torch.empty(b, 0, e, **to(x)) mem = default(mem, init_mem) lmem = default(lmem, init_mem) mem_kv = self.mem_kv.expand(b, -1, -1) mem_len, lmem_len, mem_kv_len = map(lambda t: t.shape[1], (mem, lmem, mem_kv)) q = self.to_q(x) kv_input = torch.cat((mem_kv, lmem, mem, x), dim=1) kv_len = kv_input.shape[1] k, v = self.to_kv(kv_input).chunk(2, dim=-1) merge_heads = lambda x: reshape_dim(x, -1, (-1, dim_h)).transpose(1, 2) q, k, v = map(merge_heads, (q, k, v)) k, v = map(lambda x: x.expand(-1, h, -1, -1), (k, v)) dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale mask_value = max_neg_value(dots) if pos_emb is not None: pos_emb = pos_emb[:, -kv_len:].type(q.dtype) pos_dots = torch.einsum('bhid,hjd->bhij', q, pos_emb) * self.scale pos_dots = shift(pos_dots) pos_dots = F.pad(pos_dots, (dots.shape[-1] - pos_dots.shape[-1], 0), value = 0.) dots = dots + pos_dots if input_mask is not None: mask = input_mask[:, None, :, None] * input_mask[:, None, None, :] mask = F.pad(mask, (mem_len + lmem_len + mem_kv_len, 0), value = True) dots.masked_fill_(~mask, mask_value) total_mem_len = mem_len + lmem_len + mem_kv_len mask = torch.ones(t, t + total_mem_len, **to(x)).triu_(diagonal = 1 + total_mem_len).bool() dots.masked_fill_(mask[None, None, ...], mask_value) attn = dots.softmax(dim=-1) attn = self.attn_dropout(attn) out = torch.einsum('bhij,bhjd->bhid', attn, v) out = out.transpose(1, 2).reshape(b, t, -1) out = self.to_out(out) return self.dropout(out) # memory attention network def linear_attn(q, k, v): q, k = q.softmax(dim=-1), k.softmax(dim=-2) context = torch.einsum('bhnd,bhne->bhde', k, v) out = torch.einsum('bhnd,bhde->bhne', q, context) return out def full_attn(q, k, v): dots = torch.einsum('bhid,bhjd->bhij', q, k) * q.shape[-1] ** -0.5 dots = dots.softmax(dim=-1) out = torch.einsum('bhij,bhjd->bhid', dots, v) return out class LinearSelfAttention(nn.Module): def __init__(self, dim, depth, heads = 8): super().__init__() self.dim_head = dim // heads self.norm = nn.LayerNorm(dim, elementwise_affine = False) self.to_q = init_parameter((dim, dim), dim) self.to_kv = init_parameter((dim, 2 * dim), dim) self.to_out = init_parameter((dim, dim), dim) def forward(self, x, hiddens = None): dim_head = self.dim_head w_q, w_kv, w_out = map(torch.clone, (self.to_q, self.to_kv, self.to_out)) normed_lmem = self.norm(x) q = torch.einsum('bnd,de->bne', normed_lmem, w_q) kv_input = torch.cat((normed_lmem, hiddens), dim=1) k, v = torch.einsum('bnd,de->bne', kv_input, w_kv).chunk(2, dim=-1) q, k, v = map(lambda t: reshape_dim(t, -1, (-1, dim_head)).transpose(-2, -3), (q, k, v)) out = linear_attn(q, k, v) out = out.transpose(2, 3).reshape_as(x) out = torch.einsum('bnd,de->bne', out, w_out) return out class MemoryAttentionNetwork(nn.Module): def __init__(self, dim, num_memory_depth, mem_len, lmem_len, heads = 4, num_attn_steps = 2, num_mem_kv = 4, mem_write_iters = 2): super().__init__() self.num_memory_depth = num_memory_depth self.mem_len = mem_len self.lmem_len = lmem_len self.dim = dim dim_head = dim // heads self.dim_head = dim_head self.depth_emb = init_parameter((num_memory_depth, 1, 1, 1), dim) self.init_lmem = init_parameter((1, 1, dim), dim) self.lmem_pos_emb = init_parameter((1, lmem_len, dim), dim) self.mem_kv = init_parameter((1, num_mem_kv, dim), dim) self.attn = LinearSelfAttention(dim, num_memory_depth, heads = heads) self.gate = nBRC(dim, dim) self.mem_write_iters = mem_write_iters def forward(self, lmem, smem, hiddens, detach_lmem = False): batch, dim, dim_head, mem_depth, lmem_len = lmem.shape[0], self.dim, self.dim_head, self.num_memory_depth, self.lmem_len # properly detach hidden state, and detach long term memory if truncate signal is given hiddens = hiddens.detach() if detach_lmem: lmem = lmem.detach() # initialize long term memory state if none provided if lmem is None or lmem.shape[1] == 0: lmem = self.init_lmem.clone().expand(batch, lmem_len, -1) # use efficient linear attention for updating long term memory next_lmem = lmem + self.lmem_pos_emb hiddens_and_smem = torch.cat((smem, hiddens), dim=-2) all_hiddens = (hiddens_and_smem + self.depth_emb).transpose(0, 1).reshape(batch, -1, dim) all_hiddens = torch.cat((all_hiddens, self.mem_kv.expand(batch, -1, -1)), dim=1) for _ in range(self.mem_write_iters): attn_out = self.attn(next_lmem, hiddens = all_hiddens) next_lmem = self.gate(attn_out, next_lmem) # fifo queue the short term memory _, next_mem = queue_fifo(smem, hiddens, length = self.mem_len, dim = 2) return Memory(short = next_mem.detach(), long = next_lmem) # transformer class MemoryTransformerXL(nn.Module): def __init__(self, num_tokens, dim, seq_len, depth, emb_dim = None, memory_layers = None, mem_len = None, lmem_len = None, heads = 8, gru_gated_residual = True, mogrify_gru = False, attn_dropout = 0., ff_glu = False, ff_dropout = 0., attn_layer_dropout = 0., one_kv_head = False, num_mem_kv = 0, mem_write_iters = 2): super().__init__() emb_dim = default(emb_dim, dim) mem_len = default(mem_len, seq_len) lmem_len = default(lmem_len, mem_len) memory_layers = default(memory_layers, list(range(1, depth + 1))) assert all([layer > 0 and layer <= depth for layer in memory_layers]), 'one of the indicated memory layers is invalid' self.mem_len = mem_len self.seq_len = seq_len self.depth = depth self.memory_layers = list(memory_layers) self.token_emb = nn.Embedding(num_tokens, emb_dim) self.to_model_dim = nn.Identity() if emb_dim == dim else nn.Linear(emb_dim, dim) seq_and_mem_len = seq_len + mem_len + lmem_len self.pos_emb = nn.Parameter(torch.zeros(heads, seq_and_mem_len, dim // heads)) self.to_logits = nn.Sequential( nn.Identity() if emb_dim == dim else nn.Linear(dim, emb_dim), nn.Linear(emb_dim, num_tokens) ) wrapper = partial(GRUGating, dim, mogrify = mogrify_gru) if gru_gated_residual else Residual self.attn_layers = nn.ModuleList([wrapper(PreNorm(dim, SelfAttention(dim, seq_len, mem_len, lmem_len, heads, dropout = attn_layer_dropout, attn_dropout = attn_dropout, one_kv_head = one_kv_head, num_mem_kv = num_mem_kv))) for _ in range(depth)]) self.ff_layers = nn.ModuleList([wrapper(PreNorm(dim, FeedForward(dim, dropout = ff_dropout, glu = ff_glu))) for _ in range(depth)]) self.memory_network = MemoryAttentionNetwork(dim, len(self.memory_layers), mem_len, lmem_len, num_mem_kv = num_mem_kv, mem_write_iters = mem_write_iters) def forward(self, x, memories = None, mask = None, detach_lmem = False): x = self.token_emb(x) x = self.to_model_dim(x) b, t, d = x.shape assert t <= self.seq_len, f'input contains a sequence length {t} that is greater than the designated maximum sequence length {self.seq_len}' memories = default(memories, (None, None)) mem, lmem = memories num_memory_layers = len(self.memory_layers) mem = default(mem, lambda: torch.empty(num_memory_layers, b, 0, d, **to(x))) lmem = default(lmem, lambda: torch.empty(b, 0, d, **to(x))) mem_len, lmem_len = map(lambda t: t.shape[2], (mem, lmem)) total_len = mem_len + lmem_len + self.seq_len pos_emb = self.pos_emb[:, (self.seq_len - t):total_len] mem_iter = iterate_tensor(mem) hiddens = [] for ind, (attn, ff) in enumerate(zip(self.attn_layers, self.ff_layers)): layer_num = ind + 1 use_memory = layer_num in self.memory_layers memories = (next(mem_iter), lmem) if use_memory else None if use_memory: hiddens.append(x) x = attn(x, memories = memories, input_mask = mask, pos_emb = pos_emb) x = ff(x) hiddens = torch.stack(hiddens) out = self.to_logits(x) # calculate next memory state # only push hidden to short term memory if input sequence length is full if t < self.mem_len: return out, Memory(short = mem, long = lmem) next_memory = self.memory_network(lmem, mem, hiddens, detach_lmem = detach_lmem) return out, next_memory
memory-transformer-xl-master
memory_transformer_xl/memory_transformer_xl.py
from setuptools import setup, find_packages setup( name = 'linformer', packages = find_packages(), version = '0.2.1', license='MIT', description = 'Linformer implementation in Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/linformer', keywords = ['attention', 'artificial intelligence'], install_requires=[ 'torch' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
linformer-master
setup.py
import torch import torch.nn as nn from operator import itemgetter from torch.autograd.function import Function from torch.utils.checkpoint import get_device_states, set_device_states # for routing arguments into the functions of the reversible layer def route_args(router, args, depth): routed_args = [(dict(), dict()) for _ in range(depth)] matched_keys = [key for key in args.keys() if key in router] for key in matched_keys: val = args[key] for depth, ((f_args, g_args), routes) in enumerate(zip(routed_args, router[key])): new_f_args, new_g_args = map(lambda route: ({key: val} if route else {}), routes) routed_args[depth] = ({**f_args, **new_f_args}, {**g_args, **new_g_args}) return routed_args def layer_drop(layers, prob): to_drop = torch.empty(len(layers)).uniform_(0, 1) < prob blocks = [block for block, drop in zip(layers, to_drop) if not drop] blocks = layers[:1] if len(blocks) == 0 else blocks return blocks # following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html class Deterministic(nn.Module): def __init__(self, net): super().__init__() self.net = net self.cpu_state = None self.cuda_in_fwd = None self.gpu_devices = None self.gpu_states = None def record_rng(self, *args): self.cpu_state = torch.get_rng_state() if torch.cuda._initialized: self.cuda_in_fwd = True self.gpu_devices, self.gpu_states = get_device_states(*args) def forward(self, *args, record_rng = False, set_rng = False, **kwargs): if record_rng: self.record_rng(*args) if not set_rng: return self.net(*args, **kwargs) rng_devices = [] if self.cuda_in_fwd: rng_devices = self.gpu_devices with torch.random.fork_rng(devices=rng_devices, enabled=True): torch.set_rng_state(self.cpu_state) if self.cuda_in_fwd: set_device_states(self.gpu_devices, self.gpu_states) return self.net(*args, **kwargs) # heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py # once multi-GPU is confirmed working, refactor and send PR back to source class ReversibleBlock(nn.Module): def __init__(self, f, g): super().__init__() self.f = Deterministic(f) self.g = Deterministic(g) def forward(self, x, f_args = {}, g_args = {}): x1, x2 = torch.chunk(x, 2, dim=2) y1, y2 = None, None with torch.no_grad(): y1 = x1 + self.f(x2, record_rng=self.training, **f_args) y2 = x2 + self.g(y1, record_rng=self.training, **g_args) return torch.cat([y1, y2], dim=2) def backward_pass(self, y, dy, f_args = {}, g_args = {}): y1, y2 = torch.chunk(y, 2, dim=2) del y dy1, dy2 = torch.chunk(dy, 2, dim=2) del dy with torch.enable_grad(): y1.requires_grad = True gy1 = self.g(y1, set_rng=True, **g_args) torch.autograd.backward(gy1, dy2) with torch.no_grad(): x2 = y2 - gy1 del y2, gy1 dx1 = dy1 + y1.grad del dy1 y1.grad = None with torch.enable_grad(): x2.requires_grad = True fx2 = self.f(x2, set_rng=True, **f_args) torch.autograd.backward(fx2, dx1, retain_graph=True) with torch.no_grad(): x1 = y1 - fx2 del y1, fx2 dx2 = dy2 + x2.grad del dy2 x2.grad = None x = torch.cat([x1, x2.detach()], dim=2) dx = torch.cat([dx1, dx2], dim=2) return x, dx class _ReversibleFunction(Function): @staticmethod def forward(ctx, x, blocks, args): ctx.args = args for block, kwarg in zip(blocks, args): x = block(x, **kwarg) ctx.y = x.detach() ctx.blocks = blocks return x @staticmethod def backward(ctx, dy): y = ctx.y args = ctx.args for block, kwargs in zip(ctx.blocks[::-1], args[::-1]): y, dy = block.backward_pass(y, dy, **kwargs) return dy, None, None class SequentialSequence(nn.Module): def __init__(self, layers, args_route = {}, layer_dropout = 0.): super().__init__() assert all(len(route) == len(layers) for route in args_route.values()), 'each argument route map must have the same depth as the number of sequential layers' self.layers = layers self.args_route = args_route self.layer_dropout = layer_dropout def forward(self, x, **kwargs): args = route_args(self.args_route, kwargs, len(self.layers)) layers_and_args = list(zip(self.layers, args)) if self.training and self.layer_dropout > 0: layers_and_args = layer_drop(layers_and_args, self.layer_dropout) for (f, g), (f_args, g_args) in layers_and_args: x = x + f(x, **f_args) x = x + g(x, **g_args) return x class ReversibleSequence(nn.Module): def __init__(self, blocks, args_route = {}, layer_dropout = 0.): super().__init__() self.args_route = args_route self.layer_dropout = layer_dropout self.blocks = nn.ModuleList([ReversibleBlock(f=f, g=g) for f, g in blocks]) def forward(self, x, **kwargs): x = torch.cat([x, x], dim=-1) blocks = self.blocks args = route_args(self.args_route, kwargs, len(blocks)) args = list(map(lambda x: {'f_args': x[0], 'g_args': x[1]}, args)) layers_and_args = list(zip(blocks, args)) if self.training and self.layer_dropout > 0: layers_and_args = layer_drop(layers_and_args, self.layer_dropout) blocks, args = map(lambda ind: list(map(itemgetter(ind), layers_and_args)), (0, 1)) out = _ReversibleFunction.apply(x, blocks, args) return torch.stack(out.chunk(2, dim=-1)).sum(dim=0)
linformer-master
linformer/reversible.py
from linformer.linformer import LinformerLM, Linformer, LinformerSelfAttention
linformer-master
linformer/__init__.py
import math import torch from torch import nn import torch.nn.functional as F from linformer.reversible import ReversibleSequence, SequentialSequence # helper functions def default(val, default_val): return val if val is not None else default_val def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor # helper classes class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x): return x + self.fn(x) class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = nn.LayerNorm(dim) def forward(self, x): x = self.norm(x) return self.fn(x) class GELU_(nn.Module): def forward(self, x): return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) GELU = nn.GELU if hasattr(nn, 'GELU') else GELU_ class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0., activation = None, glu = False): super().__init__() activation = default(activation, GELU) self.glu = glu self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1)) self.act = activation() self.dropout = nn.Dropout(dropout) self.w2 = nn.Linear(dim * mult, dim) def forward(self, x, **kwargs): if not self.glu: x = self.w1(x) x = self.act(x) else: x, v = self.w1(x).chunk(2, dim=-1) x = self.act(x) * v x = self.dropout(x) x = self.w2(x) return x class LinformerSelfAttention(nn.Module): def __init__(self, dim, seq_len, k = 256, heads = 8, dim_head = None, one_kv_head = False, share_kv = False, dropout = 0.): super().__init__() assert (dim % heads) == 0, 'dimension must be divisible by the number of heads' self.seq_len = seq_len self.k = k self.heads = heads dim_head = default(dim_head, dim // heads) self.dim_head = dim_head self.to_q = nn.Linear(dim, dim_head * heads, bias = False) kv_dim = dim_head if one_kv_head else (dim_head * heads) self.to_k = nn.Linear(dim, kv_dim, bias = False) self.proj_k = nn.Parameter(init_(torch.zeros(seq_len, k))) self.share_kv = share_kv if not share_kv: self.to_v = nn.Linear(dim, kv_dim, bias = False) self.proj_v = nn.Parameter(init_(torch.zeros(seq_len, k))) self.dropout = nn.Dropout(dropout) self.to_out = nn.Linear(dim_head * heads, dim) def forward(self, x, context = None, **kwargs): b, n, d, d_h, h, k = *x.shape, self.dim_head, self.heads, self.k kv_len = n if context is None else context.shape[1] assert kv_len == self.seq_len, f'the sequence length of the key / values must be {self.seq_len} - {kv_len} given' queries = self.to_q(x) proj_seq_len = lambda args: torch.einsum('bnd,nk->bkd', *args) kv_input = x if context is None else context keys = self.to_k(kv_input) values = self.to_v(kv_input) if not self.share_kv else keys kv_projs = (self.proj_k, self.proj_v if not self.share_kv else self.proj_k) # project keys and values along the sequence length dimension to k keys, values = map(proj_seq_len, zip((keys, values), kv_projs)) # merge head into batch for queries and key / values queries = queries.reshape(b, n, h, -1).transpose(1, 2) merge_key_values = lambda t: t.reshape(b, k, -1, d_h).transpose(1, 2).expand(-1, h, -1, -1) keys, values = map(merge_key_values, (keys, values)) # attention dots = torch.einsum('bhnd,bhkd->bhnk', queries, keys) * (d_h ** -0.5) attn = dots.softmax(dim=-1) attn = self.dropout(attn) out = torch.einsum('bhnk,bhkd->bhnd', attn, values) # split heads out = out.transpose(1, 2).reshape(b, n, -1) return self.to_out(out) class Linformer(nn.Module): def __init__(self, dim, seq_len, depth, k = 256, heads = 8, dim_head = None, one_kv_head = False, share_kv = False, reversible = False, dropout = 0.): super().__init__() layers = nn.ModuleList([]) for _ in range(depth): attn = LinformerSelfAttention(dim, seq_len, k = k, heads = heads, dim_head = dim_head, one_kv_head = one_kv_head, share_kv = share_kv, dropout = dropout) ff = FeedForward(dim, dropout = dropout) layers.append(nn.ModuleList([ PreNorm(dim, attn), PreNorm(dim, ff) ])) execute_type = ReversibleSequence if reversible else SequentialSequence self.net = execute_type(layers) def forward(self, x): return self.net(x) class LinformerLM(nn.Module): def __init__(self, num_tokens, dim, seq_len, depth, k = 256, heads = 8, dim_head = None, one_kv_head = False, share_kv = False, reversible = False, dropout = 0.): super().__init__() self.token_emb = nn.Embedding(num_tokens, dim) self.pos_emb = nn.Embedding(seq_len, dim) self.linformer = Linformer(dim, seq_len, depth, k = k, heads = heads, dim_head = dim_head, one_kv_head = one_kv_head, share_kv = share_kv, reversible = reversible, dropout = dropout) self.to_logits = nn.Linear(dim, num_tokens) def forward(self, x): x = self.token_emb(x) x = self.pos_emb(torch.arange(x.shape[1], device=x.device)) + x x = self.linformer(x) out = self.to_logits(x) return out
linformer-master
linformer/linformer.py
from setuptools import setup, find_packages setup( name = 'medical-chatgpt', packages = find_packages(exclude=[]), version = '0.0.1', license='MIT', description = 'Medical ChatGPT', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/medical-chatgpt', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism', 'reinforcement learning with human feedback' ], install_requires=[ 'einops>=0.6', 'django-ninja', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
medical-chatgpt-main
setup.py
medical-chatgpt-main
medical_chatgpt/__init__.py
import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d # attention class Attention(nn.Module): def __init__( self, dim, causal = False, dim_head = 64, dim_context = None, heads = 8, norm_context = False, num_null_kv = 0, dropout = 0.1 ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 self.causal = causal inner_dim = dim_head * heads dim_context = default(dim_context, dim) self.norm = nn.LayerNorm(dim) self.context_norm = nn.LayerNorm(dim_context) if norm_context else nn.Identity() self.attn_dropout = nn.Dropout(dropout) self.num_null_kv = num_null_kv self.null_kv = nn.Parameter(torch.randn(2, num_null_kv, dim_head)) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim_context, dim_head * 2, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim, bias = False), nn.Dropout(dropout) ) def forward( self, x, context = None, mask = None, attn_bias = None ): b = x.shape[0] if exists(context): context = self.context_norm(context) kv_input = default(context, x) x = self.norm(x) q, k, v = self.to_q(x), *self.to_kv(kv_input).chunk(2, dim = -1) if self.num_null_kv > 0: null_k, null_v = repeat(self.null_kv, 'kv n d -> kv b n d', b = b).unbind(dim = 0) k = torch.cat((null_k, k), dim = -2) v = torch.cat((null_v, v), dim = -2) q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads) q = q * self.scale sim = einsum('b h i d, b j d -> b h i j', q, k) if exists(attn_bias): attn_bias = F.pad(attn_bias, (self.num_null_kv, 0), value = 0.) sim = sim + attn_bias if exists(mask): mask = F.pad(mask, (self.num_null_kv, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) if self.causal: i, j = sim.shape[-2:] causal_mask = torch.ones((i, j), dtype = torch.bool, device = x.device).triu(j - i + 1) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) attn = sim.softmax(dim = -1) attn = self.attn_dropout(attn) out = einsum('b h i j, b j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out)
medical-chatgpt-main
medical_chatgpt/medical_chatgpt.py
import numpy as np from string import ascii_uppercase, ascii_lowercase import urllib.parse import urllib.request import time def parse_a3m(a3m_lines=None, a3m_file=None, filter_qid=0.15, filter_cov=0.5, N=100000): def seqid(a, b): return sum(c1 == c2 for c1, c2 in zip(a, b)) def nongaps(a): return sum(c != "-" for c in a) def chk(seq, ref_seq): rL = len(ref_seq) L = nongaps(seq) return not (L > filter_cov*rL and seqid(seq, ref_seq) > filter_qid*L) rm_lower = str.maketrans('','',ascii_lowercase) # prep inputs if a3m_lines is None: a3m_lines = open(a3m_file,"r") else: a3m_lines = a3m_lines.splitlines() # parse inputs n,nams,seqs,mtx = 0,[],[],[] def do_filter(): seq = seqs[-1].translate(rm_lower) if "_UPI" in nams[-1] or chk(seq,ref_seq): nams.pop() seqs.pop() else: # deletion matrix deletion_vec = [] deletion_count = 0 for j in seqs[-1]: if j.islower(): deletion_count += 1 else: deletion_vec.append(deletion_count) deletion_count = 0 mtx.append(deletion_vec) seqs[-1] = seq for line in a3m_lines: line = line.rstrip() if line.startswith(">"): if n == 1: ref_seq = seqs[0].translate(rm_lower) if n >= 1: # filter previous entry do_filter() # start new sequence entry nam = line.split()[0][1:] nams.append(nam) seqs.append("") n += 1 else: seqs[-1] += line # filter last entry do_filter() if len(seqs) > N+1: print(f"found too many sequences ({len(seqs)}), taking the top{N} (sorted by qid)") sid = np.argsort([seqid(seq,ref_seq) for seq in seqs])[::-1][:N+1] seqs = [seqs[i] for i in sid] mtx = [mtx[i] for i in sid] nams = [nams[i] for i in sid] return seqs[1:],mtx[1:],nams[1:] def get_uni_jackhmmer(msa, mtx, lab, filter_qid=0.15, filter_cov=0.5): '''filter entries to uniprot''' lab_,msa_,mtx_ = [],[],[] ref_seq = np.array(list(msa[0])) rL = len(ref_seq) for l,s,x in zip(lab[1:],msa[1:],mtx[1:]): if l.startswith("UniRef"): l = l.split("/")[0] if "_UPI" not in l: tar_seq = np.array(list(s)) L = (tar_seq != "-").sum() qid = (ref_seq == tar_seq).sum() if L > filter_cov * rL and qid > filter_qid * L: lab_.append(l) msa_.append(s) mtx_.append(x) return msa_, mtx_, lab_ def uni_num(ids): ######################################## pa = {a:0 for a in ascii_uppercase} for a in ["O","P","Q"]: pa[a] = 1 ma = [[{} for k in range(6)],[{} for k in range(6)]] for n,t in enumerate(range(10)): for i in [0,1]: for j in [0,4]: ma[i][j][str(t)] = n for n,t in enumerate(list(ascii_uppercase)+list(range(10))): for i in [0,1]: for j in [1,2]: ma[i][j][str(t)] = n ma[1][3][str(t)] = n for n,t in enumerate(ascii_uppercase): ma[0][3][str(t)] = n for i in [0,1]: ma[i][5][str(t)] = n ######################################## nums = [] for uni in ids: p = pa[uni[0]] tot, num = 1,0 if len(uni) == 10: for n,u in enumerate(reversed(uni[-4:])): num += ma[p][n][u] * tot tot *= len(ma[p][n].keys()) for n,u in enumerate(reversed(uni[:6])): num += ma[p][n][u] * tot tot *= len(ma[p][n].keys()) nums.append(num) return nums def map_retrieve(ids, call_uniprot=False): if call_uniprot: mode = "NF100" if "UniRef100" in ids[0] else "NF90" url = 'https://www.uniprot.org/uploadlists/' out = [] for i in range(0,len(ids),5000): params = { 'from': mode, 'to': 'ACC', 'format': 'tab', 'query': " ".join(ids[i:i+5000]) } data = urllib.parse.urlencode(params) data = data.encode('utf-8') req = urllib.request.Request(url, data) with urllib.request.urlopen(req) as f: response = f.read() out += [line.split() for line in response.decode('utf-8').splitlines()] time.sleep(5) # combine mapping mapping = {} for i,j in out: if i != "From": if i not in mapping: mapping[i] = [j] else: mapping[i].append(j) else: mapping = {} for i in ids: if i not in mapping: mapping[i] = [i.split("_")[1]] return mapping def hash_it(_seq, _lab, _mtx, call_uniprot=False): if _seq is None or _lab is None: _seq, _lab = parse_a3m(a3m_lines) _lab_to_seq = {L:S for L,S in zip(_lab,_seq)} _lab_to_mtx = {L:M for L,M in zip(_lab,_mtx)} # call uniprot _lab_to_uni = map_retrieve(_lab, call_uniprot=call_uniprot) _uni_to_lab = {} for L,U in _lab_to_uni.items(): for u in U: _uni_to_lab[u] = L _uni,__lab = [],[] for U,L in _uni_to_lab.items(): _uni.append(U) __lab.append(L) _hash = uni_num(_uni) _uni_to_hash = {u:h for u,h in zip(_uni,_hash)} _hash_to_lab = {h:l for h,l in zip(_hash,__lab)} _lab_to_hash = {} for L,U in _lab_to_uni.items(): _lab_to_hash[L] = [] for u in U: _lab_to_hash[L].append(_uni_to_hash[u]) return {"_lab_to_seq":_lab_to_seq, "_lab_to_mtx":_lab_to_mtx, "_lab_to_hash":_lab_to_hash, "_hash_to_lab":_hash_to_lab} import tqdm.notebook TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]' # keeping old function for compatability def stitch(_hash_a,_hash_b, stitch_min=1, stitch_max=20, filter_id=None): o = _stitch(_hash_a, _hash_b, stitch_min, stitch_max) return (*o["seq"],*o["mtx"]) def _stitch(_hash_a,_hash_b, stitch_min=1, stitch_max=20): _seq, _mtx, _lab, _delta_gene = [[],[]],[[],[]],[[],[]],[] TOTAL = len(_hash_a["_lab_to_hash"]) with tqdm.notebook.tqdm(total=TOTAL, bar_format=TQDM_BAR_FORMAT) as pbar: pbar.set_description("STITCHING") H_A = np.asarray(list(_hash_a["_hash_to_lab"].keys())) H_B = np.asarray(list(_hash_b["_hash_to_lab"].keys())) def hit(h,H): h = np.asarray(h) match = np.abs(h[:,None]-H[None,:]).min(0) match_min = match.min() if match_min >= stitch_min and match_min <= stitch_max: return True,H[match.argmin()],match_min else: return False,None,None for n,(l_a,h_a) in enumerate(_hash_a["_lab_to_hash"].items()): chk_b, h_b, dg = hit(h_a,H_B) if chk_b: l_b = _hash_b["_hash_to_lab"][h_b] h_b = _hash_b["_lab_to_hash"][l_b] chk_c, h_c, _ = hit(h_b,H_A) if chk_c and _hash_a["_hash_to_lab"][h_c] == l_a: _seq[0].append(_hash_a["_lab_to_seq"][l_a]) _mtx[0].append(_hash_a["_lab_to_mtx"][l_a]) _lab[0].append(l_a) _seq[1].append(_hash_b["_lab_to_seq"][l_b]) _mtx[1].append(_hash_b["_lab_to_mtx"][l_b]) _lab[1].append(l_b) _delta_gene.append(dg) pbar.update() return {"seq":_seq, "mtx":_mtx, "lab":_lab, "delta_gene":_delta_gene}
ColabFold-main
beta/pairmsa.py
# fmt: off ############################################ # imports ############################################ import jax import requests import hashlib import tarfile import time import pickle import os import re import random import tqdm.notebook import numpy as np import matplotlib.pyplot as plt import matplotlib import matplotlib.patheffects from matplotlib import collections as mcoll try: import py3Dmol except: pass from string import ascii_uppercase,ascii_lowercase pymol_color_list = ["#33ff33","#00ffff","#ff33cc","#ffff00","#ff9999","#e5e5e5","#7f7fff","#ff7f00", "#7fff7f","#199999","#ff007f","#ffdd5e","#8c3f99","#b2b2b2","#007fff","#c4b200", "#8cb266","#00bfbf","#b27f7f","#fcd1a5","#ff7f7f","#ffbfdd","#7fffff","#ffff7f", "#00ff7f","#337fcc","#d8337f","#bfff3f","#ff7fff","#d8d8ff","#3fffbf","#b78c4c", "#339933","#66b2b2","#ba8c84","#84bf00","#b24c66","#7f7f7f","#3f3fa5","#a5512b"] pymol_cmap = matplotlib.colors.ListedColormap(pymol_color_list) alphabet_list = list(ascii_uppercase+ascii_lowercase) aatypes = set('ACDEFGHIKLMNPQRSTVWY') ########################################### # control gpu/cpu memory usage ########################################### def rm(x): '''remove data from device''' jax.tree_util.tree_map(lambda y: y.device_buffer.delete(), x) def to(x,device="cpu"): '''move data to device''' d = jax.devices(device)[0] return jax.tree_util.tree_map(lambda y:jax.device_put(y,d), x) def clear_mem(device="gpu"): '''remove all data from device''' backend = jax.lib.xla_bridge.get_backend(device) for buf in backend.live_buffers(): buf.delete() ########################################## # call mmseqs2 ########################################## TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]' def run_mmseqs2(x, prefix, use_env=True, use_filter=True, use_templates=False, filter=None, host_url="https://a3m.mmseqs.com"): def submit(seqs, mode, N=101): n,query = N,"" for seq in seqs: query += f">{n}\n{seq}\n" n += 1 res = requests.post(f'{host_url}/ticket/msa', data={'q':query,'mode': mode}) try: out = res.json() except ValueError: out = {"status":"UNKNOWN"} return out def status(ID): res = requests.get(f'{host_url}/ticket/{ID}') try: out = res.json() except ValueError: out = {"status":"UNKNOWN"} return out def download(ID, path): res = requests.get(f'{host_url}/result/download/{ID}') with open(path,"wb") as out: out.write(res.content) # process input x seqs = [x] if isinstance(x, str) else x # compatibility to old option if filter is not None: use_filter = filter # setup mode if use_filter: mode = "env" if use_env else "all" else: mode = "env-nofilter" if use_env else "nofilter" # define path path = f"{prefix}_{mode}" if not os.path.isdir(path): os.mkdir(path) # call mmseqs2 api tar_gz_file = f'{path}/out.tar.gz' N,REDO = 101,True # deduplicate and keep track of order seqs_unique = sorted(list(set(seqs))) Ms = [N+seqs_unique.index(seq) for seq in seqs] # lets do it! if not os.path.isfile(tar_gz_file): TIME_ESTIMATE = 150 * len(seqs_unique) with tqdm.notebook.tqdm(total=TIME_ESTIMATE, bar_format=TQDM_BAR_FORMAT) as pbar: while REDO: pbar.set_description("SUBMIT") # Resubmit job until it goes through out = submit(seqs_unique, mode, N) while out["status"] in ["UNKNOWN","RATELIMIT"]: # resubmit time.sleep(5 + random.randint(0,5)) out = submit(seqs_unique, mode, N) if out["status"] == "ERROR": raise Exception(f'MMseqs2 API is giving errors. Please confirm your input is a valid protein sequence. If error persists, please try again an hour later.') if out["status"] == "MAINTENANCE": raise Exception(f'MMseqs2 API is undergoing maintenance. Please try again in a few minutes.') # wait for job to finish ID,TIME = out["id"],0 pbar.set_description(out["status"]) while out["status"] in ["UNKNOWN","RUNNING","PENDING"]: t = 5 + random.randint(0,5) time.sleep(t) out = status(ID) pbar.set_description(out["status"]) if out["status"] == "RUNNING": TIME += t pbar.update(n=t) #if TIME > 900 and out["status"] != "COMPLETE": # # something failed on the server side, need to resubmit # N += 1 # break if out["status"] == "COMPLETE": if TIME < TIME_ESTIMATE: pbar.update(n=(TIME_ESTIMATE-TIME)) REDO = False # Download results download(ID, tar_gz_file) # prep list of a3m files a3m_files = [f"{path}/uniref.a3m"] if use_env: a3m_files.append(f"{path}/bfd.mgnify30.metaeuk30.smag30.a3m") # extract a3m files if not os.path.isfile(a3m_files[0]): with tarfile.open(tar_gz_file) as tar_gz: tar_gz.extractall(path) # templates if use_templates: templates = {} print("seq\tpdb\tcid\tevalue") for line in open(f"{path}/pdb70.m8","r"): p = line.rstrip().split() M,pdb,qid,e_value = p[0],p[1],p[2],p[10] M = int(M) if M not in templates: templates[M] = [] templates[M].append(pdb) if len(templates[M]) <= 20: print(f"{int(M)-N}\t{pdb}\t{qid}\t{e_value}") template_paths = {} for k,TMPL in templates.items(): TMPL_PATH = f"{prefix}_{mode}/templates_{k}" if not os.path.isdir(TMPL_PATH): os.mkdir(TMPL_PATH) TMPL_LINE = ",".join(TMPL[:20]) os.system(f"curl -s https://a3m-templates.mmseqs.com/template/{TMPL_LINE} | tar xzf - -C {TMPL_PATH}/") os.system(f"cp {TMPL_PATH}/pdb70_a3m.ffindex {TMPL_PATH}/pdb70_cs219.ffindex") os.system(f"touch {TMPL_PATH}/pdb70_cs219.ffdata") template_paths[k] = TMPL_PATH # gather a3m lines a3m_lines = {} for a3m_file in a3m_files: update_M,M = True,None for line in open(a3m_file,"r"): if len(line) > 0: if "\x00" in line: line = line.replace("\x00","") update_M = True if line.startswith(">") and update_M: M = int(line[1:].rstrip()) update_M = False if M not in a3m_lines: a3m_lines[M] = [] a3m_lines[M].append(line) # return results a3m_lines = ["".join(a3m_lines[n]) for n in Ms] if use_templates: template_paths_ = [] for n in Ms: if n not in template_paths: template_paths_.append(None) print(f"{n-N}\tno_templates_found") else: template_paths_.append(template_paths[n]) template_paths = template_paths_ if isinstance(x, str): return (a3m_lines[0], template_paths[0]) if use_templates else a3m_lines[0] else: return (a3m_lines, template_paths) if use_templates else a3m_lines ######################################################################### # utils ######################################################################### def get_hash(x): return hashlib.sha1(x.encode()).hexdigest() def homooligomerize(msas, deletion_matrices, homooligomer=1): if homooligomer == 1: return msas, deletion_matrices else: new_msas = [] new_mtxs = [] for o in range(homooligomer): for msa,mtx in zip(msas, deletion_matrices): num_res = len(msa[0]) L = num_res * o R = num_res * (homooligomer-(o+1)) new_msas.append(["-"*L+s+"-"*R for s in msa]) new_mtxs.append([[0]*L+m+[0]*R for m in mtx]) return new_msas, new_mtxs # keeping typo for cross-compatibility def homooliomerize(msas, deletion_matrices, homooligomer=1): return homooligomerize(msas, deletion_matrices, homooligomer=homooligomer) def homooligomerize_heterooligomer(msas, deletion_matrices, lengths, homooligomers): ''' ----- inputs ----- msas: list of msas deletion_matrices: list of deletion matrices lengths: list of lengths for each component in complex homooligomers: list of number of homooligomeric copies for each component ----- outputs ----- (msas, deletion_matrices) ''' if max(homooligomers) == 1: return msas, deletion_matrices elif len(homooligomers) == 1: return homooligomerize(msas, deletion_matrices, homooligomers[0]) else: frag_ij = [[0,lengths[0]]] for length in lengths[1:]: j = frag_ij[-1][-1] frag_ij.append([j,j+length]) # for every msa mod_msas, mod_mtxs = [],[] for msa, mtx in zip(msas, deletion_matrices): mod_msa, mod_mtx = [],[] # for every sequence for n,(s,m) in enumerate(zip(msa,mtx)): # split sequence _s,_m,_ok = [],[],[] for i,j in frag_ij: _s.append(s[i:j]); _m.append(m[i:j]) _ok.append(max([o != "-" for o in _s[-1]])) if n == 0: # if first query sequence mod_msa.append("".join([x*h for x,h in zip(_s,homooligomers)])) mod_mtx.append(sum([x*h for x,h in zip(_m,homooligomers)],[])) elif sum(_ok) == 1: # elif one fragment: copy each fragment to every homooligomeric copy a = _ok.index(True) for h_a in range(homooligomers[a]): _blank_seq = [["-"*l]*h for l,h in zip(lengths,homooligomers)] _blank_mtx = [[[0]*l]*h for l,h in zip(lengths,homooligomers)] _blank_seq[a][h_a] = _s[a] _blank_mtx[a][h_a] = _m[a] mod_msa.append("".join(["".join(x) for x in _blank_seq])) mod_mtx.append(sum([sum(x,[]) for x in _blank_mtx],[])) else: # else: copy fragment pair to every homooligomeric copy pair for a in range(len(lengths)-1): if _ok[a]: for b in range(a+1,len(lengths)): if _ok[b]: for h_a in range(homooligomers[a]): for h_b in range(homooligomers[b]): _blank_seq = [["-"*l]*h for l,h in zip(lengths,homooligomers)] _blank_mtx = [[[0]*l]*h for l,h in zip(lengths,homooligomers)] for c,h_c in zip([a,b],[h_a,h_b]): _blank_seq[c][h_c] = _s[c] _blank_mtx[c][h_c] = _m[c] mod_msa.append("".join(["".join(x) for x in _blank_seq])) mod_mtx.append(sum([sum(x,[]) for x in _blank_mtx],[])) mod_msas.append(mod_msa) mod_mtxs.append(mod_mtx) return mod_msas, mod_mtxs def chain_break(idx_res, Ls, length=200): # Minkyung's code # add big enough number to residue index to indicate chain breaks L_prev = 0 for L_i in Ls[:-1]: idx_res[L_prev+L_i:] += length L_prev += L_i return idx_res ################################################## # plotting ################################################## def plot_plddt_legend(dpi=100): thresh = ['plDDT:','Very low (<50)','Low (60)','OK (70)','Confident (80)','Very high (>90)'] plt.figure(figsize=(1,0.1),dpi=dpi) ######################################## for c in ["#FFFFFF","#FF0000","#FFFF00","#00FF00","#00FFFF","#0000FF"]: plt.bar(0, 0, color=c) plt.legend(thresh, frameon=False, loc='center', ncol=6, handletextpad=1, columnspacing=1, markerscale=0.5,) plt.axis(False) return plt def plot_ticks(Ls): Ln = sum(Ls) L_prev = 0 for L_i in Ls[:-1]: L = L_prev + L_i L_prev += L_i plt.plot([0,Ln],[L,L],color="black") plt.plot([L,L],[0,Ln],color="black") ticks = np.cumsum([0]+Ls) ticks = (ticks[1:] + ticks[:-1])/2 plt.yticks(ticks,alphabet_list[:len(ticks)]) def plot_confidence(plddt, pae=None, Ls=None, dpi=100): use_ptm = False if pae is None else True if use_ptm: plt.figure(figsize=(10,3), dpi=dpi) plt.subplot(1,2,1); else: plt.figure(figsize=(5,3), dpi=dpi) plt.title('Predicted lDDT') plt.plot(plddt) if Ls is not None: L_prev = 0 for L_i in Ls[:-1]: L = L_prev + L_i L_prev += L_i plt.plot([L,L],[0,100],color="black") plt.ylim(0,100) plt.ylabel('plDDT') plt.xlabel('position') if use_ptm: plt.subplot(1,2,2);plt.title('Predicted Aligned Error') Ln = pae.shape[0] plt.imshow(pae,cmap="bwr",vmin=0,vmax=30,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() plt.xlabel('Scored residue') plt.ylabel('Aligned residue') return plt def plot_msas(msas, ori_seq=None, sort_by_seqid=True, deduplicate=True, dpi=100, return_plt=True): ''' plot the msas ''' if ori_seq is None: ori_seq = msas[0][0] seqs = ori_seq.replace("/","").split(":") seqs_dash = ori_seq.replace(":","").split("/") Ln = np.cumsum(np.append(0,[len(seq) for seq in seqs])) Ln_dash = np.cumsum(np.append(0,[len(seq) for seq in seqs_dash])) Nn,lines = [],[] for msa in msas: msa_ = set(msa) if deduplicate else msa if len(msa_) > 0: Nn.append(len(msa_)) msa_ = np.asarray([list(seq) for seq in msa_]) gap_ = msa_ != "-" qid_ = msa_ == np.array(list("".join(seqs))) gapid = np.stack([gap_[:,Ln[i]:Ln[i+1]].max(-1) for i in range(len(seqs))],-1) seqid = np.stack([qid_[:,Ln[i]:Ln[i+1]].mean(-1) for i in range(len(seqs))],-1).sum(-1) / (gapid.sum(-1) + 1e-8) non_gaps = gap_.astype(np.float) non_gaps[non_gaps == 0] = np.nan if sort_by_seqid: lines.append(non_gaps[seqid.argsort()]*seqid[seqid.argsort(),None]) else: lines.append(non_gaps[::-1] * seqid[::-1,None]) Nn = np.cumsum(np.append(0,Nn)) lines = np.concatenate(lines,0) if return_plt: plt.figure(figsize=(8,5),dpi=dpi) plt.title("Sequence coverage") plt.imshow(lines, interpolation='nearest', aspect='auto', cmap="rainbow_r", vmin=0, vmax=1, origin='lower', extent=(0, lines.shape[1], 0, lines.shape[0])) for i in Ln[1:-1]: plt.plot([i,i],[0,lines.shape[0]],color="black") for i in Ln_dash[1:-1]: plt.plot([i,i],[0,lines.shape[0]],"--",color="black") for j in Nn[1:-1]: plt.plot([0,lines.shape[1]],[j,j],color="black") plt.plot((np.isnan(lines) == False).sum(0), color='black') plt.xlim(0,lines.shape[1]) plt.ylim(0,lines.shape[0]) plt.colorbar(label="Sequence identity to query") plt.xlabel("Positions") plt.ylabel("Sequences") if return_plt: return plt def read_pdb_renum(pdb_filename, Ls=None): if Ls is not None: L_init = 0 new_chain = {} for L,c in zip(Ls, alphabet_list): new_chain.update({i:c for i in range(L_init,L_init+L)}) L_init += L n,pdb_out = 1,[] resnum_,chain_ = 1,"A" for line in open(pdb_filename,"r"): if line[:4] == "ATOM": chain = line[21:22] resnum = int(line[22:22+5]) if resnum != resnum_ or chain != chain_: resnum_,chain_ = resnum,chain n += 1 if Ls is None: pdb_out.append("%s%4i%s" % (line[:22],n,line[26:])) else: pdb_out.append("%s%s%4i%s" % (line[:21],new_chain[n-1],n,line[26:])) return "".join(pdb_out) def show_pdb(pred_output_path, show_sidechains=False, show_mainchains=False, color="lDDT", chains=None, Ls=None, vmin=50, vmax=90, color_HP=False, size=(800,480)): if chains is None: chains = 1 if Ls is None else len(Ls) view = py3Dmol.view(js='https://3dmol.org/build/3Dmol.js', width=size[0], height=size[1]) view.addModel(read_pdb_renum(pred_output_path, Ls),'pdb') if color == "lDDT": view.setStyle({'cartoon': {'colorscheme': {'prop':'b','gradient': 'roygb','min':vmin,'max':vmax}}}) elif color == "rainbow": view.setStyle({'cartoon': {'color':'spectrum'}}) elif color == "chain": for n,chain,color in zip(range(chains),alphabet_list,pymol_color_list): view.setStyle({'chain':chain},{'cartoon': {'color':color}}) if show_sidechains: BB = ['C','O','N'] HP = ["ALA","GLY","VAL","ILE","LEU","PHE","MET","PRO","TRP","CYS","TYR"] if color_HP: view.addStyle({'and':[{'resn':HP},{'atom':BB,'invert':True}]}, {'stick':{'colorscheme':"yellowCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':HP,'invert':True},{'atom':BB,'invert':True}]}, {'stick':{'colorscheme':"whiteCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"GLY"},{'atom':'CA'}]}, {'sphere':{'colorscheme':"yellowCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"PRO"},{'atom':['C','O'],'invert':True}]}, {'stick':{'colorscheme':"yellowCarbon",'radius':0.3}}) else: view.addStyle({'and':[{'resn':["GLY","PRO"],'invert':True},{'atom':BB,'invert':True}]}, {'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"GLY"},{'atom':'CA'}]}, {'sphere':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"PRO"},{'atom':['C','O'],'invert':True}]}, {'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) if show_mainchains: BB = ['C','O','N','CA'] view.addStyle({'atom':BB},{'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) view.zoomTo() return view def plot_plddts(plddts, Ls=None, dpi=100, fig=True): if fig: plt.figure(figsize=(8,5),dpi=100) plt.title("Predicted lDDT per position") for n,plddt in enumerate(plddts): plt.plot(plddt,label=f"rank_{n+1}") if Ls is not None: L_prev = 0 for L_i in Ls[:-1]: L = L_prev + L_i L_prev += L_i plt.plot([L,L],[0,100],color="black") plt.legend() plt.ylim(0,100) plt.ylabel("Predicted lDDT") plt.xlabel("Positions") return plt def plot_paes(paes, Ls=None, dpi=100, fig=True): num_models = len(paes) if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi) for n,pae in enumerate(paes): plt.subplot(1,num_models,n+1) plt.title(f"rank_{n+1}") Ln = pae.shape[0] plt.imshow(pae,cmap="bwr",vmin=0,vmax=30,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() return plt def plot_adjs(adjs, Ls=None, dpi=100, fig=True): num_models = len(adjs) if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi) for n,adj in enumerate(adjs): plt.subplot(1,num_models,n+1) plt.title(f"rank_{n+1}") Ln = adj.shape[0] plt.imshow(adj,cmap="binary",vmin=0,vmax=1,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() return plt def plot_dists(dists, Ls=None, dpi=100, fig=True): num_models = len(dists) if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi) for n,dist in enumerate(dists): plt.subplot(1,num_models,n+1) plt.title(f"rank_{n+1}") Ln = dist.shape[0] plt.imshow(dist,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() return plt ########################################################################## ########################################################################## def kabsch(a, b, weights=None, return_v=False): a = np.asarray(a) b = np.asarray(b) if weights is None: weights = np.ones(len(b)) else: weights = np.asarray(weights) B = np.einsum('ji,jk->ik', weights[:, None] * a, b) u, s, vh = np.linalg.svd(B) if np.linalg.det(u @ vh) < 0: u[:, -1] = -u[:, -1] if return_v: return u else: return u @ vh def plot_pseudo_3D(xyz, c=None, ax=None, chainbreak=5, cmap="gist_rainbow", line_w=2.0, cmin=None, cmax=None, zmin=None, zmax=None): def rescale(a,amin=None,amax=None): a = np.copy(a) if amin is None: amin = a.min() if amax is None: amax = a.max() a[a < amin] = amin a[a > amax] = amax return (a - amin)/(amax - amin) # make segments xyz = np.asarray(xyz) seg = np.concatenate([xyz[:-1,None,:],xyz[1:,None,:]],axis=-2) seg_xy = seg[...,:2] seg_z = seg[...,2].mean(-1) ord = seg_z.argsort() # set colors if c is None: c = np.arange(len(seg))[::-1] else: c = (c[1:] + c[:-1])/2 c = rescale(c,cmin,cmax) if isinstance(cmap, str): if cmap == "gist_rainbow": c *= 0.75 colors = matplotlib.cm.get_cmap(cmap)(c) else: colors = cmap(c) if chainbreak is not None: dist = np.linalg.norm(xyz[:-1] - xyz[1:], axis=-1) colors[...,3] = (dist < chainbreak).astype(np.float) # add shade/tint based on z-dimension z = rescale(seg_z,zmin,zmax)[:,None] tint, shade = z/3, (z+2)/3 colors[:,:3] = colors[:,:3] + (1 - colors[:,:3]) * tint colors[:,:3] = colors[:,:3] * shade set_lim = False if ax is None: fig, ax = plt.subplots() fig.set_figwidth(5) fig.set_figheight(5) set_lim = True else: fig = ax.get_figure() if ax.get_xlim() == (0,1): set_lim = True if set_lim: xy_min = xyz[:,:2].min() - line_w xy_max = xyz[:,:2].max() + line_w ax.set_xlim(xy_min,xy_max) ax.set_ylim(xy_min,xy_max) ax.set_aspect('equal') # determine linewidths width = fig.bbox_inches.width * ax.get_position().width linewidths = line_w * 72 * width / np.diff(ax.get_xlim()) lines = mcoll.LineCollection(seg_xy[ord], colors=colors[ord], linewidths=linewidths, path_effects=[matplotlib.patheffects.Stroke(capstyle="round")]) return ax.add_collection(lines) def add_text(text, ax): return plt.text(0.5, 1.01, text, horizontalalignment='center', verticalalignment='bottom', transform=ax.transAxes) def plot_protein(protein=None, pos=None, plddt=None, Ls=None, dpi=100, best_view=True, line_w=2.0): if protein is not None: pos = np.asarray(protein.atom_positions[:,1,:]) plddt = np.asarray(protein.b_factors[:,0]) # get best view if best_view: if plddt is not None: weights = plddt/100 pos = pos - (pos * weights[:,None]).sum(0,keepdims=True) / weights.sum() pos = pos @ kabsch(pos, pos, weights, return_v=True) else: pos = pos - pos.mean(0,keepdims=True) pos = pos @ kabsch(pos, pos, return_v=True) if plddt is not None: fig, (ax1, ax2) = plt.subplots(1,2) fig.set_figwidth(6); fig.set_figheight(3) ax = [ax1, ax2] else: fig, ax1 = plt.subplots(1,1) fig.set_figwidth(3); fig.set_figheight(3) ax = [ax1] fig.set_dpi(dpi) fig.subplots_adjust(top = 0.9, bottom = 0.1, right = 1, left = 0, hspace = 0, wspace = 0) xy_min = pos[...,:2].min() - line_w xy_max = pos[...,:2].max() + line_w for a in ax: a.set_xlim(xy_min, xy_max) a.set_ylim(xy_min, xy_max) a.axis(False) if Ls is None or len(Ls) == 1: # color N->C c = np.arange(len(pos))[::-1] plot_pseudo_3D(pos, line_w=line_w, ax=ax1) add_text("colored by N→C", ax1) else: # color by chain c = np.concatenate([[n]*L for n,L in enumerate(Ls)]) if len(Ls) > 40: plot_pseudo_3D(pos, c=c, line_w=line_w, ax=ax1) else: plot_pseudo_3D(pos, c=c, cmap=pymol_cmap, cmin=0, cmax=39, line_w=line_w, ax=ax1) add_text("colored by chain", ax1) if plddt is not None: # color by pLDDT plot_pseudo_3D(pos, c=plddt, cmin=50, cmax=90, line_w=line_w, ax=ax2) add_text("colored by pLDDT", ax2) return fig
ColabFold-main
beta/colabfold.py
import os from urllib import request from concurrent import futures import pickle import jax from alphafold.data.tools import jackhmmer from alphafold.data import parsers from alphafold.data import pipeline from alphafold.common import protein from alphafold.model import config from alphafold.model import model from alphafold.model import data from alphafold.model.tf import shape_placeholders import tensorflow as tf from string import ascii_uppercase import numpy as np import matplotlib.pyplot as plt import re import colabfold as cf import pairmsa try: from google.colab import files IN_COLAB = True except: IN_COLAB = False import tqdm.notebook TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]' ####################################################################################################################################### # prep_inputs ####################################################################################################################################### def prep_inputs(sequence, jobname="test", homooligomer="1", output_dir=None, clean=False, verbose=True): # process inputs sequence = str(sequence) sequence = re.sub("[^A-Z:/]", "", sequence.upper()) sequence = re.sub(":+",":",sequence) sequence = re.sub("/+","/",sequence) sequence = re.sub("^[:/]+","",sequence) sequence = re.sub("[:/]+$","",sequence) jobname = re.sub(r'\W+', '', jobname) homooligomer = str(homooligomer) homooligomer = re.sub("[:/]+",":",homooligomer) homooligomer = re.sub("^[:/]+","",homooligomer) homooligomer = re.sub("[:/]+$","",homooligomer) if len(homooligomer) == 0: homooligomer = "1" homooligomer = re.sub("[^0-9:]", "", homooligomer) # define inputs I = {"ori_sequence":sequence, "sequence":sequence.replace("/","").replace(":",""), "seqs":sequence.replace("/","").split(":"), "homooligomer":homooligomer, "homooligomers":[int(h) for h in homooligomer.split(":")], "msas":[], "deletion_matrices":[]} # adjust homooligomer option if len(I["seqs"]) != len(I["homooligomers"]): if len(I["homooligomers"]) == 1: I["homooligomers"] = [I["homooligomers"][0]] * len(I["seqs"]) else: if verbose: print("WARNING: Mismatch between number of breaks ':' in 'sequence' and 'homooligomer' definition") while len(I["seqs"]) > len(I["homooligomers"]): I["homooligomers"].append(1) I["homooligomers"] = I["homooligomers"][:len(I["seqs"])] I["homooligomer"] = ":".join([str(h) for h in I["homooligomers"]]) # define full sequence being modelled I["full_sequence"] = ''.join([s*h for s,h in zip(I["seqs"],I["homooligomers"])]) I["lengths"] = [len(seq) for seq in I["seqs"]] # prediction directory if output_dir is None: I["output_dir"] = 'prediction_' + jobname + '_' + cf.get_hash(I["full_sequence"])[:5] else: I["output_dir"] = output_dir os.makedirs(I["output_dir"], exist_ok=True) # delete existing files in working directory if clean: for f in os.listdir(I["output_dir"]): os.remove(os.path.join(I["output_dir"], f)) if verbose and len(I["full_sequence"]) > 1400: print(f"WARNING: For a typical Google-Colab-GPU (16G) session, the max total length is ~1400 residues. You are at {len(I['full_sequence'])}!") print(f"Run Alphafold may crash, unless you trim to the protein(s) to a short length. (See trim options below).") if verbose: print(f"homooligomer: {I['homooligomer']}") print(f"total_length: {len(I['full_sequence'])}") print(f"output_dir: {I['output_dir']}") return I ####################################################################################################################################### # prep_msa ####################################################################################################################################### def run_jackhmmer(sequence, prefix, jackhmmer_binary_path='jackhmmer', verbose=True): fasta_path = f"{prefix}.fasta" with open(fasta_path, 'wt') as f: f.write(f'>query\n{sequence}') pickled_msa_path = f"{prefix}.jackhmmer.pickle" if os.path.isfile(pickled_msa_path): msas_dict = pickle.load(open(pickled_msa_path,"rb")) msas, deletion_matrices, names = (msas_dict[k] for k in ['msas', 'deletion_matrices', 'names']) full_msa = [] for msa in msas: full_msa += msa else: # --- Find the closest source --- test_url_pattern = 'https://storage.googleapis.com/alphafold-colab{:s}/latest/uniref90_2021_03.fasta.1' ex = futures.ThreadPoolExecutor(3) def fetch(source): request.urlretrieve(test_url_pattern.format(source)) return source fs = [ex.submit(fetch, source) for source in ['', '-europe', '-asia']] source = None for f in futures.as_completed(fs): source = f.result() ex.shutdown() break dbs = [] num_jackhmmer_chunks = {'uniref90': 59, 'smallbfd': 17, 'mgnify': 71} total_jackhmmer_chunks = sum(num_jackhmmer_chunks.values()) disable_tqdm = not verbose with tqdm.notebook.tqdm(total=total_jackhmmer_chunks, bar_format=TQDM_BAR_FORMAT, disable=disable_tqdm) as pbar: def jackhmmer_chunk_callback(i): pbar.update(n=1) pbar.set_description('Searching uniref90') jackhmmer_uniref90_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/uniref90_2021_03.fasta', get_tblout=True, num_streamed_chunks=num_jackhmmer_chunks['uniref90'], streaming_callback=jackhmmer_chunk_callback, z_value=135301051) dbs.append(('uniref90', jackhmmer_uniref90_runner.query(fasta_path))) pbar.set_description('Searching smallbfd') jackhmmer_smallbfd_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/bfd-first_non_consensus_sequences.fasta', get_tblout=True, num_streamed_chunks=num_jackhmmer_chunks['smallbfd'], streaming_callback=jackhmmer_chunk_callback, z_value=65984053) dbs.append(('smallbfd', jackhmmer_smallbfd_runner.query(fasta_path))) pbar.set_description('Searching mgnify') jackhmmer_mgnify_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/mgy_clusters_2019_05.fasta', get_tblout=True, num_streamed_chunks=num_jackhmmer_chunks['mgnify'], streaming_callback=jackhmmer_chunk_callback, z_value=304820129) dbs.append(('mgnify', jackhmmer_mgnify_runner.query(fasta_path))) # --- Extract the MSAs and visualize --- # Extract the MSAs from the Stockholm files. # NB: deduplication happens later in pipeline.make_msa_features. mgnify_max_hits = 501 msas = [] deletion_matrices = [] names = [] for db_name, db_results in dbs: unsorted_results = [] for i, result in enumerate(db_results): msa, deletion_matrix, target_names = parsers.parse_stockholm(result['sto']) e_values_dict = parsers.parse_e_values_from_tblout(result['tbl']) e_values = [e_values_dict[t.split('/')[0]] for t in target_names] zipped_results = zip(msa, deletion_matrix, target_names, e_values) if i != 0: # Only take query from the first chunk zipped_results = [x for x in zipped_results if x[2] != 'query'] unsorted_results.extend(zipped_results) sorted_by_evalue = sorted(unsorted_results, key=lambda x: x[3]) db_msas, db_deletion_matrices, db_names, _ = zip(*sorted_by_evalue) if db_msas: if db_name == 'mgnify': db_msas = db_msas[:mgnify_max_hits] db_deletion_matrices = db_deletion_matrices[:mgnify_max_hits] db_names = db_names[:mgnify_max_hits] msas.append(db_msas) deletion_matrices.append(db_deletion_matrices) names.append(db_names) msa_size = len(set(db_msas)) print(f'{msa_size} Sequences Found in {db_name}') pickle.dump({"msas":msas, "deletion_matrices":deletion_matrices, "names":names}, open(pickled_msa_path,"wb")) return msas, deletion_matrices, names def prep_msa(I, msa_method="mmseqs2", add_custom_msa=False, msa_format="fas", pair_mode="unpaired", pair_cov=50, pair_qid=20, hhfilter_loc="hhfilter", reformat_loc="reformat.pl", TMP_DIR="tmp", custom_msa=None, precomputed=None, mmseqs_host_url="https://a3m.mmseqs.com", verbose=True): # make temp directory os.makedirs(TMP_DIR, exist_ok=True) # clear previous inputs I["msas"] = [] I["deletion_matrices"] = [] if add_custom_msa: if IN_COLAB: print(f"upload custom msa in '{msa_format}' format") msa_dict = files.upload() lines = msa_dict[list(msa_dict.keys())[0]].decode() input_file = os.path.join(I["output_dir"],f"upload.{msa_format}") with open(input_file,"w") as tmp_upload: tmp_upload.write(lines) else: input_file = custom_msa if input_file is None or not os.path.isfile(input_file): raise ValueError("ERROR: `custom_msa` undefined") else: # convert to a3m output_file = os.path.join(I["output_dir"],f"upload.a3m") os.system(f"{reformat_loc} {msa_format} a3m {input_file} {output_file}") # parse msa, mtx = parsers.parse_a3m(open(output_file,"r").read()) I["msas"].append(msa) I["deletion_matrices"].append(mtx) if len(I["msas"][0][0]) != len(I["sequence"]): raise ValueError("ERROR: the length of msa does not match input sequence") if msa_method == "precomputed": if IN_COLAB: print("upload precomputed pickled msa from previous run") uploaded_dict = files.upload() uploaded_filename = list(uploaded_dict.keys())[0] I.update(pickle.loads(uploaded_dict[uploaded_filename])) elif precomputed is None: raise ValueError("ERROR: `precomputed` undefined") else: I.update(pickle.load(open(precomputed,"rb"))) elif msa_method == "single_sequence": if len(I["msas"]) == 0: I["msas"].append([I["sequence"]]) I["deletion_matrices"].append([[0]*len(I["sequence"])]) else: _blank_seq = ["-" * L for L in I["lengths"]] _blank_mtx = [[0] * L for L in I["lengths"]] def _pad(ns,vals,mode): if mode == "seq": _blank = _blank_seq.copy() if mode == "mtx": _blank = _blank_mtx.copy() if isinstance(ns, list): for n,val in zip(ns,vals): _blank[n] = val else: _blank[ns] = vals if mode == "seq": return "".join(_blank) if mode == "mtx": return sum(_blank,[]) if len(I["seqs"]) == 1 or "unpaired" in pair_mode: # gather msas if msa_method == "mmseqs2": prefix = cf.get_hash(I["sequence"]) prefix = os.path.join(TMP_DIR,prefix) print(f"running mmseqs2") A3M_LINES = cf.run_mmseqs2(I["seqs"], prefix, use_filter=True, host_url=mmseqs_host_url) for n, seq in enumerate(I["seqs"]): # tmp directory prefix = cf.get_hash(seq) prefix = os.path.join(TMP_DIR,prefix) if msa_method == "mmseqs2": # run mmseqs2 a3m_lines = A3M_LINES[n] msa, mtx = parsers.parse_a3m(a3m_lines) msas_, mtxs_ = [msa],[mtx] elif msa_method == "jackhmmer": print(f"running jackhmmer on seq_{n}") # run jackhmmer msas_, mtxs_, names_ = ([sum(x,())] for x in run_jackhmmer(seq, prefix)) # pad sequences for msa_,mtx_ in zip(msas_,mtxs_): msa,mtx = [I["sequence"]],[[0]*len(I["sequence"])] for s,m in zip(msa_,mtx_): msa.append(_pad(n,s,"seq")) mtx.append(_pad(n,m,"mtx")) I["msas"].append(msa) I["deletion_matrices"].append(mtx) # PAIR_MSA if len(I["seqs"]) > 1 and (pair_mode == "paired" or pair_mode == "unpaired+paired"): print("attempting to pair some sequences...") if msa_method == "mmseqs2": prefix = cf.get_hash(I["sequence"]) prefix = os.path.join(TMP_DIR,prefix) print(f"running mmseqs2_noenv_nofilter on all seqs") A3M_LINES = cf.run_mmseqs2(I["seqs"], prefix, use_env=False, use_filter=False, host_url=mmseqs_host_url) _data = [] for a in range(len(I["seqs"])): print(f"prepping seq_{a}") _seq = I["seqs"][a] _prefix = os.path.join(TMP_DIR,cf.get_hash(_seq)) if msa_method == "mmseqs2": a3m_lines = A3M_LINES[a] _msa, _mtx, _lab = pairmsa.parse_a3m(a3m_lines, filter_qid=pair_qid/100, filter_cov=pair_cov/100) elif msa_method == "jackhmmer": _msas, _mtxs, _names = run_jackhmmer(_seq, _prefix) _msa, _mtx, _lab = pairmsa.get_uni_jackhmmer(_msas[0], _mtxs[0], _names[0], filter_qid=pair_qid/100, filter_cov=pair_cov/100) if len(_msa) > 1: _data.append(pairmsa.hash_it(_msa, _lab, _mtx, call_uniprot=False)) else: _data.append(None) Ln = len(I["seqs"]) O = [[None for _ in I["seqs"]] for _ in I["seqs"]] for a in range(Ln): if _data[a] is not None: for b in range(a+1,Ln): if _data[b] is not None: print(f"attempting pairwise stitch for {a} {b}") O[a][b] = pairmsa._stitch(_data[a],_data[b]) _seq_a, _seq_b, _mtx_a, _mtx_b = (*O[a][b]["seq"],*O[a][b]["mtx"]) # filter to remove redundant sequences ok = [] with open(f"{TMP_DIR}/tmp.fas","w") as fas_file: fas_file.writelines([f">{n}\n{a+b}\n" for n,(a,b) in enumerate(zip(_seq_a,_seq_b))]) os.system(f"{hhfilter_loc} -maxseq 1000000 -i {TMP_DIR}/tmp.fas -o {TMP_DIR}/tmp.id90.fas -id 90") for line in open(f"{TMP_DIR}/tmp.id90.fas","r"): if line.startswith(">"): ok.append(int(line[1:])) if verbose: print(f"found {len(_seq_a)} pairs ({len(ok)} after filtering)") if len(_seq_a) > 0: msa,mtx = [I["sequence"]],[[0]*len(I["sequence"])] for s_a,s_b,m_a,m_b in zip(_seq_a, _seq_b, _mtx_a, _mtx_b): msa.append(_pad([a,b],[s_a,s_b],"seq")) mtx.append(_pad([a,b],[m_a,m_b],"mtx")) I["msas"].append(msa) I["deletion_matrices"].append(mtx) # save MSA as pickle pickle.dump({"msas":I["msas"],"deletion_matrices":I["deletion_matrices"]}, open(os.path.join(I["output_dir"],"msa.pickle"),"wb")) return I ####################################################################################################################################### # prep_filter ####################################################################################################################################### def trim_inputs(trim, msas, deletion_matrices, ori_seq=None, inverse=False): ''' input: trim, msas, deletion_matrices, ori_seq output: msas, deletion_matrices, ori_seq ''' if ori_seq is None: ori_seq = msas[0][0] seqs = ori_seq.replace("/","").split(":") L_ini = 0 chain_idx = {} idx_chain = [] for chain,seq in zip(ascii_uppercase,seqs): L = len(seq) chain_idx[chain] = dict(zip(range(L),range(L_ini,L_ini+L))) idx_chain += [f"{chain}{i+1}" for i in range(L)] L_ini += L global_idx = dict(zip(range(L_ini),range(L_ini))) mode = "keeping" if inverse else "trimming" trim_set = [] for idx in trim.split(","): i,j = idx.split("-") if "-" in idx else (idx,"") # set index reference frame trim_idx_i = trim_idx_j = global_idx if i != "" and i[0] in ascii_uppercase: trim_idx_i,i = chain_idx[i[0]], i[1:] if j != "" and j[0] in ascii_uppercase: trim_idx_j,j = chain_idx[j[0]], j[1:] # set which positions to trim if "-" in idx: i = trim_idx_i[int(i)-1] if i != "" else trim_idx_i[0] j = trim_idx_j[int(j)-1] if j != "" else trim_idx_j[len(trim_idx_j) - 1] trim_set += list(range(i,j+1)) print(f"{mode} positions: {idx_chain[i]}-{idx_chain[j]}") else: i = trim_idx_i[int(i)-1] trim_set.append(i) print(f"{mode} position: {idx_chain[i]}") # deduplicate list trim_set = set(trim_set) if inverse: trim_set = set(range(L_ini)) ^ trim_set trim_set = sorted(list(trim_set)) # trim MSA mod_msas, mod_mtxs = [],[] for msa, mtx in zip(msas, deletion_matrices): mod_msa = np.delete([list(s) for s in msa], trim_set, 1) ok = (mod_msa != "-").sum(-1) > 0 mod_msas.append(["".join(s) for s in mod_msa[ok]]) mod_mtx = np.asarray(mtx)[ok] mod_mtxs.append(np.delete(mod_mtx, trim_set, 1).tolist()) # trim original sequence mod_idx = [] mod_chain = [] mod_ori_seq = [] for n,a in enumerate(ori_seq.replace("/","").replace(":","")): if n not in trim_set: mod_ori_seq.append(a) mod_idx.append(n) mod_chain.append(idx_chain[n][0]) if len(mod_idx) > 1: if mod_chain[-1] != mod_chain[-2]: mod_ori_seq[-1] = ":" mod_ori_seq.append(a) elif (mod_idx[-1] - mod_idx[-2]) > 1: mod_ori_seq[-1] = "/" mod_ori_seq.append(a) mod_ori_seq = "".join(mod_ori_seq) chains = sorted([ascii_uppercase.index(a) for a in set(mod_chain)]) return {"msas":mod_msas, "deletion_matrices":mod_mtxs, "ori_sequence":mod_ori_seq, "chains":chains} def cov_qid_filter(msas, deletion_matrices, ori_seq=None, cov=0, qid=0): if ori_seq is None: ori_seq = msas[0][0] seqs = ori_seq.replace("/","").split(":") ref_seq_ = np.array(list("".join(seqs))) new_msas,new_mtxs = [],[] L = np.asarray([len(seq) for seq in seqs]) Ln = np.cumsum(np.append(0,L)) for msa, mtx in zip(msas, deletion_matrices): msa_ = np.asarray([list(seq) for seq in msa]) # coverage (non-gap characters) cov_ = msa_ != "-" # sequence identity to query qid_ = msa_ == ref_seq_ # split by protein (for protein complexes) cov__ = np.stack([cov_[:,Ln[i]:Ln[i+1]].sum(-1) for i in range(len(seqs))],-1) qid__ = np.stack([qid_[:,Ln[i]:Ln[i+1]].sum(-1) for i in range(len(seqs))],-1) not_empty__ = cov__ > 0 ok = [] for n in range(len(msa)): m = not_empty__[n] if m.sum() > 0: q = qid__[n][m].sum() / cov__[n][m].sum() c = cov__[n][m].sum() / L[m].sum() if q > qid and c > cov: ok.append(n) new_msas.append([msa[n] for n in ok]) new_mtxs.append([mtx[n] for n in ok]) return {"msas":new_msas, "deletion_matrices":new_mtxs} def prep_filter(I, trim="", trim_inverse=False, cov=0, qid=0, verbose=True): trim = re.sub("[^0-9A-Z,-]", "", trim.upper()) trim = re.sub(",+",",",trim) trim = re.sub("^[,]+","",trim) trim = re.sub("[,]+$","",trim) if trim != "" or cov > 0 or qid > 0: mod_I = dict(I) if trim != "": mod_I.update(trim_inputs(trim, mod_I["msas"], mod_I["deletion_matrices"], mod_I["ori_sequence"], inverse=trim_inverse)) mod_I["homooligomers"] = [mod_I["homooligomers"][c] for c in mod_I["chains"]] mod_I["sequence"] = mod_I["ori_sequence"].replace("/","").replace(":","") mod_I["seqs"] = mod_I["ori_sequence"].replace("/","").split(":") mod_I["full_sequence"] = "".join([s*h for s,h in zip(mod_I["seqs"], mod_I["homooligomers"])]) new_length = len(mod_I["full_sequence"]) if verbose: print(f"total_length: '{new_length}' after trimming") if cov > 0 or qid > 0: mod_I.update(cov_qid_filter(mod_I["msas"], mod_I["deletion_matrices"], mod_I["ori_sequence"], cov=cov/100, qid=qid/100)) return mod_I else: return I ####################################################################################################################################### # prep features ####################################################################################################################################### def prep_feats(I, clean=False): def _placeholder_template_feats(num_templates_, num_res_): return { 'template_aatype': np.zeros([num_templates_, num_res_, 22], np.float32), 'template_all_atom_masks': np.zeros([num_templates_, num_res_, 37], np.float32), 'template_all_atom_positions': np.zeros([num_templates_, num_res_, 37, 3], np.float32), 'template_domain_names': np.zeros([num_templates_], np.float32), 'template_sum_probs': np.zeros([num_templates_], np.float32), } # delete old files if clean: for f in os.listdir(I["output_dir"]): if "rank_" in f: os.remove(os.path.join(I["output_dir"], f)) if len(I["msas"]) == 0: print("WARNING: no MSA found, switching to 'single_sequence' mode") I["msas"].append([I["sequence"]]) I["deletion_matrices"].append([[0]*len(I["sequence"])]) # homooligomerize lengths = [len(seq) for seq in I["seqs"]] msas_mod, deletion_matrices_mod = cf.homooligomerize_heterooligomer(I["msas"], I["deletion_matrices"], lengths, I["homooligomers"]) # define input features num_res = len(I["full_sequence"]) feature_dict = {} feature_dict.update(pipeline.make_sequence_features(I["full_sequence"], 'test', num_res)) feature_dict.update(pipeline.make_msa_features(msas_mod, deletion_matrices=deletion_matrices_mod)) feature_dict.update(_placeholder_template_feats(0, num_res)) # set chainbreaks Ls = [] for seq,h in zip(I["ori_sequence"].split(":"), I["homooligomers"]): Ls += [len(s) for s in seq.split("/")] * h Ls_plot = [] for seq,h in zip(I["seqs"], I["homooligomers"]): Ls_plot += [len(seq)] * h feature_dict['residue_index'] = cf.chain_break(feature_dict['residue_index'], Ls) feature_dict['Ls'] = Ls_plot feature_dict['output_dir'] = I["output_dir"] return feature_dict def make_fixed_size(feat, runner): '''pad input features''' opt = runner["opt"] cfg = runner["model"].config shape_schema = {k:[None]+v for k,v in dict(cfg.data.eval.feat).items()} pad_size_map = { shape_placeholders.NUM_RES: opt["L"], shape_placeholders.NUM_MSA_SEQ: cfg.data.eval.max_msa_clusters, shape_placeholders.NUM_EXTRA_SEQ: cfg.data.common.max_extra_msa, shape_placeholders.NUM_TEMPLATES: 0, } for k, v in feat.items(): # Don't transfer this to the accelerator. if k == 'extra_cluster_assignment': continue shape = list(v.shape) schema = shape_schema[k] assert len(shape) == len(schema), ( f'Rank mismatch between shape and shape schema for {k}: ' f'{shape} vs {schema}') pad_size = [pad_size_map.get(s2, None) or s1 for (s1, s2) in zip(shape, schema)] padding = [(0, p - tf.shape(v)[i]) for i, p in enumerate(pad_size)] if padding: feat[k] = tf.pad(v, padding, name=f'pad_to_fixed_{k}') feat[k].set_shape(pad_size) return {k:np.asarray(v) for k,v in feat.items()} ####################################################################################################################################### # run alphafold ####################################################################################################################################### def clear_mem(device=None): '''remove all data from device''' backend = jax.lib.xla_bridge.get_backend(device) if hasattr(backend,'live_buffers'): for buf in backend.live_buffers(): buf.delete() OPT_DEFAULT = {"N":None, "L":None, "use_ptm":True, "use_turbo":True, "max_recycles":3, "tol":0, "num_ensemble":1, "max_msa_clusters":512, "max_extra_msa":1024, "is_training":False} def prep_model_runner(opt=None, model_name="model_5", old_runner=None, params_loc='./alphafold/data'): # setup the [opt]ions if opt is None: opt = OPT_DEFAULT.copy() else: for k in OPT_DEFAULT: if k not in opt: opt[k] = OPT_DEFAULT[k] # if old_runner not defined or [opt]ions changed, start new runner if old_runner is None or old_runner["opt"] != opt: clear_mem() name = f"{model_name}_ptm" if opt["use_ptm"] else model_name cfg = config.model_config(name) if opt["use_turbo"]: if opt["N"] is None: cfg.data.eval.max_msa_clusters = opt["max_msa_clusters"] cfg.data.common.max_extra_msa = opt["max_extra_msa"] else: msa_clusters = min(opt["N"], opt["max_msa_clusters"]) cfg.data.eval.max_msa_clusters = msa_clusters cfg.data.common.max_extra_msa = max(min(opt["N"] - msa_clusters, opt["max_extra_msa"]),1) cfg.data.common.num_recycle = opt["max_recycles"] cfg.model.num_recycle = opt["max_recycles"] cfg.model.recycle_tol = opt["tol"] cfg.data.eval.num_ensemble = opt["num_ensemble"] params = data.get_model_haiku_params(name, params_loc) return {"model":model.RunModel(cfg, params, is_training=opt["is_training"]), "opt":opt} else: return old_runner def run_alphafold(feature_dict, opt=None, runner=None, num_models=5, num_samples=1, subsample_msa=True, pad_feats=False, rank_by="pLDDT", show_images=True, params_loc='./alphafold/data', verbose=True): def do_subsample_msa(F, random_seed=0): '''subsample msa to avoid running out of memory''' N = len(F["msa"]) L = len(F["residue_index"]) N_ = int(3E7/L) if N > N_: if verbose: print(f"whhhaaa... too many sequences ({N}) subsampling to {N_}") np.random.seed(random_seed) idx = np.append(0,np.random.permutation(np.arange(1,N)))[:N_] F_ = {} F_["msa"] = F["msa"][idx] F_["deletion_matrix_int"] = F["deletion_matrix_int"][idx] F_["num_alignments"] = np.full_like(F["num_alignments"],N_) for k in F.keys(): if k not in F_: F_[k] = F[k] return F_ else: return F def parse_results(prediction_result, processed_feature_dict, r, t, num_res): '''parse results and convert to numpy arrays''' to_np = lambda a: np.asarray(a) def class_to_np(c): class dict2obj(): def __init__(self, d): for k,v in d.items(): setattr(self, k, to_np(v)) return dict2obj(c.__dict__) dist_bins = jax.numpy.append(0,prediction_result["distogram"]["bin_edges"]) dist_logits = prediction_result["distogram"]["logits"][:num_res,:][:,:num_res] dist_mtx = dist_bins[dist_logits.argmax(-1)] contact_mtx = jax.nn.softmax(dist_logits)[:,:,dist_bins < 8].sum(-1) b_factors = prediction_result['plddt'][:,None] * prediction_result['structure_module']['final_atom_mask'] p = protein.from_prediction(processed_feature_dict, prediction_result, b_factors=b_factors) plddt = prediction_result['plddt'][:num_res] out = {"unrelaxed_protein": class_to_np(p), "plddt": to_np(plddt), "pLDDT": to_np(plddt.mean()), "dists": to_np(dist_mtx), "adj": to_np(contact_mtx), "recycles":to_np(r), "tol":to_np(t)} if "ptm" in prediction_result: out["pae"] = to_np(prediction_result['predicted_aligned_error'][:num_res,:][:,:num_res]) out["pTMscore"] = to_np(prediction_result['ptm']) return out num_res = len(feature_dict["residue_index"]) # if [opt]ions not defined if opt is None: opt = OPT_DEFAULT.copy() opt["N"] = len(feature_dict["msa"]) opt["L"] = num_res else: for k in OPT_DEFAULT.keys(): if k not in opt: opt[k] = OPT_DEFAULT[k] model_names = ['model_1', 'model_2', 'model_3', 'model_4', 'model_5'][:num_models] total = len(model_names) * num_samples outs = {} def do_report(key): o = outs[key] if verbose: line = f"{key} recycles:{o['recycles']} tol:{o['tol']:.2f} pLDDT:{o['pLDDT']:.2f}" if 'pTMscore' in o: line += f" pTMscore:{o['pTMscore']:.2f}" print(line) if show_images: fig = cf.plot_protein(o['unrelaxed_protein'], Ls=feature_dict["Ls"], dpi=100) plt.show() tmp_pdb_path = os.path.join(feature_dict["output_dir"],f'unranked_{key}_unrelaxed.pdb') pdb_lines = protein.to_pdb(o['unrelaxed_protein']) with open(tmp_pdb_path, 'w') as f: f.write(pdb_lines) disable_tqdm = not verbose with tqdm.notebook.tqdm(total=total, bar_format=TQDM_BAR_FORMAT, disable=disable_tqdm) as pbar: if opt["use_turbo"]: if runner is None: runner = prep_model_runner(opt,params_loc=params_loc) # go through each random_seed for seed in range(num_samples): # prep input features feat = do_subsample_msa(feature_dict, random_seed=seed) if subsample_msa else feature_dict processed_feature_dict = runner["model"].process_features(feat, random_seed=seed) if pad_feats: processed_feature_dict = make_fixed_size(processed_feature_dict, runner) # go through each model for num, model_name in enumerate(model_names): name = model_name+"_ptm" if opt["use_ptm"] else model_name key = f"{name}_seed_{seed}" pbar.set_description(f'Running {key}') # replace model parameters params = data.get_model_haiku_params(name, params_loc) for k in runner["model"].params.keys(): runner["model"].params[k] = params[k] # predict prediction_result, (r, t) = runner["model"].predict(processed_feature_dict, random_seed=seed) outs[key] = parse_results(prediction_result, processed_feature_dict, r=r, t=t, num_res=num_res) # cleanup del prediction_result, params, r, t # report do_report(key) pbar.update(n=1) # cleanup del processed_feature_dict if subsample_msa: del feat else: # go through each model for num, model_name in enumerate(model_names): name = model_name+"_ptm" if opt["use_ptm"] else model_name model_runner = prep_model_runner(opt, model_name=model_name, params_loc=params_loc)["model"] # go through each random_seed for seed in range(num_samples): key = f"{name}_seed_{seed}" pbar.set_description(f'Running {key}') processed_feature_dict = model_runner.process_features(feature_dict, random_seed=seed) # predict prediction_result, (r, t) = model_runner.predict(processed_feature_dict, random_seed=seed) outs[key] = parse_results(prediction_result, processed_feature_dict, r=r, t=t, num_res=num_res) # cleanup del processed_feature_dict, prediction_result, r, t # report do_report(key) pbar.update(n=1) # cleanup del model_runner # Find the best model according to the mean pLDDT. model_rank = list(outs.keys()) model_rank = [model_rank[i] for i in np.argsort([outs[x][rank_by] for x in model_rank])[::-1]] # Write out the prediction for n,key in enumerate(model_rank): prefix = f"rank_{n+1}_{key}" pred_output_path = os.path.join(feature_dict["output_dir"],f'{prefix}_unrelaxed.pdb') fig = cf.plot_protein(outs[key]["unrelaxed_protein"], Ls=feature_dict["Ls"], dpi=200) plt.savefig(os.path.join(feature_dict["output_dir"],f'{prefix}.png'), bbox_inches = 'tight') plt.close(fig) pdb_lines = protein.to_pdb(outs[key]["unrelaxed_protein"]) with open(pred_output_path, 'w') as f: f.write(pdb_lines) tmp_pdb_path = os.path.join(feature_dict["output_dir"],f'unranked_{key}_unrelaxed.pdb') if os.path.isfile(tmp_pdb_path): os.remove(tmp_pdb_path) ############################################################ if verbose: print(f"model rank based on {rank_by}") for n,key in enumerate(model_rank): print(f"rank_{n+1}_{key} {rank_by}:{outs[key][rank_by]:.2f}") return outs, model_rank
ColabFold-main
beta/colabfold_alphafold.py
import pytest from colabfold.batch import get_queries def test_get_queries_fasta_dir(pytestconfig, caplog): dir_path = pytestconfig.rootpath.joinpath("test-data/batch/input") queries, is_complex = get_queries(dir_path) assert queries == [("5AWL_1", "YYDPETGTWY", None), ("6A5J", "IKKILSKIKKLLK", None)] assert not is_complex assert caplog.messages == [f"{dir_path}/empty.fasta is empty"] def test_get_queries_empty_a3m(pytestconfig, caplog): with pytest.raises(ValueError, match="a3m/empty.a3m is empty"): get_queries(pytestconfig.rootpath.joinpath("test-data/a3m/empty.a3m")) assert caplog.messages == [] def test_get_queries_csv(pytestconfig, caplog, tmp_path): queries, is_complex = get_queries( pytestconfig.rootpath.joinpath("test-data/complex/input.csv") ) assert queries == [ ( "3G5O_A_3G5O_B", [ "MRILPISTIKGKLNEFVDAVSSTQDQITITKNGAPAAVLVGADEWESLQETLYWLAQPGIRESIAEADADIASGRTYGEDEIRAEFGVPRRPH", "MPYTVRFTTTARRDLHKLPPRILAAVVEFAFGDLSREPLRVGKPLRRELAGTFSARRGTYRLLYRIDDEHTTVVILRVDHRADIYRR", ], None, ), ("5AWL_1", "YYDPETGTWY", None), ] assert is_complex assert caplog.messages == [] def test_a3m_input(pytestconfig, caplog, tmp_path): queries, is_complex = get_queries(pytestconfig.rootpath.joinpath("test-data/a3m")) assert queries == [ ("5AWL1", "YYDPETGTWY", [">101\nYYDPETGTWY"]), ("6A5J", "IKKILSKIKKLLK", [">101\nIKKILSKIKKLLK\n>101\nIKKILSKIKKLLK"]), ] assert not is_complex queries, is_complex = get_queries( pytestconfig.rootpath.joinpath("test-data/a3m/6A5J.a3m") ) assert queries == [ ("6A5J", "IKKILSKIKKLLK", [">101\nIKKILSKIKKLLK\n>101\nIKKILSKIKKLLK"]) ] assert not is_complex assert caplog.messages == [ f"{pytestconfig.rootpath}/test-data/a3m/empty.a3m is empty" ]
ColabFold-main
tests/test_utils.py
import json from pathlib import Path if __name__ == "__main__": for notebook in Path(".").rglob("*.ipynb"): print(notebook) data = json.loads(open(notebook).read()) open(notebook, "w").write(json.dumps(data, indent=2, ensure_ascii=False))
ColabFold-main
tests/reindent_ipynb.py
from unittest import mock import haiku import logging import pytest import re from absl import logging as absl_logging from functools import lru_cache from zipfile import ZipFile from alphafold.model.data import get_model_haiku_params from alphafold.model.tf import utils from colabfold.batch import msa_to_str, unserialize_msa, get_queries from colabfold.batch import run from colabfold.download import download_alphafold_params from tests.mock import MockRunModel, MMseqs2Mock # Without this, we're reading the params each time again which is slow @lru_cache(maxsize=None) def get_model_haiku_params_cached(model_name: str, data_dir: str) -> haiku.Params: return get_model_haiku_params(model_name, data_dir) @pytest.fixture def prediction_test(caplog): caplog.set_level(logging.INFO) # otherwise jax will tell us about its search for devices absl_logging.set_verbosity("error") # We'll also want to mock that out later download_alphafold_params("AlphaFold2-multimer-v1") download_alphafold_params("AlphaFold2-ptm") # alphafold uses a method called `make_random_seed`, which deterministically starts with a seed # of zero and increases it by one for each protein. This means the input features would become # dependent on the number and order of tests. Here we just reset the seed to 0 utils.seed_maker = utils.SeedMaker() # This works because it's used as `data.get_model_haiku_params` with mock.patch( "alphafold.model.data.get_model_haiku_params", get_model_haiku_params_cached ): yield def test_batch(pytestconfig, caplog, tmp_path, prediction_test): queries = [("5AWL_1", "YYDPETGTWY", None), ("6A5J", "IKKILSKIKKLLK", None)] mock_run_model = MockRunModel( pytestconfig.rootpath.joinpath("test-data/batch"), ["5AWL_1", "6A5J"] ) mock_run_mmseqs = MMseqs2Mock(pytestconfig.rootpath, "batch").mock_run_mmseqs2 with mock.patch( "alphafold.model.model.RunModel.predict", lambda model_runner, feat: mock_run_model.predict(model_runner, feat), ), mock.patch("colabfold.batch.run_mmseqs2", mock_run_mmseqs): run( queries, tmp_path, num_models=1, num_recycles=3, model_order=[1, 2, 3, 4, 5], is_complex=False, ) messages = [re.sub(r"\d+\.\d+s", "0.0s", i) for i in caplog.messages] assert messages[1:-1] == [ "Found 5 citations for tools or databases", "Query 1/2: 5AWL_1 (length 10)", "Running model_1", "model_1 took 0.0s (3 recycles) with pLDDT 94.3", "reranking models by plddt", "Query 2/2: 6A5J (length 13)", "Running model_1", "model_1 took 0.0s (3 recycles) with pLDDT 90.8", "reranking models by plddt", ] # Very simple test, it would be better to check coordinates assert ( len( tmp_path.joinpath("5AWL_1_unrelaxed_rank_1_model_1.pdb") .read_text() .splitlines() ) == 96 ) assert ( len( tmp_path.joinpath("6A5J_unrelaxed_rank_1_model_1.pdb") .read_text() .splitlines() ) == 112 ) assert tmp_path.joinpath("config.json").is_file() def test_zip(pytestconfig, caplog, tmp_path, prediction_test): queries = [("5AWL_1", "YYDPETGTWY", None), ("6A5J", "IKKILSKIKKLLK", None)] mock_run_model = MockRunModel( pytestconfig.rootpath.joinpath("test-data/batch"), ["5AWL_1", "6A5J"] ) mock_run_mmseqs = MMseqs2Mock(pytestconfig.rootpath, "batch").mock_run_mmseqs2 with mock.patch( "alphafold.model.model.RunModel.predict", lambda model_runner, feat: mock_run_model.predict(model_runner, feat), ), mock.patch("colabfold.batch.run_mmseqs2", mock_run_mmseqs): run( queries, tmp_path, num_models=1, num_recycles=3, model_order=[1, 2, 3, 4, 5], is_complex=False, zip_results=True, ) # Ensure that the correct files are packaged and that they do not contain the dir prefix expect_zip = [ "cite.bibtex", "config.json", "5AWL_1_predicted_aligned_error_v1.json", "5AWL_1.a3m", "5AWL_1_PAE.png", "5AWL_1_coverage.png", "5AWL_1_plddt.png", "5AWL_1_unrelaxed_rank_1_model_1.pdb", "5AWL_1_unrelaxed_rank_1_model_1_scores.json", ] with ZipFile(tmp_path.joinpath("5AWL_1.result.zip")) as result_zip: actual_zip = [i.filename for i in result_zip.infolist()] assert expect_zip == actual_zip def test_single_sequence(pytestconfig, caplog, tmp_path, prediction_test): queries = [("5AWL_1", "YYDPETGTWY", None)] mock_run_model = MockRunModel( pytestconfig.rootpath.joinpath("test-data/batch"), ["5AWL_1"] ) mock_run_mmseqs = MMseqs2Mock(pytestconfig.rootpath, "batch").mock_run_mmseqs2 with mock.patch( "alphafold.model.model.RunModel.predict", lambda model_runner, feat: mock_run_model.predict(model_runner, feat), ), mock.patch("colabfold.batch.run_mmseqs2", mock_run_mmseqs): run( queries, tmp_path, msa_mode="single_sequence", num_models=1, num_recycles=3, model_order=[1, 2, 3, 4, 5], is_complex=False, stop_at_score=100, ) messages = [re.sub(r"\d+\.\d+s", "0.0s", i) for i in caplog.messages] assert messages[1:-1] == [ "Found 2 citations for tools or databases", "Query 1/1: 5AWL_1 (length 10)", "Running model_1", "model_1 took 0.0s (3 recycles) with pLDDT 94.3", "reranking models by plddt", ] # Very simple test, it would be better to check coordinates assert ( len( tmp_path.joinpath("5AWL_1_unrelaxed_rank_1_model_1.pdb") .read_text() .splitlines() ) == 96 ) assert tmp_path.joinpath("config.json").is_file() def test_complex(pytestconfig, caplog, tmp_path, prediction_test): pdb_3g50_A = "MRILPISTIKGKLNEFVDAVSSTQDQITITKNGAPAAVLVGADEWESLQETLYWLAQPGIRESIAEADADIASGRTYGEDEIRAEFGVPRRPH" pdb_3g50_B = "MPYTVRFTTTARRDLHKLPPRILAAVVEFAFGDLSREPLRVGKPLRRELAGTFSARRGTYRLLYRIDDEHTTVVILRVDHRADIYRR" queries = [("3G5O_A_3G5O_B", [pdb_3g50_A, pdb_3g50_B], None)] mock_run_model = MockRunModel( pytestconfig.rootpath.joinpath("test-data/complex"), ["3G5O_A_3G5O_B"] ) mock_run_mmseqs2 = MMseqs2Mock(pytestconfig.rootpath, "complex").mock_run_mmseqs2 with mock.patch( "alphafold.model.model.RunModel.predict", lambda model_runner, feat: mock_run_model.predict(model_runner, feat), ), mock.patch("colabfold.batch.run_mmseqs2", mock_run_mmseqs2): run( queries, tmp_path, num_models=1, model_type="AlphaFold2-multimer-v1", num_recycles=3, model_order=[1, 2, 3, 4, 5], is_complex=True, stop_at_score=100, ) messages = [re.sub(r"\d+\.\d+s", "0.0s", i) for i in caplog.messages] assert messages[1:-1] == [ "Found 5 citations for tools or databases", "Query 1/1: 3G5O_A_3G5O_B (length 180)", "Running model_1", "model_1 took 0.0s (3 recycles) with pLDDT 94.4 and ptmscore 0.884", "reranking models by multimer", ] def test_complex_ptm(pytestconfig, caplog, tmp_path, prediction_test): pdb_3g50_A = "MRILPISTIKGKLNEFVDAVSSTQDQITITKNGAPAAVLVGADEWESLQETLYWLAQPGIRESIAEADADIASGRTYGEDEIRAEFGVPRRPH" pdb_3g50_B = "MPYTVRFTTTARRDLHKLPPRILAAVVEFAFGDLSREPLRVGKPLRRELAGTFSARRGTYRLLYRIDDEHTTVVILRVDHRADIYRR" queries = [("3G5O_A_3G5O_B", [pdb_3g50_A, pdb_3g50_B], None)] mock_run_model = MockRunModel( pytestconfig.rootpath.joinpath("test-data/complex_ptm"), ["3G5O_A_3G5O_B"] ) mock_run_mmseqs2 = MMseqs2Mock(pytestconfig.rootpath, "complex").mock_run_mmseqs2 with mock.patch( "alphafold.model.model.RunModel.predict", lambda model_runner, feat: mock_run_model.predict(model_runner, feat), ), mock.patch("colabfold.batch.run_mmseqs2", mock_run_mmseqs2): run( queries, tmp_path, model_type="AlphaFold2-ptm", num_models=1, num_recycles=3, model_order=[1, 2, 3, 4, 5], is_complex=True, stop_at_score=100, ) messages = [re.sub(r"\d+\.\d+s", "0.0s", i) for i in caplog.messages] assert messages[1:-1] == [ "Found 5 citations for tools or databases", "Query 1/1: 3G5O_A_3G5O_B (length 180)", "Running model_1", "model_1 took 0.0s (3 recycles) with pLDDT 91.9 and ptmscore 0.846", "reranking models by ptmscore", ] def test_complex_monomer_ptm(pytestconfig, caplog, tmp_path, prediction_test): A = "PIAQIHILEGRSDEQKETLIREVSEAISRSLDAPLTSVRVIITEMAKGHFGIGGELASK" queries = [("A_A", [A, A], None)] mock_run_model = MockRunModel( pytestconfig.rootpath.joinpath("test-data/complex_monomer_ptm"), ["A_A"] ) mock_run_mmseqs2 = MMseqs2Mock( pytestconfig.rootpath, "complex_monomer" ).mock_run_mmseqs2 with mock.patch( "alphafold.model.model.RunModel.predict", lambda model_runner, feat: mock_run_model.predict(model_runner, feat), ), mock.patch("colabfold.batch.run_mmseqs2", mock_run_mmseqs2): run( queries, tmp_path, model_type="AlphaFold2-ptm", num_models=1, num_recycles=3, model_order=[1, 2, 3, 4, 5], is_complex=True, stop_at_score=100, ) messages = [re.sub(r"\d+\.\d+s", "0.0s", i) for i in caplog.messages] assert messages[1:-1] == [ "Found 5 citations for tools or databases", "Query 1/1: A_A (length 118)", "Running model_1", "model_1 took 0.0s (3 recycles) with pLDDT 95.5 and ptmscore 0.867", "reranking models by ptmscore", ] def test_complex_monomer(pytestconfig, caplog, tmp_path, prediction_test): A = "PIAQIHILEGRSDEQKETLIREVSEAISRSLDAPLTSVRVIITEMAKGHFGIGGELASK" queries = [("A_A", [A, A], None)] mock_run_model = MockRunModel( pytestconfig.rootpath.joinpath("test-data/complex_monomer"), ["A_A"] ) mock_run_mmseqs2 = MMseqs2Mock( pytestconfig.rootpath, "complex_monomer" ).mock_run_mmseqs2 with mock.patch( "alphafold.model.model.RunModel.predict", lambda model_runner, feat: mock_run_model.predict(model_runner, feat), ), mock.patch("colabfold.batch.run_mmseqs2", mock_run_mmseqs2): run( queries, tmp_path, num_models=1, model_type="AlphaFold2-multimer-v1", num_recycles=3, model_order=[1, 2, 3, 4, 5], is_complex=True, stop_at_score=100, ) messages = [re.sub(r"\d+\.\d+s", "0.0s", i) for i in caplog.messages] assert messages[1:-1] == [ "Found 5 citations for tools or databases", "Query 1/1: A_A (length 118)", "Running model_1", "model_1 took 0.0s (3 recycles) with pLDDT 95.3 and ptmscore 0.865", "reranking models by multimer", ] def test_msa_serialization(pytestconfig): # heteromer unpaired_alignment = [ ">101\nAAAAAAAA\n>UP1\nAACCcccVVAA\n", ">102\nCCCC\n>UP1\nCCCC\n>UP2\nCaCaCC\n", ] paired_alignment = [">101\nAAAAAAAA\n>UP1\nVVaVVAAAA\n", ">102\nCCCC\n>UP2\nGGGG\n"] query_sequence = ["AAAAAAAA", "AAAAAAAA", "CCCC"] query_sequence_unique = ["AAAAAAAA", "CCCC"] query_sequence_cardinality = [2, 1] msa = msa_to_str( unpaired_alignment, paired_alignment, query_sequence_unique, query_sequence_cardinality, ) ( unpaired_alignment_ret, paired_alignment_ret, query_sequence_unique_ret, query_sequence_cardinality_ret, template, ) = unserialize_msa([msa], query_sequence) assert unpaired_alignment_ret == unpaired_alignment assert paired_alignment_ret == paired_alignment assert query_sequence_unique_ret == query_sequence_unique assert query_sequence_cardinality == query_sequence_cardinality_ret # heteromer three complex unpaired_alignment = [ ">101\nAAAAAAAA\n>UP1\nAACCcccVVAA\n", ">102\nCCCC\n>UP1\nCCCC\n>UP2\nCaCaCC\n", ">103\nGGGG\n>UP1\nR--R\n", ">104\nW\n", ] paired_alignment = [ ">101\nAAAAAAAA\n>UP1\nVVaVVAAAA\n", ">102\nCCCC\n>UP2\nGGGG\n", ">103\nGGGG\n>UP3\nGGgGG\n", ">104\nW\n>UP4\nW\n", ] query_sequence = ["AAAAAAAA", "CCCC", "GGGG", "W", "W"] query_sequence_unique = ["AAAAAAAA", "CCCC", "GGGG", "W"] query_sequence_cardinality = [1, 1, 1, 2] msa = msa_to_str( unpaired_alignment, paired_alignment, query_sequence_unique, query_sequence_cardinality, ) ( unpaired_alignment_ret, paired_alignment_ret, query_sequence_unique_ret, query_sequence_cardinality_ret, template, ) = unserialize_msa([msa], query_sequence) assert unpaired_alignment_ret == unpaired_alignment assert paired_alignment_ret == paired_alignment assert query_sequence_unique_ret == query_sequence_unique assert query_sequence_cardinality == query_sequence_cardinality_ret # heteromer with unpaired unpaired_alignment = [ ">101\nAAAAAAAA\n>UP1\nAACCcccVVAA\n", ">102\nCCCC\n>UP1\nCCCC\n>UP2\nCaCaCC\n", ] paired_alignment = [">101\nAAAAAAAA\n", ">102\nCCCC\n"] query_sequence = ["AAAAAAAA", "CCCC", "CCCC"] query_sequence_unique = ["AAAAAAAA", "CCCC"] query_sequence_cardinality = [1, 2] msa = msa_to_str( unpaired_alignment, paired_alignment, query_sequence_unique, query_sequence_cardinality, ) ( unpaired_alignment_ret, paired_alignment_ret, query_sequence_unique_ret, query_sequence_cardinality_ret, template, ) = unserialize_msa([msa], query_sequence) assert unpaired_alignment_ret == unpaired_alignment assert paired_alignment_ret == paired_alignment assert query_sequence_unique_ret == query_sequence_unique assert query_sequence_cardinality == query_sequence_cardinality_ret # homooligomer unpaired_alignment = [">101\nAAAAAAAA\n>UP2\nAAAVVAAA\n>UP1\nA-CCcccVV-A\n"] paired_alignment = [">101\nAAAAAAAA\n", ">102\nAAAAAAAA\n"] query_sequence = ["AAAAAAAA", "AAAAAAAA"] query_sequence_unique = ["AAAAAAAA"] query_sequence_cardinality = [2] msa = msa_to_str( unpaired_alignment, paired_alignment, query_sequence_unique, query_sequence_cardinality, ) ( unpaired_alignment_ret, paired_alignment_ret, query_sequence_unique_ret, query_sequence_cardinality_ret, template, ) = unserialize_msa([msa], query_sequence) assert unpaired_alignment_ret == unpaired_alignment assert paired_alignment_ret == paired_alignment assert query_sequence_unique_ret == query_sequence_unique assert query_sequence_cardinality == query_sequence_cardinality_ret # a3m without header unpaired_alignment = ">101\nAAAAAAAA\n>UP2\nAAAVVAAA\n>UP1\nA-CCcccVV-A" paired_alignment = None query_sequence = "AAAAAAAA" query_sequence_unique = ["AAAAAAAA"] query_sequence_cardinality = [1] ( unpaired_alignment_ret, paired_alignment_ret, query_sequence_unique_ret, query_sequence_cardinality_ret, template, ) = unserialize_msa([unpaired_alignment], query_sequence) assert unpaired_alignment_ret == [unpaired_alignment] assert paired_alignment_ret is None assert query_sequence_unique_ret == query_sequence_unique assert query_sequence_cardinality == query_sequence_cardinality_ret msa = "#10\t1\n>101\nYYDPETGTWY" ( unpaired_alignment_ret, paired_alignment_ret, query_sequence_unique_ret, query_sequence_cardinality_ret, template, ) = unserialize_msa([msa], "YYDPETGTWY") assert unpaired_alignment_ret == [">101\nYYDPETGTWY\n"] assert paired_alignment_ret is None assert query_sequence_unique_ret == ["YYDPETGTWY"] assert query_sequence_cardinality == [1] # non-complex a3m files a3m_file = pytestconfig.rootpath.joinpath("test-data/a3m/5AWL1.a3m") [(_, query_sequence, _)], is_complex = get_queries(a3m_file) assert not is_complex msa = a3m_file.read_text() ( unpaired_alignment_ret, paired_alignment_ret, query_sequence_unique_ret, query_sequence_cardinality_ret, template, ) = unserialize_msa([msa], query_sequence) assert unpaired_alignment_ret assert not paired_alignment assert query_sequence_unique_ret == [query_sequence] assert query_sequence_cardinality_ret == [1]
ColabFold-main
tests/test_colabfold.py
from unittest import mock from colabfold.batch import get_msa_and_templates from tests.mock import MMseqs2Mock def test_get_msa_and_templates(pytestconfig, caplog, tmp_path): Q60262 = "MEIIALLIEEGIIIIKDKKVAERFLKDLESSQGMDWKEIRERAERAKKQLEEGIEWAKKTKL" for msa_mode, tag, lines in [ ("MMseqs2 (UniRef+Environmental)", "uniref_env", 12), ("MMseqs2 (UniRef only)", "uniref", 8), ("single_sequence", "single_sequence", 2), ]: mmseqs2mock = MMseqs2Mock(pytestconfig.rootpath, f"get_msa_{tag}") with mock.patch("colabfold.batch.run_mmseqs2", mmseqs2mock.mock_run_mmseqs2): ( unpaired_msa, paired_msa, query_seqs_unique, query_seqs_cardinality, template_features, ) = get_msa_and_templates( "test", Q60262, tmp_path, msa_mode, False, None, "unpaired+paired", ) assert len(unpaired_msa[0].splitlines()) == lines assert paired_msa is None assert query_seqs_unique == [Q60262] assert query_seqs_cardinality == [1] assert caplog.messages == []
ColabFold-main
tests/test_msa.py
ColabFold-main
tests/__init__.py
import json import lzma import os import pickle from pathlib import Path from typing import List, Tuple, Mapping, Any, Dict import numpy from alphafold.model.features import FeatureDict from alphafold.model.model import RunModel from colabfold.colabfold import run_mmseqs2 # Copy the original method before mocking original_run_model = RunModel.predict class MockRunModel: """Mocks FeatureDict -> prediction The class is stateful, i.e. predictions need to be done in the given order msa_feat is a) large and b) has some variance between machines, so we ignore it """ fixture_dir: Path predictions: List[str] pos: int def __init__(self, fixture_dir: Path, predictions: List[str]): self.fixture_dir = fixture_dir self.predictions = predictions self.pos = 0 def predict( self, model_runner: RunModel, feat: FeatureDict ) -> Tuple[Mapping[str, Any], Tuple[Any, Any]]: """feat["msa"] or feat["msa_feat"] for normal/complexes is non-deterministic, so we remove it before storing, but we keep it for predicting or returning, where we need it for plotting""" feat_no_msa = dict(feat) if "msa_feat" in feat_no_msa.keys(): del feat_no_msa["msa_feat"] elif "msa" in feat_no_msa.keys(): del feat_no_msa["msa"] else: raise AssertionError("neither msa nor msa_feat in feat") prediction_file = self.fixture_dir.joinpath( self.predictions[self.pos] ).joinpath("model_prediction_result.pkl.xz") input_fix_file = self.fixture_dir.joinpath(self.predictions[self.pos]).joinpath( "model_input_fix.pkl.xz" ) self.pos += 1 if ( not prediction_file.is_file() or not input_fix_file.is_file() ) and os.environ.get("UPDATE_SNAPSHOTS"): print("Running new prediction") with lzma.open(input_fix_file) as fp: pickle.dump(feat_no_msa, fp) prediction, (_, _) = original_run_model(model_runner, feat) del prediction["distogram"] del prediction["experimentally_resolved"] del prediction["masked_msa"] del prediction["aligned_confidence_probs"] with lzma.open(prediction_file) as fp: pickle.dump(prediction, fp) with lzma.open(input_fix_file) as input_fix_fp: input_fix = pickle.load(input_fix_fp) with lzma.open(prediction_file) as prediction_fp: prediction = pickle.load(prediction_fp) is_same = True for key in input_fix: if ( key not in feat_no_msa or feat_no_msa[key].shape != input_fix[key].shape or not numpy.allclose(feat_no_msa[key], input_fix[key]) ): is_same = False break if is_same: return prediction, (3, 0) if os.environ.get("UPDATE_SNAPSHOTS"): print("Running new prediction") with lzma.open(input_fix_file, "wb") as fp: pickle.dump(feat_no_msa, fp) prediction, (_, _) = original_run_model(model_runner, feat) with lzma.open(prediction_file, "wb") as fp: pickle.dump(prediction, fp) return prediction, (None, None) else: for key in input_fix: # Generate a more helpful error message assert feat_no_msa[key].shape != input_fix[ key ].shape and numpy.allclose(feat_no_msa[key], input_fix[key]), key class MMseqs2Mock: """Mocks out the call to the mmseqs2 api Each test has its own json file which contains the run_mmseqs2 input data in the config field and the saved response. To update responses or to add new tests, set the UPDATE_SNAPSHOTS env var (e.g. `UPDATE_SNAPSHOTS=1 pytest` """ data_file: Path saved_responses: List[Dict[str, Any]] def __init__(self, rootpath: Path, name: str): self.data_file = ( rootpath.joinpath("test-data/mmseqs-api-reponses") .joinpath(name) .with_suffix(".json") ) if os.environ.get("UPDATE_SNAPSHOTS") and not self.data_file.is_file(): self.data_file.write_text("[]") with self.data_file.open() as fp: self.saved_responses = [] for saved_response in json.load(fp): # Join lines we've split before response = join_lines(saved_response["response"]) self.saved_responses.append( {"config": saved_response["config"], "response": response} ) def mock_run_mmseqs2( self, query, prefix, use_env=True, use_filter=True, use_templates=False, filter=None, use_pairing=False, host_url="https://a3m.mmseqs.com", ): assert prefix config = { "query": query, "use_env": use_env, "use_filter": use_filter, "use_templates": use_templates, "filter": filter, "use_pairing": use_pairing, } for saved_response in self.saved_responses: if saved_response["config"] == config: return saved_response["response"] if os.environ.get("UPDATE_SNAPSHOTS"): print(f"\nrun_mmseqs2 with {config}") response = run_mmseqs2( x=config["query"], prefix=prefix, use_env=config["use_env"], use_filter=config["use_filter"], use_templates=config["use_templates"], filter=config["filter"], use_pairing=config["use_pairing"], host_url=host_url, ) # Split lines so we get a readable json file response = split_lines(response) self.saved_responses.append({"config": config, "response": response}) self.data_file.write_text(json.dumps(self.saved_responses, indent=2)) else: assert False, config def split_lines(x): """Split each files into a list of lines""" if isinstance(x, list): return [split_lines(i) for i in x] elif isinstance(x, str): return x.splitlines() else: raise TypeError(f"{type(x)} {str(x)[:20]}") def join_lines(x): """Inverse of split_lines""" if all(isinstance(i, str) for i in x): return "\n".join(x) elif all(isinstance(i, list) for i in x): return [join_lines(i) for i in x] else: raise TypeError(f"{[type(i) for i in x]} {str(x)[:20]}")
ColabFold-main
tests/mock.py
import logging from pathlib import Path logger = logging.getLogger(__name__) citations = { "Mirdita2021": """@article{Mirdita2021, author= {Mirdita, Milot and Schütze, Konstantin and Moriwaki, Yoshitaka and Heo, Lim and Ovchinnikov, Sergey and Steinegger, Martin }, doi = {10.1101/2021.08.15.456425v2}, journal = {bioRxiv}, title = {{ColabFold - Making Protein folding accessible to all}}, year = {2021}, comment = {ColabFold including MMseqs2 MSA server} }""", "Mitchell2019": """@article{Mitchell2019, author = {Mitchell, Alex L and Almeida, Alexandre and Beracochea, Martin and Boland, Miguel and Burgin, Josephine and Cochrane, Guy and Crusoe, Michael R and Kale, Varsha and Potter, Simon C and Richardson, Lorna J and Sakharova, Ekaterina and Scheremetjew, Maxim and Korobeynikov, Anton and Shlemov, Alex and Kunyavskaya, Olga and Lapidus, Alla and Finn, Robert D}, doi = {10.1093/nar/gkz1035}, journal = {Nucleic Acids Res.}, title = {{MGnify: the microbiome analysis resource in 2020}}, year = {2019}, comment = {MGnify database} }""", "Eastman2017": """@article{Eastman2017, author = {Eastman, Peter and Swails, Jason and Chodera, John D. and McGibbon, Robert T. and Zhao, Yutong and Beauchamp, Kyle A. and Wang, Lee-Ping and Simmonett, Andrew C. and Harrigan, Matthew P. and Stern, Chaya D. and Wiewiora, Rafal P. and Brooks, Bernard R. and Pande, Vijay S.}, doi = {10.1371/journal.pcbi.1005659}, journal = {PLOS Comput. Biol.}, number = {7}, title = {{OpenMM 7: Rapid development of high performance algorithms for molecular dynamics}}, volume = {13}, year = {2017}, comment = {Amber relaxation} }""", "Jumper2021": """@article{Jumper2021, author = {Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'{i}}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A. A. and Ballard, Andrew J. and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W. and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis}, doi = {10.1038/s41586-021-03819-2}, journal = {Nature}, pmid = {34265844}, title = {{Highly accurate protein structure prediction with AlphaFold.}}, year = {2021}, comment = {AlphaFold2 + BFD Database} }""", "Evans2021": """@article{Evans2021, author = {Evans, Richard and O'Neill, Michael and Pritzel, Alexander and Antropova, Natasha and Senior, Andrew and Green, Tim and Zidek, Augustin and Bates, Russ and Blackwell, Sam and Yim, Jason and Ronneberger, Olaf and Bodenstein, Sebastian and Zielinski, Michal and Bridgland, Alex and Potapenko, Anna and Cowie, Andrew and Tunyasuvunakool, Kathryn and Jain, Rishub and Clancy, Ellen and Kohli, Pushmeet and Jumper, John and Hassabis, Demis}, doi = {10.1101/2021.10.04.463034v1}, journal = {bioRxiv}, title = {{Protein complex prediction with AlphaFold-Multimer}}, year = {2021}, comment = {AlphaFold2-multimer} }""", "Mirdita2019": """@article{Mirdita2019, author = {Mirdita, Milot and Steinegger, Martin and S{\"{o}}ding, Johannes}, doi = {10.1093/bioinformatics/bty1057}, journal = {Bioinformatics}, number = {16}, pages = {2856--2858}, pmid = {30615063}, title = {{MMseqs2 desktop and local web server app for fast, interactive sequence searches}}, volume = {35}, year = {2019}, comment = {MMseqs2 search server} }""", "Steinegger2019": """@article{Steinegger2019, author = {Steinegger, Martin and Meier, Markus and Mirdita, Milot and V{\"{o}}hringer, Harald and Haunsberger, Stephan J. and S{\"{o}}ding, Johannes}, doi = {10.1186/s12859-019-3019-7}, journal = {BMC Bioinform.}, number = {1}, pages = {473}, pmid = {31521110}, title = {{HH-suite3 for fast remote homology detection and deep protein annotation}}, volume = {20}, year = {2019}, comment = {PDB70 database} }""", "Mirdita2017": """@article{Mirdita2017, author = {Mirdita, Milot and von den Driesch, Lars and Galiez, Clovis and Martin, Maria J. and S{\"{o}}ding, Johannes and Steinegger, Martin}, doi = {10.1093/nar/gkw1081}, journal = {Nucleic Acids Res.}, number = {D1}, pages = {D170--D176}, pmid = {27899574}, title = {{Uniclust databases of clustered and deeply annotated protein sequences and alignments}}, volume = {45}, year = {2017}, comment = {Uniclust30/UniRef30 database}, }""", "Berman2003": """@misc{Berman2003, author = {Berman, Helen and Henrick, Kim and Nakamura, Haruki}, booktitle = {Nat. Struct. Biol.}, doi = {10.1038/nsb1203-980}, number = {12}, pages = {980}, pmid = {14634627}, title = {{Announcing the worldwide Protein Data Bank}}, volume = {10}, year = {2003}, comment = {templates downloaded from wwPDB server} }""", } def write_bibtex( model: str, use_msa: bool, use_env: bool, use_templates: bool, use_amber: bool, result_dir: Path, bibtex_file: str = "cite.bibtex", ) -> Path: to_cite = ["Mirdita2021"] if model == "AlphaFold2-ptm": to_cite += ["Jumper2021"] if model.startswith("AlphaFold2-multimer"): to_cite += ["Evans2021"] if use_msa: to_cite += ["Mirdita2019"] if use_msa: to_cite += ["Mirdita2017"] if use_env: to_cite += ["Mitchell2019"] if use_templates: to_cite += ["Steinegger2019"] if use_templates: to_cite += ["Berman2003"] if use_amber: to_cite += ["Eastman2017"] bibtex_file = result_dir.joinpath(bibtex_file) with bibtex_file.open("w") as writer: for i in to_cite: writer.write(citations[i]) writer.write("\n") logger.info(f"Found {len(to_cite)} citations for tools or databases") return bibtex_file
ColabFold-main
colabfold/citations.py
from pathlib import Path import numpy as np from matplotlib import pyplot as plt def plot_predicted_alignment_error( jobname: str, num_models: int, outs: dict, result_dir: Path, show: bool = False ): plt.figure(figsize=(3 * num_models, 2), dpi=100) for n, (model_name, value) in enumerate(outs.items()): plt.subplot(1, num_models, n + 1) plt.title(model_name) plt.imshow(value["pae"], label=model_name, cmap="bwr", vmin=0, vmax=30) plt.colorbar() plt.savefig(result_dir.joinpath(jobname + "_PAE.png")) if show: plt.show() plt.close() def plot_msa(msa, query_sequence, seq_len_list, total_seq_len, dpi=100): # gather MSA info prev_pos = 0 msa_parts = [] Ln = np.cumsum(np.append(0, [len for len in seq_len_list])) for id, l in enumerate(seq_len_list): chain_seq = np.array(query_sequence[prev_pos : prev_pos + l]) chain_msa = np.array(msa[:, prev_pos : prev_pos + l]) seqid = np.array( [ np.count_nonzero(chain_seq == msa_line[prev_pos : prev_pos + l]) / len(chain_seq) for msa_line in msa ] ) non_gaps = (chain_msa != 21).astype(float) non_gaps[non_gaps == 0] = np.nan msa_parts.append((non_gaps[:] * seqid[:, None]).tolist()) prev_pos += l lines = [] lines_to_sort = [] prev_has_seq = [True] * len(seq_len_list) for line_num in range(len(msa_parts[0])): has_seq = [True] * len(seq_len_list) for id in range(len(seq_len_list)): if np.sum(~np.isnan(msa_parts[id][line_num])) == 0: has_seq[id] = False if has_seq == prev_has_seq: line = [] for id in range(len(seq_len_list)): line += msa_parts[id][line_num] lines_to_sort.append(np.array(line)) else: lines_to_sort = np.array(lines_to_sort) lines_to_sort = lines_to_sort[np.argsort(-np.nanmax(lines_to_sort, axis=1))] lines += lines_to_sort.tolist() lines_to_sort = [] line = [] for id in range(len(seq_len_list)): line += msa_parts[id][line_num] lines_to_sort.append(line) prev_has_seq = has_seq lines_to_sort = np.array(lines_to_sort) lines_to_sort = lines_to_sort[np.argsort(-np.nanmax(lines_to_sort, axis=1))] lines += lines_to_sort.tolist() # Nn = np.cumsum(np.append(0, Nn)) # lines = np.concatenate(lines, 1) xaxis_size = len(lines[0]) yaxis_size = len(lines) plt.figure(figsize=(8, 5), dpi=dpi) plt.title("Sequence coverage") plt.imshow( lines[::-1], interpolation="nearest", aspect="auto", cmap="rainbow_r", vmin=0, vmax=1, origin="lower", extent=(0, xaxis_size, 0, yaxis_size), ) for i in Ln[1:-1]: plt.plot([i, i], [0, yaxis_size], color="black") # for i in Ln_dash[1:-1]: # plt.plot([i, i], [0, lines.shape[0]], "--", color="black") # for j in Nn[1:-1]: # plt.plot([0, lines.shape[1]], [j, j], color="black") plt.plot((np.isnan(lines) == False).sum(0), color="black") plt.xlim(0, xaxis_size) plt.ylim(0, yaxis_size) plt.colorbar(label="Sequence identity to query") plt.xlabel("Positions") plt.ylabel("Sequences") return plt
ColabFold-main
colabfold/plot.py
import logging import tarfile from pathlib import Path import appdirs import requests import tqdm logger = logging.getLogger(__name__) # The data dir location logic switches between a version with and one without "params" because alphafold # always internally joins "params". (We should probably patch alphafold) default_data_dir = Path(appdirs.user_cache_dir(__package__ or "colabfold")) def download_alphafold_params(model_type: str, data_dir: Path = default_data_dir): params_dir = data_dir.joinpath("params") if model_type == "AlphaFold2-multimer-v2": url = "https://storage.googleapis.com/alphafold/alphafold_params_colab_2022-03-02.tar" success_marker = params_dir.joinpath( "download_complexes_multimer-v2_finished.txt" ) elif model_type == "AlphaFold2-multimer-v1": url = "https://storage.googleapis.com/alphafold/alphafold_params_colab_2021-10-27.tar" success_marker = params_dir.joinpath( "download_complexes_multimer-v1_finished.txt" ) else: url = "https://storage.googleapis.com/alphafold/alphafold_params_2021-07-14.tar" success_marker = params_dir.joinpath("download_finished.txt") if success_marker.is_file(): return params_dir.mkdir(parents=True, exist_ok=True) response = requests.get(url, stream=True) file_size = int(response.headers.get("Content-Length", 0)) with tqdm.tqdm.wrapattr( response.raw, "read", total=file_size, desc=f"Downloading alphafold2 weights to {data_dir}", ) as response_raw: # Open in stream mode ("r|"), as our requests response doesn't support seeking) file = tarfile.open(fileobj=response_raw, mode="r|") file.extractall(path=params_dir) success_marker.touch() if __name__ == "__main__": # TODO: Arg to select which one download_alphafold_params("AlphaFold2-multimer-v2") download_alphafold_params("AlphaFold2-ptm")
ColabFold-main
colabfold/download.py
import os from Bio.PDB import MMCIFParser os.environ["TF_FORCE_UNIFIED_MEMORY"] = "1" os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = "2.0" import json import logging import math import random import sys import time import zipfile import io from argparse import ArgumentParser from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Tuple, Union import haiku import importlib_metadata import numpy as np import pandas from alphafold.notebooks.notebook_utils import get_pae_json from jax.lib import xla_bridge from numpy import ndarray try: import alphafold except ModuleNotFoundError: raise RuntimeError( "\n\nalphafold is not installed. Please run `pip install colabfold[alphafold]`\n" ) from alphafold.common import protein, residue_constants from alphafold.common.protein import Protein from alphafold.data import ( feature_processing, msa_pairing, pipeline, pipeline_multimer, templates, ) from alphafold.data.tools import hhsearch from alphafold.model import model from colabfold.alphafold.models import load_models_and_params from colabfold.alphafold.msa import make_fixed_size from colabfold.citations import write_bibtex from colabfold.colabfold import chain_break, plot_paes, plot_plddts, run_mmseqs2 from colabfold.download import default_data_dir, download_alphafold_params from colabfold.plot import plot_msa from colabfold.utils import ( ACCEPT_DEFAULT_TERMS, DEFAULT_API_SERVER, NO_GPU_FOUND, get_commit, safe_filename, setup_logging, ) logger = logging.getLogger(__name__) def mk_mock_template( query_sequence: Union[List[str], str], num_temp: int = 1 ) -> Dict[str, Any]: ln = ( len(query_sequence) if isinstance(query_sequence, str) else sum(len(s) for s in query_sequence) ) output_templates_sequence = "A" * ln output_confidence_scores = np.full(ln, 1.0) templates_all_atom_positions = np.zeros( (ln, templates.residue_constants.atom_type_num, 3) ) templates_all_atom_masks = np.zeros((ln, templates.residue_constants.atom_type_num)) templates_aatype = templates.residue_constants.sequence_to_onehot( output_templates_sequence, templates.residue_constants.HHBLITS_AA_TO_ID ) template_features = { "template_all_atom_positions": np.tile( templates_all_atom_positions[None], [num_temp, 1, 1, 1] ), "template_all_atom_masks": np.tile( templates_all_atom_masks[None], [num_temp, 1, 1] ), "template_sequence": [f"none".encode()] * num_temp, "template_aatype": np.tile(np.array(templates_aatype)[None], [num_temp, 1, 1]), "template_confidence_scores": np.tile( output_confidence_scores[None], [num_temp, 1] ), "template_domain_names": [f"none".encode()] * num_temp, "template_release_date": [f"none".encode()] * num_temp, "template_sum_probs": np.zeros([num_temp], dtype=np.float32), } return template_features def mk_template( a3m_lines: str, template_path: str, query_sequence: str ) -> Dict[str, Any]: template_featurizer = templates.HhsearchHitFeaturizer( mmcif_dir=template_path, max_template_date="2100-01-01", max_hits=20, kalign_binary_path="kalign", release_dates_path=None, obsolete_pdbs_path=None, ) hhsearch_pdb70_runner = hhsearch.HHSearch( binary_path="hhsearch", databases=[f"{template_path}/pdb70"] ) hhsearch_result = hhsearch_pdb70_runner.query(a3m_lines) hhsearch_hits = pipeline.parsers.parse_hhr(hhsearch_result) templates_result = template_featurizer.get_templates( query_sequence=query_sequence, hits=hhsearch_hits ) return dict(templates_result.features) def mk_hhsearch_db(template_dir: str): template_path = Path(template_dir) cif_files = template_path.glob("*.cif") pdb70_db_files = template_path.glob("pdb70*") for f in pdb70_db_files: os.remove(f) with open(template_path.joinpath("pdb70_a3m.ffdata"), "w") as a3m, open( template_path.joinpath("pdb70_cs219.ffindex"), "w" ) as cs219_index, open( template_path.joinpath("pdb70_a3m.ffindex"), "w" ) as a3m_index, open( template_path.joinpath("pdb70_cs219.ffdata"), "w" ) as cs219: id = 1000000 index_offset = 0 for cif_file in cif_files: with open(cif_file) as f: cif_string = f.read() cif_fh = io.StringIO(cif_string) parser = MMCIFParser(QUIET=True) structure = parser.get_structure("none", cif_fh) models = list(structure.get_models()) if len(models) != 1: raise ValueError( f"Only single model PDBs are supported. Found {len(models)} models." ) model = models[0] for chain in model: amino_acid_res = [] for res in chain: if res.id[2] != " ": raise ValueError( f"PDB contains an insertion code at chain {chain.id} and residue " f"index {res.id[1]}. These are not supported." ) amino_acid_res.append( residue_constants.restype_3to1.get(res.resname, "X") ) protein_str = "".join(amino_acid_res) a3m_str = f">{cif_file.stem}_{chain.id}\n{protein_str}\n\0" a3m_str_len = len(a3m_str) a3m_index.write(f"{id}\t{index_offset}\t{a3m_str_len}\n") cs219_index.write(f"{id}\t{index_offset}\t{len(protein_str)}\n") index_offset += a3m_str_len a3m.write(a3m_str) cs219.write("\n\0") id += 1 def batch_input( input_features: model.features.FeatureDict, model_runner: model.RunModel, model_name: str, crop_len: int, use_templates: bool, ) -> model.features.FeatureDict: model_config = model_runner.config eval_cfg = model_config.data.eval crop_feats = {k: [None] + v for k, v in dict(eval_cfg.feat).items()} # templates models if (model_name == "model_1" or model_name == "model_2") and use_templates: pad_msa_clusters = eval_cfg.max_msa_clusters - eval_cfg.max_templates else: pad_msa_clusters = eval_cfg.max_msa_clusters max_msa_clusters = pad_msa_clusters # let's try pad (num_res + X) input_fix = make_fixed_size( input_features, crop_feats, msa_cluster_size=max_msa_clusters, # true_msa (4, 512, 68) extra_msa_size=5120, # extra_msa (4, 5120, 68) num_res=crop_len, # aatype (4, 68) num_templates=4, ) # template_mask (4, 4) second value return input_fix def predict_structure( prefix: str, result_dir: Path, feature_dict: Dict[str, Any], is_complex: bool, use_templates: bool, sequences_lengths: List[int], crop_len: int, model_type: str, model_runner_and_params: List[Tuple[str, model.RunModel, haiku.Params]], do_relax: bool = False, rank_by: str = "auto", random_seed: int = 0, stop_at_score: float = 100, prediction_callback: Callable[[Any, Any, Any, Any], Any] = None, ): """Predicts structure using AlphaFold for the given sequence.""" plddts, paes, ptmscore, iptmscore = [], [], [], [] max_paes = [] unrelaxed_pdb_lines = [] relaxed_pdb_lines = [] prediction_times = [] representations = [] seq_len = sum(sequences_lengths) model_names = [] for (model_name, model_runner, params) in model_runner_and_params: logger.info(f"Running {model_name}") model_names.append(model_name) # swap params to avoid recompiling # note: models 1,2 have diff number of params compared to models 3,4,5 (this was handled on construction) model_runner.params = params processed_feature_dict = model_runner.process_features( feature_dict, random_seed=random_seed ) if not is_complex: input_features = batch_input( processed_feature_dict, model_runner, model_name, crop_len, use_templates, ) else: input_features = processed_feature_dict start = time.time() # The original alphafold only returns the prediction_result, # but our patched alphafold also returns a tuple (recycles,tol) prediction_result, recycles = model_runner.predict(input_features) prediction_time = time.time() - start prediction_times.append(prediction_time) mean_plddt = np.mean(prediction_result["plddt"][:seq_len]) mean_ptm = prediction_result["ptm"] if rank_by == "plddt": mean_score = mean_plddt else: mean_score = mean_ptm if is_complex: logger.info( f"{model_name} took {prediction_time:.1f}s ({recycles[0]} recycles) " f"with pLDDT {mean_plddt:.3g} and ptmscore {mean_ptm:.3g}" ) else: logger.info( f"{model_name} took {prediction_time:.1f}s ({recycles[0]} recycles) " f"with pLDDT {mean_plddt:.3g}" ) final_atom_mask = prediction_result["structure_module"]["final_atom_mask"] b_factors = prediction_result["plddt"][:, None] * final_atom_mask if is_complex and model_type == "AlphaFold2-ptm": input_features["asym_id"] = feature_dict["asym_id"] input_features["aatype"] = input_features["aatype"][0] input_features["residue_index"] = input_features["residue_index"][0] curr_residue_index = 1 res_index_array = input_features["residue_index"].copy() res_index_array[0] = 0 for i in range(1, input_features["aatype"].shape[0]): if ( input_features["residue_index"][i] - input_features["residue_index"][i - 1] ) > 1: curr_residue_index = 0 res_index_array[i] = curr_residue_index curr_residue_index += 1 input_features["residue_index"] = res_index_array unrelaxed_protein = protein.from_prediction( features=input_features, result=prediction_result, b_factors=b_factors, remove_leading_feature_dimension=not is_complex, ) if prediction_callback is not None: prediction_callback( unrelaxed_protein, sequences_lengths, prediction_result, input_features ) representations.append(prediction_result.get("representations", None)) unrelaxed_pdb_lines.append(protein.to_pdb(unrelaxed_protein)) plddts.append(prediction_result["plddt"][:seq_len]) ptmscore.append(prediction_result["ptm"]) if model_type.startswith("AlphaFold2-multimer"): iptmscore.append(prediction_result["iptm"]) max_paes.append(prediction_result["max_predicted_aligned_error"].item()) paes_res = [] for i in range(seq_len): paes_res.append(prediction_result["predicted_aligned_error"][i][:seq_len]) paes.append(paes_res) if do_relax: from alphafold.common import residue_constants from alphafold.relax import relax # Hack so that we don't need to download into the alphafold package itself residue_constants.stereo_chemical_props_path = "stereo_chemical_props.txt" # Remove the padding because unlike to_pdb() amber doesn't handle that remove_padding_mask = np.array(unrelaxed_protein.atom_mask.sum(axis=-1) > 0) unrelaxed_protein = Protein( atom_mask=unrelaxed_protein.atom_mask[remove_padding_mask], atom_positions=unrelaxed_protein.atom_positions[remove_padding_mask], aatype=unrelaxed_protein.aatype[remove_padding_mask], residue_index=unrelaxed_protein.residue_index[remove_padding_mask], b_factors=unrelaxed_protein.b_factors[remove_padding_mask], chain_index=unrelaxed_protein.chain_index[remove_padding_mask], ) # Relax the prediction. amber_relaxer = relax.AmberRelaxation( max_iterations=0, tolerance=2.39, stiffness=10.0, exclude_residues=[], max_outer_iterations=20, ) relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein) # TODO: Those aren't actually used in batch relaxed_pdb_lines.append(relaxed_pdb_str) # early stop criteria fulfilled if mean_score > stop_at_score: break # rerank models based on predicted lddt if rank_by == "ptmscore": model_rank = np.array(ptmscore).argsort()[::-1] elif rank_by == "multimer": rank_array = np.array(iptmscore) * 0.8 + np.array(ptmscore) * 0.2 model_rank = rank_array.argsort()[::-1] else: model_rank = np.mean(plddts, -1).argsort()[::-1] out = {} logger.info(f"reranking models by {rank_by}") for n, key in enumerate(model_rank): unrelaxed_pdb_path = result_dir.joinpath( f"{prefix}_unrelaxed_rank_{n + 1}_{model_names[key]}.pdb" ) unrelaxed_pdb_path.write_text(unrelaxed_pdb_lines[key]) if do_relax: relaxed_pdb_path = result_dir.joinpath( f"{prefix}_relaxed_rank_{n + 1}_{model_names[key]}.pdb" ) relaxed_pdb_path.write_text(relaxed_pdb_lines[key]) # Write an easy-to-use format (PAE and plDDT) scores_file = result_dir.joinpath( f"{prefix}_unrelaxed_rank_{n + 1}_{model_names[key]}_scores.json" ) with scores_file.open("w") as fp: # We use astype(np.float64) to prevent very long stringified floats from float imprecision scores = { "max_pae": max_paes[key], "pae": np.around(np.asarray(paes[key]).astype(np.float64), 2).tolist(), "plddt": np.around(np.asarray(plddts[key]), 2).tolist(), "ptm": np.around(ptmscore[key], 2).item(), } json.dump(scores, fp) out[key] = { "plddt": np.asarray(plddts[key]), "pae": np.asarray(paes[key]), "max_pae": max_paes[key], "pTMscore": ptmscore[key], "model_name": model_names[key], "representations": representations[key], } return out, model_rank def parse_fasta(fasta_string: str) -> Tuple[List[str], List[str]]: """Parses FASTA string and returns list of strings with amino-acid sequences. Arguments: fasta_string: The string contents of a FASTA file. Returns: A tuple of two lists: * A list of sequences. * A list of sequence descriptions taken from the comment lines. In the same order as the sequences. """ sequences = [] descriptions = [] index = -1 for line in fasta_string.splitlines(): line = line.strip() if line.startswith("#"): continue if line.startswith(">"): index += 1 descriptions.append(line[1:]) # Remove the '>' at the beginning. sequences.append("") continue elif not line: continue # Skip blank lines. sequences[index] += line return sequences, descriptions def get_queries( input_path: Union[str, Path], sort_queries_by: str = "length" ) -> Tuple[List[Tuple[str, str, Optional[List[str]]]], bool]: """Reads a directory of fasta files, a single fasta file or a csv file and returns a tuple of job name, sequence and the optional a3m lines""" input_path = Path(input_path) if not input_path.exists(): raise OSError(f"{input_path} could not be found") if input_path.is_file(): if input_path.suffix == ".csv" or input_path.suffix == ".tsv": sep = "\t" if input_path.suffix == ".tsv" else "," df = pandas.read_csv(input_path, sep=sep) assert "id" in df.columns and "sequence" in df.columns queries = [ (seq_id, sequence.upper().split(":"), None) for seq_id, sequence in df[["id", "sequence"]].itertuples(index=False) ] for i in range(len(queries)): if len(queries[i][1]) == 1: queries[i] = (queries[i][0], queries[i][1][0], None) elif input_path.suffix == ".a3m": (seqs, header) = parse_fasta(input_path.read_text()) if len(seqs) == 0: raise ValueError(f"{input_path} is empty") query_sequence = seqs[0] # Use a list so we can easily extend this to multiple msas later a3m_lines = [input_path.read_text()] queries = [(input_path.stem, query_sequence, a3m_lines)] elif input_path.suffix in [".fasta", ".faa", ".fa"]: (sequences, headers) = parse_fasta(input_path.read_text()) queries = [] for sequence, header in zip(sequences, headers): sequence = sequence.upper() if sequence.count(":") == 0: # Single sequence queries.append((header, sequence, None)) else: # Complex mode queries.append((header, sequence.upper().split(":"), None)) else: raise ValueError(f"Unknown file format {input_path.suffix}") else: assert input_path.is_dir(), "Expected either an input file or a input directory" queries = [] for file in sorted(input_path.iterdir()): if not file.is_file(): continue if file.suffix.lower() not in [".a3m", ".fasta", ".faa"]: logger.warning(f"non-fasta/a3m file in input directory: {file}") continue (seqs, header) = parse_fasta(file.read_text()) if len(seqs) == 0: logger.error(f"{file} is empty") continue query_sequence = seqs[0] if len(seqs) > 1 and file.suffix in [".fasta", ".faa", ".fa"]: logger.warning( f"More than one sequence in {file}, ignoring all but the first sequence" ) if file.suffix.lower() == ".a3m": a3m_lines = [file.read_text()] queries.append((file.stem, query_sequence.upper(), a3m_lines)) else: if query_sequence.count(":") == 0: # Single sequence queries.append((file.stem, query_sequence, None)) else: # Complex mode queries.append((file.stem, query_sequence.upper().split(":"), None)) # sort by seq. len if sort_queries_by == "length": queries.sort(key=lambda t: len(t[1])) elif sort_queries_by == "random": random.shuffle(queries) is_complex = False for job_number, (raw_jobname, query_sequence, a3m_lines) in enumerate(queries): if isinstance(query_sequence, list): is_complex = True break if a3m_lines is not None and a3m_lines[0].startswith("#"): a3m_line = a3m_lines[0].splitlines()[0] tab_sep_entries = a3m_line[1:].split("\t") if len(tab_sep_entries) == 2: query_seq_len = tab_sep_entries[0].split(",") query_seq_len = list(map(int, query_seq_len)) query_seqs_cardinality = tab_sep_entries[1].split(",") query_seqs_cardinality = list(map(int, query_seqs_cardinality)) is_single_protein = ( True if len(query_seq_len) == 1 and query_seqs_cardinality[0] == 1 else False ) if not is_single_protein: is_complex = True break return queries, is_complex def pair_sequences( a3m_lines: List[str], query_sequences: List[str], query_cardinality: List[int] ) -> str: a3m_line_paired = [""] * len(a3m_lines[0].splitlines()) for n, seq in enumerate(query_sequences): lines = a3m_lines[n].splitlines() for i, line in enumerate(lines): if line.startswith(">"): if n != 0: line = line.replace(">", "\t", 1) a3m_line_paired[i] = a3m_line_paired[i] + line else: a3m_line_paired[i] = a3m_line_paired[i] + line * query_cardinality[n] return "\n".join(a3m_line_paired) def pad_sequences( a3m_lines: List[str], query_sequences: List[str], query_cardinality: List[int] ) -> str: _blank_seq = [ ("-" * len(seq)) for n, seq in enumerate(query_sequences) for _ in range(query_cardinality[n]) ] a3m_lines_combined = [] pos = 0 for n, seq in enumerate(query_sequences): for j in range(0, query_cardinality[n]): lines = a3m_lines[n].split("\n") for a3m_line in lines: if len(a3m_line) == 0: continue if a3m_line.startswith(">"): a3m_lines_combined.append(a3m_line) else: a3m_lines_combined.append( "".join(_blank_seq[:pos] + [a3m_line] + _blank_seq[pos + 1 :]) ) pos += 1 return "\n".join(a3m_lines_combined) def get_msa_and_templates( jobname: str, query_sequences: Union[str, List[str]], result_dir: Path, msa_mode: str, use_templates: bool, custom_template_path: str, pair_mode: str, host_url: str = DEFAULT_API_SERVER, ) -> Tuple[ Optional[List[str]], Optional[List[str]], List[str], List[int], List[Dict[str, Any]] ]: use_env = msa_mode == "MMseqs2 (UniRef+Environmental)" # remove duplicates before searching query_sequences = ( [query_sequences] if isinstance(query_sequences, str) else query_sequences ) query_seqs_unique = [] for x in query_sequences: if x not in query_seqs_unique: query_seqs_unique.append(x) query_seqs_cardinality = [0] * len(query_seqs_unique) for seq in query_sequences: seq_idx = query_seqs_unique.index(seq) query_seqs_cardinality[seq_idx] += 1 template_features = [] if use_templates: a3m_lines_mmseqs2, template_paths = run_mmseqs2( query_seqs_unique, str(result_dir.joinpath(jobname)), use_env, use_templates=True, host_url=host_url, ) if custom_template_path is not None: template_paths = {} for index in range(0, len(query_seqs_unique)): template_paths[index] = custom_template_path if template_paths is None: logger.info("No template detected") for index in range(0, len(query_seqs_unique)): template_feature = mk_mock_template(query_seqs_unique[index]) template_features.append(template_feature) else: for index in range(0, len(query_seqs_unique)): if template_paths[index] is not None: template_feature = mk_template( a3m_lines_mmseqs2[index], template_paths[index], query_seqs_unique[index], ) logger.info( f"Sequence {index} found templates: {template_feature['template_domain_names']}" ) else: template_feature = mk_mock_template(query_seqs_unique[index]) logger.info(f"Sequence {index} found no templates") template_features.append(template_feature) else: for index in range(0, len(query_seqs_unique)): template_feature = mk_mock_template(query_seqs_unique[index]) template_features.append(template_feature) if len(query_sequences) == 1: pair_mode = "none" if pair_mode == "none" or pair_mode == "unpaired" or pair_mode == "unpaired+paired": if msa_mode == "single_sequence": a3m_lines = [] num = 101 for i, seq in enumerate(query_seqs_unique): a3m_lines.append(">" + str(num + i) + "\n" + seq) else: # find normal a3ms a3m_lines = run_mmseqs2( query_seqs_unique, str(result_dir.joinpath(jobname)), use_env, use_pairing=False, host_url=host_url, ) else: a3m_lines = None if pair_mode == "paired" or pair_mode == "unpaired+paired": # find paired a3m if not a homooligomers if len(query_seqs_unique) > 1: paired_a3m_lines = run_mmseqs2( query_seqs_unique, str(result_dir.joinpath(jobname)), use_env, use_pairing=True, host_url=host_url, ) else: # homooligomers num = 101 paired_a3m_lines = [] for i in range(0, query_seqs_cardinality[0]): paired_a3m_lines.append( ">" + str(num + i) + "\n" + query_seqs_unique[0] + "\n" ) else: paired_a3m_lines = None return ( a3m_lines, paired_a3m_lines, query_seqs_unique, query_seqs_cardinality, template_features, ) def build_monomer_feature( sequence: str, unpaired_msa: str, template_features: Dict[str, Any] ): msa = pipeline.parsers.parse_a3m(unpaired_msa) # gather features return { **pipeline.make_sequence_features( sequence=sequence, description="none", num_res=len(sequence) ), **pipeline.make_msa_features([msa]), **template_features, } def build_multimer_feature(paired_msa: str) -> Dict[str, ndarray]: parsed_paired_msa = pipeline.parsers.parse_a3m(paired_msa) return { f"{k}_all_seq": v for k, v in pipeline.make_msa_features([parsed_paired_msa]).items() } def process_multimer_features( features_for_chain: Dict[str, Dict[str, ndarray]] ) -> Dict[str, ndarray]: all_chain_features = {} for chain_id, chain_features in features_for_chain.items(): all_chain_features[chain_id] = pipeline_multimer.convert_monomer_features( chain_features, chain_id ) all_chain_features = pipeline_multimer.add_assembly_features(all_chain_features) # np_example = feature_processing.pair_and_merge( # all_chain_features=all_chain_features, is_prokaryote=is_prokaryote) feature_processing.process_unmerged_features(all_chain_features) np_chains_list = list(all_chain_features.values()) # noinspection PyProtectedMember pair_msa_sequences = not feature_processing._is_homomer_or_monomer(np_chains_list) chains = list(np_chains_list) chain_keys = chains[0].keys() updated_chains = [] for chain_num, chain in enumerate(chains): new_chain = {k: v for k, v in chain.items() if "_all_seq" not in k} for feature_name in chain_keys: if feature_name.endswith("_all_seq"): feats_padded = msa_pairing.pad_features( chain[feature_name], feature_name ) new_chain[feature_name] = feats_padded new_chain["num_alignments_all_seq"] = np.asarray( len(np_chains_list[chain_num]["msa_all_seq"]) ) updated_chains.append(new_chain) np_chains_list = updated_chains np_chains_list = feature_processing.crop_chains( np_chains_list, msa_crop_size=feature_processing.MSA_CROP_SIZE, pair_msa_sequences=pair_msa_sequences, max_templates=feature_processing.MAX_TEMPLATES, ) np_example = feature_processing.msa_pairing.merge_chain_features( np_chains_list=np_chains_list, pair_msa_sequences=pair_msa_sequences, max_templates=feature_processing.MAX_TEMPLATES, ) np_example = feature_processing.process_final(np_example) # Pad MSA to avoid zero-sized extra_msa. np_example = pipeline_multimer.pad_msa(np_example, min_num_seq=512) return np_example def pair_msa( query_seqs_unique: List[str], query_seqs_cardinality: List[int], paired_msa: Optional[List[str]], unpaired_msa: Optional[List[str]], ) -> str: if paired_msa is None and unpaired_msa is not None: a3m_lines = pad_sequences( unpaired_msa, query_seqs_unique, query_seqs_cardinality ) elif paired_msa is not None and unpaired_msa is not None: a3m_lines = ( pair_sequences(paired_msa, query_seqs_unique, query_seqs_cardinality) + "\n" + pad_sequences(unpaired_msa, query_seqs_unique, query_seqs_cardinality) ) elif paired_msa is not None and unpaired_msa is None: a3m_lines = pair_sequences( paired_msa, query_seqs_unique, query_seqs_cardinality ) else: raise ValueError(f"Invalid pairing") return a3m_lines def generate_input_feature( query_seqs_unique: List[str], query_seqs_cardinality: List[int], unpaired_msa: List[str], paired_msa: List[str], template_features: List[Dict[str, Any]], is_complex: bool, model_type: str, ) -> Dict[str, Any]: input_feature = {} if is_complex and model_type == "AlphaFold2-ptm": a3m_lines = pair_msa( query_seqs_unique, query_seqs_cardinality, paired_msa, unpaired_msa ) total_sequence = "" Ls = [] for sequence_index, sequence in enumerate(query_seqs_unique): for cardinality in range(0, query_seqs_cardinality[sequence_index]): total_sequence += sequence Ls.append(len(sequence)) input_feature = build_monomer_feature( total_sequence, a3m_lines, mk_mock_template(total_sequence) ) input_feature["residue_index"] = chain_break(input_feature["residue_index"], Ls) input_feature["asym_id"] = np.array( [int(n) for n, l in enumerate(Ls) for _ in range(0, l)] ) else: features_for_chain = {} chain_cnt = 0 for sequence_index, sequence in enumerate(query_seqs_unique): for cardinality in range(0, query_seqs_cardinality[sequence_index]): if unpaired_msa is None: input_msa = ">" + str(101 + sequence_index) + "\n" + sequence else: input_msa = unpaired_msa[sequence_index] feature_dict = build_monomer_feature( sequence, input_msa, template_features[sequence_index] ) if is_complex: all_seq_features = build_multimer_feature( paired_msa[sequence_index] ) feature_dict.update(all_seq_features) features_for_chain[protein.PDB_CHAIN_IDS[chain_cnt]] = feature_dict chain_cnt += 1 # Do further feature post-processing depending on the model type. if not is_complex: input_feature = features_for_chain[protein.PDB_CHAIN_IDS[0]] elif model_type.startswith("AlphaFold2-multimer"): input_feature = process_multimer_features(features_for_chain) return input_feature def unserialize_msa( a3m_lines: List[str], query_sequence: Union[List[str], str] ) -> Tuple[ Optional[List[str]], Optional[List[str]], List[str], List[int], List[Dict[str, Any]], ]: a3m_lines = a3m_lines[0].replace("\x00", "").splitlines() if not a3m_lines[0].startswith("#") or len(a3m_lines[0][1:].split("\t")) != 2: assert isinstance(query_sequence, str) return ( ["\n".join(a3m_lines)], None, [query_sequence], [1], [mk_mock_template(query_sequence)], ) if len(a3m_lines) < 3: raise ValueError(f"Unknown file format a3m") tab_sep_entries = a3m_lines[0][1:].split("\t") query_seq_len = tab_sep_entries[0].split(",") query_seq_len = list(map(int, query_seq_len)) query_seqs_cardinality = tab_sep_entries[1].split(",") query_seqs_cardinality = list(map(int, query_seqs_cardinality)) is_homooligomer = ( True if len(query_seq_len) == 1 and query_seqs_cardinality[0] > 1 else False ) is_single_protein = ( True if len(query_seq_len) == 1 and query_seqs_cardinality[0] == 1 else False ) query_seqs_unique = [] prev_query_start = 0 # we store the a3m with cardinality of 1 for n, query_len in enumerate(query_seq_len): query_seqs_unique.append( a3m_lines[2][prev_query_start : prev_query_start + query_len] ) prev_query_start += query_len paired_msa = [""] * len(query_seq_len) unpaired_msa = [""] * len(query_seq_len) already_in = dict() for i in range(1, len(a3m_lines), 2): header = a3m_lines[i] seq = a3m_lines[i + 1] if (header, seq) in already_in: continue already_in[(header, seq)] = 1 has_amino_acid = [False] * len(query_seq_len) seqs_line = [] prev_pos = 0 for n, query_len in enumerate(query_seq_len): paired_seq = "" curr_seq_len = 0 for pos in range(prev_pos, len(seq)): if curr_seq_len == query_len: prev_pos = pos break paired_seq += seq[pos] if seq[pos].islower(): continue if seq[pos] != "-": has_amino_acid[n] = True curr_seq_len += 1 seqs_line.append(paired_seq) # is sequence is paired add them to output if ( not is_single_protein and not is_homooligomer and sum(has_amino_acid) == len(query_seq_len) ): header_no_faster = header.replace(">", "") header_no_faster_split = header_no_faster.split("\t") for j in range(0, len(seqs_line)): paired_msa[j] += ">" + header_no_faster_split[j] + "\n" paired_msa[j] += seqs_line[j] + "\n" else: for j, seq in enumerate(seqs_line): if has_amino_acid[j]: unpaired_msa[j] += header + "\n" unpaired_msa[j] += seq + "\n" if is_homooligomer: # homooligomers num = 101 paired_msa = [""] * query_seqs_cardinality[0] for i in range(0, query_seqs_cardinality[0]): paired_msa[i] = ">" + str(num + i) + "\n" + query_seqs_unique[0] + "\n" if is_single_protein: paired_msa = None template_features = [] for query_seq in query_seqs_unique: template_feature = mk_mock_template(query_seq) template_features.append(template_feature) return ( unpaired_msa, paired_msa, query_seqs_unique, query_seqs_cardinality, template_features, ) def msa_to_str( unpaired_msa: List[str], paired_msa: List[str], query_seqs_unique: List[str], query_seqs_cardinality: List[int], ) -> str: msa = "#" + ",".join(map(str, map(len, query_seqs_unique))) + "\t" msa += ",".join(map(str, query_seqs_cardinality)) + "\n" # build msa with cardinality of 1, it makes it easier to parse and manipulate query_seqs_cardinality = [1 for _ in query_seqs_cardinality] msa += pair_msa(query_seqs_unique, query_seqs_cardinality, paired_msa, unpaired_msa) return msa def run( queries: List[Tuple[str, Union[str, List[str]], Optional[List[str]]]], result_dir: Union[str, Path], num_models: int, num_recycles: int, model_order: List[int], is_complex: bool, model_type: str = "auto", msa_mode: str = "MMseqs2 (UniRef+Environmental)", use_templates: bool = False, custom_template_path: str = None, use_amber: bool = False, keep_existing_results: bool = True, rank_by: str = "auto", pair_mode: str = "unpaired+paired", data_dir: Union[str, Path] = default_data_dir, host_url: str = DEFAULT_API_SERVER, stop_at_score: float = 100, recompile_padding: float = 1.1, recompile_all_models: bool = False, zip_results: bool = False, prediction_callback: Callable[[Any, Any, Any, Any], Any] = None, save_single_representations: bool = False, save_pair_representations: bool = False, ): version = importlib_metadata.version("colabfold") commit = get_commit() if commit: version += f" ({commit})" logger.info(f"Running colabfold {version}") data_dir = Path(data_dir) result_dir = Path(result_dir) result_dir.mkdir(exist_ok=True) model_type = set_model_type(is_complex, model_type) if model_type == "AlphaFold2-multimer-v1": model_extension = "_multimer" elif model_type == "AlphaFold2-multimer-v2": model_extension = "_multimer_v2" elif model_type == "AlphaFold2-ptm": model_extension = "_ptm" else: raise ValueError(f"Unknown model_type {model_type}") if rank_by == "auto": # score complexes by ptmscore and sequences by plddt rank_by = "plddt" if not is_complex else "ptmscore" rank_by = ( "multimer" if is_complex and model_type.startswith("AlphaFold2-multimer") else rank_by ) # Record the parameters of this run config = { "num_queries": len(queries), "use_templates": use_templates, "use_amber": use_amber, "msa_mode": msa_mode, "model_type": model_type, "num_models": num_models, "num_recycles": num_recycles, "model_order": model_order, "keep_existing_results": keep_existing_results, "rank_by": rank_by, "pair_mode": pair_mode, "host_url": host_url, "stop_at_score": stop_at_score, "recompile_padding": recompile_padding, "recompile_all_models": recompile_all_models, "commit": get_commit(), "version": importlib_metadata.version("colabfold"), } config_out_file = result_dir.joinpath("config.json") config_out_file.write_text(json.dumps(config, indent=4)) use_env = msa_mode == "MMseqs2 (UniRef+Environmental)" use_msa = ( msa_mode == "MMseqs2 (UniRef only)" or msa_mode == "MMseqs2 (UniRef+Environmental)" ) bibtex_file = write_bibtex( model_type, use_msa, use_env, use_templates, use_amber, result_dir ) save_representations = save_single_representations or save_pair_representations model_runner_and_params = load_models_and_params( num_models, use_templates, num_recycles, model_order, model_extension, data_dir, recompile_all_models, stop_at_score=stop_at_score, rank_by=rank_by, return_representations=save_representations, ) if custom_template_path is not None: mk_hhsearch_db(custom_template_path) crop_len = 0 for job_number, (raw_jobname, query_sequence, a3m_lines) in enumerate(queries): jobname = safe_filename(raw_jobname) # In the colab version and with --zip we know we're done when a zip file has been written result_zip = result_dir.joinpath(jobname).with_suffix(".result.zip") if keep_existing_results and result_zip.is_file(): logger.info(f"Skipping {jobname} (result.zip)") continue # In the local version we use a marker file is_done_marker = result_dir.joinpath(jobname + ".done.txt") if keep_existing_results and is_done_marker.is_file(): logger.info(f"Skipping {jobname} (already done)") continue query_sequence_len = ( len(query_sequence) if isinstance(query_sequence, str) else sum(len(s) for s in query_sequence) ) logger.info( f"Query {job_number + 1}/{len(queries)}: {jobname} (length {query_sequence_len})" ) try: if a3m_lines is not None: ( unpaired_msa, paired_msa, query_seqs_unique, query_seqs_cardinality, template_features, ) = unserialize_msa(a3m_lines, query_sequence) else: ( unpaired_msa, paired_msa, query_seqs_unique, query_seqs_cardinality, template_features, ) = get_msa_and_templates( jobname, query_sequence, result_dir, msa_mode, use_templates, custom_template_path, pair_mode, host_url, ) msa = msa_to_str( unpaired_msa, paired_msa, query_seqs_unique, query_seqs_cardinality ) result_dir.joinpath(jobname + ".a3m").write_text(msa) except Exception as e: logger.exception(f"Could not get MSA/templates for {jobname}: {e}") continue try: input_features = generate_input_feature( query_seqs_unique, query_seqs_cardinality, unpaired_msa, paired_msa, template_features, is_complex, model_type, ) except Exception as e: logger.exception(f"Could not generate input features {jobname}: {e}") continue try: query_sequence_len_array = [ len(query_seqs_unique[i]) for i, cardinality in enumerate(query_seqs_cardinality) for _ in range(0, cardinality) ] if sum(query_sequence_len_array) > crop_len: crop_len = math.ceil(sum(query_sequence_len_array) * recompile_padding) outs, model_rank = predict_structure( jobname, result_dir, input_features, is_complex, use_templates, sequences_lengths=query_sequence_len_array, crop_len=crop_len, model_type=model_type, model_runner_and_params=model_runner_and_params, do_relax=use_amber, rank_by=rank_by, stop_at_score=stop_at_score, prediction_callback=prediction_callback, ) except RuntimeError as e: # This normally happens on OOM. TODO: Filter for the specific OOM error message logger.error(f"Could not predict {jobname}. Not Enough GPU memory? {e}") continue # Write representations if needed representation_files = [] if save_representations: for i, key in enumerate(model_rank): out = outs[key] model_id = i + 1 model_name = out["model_name"] representations = out["representations"] if save_single_representations: single_representation = np.asarray(representations["single"]) single_filename = result_dir.joinpath( f"{jobname}_single_repr_{model_id}_{model_name}" ) np.save(single_filename, single_representation) if save_pair_representations: pair_representation = np.asarray(representations["pair"]) pair_filename = result_dir.joinpath( f"{jobname}_pair_repr_{model_id}_{model_name}" ) np.save(pair_filename, pair_representation) # Write alphafold-db format (PAE) alphafold_pae_file = result_dir.joinpath( jobname + "_predicted_aligned_error_v1.json" ) alphafold_pae_file.write_text(get_pae_json(outs[0]["pae"], outs[0]["max_pae"])) num_alignment = ( int(input_features["num_alignments"]) if model_type.startswith("AlphaFold2-multimer") else input_features["num_alignments"][0] ) msa_plot = plot_msa( input_features["msa"][0:num_alignment], input_features["msa"][0], query_sequence_len_array, query_sequence_len, ) coverage_png = result_dir.joinpath(jobname + "_coverage.png") msa_plot.savefig(str(coverage_png)) msa_plot.close() paes_plot = plot_paes( [outs[k]["pae"] for k in model_rank], Ls=query_sequence_len_array, dpi=200 ) pae_png = result_dir.joinpath(jobname + "_PAE.png") paes_plot.savefig(str(pae_png)) paes_plot.close() plddt_plot = plot_plddts( [outs[k]["plddt"] for k in model_rank], Ls=query_sequence_len_array, dpi=200 ) plddt_png = result_dir.joinpath(jobname + "_plddt.png") plddt_plot.savefig(str(plddt_png)) plddt_plot.close() result_files = [ bibtex_file, config_out_file, alphafold_pae_file, result_dir.joinpath(jobname + ".a3m"), pae_png, coverage_png, plddt_png, *representation_files, ] for i, key in enumerate(model_rank): result_files.append( result_dir.joinpath( f"{jobname}_unrelaxed_rank_{i + 1}_{outs[key]['model_name']}.pdb" ) ) result_files.append( result_dir.joinpath( f"{jobname}_unrelaxed_rank_{i + 1}_{outs[key]['model_name']}_scores.json" ) ) if use_amber: result_files.append( result_dir.joinpath( f"{jobname}_relaxed_rank_{i + 1}_{outs[key]['model_name']}.pdb" ) ) if zip_results: with zipfile.ZipFile(result_zip, "w") as result_zip: for file in result_files: result_zip.write(file, arcname=file.name) # Delete only after the zip was successful, and also not the bibtex and config because we need those again for file in result_files[2:]: file.unlink() else: is_done_marker.touch() logger.info("Done") def set_model_type(is_complex: bool, model_type: str) -> str: if model_type == "auto" and is_complex: model_type = "AlphaFold2-multimer-v2" elif model_type == "auto" and not is_complex: model_type = "AlphaFold2-ptm" return model_type def main(): parser = ArgumentParser() parser.add_argument( "input", default="input", help="Can be one of the following: " "Directory with fasta/a3m files, a csv/tsv file, a fasta file or an a3m file", ) parser.add_argument("results", help="Directory to write the results to") # Main performance parameter parser.add_argument( "--stop-at-score", help="Compute models until plddt or ptmscore > threshold is reached. " "This can make colabfold much faster by only running the first model for easy queries.", type=float, default=100, ) parser.add_argument( "--num-recycle", help="Number of prediction cycles." "Increasing recycles can improve the quality but slows down the prediction.", type=int, default=3, ) parser.add_argument("--num-models", type=int, default=5, choices=[1, 2, 3, 4, 5]) parser.add_argument( "--recompile-padding", type=float, default=1.1, help="Whenever the input length changes, the model needs to be recompiled, which is slow. " "We pad sequences by this factor, so we can e.g. compute sequence from length 100 to 110 without recompiling. " "The prediction will become marginally slower for the longer input, " "but overall performance increases due to not recompiling. " "Set to 1 to disable.", ) parser.add_argument("--model-order", default="3,4,5,1,2", type=str) parser.add_argument("--host-url", default=DEFAULT_API_SERVER) parser.add_argument("--data") # TODO: This currently isn't actually used parser.add_argument( "--msa-mode", default="MMseqs2 (UniRef+Environmental)", choices=[ "MMseqs2 (UniRef+Environmental)", "MMseqs2 (UniRef only)", "single_sequence", ], help="Using an a3m file as input overwrites this option", ) parser.add_argument( "--model-type", help="predict strucutre/complex using the following model." 'Auto will pick "AlphaFold2" (ptm) for structure predictions and "AlphaFold2-multimer-v2" for complexes.', type=str, default="auto", choices=[ "auto", "AlphaFold2-ptm", "AlphaFold2-multimer-v1", "AlphaFold2-multimer-v2", ], ) parser.add_argument( "--amber", default=False, action="store_true", help="Use amber for structure refinement", ) parser.add_argument( "--templates", default=False, action="store_true", help="Use templates from pdb" ) parser.add_argument( "--custom-template-path", type=str, default=None, help="Directory with pdb files to be used as input", ) parser.add_argument("--env", default=False, action="store_true") parser.add_argument( "--cpu", default=False, action="store_true", help="Allow running on the cpu, which is very slow", ) parser.add_argument( "--rank", help="rank models by auto, plddt or ptmscore", type=str, default="auto", choices=["auto", "plddt", "ptmscore", "multimer"], ) parser.add_argument( "--pair-mode", help="rank models by auto, unpaired, paired, unpaired+paired", type=str, default="unpaired+paired", choices=["unpaired", "paired", "unpaired+paired"], ) parser.add_argument( "--recompile-all-models", help="recompile all models instead of just model 1 ane 3", default=False, action="store_true", ) parser.add_argument( "--sort-queries-by", help="sort queries by: none, length, random", type=str, default="length", choices=["none", "length", "random"], ) parser.add_argument( "--save-single-representations", default=False, action="store_true", help="saves the single representation embeddings of all models", ) parser.add_argument( "--save-pair-representations", default=False, action="store_true", help="saves the pair representation embeddings of all models", ) parser.add_argument( "--zip", default=False, action="store_true", help="zip all results into one <jobname>.result.zip and delete the original files", ) parser.add_argument( "--overwrite-existing-results", default=False, action="store_true" ) args = parser.parse_args() setup_logging(Path(args.results).joinpath("log.txt")) data_dir = Path(args.data or default_data_dir) # Prevent people from accidentally running on the cpu, which is really slow if not args.cpu and xla_bridge.get_backend().platform == "cpu": print(NO_GPU_FOUND, file=sys.stderr) sys.exit(1) queries, is_complex = get_queries(args.input, args.sort_queries_by) model_type = set_model_type(is_complex, args.model_type) download_alphafold_params(model_type, data_dir) uses_api = any((query[2] is None for query in queries)) if uses_api and args.host_url == DEFAULT_API_SERVER: print(ACCEPT_DEFAULT_TERMS, file=sys.stderr) model_order = [int(i) for i in args.model_order.split(",")] assert 1 <= args.recompile_padding, "Can't apply negative padding" run( queries=queries, result_dir=args.results, use_templates=args.templates, custom_template_path=args.custom_template_path, use_amber=args.amber, msa_mode=args.msa_mode, model_type=model_type, num_models=args.num_models, num_recycles=args.num_recycle, model_order=model_order, is_complex=is_complex, keep_existing_results=not args.overwrite_existing_results, rank_by=args.rank, pair_mode=args.pair_mode, data_dir=data_dir, host_url=args.host_url, stop_at_score=args.stop_at_score, recompile_padding=args.recompile_padding, recompile_all_models=args.recompile_all_models, zip_results=args.zip, save_single_representations=args.save_single_representations, save_pair_representations=args.save_pair_representations, ) if __name__ == "__main__": main()
ColabFold-main
colabfold/batch.py
ColabFold-main
colabfold/__init__.py
def show_pdb( use_amber: bool, jobname: str, homooligomer, model_num=1, show_sidechains=False, show_mainchains=False, color="lDDT", ): import py3Dmol model_name = f"model_{model_num}" if use_amber: pdb_filename = f"{jobname}_relaxed_{model_name}.pdb" else: pdb_filename = f"{jobname}_unrelaxed_{model_name}.pdb" view = py3Dmol.view(js="https://3dmol.org/build/3Dmol.js") view.addModel(open(pdb_filename, "r").read(), "pdb") if color == "lDDT": view.setStyle( { "cartoon": { "colorscheme": { "prop": "b", "gradient": "roygb", "min": 50, "max": 90, } } } ) elif color == "rainbow": view.setStyle({"cartoon": {"color": "spectrum"}}) elif color == "chain": for n, chain, color in zip( range(homooligomer), list("ABCDEFGH"), ["lime", "cyan", "magenta", "yellow", "salmon", "white", "blue", "orange"], ): view.setStyle({"chain": chain}, {"cartoon": {"color": color}}) if show_sidechains: BB = ["C", "O", "N"] view.addStyle( { "and": [ {"resn": ["GLY", "PRO"], "invert": True}, {"atom": BB, "invert": True}, ] }, {"stick": {"colorscheme": f"WhiteCarbon", "radius": 0.3}}, ) view.addStyle( {"and": [{"resn": "GLY"}, {"atom": "CA"}]}, {"sphere": {"colorscheme": f"WhiteCarbon", "radius": 0.3}}, ) view.addStyle( {"and": [{"resn": "PRO"}, {"atom": ["C", "O"], "invert": True}]}, {"stick": {"colorscheme": f"WhiteCarbon", "radius": 0.3}}, ) if show_mainchains: BB = ["C", "O", "N", "CA"] view.addStyle( {"atom": BB}, {"stick": {"colorscheme": f"WhiteCarbon", "radius": 0.3}} ) view.zoomTo() return view
ColabFold-main
colabfold/pdb.py
# fmt: off # @formatter:off ############################################ # imports ############################################ import jax import requests import hashlib import tarfile import time import os from typing import Tuple, List import random from tqdm import tqdm import numpy as np import matplotlib.pyplot as plt import matplotlib import matplotlib.patheffects from matplotlib import collections as mcoll import logging logger = logging.getLogger(__name__) try: import py3Dmol except: pass from string import ascii_uppercase,ascii_lowercase pymol_color_list = ["#33ff33","#00ffff","#ff33cc","#ffff00","#ff9999","#e5e5e5","#7f7fff","#ff7f00", "#7fff7f","#199999","#ff007f","#ffdd5e","#8c3f99","#b2b2b2","#007fff","#c4b200", "#8cb266","#00bfbf","#b27f7f","#fcd1a5","#ff7f7f","#ffbfdd","#7fffff","#ffff7f", "#00ff7f","#337fcc","#d8337f","#bfff3f","#ff7fff","#d8d8ff","#3fffbf","#b78c4c", "#339933","#66b2b2","#ba8c84","#84bf00","#b24c66","#7f7f7f","#3f3fa5","#a5512b"] pymol_cmap = matplotlib.colors.ListedColormap(pymol_color_list) alphabet_list = list(ascii_uppercase+ascii_lowercase) aatypes = set('ACDEFGHIKLMNPQRSTVWY') ########################################### # control gpu/cpu memory usage ########################################### def rm(x): '''remove data from device''' jax.tree_util.tree_map(lambda y: y.device_buffer.delete(), x) def to(x,device="cpu"): '''move data to device''' d = jax.devices(device)[0] return jax.tree_util.tree_map(lambda y:jax.device_put(y,d), x) def clear_mem(device="gpu"): '''remove all data from device''' backend = jax.lib.xla_bridge.get_backend(device) for buf in backend.live_buffers(): buf.delete() ########################################## # call mmseqs2 ########################################## TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]' def run_mmseqs2(x, prefix, use_env=True, use_filter=True, use_templates=False, filter=None, use_pairing=False, host_url="https://a3m.mmseqs.com") -> Tuple[List[str], List[str]]: submission_endpoint = "ticket/pair" if use_pairing else "ticket/msa" def submit(seqs, mode, N=101): n, query = N, "" for seq in seqs: query += f">{n}\n{seq}\n" n += 1 res = requests.post(f'{host_url}/{submission_endpoint}', data={'q':query,'mode': mode}) try: out = res.json() except ValueError: logger.error(f"Server didn't reply with json: {res.text}") out = {"status":"ERROR"} return out def status(ID): res = requests.get(f'{host_url}/ticket/{ID}') try: out = res.json() except ValueError: logger.error(f"Server didn't reply with json: {res.text}") out = {"status":"ERROR"} return out def download(ID, path): res = requests.get(f'{host_url}/result/download/{ID}') with open(path,"wb") as out: out.write(res.content) # process input x seqs = [x] if isinstance(x, str) else x # compatibility to old option if filter is not None: use_filter = filter # setup mode if use_filter: mode = "env" if use_env else "all" else: mode = "env-nofilter" if use_env else "nofilter" if use_pairing: mode = "" use_templates = False use_env = False # define path path = f"{prefix}_{mode}" if not os.path.isdir(path): os.mkdir(path) # call mmseqs2 api tar_gz_file = f'{path}/out.tar.gz' N,REDO = 101,True # deduplicate and keep track of order seqs_unique = [] #TODO this might be slow for large sets [seqs_unique.append(x) for x in seqs if x not in seqs_unique] Ms = [N + seqs_unique.index(seq) for seq in seqs] # lets do it! if not os.path.isfile(tar_gz_file): TIME_ESTIMATE = 150 * len(seqs_unique) with tqdm(total=TIME_ESTIMATE, bar_format=TQDM_BAR_FORMAT) as pbar: while REDO: pbar.set_description("SUBMIT") # Resubmit job until it goes through out = submit(seqs_unique, mode, N) while out["status"] in ["UNKNOWN", "RATELIMIT"]: sleep_time = 5 + random.randint(0, 5) logger.error(f"Sleeping for {sleep_time}s. Reason: {out['status']}") # resubmit time.sleep(sleep_time) out = submit(seqs_unique, mode, N) if out["status"] == "ERROR": raise Exception(f'MMseqs2 API is giving errors. Please confirm your input is a valid protein sequence. If error persists, please try again an hour later.') if out["status"] == "MAINTENANCE": raise Exception(f'MMseqs2 API is undergoing maintenance. Please try again in a few minutes.') # wait for job to finish ID,TIME = out["id"],0 pbar.set_description(out["status"]) while out["status"] in ["UNKNOWN","RUNNING","PENDING"]: t = 5 + random.randint(0,5) logger.error(f"Sleeping for {t}s. Reason: {out['status']}") time.sleep(t) out = status(ID) pbar.set_description(out["status"]) if out["status"] == "RUNNING": TIME += t pbar.update(n=t) #if TIME > 900 and out["status"] != "COMPLETE": # # something failed on the server side, need to resubmit # N += 1 # break if out["status"] == "COMPLETE": if TIME < TIME_ESTIMATE: pbar.update(n=(TIME_ESTIMATE-TIME)) REDO = False if out["status"] == "ERROR": REDO = False raise Exception(f'MMseqs2 API is giving errors. Please confirm your input is a valid protein sequence. If error persists, please try again an hour later.') # Download results download(ID, tar_gz_file) # prep list of a3m files if use_pairing: a3m_files = [f"{path}/pair.a3m"] else: a3m_files = [f"{path}/uniref.a3m"] if use_env: a3m_files.append(f"{path}/bfd.mgnify30.metaeuk30.smag30.a3m") # extract a3m files if any(not os.path.isfile(a3m_file) for a3m_file in a3m_files): with tarfile.open(tar_gz_file) as tar_gz: tar_gz.extractall(path) # templates if use_templates: templates = {} #print("seq\tpdb\tcid\tevalue") for line in open(f"{path}/pdb70.m8","r"): p = line.rstrip().split() M,pdb,qid,e_value = p[0],p[1],p[2],p[10] M = int(M) if M not in templates: templates[M] = [] templates[M].append(pdb) #if len(templates[M]) <= 20: # print(f"{int(M)-N}\t{pdb}\t{qid}\t{e_value}") template_paths = {} for k,TMPL in templates.items(): TMPL_PATH = f"{prefix}_{mode}/templates_{k}" if not os.path.isdir(TMPL_PATH): os.mkdir(TMPL_PATH) TMPL_LINE = ",".join(TMPL[:20]) os.system(f"curl -s https://a3m-templates.mmseqs.com/template/{TMPL_LINE} | tar xzf - -C {TMPL_PATH}/") os.system(f"cp {TMPL_PATH}/pdb70_a3m.ffindex {TMPL_PATH}/pdb70_cs219.ffindex") os.system(f"touch {TMPL_PATH}/pdb70_cs219.ffdata") template_paths[k] = TMPL_PATH # gather a3m lines a3m_lines = {} for a3m_file in a3m_files: update_M,M = True,None for line in open(a3m_file,"r"): if len(line) > 0: if "\x00" in line: line = line.replace("\x00","") update_M = True if line.startswith(">") and update_M: M = int(line[1:].rstrip()) update_M = False if M not in a3m_lines: a3m_lines[M] = [] a3m_lines[M].append(line) # return results a3m_lines = ["".join(a3m_lines[n]) for n in Ms] if use_templates: template_paths_ = [] for n in Ms: if n not in template_paths: template_paths_.append(None) #print(f"{n-N}\tno_templates_found") else: template_paths_.append(template_paths[n]) template_paths = template_paths_ return (a3m_lines, template_paths) if use_templates else a3m_lines ######################################################################### # utils ######################################################################### def get_hash(x): return hashlib.sha1(x.encode()).hexdigest() def homooligomerize(msas, deletion_matrices, homooligomer=1): if homooligomer == 1: return msas, deletion_matrices else: new_msas = [] new_mtxs = [] for o in range(homooligomer): for msa,mtx in zip(msas, deletion_matrices): num_res = len(msa[0]) L = num_res * o R = num_res * (homooligomer-(o+1)) new_msas.append(["-"*L+s+"-"*R for s in msa]) new_mtxs.append([[0]*L+m+[0]*R for m in mtx]) return new_msas, new_mtxs # keeping typo for cross-compatibility def homooliomerize(msas, deletion_matrices, homooligomer=1): return homooligomerize(msas, deletion_matrices, homooligomer=homooligomer) def homooligomerize_heterooligomer(msas, deletion_matrices, lengths, homooligomers): ''' ----- inputs ----- msas: list of msas deletion_matrices: list of deletion matrices lengths: list of lengths for each component in complex homooligomers: list of number of homooligomeric copies for each component ----- outputs ----- (msas, deletion_matrices) ''' if max(homooligomers) == 1: return msas, deletion_matrices elif len(homooligomers) == 1: return homooligomerize(msas, deletion_matrices, homooligomers[0]) else: frag_ij = [[0,lengths[0]]] for length in lengths[1:]: j = frag_ij[-1][-1] frag_ij.append([j,j+length]) # for every msa mod_msas, mod_mtxs = [],[] for msa, mtx in zip(msas, deletion_matrices): mod_msa, mod_mtx = [],[] # for every sequence for n,(s,m) in enumerate(zip(msa,mtx)): # split sequence _s,_m,_ok = [],[],[] for i,j in frag_ij: _s.append(s[i:j]); _m.append(m[i:j]) _ok.append(max([o != "-" for o in _s[-1]])) if n == 0: # if first query sequence mod_msa.append("".join([x*h for x,h in zip(_s,homooligomers)])) mod_mtx.append(sum([x*h for x,h in zip(_m,homooligomers)],[])) elif sum(_ok) == 1: # elif one fragment: copy each fragment to every homooligomeric copy a = _ok.index(True) for h_a in range(homooligomers[a]): _blank_seq = [["-"*l]*h for l,h in zip(lengths,homooligomers)] _blank_mtx = [[[0]*l]*h for l,h in zip(lengths,homooligomers)] _blank_seq[a][h_a] = _s[a] _blank_mtx[a][h_a] = _m[a] mod_msa.append("".join(["".join(x) for x in _blank_seq])) mod_mtx.append(sum([sum(x,[]) for x in _blank_mtx],[])) else: # else: copy fragment pair to every homooligomeric copy pair for a in range(len(lengths)-1): if _ok[a]: for b in range(a+1,len(lengths)): if _ok[b]: for h_a in range(homooligomers[a]): for h_b in range(homooligomers[b]): _blank_seq = [["-"*l]*h for l,h in zip(lengths,homooligomers)] _blank_mtx = [[[0]*l]*h for l,h in zip(lengths,homooligomers)] for c,h_c in zip([a,b],[h_a,h_b]): _blank_seq[c][h_c] = _s[c] _blank_mtx[c][h_c] = _m[c] mod_msa.append("".join(["".join(x) for x in _blank_seq])) mod_mtx.append(sum([sum(x,[]) for x in _blank_mtx],[])) mod_msas.append(mod_msa) mod_mtxs.append(mod_mtx) return mod_msas, mod_mtxs def chain_break(idx_res, Ls, length=200): # Minkyung's code # add big enough number to residue index to indicate chain breaks L_prev = 0 for L_i in Ls[:-1]: idx_res[L_prev+L_i:] += length L_prev += L_i return idx_res ################################################## # plotting ################################################## def plot_plddt_legend(dpi=100): thresh = ['plDDT:','Very low (<50)','Low (60)','OK (70)','Confident (80)','Very high (>90)'] plt.figure(figsize=(1,0.1),dpi=dpi) ######################################## for c in ["#FFFFFF","#FF0000","#FFFF00","#00FF00","#00FFFF","#0000FF"]: plt.bar(0, 0, color=c) plt.legend(thresh, frameon=False, loc='center', ncol=6, handletextpad=1, columnspacing=1, markerscale=0.5,) plt.axis(False) return plt def plot_ticks(Ls): Ln = sum(Ls) L_prev = 0 for L_i in Ls[:-1]: L = L_prev + L_i L_prev += L_i plt.plot([0,Ln],[L,L],color="black") plt.plot([L,L],[0,Ln],color="black") ticks = np.cumsum([0]+Ls) ticks = (ticks[1:] + ticks[:-1])/2 plt.yticks(ticks,alphabet_list[:len(ticks)]) def plot_confidence(plddt, pae=None, Ls=None, dpi=100): use_ptm = False if pae is None else True if use_ptm: plt.figure(figsize=(10,3), dpi=dpi) plt.subplot(1,2,1); else: plt.figure(figsize=(5,3), dpi=dpi) plt.title('Predicted lDDT') plt.plot(plddt) if Ls is not None: L_prev = 0 for L_i in Ls[:-1]: L = L_prev + L_i L_prev += L_i plt.plot([L,L],[0,100],color="black") plt.ylim(0,100) plt.ylabel('plDDT') plt.xlabel('position') if use_ptm: plt.subplot(1,2,2);plt.title('Predicted Aligned Error') Ln = pae.shape[0] plt.imshow(pae,cmap="bwr",vmin=0,vmax=30,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() plt.xlabel('Scored residue') plt.ylabel('Aligned residue') return plt def plot_msas(msa, ori_seq=None, sort_by_seqid=True, deduplicate=True, dpi=100, return_plt=True): ''' plot the msas ''' if ori_seq is None: ori_seq = msa[0] seqs = ori_seq.replace("/","").split(":") seqs_dash = ori_seq.replace(":","").split("/") Ln = np.cumsum(np.append(0,[len(seq) for seq in seqs])) Ln_dash = np.cumsum(np.append(0,[len(seq) for seq in seqs_dash])) Nn,lines = [],[] #for msa in msas: #msa_ = set(msa) if deduplicate else msa msa_ = msa if len(msa_) > 0: Nn.append(len(msa_)) msa_ = np.asarray([list(seq) for seq in msa_]) gap_ = msa_ != "-" qid_ = msa_ == np.array(list("".join(seqs))) gapid = np.stack([gap_[:,Ln[i]:Ln[i+1]].max(-1) for i in range(len(seqs))],-1) seqid = np.stack([qid_[:,Ln[i]:Ln[i+1]].mean(-1) for i in range(len(seqs))],-1).sum(-1) / (gapid.sum(-1) + 1e-8) non_gaps = gap_.astype(np.float) non_gaps[non_gaps == 0] = np.nan if sort_by_seqid: lines.append(non_gaps[seqid.argsort()]*seqid[seqid.argsort(),None]) else: lines.append(non_gaps[::-1] * seqid[::-1,None]) Nn = np.cumsum(np.append(0,Nn)) lines = np.concatenate(lines,0) if return_plt: plt.figure(figsize=(8,5),dpi=dpi) plt.title("Sequence coverage") plt.imshow(lines, interpolation='nearest', aspect='auto', cmap="rainbow_r", vmin=0, vmax=1, origin='lower', extent=(0, lines.shape[1], 0, lines.shape[0])) for i in Ln[1:-1]: plt.plot([i,i],[0,lines.shape[0]],color="black") for i in Ln_dash[1:-1]: plt.plot([i,i],[0,lines.shape[0]],"--",color="black") for j in Nn[1:-1]: plt.plot([0,lines.shape[1]],[j,j],color="black") plt.plot((np.isnan(lines) == False).sum(0), color='black') plt.xlim(0,lines.shape[1]) plt.ylim(0,lines.shape[0]) plt.colorbar(label="Sequence identity to query") plt.xlabel("Positions") plt.ylabel("Sequences") if return_plt: return plt def read_pdb_renum(pdb_filename, Ls=None): if Ls is not None: L_init = 0 new_chain = {} for L,c in zip(Ls, alphabet_list): new_chain.update({i:c for i in range(L_init,L_init+L)}) L_init += L n,pdb_out = 1,[] resnum_,chain_ = 1,"A" for line in open(pdb_filename,"r"): if line[:4] == "ATOM": chain = line[21:22] resnum = int(line[22:22+5]) if resnum != resnum_ or chain != chain_: resnum_,chain_ = resnum,chain n += 1 if Ls is None: pdb_out.append("%s%4i%s" % (line[:22],n,line[26:])) else: pdb_out.append("%s%s%4i%s" % (line[:21],new_chain[n-1],n,line[26:])) return "".join(pdb_out) def show_pdb(pred_output_path, show_sidechains=False, show_mainchains=False, color="lDDT", chains=None, Ls=None, vmin=50, vmax=90, color_HP=False, size=(800,480)): if chains is None: chains = 1 if Ls is None else len(Ls) view = py3Dmol.view(js='https://3dmol.org/build/3Dmol.js', width=size[0], height=size[1]) view.addModel(read_pdb_renum(pred_output_path, Ls),'pdb') if color == "lDDT": view.setStyle({'cartoon': {'colorscheme': {'prop':'b','gradient': 'roygb','min':vmin,'max':vmax}}}) elif color == "rainbow": view.setStyle({'cartoon': {'color':'spectrum'}}) elif color == "chain": for n,chain,color in zip(range(chains),alphabet_list,pymol_color_list): view.setStyle({'chain':chain},{'cartoon': {'color':color}}) if show_sidechains: BB = ['C','O','N'] HP = ["ALA","GLY","VAL","ILE","LEU","PHE","MET","PRO","TRP","CYS","TYR"] if color_HP: view.addStyle({'and':[{'resn':HP},{'atom':BB,'invert':True}]}, {'stick':{'colorscheme':"yellowCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':HP,'invert':True},{'atom':BB,'invert':True}]}, {'stick':{'colorscheme':"whiteCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"GLY"},{'atom':'CA'}]}, {'sphere':{'colorscheme':"yellowCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"PRO"},{'atom':['C','O'],'invert':True}]}, {'stick':{'colorscheme':"yellowCarbon",'radius':0.3}}) else: view.addStyle({'and':[{'resn':["GLY","PRO"],'invert':True},{'atom':BB,'invert':True}]}, {'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"GLY"},{'atom':'CA'}]}, {'sphere':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) view.addStyle({'and':[{'resn':"PRO"},{'atom':['C','O'],'invert':True}]}, {'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) if show_mainchains: BB = ['C','O','N','CA'] view.addStyle({'atom':BB},{'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}}) view.zoomTo() return view def plot_plddts(plddts, Ls=None, dpi=100, fig=True): if fig: plt.figure(figsize=(8,5),dpi=100) plt.title("Predicted lDDT per position") for n,plddt in enumerate(plddts): plt.plot(plddt,label=f"rank_{n+1}") if Ls is not None: L_prev = 0 for L_i in Ls[:-1]: L = L_prev + L_i L_prev += L_i plt.plot([L,L],[0,100],color="black") plt.legend() plt.ylim(0,100) plt.ylabel("Predicted lDDT") plt.xlabel("Positions") return plt def plot_paes(paes, Ls=None, dpi=100, fig=True): num_models = len(paes) if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi) for n,pae in enumerate(paes): plt.subplot(1,num_models,n+1) plt.title(f"rank_{n+1}") Ln = pae.shape[0] plt.imshow(pae,cmap="bwr",vmin=0,vmax=30,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() return plt def plot_adjs(adjs, Ls=None, dpi=100, fig=True): num_models = len(adjs) if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi) for n,adj in enumerate(adjs): plt.subplot(1,num_models,n+1) plt.title(f"rank_{n+1}") Ln = adj.shape[0] plt.imshow(adj,cmap="binary",vmin=0,vmax=1,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() return plt def plot_dists(dists, Ls=None, dpi=100, fig=True): num_models = len(dists) if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi) for n,dist in enumerate(dists): plt.subplot(1,num_models,n+1) plt.title(f"rank_{n+1}") Ln = dist.shape[0] plt.imshow(dist,extent=(0, Ln, Ln, 0)) if Ls is not None and len(Ls) > 1: plot_ticks(Ls) plt.colorbar() return plt ########################################################################## ########################################################################## def kabsch(a, b, weights=None, return_v=False): a = np.asarray(a) b = np.asarray(b) if weights is None: weights = np.ones(len(b)) else: weights = np.asarray(weights) B = np.einsum('ji,jk->ik', weights[:, None] * a, b) u, s, vh = np.linalg.svd(B) if np.linalg.det(u @ vh) < 0: u[:, -1] = -u[:, -1] if return_v: return u else: return u @ vh def plot_pseudo_3D(xyz, c=None, ax=None, chainbreak=5, cmap="gist_rainbow", line_w=2.0, cmin=None, cmax=None, zmin=None, zmax=None): def rescale(a,amin=None,amax=None): a = np.copy(a) if amin is None: amin = a.min() if amax is None: amax = a.max() a[a < amin] = amin a[a > amax] = amax return (a - amin)/(amax - amin) # make segments xyz = np.asarray(xyz) seg = np.concatenate([xyz[:-1,None,:],xyz[1:,None,:]],axis=-2) seg_xy = seg[...,:2] seg_z = seg[...,2].mean(-1) ord = seg_z.argsort() # set colors if c is None: c = np.arange(len(seg))[::-1] else: c = (c[1:] + c[:-1])/2 c = rescale(c,cmin,cmax) if isinstance(cmap, str): if cmap == "gist_rainbow": c *= 0.75 colors = matplotlib.cm.get_cmap(cmap)(c) else: colors = cmap(c) if chainbreak is not None: dist = np.linalg.norm(xyz[:-1] - xyz[1:], axis=-1) colors[...,3] = (dist < chainbreak).astype(np.float) # add shade/tint based on z-dimension z = rescale(seg_z,zmin,zmax)[:,None] tint, shade = z/3, (z+2)/3 colors[:,:3] = colors[:,:3] + (1 - colors[:,:3]) * tint colors[:,:3] = colors[:,:3] * shade set_lim = False if ax is None: fig, ax = plt.subplots() fig.set_figwidth(5) fig.set_figheight(5) set_lim = True else: fig = ax.get_figure() if ax.get_xlim() == (0,1): set_lim = True if set_lim: xy_min = xyz[:,:2].min() - line_w xy_max = xyz[:,:2].max() + line_w ax.set_xlim(xy_min,xy_max) ax.set_ylim(xy_min,xy_max) ax.set_aspect('equal') # determine linewidths width = fig.bbox_inches.width * ax.get_position().width linewidths = line_w * 72 * width / np.diff(ax.get_xlim()) lines = mcoll.LineCollection(seg_xy[ord], colors=colors[ord], linewidths=linewidths, path_effects=[matplotlib.patheffects.Stroke(capstyle="round")]) return ax.add_collection(lines) def add_text(text, ax): return plt.text(0.5, 1.01, text, horizontalalignment='center', verticalalignment='bottom', transform=ax.transAxes) def plot_protein(protein=None, pos=None, plddt=None, Ls=None, dpi=100, best_view=True, line_w=2.0): if protein is not None: pos = np.asarray(protein.atom_positions[:,1,:]) plddt = np.asarray(protein.b_factors[:,0]) # get best view if best_view: if plddt is not None: weights = plddt/100 pos = pos - (pos * weights[:,None]).sum(0,keepdims=True) / weights.sum() pos = pos @ kabsch(pos, pos, weights, return_v=True) else: pos = pos - pos.mean(0,keepdims=True) pos = pos @ kabsch(pos, pos, return_v=True) if plddt is not None: fig, (ax1, ax2) = plt.subplots(1,2) fig.set_figwidth(6); fig.set_figheight(3) ax = [ax1, ax2] else: fig, ax1 = plt.subplots(1,1) fig.set_figwidth(3); fig.set_figheight(3) ax = [ax1] fig.set_dpi(dpi) fig.subplots_adjust(top = 0.9, bottom = 0.1, right = 1, left = 0, hspace = 0, wspace = 0) xy_min = pos[...,:2].min() - line_w xy_max = pos[...,:2].max() + line_w for a in ax: a.set_xlim(xy_min, xy_max) a.set_ylim(xy_min, xy_max) a.axis(False) if Ls is None or len(Ls) == 1: # color N->C c = np.arange(len(pos))[::-1] plot_pseudo_3D(pos, line_w=line_w, ax=ax1) add_text("colored by N→C", ax1) else: # color by chain c = np.concatenate([[n]*L for n,L in enumerate(Ls)]) if len(Ls) > 40: plot_pseudo_3D(pos, c=c, line_w=line_w, ax=ax1) else: plot_pseudo_3D(pos, c=c, cmap=pymol_cmap, cmin=0, cmax=39, line_w=line_w, ax=ax1) add_text("colored by chain", ax1) if plddt is not None: # color by pLDDT plot_pseudo_3D(pos, c=plddt, cmin=50, cmax=90, line_w=line_w, ax=ax2) add_text("colored by pLDDT", ax2) return fig
ColabFold-main
colabfold/colabfold.py
import json import logging import warnings from pathlib import Path from typing import Optional from absl import logging as absl_logging from importlib_metadata import distribution from tqdm import TqdmExperimentalWarning NO_GPU_FOUND = """ERROR: Jax could not find GPU. This can be either because your machine doesn't have a GPU or because jax can't find it. You might need to run pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_releases.html # Note: wheels only available on linux. See https://github.com/google/jax/#pip-installation-gpu-cuda for more details. If you're sure you want to run without a GPU, pass `--cpu`""" DEFAULT_API_SERVER = "https://api.colabfold.com" ACCEPT_DEFAULT_TERMS = """WARNING: You are welcome to use the default MSA server, however keep in mind that it's a limited shared resource only capable of processing a few thousand MSAs per day. Please submit jobs only from a single IP address. We reserve the right to limit access to the server case-by-case when usage exceeds fair use. If you require more MSAs, please host your own API and pass it to `--host-url`""" class TqdmHandler(logging.StreamHandler): """https://stackoverflow.com/a/38895482/3549270""" def __init__(self): logging.StreamHandler.__init__(self) def emit(self, record): # We need the native tqdm here from tqdm import tqdm msg = self.format(record) tqdm.write(msg) def setup_logging(log_file: Path): log_file.parent.mkdir(exist_ok=True, parents=True) logging.basicConfig( level=logging.INFO, format="%(asctime)s %(message)s", handlers=[TqdmHandler(), logging.FileHandler(log_file)], ) # otherwise jax will tell us about its search for devices absl_logging.set_verbosity("error") warnings.simplefilter(action="ignore", category=TqdmExperimentalWarning) def safe_filename(file: str) -> str: return "".join([c if c.isalnum() or c in ["_", ".", "-"] else "_" for c in file]) def get_commit() -> Optional[str]: text = distribution("colabfold").read_text("direct_url.json") if not text: return None direct_url = json.loads(text) if "vcs_info" not in direct_url: return None if "commit_id" not in direct_url["vcs_info"]: return None return direct_url["vcs_info"]["commit_id"]
ColabFold-main
colabfold/utils.py
# fmt: off # @formatter:off import os from urllib import request from concurrent import futures import pickle import jax from alphafold.data.tools import jackhmmer from alphafold.data import parsers from alphafold.data import pipeline from alphafold.common import protein from alphafold.model import config from alphafold.model import model from alphafold.model import data from alphafold.model.tf import shape_placeholders import tensorflow as tf from string import ascii_uppercase import numpy as np import matplotlib.pyplot as plt import re import colabfold as cf try: import pairmsa except: pairmsa=None try: from google.colab import files IN_COLAB = True except: IN_COLAB = False import tqdm.notebook TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]' ####################################################################################################################################### # prep_inputs ####################################################################################################################################### def prep_inputs(sequence, jobname="test", homooligomer="1", output_dir=None, clean=False, verbose=True): # process inputs sequence = str(sequence) sequence = re.sub("[^A-Z:/]", "", sequence.upper()) sequence = re.sub(":+",":",sequence) sequence = re.sub("/+","/",sequence) sequence = re.sub("^[:/]+","",sequence) sequence = re.sub("[:/]+$","",sequence) jobname = re.sub(r'\W+', '', jobname) homooligomer = str(homooligomer) homooligomer = re.sub("[:/]+",":",homooligomer) homooligomer = re.sub("^[:/]+","",homooligomer) homooligomer = re.sub("[:/]+$","",homooligomer) if len(homooligomer) == 0: homooligomer = "1" homooligomer = re.sub("[^0-9:]", "", homooligomer) # define inputs I = {"ori_sequence":sequence, "sequence":sequence.replace("/","").replace(":",""), "seqs":sequence.replace("/","").split(":"), "homooligomer":homooligomer, "homooligomers":[int(h) for h in homooligomer.split(":")], "msas":[], "deletion_matrices":[]} # adjust homooligomer option if len(I["seqs"]) != len(I["homooligomers"]): if len(I["homooligomers"]) == 1: I["homooligomers"] = [I["homooligomers"][0]] * len(I["seqs"]) else: if verbose: print("WARNING: Mismatch between number of breaks ':' in 'sequence' and 'homooligomer' definition") while len(I["seqs"]) > len(I["homooligomers"]): I["homooligomers"].append(1) I["homooligomers"] = I["homooligomers"][:len(I["seqs"])] I["homooligomer"] = ":".join([str(h) for h in I["homooligomers"]]) # define full sequence being modelled I["full_sequence"] = ''.join([s*h for s,h in zip(I["seqs"],I["homooligomers"])]) I["lengths"] = [len(seq) for seq in I["seqs"]] # prediction directory if output_dir is None: I["output_dir"] = 'prediction_' + jobname + '_' + cf.get_hash(I["full_sequence"])[:5] else: I["output_dir"] = output_dir os.makedirs(I["output_dir"], exist_ok=True) # delete existing files in working directory if clean: for f in os.listdir(I["output_dir"]): os.remove(os.path.join(I["output_dir"], f)) if verbose and len(I["full_sequence"]) > 1400: print(f"WARNING: For a typical Google-Colab-GPU (16G) session, the max total length is ~1400 residues. You are at {len(I['full_sequence'])}!") print(f"Run Alphafold may crash, unless you trim to the protein(s) to a short length. (See trim options below).") if verbose: print(f"homooligomer: {I['homooligomer']}") print(f"total_length: {len(I['full_sequence'])}") print(f"output_dir: {I['output_dir']}") return I ####################################################################################################################################### # prep_msa ####################################################################################################################################### def run_jackhmmer(sequence, prefix, jackhmmer_binary_path='jackhmmer', verbose=True): fasta_path = f"{prefix}.fasta" with open(fasta_path, 'wt') as f: f.write(f'>query\n{sequence}') pickled_msa_path = f"{prefix}.jackhmmer.pickle" if os.path.isfile(pickled_msa_path): msas_dict = pickle.load(open(pickled_msa_path,"rb")) msas, deletion_matrices, names = (msas_dict[k] for k in ['msas', 'deletion_matrices', 'names']) full_msa = [] for msa in msas: full_msa += msa else: # --- Find the closest source --- test_url_pattern = 'https://storage.googleapis.com/alphafold-colab{:s}/latest/uniref90_2021_03.fasta.1' ex = futures.ThreadPoolExecutor(3) def fetch(source): request.urlretrieve(test_url_pattern.format(source)) return source fs = [ex.submit(fetch, source) for source in ['', '-europe', '-asia']] source = None for f in futures.as_completed(fs): source = f.result() ex.shutdown() break dbs = [] num_jackhmmer_chunks = {'uniref90': 59, 'smallbfd': 17, 'mgnify': 71} total_jackhmmer_chunks = sum(num_jackhmmer_chunks.values()) disable_tqdm = not verbose with tqdm.notebook.tqdm(total=total_jackhmmer_chunks, bar_format=TQDM_BAR_FORMAT, disable=disable_tqdm) as pbar: def jackhmmer_chunk_callback(i): pbar.update(n=1) pbar.set_description('Searching uniref90') jackhmmer_uniref90_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/uniref90_2021_03.fasta', get_tblout=True, num_streamed_chunks=num_jackhmmer_chunks['uniref90'], streaming_callback=jackhmmer_chunk_callback, z_value=135301051) dbs.append(('uniref90', jackhmmer_uniref90_runner.query(fasta_path))) pbar.set_description('Searching smallbfd') jackhmmer_smallbfd_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/bfd-first_non_consensus_sequences.fasta', get_tblout=True, num_streamed_chunks=num_jackhmmer_chunks['smallbfd'], streaming_callback=jackhmmer_chunk_callback, z_value=65984053) dbs.append(('smallbfd', jackhmmer_smallbfd_runner.query(fasta_path))) pbar.set_description('Searching mgnify') jackhmmer_mgnify_runner = jackhmmer.Jackhmmer( binary_path=jackhmmer_binary_path, database_path=f'https://storage.googleapis.com/alphafold-colab{source}/latest/mgy_clusters_2019_05.fasta', get_tblout=True, num_streamed_chunks=num_jackhmmer_chunks['mgnify'], streaming_callback=jackhmmer_chunk_callback, z_value=304820129) dbs.append(('mgnify', jackhmmer_mgnify_runner.query(fasta_path))) # --- Extract the MSAs and visualize --- # Extract the MSAs from the Stockholm files. # NB: deduplication happens later in pipeline.make_msa_features. mgnify_max_hits = 501 msas = [] deletion_matrices = [] names = [] for db_name, db_results in dbs: unsorted_results = [] for i, result in enumerate(db_results): msa, deletion_matrix, target_names = parsers.parse_stockholm(result['sto']) e_values_dict = parsers.parse_e_values_from_tblout(result['tbl']) e_values = [e_values_dict[t.split('/')[0]] for t in target_names] zipped_results = zip(msa, deletion_matrix, target_names, e_values) if i != 0: # Only take query from the first chunk zipped_results = [x for x in zipped_results if x[2] != 'query'] unsorted_results.extend(zipped_results) sorted_by_evalue = sorted(unsorted_results, key=lambda x: x[3]) db_msas, db_deletion_matrices, db_names, _ = zip(*sorted_by_evalue) if db_msas: if db_name == 'mgnify': db_msas = db_msas[:mgnify_max_hits] db_deletion_matrices = db_deletion_matrices[:mgnify_max_hits] db_names = db_names[:mgnify_max_hits] msas.append(db_msas) deletion_matrices.append(db_deletion_matrices) names.append(db_names) msa_size = len(set(db_msas)) print(f'{msa_size} Sequences Found in {db_name}') pickle.dump({"msas":msas, "deletion_matrices":deletion_matrices, "names":names}, open(pickled_msa_path,"wb")) return msas, deletion_matrices, names def prep_msa(I, msa_method="mmseqs2", add_custom_msa=False, msa_format="fas", pair_mode="unpaired", pair_cov=50, pair_qid=20, hhfilter_loc="hhfilter", reformat_loc="reformat.pl", TMP_DIR="tmp", custom_msa=None, precomputed=None, mmseqs_host_url="https://a3m.mmseqs.com", verbose=True): # make temp directory os.makedirs(TMP_DIR, exist_ok=True) # clear previous inputs I["msas"] = [] I["deletion_matrices"] = [] if add_custom_msa: if IN_COLAB: print(f"upload custom msa in '{msa_format}' format") msa_dict = files.upload() lines = msa_dict[list(msa_dict.keys())[0]].decode() input_file = os.path.join(I["output_dir"],f"upload.{msa_format}") with open(input_file,"w") as tmp_upload: tmp_upload.write(lines) else: input_file = custom_msa if input_file is None or not os.path.isfile(input_file): raise ValueError("ERROR: `custom_msa` undefined") else: # convert to a3m output_file = os.path.join(I["output_dir"],f"upload.a3m") os.system(f"{reformat_loc} {msa_format} a3m {input_file} {output_file}") # parse msa, mtx = parsers.parse_a3m(open(output_file,"r").read()) I["msas"].append(msa) I["deletion_matrices"].append(mtx) if len(I["msas"][0][0]) != len(I["sequence"]): raise ValueError("ERROR: the length of msa does not match input sequence") if msa_method == "precomputed": if IN_COLAB: print("upload precomputed pickled msa from previous run") uploaded_dict = files.upload() uploaded_filename = list(uploaded_dict.keys())[0] I.update(pickle.loads(uploaded_dict[uploaded_filename])) elif precomputed is None: raise ValueError("ERROR: `precomputed` undefined") else: I.update(pickle.load(open(precomputed,"rb"))) elif msa_method == "single_sequence": if len(I["msas"]) == 0: I["msas"].append([I["sequence"]]) I["deletion_matrices"].append([[0]*len(I["sequence"])]) else: _blank_seq = ["-" * L for L in I["lengths"]] _blank_mtx = [[0] * L for L in I["lengths"]] def _pad(ns,vals,mode): if mode == "seq": _blank = _blank_seq.copy() if mode == "mtx": _blank = _blank_mtx.copy() if isinstance(ns, list): for n,val in zip(ns,vals): _blank[n] = val else: _blank[ns] = vals if mode == "seq": return "".join(_blank) if mode == "mtx": return sum(_blank,[]) if len(I["seqs"]) == 1 or "unpaired" in pair_mode: # gather msas if msa_method == "mmseqs2": prefix = cf.get_hash(I["sequence"]) prefix = os.path.join(TMP_DIR,prefix) print(f"running mmseqs2") A3M_LINES = cf.run_mmseqs2(I["seqs"], prefix, use_filter=True, host_url=mmseqs_host_url) for n, seq in enumerate(I["seqs"]): # tmp directory prefix = cf.get_hash(seq) prefix = os.path.join(TMP_DIR,prefix) if msa_method == "mmseqs2": # run mmseqs2 a3m_lines = A3M_LINES[n] msa, mtx = parsers.parse_a3m(a3m_lines) msas_, mtxs_ = [msa],[mtx] elif msa_method == "jackhmmer": print(f"running jackhmmer on seq_{n}") # run jackhmmer msas_, mtxs_, names_ = ([sum(x,())] for x in run_jackhmmer(seq, prefix)) # pad sequences for msa_,mtx_ in zip(msas_,mtxs_): msa,mtx = [I["sequence"]],[[0]*len(I["sequence"])] for s,m in zip(msa_,mtx_): msa.append(_pad(n,s,"seq")) mtx.append(_pad(n,m,"mtx")) I["msas"].append(msa) I["deletion_matrices"].append(mtx) # PAIR_MSA if len(I["seqs"]) > 1 and (pair_mode == "paired" or pair_mode == "unpaired+paired"): print("attempting to pair some sequences...") if msa_method == "mmseqs2": prefix = cf.get_hash(I["sequence"]) prefix = os.path.join(TMP_DIR,prefix) print(f"running mmseqs2_noenv_nofilter on all seqs") A3M_LINES = cf.run_mmseqs2(I["seqs"], prefix, use_env=False, use_filter=False, host_url=mmseqs_host_url) _data = [] for a in range(len(I["seqs"])): print(f"prepping seq_{a}") _seq = I["seqs"][a] _prefix = os.path.join(TMP_DIR,cf.get_hash(_seq)) if msa_method == "mmseqs2": a3m_lines = A3M_LINES[a] _msa, _mtx, _lab = pairmsa.parse_a3m(a3m_lines, filter_qid=pair_qid/100, filter_cov=pair_cov/100) elif msa_method == "jackhmmer": _msas, _mtxs, _names = run_jackhmmer(_seq, _prefix) _msa, _mtx, _lab = pairmsa.get_uni_jackhmmer(_msas[0], _mtxs[0], _names[0], filter_qid=pair_qid/100, filter_cov=pair_cov/100) if len(_msa) > 1: _data.append(pairmsa.hash_it(_msa, _lab, _mtx, call_uniprot=False)) else: _data.append(None) Ln = len(I["seqs"]) O = [[None for _ in I["seqs"]] for _ in I["seqs"]] for a in range(Ln): if _data[a] is not None: for b in range(a+1,Ln): if _data[b] is not None: print(f"attempting pairwise stitch for {a} {b}") O[a][b] = pairmsa._stitch(_data[a],_data[b]) _seq_a, _seq_b, _mtx_a, _mtx_b = (*O[a][b]["seq"],*O[a][b]["mtx"]) # filter to remove redundant sequences ok = [] with open(f"{TMP_DIR}/tmp.fas","w") as fas_file: fas_file.writelines([f">{n}\n{a+b}\n" for n,(a,b) in enumerate(zip(_seq_a,_seq_b))]) os.system(f"{hhfilter_loc} -maxseq 1000000 -i {TMP_DIR}/tmp.fas -o {TMP_DIR}/tmp.id90.fas -id 90") for line in open(f"{TMP_DIR}/tmp.id90.fas","r"): if line.startswith(">"): ok.append(int(line[1:])) if verbose: print(f"found {len(_seq_a)} pairs ({len(ok)} after filtering)") if len(_seq_a) > 0: msa,mtx = [I["sequence"]],[[0]*len(I["sequence"])] for s_a,s_b,m_a,m_b in zip(_seq_a, _seq_b, _mtx_a, _mtx_b): msa.append(_pad([a,b],[s_a,s_b],"seq")) mtx.append(_pad([a,b],[m_a,m_b],"mtx")) I["msas"].append(msa) I["deletion_matrices"].append(mtx) # save MSA as pickle pickle.dump({"msas":I["msas"],"deletion_matrices":I["deletion_matrices"]}, open(os.path.join(I["output_dir"],"msa.pickle"),"wb")) return I ####################################################################################################################################### # prep_filter ####################################################################################################################################### def trim_inputs(trim, msas, deletion_matrices, ori_seq=None, inverse=False): ''' input: trim, msas, deletion_matrices, ori_seq output: msas, deletion_matrices, ori_seq ''' if ori_seq is None: ori_seq = msas[0][0] seqs = ori_seq.replace("/","").split(":") L_ini = 0 chain_idx = {} idx_chain = [] for chain,seq in zip(ascii_uppercase,seqs): L = len(seq) chain_idx[chain] = dict(zip(range(L),range(L_ini,L_ini+L))) idx_chain += [f"{chain}{i+1}" for i in range(L)] L_ini += L global_idx = dict(zip(range(L_ini),range(L_ini))) mode = "keeping" if inverse else "trimming" trim_set = [] for idx in trim.split(","): i,j = idx.split("-") if "-" in idx else (idx,"") # set index reference frame trim_idx_i = trim_idx_j = global_idx if i != "" and i[0] in ascii_uppercase: trim_idx_i,i = chain_idx[i[0]], i[1:] if j != "" and j[0] in ascii_uppercase: trim_idx_j,j = chain_idx[j[0]], j[1:] # set which positions to trim if "-" in idx: i = trim_idx_i[int(i)-1] if i != "" else trim_idx_i[0] j = trim_idx_j[int(j)-1] if j != "" else trim_idx_j[len(trim_idx_j) - 1] trim_set += list(range(i,j+1)) print(f"{mode} positions: {idx_chain[i]}-{idx_chain[j]}") else: i = trim_idx_i[int(i)-1] trim_set.append(i) print(f"{mode} position: {idx_chain[i]}") # deduplicate list trim_set = set(trim_set) if inverse: trim_set = set(range(L_ini)) ^ trim_set trim_set = sorted(list(trim_set)) # trim MSA mod_msas, mod_mtxs = [],[] for msa, mtx in zip(msas, deletion_matrices): mod_msa = np.delete([list(s) for s in msa], trim_set, 1) ok = (mod_msa != "-").sum(-1) > 0 mod_msas.append(["".join(s) for s in mod_msa[ok]]) mod_mtx = np.asarray(mtx)[ok] mod_mtxs.append(np.delete(mod_mtx, trim_set, 1).tolist()) # trim original sequence mod_idx = [] mod_chain = [] mod_ori_seq = [] for n,a in enumerate(ori_seq.replace("/","").replace(":","")): if n not in trim_set: mod_ori_seq.append(a) mod_idx.append(n) mod_chain.append(idx_chain[n][0]) if len(mod_idx) > 1: if mod_chain[-1] != mod_chain[-2]: mod_ori_seq[-1] = ":" mod_ori_seq.append(a) elif (mod_idx[-1] - mod_idx[-2]) > 1: mod_ori_seq[-1] = "/" mod_ori_seq.append(a) mod_ori_seq = "".join(mod_ori_seq) chains = sorted([ascii_uppercase.index(a) for a in set(mod_chain)]) return {"msas":mod_msas, "deletion_matrices":mod_mtxs, "ori_sequence":mod_ori_seq, "chains":chains} def cov_qid_filter(msas, deletion_matrices, ori_seq=None, cov=0, qid=0): if ori_seq is None: ori_seq = msas[0][0] seqs = ori_seq.replace("/","").split(":") ref_seq_ = np.array(list("".join(seqs))) new_msas,new_mtxs = [],[] L = np.asarray([len(seq) for seq in seqs]) Ln = np.cumsum(np.append(0,L)) for msa, mtx in zip(msas, deletion_matrices): msa_ = np.asarray([list(seq) for seq in msa]) # coverage (non-gap characters) cov_ = msa_ != "-" # sequence identity to query qid_ = msa_ == ref_seq_ # split by protein (for protein complexes) cov__ = np.stack([cov_[:,Ln[i]:Ln[i+1]].sum(-1) for i in range(len(seqs))],-1) qid__ = np.stack([qid_[:,Ln[i]:Ln[i+1]].sum(-1) for i in range(len(seqs))],-1) not_empty__ = cov__ > 0 ok = [] for n in range(len(msa)): m = not_empty__[n] if m.sum() > 0: q = qid__[n][m].sum() / cov__[n][m].sum() c = cov__[n][m].sum() / L[m].sum() if q > qid and c > cov: ok.append(n) new_msas.append([msa[n] for n in ok]) new_mtxs.append([mtx[n] for n in ok]) return {"msas":new_msas, "deletion_matrices":new_mtxs} def prep_filter(I, trim="", trim_inverse=False, cov=0, qid=0, verbose=True): trim = re.sub("[^0-9A-Z,-]", "", trim.upper()) trim = re.sub(",+",",",trim) trim = re.sub("^[,]+","",trim) trim = re.sub("[,]+$","",trim) if trim != "" or cov > 0 or qid > 0: mod_I = dict(I) if trim != "": mod_I.update(trim_inputs(trim, mod_I["msas"], mod_I["deletion_matrices"], mod_I["ori_sequence"], inverse=trim_inverse)) mod_I["homooligomers"] = [mod_I["homooligomers"][c] for c in mod_I["chains"]] mod_I["sequence"] = mod_I["ori_sequence"].replace("/","").replace(":","") mod_I["seqs"] = mod_I["ori_sequence"].replace("/","").split(":") mod_I["full_sequence"] = "".join([s*h for s,h in zip(mod_I["seqs"], mod_I["homooligomers"])]) new_length = len(mod_I["full_sequence"]) if verbose: print(f"total_length: '{new_length}' after trimming") if cov > 0 or qid > 0: mod_I.update(cov_qid_filter(mod_I["msas"], mod_I["deletion_matrices"], mod_I["ori_sequence"], cov=cov/100, qid=qid/100)) return mod_I else: return I ####################################################################################################################################### # prep features ####################################################################################################################################### def prep_feats(I, clean=False): def _placeholder_template_feats(num_templates_, num_res_): return { 'template_aatype': np.zeros([num_templates_, num_res_, 22], np.float32), 'template_all_atom_masks': np.zeros([num_templates_, num_res_, 37, 3], np.float32), 'template_all_atom_positions': np.zeros([num_templates_, num_res_, 37], np.float32), 'template_domain_names': np.zeros([num_templates_], np.float32), 'template_sum_probs': np.zeros([num_templates_], np.float32), } # delete old files if clean: for f in os.listdir(I["output_dir"]): if "rank_" in f: os.remove(os.path.join(I["output_dir"], f)) if len(I["msas"]) == 0: print("WARNING: no MSA found, switching to 'single_sequence' mode") I["msas"].append([I["sequence"]]) I["deletion_matrices"].append([[0]*len(I["sequence"])]) # homooligomerize lengths = [len(seq) for seq in I["seqs"]] msas_mod, deletion_matrices_mod = cf.homooligomerize_heterooligomer(I["msas"], I["deletion_matrices"], lengths, I["homooligomers"]) # define input features num_res = len(I["full_sequence"]) feature_dict = {} feature_dict.update(pipeline.make_sequence_features(I["full_sequence"], 'test', num_res)) feature_dict.update(pipeline.make_msa_features(msas_mod, deletion_matrices=deletion_matrices_mod)) feature_dict.update(_placeholder_template_feats(0, num_res)) # set chainbreaks Ls = [] for seq,h in zip(I["ori_sequence"].split(":"), I["homooligomers"]): Ls += [len(s) for s in seq.split("/")] * h Ls_plot = [] for seq,h in zip(I["seqs"], I["homooligomers"]): Ls_plot += [len(seq)] * h feature_dict['residue_index'] = cf.chain_break(feature_dict['residue_index'], Ls) feature_dict['Ls'] = Ls_plot feature_dict['output_dir'] = I["output_dir"] return feature_dict def make_fixed_size(feat, runner): '''pad input features''' opt = runner["opt"] cfg = runner["model"].config shape_schema = {k:[None]+v for k,v in dict(cfg.data.eval.feat).items()} pad_size_map = { shape_placeholders.NUM_RES: opt["L"], shape_placeholders.NUM_MSA_SEQ: cfg.data.eval.max_msa_clusters, shape_placeholders.NUM_EXTRA_SEQ: cfg.data.common.max_extra_msa, shape_placeholders.NUM_TEMPLATES: 0, } for k, v in feat.items(): # Don't transfer this to the accelerator. if k == 'extra_cluster_assignment': continue shape = list(v.shape) schema = shape_schema[k] assert len(shape) == len(schema), ( f'Rank mismatch between shape and shape schema for {k}: ' f'{shape} vs {schema}') pad_size = [pad_size_map.get(s2, None) or s1 for (s1, s2) in zip(shape, schema)] padding = [(0, p - tf.shape(v)[i]) for i, p in enumerate(pad_size)] if padding: feat[k] = tf.pad(v, padding, name=f'pad_to_fixed_{k}') feat[k].set_shape(pad_size) return {k:np.asarray(v) for k,v in feat.items()} ####################################################################################################################################### # run alphafold ####################################################################################################################################### def clear_mem(device=None): '''remove all data from device''' backend = jax.lib.xla_bridge.get_backend(device) if hasattr(backend,'live_buffers'): for buf in backend.live_buffers(): buf.delete() OPT_DEFAULT = {"N":None, "L":None, "use_ptm":True, "use_turbo":True, "max_recycles":3, "tol":0, "num_ensemble":1, "max_msa_clusters":512, "max_extra_msa":1024, "is_training":False} def prep_model_runner(opt=None, model_name="model_5", old_runner=None, params_loc='./alphafold/data'): # setup the [opt]ions if opt is None: opt = OPT_DEFAULT.copy() else: for k in OPT_DEFAULT: if k not in opt: opt[k] = OPT_DEFAULT[k] # if old_runner not defined or [opt]ions changed, start new runner if old_runner is None or old_runner["opt"] != opt: clear_mem() name = f"{model_name}_ptm" if opt["use_ptm"] else model_name cfg = config.model_config(name) if opt["use_turbo"]: if opt["N"] is None: cfg.data.eval.max_msa_clusters = opt["max_msa_clusters"] cfg.data.common.max_extra_msa = opt["max_extra_msa"] else: msa_clusters = min(opt["N"], opt["max_msa_clusters"]) cfg.data.eval.max_msa_clusters = msa_clusters cfg.data.common.max_extra_msa = max(min(opt["N"] - msa_clusters, opt["max_extra_msa"]),1) cfg.data.common.num_recycle = opt["max_recycles"] cfg.model.num_recycle = opt["max_recycles"] cfg.model.recycle_tol = opt["tol"] cfg.data.eval.num_ensemble = opt["num_ensemble"] params = data.get_model_haiku_params(name, params_loc) return {"model":model.RunModel(cfg, params, is_training=opt["is_training"]), "opt":opt} else: return old_runner def run_alphafold(feature_dict, opt=None, runner=None, num_models=5, num_samples=1, subsample_msa=True, pad_feats=False, rank_by="pLDDT", show_images=True, params_loc='./alphafold/data', verbose=True): def do_subsample_msa(F, random_seed=0): '''subsample msa to avoid running out of memory''' N = len(F["msa"]) L = len(F["residue_index"]) N_ = int(3E7/L) if N > N_: if verbose: print(f"whhhaaa... too many sequences ({N}) subsampling to {N_}") np.random.seed(random_seed) idx = np.append(0,np.random.permutation(np.arange(1,N)))[:N_] F_ = {} F_["msa"] = F["msa"][idx] F_["deletion_matrix_int"] = F["deletion_matrix_int"][idx] F_["num_alignments"] = np.full_like(F["num_alignments"],N_) for k in F.keys(): if k not in F_: F_[k] = F[k] return F_ else: return F def parse_results(prediction_result, processed_feature_dict, r, t, num_res): '''parse results and convert to numpy arrays''' to_np = lambda a: np.asarray(a) def class_to_np(c): class dict2obj(): def __init__(self, d): for k,v in d.items(): setattr(self, k, to_np(v)) return dict2obj(c.__dict__) dist_bins = jax.numpy.append(0,prediction_result["distogram"]["bin_edges"]) dist_logits = prediction_result["distogram"]["logits"][:num_res,:][:,:num_res] dist_mtx = dist_bins[dist_logits.argmax(-1)] contact_mtx = jax.nn.softmax(dist_logits)[:,:,dist_bins < 8].sum(-1) b_factors = prediction_result['plddt'][:,None] * prediction_result['structure_module']['final_atom_mask'] p = protein.from_prediction(processed_feature_dict, prediction_result, b_factors=b_factors) plddt = prediction_result['plddt'][:num_res] out = {"unrelaxed_protein": class_to_np(p), "plddt": to_np(plddt), "pLDDT": to_np(plddt.mean()), "dists": to_np(dist_mtx), "adj": to_np(contact_mtx), "recycles":to_np(r), "tol":to_np(t)} if "ptm" in prediction_result: out["pae"] = to_np(prediction_result['predicted_aligned_error'][:num_res,:][:,:num_res]) out["pTMscore"] = to_np(prediction_result['ptm']) return out num_res = len(feature_dict["residue_index"]) # if [opt]ions not defined if opt is None: opt = OPT_DEFAULT.copy() opt["N"] = len(feature_dict["msa"]) opt["L"] = num_res else: for k in OPT_DEFAULT.keys(): if k not in opt: opt[k] = OPT_DEFAULT[k] model_names = ['model_1', 'model_2', 'model_3', 'model_4', 'model_5'][:num_models] total = len(model_names) * num_samples outs = {} def do_report(key): o = outs[key] if verbose: line = f"{key} recycles:{o['recycles']} tol:{o['tol']:.2f} pLDDT:{o['pLDDT']:.2f}" if 'pTMscore' in o: line += f" pTMscore:{o['pTMscore']:.2f}" print(line) if show_images: fig = cf.plot_protein(o['unrelaxed_protein'], Ls=feature_dict["Ls"], dpi=100) plt.show() tmp_pdb_path = os.path.join(feature_dict["output_dir"],f'unranked_{key}_unrelaxed.pdb') pdb_lines = protein.to_pdb(o['unrelaxed_protein']) with open(tmp_pdb_path, 'w') as f: f.write(pdb_lines) disable_tqdm = not verbose with tqdm.notebook.tqdm(total=total, bar_format=TQDM_BAR_FORMAT, disable=disable_tqdm) as pbar: if opt["use_turbo"]: if runner is None: runner = prep_model_runner(opt,params_loc=params_loc) # go through each random_seed for seed in range(num_samples): # prep input features feat = do_subsample_msa(feature_dict, random_seed=seed) if subsample_msa else feature_dict processed_feature_dict = runner["model"].process_features(feat, random_seed=seed) if pad_feats: processed_feature_dict = make_fixed_size(processed_feature_dict, runner) # go through each model for num, model_name in enumerate(model_names): name = model_name+"_ptm" if opt["use_ptm"] else model_name key = f"{name}_seed_{seed}" pbar.set_description(f'Running {key}') # replace model parameters params = data.get_model_haiku_params(name, params_loc) for k in runner["model"].params.keys(): runner["model"].params[k] = params[k] # predict prediction_result, (r, t) = runner["model"].predict(processed_feature_dict, random_seed=seed) outs[key] = parse_results(prediction_result, processed_feature_dict, r=r, t=t, num_res=num_res) # cleanup del prediction_result, params, r, t # report do_report(key) pbar.update(n=1) # cleanup del processed_feature_dict if subsample_msa: del feat else: # go through each model for num, model_name in enumerate(model_names): name = model_name+"_ptm" if opt["use_ptm"] else model_name model_runner = prep_model_runner(opt, model_name=model_name, use_turbo=False, params_loc=params_loc)["model"] # go through each random_seed for seed in range(num_samples): key = f"{name}_seed_{seed}" pbar.set_description(f'Running {key}') processed_feature_dict = model_runner.process_features(feature_dict, random_seed=seed) # predict prediction_result, (r, t) = model_runner.predict(processed_feature_dict, random_seed=seed) outs[key] = parse_results(prediction_result, processed_feature_dict, r=r, t=t, num_res=num_res) # cleanup del processed_feature_dict, prediction_result, r, t # report do_report(key) pbar.update(n=1) # cleanup del model_runner # Find the best model according to the mean pLDDT. model_rank = list(outs.keys()) model_rank = [model_rank[i] for i in np.argsort([outs[x][rank_by] for x in model_rank])[::-1]] # Write out the prediction for n,key in enumerate(model_rank): prefix = f"rank_{n+1}_{key}" pred_output_path = os.path.join(feature_dict["output_dir"],f'{prefix}_unrelaxed.pdb') fig = cf.plot_protein(outs[key]["unrelaxed_protein"], Ls=feature_dict["Ls"], dpi=200) plt.savefig(os.path.join(feature_dict["output_dir"],f'{prefix}.png'), bbox_inches = 'tight') plt.close(fig) pdb_lines = protein.to_pdb(outs[key]["unrelaxed_protein"]) with open(pred_output_path, 'w') as f: f.write(pdb_lines) tmp_pdb_path = os.path.join(feature_dict["output_dir"],f'unranked_{key}_unrelaxed.pdb') if os.path.isfile(tmp_pdb_path): os.remove(tmp_pdb_path) ############################################################ if verbose: print(f"model rank based on {rank_by}") for n,key in enumerate(model_rank): print(f"rank_{n+1}_{key} {rank_by}:{outs[key][rank_by]:.2f}") return outs, model_rank
ColabFold-main
colabfold/colabfold_alphafold.py
from typing import Mapping, Any import numpy as np import tensorflow as tf from alphafold.model.features import FeatureDict from alphafold.model.tf import shape_placeholders NUM_RES = shape_placeholders.NUM_RES NUM_MSA_SEQ = shape_placeholders.NUM_MSA_SEQ NUM_EXTRA_SEQ = shape_placeholders.NUM_EXTRA_SEQ NUM_TEMPLATES = shape_placeholders.NUM_TEMPLATES def make_fixed_size( protein: Mapping[str, Any], shape_schema, msa_cluster_size: int, extra_msa_size: int, num_res: int, num_templates: int = 0, ) -> FeatureDict: """Guess at the MSA and sequence dimensions to make fixed size.""" pad_size_map = { NUM_RES: num_res, NUM_MSA_SEQ: msa_cluster_size, NUM_EXTRA_SEQ: extra_msa_size, NUM_TEMPLATES: num_templates, } for k, v in protein.items(): # Don't transfer this to the accelerator. if k == "extra_cluster_assignment": continue shape = list(v.shape) schema = shape_schema[k] assert len(shape) == len(schema), ( f"Rank mismatch between shape and shape schema for {k}: " f"{shape} vs {schema}" ) pad_size = [pad_size_map.get(s2, None) or s1 for (s1, s2) in zip(shape, schema)] padding = [(0, p - tf.shape(v)[i]) for i, p in enumerate(pad_size)] if padding: # TODO: alphafold's typing is wrong protein[k] = tf.pad(v, padding, name=f"pad_to_fixed_{k}") protein[k].set_shape(pad_size) return {k: np.asarray(v) for k, v in protein.items()}
ColabFold-main
colabfold/alphafold/msa.py
from pathlib import Path from functools import wraps, partialmethod from typing import Tuple, List, Optional import haiku from alphafold.model import model, config, data from alphafold.model.modules import AlphaFold from alphafold.model.modules_multimer import AlphaFold as AlphaFoldMultimer def load_models_and_params( num_models: int, use_templates: bool, num_recycle: int = 3, model_order: Optional[List[int]] = None, model_suffix: str = "_ptm", data_dir: Path = Path("."), recompile_all_models: bool = False, stop_at_score: float = 100, rank_by: str = "plddt", return_representations: bool = False, ) -> List[Tuple[str, model.RunModel, haiku.Params]]: """We use only two actual models and swap the parameters to avoid recompiling. Note that models 1 and 2 have a different number of parameters compared to models 3, 4 and 5, so we load model 1 and model 3. """ if return_representations: # this forces the AlphaFold to always return representations AlphaFold.__call__ = partialmethod( AlphaFold.__call__, return_representations=True ) AlphaFoldMultimer.__call__ = partialmethod( AlphaFoldMultimer.__call__, return_representations=True ) if not model_order: model_order = [3, 4, 5, 1, 2] # Use only two model and later swap params to avoid recompiling model_runner_and_params: [Tuple[str, model.RunModel, haiku.Params]] = [] if recompile_all_models: for n, model_number in enumerate(model_order): if n == num_models: break model_name = f"model_{model_number}" params = data.get_model_haiku_params( model_name=model_name + model_suffix, data_dir=str(data_dir) ) model_config = config.model_config(model_name + model_suffix) model_config.model.stop_at_score = float(stop_at_score) model_config.model.stop_at_score_ranker = rank_by if model_suffix == "_ptm": model_config.data.eval.num_ensemble = 1 model_config.data.common.num_recycle = num_recycle model_config.model.num_recycle = num_recycle elif model_suffix.startswith("_multimer"): model_config.model.num_recycle = num_recycle model_config.model.num_ensemble_eval = 1 model_runner_and_params.append( (model_name, model.RunModel(model_config, params), params) ) else: models_need_compilation = [1, 3] if use_templates else [3] model_build_order = [3, 4, 5, 1, 2] model_runner_and_params_build_order: [ Tuple[str, model.RunModel, haiku.Params] ] = [] model_runner = None for model_number in model_build_order: if model_number in models_need_compilation: model_config = config.model_config( "model_" + str(model_number) + model_suffix ) model_config.model.stop_at_score = float(stop_at_score) model_config.model.stop_at_score_ranker = rank_by if model_suffix == "_ptm": model_config.data.eval.num_ensemble = 1 model_config.data.common.num_recycle = num_recycle model_config.model.num_recycle = num_recycle elif model_suffix.startswith("_multimer"): model_config.model.num_ensemble_eval = 1 model_config.model.num_recycle = num_recycle model_runner = model.RunModel( model_config, data.get_model_haiku_params( model_name="model_" + str(model_number) + model_suffix, data_dir=str(data_dir), ), ) model_name = f"model_{model_number}" params = data.get_model_haiku_params( model_name=model_name + model_suffix, data_dir=str(data_dir) ) # keep only parameters of compiled model params_subset = {} for k in model_runner.params.keys(): params_subset[k] = params[k] model_runner_and_params_build_order.append( (model_name, model_runner, params_subset) ) # reorder model for n, model_number in enumerate(model_order): if n == num_models: break model_name = f"model_{model_number}" for m in model_runner_and_params_build_order: if model_name == m[0]: model_runner_and_params.append(m) break return model_runner_and_params
ColabFold-main
colabfold/alphafold/models.py
ColabFold-main
colabfold/alphafold/__init__.py
""" colabdfold_search produces two a3m files with null separated msa in them. We merge the two searches and then split into one a3m file per msa. """ import logging from argparse import ArgumentParser from pathlib import Path from subprocess import check_call from tqdm import tqdm logger = logging.getLogger(__name__) def merge_msa(mmseqs: str = "mmseqs", cwd: Path = Path("..")): check_call( [ mmseqs, "mergedbs", "bfd.mgnify30.metaeuk30.smag30.a3m", "merged.a3m", "uniref.a3m", "bfd.mgnify30.metaeuk30.smag30.a3m", ], cwd=cwd, ) return Path(cwd).joinpath("merged.a3m") def split_msa(merged_msa: Path, output_folder: Path): for msa in tqdm(merged_msa.read_text().split("\0")): if not msa.strip(): continue filename = msa.split("\n", 1)[0][1:].split(" ")[0] + ".a3m" output_folder.joinpath(filename).write_text(msa) def main(): logging.basicConfig(level=logging.INFO, format="%(asctime)s %(message)s") parser = ArgumentParser( description="Take an a3m database from the colabdb search and turn it into a folder of a3m files" ) parser.add_argument( "search_folder", help="The search folder in which you ran colabfold_search, " "which should contain uniref.a3m and bfd.mgnify30.metaeuk30.smag30.a3m", ) parser.add_argument("output_folder", help="Will contain all the a3m files") parser.add_argument("--mmseqs", help="Path to the mmseqs2 binary", default="mmseqs") args = parser.parse_args() output_folder = Path(args.output_folder) output_folder.mkdir(exist_ok=True) logger.info("Merging MSAs") merged_msa = merge_msa(args.mmseqs, Path(args.search_folder)) logger.info("Splitting MSAs") split_msa(merged_msa, output_folder) logger.info("Done") if __name__ == "__main__": main()
ColabFold-main
colabfold/mmseqs/merge_and_split_msas.py
ColabFold-main
colabfold/mmseqs/__init__.py
""" colabdfold_search produces two a3m files with null separated msa in them. We merge the two searches and then split into one a3m file per msa. """ import logging from argparse import ArgumentParser from pathlib import Path from tqdm import tqdm logger = logging.getLogger(__name__) def split_msa(merged_msa: Path, output_folder: Path): for msa in tqdm(merged_msa.read_text().split("\0")): if not msa.strip(): continue filename = msa.split("\n", 1)[0][1:].split(" ")[0].replace("/", "_") + ".a3m" output_folder.joinpath(filename).write_text(msa) def main(): logging.basicConfig(level=logging.INFO, format="%(asctime)s %(message)s") parser = ArgumentParser( description="Take an a3m database from the colabdb search and turn it into a folder of a3m files" ) parser.add_argument( "search_folder", help="The search folder in which you ran colabfold_search with the final.a3m", ) parser.add_argument("output_folder", help="Will contain all the a3m files") parser.add_argument("--mmseqs", help="Path to the mmseqs2 binary", default="mmseqs") args = parser.parse_args() output_folder = Path(args.output_folder) output_folder.mkdir(exist_ok=True) logger.info("Splitting MSAs") split_msa(Path(args.search_folder).joinpath("final.a3m"), output_folder) logger.info("Done") if __name__ == "__main__": main()
ColabFold-main
colabfold/mmseqs/split_msas.py
""" Functionality for running mmseqs locally. Takes in a fasta file, outputs final.a3m Note: Currently needs mmseqs compiled from source """ import logging import math import shutil import subprocess from argparse import ArgumentParser from pathlib import Path from typing import List, Union from colabfold.batch import get_queries, msa_to_str logger = logging.getLogger(__name__) def run_mmseqs(mmseqs: Path, params: List[Union[str, Path]]): params_log = " ".join(str(i) for i in params) logger.info(f"Running {mmseqs} {params_log}") subprocess.check_call([mmseqs] + params) def mmseqs_search_monomer( dbbase: Path, base: Path, uniref_db: Path = Path("uniref30_2103_db"), template_db: Path = Path(""), # Unused by default metagenomic_db: Path = Path("colabfold_envdb_202108_db"), mmseqs: Path = Path("mmseqs"), use_env: bool = True, use_templates: bool = False, filter: bool = True, expand_eval: float = math.inf, align_eval: int = 10, diff: int = 3000, qsc: float = -20.0, max_accept: int = 1000000, s: float = 8, db_load_mode: int = 2, threads: int = 64, ): """Run mmseqs with a local colabfold database set db1: uniprot db (UniRef30) db2: Template (unused by default) db3: metagenomic db (colabfold_envdb_202108 or bfd_mgy_colabfold, the former is preferred) """ if filter: # 0.1 was not used in benchmarks due to POSIX shell bug in line above # EXPAND_EVAL=0.1 align_eval = 10 qsc = 0.8 max_accept = 100000 used_dbs = [uniref_db] if use_templates: used_dbs.append(template_db) if use_env: used_dbs.append(metagenomic_db) for db in used_dbs: if not dbbase.joinpath(f"{db}.dbtype").is_file(): raise FileNotFoundError(f"Database {db} does not exist") if ( not dbbase.joinpath(f"{db}.idx").is_file() and not dbbase.joinpath(f"{db}.idx.index").is_file() ): logger.info("Search does not use index") db_load_mode = 0 dbSuffix1 = "_seq" dbSuffix2 = "_aln" else: dbSuffix1 = ".idx" dbSuffix2 = ".idx" # fmt: off # @formatter:off search_param = ["--num-iterations", "3", "--db-load-mode", str(db_load_mode), "-a", "-s", str(s), "-e", "0.1", "--max-seqs", "10000",] filter_param = ["--filter-msa", str(filter), "--filter-min-enable", "1000", "--diff", str(diff), "--qid", "0.0,0.2,0.4,0.6,0.8,1.0", "--qsc", "0", "--max-seq-id", "0.95",] expand_param = ["--expansion-mode", "0", "-e", str(expand_eval), "--expand-filter-clusters", str(filter), "--max-seq-id", "0.95",] run_mmseqs(mmseqs, ["search", base.joinpath("qdb"), dbbase.joinpath(uniref_db), base.joinpath("res"), base.joinpath("tmp"), "--threads", str(threads)] + search_param) run_mmseqs(mmseqs, ["expandaln", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"), base.joinpath("res"), dbbase.joinpath(f"{uniref_db}{dbSuffix2}"), base.joinpath("res_exp"), "--db-load-mode", str(db_load_mode), "--threads", str(threads)] + expand_param) run_mmseqs(mmseqs, ["mvdb", base.joinpath("tmp/latest/profile_1"), base.joinpath("prof_res")]) run_mmseqs(mmseqs, ["lndb", base.joinpath("qdb_h"), base.joinpath("prof_res_h")]) run_mmseqs(mmseqs, ["align", base.joinpath("prof_res"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"), base.joinpath("res_exp"), base.joinpath("res_exp_realign"), "--db-load-mode", str(db_load_mode), "-e", str(align_eval), "--max-accept", str(max_accept), "--threads", str(threads), "--alt-ali", "10", "-a"]) run_mmseqs(mmseqs, ["filterresult", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"), base.joinpath("res_exp_realign"), base.joinpath("res_exp_realign_filter"), "--db-load-mode", str(db_load_mode), "--qid", "0", "--qsc", str(qsc), "--diff", "0", "--threads", str(threads), "--max-seq-id", "1.0", "--filter-min-enable", "100"]) run_mmseqs(mmseqs, ["result2msa", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"), base.joinpath("res_exp_realign_filter"), base.joinpath("uniref.a3m"), "--msa-format-mode", "6", "--db-load-mode", str(db_load_mode), "--threads", str(threads)] + filter_param) subprocess.run([mmseqs] + ["rmdb", base.joinpath("res_exp_realign")]) subprocess.run([mmseqs] + ["rmdb", base.joinpath("res_exp")]) subprocess.run([mmseqs] + ["rmdb", base.joinpath("res")]) subprocess.run([mmseqs] + ["rmdb", base.joinpath("res_exp_realign_filter")]) if use_templates: run_mmseqs(mmseqs, ["search", base.joinpath("prof_res"), dbbase.joinpath(template_db), base.joinpath("res_pdb"), base.joinpath("tmp"), "--db-load-mode", str(db_load_mode), "--threads", str(threads), "-s", "7.5", "-a", "-e", "0.1"]) run_mmseqs(mmseqs, ["convertalis", base.joinpath("prof_res"), dbbase.joinpath(f"{template_db}{dbSuffix1}"), base.joinpath("res_pdb"), base.joinpath(f"{template_db}.m8"), "--format-output", "query,target,fident,alnlen,mismatch,gapopen,qstart,qend,tstart,tend,evalue,bits,cigar", "--db-load-mode", str(db_load_mode), "--threads", str(threads)]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_pdb")]) if use_env: run_mmseqs(mmseqs, ["search", base.joinpath("prof_res"), dbbase.joinpath(metagenomic_db), base.joinpath("res_env"), base.joinpath("tmp"), "--threads", str(threads)] + search_param) run_mmseqs(mmseqs, ["expandaln", base.joinpath("prof_res"), dbbase.joinpath(f"{metagenomic_db}{dbSuffix1}"), base.joinpath("res_env"), dbbase.joinpath(f"{metagenomic_db}{dbSuffix2}"), base.joinpath("res_env_exp"), "-e", str(expand_eval), "--expansion-mode", "0", "--db-load-mode", str(db_load_mode), "--threads", str(threads)]) run_mmseqs(mmseqs, ["align", base.joinpath("tmp/latest/profile_1"), dbbase.joinpath(f"{metagenomic_db}{dbSuffix1}"), base.joinpath("res_env_exp"), base.joinpath("res_env_exp_realign"), "--db-load-mode", str(db_load_mode), "-e", str(align_eval), "--max-accept", str(max_accept), "--threads", str(threads), "--alt-ali", "10", "-a"]) run_mmseqs(mmseqs, ["filterresult", base.joinpath("qdb"), dbbase.joinpath(f"{metagenomic_db}{dbSuffix1}"), base.joinpath("res_env_exp_realign"), base.joinpath("res_env_exp_realign_filter"), "--db-load-mode", str(db_load_mode), "--qid", "0", "--qsc", str(qsc), "--diff", "0", "--max-seq-id", "1.0", "--threads", str(threads), "--filter-min-enable", "100"]) run_mmseqs(mmseqs, ["result2msa", base.joinpath("qdb"), dbbase.joinpath(f"{metagenomic_db}{dbSuffix1}"), base.joinpath("res_env_exp_realign_filter"), base.joinpath("bfd.mgnify30.metaeuk30.smag30.a3m"), "--msa-format-mode", "6", "--db-load-mode", str(db_load_mode), "--threads", str(threads)] + filter_param) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_env_exp_realign_filter")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_env_exp_realign")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_env_exp")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_env")]) if use_env: run_mmseqs(mmseqs, ["mergedbs", base.joinpath("qdb"), base.joinpath("final.a3m"), base.joinpath("uniref.a3m"), base.joinpath("bfd.mgnify30.metaeuk30.smag30.a3m")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("bfd.mgnify30.metaeuk30.smag30.a3m")]) else: run_mmseqs(mmseqs, ["mvdb", base.joinpath("uniref.a3m"), base.joinpath("final.a3m")]) run_mmseqs(mmseqs, ["unpackdb", base.joinpath("final.a3m"), base.joinpath("."), "--unpack-name-mode", "0", "--unpack-suffix", ".a3m"]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("final.a3m")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("uniref.a3m")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res")]) # @formatter:on # fmt: on for file in base.glob("prof_res*"): file.unlink() shutil.rmtree(base.joinpath("tmp")) def mmseqs_search_pair( dbbase: Path, base: Path, uniref_db: Path = Path("uniref30_2103_db"), mmseqs: Path = Path("mmseqs"), s: float = 8, threads: int = 64, db_load_mode: int = 2, ): if not dbbase.joinpath(f"{uniref_db}.dbtype").is_file(): raise FileNotFoundError(f"Database {uniref_db} does not exist") if ( not dbbase.joinpath(f"{uniref_db}.idx").is_file() and not dbbase.joinpath(f"{uniref_db}.idx.index").is_file() ): logger.info("Search does not use index") db_load_mode = 0 dbSuffix1 = "_seq" dbSuffix2 = "_aln" else: dbSuffix1 = ".idx" dbSuffix2 = ".idx" search_param = [ "--num-iterations", "3", "--db-load-mode", str(db_load_mode), "-a", "-s", str(s), "-e", "0.1", "--max-seqs", "10000", ] expand_param = [ "--expansion-mode", "0", "-e", "inf", "--expand-filter-clusters", "0", "--max-seq-id", "0.95", ] run_mmseqs( mmseqs, [ "search", base.joinpath("qdb"), dbbase.joinpath(uniref_db), base.joinpath("res"), base.joinpath("tmp"), "--threads", str(threads), ] + search_param, ) run_mmseqs( mmseqs, [ "expandaln", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"), base.joinpath("res"), dbbase.joinpath(f"{uniref_db}{dbSuffix2}"), base.joinpath("res_exp"), "--db-load-mode", str(db_load_mode), "--threads", str(threads), ] + expand_param, ) run_mmseqs( mmseqs, [ "align", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"), base.joinpath("res_exp"), base.joinpath("res_exp_realign"), "--db-load-mode", str(db_load_mode), "-e", "0.001", "--max-accept", "1000000", "--threads", str(threads), "-c", "0.5", "--cov-mode", "1", ], ) run_mmseqs( mmseqs, [ "pairaln", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}"), base.joinpath("res_exp_realign"), base.joinpath("res_exp_realign_pair"), "--db-load-mode", str(db_load_mode), "--threads", str(threads), ], ) run_mmseqs( mmseqs, [ "align", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"), base.joinpath("res_exp_realign_pair"), base.joinpath("res_exp_realign_pair_bt"), "--db-load-mode", str(db_load_mode), "-e", "inf", "--threads", str(threads), ], ) run_mmseqs( mmseqs, [ "pairaln", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}"), base.joinpath("res_exp_realign_pair_bt"), base.joinpath("res_final"), "--db-load-mode", str(db_load_mode), "--threads", str(threads), ], ) run_mmseqs( mmseqs, [ "result2msa", base.joinpath("qdb"), dbbase.joinpath(f"{uniref_db}{dbSuffix1}"), base.joinpath("res_final"), base.joinpath("pair.a3m"), "--db-load-mode", str(db_load_mode), "--msa-format-mode", "5", "--threads", str(threads), ], ) run_mmseqs( mmseqs, [ "unpackdb", base.joinpath("pair.a3m"), base.joinpath("."), "--unpack-name-mode", "0", "--unpack-suffix", ".paired.a3m", ], ) run_mmseqs(mmseqs, ["rmdb", base.joinpath("qdb")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("qdb_h")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp_realign")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp_realign_pair")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_exp_realign_pair_bt")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("res_final")]) run_mmseqs(mmseqs, ["rmdb", base.joinpath("pair.a3m")]) shutil.rmtree(base.joinpath("tmp")) def main(): parser = ArgumentParser() parser.add_argument( "query", type=Path, help="fasta files with the queries. Doesn't support complexes yet", ) parser.add_argument( "dbbase", type=Path, help="The path to the database and indices you downloaded and created with setup_databases.sh", ) parser.add_argument( "base", type=Path, help="Directory for the results (and intermediate files)" ) parser.add_argument( "-s", type=int, default=8, help="mmseqs sensitivity. Lowering this will result in a much faster search but possibly sparser msas", ) # dbs are uniref, templates and environmental # We normally don't use templates parser.add_argument( "--db1", type=Path, default=Path("uniref30_2103_db"), help="UniRef database" ) parser.add_argument("--db2", type=Path, default=Path(""), help="Templates database") parser.add_argument( "--db3", type=Path, default=Path("colabfold_envdb_202108_db"), help="Environmental database", ) # poor man's boolean arguments parser.add_argument("--use-env", type=int, default=1, choices=[0, 1]) parser.add_argument("--use-templates", type=int, default=0, choices=[0, 1]) parser.add_argument("--filter", type=int, default=1, choices=[0, 1]) parser.add_argument( "--mmseqs", type=Path, default=Path("mmseqs"), help="Location of the mmseqs binary", ) parser.add_argument("--expand-eval", type=float, default=math.inf) parser.add_argument("--align-eval", type=int, default=10) parser.add_argument("--diff", type=int, default=3000) parser.add_argument("--qsc", type=float, default=-20.0) parser.add_argument("--max-accept", type=int, default=1000000) parser.add_argument("--db-load-mode", type=int, default=2) parser.add_argument("--threads", type=int, default=64) args = parser.parse_args() queries, is_complex = get_queries(args.query, None) queries_unique = [] for job_number, (raw_jobname, query_sequences, a3m_lines) in enumerate(queries): # remove duplicates before searching query_sequences = ( [query_sequences] if isinstance(query_sequences, str) else query_sequences ) query_seqs_unique = [] for x in query_sequences: if x not in query_seqs_unique: query_seqs_unique.append(x) query_seqs_cardinality = [0] * len(query_seqs_unique) for seq in query_sequences: seq_idx = query_seqs_unique.index(seq) query_seqs_cardinality[seq_idx] += 1 queries_unique.append([raw_jobname, query_seqs_unique, query_seqs_cardinality]) args.base.mkdir(exist_ok=True, parents=True) query_file = args.base.joinpath("query.fas") with query_file.open("w") as f: for job_number, ( raw_jobname, query_sequences, query_seqs_cardinality, ) in enumerate(queries_unique): for seq in query_sequences: f.write(f">{raw_jobname}\n{seq}\n") run_mmseqs( args.mmseqs, ["createdb", query_file, args.base.joinpath("qdb"), "--shuffle", "0"], ) with args.base.joinpath("qdb.lookup").open("w") as f: id = 0 file_number = 0 for job_number, ( raw_jobname, query_sequences, query_seqs_cardinality, ) in enumerate(queries_unique): for seq in query_sequences: f.write(f"{id}\t{raw_jobname}\t{file_number}\n") id += 1 file_number += 1 mmseqs_search_monomer( mmseqs=args.mmseqs, dbbase=args.dbbase, base=args.base, uniref_db=args.db1, template_db=args.db2, metagenomic_db=args.db3, use_env=args.use_env, use_templates=args.use_templates, filter=args.filter, expand_eval=args.expand_eval, align_eval=args.align_eval, diff=args.diff, qsc=args.qsc, max_accept=args.max_accept, s=args.s, db_load_mode=args.db_load_mode, threads=args.threads, ) if is_complex == True: mmseqs_search_pair( mmseqs=args.mmseqs, dbbase=args.dbbase, base=args.base, uniref_db=args.db1, s=args.s, db_load_mode=args.db_load_mode, threads=args.threads, ) id = 0 for job_number, ( raw_jobname, query_sequences, query_seqs_cardinality, ) in enumerate(queries_unique): unpaired_msa = [] paired_msa = None if len(query_seqs_cardinality) > 1: paired_msa = [] for seq in query_sequences: with args.base.joinpath(f"{id}.a3m").open("r") as f: unpaired_msa.append(f.read()) args.base.joinpath(f"{id}.a3m").unlink() if len(query_seqs_cardinality) > 1: with args.base.joinpath(f"{id}.paired.a3m").open("r") as f: paired_msa.append(f.read()) args.base.joinpath(f"{id}.paired.a3m").unlink() id += 1 msa = msa_to_str( unpaired_msa, paired_msa, query_sequences, query_seqs_cardinality ) args.base.joinpath(f"{job_number}.a3m").write_text(msa) query_file.unlink() run_mmseqs(args.mmseqs, ["rmdb", args.base.joinpath("qdb")]) run_mmseqs(args.mmseqs, ["rmdb", args.base.joinpath("qdb_h")]) if __name__ == "__main__": main()
ColabFold-main
colabfold/mmseqs/search.py
from setuptools import setup, find_packages setup( name = 'mixture-of-attention', packages = find_packages(exclude=[]), version = '0.0.24', license='MIT', description = 'Mixture of Attention', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/mixture-of-attention', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism', 'mixture-of-experts', 'routed attention' ], install_requires=[ 'colt5-attention>=0.10.14', 'einops>=0.6.1', 'local-attention>=1.8.6', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
mixture-of-attention-main
setup.py
import gzip import random import tqdm import numpy as np import torch from torch.optim import Adam from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset from mixture_of_attention.transformer import Transformer from mixture_of_attention.autoregressive_wrapper import AutoregressiveWrapper # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 1e-4 VALIDATE_EVERY = 100 PRIME_LENGTH = 128 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 512 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return "".join(list(map(decode_token, tokens))) # instantiate transformer model = Transformer( num_tokens = 256, dim = 512, depth = 8, num_experts = 2, seq_len = SEQ_LEN, local_attn_window_size = 64, num_routed_queries = 32, num_routed_key_values = 64, cosine_sim_routing = True, use_triton = True ) model = AutoregressiveWrapper(model).cuda() # prepare enwik8 data with gzip.open("./data/enwik8.gz") as file: data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy() np_train, np_valid = np.split(data, [int(90e6)]) data_train, data_val = torch.from_numpy(np_train), torch.from_numpy(np_valid) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE)) # optimizer optim = Adam(model.parameters(), lr = LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval = 10.0, desc = "training"): model.train() for _ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)) loss.backward(loss / GRADIENT_ACCUMULATE_EVERY) print(f"training loss: {loss.item()}") torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader)) print(f"validation loss: {loss.item()}") if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:PRIME_LENGTH] prime = decode_tokens(inp) print(f"%s \n\n %s", (prime, "*" * 100)) sample = model.generate(inp[None, ...], GENERATE_LENGTH) output_str = decode_tokens(sample[0]) print(output_str, "\n")
mixture-of-attention-main
train.py
import torch from torch import nn import torch.nn.functional as F from einops import rearrange # helper function def exists(val): return val is not None def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner # top k filtering def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, -torch.finfo(logits.dtype).max) probs.scatter_(1, ind, val) return probs class AutoregressiveWrapper(nn.Module): def __init__( self, net, pad_value = 0 ): super().__init__() self.seq_len = net.seq_len self.pad_value = pad_value self.net = net @torch.no_grad() @eval_decorator def generate( self, prompt, seq_len, temperature=1.0, filter_thres=0.9, **kwargs ): b, t, device = *prompt.shape, prompt.device out = prompt for _ in range(seq_len): logits = self.net(out[:, -self.seq_len:], **kwargs)[:, -1] filtered_logits = top_k(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim = -1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim = -1) out = out[:, t:] return out def forward(self, x, **kwargs): x, labels = x[:, :-1], x[:, 1:] logits = self.net(x, **kwargs) logits = rearrange(logits, "b c n -> b n c") return F.cross_entropy(logits, labels)
mixture-of-attention-main
mixture_of_attention/autoregressive_wrapper.py
from mixture_of_attention.mixture_of_attention import ( MixtureOfAttention, MixtureOfAutoregressiveAttention, Attention )
mixture-of-attention-main
mixture_of_attention/__init__.py
from collections import namedtuple from functools import wraps from packaging import version import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange # constants EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, dropout = 0., causal = False, flash = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.causal = causal self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = EfficientAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(False, True, True) def get_mask(self, i, j, device): return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1) def flash_attn(self, q, k, v, mask = None): _, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L if exists(mask) and mask.ndim != 4: mask = rearrange(mask, 'b j -> b 1 1 j') mask = mask.expand(-1, heads, q_len, -1) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0., is_causal = self.causal ) return out def forward(self, q, k, v, mask = None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device = q.shape[-2], q.device scale = q.shape[-1] ** -0.5 if self.flash: return self.flash_attn(q, k, v, mask = mask) # similarity sim = einsum("b h i d, b h j d -> b h i j", q, k) * scale # key padding mask if exists(mask): mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # causal mask if self.causal: causal_mask = self.get_mask(n, device) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum("b h i j, b h j d -> b h i d", attn, v) return out
mixture-of-attention-main
mixture_of_attention/attend.py
import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange from mixture_of_attention.mixture_of_attention import MixtureOfAutoregressiveAttention from mixture_of_attention.rotary_emb import RotaryEmbedding # helper functions def exists(val): return val is not None # classes class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): normed = F.normalize(x, dim = -1) return normed * self.scale * self.gamma def FeedForward(dim, mult = 4): return nn.Sequential( RMSNorm(dim), nn.Linear(dim, dim * mult), nn.GELU(), nn.Linear(dim * mult, dim) ) # main class class Transformer(nn.Module): def __init__( self, *, dim, num_tokens, depth, seq_len, local_attn_window_size, num_routed_queries, num_routed_key_values, num_experts, cosine_sim_routing = True, routed_window_size = None, dim_head = 64, heads = 8, ff_mult = 4, use_triton = True, routed_rotary_emb = True ): super().__init__() self.token_emb = nn.Embedding(num_tokens, dim) self.pos_emb = nn.Embedding(seq_len, dim) self.seq_len = seq_len self.rotary_emb = RotaryEmbedding(dim_head) if routed_rotary_emb else None self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ MixtureOfAutoregressiveAttention( dim = dim, local_attn_window_size = local_attn_window_size, routed_window_size = routed_window_size, num_routed_queries = num_routed_queries, num_routed_key_values = num_routed_key_values, cosine_sim_routing = cosine_sim_routing, num_experts = num_experts, dim_head = dim_head, heads = heads, use_triton = use_triton ), FeedForward(dim = dim, mult = ff_mult) ])) self.to_logits = nn.Sequential( RMSNorm(dim), nn.Linear(dim, num_tokens) ) @property def device(self): return next(self.parameters()).device def forward(self, x): x = self.token_emb(x) x = x + self.pos_emb(torch.arange(x.shape[-2], device = self.device)) rotary_emb = None if exists(self.rotary_emb): rotary_emb = self.rotary_emb(x.shape[1]) for attn, ff in self.layers: x = attn(x, rotary_emb = rotary_emb) + x x = ff(x) + x return self.to_logits(x)
mixture-of-attention-main
mixture_of_attention/transformer.py
import math import torch import torch.nn.functional as F from torch import Tensor, nn, einsum from typing import Tuple, Optional from einops import rearrange, repeat, reduce, pack, unpack from mixture_of_attention.attend import Attend from mixture_of_attention.rotary_emb import apply_rotary_pos_emb from local_attention import LocalMHA from colt5_attention import CoordinateDescentRouter # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def pad_to_multiple(tensor, multiple, dim = -1, value = 0): seq_len = tensor.shape[dim] m = seq_len / multiple if m.is_integer(): return tensor, seq_len remainder = math.ceil(m) * multiple - seq_len pad_offset = (0,) * (-1 - dim) * 2 padded_tensor = F.pad(tensor, (*pad_offset, 0, remainder), value = value) return padded_tensor, seq_len # normalization class RMSNorm(nn.Module): def __init__(self, dim, groups = 1): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(groups, dim, 1)) def forward(self, x): normed = F.normalize(x, dim = -2) return normed * self.scale * self.gamma # attention class Attention(nn.Module): def __init__( self, dim, *, dim_head = 64, dim_context = None, heads = 8, causal = False, groups = 1, # defines number of experts dropout = 0., flash = False, prenorm = False ): super().__init__() self.heads = heads self.groups = groups dim_inner = dim_head * heads dim_context = default(dim_context, dim) self.norm = RMSNorm(dim, groups = groups) if prenorm else nn.Identity() self.context_norm = RMSNorm(dim_context, groups = groups) if prenorm else nn.Identity() self.attend = Attend( dropout = dropout, causal = causal, flash = flash ) # null key / value, to protect against a row that is all masked out self.null_kv = nn.Parameter(torch.randn(2, groups, heads, 1, dim_head)) # taking advantage of convolutional groups to process experts in parallel self.to_q = nn.Conv1d(dim * groups, dim_inner * groups, 1, bias = False, groups = groups) self.to_kv = nn.Conv1d(dim_context * groups, dim_inner * 2 * groups, 1, bias = False, groups = groups) self.to_out = nn.Conv1d(dim_inner * groups, dim * groups, 1, bias = False, groups = groups) def forward( self, x, context = None, mask = None, queries_scale = None, keys_scale = None, values_scale = None, output_scale = None, rotary_emb: Optional[Tuple[Tensor, Tensor]] = None ): """ einops b - batch g - groups n - sequence d - feature dimension """ b, g, h = x.shape[0], self.groups, self.heads one_expert = x.ndim == 3 if one_expert: assert g == 1 x = rearrange(x, 'b n d -> b 1 n d') assert x.ndim == 4 assert x.shape[1] == g # fold the groups into the feature dimension to be processed in one go by grouped convolutions x = rearrange(x, 'b g n d -> b g d n') # handle context for cross attention if exists(context): context_one_expert = context.ndim == 3 if context_one_expert: assert g == 1 context = rearrange(context, 'b n d -> b 1 n d') assert context.ndim == 4 assert context.shape[1] == g context = rearrange(context, 'b g n d -> b g d n') context = default(context, x) # take care of mask if exists(mask): if mask.ndim == 2: mask = repeat(mask, 'b n -> (b g) n', g = g) elif mask.ndim == 3: mask = rearrange(mask, 'b g n -> (b g) n') mask = F.pad(mask, (1, 0), value = True) # prenorm if applicable x = self.norm(x) context = self.context_norm(context) # fold groups into dimension for grouped conv x, context = map(lambda t: rearrange(t, 'b g d n -> b (g d) n'), (x, context)) # queries, keys, values q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = 1)) # split out heads and merge groups into batches q, k, v = map(lambda t: rearrange(t, 'b (g h d) n -> b g h n d', h = h, g = g), (q, k, v)) # rotary embedding if exists(rotary_emb): q_rotary_emb, k_rotary_emb = rotary_emb if q_rotary_emb.ndim > 2: q_rotary_emb = rearrange(q_rotary_emb, 'b g n d -> b g 1 n d') if k_rotary_emb.ndim > 2: k_rotary_emb = rearrange(k_rotary_emb, 'b g n d -> b g 1 n d') q = apply_rotary_pos_emb(q_rotary_emb, q) k = apply_rotary_pos_emb(k_rotary_emb, k) # give gradients to routed keys / values via normalized scores from the router, if passed in if exists(queries_scale): q = q * queries_scale if exists(keys_scale): k = k * keys_scale if exists(values_scale): v = v * values_scale # merge group into batch q, k, v = map(lambda t: rearrange(t, 'b g ... -> (b g) ...'), (q, k, v)) # concat null key / values, to protect against a row having all masked out elements and save a lot of headache nk, nv = map(lambda t: repeat(t, 'g h 1 d -> (b g) h 1 d', b = b), self.null_kv) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # attention out = self.attend(q, k, v, mask = mask) # combine heads out out = rearrange(out, '(b g) h n d -> b (g h d) n', g = g) out = self.to_out(out) out = rearrange(out, 'b (g d) n -> b g n d', g = g) if one_expert: out = rearrange(out, 'b 1 n d -> b n d') if exists(output_scale): out = out * output_scale return out # mixture of attention class MixtureOfAttention(nn.Module): def __init__( self, dim, *, num_routed_queries, num_routed_key_values, dim_context = None, local_attn = False, local_attn_window_size = None, num_experts = 2, dim_head = 64, heads = 8, dropout = 0., use_triton = True, flash_attn = True, prenorm = True, average_routed = False, **kwargs ): super().__init__() dim_context = default(dim_context, dim) self.num_routed_queries = num_routed_queries self.num_routed_key_values = num_routed_key_values self.null_routed_token = nn.Parameter(torch.randn(1, 1, dim)) if not local_attn else None self.average_routed = average_routed self.local_attn = None if local_attn: assert exists(local_attn_window_size) self.local_attn = LocalMHA( dim = dim, dim_head = dim_head, heads = heads, prenorm = prenorm, window_size = local_attn_window_size ) self.query_router = CoordinateDescentRouter( dim, num_routing_tokens = num_experts, use_triton = use_triton, **kwargs ) self.key_value_router = CoordinateDescentRouter( dim_context, num_routing_tokens = num_experts, use_triton = use_triton, **kwargs ) self.attn = Attention( dim = dim, dim_context = dim_context, dim_head = dim_head, heads = heads, groups = num_experts, dropout = dropout, flash = flash_attn, prenorm = prenorm ) @property def device(self): return next(self.parameters()).device def forward( self, x, context = None, mask = None, context_mask = None, num_routed_queries = None, num_routed_key_values = None, rotary_emb = None ): num_routed_queries = default(num_routed_queries, self.num_routed_queries) num_routed_key_values = default(num_routed_key_values, self.num_routed_key_values) is_cross_attn = exists(context) assert not (exists(self.local_attn) and is_cross_attn), 'cannot do cross attention with local attention (only for self attention)' if not is_cross_attn: # self attention if context and context mask not passed in context = x context_mask = mask query_indices, query_scores, queries, query_mask = self.query_router(x, mask = mask, num_tokens = num_routed_queries, keep_one_route_dim = True) query_scores = rearrange(query_scores, 'b g n -> b g n 1') kv_indices, key_value_scores, key_values, key_value_mask = self.key_value_router(context, mask = context_mask, num_tokens = num_routed_key_values, keep_one_route_dim = True) key_value_scores = rearrange(key_value_scores, 'b g n -> b g 1 n 1') # rotary embeddings if exists(rotary_emb): assert not is_cross_attn, 'rotary embedding should not be used for cross attending' q_rotary_emb = rotary_emb[query_indices] if exists(query_indices) else rotary_emb k_rotary_emb = rotary_emb[kv_indices] if exists(kv_indices) else rotary_emb rotary_emb = (q_rotary_emb, k_rotary_emb) # attend attn_out = self.attn( queries, rotary_emb = rotary_emb, context = key_values, mask = key_value_mask, values_scale = key_value_scores, output_scale = query_scores ) local_out = None if exists(self.local_attn): local_out = self.local_attn(x, mask = mask) need_route_queries = exists(query_indices) if not need_route_queries: out = attn_out if exists(local_out): local_out = rearrange(local_out, 'b n d -> b 1 n d') out = torch.cat((local_out, out), dim = 1) out = reduce(attn_out, 'b e n d -> b n d', 'mean') if exists(mask): out = out.masked_fill(~mask[..., None], 0.) return out out = torch.zeros_like(x) counts = torch.zeros(x.shape[:-1], device = x.device) query_indices = rearrange(query_indices, 'b g n -> b (g n)') attn_out = rearrange(attn_out, 'b g n d -> b (g n) d') expanded_query_indices = repeat(query_indices, 'b n -> b n d', d = x.shape[-1]) attn_out_summed = out.scatter_add(1, expanded_query_indices, attn_out) ones = torch.ones(attn_out.shape[:-1], device = self.device) if exists(query_mask): ones = ones * rearrange(query_mask, 'b g n -> b (g n)') counts = counts.scatter_add(1, query_indices, ones) counts = rearrange(counts, '... -> ... 1') has_unrouted = not exists(local_out) if not has_unrouted: counts = counts + 1 attn_out_summed = attn_out_summed + local_out else: not_routed_mask = counts == 0 attn_out_summed = attn_out_summed.masked_fill(not_routed_mask, 0.) out = attn_out_summed # average if needed if self.average_routed: out = out / counts.clamp(min = 1e-5) # for the positions that were not routed, use a learned routing token instead of just 0s if has_unrouted: out = torch.where( not_routed_mask, self.null_routed_token, out, ) if exists(mask): out = out.masked_fill(~mask[..., None], 0.) return out # mixture of autoregressive attention class MixtureOfAutoregressiveAttention(nn.Module): def __init__( self, dim, *, num_routed_queries, num_routed_key_values, local_attn_window_size, routed_window_size = None, num_experts = 2, dim_head = 64, heads = 8, dropout = 0., use_triton = False, flash_attn = True, prenorm = True, average_routed = False, **kwargs ): super().__init__() self.num_routed_queries = num_routed_queries self.num_routed_key_values = num_routed_key_values self.num_experts = num_experts self.null_tokens = nn.Parameter(torch.randn(num_experts, dim)) routed_window_size = default(routed_window_size, local_attn_window_size) self.routed_window_size = routed_window_size self.average_routed = average_routed self.local_attn = LocalMHA( dim = dim, dim_head = dim_head, heads = heads, prenorm = prenorm, causal = True, window_size = local_attn_window_size ) self.query_router = CoordinateDescentRouter( dim, num_routing_tokens = num_experts, use_triton = use_triton, **kwargs ) self.key_value_router = CoordinateDescentRouter( dim, num_routing_tokens = num_experts, use_triton = use_triton, **kwargs ) self.attn = Attention( dim = dim, dim_head = dim_head, heads = heads, groups = num_experts, dropout = dropout, flash = flash_attn, prenorm = prenorm ) @property def device(self): return next(self.parameters()).device def forward( self, x, rotary_emb = None, num_routed_queries = None, num_routed_key_values = None ): b = x.shape[0] w = self.routed_window_size num_windows = math.ceil(x.shape[-2] / w) - 1 # calculate local attention first local_out = self.local_attn(x) # early return local attention results if window size is equal or less than the routed window size if num_windows == 0: return local_out # pad sequence to multiple of routing window size mask = torch.ones(x.shape[:-1], device = self.device, dtype = torch.bool) x, seq_len = pad_to_multiple(x, w, dim = -2) mask, _ = pad_to_multiple(mask, w, dim = -1, value = False) context = x[..., :-w, :] context = repeat(context, 'b n d -> (b nw) n d', nw = num_windows) context_mask = torch.ones((num_windows, num_windows), device = self.device, dtype = torch.bool).tril() context_mask = repeat(context_mask, 'n1 n2 -> (b n1) (n2 w)', b = b, w = w) # fold queries and mask into windows x = rearrange(x, 'b (n w) d -> b n w d', w = w) mask = rearrange(mask, 'b (n w) -> b n w', w = w) # omit the first window of queries, as they have nothing to attend to x = rearrange(x[:, 1:, ...], 'b n w d -> (b n) w d') mask = rearrange(mask[:, 1:, ...], 'b n w -> (b n) w') # get number of queries and key values to route num_routed_queries = default(num_routed_queries, self.num_routed_queries) num_routed_key_values = default(num_routed_key_values, self.num_routed_key_values) # coordinate descent routing query_indices, query_scores, queries, query_mask = self.query_router(x, mask = mask, num_tokens = num_routed_queries, keep_one_route_dim = True) query_scores = rearrange(query_scores, 'b g n -> b g n 1') kv_indices, key_value_scores, key_values, key_value_mask = self.key_value_router(context, mask = context_mask, num_tokens = num_routed_key_values, keep_one_route_dim = True) key_value_scores = rearrange(key_value_scores, 'b g n -> b g 1 n 1') # rotary embeddings if exists(rotary_emb): rotary_emb, _ = pad_to_multiple(rotary_emb, w, dim = -2) windowed_rotary_emb = rearrange(rotary_emb, '(n w) d -> n w d', w = w) windowed_rotary_emb = windowed_rotary_emb[1:] windowed_rotary_emb = repeat(windowed_rotary_emb, 'n w d -> (b n) g w d', b = b, g = query_scores.shape[1]) if exists(query_indices): rotary_query_indices = repeat(query_indices, '... -> ... d', d = windowed_rotary_emb.shape[-1]) q_rotary_emb = windowed_rotary_emb.gather(2, rotary_query_indices) else: q_rotary_emb = windowed_rotary_emb k_rotary_emb = rotary_emb[kv_indices] if exists(kv_indices) else rotary_emb[:context.shape[-2]] rotary_emb = (q_rotary_emb, k_rotary_emb) # attend attn_out = self.attn( queries, rotary_emb = rotary_emb, context = key_values, mask = key_value_mask, values_scale = key_value_scores, output_scale = query_scores ) need_route_queries = exists(query_indices) if not need_route_queries: out = F.pad(attn_out, (0, 0, w, 0), value = 0.) out = out[:, :, :seq_len] if exists(local_out): local_out = rearrange(local_out, 'b n d -> b 1 n d') out = torch.cat((local_out, out), dim = 1) out = reduce(out, 'b e n d -> b n d', 'mean' if self.average_routed else 'sum') return out out = torch.zeros((x.shape[0], self.num_experts, *x.shape[1:]), device = x.device, dtype = x.dtype) counts = torch.zeros((x.shape[0], self.num_experts, x.shape[-2]), device = x.device) ones = torch.ones(attn_out.shape[:-1], device = self.device) if exists(query_mask): ones = ones * query_mask counts = counts.scatter_add(2, query_indices, ones) expanded_query_indices = repeat(query_indices, 'b g n -> b g n d', d = x.shape[-1]) attn_out_summed = out.scatter_add(2, expanded_query_indices, attn_out) # for the positions that were not routed, fill with each individual expert null tokens fill_null_token = counts == 0 & ~rearrange(mask, 'b n -> b 1 n') attn_out_summed = torch.where( rearrange(fill_null_token, '... -> ... 1'), rearrange(self.null_tokens, 'g d -> 1 g 1 d'), attn_out_summed ) # un-window the attention output as well as the routed counts (denominator) attn_out_summed = rearrange(attn_out_summed, '(b n) g w d -> b g (n w) d', b = b) attn_out_summed = F.pad(attn_out_summed, (0, 0, w, 0), value = 0.) attn_out_summed = attn_out_summed[..., :seq_len, :] # sum local attended tokens with routed tokens attn_out_summed = reduce(attn_out_summed, 'b g n d -> b n d', 'sum') attn_out_summed = attn_out_summed + local_out # in experiments, seems to perform better without averaging if not self.average_routed: return attn_out_summed # average tokens return attn_out_summed / (self.num_experts + 1)
mixture-of-attention-main
mixture_of_attention/mixture_of_attention.py
import os import re import sys from setuptools import setup, find_packages install_requires = ['torch>=1.1.0'] PY36 = (3, 6, 0) if sys.version_info < PY36: raise RuntimeError('torch-optimizer requires Python 3.6.0+') def read(f): return open(os.path.join(os.path.dirname(__file__), f)).read().strip() def read_version(): regexp = re.compile(r"^__version__\W*=\W*'([\d.abrc]+)'") init_py = os.path.join( os.path.dirname(__file__), 'torch_optimizer', '__init__.py' ) with open(init_py) as f: for line in f: match = regexp.match(line) if match is not None: return match.group(1) else: raise RuntimeError( 'Cannot find version in torch_optimizer/__init__.py' ) classifiers = [ 'License :: OSI Approved :: Apache Software License', 'Intended Audience :: Developers', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Operating System :: OS Independent', 'Development Status :: 3 - Alpha', ] keywords = [ 'torch-optimizer', 'pytorch', 'accsgd', 'adamod', 'diffgrad', 'lamb', 'radam', 'sgdw', 'yogi', ] setup( name='torch-optimizer', version=read_version(), description=('pytorch-optimizer'), long_description='\n\n'.join((read('README.rst'), read('CHANGES.rst'))), long_description_content_type='text/x-rst', classifiers=classifiers, platforms=['POSIX'], author='Nikolay Novik', author_email='[email protected]', url='https://github.com/jettify/pytorch-optimizer', download_url='https://pypi.org/project/torch-optimizer/', license='Apache 2', packages=find_packages(), install_requires=install_requires, keywords=keywords, zip_safe=True, include_package_data=True, )
pytorch-optimizer-master
setup.py
import functools from copy import deepcopy import torch import torch_optimizer as optim from torch.autograd import Variable from torch.optim.lr_scheduler import ExponentialLR, ReduceLROnPlateau, StepLR from tests.utils import assert_dict_equal def _build_params_dict(weight, bias, **kwargs): return [{'params': [weight]}, dict(params=[bias], **kwargs)] def _build_params_dict_single(weight, bias, **kwargs): return [dict(params=bias, **kwargs)] def make_test_params(optimizer_class): cases = [ (lambda weight, bias: optimizer_class([weight, bias], lr=1e-3),), ( lambda weight, bias: optimizer_class( _build_params_dict(weight, bias, lr=1e-2), lr=1e-3 ), ), ( lambda weight, bias: optimizer_class( _build_params_dict_single(weight, bias, lr=1e-2), lr=1e-3 ), ), ( lambda weight, bias: optimizer_class( _build_params_dict_single(weight, bias, lr=1e-2) ), ), ( lambda weight, bias: optimizer_class([weight, bias], lr=1e-3), [lambda opt: StepLR(opt, gamma=0.9, step_size=10)], ), ( lambda weight, bias: optimizer_class([weight, bias], lr=1e-3), [ lambda opt: StepLR(opt, gamma=0.9, step_size=10), lambda opt: ReduceLROnPlateau(opt), ], ), ( lambda weight, bias: optimizer_class([weight, bias], lr=1e-3), [ lambda opt: StepLR(opt, gamma=0.99, step_size=10), lambda opt: ExponentialLR(opt, gamma=0.99), lambda opt: ReduceLROnPlateau(opt), ], ), ] ids = [f'{optimizer_class.__name__}_{i}' for i in range(len(cases))] return cases, ids def build_lookahead(*a, **kw): base = optim.Yogi(*a, **kw) return optim.Lookahead(base) optimizers = [ optim.AccSGD, optim.AdaBound, optim.AdaMod, optim.DiffGrad, optim.Lamb, optim.NovoGrad, optim.RAdam, optim.SGDW, optim.Yogi, build_lookahead, ] def pytest_generate_tests(metafunc): if 'optimizer_constructor' in metafunc.fixturenames: cases = [] ids = [] for o in optimizers: c, i = make_test_params(o) cases = cases + c ids = ids + i metafunc.parametrize('optimizer_constructor', cases, ids=ids) class TestOptim: def _test_basic_cases_template( self, weight, bias, input, constructor, scheduler_constructors ): weight = Variable(weight, requires_grad=True) bias = Variable(bias, requires_grad=True) input = Variable(input) optimizer = constructor(weight, bias) schedulers = [] for scheduler_constructor in scheduler_constructors: schedulers.append(scheduler_constructor(optimizer)) # to check if the optimizer can be printed as a string optimizer.__repr__() def fn(): optimizer.zero_grad() y = weight.mv(input) if ( y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device() ): y = y.cuda(bias.get_device()) loss = (y + bias).pow(2).sum() loss.backward() return loss initial_value = fn().item() optimizer.step(fn) for _i in range(200): for scheduler in schedulers: if isinstance(scheduler, ReduceLROnPlateau): val_loss = fn() scheduler.step(val_loss) else: scheduler.step() assert fn().item() < initial_value def _test_state_dict(self, weight, bias, input, constructor): weight = Variable(weight, requires_grad=True) bias = Variable(bias, requires_grad=True) input = Variable(input) def fn_base(optimizer, weight, bias): optimizer.zero_grad() i = input_cuda if weight.is_cuda else input loss = (weight.mv(i) + bias).pow(2).sum() loss.backward() return loss optimizer = constructor(weight, bias) fn = functools.partial(fn_base, optimizer, weight, bias) # Prime the optimizer for _i in range(20): optimizer.step(fn) # Clone the weights and construct new optimizer for them weight_c = Variable(weight.data.clone(), requires_grad=True) bias_c = Variable(bias.data.clone(), requires_grad=True) optimizer_c = constructor(weight_c, bias_c) fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c) # Load state dict state_dict = deepcopy(optimizer.state_dict()) state_dict_c = deepcopy(optimizer.state_dict()) optimizer_c.load_state_dict(state_dict_c) precision = 0.0001 # Run both optimizations in parallel for _i in range(20): optimizer.step(fn) optimizer_c.step(fn_c) assert torch.allclose(weight, weight_c, atol=precision) assert torch.allclose(bias, bias_c, atol=precision) # Make sure state dict wasn't modified assert assert_dict_equal(state_dict, state_dict_c) # Check that state dict can be loaded even when we cast parameters # to a different type and move to a different device. if not torch.cuda.is_available(): return input_cuda = Variable(input.data.float().cuda()) weight_cuda = Variable(weight.data.float().cuda(), requires_grad=True) bias_cuda = Variable(bias.data.float().cuda(), requires_grad=True) optimizer_cuda = constructor(weight_cuda, bias_cuda) fn_cuda = functools.partial( fn_base, optimizer_cuda, weight_cuda, bias_cuda ) state_dict = deepcopy(optimizer.state_dict()) state_dict_c = deepcopy(optimizer.state_dict()) optimizer_cuda.load_state_dict(state_dict_c) # Make sure state dict wasn't modified assert assert_dict_equal(state_dict, state_dict_c) for _i in range(20): optimizer.step(fn) optimizer_cuda.step(fn_cuda) assert weight == weight_cuda assert bias == bias_cuda # validate deepcopy() copies all public attributes def getPublicAttr(obj): return set(k for k in obj.__dict__ if not k.startswith('_')) assert getPublicAttr(optimizer) == getPublicAttr(deepcopy(optimizer)) def _test_basic_cases( self, constructor, scheduler_constructors=None, ignore_multidevice=False, ): if scheduler_constructors is None: scheduler_constructors = [] self._test_state_dict( torch.randn(10, 5), torch.randn(10), torch.randn(5), constructor ) self._test_basic_cases_template( torch.randn(10, 5), torch.randn(10), torch.randn(5), constructor, scheduler_constructors, ) # non-contiguous parameters self._test_basic_cases_template( torch.randn(10, 5, 2)[..., 0], torch.randn(10, 2)[..., 0], torch.randn(5), constructor, scheduler_constructors, ) # CUDA if not torch.cuda.is_available(): return self._test_basic_cases_template( torch.randn(10, 5).cuda(), torch.randn(10).cuda(), torch.randn(5).cuda(), constructor, scheduler_constructors, ) # Multi-GPU if not torch.cuda.device_count() > 1 or ignore_multidevice: return self._test_basic_cases_template( torch.randn(10, 5).cuda(0), torch.randn(10).cuda(1), torch.randn(5).cuda(0), constructor, scheduler_constructors, ) def test_optimizer(self, optimizer_constructor): self._test_basic_cases(*optimizer_constructor)
pytorch-optimizer-master
tests/test_optimizer.py
import torch import pytest import torch_optimizer as optim def rosenbrock(tensor): x, y = tensor return (1 - x) ** 2 + 1 * (y - x ** 2) ** 2 def quadratic(tensor): x, y = tensor a = 1.0 b = 1.0 return (x ** 2) / a + (y ** 2) / b def beale(tensor): x, y = tensor f = ( (1.5 - x + x * y) ** 2 + (2.25 - x + x * y ** 2) ** 2 + (2.625 - x + x * y ** 3) ** 2 ) return f cases = [ (rosenbrock, (1.5, 1.5), (1, 1)), (quadratic, (1.5, 1.5), (0, 0)), (beale, (1.5, 1.5), (3, 0.5)), ] def ids(v): n = f'{v[0].__name__} {v[1:]}' return n def build_lookahead(*a, **kw): base = optim.Yogi(*a, **kw) return optim.Lookahead(base) optimizers = [ ( optim.NovoGrad, {'lr': 2.9, 'betas': (0.9, 0.999), 'grad_averaging': True}, 900, ), (optim.RAdam, {'lr': 0.01, 'betas': (0.9, 0.95), 'eps': 1e-3}, 800), (optim.SGDW, {'lr': 0.001, 'momentum': 0.99}, 9000), (optim.DiffGrad, {'lr': 0.5}, 500), (optim.AdaMod, {'lr': 1.0}, 800), (optim.AdaBound, {'lr': 1.0}, 800), (optim.Yogi, {'lr': 1.0}, 500), (optim.AccSGD, {'lr': 0.015}, 800), (build_lookahead, {'lr': 1.0}, 500), ] @pytest.mark.parametrize('case', cases, ids=ids) @pytest.mark.parametrize('optimizer_config', optimizers, ids=ids) def test_benchmark_function(case, optimizer_config): func, initial_state, min_loc = case optimizer_class, config, iterations = optimizer_config x = torch.Tensor(initial_state).requires_grad_(True) x_min = torch.Tensor(min_loc) optimizer = optimizer_class([x], **config) for _ in range(iterations): optimizer.zero_grad() f = func(x) f.backward(retain_graph=True) optimizer.step() assert torch.allclose(x, x_min, atol=0.001) name = optimizer.__class__.__name__ assert name in optimizer.__repr__()
pytorch-optimizer-master
tests/test_basic.py
import torch def assert_dict_equal(a, b, precision=0.000001): if isinstance(a, dict) and isinstance(b, dict): assert set(a.keys()) == set(b.keys()) for k in a.keys(): assert_dict_equal(a[k], b[k], precision) elif isinstance(a, list) and isinstance(b, list): assert len(a) == len(b) for v1, v2 in zip(a, b): assert_dict_equal(v1, v2, precision) elif isinstance(a, torch.Tensor) and isinstance(b, torch.Tensor): assert torch.allclose(a, b, atol=precision) assert a == b
pytorch-optimizer-master
tests/conftest.py
import torch import pytest import torch_optimizer as optim def assert_sparse_not_supported(optimizer_class, err_msg=None): param = torch.randn(1, 1).to_sparse().requires_grad_(True) grad = torch.randn(1, 1).to_sparse() param.grad = grad optimizer = optimizer_class([param]) optimizer.zero_grad() with pytest.raises(RuntimeError) as ctx: optimizer.step() msg = err_msg or 'does not support sparse gradients' assert msg in str(ctx.value) optimizers = [ optim.AdaBound, optim.AdaMod, optim.DiffGrad, optim.Lamb, optim.NovoGrad, optim.RAdam, optim.SGDW, optim.Yogi, ] @pytest.mark.parametrize('optimizer_class', optimizers) def test_sparse_not_supported(optimizer_class): assert_sparse_not_supported(optimizer_class) @pytest.mark.parametrize('optimizer_class', optimizers) def test_learning_rate(optimizer_class): lr = -0.01 with pytest.raises(ValueError) as ctx: optimizer_class(None, lr=-0.01) msg = f'Invalid learning rate: {lr}' assert msg in str(ctx.value) eps_optimizers = [ optim.AdaBound, optim.AdaMod, optim.DiffGrad, optim.Lamb, optim.NovoGrad, optim.RAdam, # optim.SGDW, optim.Yogi, ] @pytest.mark.parametrize('optimizer_class', eps_optimizers) def test_eps_validation(optimizer_class): eps = -0.1 with pytest.raises(ValueError) as ctx: optimizer_class(None, lr=0.1, eps=eps) msg = f'Invalid epsilon value: {eps}' assert msg in str(ctx.value) weight_decay_optimizers = [ optim.AccSGD, optim.AdaBound, optim.AdaMod, optim.DiffGrad, optim.Lamb, optim.RAdam, optim.SGDW, optim.Yogi, ] @pytest.mark.parametrize('optimizer_class', optimizers) def test_weight_decay_validation(optimizer_class): weight_decay = -0.1 with pytest.raises(ValueError) as ctx: optimizer_class(None, lr=0.1, weight_decay=weight_decay) msg = f'Invalid weight_decay value: {weight_decay}' assert msg in str(ctx.value) betas_optimizers = [ optim.AdaBound, optim.AdaMod, optim.DiffGrad, optim.Lamb, optim.NovoGrad, optim.RAdam, optim.Yogi, ] @pytest.mark.parametrize('optimizer_class', eps_optimizers) def test_betas_validation(optimizer_class): betas = (-1, 0.999) with pytest.raises(ValueError) as ctx: optimizer_class(None, lr=0.1, betas=(-1, 0.999)) msg = f'Invalid beta parameter at index 0: {betas[0]}' assert msg in str(ctx.value) betas = (0.9, -0.999) with pytest.raises(ValueError) as ctx: optimizer_class(None, lr=0.1, betas=betas) msg = f'Invalid beta parameter at index 1: {betas[1]}' assert msg in str(ctx.value)
pytorch-optimizer-master
tests/test_param_validation.py
import numpy as np import pytest import torch import torch_optimizer as optim from torch import nn def make_dataset(seed=42): rng = np.random.RandomState(seed) N = 100 D = 2 X = rng.randn(N, D) * 2 # center the first N/2 points at (-2,-2) mid = N // 2 X[: mid, :] = X[: mid, :] - 2 * np.ones((mid, D)) # center the last N/2 points at (2, 2) X[mid:, :] = X[mid:, :] + 2 * np.ones((mid, D)) # labels: first N/2 are 0, last N/2 are 1 Y = np.array([0] * mid + [1] * mid).reshape(100, 1) x = torch.Tensor(X) y = torch.Tensor(Y) return x, y class LogisticRegression(nn.Module): def __init__(self): super(LogisticRegression, self).__init__() self.linear1 = nn.Linear(2, 4) self.linear2 = nn.Linear(4, 1) def forward(self, x): output = torch.relu(self.linear1(x)) output = self.linear2(output) y_pred = torch.sigmoid(output) return y_pred def ids(v): return f'{v[0].__name__} {v[1:]}' def build_lookahead(*a, **kw): base = optim.Yogi(*a, **kw) return optim.Lookahead(base) optimizers = [ (optim.NovoGrad, {'lr': 0.01, 'weight_decay': 1e-3}, 200), (optim.Lamb, {'lr': 0.01, 'weight_decay': 1e-3}, 200), (optim.SGDW, {'lr': 1.0, 'weight_decay': 1e-3}, 200), (optim.DiffGrad, {'lr': 0.5, 'weight_decay': 1e-3}, 200), (optim.AdaMod, {'lr': 2.0, 'weight_decay': 1e-3}, 200), (optim.AdaBound, {'lr': 1.1, 'weight_decay': 1e-3}, 200), (optim.Yogi, {'lr': 0.1, 'weight_decay': 1e-3}, 200), (optim.RAdam, {'lr': 1.0, 'weight_decay': 1e-3}, 200), (optim.AccSGD, {'lr': 1.0, 'weight_decay': 1e-3}, 200), (build_lookahead, {'lr': 0.1, 'weight_decay': 1e-3}, 200), ] @pytest.mark.parametrize('optimizer_config', optimizers, ids=ids) def test_basic_nn_modeloptimizer_config(optimizer_config): x_data, y_data = make_dataset() model = LogisticRegression() loss_fn = nn.BCELoss() optimizer_class, config, iterations = optimizer_config optimizer = optimizer_class(model.parameters(), **config) init_loss = None for _ in range(iterations): y_pred = model(x_data) loss = loss_fn(y_pred, y_data) if init_loss is None: init_loss = loss optimizer.zero_grad() loss.backward() optimizer.step() assert init_loss.item() > 2.0 * loss.item()
pytorch-optimizer-master
tests/test_optimizer_with_nn.py
import torch def assert_dict_equal(a, b, precision=0.000001): if isinstance(a, dict) and isinstance(b, dict): assert set(a.keys()) == set(b.keys()) for k in a.keys(): assert_dict_equal(a[k], b[k], precision) elif isinstance(a, list) and isinstance(b, list): assert len(a) == len(b) for v1, v2 in zip(a, b): assert_dict_equal(v1, v2, precision) elif isinstance(a, torch.Tensor) and isinstance(b, torch.Tensor): assert torch.allclose(a, b, atol=precision) else: assert a == b return True
pytorch-optimizer-master
tests/utils.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'pytorch-optimizer' copyright = '2020, Nikolai Novik' author = 'Nikolai Novik' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. # Sphinx extension modules extensions = [ "sphinx.ext.autodoc", "sphinx.ext.napoleon", "sphinx_autodoc_typehints", "sphinx.ext.doctest", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.ifconfig", "sphinx.ext.viewcode", "sphinx.ext.intersphinx", ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # Configuration for intersphinx: refer to the Python standard library and PyTorch intersphinx_mapping = { "python": ("https://docs.python.org/3", None), "pytorch": ("https://pytorch.org/docs/stable", None), } # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] desc = 'collection of optimizers for PyTorch' html_theme_options = { 'description': desc, 'github_user': 'jettify', 'github_repo': 'pytorch-optimizer', 'github_button': True, 'github_type': 'star', 'github_banner': True, }
pytorch-optimizer-master
docs/conf.py
import math import numpy as np import torch_optimizer as optim import torch from hyperopt import fmin, tpe, hp import matplotlib.pyplot as plt plt.style.use('seaborn-white') def rosenbrock(tensor): # https://en.wikipedia.org/wiki/Test_functions_for_optimization x, y = tensor return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2 def rastrigin(tensor, lib=torch): # https://en.wikipedia.org/wiki/Test_functions_for_optimization x, y = tensor A = 10 f = ( A * 2 + (x ** 2 - A * lib.cos(x * math.pi * 2)) + (y ** 2 - A * lib.cos(y * math.pi * 2)) ) return f def execute_steps( func, initial_state, optimizer_class, optimizer_config, num_iter=500 ): x = torch.Tensor(initial_state).requires_grad_(True) optimizer = optimizer_class([x], **optimizer_config) steps = [] steps = np.zeros((2, num_iter + 1)) steps[:, 0] = np.array(initial_state) for i in range(1, num_iter + 1): optimizer.zero_grad() f = func(x) f.backward(retain_graph=True) optimizer.step() steps[:, i] = x.detach().numpy() return steps def objective_rastrigin(params): lr = params['lr'] optimizer_class = params['optimizer_class'] initial_state = (-2.0, 3.5) minimum = (0, 0) optimizer_config = dict(lr=lr) num_iter = 100 steps = execute_steps( rastrigin, initial_state, optimizer_class, optimizer_config, num_iter ) return (steps[0][-1] - minimum[0]) ** 2 + (steps[1][-1] - minimum[1]) ** 2 def objective_rosenbrok(params): lr = params['lr'] optimizer_class = params['optimizer_class'] minimum = (1.0, 1.0) initial_state = (-2.0, 2.0) optimizer_config = dict(lr=lr) num_iter = 100 steps = execute_steps( rosenbrock, initial_state, optimizer_class, optimizer_config, num_iter ) return (steps[0][-1] - minimum[0]) ** 2 + (steps[1][-1] - minimum[1]) ** 2 def plot_rastrigin(grad_iter, optimizer_name, lr): x = np.linspace(-4.5, 4.5, 250) y = np.linspace(-4.5, 4.5, 250) minimum = (0, 0) X, Y = np.meshgrid(x, y) Z = rastrigin([X, Y], lib=np) iter_x, iter_y = grad_iter[0, :], grad_iter[1, :] fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(1, 1, 1) ax.contour(X, Y, Z, 20, cmap='jet') ax.plot(iter_x, iter_y, color='r', marker='x') ax.set_title( f'Rastrigin func: {optimizer_name} with ' f'{len(iter_x)} iterations, lr={lr:.6}' ) plt.plot(*minimum, 'gD') plt.plot(iter_x[-1], iter_y[-1], 'rD') plt.savefig(f'rastrigin_{optimizer_name}.png') def plot_rosenbrok(grad_iter, optimizer_name, lr): x = np.linspace(-2, 2, 250) y = np.linspace(-1, 3, 250) minimum = (1.0, 1.0) X, Y = np.meshgrid(x, y) Z = rosenbrock([X, Y]) iter_x, iter_y = grad_iter[0, :], grad_iter[1, :] fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(1, 1, 1) ax.contour(X, Y, Z, 90, cmap='jet') ax.plot(iter_x, iter_y, color='r', marker='x') ax.set_title( f'Rosenbrock func: {optimizer_name} with {len(iter_x)} ' f'iterations, lr={lr:.6}' ) plt.plot(*minimum, 'gD') plt.plot(iter_x[-1], iter_y[-1], 'rD') plt.savefig(f'rosenbrock_{optimizer_name}.png') def execute_experiments( optimizers, objective, func, plot_func, initial_state, seed=1 ): seed = seed for item in optimizers: optimizer_class, lr_low, lr_hi = item space = { 'optimizer_class': hp.choice('optimizer_class', [optimizer_class]), 'lr': hp.loguniform('lr', lr_low, lr_hi), } best = fmin( fn=objective, space=space, algo=tpe.suggest, max_evals=200, rstate=np.random.RandomState(seed), ) print(best['lr'], optimizer_class) steps = execute_steps( func, initial_state, optimizer_class, {'lr': best['lr']}, num_iter=500, ) plot_func(steps, optimizer_class.__name__, best['lr']) if __name__ == '__main__': # python examples/viz_optimizers.py # Each optimizer has tweaked search space to produce better plots and # help to converge on better lr faster. optimizers = [ (optim.AccSGD, -8, -0.1), (optim.AdaBound, -8, 0.7), (optim.AdaMod, -8, 1.2), (optim.DiffGrad, -8, 0.7), (optim.Lamb, -8, 0.7), (optim.NovoGrad, -6, -2.0), (optim.RAdam, -8, 0.7), (optim.SGDW, -8, -0.9), (optim.Yogi, -8, 0.1), ] execute_experiments( optimizers, objective_rastrigin, rastrigin, plot_rastrigin, (-2.0, 3.5) ) optimizers = [ (optim.AccSGD, -8, -0.1), (optim.AdaBound, -8, 0.7), (optim.AdaMod, -4, 1.0), (optim.DiffGrad, -8, 0.2), (optim.Lamb, -8, -0.5), (optim.NovoGrad, -8, -1.0), (optim.RAdam, -8, 0.7), (optim.SGDW, -8, 0.7), (optim.Yogi, -8, 0.1), ] execute_experiments( optimizers, objective_rosenbrok, rosenbrock, plot_rosenbrok, (-2.0, 2.0), )
pytorch-optimizer-master
examples/viz_optimizers.py
import torch import torch.nn as nn import torch.nn.functional as F import torch_optimizer as optim from torchvision import datasets, transforms, utils from torch.optim.lr_scheduler import StepLR from torch.utils.tensorboard import SummaryWriter from dataclasses import dataclass class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(conf, model, device, train_loader, optimizer, epoch, writer): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % conf.log_interval == 0: loss = loss.item() idx = batch_idx + epoch * (len(train_loader)) writer.add_scalar('Loss/train', loss, idx) print( 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100.0 * batch_idx / len(train_loader), loss, ) ) def test(conf, model, device, test_loader, epoch, writer): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) # sum up batch loss test_loss += F.nll_loss(output, target, reduction='sum').item() # get the index of the max log-probability pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) fmt = '\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n' print( fmt.format( test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset), ) ) writer.add_scalar('Accuracy', correct, epoch) writer.add_scalar('Loss/test', test_loss, epoch) def prepare_loaders(conf, use_cuda=False): kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST( '../data', train=True, download=True, transform=transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)), ] ), ), batch_size=conf.batch_size, shuffle=True, **kwargs, ) test_loader = torch.utils.data.DataLoader( datasets.MNIST( '../data', train=False, transform=transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)), ] ), ), batch_size=conf.test_batch_size, shuffle=True, **kwargs, ) return train_loader, test_loader @dataclass class Config: batch_size: int = 64 test_batch_size: int = 1000 epochs: int = 15 lr: float = 0.01 gamma: float = 0.7 no_cuda: bool = True seed: int = 42 log_interval: int = 10 def main(): conf = Config() log_dir = 'runs/mnist_custom_optim' print('Tensorboard: tensorboard --logdir={}'.format(log_dir)) with SummaryWriter(log_dir) as writer: use_cuda = not conf.no_cuda and torch.cuda.is_available() torch.manual_seed(conf.seed) device = torch.device('cuda' if use_cuda else 'cpu') train_loader, test_loader = prepare_loaders(conf, use_cuda) model = Net().to(device) # create grid of images and write to tensorboard images, labels = next(iter(train_loader)) img_grid = utils.make_grid(images) writer.add_image('mnist_images', img_grid) # visualize NN computation graph writer.add_graph(model, images) # custom optimizer from torch_optimizer package # main_optimizer = optim.DiffGrad(model.parameters(), lr=conf.lr) # optimizer = optim.lookahead.Lookahead(main_optimizer) optimizer = optim.Novograd(model.parameters(), lr=conf.lr) scheduler = StepLR(optimizer, step_size=1, gamma=conf.gamma) for epoch in range(1, conf.epochs + 1): train(conf, model, device, train_loader, optimizer, epoch, writer) test(conf, model, device, test_loader, epoch, writer) scheduler.step() for name, param in model.named_parameters(): writer.add_histogram(name, param, epoch) writer.add_histogram(f'{name}.grad', param.grad, epoch) if __name__ == '__main__': main()
pytorch-optimizer-master
examples/mnist.py
import torch from torch.optim.optimizer import Optimizer from .types import OptFloat, OptLossClosure, Params, State __all__ = ('SGDW',) class SGDW(Optimizer): r"""Implements SGDW algorithm. It has been proposed in `Decoupled Weight Decay Regularization`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) momentum: momentum factor (default: 0) weight_decay: weight decay (L2 penalty) (default: 0) dampening: dampening for momentum (default: 0) nesterov: enables Nesterov momentum (default: False) Example: >>> import torch_optimizer as optim >>> optimizer = optim.SGDW(model.parameters(), lr=0.1, momentum=0.9) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1711.05101 """ def __init__( self, params: Params, lr: float = 1e-3, momentum: float = 0.0, dampening: float = 0.0, weight_decay: float = 0.0, nesterov: bool = False, ) -> None: if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if momentum < 0.0: raise ValueError(f'Invalid momentum value: {momentum}') if weight_decay < 0.0: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, ) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError( 'Nesterov momentum requires a momentum and zero dampening' ) super(SGDW, self).__init__(params, defaults) def __setstate__(self, state: State) -> None: super(SGDW, self).__setstate__(state) for group in self.param_groups: group.setdefault('nesterov', False) def step(self, closure: OptLossClosure = None) -> OptFloat: """Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue d_p = p.grad.data if p.grad.is_sparse: msg = ( 'SGDW does not support sparse gradients, ' 'please consider SparseAdam instead' ) raise RuntimeError(msg) if momentum != 0: param_state = self.state[p] if 'momentum_buffer' not in param_state: buf = param_state['momentum_buffer'] = torch.clone( d_p ).detach() else: buf = param_state['momentum_buffer'] buf.mul_(momentum).add_(1 - dampening, d_p) if nesterov: d_p = d_p.add(momentum, buf) else: d_p = buf # Apply momentum p.data.add_(-group['lr'], d_p) # Apply weight decay if weight_decay != 0: p.data.add_(-group['lr'], weight_decay) return loss
pytorch-optimizer-master
torch_optimizer/sgdw.py
import torch from torch.optim.optimizer import Optimizer from .types import Betas2, OptFloat, OptLossClosure, Params __all__ = ('Lamb',) class Lamb(Optimizer): r"""Implements Lamb algorithm. It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) betas: coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) adam: always use trust ratio = 1, which turns this into Adam. Useful for comparison purposes. Example: >>> import torch_optimizer as optim >>> optimizer = optim.Lamb(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1904.00962 """ def __init__( self, params: Params, lr: float = 1e-3, betas: Betas2 = (0.9, 0.999), eps: float = 1e-6, weight_decay: float = 0, adam: bool = False, ) -> None: if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if not 0.0 <= eps: raise ValueError(f'Invalid epsilon value: {eps}') if not 0.0 <= betas[0] < 1.0: raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') if not 0.0 <= betas[1] < 1.0: raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') if not 0.0 <= weight_decay: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self.adam = adam super(Lamb, self).__init__(params, defaults) def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: msg = ( 'Lamb does not support sparse gradients, ' 'please consider SparseAdam instead' ) raise RuntimeError(msg) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient # m_t exp_avg.mul_(beta1).add_(1 - beta1, grad) # v_t exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) # Paper v3 does not use debiasing. # bias_correction1 = 1 - beta1 ** state['step'] # bias_correction2 = 1 - beta2 ** state['step'] # Apply bias to lr to avoid broadcast. step_size = group[ 'lr' ] # * math.sqrt(bias_correction2) / bias_correction1 weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10) adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps']) if group['weight_decay'] != 0: adam_step.add_(group['weight_decay'], p.data) adam_norm = adam_step.pow(2).sum().sqrt() if weight_norm == 0 or adam_norm == 0: trust_ratio = 1 else: trust_ratio = weight_norm / adam_norm state['weight_norm'] = weight_norm state['adam_norm'] = adam_norm state['trust_ratio'] = trust_ratio if self.adam: trust_ratio = 1 p.data.add_(-step_size * trust_ratio, adam_step) return loss
pytorch-optimizer-master
torch_optimizer/lamb.py
from .accsgd import AccSGD from .adabound import AdaBound from .adamod import AdaMod from .diffgrad import DiffGrad from .lamb import Lamb from .lookahead import Lookahead from .novograd import NovoGrad from .radam import RAdam from .sgdw import SGDW from .yogi import Yogi __all__ = ( 'AccSGD', 'AdaBound', 'AdaMod', 'DiffGrad', 'Lamb', 'Lookahead', 'NovoGrad', 'RAdam', 'SGDW', 'Yogi', ) __version__ = '0.0.1a7'
pytorch-optimizer-master
torch_optimizer/__init__.py
from typing import Iterable, Union, Callable, Dict, Optional, Tuple, Any from torch import Tensor Params = Union[Iterable[Tensor], Iterable[dict]] LossClosure = Callable[[], float] OptLossClosure = Optional[LossClosure] Betas2 = Tuple[float, float] State = Dict[str, Any] OptFloat = Optional[float]
pytorch-optimizer-master
torch_optimizer/types.py
import math import torch from torch.optim.optimizer import Optimizer from .types import Betas2, OptFloat, OptLossClosure, Params __all__ = ('AdaMod',) class AdaMod(Optimizer): r"""Implements AccSGD algorithm. It has been proposed in `Adaptive and Momental Bounds for Adaptive Learning Rate Methods`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) betas: coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) beta3: smoothing coefficient for adaptive learning rates (default: 0.9999) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) Example: >>> import torch_optimizer as optim >>> optimizer = optim.AdaMod(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1910.12249 """ def __init__( self, params: Params, lr: float = 1e-3, betas: Betas2 = (0.9, 0.999), beta3: float = 0.999, eps: float = 1e-8, weight_decay: float = 0, ) -> None: if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if not 0.0 <= eps: raise ValueError(f'Invalid epsilon value: {eps}') if not 0.0 <= betas[0] < 1.0: raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') if not 0.0 <= betas[1] < 1.0: raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') if not 0.0 <= beta3 < 1.0: raise ValueError(f'Invalid beta3 parameter: {beta3}') if not 0.0 <= weight_decay: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = dict( lr=lr, betas=betas, beta3=beta3, eps=eps, weight_decay=weight_decay ) super(AdaMod, self).__init__(params, defaults) def step(self, closure: OptLossClosure = None) -> OptFloat: """Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: msg = 'AdaMod does not support sparse gradients' raise RuntimeError(msg) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) # Exponential moving average of actual learning rates state['exp_avg_lr'] = torch.zeros_like(p) exp_avg, exp_avg_sq, exp_avg_lr = ( state['exp_avg'], state['exp_avg_sq'], state['exp_avg_lr'], ) beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = ( group['lr'] * math.sqrt(bias_correction2) / bias_correction1 ) if group['weight_decay'] != 0: p.data.add_(-group['weight_decay'] * group['lr'], p.data) # Applies momental bounds on actual learning rates step_size = torch.full_like(denom, step_size) step_size.div_(denom) exp_avg_lr.mul_(group['beta3']).add_( 1 - group['beta3'], step_size ) step_size = torch.min(step_size, exp_avg_lr) step_size.mul_(exp_avg) p.data.add_(-step_size) return loss
pytorch-optimizer-master
torch_optimizer/adamod.py
import torch from torch.optim.optimizer import Optimizer from .types import Betas2, OptFloat, OptLossClosure, Params __all__ = ('NovoGrad',) class NovoGrad(Optimizer): r"""Implements Novograd optimization algorithm. It has been proposed in `Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) betas: coefficients used for computing running averages of gradient and its square (default: (0.95, 0)) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) grad_averaging: gradient averaging (default: False) amsgrad: whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) Example: >>> import torch_optimizer as optim >>> optimizer = optim.Yogi(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> scheduler = StepLR(optimizer, step_size=1, gamma=0.7) >>> optimizer.step() >>> scheduler.step() __ https://arxiv.org/abs/1905.11286 """ def __init__( self, params: Params, lr: float = 1e-3, betas: Betas2 = (0.95, 0), eps: float = 1e-8, weight_decay: float = 0, grad_averaging: bool = False, amsgrad: bool = False, ): if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if not 0.0 <= eps: raise ValueError(f'Invalid epsilon value: {eps}') if not 0.0 <= betas[0] < 1.0: raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') if not 0.0 <= betas[1] < 1.0: raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') if not 0.0 <= weight_decay: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, grad_averaging=grad_averaging, amsgrad=amsgrad, ) super(NovoGrad, self).__init__(params, defaults) def __setstate__(self, state: dict) -> None: super(NovoGrad, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False) def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: msg = ( 'NovoGrad does not support sparse gradients, ' 'please consider SparseAdam instead' ) raise RuntimeError(msg) amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros([]).to( state['exp_avg'].device ) if amsgrad: # Maintains max of all exp. moving avg. of sq. # grad. values state['max_exp_avg_sq'] = torch.zeros([]).to( state['exp_avg'].device ) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 norm = torch.sum(torch.pow(grad, 2)) if exp_avg_sq == 0: exp_avg_sq.copy_(norm) else: exp_avg_sq.mul_(beta2).add_(1 - beta2, norm) if amsgrad: # Maintains the maximum of all 2nd moment running avg. # till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) grad.div_(denom) if group['weight_decay'] != 0: grad.add_(group['weight_decay'], p.data) if group['grad_averaging']: grad.mul_(1 - beta1) exp_avg.mul_(beta1).add_(grad) p.data.add_(-group['lr'], exp_avg) return loss
pytorch-optimizer-master
torch_optimizer/novograd.py
import math import torch from torch.optim.optimizer import Optimizer from .types import Betas2, OptFloat, OptLossClosure, Params __all__ = ('DiffGrad',) class DiffGrad(Optimizer): r"""Implements DiffGrad algorithm. It has been proposed in `DiffGrad: An Optimization Method for Convolutional Neural Networks`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) betas: coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) Example: >>> import torch_optimizer as optim >>> optimizer = optim.DiffGrad(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1909.11015 """ def __init__( self, params: Params, lr: float = 1e-3, betas: Betas2 = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, ) -> None: if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if not 0.0 <= eps: raise ValueError(f'Invalid epsilon value: {eps}') if not 0.0 <= betas[0] < 1.0: raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') if not 0.0 <= betas[1] < 1.0: raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') if not 0.0 <= weight_decay: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(DiffGrad, self).__init__(params, defaults) def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: beta1, beta2 = group['betas'] for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: msg = ( 'DiffGrad does not support sparse gradients, ' 'please consider SparseAdam instead' ) raise RuntimeError(msg) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) # Previous gradient state['previous_grad'] = torch.zeros_like(p) exp_avg, exp_avg_sq, previous_grad = ( state['exp_avg'], state['exp_avg_sq'], state['previous_grad'], ) state['step'] += 1 if group['weight_decay'] != 0: grad.add_(group['weight_decay'], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] # compute diffgrad coefficient (dfc) diff = torch.abs(previous_grad - grad) dfc = torch.div(1.0, (1.0 + torch.exp(-diff))) state['previous_grad'] = grad.clone() # update momentum with dfc exp_avg1 = exp_avg * dfc step_size = ( group['lr'] * math.sqrt(bias_correction2) / bias_correction1 ) p.data.addcdiv_(-step_size, exp_avg1, denom) return loss
pytorch-optimizer-master
torch_optimizer/diffgrad.py
import math import torch from torch.optim.optimizer import Optimizer from .types import Betas2, OptFloat, OptLossClosure, Params __all__ = ('Yogi',) class Yogi(Optimizer): r"""Implements Yogi optimization algorithm. It has been proposed in `Adaptive Methods for Nonconvex Optimization`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) betas: coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) Example: >>> import torch_optimizer as optim >>> optimizer = optim.Yogi(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization # noqa """ def __init__( self, params: Params, lr: float = 1e-3, betas: Betas2 = (0.9, 0.999), eps: float = 1e-3, weight_decay: float = 0, ) -> None: if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if not 0.0 <= eps: raise ValueError(f'Invalid epsilon value: {eps}') if not 0.0 <= betas[0] < 1.0: raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') if not 0.0 <= betas[1] < 1.0: raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') if not 0.0 <= weight_decay: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(Yogi, self).__init__(params, defaults) def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'Yogi does not support sparse gradients, ' 'please consider SparseAdam instead' ) state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] if group['weight_decay'] != 0: grad = grad.add(group['weight_decay'], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) grad_squared = grad.mul(grad) exp_avg_sq.addcmul_( -(1 - beta2), torch.sign(exp_avg_sq - grad_squared), grad_squared, ) denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_( group['eps'] ) step_size = group['lr'] / bias_correction1 p.data.addcdiv_(-step_size, exp_avg, denom) return loss
pytorch-optimizer-master
torch_optimizer/yogi.py
import math import torch from torch.optim.optimizer import Optimizer from .types import Betas2, OptFloat, OptLossClosure, Params __all__ = ('RAdam',) class RAdam(Optimizer): r"""Implements RAdam optimization algorithm. It has been proposed in `On the Variance of the Adaptive Learning Rate and Beyond`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) betas: coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) Example: >>> import torch_optimizer as optim >>> optimizer = optim.RAdam(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1908.03265 """ def __init__( self, params: Params, lr: float = 1e-3, betas: Betas2 = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, ) -> None: if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if not 0.0 <= eps: raise ValueError(f'Invalid epsilon value: {eps}') if not 0.0 <= betas[0] < 1.0: raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') if not 0.0 <= betas[1] < 1.0: raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') if not 0.0 <= weight_decay: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) self._buffer = [[None, None, None] for ind in range(10)] super(RAdam, self).__init__(params, defaults) def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: lr = group['lr'] weight_decay = group['weight_decay'] beta1, beta2 = group['betas'] eps = group['eps'] for p in group['params']: if p.grad is None: continue grad = p.grad.data.float() if grad.is_sparse: msg = ( 'RAdam does not support sparse gradients, ' 'please consider SparseAdam instead' ) raise RuntimeError(msg) p_data_fp32 = p.data.float() state = self.state[p] if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) state['exp_avg_sq'] = state['exp_avg_sq'].type_as( p_data_fp32 ) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg.mul_(beta1).add_(1 - beta1, grad) state['step'] += 1 buffered = self._buffer[int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 N_sma = N_sma_max - 2 * state['step'] * beta2_t / ( 1 - beta2_t ) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: step_size = ( lr * math.sqrt( (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2) ) / (1 - beta1 ** state['step']) ) else: step_size = lr / (1 - beta1 ** state['step']) buffered[2] = step_size if weight_decay != 0: p_data_fp32.add_(-weight_decay * lr, p_data_fp32) # more conservative since it's an approximated value if N_sma >= 5: denom = exp_avg_sq.sqrt().add_(eps) p_data_fp32.addcdiv_(-step_size, exp_avg, denom) else: p_data_fp32.add_(-step_size, exp_avg) p.data.copy_(p_data_fp32) return loss
pytorch-optimizer-master
torch_optimizer/radam.py
import math import torch from torch.optim.optimizer import Optimizer from .types import Betas2, OptLossClosure, Params, State, OptFloat __all__ = ('AdaBound',) class AdaBound(Optimizer): r"""Implements AdaBound algorithm. It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of Learning Rate`__. Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) betas: coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) final_lr: final (SGD) learning rate (default: 0.1) gamma: convergence speed of the bound functions (default: 1e-3) eps: term added to the denominator to improve numerical stability (default: 1e-8) weight_decay: weight decay (L2 penalty) (default: 0) amsbound: whether to use the AMSBound variant of this algorithm Example: >>> import torch_optimizer as optim >>> optimizer = optim.AdaBound(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1902.09843 """ def __init__( self, params: Params, lr: float = 1e-3, betas: Betas2 = (0.9, 0.999), final_lr: float = 0.1, gamma: float = 1e-3, eps: float = 1e-8, weight_decay: float = 0, amsbound: bool = False, ) -> None: if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if not 0.0 <= eps: raise ValueError(f'Invalid epsilon value: {eps}') if not 0.0 <= betas[0] < 1.0: raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') if not 0.0 <= betas[1] < 1.0: raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') if not 0.0 <= final_lr: raise ValueError(f'Invalid final learning rate: {final_lr}') if not 0.0 <= gamma < 1.0: raise ValueError(f'Invalid gamma parameter: {gamma}') if not 0.0 <= weight_decay: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = dict( lr=lr, betas=betas, final_lr=final_lr, gamma=gamma, eps=eps, weight_decay=weight_decay, amsbound=amsbound, ) super(AdaBound, self).__init__(params, defaults) self.base_lrs = [group['lr'] for group in self.param_groups] def __setstate__(self, state: State) -> None: super(AdaBound, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsbound', False) def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group, base_lr in zip(self.param_groups, self.base_lrs): for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: msg = ( 'AdaBound does not support sparse gradients, ' 'please consider SparseAdam instead' ) raise RuntimeError(msg) amsbound = group['amsbound'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p) if amsbound: # Maintains max of all exp. moving avg. of # sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsbound: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 if group['weight_decay'] != 0: grad = grad.add(group['weight_decay'], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsbound: # Maintains the maximum of all 2nd moment running # avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = ( group['lr'] * math.sqrt(bias_correction2) / bias_correction1 ) # Applies bounds on actual learning rate # lr_scheduler cannot affect final_lr, this is a workaround # to apply lr decay final_lr = group['final_lr'] * group['lr'] / base_lr lower_bound = final_lr * ( 1 - 1 / (group['gamma'] * state['step'] + 1) ) upper_bound = final_lr * ( 1 + 1 / (group['gamma'] * state['step']) ) step_size = torch.full_like(denom, step_size) step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_( exp_avg ) p.data.add_(-step_size) return loss
pytorch-optimizer-master
torch_optimizer/adabound.py
from collections import defaultdict import torch from torch.optim.optimizer import Optimizer from .types import OptLossClosure, OptFloat, State __all__ = ('Lookahead',) class Lookahead(Optimizer): r"""Implements Lookahead optimization algorithm. It has been proposed in `Lookahead Optimizer: k steps forward, 1 step back`__ Arguments: optimizer: base inner optimizer optimize k: number of lookahead steps (default: 5) alpha: linear interpolation factor. 1.0 recovers the inner optimizer. (default: 5) Example: >>> import torch_optimizer as optim >>> yogi = optim.Yogi(model.parameters(), lr=0.1) >>> optimizer = optim.Lookahead(yogi, k=5, alpha=0.5) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1907.08610 """ def __init__( self, optimizer: Optimizer, k: int = 5, alpha: float = 0.5 ) -> None: if not 0.0 <= k: raise ValueError(f'Invalid number of lookahead steps: {k}') if not 0.0 <= alpha: raise ValueError(f'Invalid linear interpolation factor: {alpha}') self.optimizer = optimizer self.k = k self.alpha = alpha self.param_groups = self.optimizer.param_groups self.state = defaultdict(dict) self.fast_state = self.optimizer.state for group in self.param_groups: group['counter'] = 0 def _update(self, group) -> None: for fast in group['params']: param_state = self.state[fast] if 'slow_param' not in param_state: param_state['slow_param'] = torch.clone(fast.data).detach() slow = param_state['slow_param'] fast.data.mul_(self.alpha).add_(1.0 - self.alpha, slow) slow.data.copy_(fast) def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = self.optimizer.step(closure=closure) for group in self.param_groups: if group['counter'] == 0: self._update(group) group['counter'] = (group['counter'] + 1) % self.k return loss def state_dict(self) -> State: r"""Returns the state of the optimizer as a :class:`dict`. It contains two entries: * state - a dict holding current optimization state. Its content differs between optimizer classes. * param_groups - a dict containing all parameter groups """ fast_state_dict = self.optimizer.state_dict() slow_state = { (id(k) if isinstance(k, torch.Tensor) else k): v for k, v in self.state.items() } fast_state = fast_state_dict['state'] param_groups = fast_state_dict['param_groups'] return { 'fast_state': fast_state, 'slow_state': slow_state, 'param_groups': param_groups, } def load_state_dict(self, state_dict: State) -> None: r"""Loads the optimizer state. Arguments: state_dict: optimizer state. Should be an object returned from a call to :meth:`state_dict`. """ slow_state_dict = { 'state': state_dict['slow_state'], 'param_groups': state_dict['param_groups'], } fast_state_dict = { 'state': state_dict['fast_state'], 'param_groups': state_dict['param_groups'], } super(Lookahead, self).load_state_dict(slow_state_dict) self.optimizer.load_state_dict(fast_state_dict) self.fast_state = self.optimizer.state def zero_grad(self) -> None: r"""Clears the gradients of all optimized :class:`torch.Tensor` s.""" self.optimizer.zero_grad() def __repr__(self) -> str: base_str = self.optimizer.__repr__() format_string = self.__class__.__name__ + ' (' format_string += '\n' format_string += f'k: {self.k}\n' format_string += f'alpha: {self.alpha}\n' format_string += base_str format_string += '\n' format_string += ')' return format_string
pytorch-optimizer-master
torch_optimizer/lookahead.py
import copy from torch.optim.optimizer import Optimizer from .types import OptLossClosure, Params, OptFloat __all__ = ('AccSGD',) class AccSGD(Optimizer): r"""Implements AccSGD algorithm. It has been proposed in `On the insufficiency of existing momentum schemes for Stochastic Optimization`__ and `Accelerating Stochastic Gradient Descent For Least Squares Regression`__ Arguments: params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate (default: 1e-3) kappa: ratio of long to short step (default: 1000) xi: statistical advantage parameter (default: 10) small_const: any value <=1 (default: 0.7) weight_decay: weight decay (L2 penalty) (default: 0) Example: >>> import torch_optimizer as optim >>> optimizer = optim.AccSGD(model.parameters(), lr=0.1) >>> optimizer.zero_grad() >>> loss_fn(model(input), target).backward() >>> optimizer.step() __ https://arxiv.org/abs/1704.08227 __ https://arxiv.org/abs/1803.05591 """ def __init__( self, params: Params, lr: float = 1e-3, kappa: float = 1000.0, xi: float = 10.0, small_const: float = 0.7, weight_decay: float = 0, ) -> None: if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if not 0.0 <= weight_decay: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = dict( lr=lr, kappa=kappa, xi=xi, small_const=small_const, weight_decay=weight_decay, ) super(AccSGD, self).__init__(params, defaults) def step(self, closure: OptLossClosure = None) -> OptFloat: r"""Performs a single optimization step. Arguments: closure: A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] large_lr = (group['lr'] * group['kappa']) / (group['small_const']) alpha = 1.0 - ( (group['small_const'] * group['small_const'] * group['xi']) / group['kappa'] ) beta = 1.0 - alpha zeta = group['small_const'] / (group['small_const'] + beta) for p in group['params']: if p.grad is None: continue d_p = p.grad.data if weight_decay != 0: d_p.add_(weight_decay, p.data) param_state = self.state[p] if 'momentum_buffer' not in param_state: param_state['momentum_buffer'] = copy.deepcopy(p.data) buf = param_state['momentum_buffer'] buf.mul_((1.0 / beta) - 1.0) buf.add_(-large_lr, d_p) buf.add_(p.data) buf.mul_(beta) p.data.add_(-group['lr'], d_p) p.data.mul_(zeta) p.data.add_(1.0 - zeta, buf) return loss
pytorch-optimizer-master
torch_optimizer/accsgd.py
from pathlib import Path from typing import List from datetime import timedelta from dalle2_pytorch.trainer import DecoderTrainer from dalle2_pytorch.dataloaders import create_image_embedding_dataloader from dalle2_pytorch.trackers import Tracker from dalle2_pytorch.train_configs import DecoderConfig, TrainDecoderConfig from dalle2_pytorch.utils import Timer, print_ribbon from dalle2_pytorch.dalle2_pytorch import Decoder, resize_image_to from clip import tokenize import torchvision import torch from torch import nn from torchmetrics.image.fid import FrechetInceptionDistance from torchmetrics.image.inception import InceptionScore from torchmetrics.image.kid import KernelInceptionDistance from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs from accelerate.utils import dataclasses as accelerate_dataclasses import webdataset as wds import click # constants TRAIN_CALC_LOSS_EVERY_ITERS = 10 VALID_CALC_LOSS_EVERY_ITERS = 10 # helpers functions def exists(val): return val is not None # main functions def create_dataloaders( available_shards, webdataset_base_url, img_embeddings_url=None, text_embeddings_url=None, shard_width=6, num_workers=4, batch_size=32, n_sample_images=6, shuffle_train=True, resample_train=False, img_preproc = None, index_width=4, train_prop = 0.75, val_prop = 0.15, test_prop = 0.10, seed = 0, **kwargs ): """ Randomly splits the available shards into train, val, and test sets and returns a dataloader for each """ assert train_prop + test_prop + val_prop == 1 num_train = round(train_prop*len(available_shards)) num_test = round(test_prop*len(available_shards)) num_val = len(available_shards) - num_train - num_test assert num_train + num_test + num_val == len(available_shards), f"{num_train} + {num_test} + {num_val} = {num_train + num_test + num_val} != {len(available_shards)}" train_split, test_split, val_split = torch.utils.data.random_split(available_shards, [num_train, num_test, num_val], generator=torch.Generator().manual_seed(seed)) # The shard number in the webdataset file names has a fixed width. We zero pad the shard numbers so they correspond to a filename. train_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in train_split] test_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in test_split] val_urls = [webdataset_base_url.format(str(shard).zfill(shard_width)) for shard in val_split] create_dataloader = lambda tar_urls, shuffle=False, resample=False, for_sampling=False: create_image_embedding_dataloader( tar_url=tar_urls, num_workers=num_workers, batch_size=batch_size if not for_sampling else n_sample_images, img_embeddings_url=img_embeddings_url, text_embeddings_url=text_embeddings_url, index_width=index_width, shuffle_num = None, extra_keys= ["txt"], shuffle_shards = shuffle, resample_shards = resample, img_preproc=img_preproc, handler=wds.handlers.warn_and_continue ) train_dataloader = create_dataloader(train_urls, shuffle=shuffle_train, resample=resample_train) train_sampling_dataloader = create_dataloader(train_urls, shuffle=False, for_sampling=True) val_dataloader = create_dataloader(val_urls, shuffle=False) test_dataloader = create_dataloader(test_urls, shuffle=False) test_sampling_dataloader = create_dataloader(test_urls, shuffle=False, for_sampling=True) return { "train": train_dataloader, "train_sampling": train_sampling_dataloader, "val": val_dataloader, "test": test_dataloader, "test_sampling": test_sampling_dataloader } def get_dataset_keys(dataloader): """ It is sometimes neccesary to get the keys the dataloader is returning. Since the dataset is burried in the dataloader, we need to do a process to recover it. """ # If the dataloader is actually a WebLoader, we need to extract the real dataloader if isinstance(dataloader, wds.WebLoader): dataloader = dataloader.pipeline[0] return dataloader.dataset.key_map def get_example_data(dataloader, device, n=5): """ Samples the dataloader and returns a zipped list of examples """ images = [] img_embeddings = [] text_embeddings = [] captions = [] for img, emb, txt in dataloader: img_emb, text_emb = emb.get('img'), emb.get('text') if img_emb is not None: img_emb = img_emb.to(device=device, dtype=torch.float) img_embeddings.extend(list(img_emb)) else: # Then we add None img.shape[0] times img_embeddings.extend([None]*img.shape[0]) if text_emb is not None: text_emb = text_emb.to(device=device, dtype=torch.float) text_embeddings.extend(list(text_emb)) else: # Then we add None img.shape[0] times text_embeddings.extend([None]*img.shape[0]) img = img.to(device=device, dtype=torch.float) images.extend(list(img)) captions.extend(list(txt)) if len(images) >= n: break return list(zip(images[:n], img_embeddings[:n], text_embeddings[:n], captions[:n])) def generate_samples(trainer, example_data, clip=None, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend="", match_image_size=True): """ Takes example data and generates images from the embeddings Returns three lists: real images, generated images, and captions """ real_images, img_embeddings, text_embeddings, txts = zip(*example_data) sample_params = {} if img_embeddings[0] is None: # Generate image embeddings from clip imgs_tensor = torch.stack(real_images) assert clip is not None, "clip is None, but img_embeddings is None" imgs_tensor.to(device=device) img_embeddings, img_encoding = clip.embed_image(imgs_tensor) sample_params["image_embed"] = img_embeddings else: # Then we are using precomputed image embeddings img_embeddings = torch.stack(img_embeddings) sample_params["image_embed"] = img_embeddings if condition_on_text_encodings: if text_embeddings[0] is None: # Generate text embeddings from text assert clip is not None, "clip is None, but text_embeddings is None" tokenized_texts = tokenize(txts, truncate=True).to(device=device) text_embed, text_encodings = clip.embed_text(tokenized_texts) sample_params["text_encodings"] = text_encodings else: # Then we are using precomputed text embeddings text_embeddings = torch.stack(text_embeddings) sample_params["text_encodings"] = text_embeddings sample_params["start_at_unet_number"] = start_unet sample_params["stop_at_unet_number"] = end_unet if start_unet > 1: # If we are only training upsamplers sample_params["image"] = torch.stack(real_images) if device is not None: sample_params["_device"] = device samples = trainer.sample(**sample_params, _cast_deepspeed_precision=False) # At sampling time we don't want to cast to FP16 generated_images = list(samples) captions = [text_prepend + txt for txt in txts] if match_image_size: generated_image_size = generated_images[0].shape[-1] real_images = [resize_image_to(image, generated_image_size, clamp_range=(0, 1)) for image in real_images] return real_images, generated_images, captions def generate_grid_samples(trainer, examples, clip=None, start_unet=1, end_unet=None, condition_on_text_encodings=False, cond_scale=1.0, device=None, text_prepend=""): """ Generates samples and uses torchvision to put them in a side by side grid for easy viewing """ real_images, generated_images, captions = generate_samples(trainer, examples, clip, start_unet, end_unet, condition_on_text_encodings, cond_scale, device, text_prepend) grid_images = [torchvision.utils.make_grid([original_image, generated_image]) for original_image, generated_image in zip(real_images, generated_images)] return grid_images, captions def evaluate_trainer(trainer, dataloader, device, start_unet, end_unet, clip=None, condition_on_text_encodings=False, cond_scale=1.0, inference_device=None, n_evaluation_samples=1000, FID=None, IS=None, KID=None, LPIPS=None): """ Computes evaluation metrics for the decoder """ metrics = {} # Prepare the data examples = get_example_data(dataloader, device, n_evaluation_samples) if len(examples) == 0: print("No data to evaluate. Check that your dataloader has shards.") return metrics real_images, generated_images, captions = generate_samples(trainer, examples, clip, start_unet, end_unet, condition_on_text_encodings, cond_scale, inference_device) real_images = torch.stack(real_images).to(device=device, dtype=torch.float) generated_images = torch.stack(generated_images).to(device=device, dtype=torch.float) # Convert from [0, 1] to [0, 255] and from torch.float to torch.uint8 int_real_images = real_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8) int_generated_images = generated_images.mul(255).add(0.5).clamp(0, 255).type(torch.uint8) def null_sync(t, *args, **kwargs): return [t] if exists(FID): fid = FrechetInceptionDistance(**FID, dist_sync_fn=null_sync) fid.to(device=device) fid.update(int_real_images, real=True) fid.update(int_generated_images, real=False) metrics["FID"] = fid.compute().item() if exists(IS): inception = InceptionScore(**IS, dist_sync_fn=null_sync) inception.to(device=device) inception.update(int_real_images) is_mean, is_std = inception.compute() metrics["IS_mean"] = is_mean.item() metrics["IS_std"] = is_std.item() if exists(KID): kernel_inception = KernelInceptionDistance(**KID, dist_sync_fn=null_sync) kernel_inception.to(device=device) kernel_inception.update(int_real_images, real=True) kernel_inception.update(int_generated_images, real=False) kid_mean, kid_std = kernel_inception.compute() metrics["KID_mean"] = kid_mean.item() metrics["KID_std"] = kid_std.item() if exists(LPIPS): # Convert from [0, 1] to [-1, 1] renorm_real_images = real_images.mul(2).sub(1).clamp(-1,1) renorm_generated_images = generated_images.mul(2).sub(1).clamp(-1,1) lpips = LearnedPerceptualImagePatchSimilarity(**LPIPS, dist_sync_fn=null_sync) lpips.to(device=device) lpips.update(renorm_real_images, renorm_generated_images) metrics["LPIPS"] = lpips.compute().item() if trainer.accelerator.num_processes > 1: # Then we should sync the metrics metrics_order = sorted(metrics.keys()) metrics_tensor = torch.zeros(1, len(metrics), device=device, dtype=torch.float) for i, metric_name in enumerate(metrics_order): metrics_tensor[0, i] = metrics[metric_name] metrics_tensor = trainer.accelerator.gather(metrics_tensor) metrics_tensor = metrics_tensor.mean(dim=0) for i, metric_name in enumerate(metrics_order): metrics[metric_name] = metrics_tensor[i].item() return metrics def save_trainer(tracker: Tracker, trainer: DecoderTrainer, epoch: int, sample: int, next_task: str, validation_losses: List[float], samples_seen: int, is_latest=True, is_best=False): """ Logs the model with an appropriate method depending on the tracker """ tracker.save(trainer, is_best=is_best, is_latest=is_latest, epoch=epoch, sample=sample, next_task=next_task, validation_losses=validation_losses, samples_seen=samples_seen) def recall_trainer(tracker: Tracker, trainer: DecoderTrainer): """ Loads the model with an appropriate method depending on the tracker """ trainer.accelerator.print(print_ribbon(f"Loading model from {type(tracker.loader).__name__}")) state_dict = tracker.recall() trainer.load_state_dict(state_dict, only_model=False, strict=True) return state_dict.get("epoch", 0), state_dict.get("validation_losses", []), state_dict.get("next_task", "train"), state_dict.get("sample", 0), state_dict.get("samples_seen", 0) def train( dataloaders, decoder: Decoder, accelerator: Accelerator, tracker: Tracker, inference_device, clip=None, evaluate_config=None, epoch_samples = None, # If the training dataset is resampling, we have to manually stop an epoch validation_samples = None, save_immediately=False, epochs = 20, n_sample_images = 5, save_every_n_samples = 100000, unet_training_mask=None, condition_on_text_encodings=False, cond_scale=1.0, **kwargs ): """ Trains a decoder on a dataset. """ is_master = accelerator.process_index == 0 if not exists(unet_training_mask): # Then the unet mask should be true for all unets in the decoder unet_training_mask = [True] * len(decoder.unets) assert len(unet_training_mask) == len(decoder.unets), f"The unet training mask should be the same length as the number of unets in the decoder. Got {len(unet_training_mask)} and {trainer.num_unets}" trainable_unet_numbers = [i+1 for i, trainable in enumerate(unet_training_mask) if trainable] first_trainable_unet = trainable_unet_numbers[0] last_trainable_unet = trainable_unet_numbers[-1] def move_unets(unet_training_mask): for i in range(len(decoder.unets)): if not unet_training_mask[i]: # Replace the unet from the module list with a nn.Identity(). This training script never uses unets that aren't being trained so this is fine. decoder.unets[i] = nn.Identity().to(inference_device) # Remove non-trainable unets move_unets(unet_training_mask) trainer = DecoderTrainer( decoder=decoder, accelerator=accelerator, dataloaders=dataloaders, **kwargs ) # Set up starting model and parameters based on a recalled state dict start_epoch = 0 validation_losses = [] next_task = 'train' sample = 0 samples_seen = 0 val_sample = 0 step = lambda: int(trainer.num_steps_taken(unet_number=first_trainable_unet)) if tracker.can_recall: start_epoch, validation_losses, next_task, recalled_sample, samples_seen = recall_trainer(tracker, trainer) if next_task == 'train': sample = recalled_sample if next_task == 'val': val_sample = recalled_sample accelerator.print(f"Loaded model from {type(tracker.loader).__name__} on epoch {start_epoch} having seen {samples_seen} samples with minimum validation loss {min(validation_losses) if len(validation_losses) > 0 else 'N/A'}") accelerator.print(f"Starting training from task {next_task} at sample {sample} and validation sample {val_sample}") trainer.to(device=inference_device) accelerator.print(print_ribbon("Generating Example Data", repeat=40)) accelerator.print("This can take a while to load the shard lists...") if is_master: train_example_data = get_example_data(dataloaders["train_sampling"], inference_device, n_sample_images) accelerator.print("Generated training examples") test_example_data = get_example_data(dataloaders["test_sampling"], inference_device, n_sample_images) accelerator.print("Generated testing examples") send_to_device = lambda arr: [x.to(device=inference_device, dtype=torch.float) for x in arr] sample_length_tensor = torch.zeros(1, dtype=torch.int, device=inference_device) unet_losses_tensor = torch.zeros(TRAIN_CALC_LOSS_EVERY_ITERS, trainer.num_unets, dtype=torch.float, device=inference_device) for epoch in range(start_epoch, epochs): accelerator.print(print_ribbon(f"Starting epoch {epoch}", repeat=40)) timer = Timer() last_sample = sample last_snapshot = sample if next_task == 'train': for i, (img, emb, txt) in enumerate(dataloaders["train"]): # We want to count the total number of samples across all processes sample_length_tensor[0] = len(img) all_samples = accelerator.gather(sample_length_tensor) # TODO: accelerator.reduce is broken when this was written. If it is fixed replace this. total_samples = all_samples.sum().item() sample += total_samples samples_seen += total_samples img_emb = emb.get('img') has_img_embedding = img_emb is not None if has_img_embedding: img_emb, = send_to_device((img_emb,)) text_emb = emb.get('text') has_text_embedding = text_emb is not None if has_text_embedding: text_emb, = send_to_device((text_emb,)) img, = send_to_device((img,)) trainer.train() for unet in range(1, trainer.num_unets+1): # Check if this is a unet we are training if not unet_training_mask[unet-1]: # Unet index is the unet number - 1 continue forward_params = {} if has_img_embedding: forward_params['image_embed'] = img_emb else: # Forward pass automatically generates embedding assert clip is not None img_embed, img_encoding = clip.embed_image(img) forward_params['image_embed'] = img_embed if condition_on_text_encodings: if has_text_embedding: forward_params['text_encodings'] = text_emb else: # Then we need to pass the text instead assert clip is not None tokenized_texts = tokenize(txt, truncate=True).to(inference_device) assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})" text_embed, text_encodings = clip.embed_text(tokenized_texts) forward_params['text_encodings'] = text_encodings loss = trainer.forward(img, **forward_params, unet_number=unet, _device=inference_device) trainer.update(unet_number=unet) unet_losses_tensor[i % TRAIN_CALC_LOSS_EVERY_ITERS, unet-1] = loss samples_per_sec = (sample - last_sample) / timer.elapsed() timer.reset() last_sample = sample if i % TRAIN_CALC_LOSS_EVERY_ITERS == 0: # We want to average losses across all processes unet_all_losses = accelerator.gather(unet_losses_tensor) mask = unet_all_losses != 0 unet_average_loss = (unet_all_losses * mask).sum(dim=0) / mask.sum(dim=0) loss_map = { f"Unet {index} Training Loss": loss.item() for index, loss in enumerate(unet_average_loss) if unet_training_mask[index] } # gather decay rate on each UNet ema_decay_list = {f"Unet {index} EMA Decay": ema_unet.get_current_decay() for index, ema_unet in enumerate(trainer.ema_unets) if unet_training_mask[index]} log_data = { "Epoch": epoch, "Sample": sample, "Step": i, "Samples per second": samples_per_sec, "Samples Seen": samples_seen, **ema_decay_list, **loss_map } if is_master: tracker.log(log_data, step=step()) if is_master and (last_snapshot + save_every_n_samples < sample or (save_immediately and i == 0)): # This will miss by some amount every time, but it's not a big deal... I hope # It is difficult to gather this kind of info on the accelerator, so we have to do it on the master print("Saving snapshot") last_snapshot = sample # We need to know where the model should be saved save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, samples_seen) if exists(n_sample_images) and n_sample_images > 0: trainer.eval() train_images, train_captions = generate_grid_samples(trainer, train_example_data, clip, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ") tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step()) if epoch_samples is not None and sample >= epoch_samples: break next_task = 'val' sample = 0 all_average_val_losses = None if next_task == 'val': trainer.eval() accelerator.print(print_ribbon(f"Starting Validation {epoch}", repeat=40)) last_val_sample = val_sample val_sample_length_tensor = torch.zeros(1, dtype=torch.int, device=inference_device) average_val_loss_tensor = torch.zeros(1, trainer.num_unets, dtype=torch.float, device=inference_device) timer = Timer() accelerator.wait_for_everyone() i = 0 for i, (img, emb, txt) in enumerate(dataloaders['val']): # Use the accelerate prepared loader val_sample_length_tensor[0] = len(img) all_samples = accelerator.gather(val_sample_length_tensor) total_samples = all_samples.sum().item() val_sample += total_samples img_emb = emb.get('img') has_img_embedding = img_emb is not None if has_img_embedding: img_emb, = send_to_device((img_emb,)) text_emb = emb.get('text') has_text_embedding = text_emb is not None if has_text_embedding: text_emb, = send_to_device((text_emb,)) img, = send_to_device((img,)) for unet in range(1, len(decoder.unets)+1): if not unet_training_mask[unet-1]: # Unet index is the unet number - 1 # No need to evaluate an unchanging unet continue forward_params = {} if has_img_embedding: forward_params['image_embed'] = img_emb.float() else: # Forward pass automatically generates embedding assert clip is not None img_embed, img_encoding = clip.embed_image(img) forward_params['image_embed'] = img_embed if condition_on_text_encodings: if has_text_embedding: forward_params['text_encodings'] = text_emb.float() else: # Then we need to pass the text instead assert clip is not None tokenized_texts = tokenize(txt, truncate=True).to(device=inference_device) assert tokenized_texts.shape[0] == len(img), f"The number of texts ({tokenized_texts.shape[0]}) should be the same as the number of images ({len(img)})" text_embed, text_encodings = clip.embed_text(tokenized_texts) forward_params['text_encodings'] = text_encodings loss = trainer.forward(img.float(), **forward_params, unet_number=unet, _device=inference_device) average_val_loss_tensor[0, unet-1] += loss if i % VALID_CALC_LOSS_EVERY_ITERS == 0: samples_per_sec = (val_sample - last_val_sample) / timer.elapsed() timer.reset() last_val_sample = val_sample accelerator.print(f"Epoch {epoch}/{epochs} Val Step {i} - Sample {val_sample} - {samples_per_sec:.2f} samples/sec") accelerator.print(f"Loss: {(average_val_loss_tensor / (i+1))}") accelerator.print("") if validation_samples is not None and val_sample >= validation_samples: break print(f"Rank {accelerator.state.process_index} finished validation after {i} steps") accelerator.wait_for_everyone() average_val_loss_tensor /= i+1 # Gather all the average loss tensors all_average_val_losses = accelerator.gather(average_val_loss_tensor) if is_master: unet_average_val_loss = all_average_val_losses.mean(dim=0) val_loss_map = { f"Unet {index} Validation Loss": loss.item() for index, loss in enumerate(unet_average_val_loss) if loss != 0 } tracker.log(val_loss_map, step=step()) next_task = 'eval' if next_task == 'eval': if exists(evaluate_config): accelerator.print(print_ribbon(f"Starting Evaluation {epoch}", repeat=40)) evaluation = evaluate_trainer(trainer, dataloaders["val"], inference_device, first_trainable_unet, last_trainable_unet, clip=clip, inference_device=inference_device, **evaluate_config.dict(), condition_on_text_encodings=condition_on_text_encodings, cond_scale=cond_scale) if is_master: tracker.log(evaluation, step=step()) next_task = 'sample' val_sample = 0 if next_task == 'sample': if is_master: # Generate examples and save the model if we are the master # Generate sample images print(print_ribbon(f"Sampling Set {epoch}", repeat=40)) test_images, test_captions = generate_grid_samples(trainer, test_example_data, clip, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Test: ") train_images, train_captions = generate_grid_samples(trainer, train_example_data, clip, first_trainable_unet, last_trainable_unet, condition_on_text_encodings, cond_scale, inference_device, "Train: ") tracker.log_images(test_images, captions=test_captions, image_section="Test Samples", step=step()) tracker.log_images(train_images, captions=train_captions, image_section="Train Samples", step=step()) print(print_ribbon(f"Starting Saving {epoch}", repeat=40)) is_best = False if all_average_val_losses is not None: average_loss = all_average_val_losses.mean(dim=0).sum() / sum(unet_training_mask) if len(validation_losses) == 0 or average_loss < min(validation_losses): is_best = True validation_losses.append(average_loss) save_trainer(tracker, trainer, epoch, sample, next_task, validation_losses, samples_seen, is_best=is_best) next_task = 'train' def create_tracker(accelerator: Accelerator, config: TrainDecoderConfig, config_path: str, dummy: bool = False) -> Tracker: tracker_config = config.tracker accelerator_config = { "Distributed": accelerator.distributed_type != accelerate_dataclasses.DistributedType.NO, "DistributedType": accelerator.distributed_type, "NumProcesses": accelerator.num_processes, "MixedPrecision": accelerator.mixed_precision } accelerator.wait_for_everyone() # If nodes arrive at this point at different times they might try to autoresume the current run which makes no sense and will cause errors tracker: Tracker = tracker_config.create(config, accelerator_config, dummy_mode=dummy) tracker.save_config(config_path, config_name='decoder_config.json') tracker.add_save_metadata(state_dict_key='config', metadata=config.dict()) return tracker def initialize_training(config: TrainDecoderConfig, config_path): # Make sure if we are not loading, distributed models are initialized to the same values torch.manual_seed(config.seed) # Set up accelerator for configurable distributed training ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=config.train.find_unused_parameters, static_graph=config.train.static_graph) init_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=60*60)) accelerator = Accelerator(kwargs_handlers=[ddp_kwargs, init_kwargs]) if accelerator.num_processes > 1: # We are using distributed training and want to immediately ensure all can connect accelerator.print("Waiting for all processes to connect...") accelerator.wait_for_everyone() accelerator.print("All processes online and connected") # If we are in deepspeed fp16 mode, we must ensure learned variance is off if accelerator.mixed_precision == "fp16" and accelerator.distributed_type == accelerate_dataclasses.DistributedType.DEEPSPEED and config.decoder.learned_variance: raise ValueError("DeepSpeed fp16 mode does not support learned variance") # Set up data all_shards = list(range(config.data.start_shard, config.data.end_shard + 1)) world_size = accelerator.num_processes rank = accelerator.process_index shards_per_process = len(all_shards) // world_size assert shards_per_process > 0, "Not enough shards to split evenly" my_shards = all_shards[rank * shards_per_process: (rank + 1) * shards_per_process] dataloaders = create_dataloaders ( available_shards=my_shards, img_preproc = config.data.img_preproc, train_prop = config.data.splits.train, val_prop = config.data.splits.val, test_prop = config.data.splits.test, n_sample_images=config.train.n_sample_images, **config.data.dict(), rank = rank, seed = config.seed, ) # If clip is in the model, we need to remove it for compatibility with deepspeed clip = None if config.decoder.clip is not None: clip = config.decoder.clip.create() # Of course we keep it to use it during training, just not in the decoder as that causes issues config.decoder.clip = None # Create the decoder model and print basic info decoder = config.decoder.create() get_num_parameters = lambda model, only_training=False: sum(p.numel() for p in model.parameters() if (p.requires_grad or not only_training)) # Create and initialize the tracker if we are the master tracker = create_tracker(accelerator, config, config_path, dummy = rank!=0) has_img_embeddings = config.data.img_embeddings_url is not None has_text_embeddings = config.data.text_embeddings_url is not None conditioning_on_text = any([unet.cond_on_text_encodings for unet in config.decoder.unets]) has_clip_model = clip is not None data_source_string = "" if has_img_embeddings: data_source_string += "precomputed image embeddings" elif has_clip_model: data_source_string += "clip image embeddings generation" else: raise ValueError("No image embeddings source specified") if conditioning_on_text: if has_text_embeddings: data_source_string += " and precomputed text embeddings" elif has_clip_model: data_source_string += " and clip text encoding generation" else: raise ValueError("No text embeddings source specified") accelerator.print(print_ribbon("Loaded Config", repeat=40)) accelerator.print(f"Running training with {accelerator.num_processes} processes and {accelerator.distributed_type} distributed training") accelerator.print(f"Training using {data_source_string}. {'conditioned on text' if conditioning_on_text else 'not conditioned on text'}") accelerator.print(f"Number of parameters: {get_num_parameters(decoder)} total; {get_num_parameters(decoder, only_training=True)} training") for i, unet in enumerate(decoder.unets): accelerator.print(f"Unet {i} has {get_num_parameters(unet)} total; {get_num_parameters(unet, only_training=True)} training") train(dataloaders, decoder, accelerator, clip=clip, tracker=tracker, inference_device=accelerator.device, evaluate_config=config.evaluate, condition_on_text_encodings=conditioning_on_text, **config.train.dict(), ) # Create a simple click command line interface to load the config and start the training @click.command() @click.option("--config_file", default="./train_decoder_config.json", help="Path to config file") def main(config_file): config_file_path = Path(config_file) config = TrainDecoderConfig.from_json_path(str(config_file_path)) initialize_training(config, config_path=config_file_path) if __name__ == "__main__": main()
DALLE2-pytorch-main
train_decoder.py
import click import torch from torch import nn from typing import List from accelerate import Accelerator from accelerate.utils import set_seed from torch.utils.data import DataLoader from embedding_reader import EmbeddingReader from accelerate.utils import dataclasses as accelerate_dataclasses from dalle2_pytorch.utils import Timer from dalle2_pytorch.trackers import Tracker from dalle2_pytorch import DiffusionPriorTrainer from dalle2_pytorch.dataloaders import get_reader, make_splits from dalle2_pytorch.train_configs import ( DiffusionPriorConfig, DiffusionPriorTrainConfig, TrainDiffusionPriorConfig, ) # helpers cos = nn.CosineSimilarity(dim=1, eps=1e-6) def exists(val): return val is not None def all_between(values: list, lower_bound, upper_bound): for value in values: if value < lower_bound or value > upper_bound: return False return True def make_model( prior_config: DiffusionPriorConfig, train_config: DiffusionPriorTrainConfig, device: str = None, accelerator: Accelerator = None, ): # create model from config diffusion_prior = prior_config.create() # instantiate the trainer trainer = DiffusionPriorTrainer( diffusion_prior=diffusion_prior, lr=train_config.lr, wd=train_config.wd, max_grad_norm=train_config.max_grad_norm, amp=train_config.amp, use_ema=train_config.use_ema, device=device, accelerator=accelerator, warmup_steps=train_config.warmup_steps, ) return trainer def create_tracker( accelerator: Accelerator, config: TrainDiffusionPriorConfig, config_path: str, dummy: bool = False, ) -> Tracker: tracker_config = config.tracker accelerator_config = { "Distributed": accelerator.distributed_type != accelerate_dataclasses.DistributedType.NO, "DistributedType": accelerator.distributed_type, "NumProcesses": accelerator.num_processes, "MixedPrecision": accelerator.mixed_precision, } tracker: Tracker = tracker_config.create( config, accelerator_config, dummy_mode=dummy ) tracker.save_config(config_path, config_name="prior_config.json") return tracker def pad_gather_reduce(trainer: DiffusionPriorTrainer, x, method="mean"): """ pad a value or tensor across all processes and gather params: - trainer: a trainer that carries an accelerator object - x: a number or torch tensor to reduce - method: "mean", "sum", "max", "min" return: - the average tensor after maskin out 0's - None if the gather resulted in an empty tensor """ assert method in [ "mean", "sum", "max", "min", ], "This function has limited capabilities [sum, mean, max, min]" assert type(x) is not None, "Cannot reduce a None type object" # wait for everyone to arrive here before gathering if type(x) is not torch.Tensor: x = torch.tensor([x]) # verify that the tensor is on the proper device x = x.to(trainer.device) # pad across processes padded_x = trainer.accelerator.pad_across_processes(x, dim=0) # gather across all procesess gathered_x = trainer.accelerator.gather(padded_x) # mask out zeros masked_x = gathered_x[gathered_x != 0] # if the tensor is empty, warn and return None if len(masked_x) == 0: click.secho( f"The call to this method resulted in an empty tensor after masking out zeros. The gathered tensor was this: {gathered_x} and the original value passed was: {x}.", fg="red", ) return None if method == "mean": return torch.mean(masked_x) elif method == "sum": return torch.sum(masked_x) elif method == "max": return torch.max(masked_x) elif method == "min": return torch.min(masked_x) def save_trainer( tracker: Tracker, trainer: DiffusionPriorTrainer, is_latest: bool, is_best: bool, epoch: int, samples_seen: int, best_validation_loss: float, ): """ Logs the model with an appropriate method depending on the tracker """ trainer.accelerator.wait_for_everyone() if trainer.accelerator.is_main_process: click.secho( f"RANK:{trainer.accelerator.process_index} | Saving Model | Best={is_best} | Latest={is_latest}", fg="magenta", ) tracker.save( trainer=trainer, is_best=is_best, is_latest=is_latest, epoch=int(epoch), samples_seen=int(samples_seen), best_validation_loss=best_validation_loss, ) def recall_trainer(tracker: Tracker, trainer: DiffusionPriorTrainer): """ Loads the model with an appropriate method depending on the tracker """ if trainer.accelerator.is_main_process: click.secho(f"Loading model from {type(tracker.loader).__name__}", fg="yellow") state_dict = tracker.recall() trainer.load(state_dict, strict=True) return ( int(state_dict.get("epoch", 0)), state_dict.get("best_validation_loss", 0), int(state_dict.get("samples_seen", 0)), ) # eval functions def report_validation_loss( trainer: DiffusionPriorTrainer, dataloader: DataLoader, text_conditioned: bool, use_ema: bool, tracker: Tracker, split: str, tracker_folder: str, loss_type: str, ): """ Compute the validation loss on a given subset of data. """ if trainer.accelerator.is_main_process: click.secho( f"Measuring performance on {use_ema}-{split} split", fg="green", blink=True, ) total_loss = torch.zeros(1, dtype=torch.float, device=trainer.device) for image_embeddings, text_data in dataloader: image_embeddings = image_embeddings.to(trainer.device) text_data = text_data.to(trainer.device) input_args = dict(image_embed=image_embeddings) if text_conditioned: input_args = dict(**input_args, text=text_data) else: input_args = dict(**input_args, text_embed=text_data) if use_ema: loss = trainer.ema_diffusion_prior(**input_args) else: loss = trainer(**input_args) total_loss += loss # compute the average loss across all processes avg_loss = pad_gather_reduce(trainer, total_loss, method="mean") stats = {f"{tracker_folder}/{loss_type}-loss": avg_loss} # print and log results on main process tracker.log(stats, step=trainer.step.item() + 1) return avg_loss def report_cosine_sims( trainer: DiffusionPriorTrainer, dataloader: DataLoader, text_conditioned: bool, tracker: Tracker, split: str, timesteps: int, tracker_folder: str, ): trainer.eval() if trainer.accelerator.is_main_process: click.secho( f"Measuring Cosine-Similarity on {split} split with {timesteps} timesteps", fg="green", blink=True, ) for test_image_embeddings, text_data in dataloader: test_image_embeddings = test_image_embeddings.to(trainer.device) text_data = text_data.to(trainer.device) # we are text conditioned, we produce an embedding from the tokenized text if text_conditioned: text_embedding, text_encodings = trainer.embed_text(text_data) text_cond = dict(text_embed=text_embedding, text_encodings=text_encodings) else: text_embedding = text_data text_cond = dict(text_embed=text_embedding) # make a copy of the text embeddings for shuffling text_embed_shuffled = text_embedding.clone() # roll the text to simulate "unrelated" captions rolled_idx = torch.roll(torch.arange(text_embedding.shape[0]), 1) text_embed_shuffled = text_embed_shuffled[rolled_idx] text_embed_shuffled = text_embed_shuffled / text_embed_shuffled.norm( dim=1, keepdim=True ) if text_conditioned: text_encodings_shuffled = text_encodings[rolled_idx] else: text_encodings_shuffled = None text_cond_shuffled = dict( text_embed=text_embed_shuffled, text_encodings=text_encodings_shuffled ) # prepare the text embedding text_embed = text_embedding / text_embedding.norm(dim=1, keepdim=True) # prepare image embeddings test_image_embeddings = test_image_embeddings / test_image_embeddings.norm( dim=1, keepdim=True ) # predict on the unshuffled text embeddings predicted_image_embeddings = trainer.p_sample_loop( test_image_embeddings.shape, text_cond, timesteps=timesteps, ) predicted_image_embeddings = ( predicted_image_embeddings / predicted_image_embeddings.norm(dim=1, keepdim=True) ) # predict on the shuffled embeddings predicted_unrelated_embeddings = trainer.p_sample_loop( test_image_embeddings.shape, text_cond_shuffled, timesteps=timesteps, ) predicted_unrelated_embeddings = ( predicted_unrelated_embeddings / predicted_unrelated_embeddings.norm(dim=1, keepdim=True) ) # calculate similarities orig_sim = pad_gather_reduce( trainer, cos(text_embed, test_image_embeddings), method="mean" ) pred_sim = pad_gather_reduce( trainer, cos(text_embed, predicted_image_embeddings), method="mean" ) unrel_sim = pad_gather_reduce( trainer, cos(text_embed, predicted_unrelated_embeddings), method="mean" ) pred_img_sim = pad_gather_reduce( trainer, cos(test_image_embeddings, predicted_image_embeddings), method="mean", ) stats = { f"{tracker_folder}/baseline similarity [steps={timesteps}]": orig_sim, f"{tracker_folder}/similarity with text [steps={timesteps}]": pred_sim, f"{tracker_folder}/similarity with original image [steps={timesteps}]": pred_img_sim, f"{tracker_folder}/similarity with unrelated caption [steps={timesteps}]": unrel_sim, f"{tracker_folder}/difference from baseline similarity [steps={timesteps}]": pred_sim - orig_sim, } tracker.log(stats, step=trainer.step.item() + 1) def eval_model( trainer: DiffusionPriorTrainer, dataloader: DataLoader, text_conditioned: bool, split: str, tracker: Tracker, use_ema: bool, report_cosine: bool, report_loss: bool, timesteps: List[int], loss_type: str = None, ): """ Run evaluation on a model and track metrics returns: loss if requested """ trainer.eval() use_ema = "ema" if use_ema else "online" tracker_folder = f"metrics/{use_ema}-{split}" # detemine if valid timesteps are passed min_timesteps = trainer.accelerator.unwrap_model( trainer.diffusion_prior ).sample_timesteps max_timesteps = trainer.accelerator.unwrap_model( trainer.diffusion_prior ).noise_scheduler.num_timesteps assert all_between( timesteps, lower_bound=min_timesteps, upper_bound=max_timesteps ), f"all timesteps values must be between {min_timesteps} and {max_timesteps}: got {timesteps}" # measure cosine metrics across various eta and timesteps if report_cosine: for timestep in timesteps: report_cosine_sims( trainer, dataloader=dataloader, text_conditioned=text_conditioned, tracker=tracker, split=split, timesteps=timestep, tracker_folder=tracker_folder, ) # measure loss on a seperate split of data if report_loss: loss = report_validation_loss( trainer=trainer, dataloader=dataloader, text_conditioned=text_conditioned, use_ema=use_ema, tracker=tracker, split=split, tracker_folder=tracker_folder, loss_type=loss_type, ) return loss # training script def train( trainer: DiffusionPriorTrainer, tracker: Tracker, train_loader: DataLoader, eval_loader: DataLoader, test_loader: DataLoader, config: DiffusionPriorTrainConfig, ): # init timers save_timer = Timer() # when to save samples_timer = Timer() # samples/sec validation_profiler = Timer() # how long is validation taking validation_countdown = Timer() # when to perform evalutation # keep track of best validation loss best_validation_loss = config.train.best_validation_loss samples_seen = config.train.num_samples_seen # do training start_epoch = config.train.current_epoch for epoch in range(start_epoch, config.train.epochs): # if we finished out an old epoch, reset the distribution to be a full epoch tracker.log({"tracking/epoch": epoch}, step=trainer.step.item()) if train_loader.dataset.get_start() > 0 and epoch == start_epoch+1: if trainer.accelerator.is_main_process: click.secho(f"Finished resumed epoch...resetting dataloader.") train_loader.dataset.set_start(0) for img, txt in train_loader: # setup things every step trainer.train() current_step = trainer.step.item() samples_timer.reset() # place data on device img = img.to(trainer.device) txt = txt.to(trainer.device) # pass to model loss = trainer(text=txt, image_embed=img) # perform backprop & apply EMA updates trainer.update() # gather info about training step all_loss = pad_gather_reduce(trainer, loss, method="mean") num_samples = pad_gather_reduce(trainer, len(txt), method="sum") samples_per_sec = num_samples / samples_timer.elapsed() samples_seen += num_samples ema_decay = trainer.ema_diffusion_prior.get_current_decay() # log tracker.log( { "tracking/samples-sec": samples_per_sec, "tracking/samples-seen": samples_seen, "tracking/ema-decay": ema_decay, f"tracking/training-{config.prior.loss_type}": all_loss, }, step=current_step, ) # Metric Tracking @ Timed Intervals eval_delta = pad_gather_reduce( trainer, validation_countdown.elapsed(), method="min" ) if eval_delta != None and eval_delta > config.data.eval_every_seconds: # begin timing how long this takes validation_profiler.reset() # package kwargs for evaluation eval_kwargs = { "trainer": trainer, "tracker": tracker, "text_conditioned": config.prior.condition_on_text_encodings, "timesteps": config.train.eval_timesteps, } # ONLINE MODEL : COSINE : LOSS : VALIDATION SPLIT eval_model( dataloader=eval_loader, loss_type=config.prior.loss_type, split="validation", use_ema=False, report_cosine=False, report_loss=True, **eval_kwargs, ) # EMA MODEL : COSINE : LOSS : VALIDATION DATA ema_val_loss = eval_model( dataloader=eval_loader, loss_type=config.prior.loss_type, split="validation", use_ema=True, report_cosine=True, report_loss=True, **eval_kwargs, ) tracker.log( { "tracking/validation length (minutes)": validation_profiler.elapsed() / 60 } ) # check if the ema validation is the lowest seen yet if ema_val_loss < best_validation_loss: best_validation_loss = ema_val_loss # go save the model as best save_trainer( trainer=trainer, tracker=tracker, is_best=True, is_latest=False, samples_seen=samples_seen, epoch=epoch, best_validation_loss=best_validation_loss, ) # reset timer for validaiton validation_countdown.reset() elif eval_delta is None: click.secho( f"Error occured reading the eval time on rank: {trainer.device}", fg="yellow", ) # save as latest model on schedule save_delta = pad_gather_reduce(trainer, save_timer.elapsed(), method="min") if save_delta != None and save_delta >= config.train.save_every_seconds: save_trainer( trainer=trainer, tracker=tracker, is_best=False, is_latest=True, samples_seen=samples_seen, epoch=epoch, best_validation_loss=best_validation_loss, ) save_timer.reset() elif save_delta is None: click.secho( f"Error occured reading the save time on rank: {trainer.device}", fg="yellow", ) # evaluate on test data if trainer.accelerator.is_main_process: click.secho(f"Starting Test", fg="red") # save one last time as latest before beginning validation save_trainer( tracker=tracker, trainer=trainer, is_best=False, is_latest=True, samples_seen=samples_seen, epoch=epoch, best_validation_loss=best_validation_loss, ) test_loss = eval_model( trainer=trainer, dataloader=test_loader, text_conditioned=config.prior.condition_on_text_encodings, split="test", tracker=tracker, use_ema=True, report_cosine=False, report_loss=True, timesteps=config.train.eval_timesteps, loss_type=config.prior.loss_type, ) if test_loss < best_validation_loss: best_validation_loss = test_loss # go save the model as best save_trainer( trainer=trainer, tracker=tracker, is_best=True, is_latest=False, samples_seen=samples_seen, epoch=epoch, best_validation_loss=test_loss, ) def initialize_training(config_file, accelerator): """ Parse the configuration file, and prepare everything necessary for training """ # load the configuration file if accelerator.is_main_process: click.secho(f"Loading configuration from {config_file}", fg="green") config = TrainDiffusionPriorConfig.from_json_path(config_file) # seed set_seed(config.train.random_seed) # get a device device = accelerator.device # make the trainer (will automatically distribute if possible & configured) trainer: DiffusionPriorTrainer = make_model( config.prior, config.train, device, accelerator ).to(device) # create a tracker tracker = create_tracker( accelerator, config, config_file, dummy=accelerator.process_index != 0 ) # reload from chcekpoint if tracker.can_recall: current_epoch, best_validation_loss, samples_seen = recall_trainer( tracker=tracker, trainer=trainer ) # display best values if trainer.accelerator.is_main_process: click.secho(f"Current Epoch: {current_epoch} | Best Val Loss: {best_validation_loss} | Samples Seen: {samples_seen}", fg="yellow") # update config to reflect recalled values config.train.num_samples_seen = samples_seen config.train.current_epoch = current_epoch config.train.best_validation_loss = best_validation_loss # fetch and prepare data if trainer.accelerator.is_main_process: click.secho("Grabbing data...", fg="blue", blink=True) trainer.accelerator.wait_for_everyone() img_reader = get_reader( text_conditioned=trainer.text_conditioned, img_url=config.data.image_url, meta_url=config.data.meta_url, ) # calculate start point within epoch trainer.accelerator.wait_for_everyone() train_loader, eval_loader, test_loader = make_splits( text_conditioned=trainer.text_conditioned, batch_size=config.data.batch_size, num_data_points=config.data.num_data_points, train_split=config.data.splits.train, eval_split=config.data.splits.val, image_reader=img_reader, rank=accelerator.state.process_index, world_size=accelerator.state.num_processes, start=0, ) # update the start point to finish out the epoch on a resumed run if tracker.can_recall: samples_seen = config.train.num_samples_seen length = ( config.data.num_data_points if samples_seen <= img_reader.count else img_reader.count ) scaled_samples = length * config.train.current_epoch start_point = ( scaled_samples - samples_seen if scaled_samples > samples_seen else samples_seen ) if trainer.accelerator.is_main_process: click.secho(f"Resuming at sample: {start_point}", fg="yellow") train_loader.dataset.set_start(start_point) # start training if trainer.accelerator.is_main_process: click.secho( f"Beginning Prior Training : Distributed={accelerator.state.distributed_type != accelerate_dataclasses.DistributedType.NO}", fg="yellow", ) train( trainer=trainer, tracker=tracker, train_loader=train_loader, eval_loader=eval_loader, test_loader=test_loader, config=config, ) @click.command() @click.option("--config_file", default="configs/train_prior_config.example.json") def main(config_file): # start HFA accelerator = Accelerator() # setup training initialize_training(config_file, accelerator) if __name__ == "__main__": main()
DALLE2-pytorch-main
train_diffusion_prior.py
from setuptools import setup, find_packages exec(open('dalle2_pytorch/version.py').read()) setup( name = 'dalle2-pytorch', packages = find_packages(exclude=[]), include_package_data = True, entry_points={ 'console_scripts': [ 'dalle2_pytorch = dalle2_pytorch.cli:main', 'dream = dalle2_pytorch.cli:dream' ], }, version = __version__, license='MIT', description = 'DALL-E 2', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/dalle2-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'text to image' ], install_requires=[ 'accelerate', 'click', 'open-clip-torch>=2.0.0,<3.0.0', 'clip-anytorch>=2.5.2', 'coca-pytorch>=0.0.5', 'ema-pytorch>=0.0.7', 'einops>=0.6.1', 'embedding-reader', 'kornia>=0.5.4', 'numpy', 'packaging', 'pillow', 'pydantic>=2', 'pytorch-warmup', 'resize-right>=0.0.2', 'rotary-embedding-torch', 'torch>=1.10', 'torchvision', 'tqdm', 'vector-quantize-pytorch', 'x-clip>=0.4.4', 'webdataset>=0.2.5', 'fsspec>=2022.1.0', 'torchmetrics[image]>=0.8.0' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
DALLE2-pytorch-main
setup.py
import math import random from tqdm.auto import tqdm from functools import partial, wraps from contextlib import contextmanager from collections import namedtuple from pathlib import Path import torch import torch.nn.functional as F from torch.utils.checkpoint import checkpoint from torch import nn, einsum import torchvision.transforms as T from einops import rearrange, repeat, reduce, pack, unpack from einops.layers.torch import Rearrange from kornia.filters import gaussian_blur2d import kornia.augmentation as K from dalle2_pytorch.tokenizer import tokenizer from dalle2_pytorch.vqgan_vae import NullVQGanVAE, VQGanVAE from resize_right import resize # rotary embeddings from rotary_embedding_torch import RotaryEmbedding # use x-clip from x_clip import CLIP from coca_pytorch import CoCa # constants NAT = 1. / math.log(2.) UnetOutput = namedtuple('UnetOutput', ['pred', 'var_interp_frac_unnormalized']) # helper functions def exists(val): return val is not None def identity(t, *args, **kwargs): return t def first(arr, d = None): if len(arr) == 0: return d return arr[0] def maybe(fn): @wraps(fn) def inner(x, *args, **kwargs): if not exists(x): return x return fn(x, *args, **kwargs) return inner def default(val, d): if exists(val): return val return d() if callable(d) else d def cast_tuple(val, length = None, validate = True): if isinstance(val, list): val = tuple(val) out = val if isinstance(val, tuple) else ((val,) * default(length, 1)) if exists(length) and validate: assert len(out) == length return out def module_device(module): if isinstance(module, nn.Identity): return 'cpu' # It doesn't matter return next(module.parameters()).device def zero_init_(m): nn.init.zeros_(m.weight) if exists(m.bias): nn.init.zeros_(m.bias) @contextmanager def null_context(*args, **kwargs): yield def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner def is_float_dtype(dtype): return any([dtype == float_dtype for float_dtype in (torch.float64, torch.float32, torch.float16, torch.bfloat16)]) def is_list_str(x): if not isinstance(x, (list, tuple)): return False return all([type(el) == str for el in x]) def pad_tuple_to_length(t, length, fillvalue = None): remain_length = length - len(t) if remain_length <= 0: return t return (*t, *((fillvalue,) * remain_length)) # checkpointing helper function def make_checkpointable(fn, **kwargs): if isinstance(fn, nn.ModuleList): return [maybe(make_checkpointable)(el, **kwargs) for el in fn] condition = kwargs.pop('condition', None) if exists(condition) and not condition(fn): return fn @wraps(fn) def inner(*args): input_needs_grad = any([isinstance(el, torch.Tensor) and el.requires_grad for el in args]) if not input_needs_grad: return fn(*args) return checkpoint(fn, *args) return inner # for controlling freezing of CLIP def set_module_requires_grad_(module, requires_grad): for param in module.parameters(): param.requires_grad = requires_grad def freeze_all_layers_(module): set_module_requires_grad_(module, False) def unfreeze_all_layers_(module): set_module_requires_grad_(module, True) def freeze_model_and_make_eval_(model): model.eval() freeze_all_layers_(model) # tensor helpers def log(t, eps = 1e-12): return torch.log(t.clamp(min = eps)) def l2norm(t): return F.normalize(t, dim = -1) def resize_image_to( image, target_image_size, clamp_range = None, nearest = False, **kwargs ): orig_image_size = image.shape[-1] if orig_image_size == target_image_size: return image if not nearest: scale_factors = target_image_size / orig_image_size out = resize(image, scale_factors = scale_factors, **kwargs) else: out = F.interpolate(image, target_image_size, mode = 'nearest') if exists(clamp_range): out = out.clamp(*clamp_range) return out # image normalization functions # ddpms expect images to be in the range of -1 to 1 # but CLIP may otherwise def normalize_neg_one_to_one(img): return img * 2 - 1 def unnormalize_zero_to_one(normed_img): return (normed_img + 1) * 0.5 # clip related adapters EmbeddedText = namedtuple('EmbedTextReturn', ['text_embed', 'text_encodings']) EmbeddedImage = namedtuple('EmbedImageReturn', ['image_embed', 'image_encodings']) class BaseClipAdapter(nn.Module): def __init__(self, clip, **kwargs): super().__init__() self.clip = clip self.overrides = kwargs def validate_and_resize_image(self, image): image_size = image.shape[-1] assert image_size >= self.image_size, f'you are passing in an image of size {image_size} but CLIP requires the image size to be at least {self.image_size}' return resize_image_to(image, self.image_size) @property def dim_latent(self): raise NotImplementedError @property def image_size(self): raise NotImplementedError @property def image_channels(self): raise NotImplementedError @property def max_text_len(self): raise NotImplementedError def embed_text(self, text): raise NotImplementedError def embed_image(self, image): raise NotImplementedError class XClipAdapter(BaseClipAdapter): @property def dim_latent(self): return self.clip.dim_latent @property def image_size(self): return self.clip.image_size @property def image_channels(self): return self.clip.image_channels @property def max_text_len(self): return self.clip.text_seq_len @torch.no_grad() def embed_text(self, text): text = text[..., :self.max_text_len] text_mask = text != 0 encoder_output = self.clip.text_transformer(text) encoder_output_is_cls = encoder_output.ndim == 3 text_cls, text_encodings = (encoder_output[:, 0], encoder_output[:, 1:]) if encoder_output_is_cls else (encoder_output, None) text_embed = self.clip.to_text_latent(text_cls) if exists(text_encodings): text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.) return EmbeddedText(l2norm(text_embed), text_encodings) @torch.no_grad() def embed_image(self, image): image = self.validate_and_resize_image(image) encoder_output = self.clip.visual_transformer(image) image_cls, image_encodings = encoder_output[:, 0], encoder_output[:, 1:] image_embed = self.clip.to_visual_latent(image_cls) return EmbeddedImage(l2norm(image_embed), image_encodings) class CoCaAdapter(BaseClipAdapter): @property def dim_latent(self): return self.clip.dim @property def image_size(self): assert 'image_size' in self.overrides return self.overrides['image_size'] @property def image_channels(self): assert 'image_channels' in self.overrides return self.overrides['image_channels'] @property def max_text_len(self): assert 'max_text_len' in self.overrides return self.overrides['max_text_len'] @torch.no_grad() def embed_text(self, text): text = text[..., :self.max_text_len] text_mask = text != 0 text_embed, text_encodings = self.clip.embed_text(text) text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.) return EmbeddedText(text_embed, text_encodings) @torch.no_grad() def embed_image(self, image): image = self.validate_and_resize_image(image) image_embed, image_encodings = self.clip.embed_image(image) return EmbeddedImage(image_embed, image_encodings) class OpenAIClipAdapter(BaseClipAdapter): def __init__( self, name = 'ViT-B/32' ): import clip openai_clip, preprocess = clip.load(name) super().__init__(openai_clip) self.eos_id = 49407 # for handling 0 being also '!' text_attention_final = self.find_layer('ln_final') self.dim_latent_ = text_attention_final.weight.shape[0] self.handle = text_attention_final.register_forward_hook(self._hook) self.clip_normalize = preprocess.transforms[-1] self.cleared = False def find_layer(self, layer): modules = dict([*self.clip.named_modules()]) return modules.get(layer, None) def clear(self): if self.cleared: return self.handle() def _hook(self, _, inputs, outputs): self.text_encodings = outputs @property def dim_latent(self): return self.dim_latent_ @property def image_size(self): return self.clip.visual.input_resolution @property def image_channels(self): return 3 @property def max_text_len(self): return self.clip.context_length @torch.no_grad() def embed_text(self, text): text = text[..., :self.max_text_len] is_eos_id = (text == self.eos_id) text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0 text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True) text_mask = text_mask & (text != 0) assert not self.cleared text_embed = self.clip.encode_text(text) text_encodings = self.text_encodings text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.) del self.text_encodings return EmbeddedText(l2norm(text_embed.float()), text_encodings.float()) @torch.no_grad() def embed_image(self, image): assert not self.cleared image = self.validate_and_resize_image(image) image = self.clip_normalize(image) image_embed = self.clip.encode_image(image) return EmbeddedImage(l2norm(image_embed.float()), None) class OpenClipAdapter(BaseClipAdapter): def __init__( self, name = 'ViT-B/32', pretrained = 'laion400m_e32' ): import open_clip clip, _, preprocess = open_clip.create_model_and_transforms(name, pretrained = pretrained) super().__init__(clip) self.eos_id = 49407 text_attention_final = self.find_layer('ln_final') self._dim_latent = text_attention_final.weight.shape[0] self.handle = text_attention_final.register_forward_hook(self._hook) self.clip_normalize = preprocess.transforms[-1] self.cleared = False def find_layer(self, layer): modules = dict([*self.clip.named_modules()]) return modules.get(layer, None) def clear(self): if self.cleared: return self.handle() def _hook(self, _, inputs, outputs): self.text_encodings = outputs @property def dim_latent(self): return self._dim_latent @property def image_size(self): image_size = self.clip.visual.image_size if isinstance(image_size, tuple): return max(image_size) return image_size @property def image_channels(self): return 3 @property def max_text_len(self): return self.clip.context_length @torch.no_grad() def embed_text(self, text): text = text[..., :self.max_text_len] is_eos_id = (text == self.eos_id) text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0 text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True) text_mask = text_mask & (text != 0) assert not self.cleared text_embed = self.clip.encode_text(text) text_encodings = self.text_encodings text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.) del self.text_encodings return EmbeddedText(l2norm(text_embed.float()), text_encodings.float()) @torch.no_grad() def embed_image(self, image): assert not self.cleared image = self.validate_and_resize_image(image) image = self.clip_normalize(image) image_embed = self.clip.encode_image(image) return EmbeddedImage(l2norm(image_embed.float()), None) # classifier free guidance functions def prob_mask_like(shape, prob, device): if prob == 1: return torch.ones(shape, device = device, dtype = torch.bool) elif prob == 0: return torch.zeros(shape, device = device, dtype = torch.bool) else: return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob # gaussian diffusion helper functions def extract(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def meanflat(x): return x.mean(dim = tuple(range(1, len(x.shape)))) def normal_kl(mean1, logvar1, mean2, logvar2): return 0.5 * (-1.0 + logvar2 - logvar1 + torch.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)) def approx_standard_normal_cdf(x): return 0.5 * (1.0 + torch.tanh(((2.0 / math.pi) ** 0.5) * (x + 0.044715 * (x ** 3)))) def discretized_gaussian_log_likelihood(x, *, means, log_scales, thres = 0.999): assert x.shape == means.shape == log_scales.shape # attempting to correct nan gradients when learned variance is turned on # in the setting of deepspeed fp16 eps = 1e-12 if x.dtype == torch.float32 else 1e-3 centered_x = x - means inv_stdv = torch.exp(-log_scales) plus_in = inv_stdv * (centered_x + 1. / 255.) cdf_plus = approx_standard_normal_cdf(plus_in) min_in = inv_stdv * (centered_x - 1. / 255.) cdf_min = approx_standard_normal_cdf(min_in) log_cdf_plus = log(cdf_plus, eps = eps) log_one_minus_cdf_min = log(1. - cdf_min, eps = eps) cdf_delta = cdf_plus - cdf_min log_probs = torch.where(x < -thres, log_cdf_plus, torch.where(x > thres, log_one_minus_cdf_min, log(cdf_delta, eps = eps))) return log_probs def cosine_beta_schedule(timesteps, s = 0.008): """ cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ """ steps = timesteps + 1 x = torch.linspace(0, timesteps, steps, dtype = torch.float64) alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2 alphas_cumprod = alphas_cumprod / first(alphas_cumprod) betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) return torch.clip(betas, 0, 0.999) def linear_beta_schedule(timesteps): scale = 1000 / timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64) def quadratic_beta_schedule(timesteps): scale = 1000 / timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 return torch.linspace(beta_start**0.5, beta_end**0.5, timesteps, dtype = torch.float64) ** 2 def sigmoid_beta_schedule(timesteps): scale = 1000 / timesteps beta_start = scale * 0.0001 beta_end = scale * 0.02 betas = torch.linspace(-6, 6, timesteps, dtype = torch.float64) return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start class NoiseScheduler(nn.Module): def __init__(self, *, beta_schedule, timesteps, loss_type, p2_loss_weight_gamma = 0., p2_loss_weight_k = 1): super().__init__() if beta_schedule == "cosine": betas = cosine_beta_schedule(timesteps) elif beta_schedule == "linear": betas = linear_beta_schedule(timesteps) elif beta_schedule == "quadratic": betas = quadratic_beta_schedule(timesteps) elif beta_schedule == "jsd": betas = 1.0 / torch.linspace(timesteps, 1, timesteps) elif beta_schedule == "sigmoid": betas = sigmoid_beta_schedule(timesteps) else: raise NotImplementedError() alphas = 1. - betas alphas_cumprod = torch.cumprod(alphas, axis = 0) alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value = 1.) timesteps, = betas.shape self.num_timesteps = int(timesteps) if loss_type == 'l1': loss_fn = F.l1_loss elif loss_type == 'l2': loss_fn = F.mse_loss elif loss_type == 'huber': loss_fn = F.smooth_l1_loss else: raise NotImplementedError() self.loss_type = loss_type self.loss_fn = loss_fn # register buffer helper function to cast double back to float register_buffer = lambda name, val: self.register_buffer(name, val.to(torch.float32)) register_buffer('betas', betas) register_buffer('alphas_cumprod', alphas_cumprod) register_buffer('alphas_cumprod_prev', alphas_cumprod_prev) # calculations for diffusion q(x_t | x_{t-1}) and others register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod)) register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod)) register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod)) register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod)) register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1)) # calculations for posterior q(x_{t-1} | x_t, x_0) posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) register_buffer('posterior_variance', posterior_variance) # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain register_buffer('posterior_log_variance_clipped', torch.log(posterior_variance.clamp(min =1e-20))) register_buffer('posterior_mean_coef1', betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)) register_buffer('posterior_mean_coef2', (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)) # p2 loss reweighting self.has_p2_loss_reweighting = p2_loss_weight_gamma > 0. register_buffer('p2_loss_weight', (p2_loss_weight_k + alphas_cumprod / (1 - alphas_cumprod)) ** -p2_loss_weight_gamma) def sample_random_times(self, batch): return torch.randint(0, self.num_timesteps, (batch,), device = self.betas.device, dtype = torch.long) def q_posterior(self, x_start, x_t, t): posterior_mean = ( extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + extract(self.posterior_mean_coef2, t, x_t.shape) * x_t ) posterior_variance = extract(self.posterior_variance, t, x_t.shape) posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) return posterior_mean, posterior_variance, posterior_log_variance_clipped def q_sample(self, x_start, t, noise = None): noise = default(noise, lambda: torch.randn_like(x_start)) return ( extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) def calculate_v(self, x_start, t, noise = None): return ( extract(self.sqrt_alphas_cumprod, t, x_start.shape) * noise - extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * x_start ) def q_sample_from_to(self, x_from, from_t, to_t, noise = None): shape = x_from.shape noise = default(noise, lambda: torch.randn_like(x_from)) alpha = extract(self.sqrt_alphas_cumprod, from_t, shape) sigma = extract(self.sqrt_one_minus_alphas_cumprod, from_t, shape) alpha_next = extract(self.sqrt_alphas_cumprod, to_t, shape) sigma_next = extract(self.sqrt_one_minus_alphas_cumprod, to_t, shape) return x_from * (alpha_next / alpha) + noise * (sigma_next * alpha - sigma * alpha_next) / alpha def predict_start_from_v(self, x_t, t, v): return ( extract(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t - extract(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v ) def predict_start_from_noise(self, x_t, t, noise): return ( extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise ) def predict_noise_from_start(self, x_t, t, x0): return ( (extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - x0) / \ extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) ) def p2_reweigh_loss(self, loss, times): if not self.has_p2_loss_reweighting: return loss return loss * extract(self.p2_loss_weight, times, loss.shape) # rearrange image to sequence class RearrangeToSequence(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x): x = rearrange(x, 'b c ... -> b ... c') x, ps = pack([x], 'b * c') x = self.fn(x) x, = unpack(x, ps, 'b * c') x = rearrange(x, 'b ... c -> b c ...') return x # diffusion prior class LayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5, fp16_eps = 1e-3, stable = False): super().__init__() self.eps = eps self.fp16_eps = fp16_eps self.stable = stable self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): eps = self.eps if x.dtype == torch.float32 else self.fp16_eps if self.stable: x = x / x.amax(dim = -1, keepdim = True).detach() var = torch.var(x, dim = -1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = -1, keepdim = True) return (x - mean) * (var + eps).rsqrt() * self.g class ChanLayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5, fp16_eps = 1e-3, stable = False): super().__init__() self.eps = eps self.fp16_eps = fp16_eps self.stable = stable self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) def forward(self, x): eps = self.eps if x.dtype == torch.float32 else self.fp16_eps if self.stable: x = x / x.amax(dim = 1, keepdim = True).detach() var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) * (var + eps).rsqrt() * self.g class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x # mlp class MLP(nn.Module): def __init__( self, dim_in, dim_out, *, expansion_factor = 2., depth = 2, norm = False, ): super().__init__() hidden_dim = int(expansion_factor * dim_out) norm_fn = lambda: nn.LayerNorm(hidden_dim) if norm else nn.Identity() layers = [nn.Sequential( nn.Linear(dim_in, hidden_dim), nn.SiLU(), norm_fn() )] for _ in range(depth - 1): layers.append(nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.SiLU(), norm_fn() )) layers.append(nn.Linear(hidden_dim, dim_out)) self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x.float()) # relative positional bias for causal transformer class RelPosBias(nn.Module): def __init__( self, heads = 8, num_buckets = 32, max_distance = 128, ): super().__init__() self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket( relative_position, num_buckets = 32, max_distance = 128 ): n = -relative_position n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + (torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) return torch.where(is_small, n, val_if_large) def forward(self, i, j, *, device): q_pos = torch.arange(i, dtype = torch.long, device = device) k_pos = torch.arange(j, dtype = torch.long, device = device) rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) return rearrange(values, 'i j h -> h i j') # feedforward class SwiGLU(nn.Module): """ used successfully in https://arxiv.org/abs/2204.0231 """ def forward(self, x): x, gate = x.chunk(2, dim = -1) return x * F.silu(gate) def FeedForward( dim, mult = 4, dropout = 0., post_activation_norm = False ): """ post-activation norm https://arxiv.org/abs/2110.09456 """ inner_dim = int(mult * dim) return nn.Sequential( LayerNorm(dim), nn.Linear(dim, inner_dim * 2, bias = False), SwiGLU(), LayerNorm(inner_dim) if post_activation_norm else nn.Identity(), nn.Dropout(dropout), nn.Linear(inner_dim, dim, bias = False) ) # attention class Attention(nn.Module): def __init__( self, dim, *, dim_head = 64, heads = 8, dropout = 0., causal = False, rotary_emb = None, cosine_sim = True, cosine_sim_scale = 16 ): super().__init__() self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5) self.cosine_sim = cosine_sim self.heads = heads inner_dim = dim_head * heads self.causal = causal self.norm = LayerNorm(dim) self.dropout = nn.Dropout(dropout) self.null_kv = nn.Parameter(torch.randn(2, dim_head)) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, dim_head * 2, bias = False) self.rotary_emb = rotary_emb self.to_out = nn.Sequential( nn.Linear(inner_dim, dim, bias = False), LayerNorm(dim) ) def forward(self, x, mask = None, attn_bias = None): b, n, device = *x.shape[:2], x.device x = self.norm(x) q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1)) q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads) q = q * self.scale # rotary embeddings if exists(self.rotary_emb): q, k = map(self.rotary_emb.rotate_queries_or_keys, (q, k)) # add null key / value for classifier free guidance in prior net nk, nv = map(lambda t: repeat(t, 'd -> b 1 d', b = b), self.null_kv.unbind(dim = -2)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # whether to use cosine sim if self.cosine_sim: q, k = map(l2norm, (q, k)) q, k = map(lambda t: t * math.sqrt(self.scale), (q, k)) # calculate query / key similarities sim = einsum('b h i d, b j d -> b h i j', q, k) # relative positional encoding (T5 style) if exists(attn_bias): sim = sim + attn_bias # masking max_neg_value = -torch.finfo(sim.dtype).max if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) if self.causal: i, j = sim.shape[-2:] causal_mask = torch.ones((i, j), dtype = torch.bool, device = device).triu(j - i + 1) sim = sim.masked_fill(causal_mask, max_neg_value) # attention attn = sim.softmax(dim = -1, dtype = torch.float32) attn = attn.type(sim.dtype) attn = self.dropout(attn) # aggregate values out = einsum('b h i j, b j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class CausalTransformer(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, ff_mult = 4, norm_in = False, norm_out = True, attn_dropout = 0., ff_dropout = 0., final_proj = True, normformer = False, rotary_emb = True ): super().__init__() self.init_norm = LayerNorm(dim) if norm_in else nn.Identity() # from latest BLOOM model and Yandex's YaLM self.rel_pos_bias = RelPosBias(heads = heads) rotary_emb = RotaryEmbedding(dim = min(32, dim_head)) if rotary_emb else None self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim = dim, causal = True, dim_head = dim_head, heads = heads, dropout = attn_dropout, rotary_emb = rotary_emb), FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout, post_activation_norm = normformer) ])) self.norm = LayerNorm(dim, stable = True) if norm_out else nn.Identity() # unclear in paper whether they projected after the classic layer norm for the final denoised image embedding, or just had the transformer output it directly: plan on offering both options self.project_out = nn.Linear(dim, dim, bias = False) if final_proj else nn.Identity() def forward(self, x): n, device = x.shape[1], x.device x = self.init_norm(x) attn_bias = self.rel_pos_bias(n, n + 1, device = device) for attn, ff in self.layers: x = attn(x, attn_bias = attn_bias) + x x = ff(x) + x out = self.norm(x) return self.project_out(out) class DiffusionPriorNetwork(nn.Module): def __init__( self, dim, num_timesteps = None, num_time_embeds = 1, num_image_embeds = 1, num_text_embeds = 1, max_text_len = 256, self_cond = False, **kwargs ): super().__init__() self.dim = dim self.num_time_embeds = num_time_embeds self.num_image_embeds = num_image_embeds self.num_text_embeds = num_text_embeds self.to_text_embeds = nn.Sequential( nn.Linear(dim, dim * num_text_embeds) if num_text_embeds > 1 else nn.Identity(), Rearrange('b (n d) -> b n d', n = num_text_embeds) ) self.continuous_embedded_time = not exists(num_timesteps) self.to_time_embeds = nn.Sequential( nn.Embedding(num_timesteps, dim * num_time_embeds) if exists(num_timesteps) else nn.Sequential(SinusoidalPosEmb(dim), MLP(dim, dim * num_time_embeds)), # also offer a continuous version of timestep embeddings, with a 2 layer MLP Rearrange('b (n d) -> b n d', n = num_time_embeds) ) self.to_image_embeds = nn.Sequential( nn.Linear(dim, dim * num_image_embeds) if num_image_embeds > 1 else nn.Identity(), Rearrange('b (n d) -> b n d', n = num_image_embeds) ) self.learned_query = nn.Parameter(torch.randn(dim)) self.causal_transformer = CausalTransformer(dim = dim, **kwargs) # dalle1 learned padding strategy self.max_text_len = max_text_len self.null_text_encodings = nn.Parameter(torch.randn(1, max_text_len, dim)) self.null_text_embeds = nn.Parameter(torch.randn(1, num_text_embeds, dim)) self.null_image_embed = nn.Parameter(torch.randn(1, dim)) # whether to use self conditioning, Hinton's group's new ddpm technique self.self_cond = self_cond def forward_with_cond_scale( self, *args, cond_scale = 1., **kwargs ): logits = self.forward(*args, **kwargs) if cond_scale == 1: return logits null_logits = self.forward(*args, text_cond_drop_prob = 1., image_cond_drop_prob = 1, **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, image_embed, diffusion_timesteps, *, text_embed, text_encodings = None, self_cond = None, text_cond_drop_prob = 0., image_cond_drop_prob = 0. ): batch, dim, device, dtype = *image_embed.shape, image_embed.device, image_embed.dtype num_time_embeds, num_image_embeds, num_text_embeds = self.num_time_embeds, self.num_image_embeds, self.num_text_embeds # setup self conditioning if self.self_cond: self_cond = default(self_cond, lambda: torch.zeros(batch, self.dim, device = device, dtype = dtype)) self_cond = rearrange(self_cond, 'b d -> b 1 d') # in section 2.2, last paragraph # "... consisting of encoded text, CLIP text embedding, diffusion timestep embedding, noised CLIP image embedding, final embedding for prediction" text_embed = self.to_text_embeds(text_embed) image_embed = self.to_image_embeds(image_embed) # classifier free guidance masks text_keep_mask = prob_mask_like((batch,), 1 - text_cond_drop_prob, device = device) text_keep_mask = rearrange(text_keep_mask, 'b -> b 1 1') image_keep_mask = prob_mask_like((batch,), 1 - image_cond_drop_prob, device = device) image_keep_mask = rearrange(image_keep_mask, 'b -> b 1 1') # make text encodings optional # although the paper seems to suggest it is present <-- if not exists(text_encodings): text_encodings = torch.empty((batch, 0, dim), device = device, dtype = dtype) mask = torch.any(text_encodings != 0., dim = -1) # replace any padding in the text encodings with learned padding tokens unique across position text_encodings = text_encodings[:, :self.max_text_len] mask = mask[:, :self.max_text_len] text_len = text_encodings.shape[-2] remainder = self.max_text_len - text_len if remainder > 0: text_encodings = F.pad(text_encodings, (0, 0, 0, remainder), value = 0.) mask = F.pad(mask, (0, remainder), value = False) # mask out text encodings with null encodings null_text_encodings = self.null_text_encodings.to(text_encodings.dtype) text_encodings = torch.where( rearrange(mask, 'b n -> b n 1').clone() & text_keep_mask, text_encodings, null_text_encodings ) # mask out text embeddings with null text embeddings null_text_embeds = self.null_text_embeds.to(text_embed.dtype) text_embed = torch.where( text_keep_mask, text_embed, null_text_embeds ) # mask out image embeddings with null image embeddings null_image_embed = self.null_image_embed.to(image_embed.dtype) image_embed = torch.where( image_keep_mask, image_embed, null_image_embed ) # whether text embedding is used for conditioning depends on whether text encodings are available for attention (for classifier free guidance, even though it seems from the paper it was not used in the prior ddpm, as the objective is different) # but let's just do it right if self.continuous_embedded_time: diffusion_timesteps = diffusion_timesteps.type(dtype) time_embed = self.to_time_embeds(diffusion_timesteps) learned_queries = repeat(self.learned_query, 'd -> b 1 d', b = batch) if self.self_cond: learned_queries = torch.cat((self_cond, learned_queries), dim = -2) tokens = torch.cat(( text_encodings, text_embed, time_embed, image_embed, learned_queries ), dim = -2) # attend tokens = self.causal_transformer(tokens) # get learned query, which should predict the image embedding (per DDPM timestep) pred_image_embed = tokens[..., -1, :] return pred_image_embed class DiffusionPrior(nn.Module): def __init__( self, net, *, clip = None, image_embed_dim = None, image_size = None, image_channels = 3, timesteps = 1000, sample_timesteps = None, cond_drop_prob = 0., text_cond_drop_prob = None, image_cond_drop_prob = None, loss_type = "l2", predict_x_start = True, predict_v = False, beta_schedule = "cosine", condition_on_text_encodings = True, # the paper suggests this is needed, but you can turn it off for your CLIP preprocessed text embed -> image embed training sampling_clamp_l2norm = False, # whether to l2norm clamp the image embed at each denoising iteration (analogous to -1 to 1 clipping for usual DDPMs) sampling_final_clamp_l2norm = False, # whether to l2norm the final image embedding output (this is also done for images in ddpm) training_clamp_l2norm = False, init_image_embed_l2norm = False, image_embed_scale = None, # this is for scaling the l2-normed image embedding, so it is more suitable for gaussian diffusion, as outlined by Katherine (@crowsonkb) https://github.com/lucidrains/DALLE2-pytorch/issues/60#issue-1226116132 clip_adapter_overrides = dict() ): super().__init__() self.sample_timesteps = sample_timesteps self.noise_scheduler = NoiseScheduler( beta_schedule = beta_schedule, timesteps = timesteps, loss_type = loss_type ) if exists(clip): assert image_channels == clip.image_channels, f'channels of image ({image_channels}) should be equal to the channels that CLIP accepts ({clip.image_channels})' if isinstance(clip, CLIP): clip = XClipAdapter(clip, **clip_adapter_overrides) elif isinstance(clip, CoCa): clip = CoCaAdapter(clip, **clip_adapter_overrides) assert isinstance(clip, BaseClipAdapter) freeze_model_and_make_eval_(clip) self.clip = clip else: assert exists(image_embed_dim), 'latent dimension must be given, if training prior network without CLIP given' self.clip = None self.net = net self.image_embed_dim = default(image_embed_dim, lambda: clip.dim_latent) assert net.dim == self.image_embed_dim, f'your diffusion prior network has a dimension of {net.dim}, but you set your image embedding dimension (keyword image_embed_dim) on DiffusionPrior to {self.image_embed_dim}' assert not exists(clip) or clip.dim_latent == self.image_embed_dim, f'you passed in a CLIP to the diffusion prior with latent dimensions of {clip.dim_latent}, but your image embedding dimension (keyword image_embed_dim) for the DiffusionPrior was set to {self.image_embed_dim}' self.channels = default(image_channels, lambda: clip.image_channels) self.text_cond_drop_prob = default(text_cond_drop_prob, cond_drop_prob) self.image_cond_drop_prob = default(image_cond_drop_prob, cond_drop_prob) self.can_classifier_guidance = self.text_cond_drop_prob > 0. and self.image_cond_drop_prob > 0. self.condition_on_text_encodings = condition_on_text_encodings # in paper, they do not predict the noise, but predict x0 directly for image embedding, claiming empirically better results. I'll just offer both. self.predict_x_start = predict_x_start self.predict_v = predict_v # takes precedence over predict_x_start # @crowsonkb 's suggestion - https://github.com/lucidrains/DALLE2-pytorch/issues/60#issue-1226116132 self.image_embed_scale = default(image_embed_scale, self.image_embed_dim ** 0.5) # whether to force an l2norm, similar to clipping denoised, when sampling self.sampling_clamp_l2norm = sampling_clamp_l2norm self.sampling_final_clamp_l2norm = sampling_final_clamp_l2norm self.training_clamp_l2norm = training_clamp_l2norm self.init_image_embed_l2norm = init_image_embed_l2norm # device tracker self.register_buffer('_dummy', torch.tensor([True]), persistent = False) @property def device(self): return self._dummy.device def l2norm_clamp_embed(self, image_embed): return l2norm(image_embed) * self.image_embed_scale def p_mean_variance(self, x, t, text_cond, self_cond = None, clip_denoised = False, cond_scale = 1.): assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the model was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)' pred = self.net.forward_with_cond_scale(x, t, cond_scale = cond_scale, self_cond = self_cond, **text_cond) if self.predict_v: x_start = self.noise_scheduler.predict_start_from_v(x, t = t, v = pred) elif self.predict_x_start: x_start = pred else: x_start = self.noise_scheduler.predict_start_from_noise(x, t = t, noise = pred) if clip_denoised and not self.predict_x_start: x_start.clamp_(-1., 1.) if self.predict_x_start and self.sampling_clamp_l2norm: x_start = l2norm(x_start) * self.image_embed_scale model_mean, posterior_variance, posterior_log_variance = self.noise_scheduler.q_posterior(x_start=x_start, x_t=x, t=t) return model_mean, posterior_variance, posterior_log_variance, x_start @torch.no_grad() def p_sample(self, x, t, text_cond = None, self_cond = None, clip_denoised = True, cond_scale = 1.): b, *_, device = *x.shape, x.device model_mean, _, model_log_variance, x_start = self.p_mean_variance(x = x, t = t, text_cond = text_cond, self_cond = self_cond, clip_denoised = clip_denoised, cond_scale = cond_scale) noise = torch.randn_like(x) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) pred = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise return pred, x_start @torch.no_grad() def p_sample_loop_ddpm(self, shape, text_cond, cond_scale = 1.): batch, device = shape[0], self.device image_embed = torch.randn(shape, device = device) x_start = None # for self-conditioning if self.init_image_embed_l2norm: image_embed = l2norm(image_embed) * self.image_embed_scale for i in tqdm(reversed(range(0, self.noise_scheduler.num_timesteps)), desc='sampling loop time step', total=self.noise_scheduler.num_timesteps): times = torch.full((batch,), i, device = device, dtype = torch.long) self_cond = x_start if self.net.self_cond else None image_embed, x_start = self.p_sample(image_embed, times, text_cond = text_cond, self_cond = self_cond, cond_scale = cond_scale) if self.sampling_final_clamp_l2norm and self.predict_x_start: image_embed = self.l2norm_clamp_embed(image_embed) return image_embed @torch.no_grad() def p_sample_loop_ddim(self, shape, text_cond, *, timesteps, eta = 1., cond_scale = 1.): batch, device, alphas, total_timesteps = shape[0], self.device, self.noise_scheduler.alphas_cumprod_prev, self.noise_scheduler.num_timesteps times = torch.linspace(-1., total_timesteps, steps = timesteps + 1)[:-1] times = list(reversed(times.int().tolist())) time_pairs = list(zip(times[:-1], times[1:])) image_embed = torch.randn(shape, device = device) x_start = None # for self-conditioning if self.init_image_embed_l2norm: image_embed = l2norm(image_embed) * self.image_embed_scale for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step'): alpha = alphas[time] alpha_next = alphas[time_next] time_cond = torch.full((batch,), time, device = device, dtype = torch.long) self_cond = x_start if self.net.self_cond else None pred = self.net.forward_with_cond_scale(image_embed, time_cond, self_cond = self_cond, cond_scale = cond_scale, **text_cond) # derive x0 if self.predict_v: x_start = self.noise_scheduler.predict_start_from_v(image_embed, t = time_cond, v = pred) elif self.predict_x_start: x_start = pred else: x_start = self.noise_scheduler.predict_start_from_noise(image_embed, t = time_cond, noise = pred) # clip x0 before maybe predicting noise if not self.predict_x_start: x_start.clamp_(-1., 1.) if self.predict_x_start and self.sampling_clamp_l2norm: x_start = self.l2norm_clamp_embed(x_start) # predict noise pred_noise = self.noise_scheduler.predict_noise_from_start(image_embed, t = time_cond, x0 = x_start) if time_next < 0: image_embed = x_start continue c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt() c2 = ((1 - alpha_next) - torch.square(c1)).sqrt() noise = torch.randn_like(image_embed) if time_next > 0 else 0. image_embed = x_start * alpha_next.sqrt() + \ c1 * noise + \ c2 * pred_noise if self.predict_x_start and self.sampling_final_clamp_l2norm: image_embed = self.l2norm_clamp_embed(image_embed) return image_embed @torch.no_grad() def p_sample_loop(self, *args, timesteps = None, **kwargs): timesteps = default(timesteps, self.noise_scheduler.num_timesteps) assert timesteps <= self.noise_scheduler.num_timesteps is_ddim = timesteps < self.noise_scheduler.num_timesteps if not is_ddim: normalized_image_embed = self.p_sample_loop_ddpm(*args, **kwargs) else: normalized_image_embed = self.p_sample_loop_ddim(*args, **kwargs, timesteps = timesteps) image_embed = normalized_image_embed / self.image_embed_scale return image_embed def p_losses(self, image_embed, times, text_cond, noise = None): noise = default(noise, lambda: torch.randn_like(image_embed)) image_embed_noisy = self.noise_scheduler.q_sample(x_start = image_embed, t = times, noise = noise) self_cond = None if self.net.self_cond and random.random() < 0.5: with torch.no_grad(): self_cond = self.net(image_embed_noisy, times, **text_cond).detach() pred = self.net( image_embed_noisy, times, self_cond = self_cond, text_cond_drop_prob = self.text_cond_drop_prob, image_cond_drop_prob = self.image_cond_drop_prob, **text_cond ) if self.predict_x_start and self.training_clamp_l2norm: pred = self.l2norm_clamp_embed(pred) if self.predict_v: target = self.noise_scheduler.calculate_v(image_embed, times, noise) elif self.predict_x_start: target = image_embed else: target = noise loss = self.noise_scheduler.loss_fn(pred, target) return loss @torch.no_grad() @eval_decorator def sample_batch_size(self, batch_size, text_cond, cond_scale = 1.): device = self.betas.device shape = (batch_size, self.image_embed_dim) img = torch.randn(shape, device = device) for i in tqdm(reversed(range(0, self.noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = self.noise_scheduler.num_timesteps): img = self.p_sample(img, torch.full((batch_size,), i, device = device, dtype = torch.long), text_cond = text_cond, cond_scale = cond_scale) return img @torch.no_grad() @eval_decorator def sample( self, text, num_samples_per_batch = 2, cond_scale = 1., timesteps = None ): timesteps = default(timesteps, self.sample_timesteps) # in the paper, what they did was # sample 2 image embeddings, choose the top 1 similarity, as judged by CLIP text = repeat(text, 'b ... -> (b r) ...', r = num_samples_per_batch) batch_size = text.shape[0] image_embed_dim = self.image_embed_dim text_embed, text_encodings = self.clip.embed_text(text) text_cond = dict(text_embed = text_embed) if self.condition_on_text_encodings: text_cond = {**text_cond, 'text_encodings': text_encodings} image_embeds = self.p_sample_loop((batch_size, image_embed_dim), text_cond = text_cond, cond_scale = cond_scale, timesteps = timesteps) # retrieve original unscaled image embed text_embeds = text_cond['text_embed'] text_embeds = rearrange(text_embeds, '(b r) d -> b r d', r = num_samples_per_batch) image_embeds = rearrange(image_embeds, '(b r) d -> b r d', r = num_samples_per_batch) text_image_sims = einsum('b r d, b r d -> b r', l2norm(text_embeds), l2norm(image_embeds)) top_sim_indices = text_image_sims.topk(k = 1).indices top_sim_indices = repeat(top_sim_indices, 'b 1 -> b 1 d', d = image_embed_dim) top_image_embeds = image_embeds.gather(1, top_sim_indices) return rearrange(top_image_embeds, 'b 1 d -> b d') def forward( self, text = None, image = None, text_embed = None, # allow for training on preprocessed CLIP text and image embeddings image_embed = None, text_encodings = None, # as well as CLIP text encodings *args, **kwargs ): assert exists(text) ^ exists(text_embed), 'either text or text embedding must be supplied' assert exists(image) ^ exists(image_embed), 'either image or image embedding must be supplied' assert not (self.condition_on_text_encodings and (not exists(text_encodings) and not exists(text))), 'text encodings must be present if you specified you wish to condition on it on initialization' if exists(image): image_embed, _ = self.clip.embed_image(image) # calculate text conditionings, based on what is passed in if exists(text): text_embed, text_encodings = self.clip.embed_text(text) text_cond = dict(text_embed = text_embed) if self.condition_on_text_encodings: assert exists(text_encodings), 'text encodings must be present for diffusion prior if specified' text_cond = {**text_cond, 'text_encodings': text_encodings} # timestep conditioning from ddpm batch, device = image_embed.shape[0], image_embed.device times = self.noise_scheduler.sample_random_times(batch) # scale image embed (Katherine) image_embed *= self.image_embed_scale # calculate forward loss return self.p_losses(image_embed, times, text_cond = text_cond, *args, **kwargs) # decoder def NearestUpsample(dim, dim_out = None): dim_out = default(dim_out, dim) return nn.Sequential( nn.Upsample(scale_factor = 2, mode = 'nearest'), nn.Conv2d(dim, dim_out, 3, padding = 1) ) class PixelShuffleUpsample(nn.Module): """ code shared by @MalumaDev at DALLE2-pytorch for addressing checkboard artifacts https://arxiv.org/ftp/arxiv/papers/1707/1707.02937.pdf """ def __init__(self, dim, dim_out = None): super().__init__() dim_out = default(dim_out, dim) conv = nn.Conv2d(dim, dim_out * 4, 1) self.net = nn.Sequential( conv, nn.SiLU(), nn.PixelShuffle(2) ) self.init_conv_(conv) def init_conv_(self, conv): o, i, h, w = conv.weight.shape conv_weight = torch.empty(o // 4, i, h, w) nn.init.kaiming_uniform_(conv_weight) conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...') conv.weight.data.copy_(conv_weight) nn.init.zeros_(conv.bias.data) def forward(self, x): return self.net(x) def Downsample(dim, dim_out = None): # https://arxiv.org/abs/2208.03641 shows this is the most optimal way to downsample # named SP-conv in the paper, but basically a pixel unshuffle dim_out = default(dim_out, dim) return nn.Sequential( Rearrange('b c (h s1) (w s2) -> b (c s1 s2) h w', s1 = 2, s2 = 2), nn.Conv2d(dim * 4, dim_out, 1) ) class WeightStandardizedConv2d(nn.Conv2d): """ https://arxiv.org/abs/1903.10520 weight standardization purportedly works synergistically with group normalization """ def forward(self, x): eps = 1e-5 if x.dtype == torch.float32 else 1e-3 weight = self.weight flattened_weights = rearrange(weight, 'o ... -> o (...)') mean = reduce(weight, 'o ... -> o 1 1 1', 'mean') var = torch.var(flattened_weights, dim = -1, unbiased = False) var = rearrange(var, 'o -> o 1 1 1') weight = (weight - mean) * (var + eps).rsqrt() return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): dtype, device = x.dtype, x.device assert is_float_dtype(dtype), 'input to sinusoidal pos emb must be a float type' half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device = device, dtype = dtype) * -emb) emb = rearrange(x, 'i -> i 1') * rearrange(emb, 'j -> 1 j') return torch.cat((emb.sin(), emb.cos()), dim = -1).type(dtype) class Block(nn.Module): def __init__( self, dim, dim_out, groups = 8, weight_standardization = False ): super().__init__() conv_klass = nn.Conv2d if not weight_standardization else WeightStandardizedConv2d self.project = conv_klass(dim, dim_out, 3, padding = 1) self.norm = nn.GroupNorm(groups, dim_out) self.act = nn.SiLU() def forward(self, x, scale_shift = None): x = self.project(x) x = self.norm(x) if exists(scale_shift): scale, shift = scale_shift x = x * (scale + 1) + shift x = self.act(x) return x class ResnetBlock(nn.Module): def __init__( self, dim, dim_out, *, cond_dim = None, time_cond_dim = None, groups = 8, weight_standardization = False, cosine_sim_cross_attn = False ): super().__init__() self.time_mlp = None if exists(time_cond_dim): self.time_mlp = nn.Sequential( nn.SiLU(), nn.Linear(time_cond_dim, dim_out * 2) ) self.cross_attn = None if exists(cond_dim): self.cross_attn = CrossAttention( dim = dim_out, context_dim = cond_dim, cosine_sim = cosine_sim_cross_attn ) self.block1 = Block(dim, dim_out, groups = groups, weight_standardization = weight_standardization) self.block2 = Block(dim_out, dim_out, groups = groups, weight_standardization = weight_standardization) self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() def forward(self, x, time_emb = None, cond = None): scale_shift = None if exists(self.time_mlp) and exists(time_emb): time_emb = self.time_mlp(time_emb) time_emb = rearrange(time_emb, 'b c -> b c 1 1') scale_shift = time_emb.chunk(2, dim = 1) h = self.block1(x, scale_shift = scale_shift) if exists(self.cross_attn): assert exists(cond) h = rearrange(h, 'b c ... -> b ... c') h, ps = pack([h], 'b * c') h = self.cross_attn(h, context = cond) + h h, = unpack(h, ps, 'b * c') h = rearrange(h, 'b ... c -> b c ...') h = self.block2(h) return h + self.res_conv(x) class CrossAttention(nn.Module): def __init__( self, dim, *, context_dim = None, dim_head = 64, heads = 8, dropout = 0., norm_context = False, cosine_sim = False, cosine_sim_scale = 16 ): super().__init__() self.cosine_sim = cosine_sim self.scale = cosine_sim_scale if cosine_sim else (dim_head ** -0.5) self.heads = heads inner_dim = dim_head * heads context_dim = default(context_dim, dim) self.norm = LayerNorm(dim) self.norm_context = LayerNorm(context_dim) if norm_context else nn.Identity() self.dropout = nn.Dropout(dropout) self.null_kv = nn.Parameter(torch.randn(2, dim_head)) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim, bias = False), LayerNorm(dim) ) def forward(self, x, context, mask = None): b, n, device = *x.shape[:2], x.device x = self.norm(x) context = self.norm_context(context) q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v)) # add null key / value for classifier free guidance in prior net nk, nv = map(lambda t: repeat(t, 'd -> b h 1 d', h = self.heads, b = b), self.null_kv.unbind(dim = -2)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) if self.cosine_sim: q, k = map(l2norm, (q, k)) q, k = map(lambda t: t * math.sqrt(self.scale), (q, k)) sim = einsum('b h i d, b h j d -> b h i j', q, k) max_neg_value = -torch.finfo(sim.dtype).max if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, max_neg_value) attn = sim.softmax(dim = -1, dtype = torch.float32) attn = attn.type(sim.dtype) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class LinearAttention(nn.Module): def __init__( self, dim, dim_head = 32, heads = 8, **kwargs ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads inner_dim = dim_head * heads self.norm = ChanLayerNorm(dim) self.nonlin = nn.GELU() self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False) self.to_out = nn.Sequential( nn.Conv2d(inner_dim, dim, 1, bias = False), ChanLayerNorm(dim) ) def forward(self, fmap): h, x, y = self.heads, *fmap.shape[-2:] seq_len = x * y fmap = self.norm(fmap) q, k, v = self.to_qkv(fmap).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = h), (q, k, v)) q = q.softmax(dim = -1) k = k.softmax(dim = -2) q = q * self.scale v = l2norm(v) k, v = map(lambda t: t / math.sqrt(seq_len), (k, v)) context = einsum('b n d, b n e -> b d e', k, v) out = einsum('b n d, b d e -> b n e', q, context) out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, x = x, y = y) out = self.nonlin(out) return self.to_out(out) class CrossEmbedLayer(nn.Module): def __init__( self, dim_in, kernel_sizes, dim_out = None, stride = 2 ): super().__init__() assert all([*map(lambda t: (t % 2) == (stride % 2), kernel_sizes)]) dim_out = default(dim_out, dim_in) kernel_sizes = sorted(kernel_sizes) num_scales = len(kernel_sizes) # calculate the dimension at each scale dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)] dim_scales = [*dim_scales, dim_out - sum(dim_scales)] self.convs = nn.ModuleList([]) for kernel, dim_scale in zip(kernel_sizes, dim_scales): self.convs.append(nn.Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2)) def forward(self, x): fmaps = tuple(map(lambda conv: conv(x), self.convs)) return torch.cat(fmaps, dim = 1) class UpsampleCombiner(nn.Module): def __init__( self, dim, *, enabled = False, dim_ins = tuple(), dim_outs = tuple() ): super().__init__() assert len(dim_ins) == len(dim_outs) self.enabled = enabled if not self.enabled: self.dim_out = dim return self.fmap_convs = nn.ModuleList([Block(dim_in, dim_out) for dim_in, dim_out in zip(dim_ins, dim_outs)]) self.dim_out = dim + (sum(dim_outs) if len(dim_outs) > 0 else 0) def forward(self, x, fmaps = None): target_size = x.shape[-1] fmaps = default(fmaps, tuple()) if not self.enabled or len(fmaps) == 0 or len(self.fmap_convs) == 0: return x fmaps = [resize_image_to(fmap, target_size) for fmap in fmaps] outs = [conv(fmap) for fmap, conv in zip(fmaps, self.fmap_convs)] return torch.cat((x, *outs), dim = 1) class Unet(nn.Module): def __init__( self, dim, *, image_embed_dim = None, text_embed_dim = None, cond_dim = None, num_image_tokens = 4, num_time_tokens = 2, out_dim = None, dim_mults=(1, 2, 4, 8), channels = 3, channels_out = None, self_attn = False, attn_dim_head = 32, attn_heads = 16, lowres_cond = False, # for cascading diffusion - https://cascaded-diffusion.github.io/ lowres_noise_cond = False, # for conditioning on low resolution noising, based on Imagen self_cond = False, # set this to True to use the self-conditioning technique from - https://arxiv.org/abs/2208.04202 sparse_attn = False, cosine_sim_cross_attn = False, cosine_sim_self_attn = False, attend_at_middle = True, # whether to have a layer of attention at the bottleneck (can turn off for higher resolution in cascading DDPM, before bringing in efficient attention) cond_on_text_encodings = False, max_text_len = 256, cond_on_image_embeds = False, add_image_embeds_to_time = True, # alerted by @mhh0318 to a phrase in the paper - "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and adding CLIP embeddings to the existing timestep embedding" init_dim = None, init_conv_kernel_size = 7, resnet_groups = 8, resnet_weight_standardization = False, num_resnet_blocks = 2, init_cross_embed = True, init_cross_embed_kernel_sizes = (3, 7, 15), cross_embed_downsample = False, cross_embed_downsample_kernel_sizes = (2, 4), memory_efficient = False, scale_skip_connection = False, pixel_shuffle_upsample = True, final_conv_kernel_size = 1, combine_upsample_fmaps = False, # whether to combine the outputs of all upsample blocks, as in unet squared paper checkpoint_during_training = False, **kwargs ): super().__init__() # save locals to take care of some hyperparameters for cascading DDPM self._locals = locals() del self._locals['self'] del self._locals['__class__'] # for eventual cascading diffusion self.lowres_cond = lowres_cond # whether to do self conditioning self.self_cond = self_cond # determine dimensions self.channels = channels self.channels_out = default(channels_out, channels) # initial number of channels depends on # (1) low resolution conditioning from cascading ddpm paper, conditioned on previous unet output in the cascade # (2) self conditioning (bit diffusion paper) init_channels = channels * (1 + int(lowres_cond) + int(self_cond)) init_dim = default(init_dim, dim) self.init_conv = CrossEmbedLayer(init_channels, dim_out = init_dim, kernel_sizes = init_cross_embed_kernel_sizes, stride = 1) if init_cross_embed else nn.Conv2d(init_channels, init_dim, init_conv_kernel_size, padding = init_conv_kernel_size // 2) dims = [init_dim, *map(lambda m: dim * m, dim_mults)] in_out = list(zip(dims[:-1], dims[1:])) num_stages = len(in_out) # time, image embeddings, and optional text encoding cond_dim = default(cond_dim, dim) time_cond_dim = dim * 4 self.to_time_hiddens = nn.Sequential( SinusoidalPosEmb(dim), nn.Linear(dim, time_cond_dim), nn.GELU() ) self.to_time_tokens = nn.Sequential( nn.Linear(time_cond_dim, cond_dim * num_time_tokens), Rearrange('b (r d) -> b r d', r = num_time_tokens) ) self.to_time_cond = nn.Sequential( nn.Linear(time_cond_dim, time_cond_dim) ) self.image_to_tokens = nn.Sequential( nn.Linear(image_embed_dim, cond_dim * num_image_tokens), Rearrange('b (n d) -> b n d', n = num_image_tokens) ) if cond_on_image_embeds and image_embed_dim != cond_dim else nn.Identity() self.to_image_hiddens = nn.Sequential( nn.Linear(image_embed_dim, time_cond_dim), nn.GELU() ) if cond_on_image_embeds and add_image_embeds_to_time else None self.norm_cond = nn.LayerNorm(cond_dim) self.norm_mid_cond = nn.LayerNorm(cond_dim) # text encoding conditioning (optional) self.text_to_cond = None self.text_embed_dim = None if cond_on_text_encodings: assert exists(text_embed_dim), 'text_embed_dim must be given to the unet if cond_on_text_encodings is True' self.text_to_cond = nn.Linear(text_embed_dim, cond_dim) self.text_embed_dim = text_embed_dim # low resolution noise conditiong, based on Imagen's upsampler training technique self.lowres_noise_cond = lowres_noise_cond self.to_lowres_noise_cond = nn.Sequential( SinusoidalPosEmb(dim), nn.Linear(dim, time_cond_dim), nn.GELU(), nn.Linear(time_cond_dim, time_cond_dim) ) if lowres_noise_cond else None # finer control over whether to condition on image embeddings and text encodings # so one can have the latter unets in the cascading DDPMs only focus on super-resoluting self.cond_on_text_encodings = cond_on_text_encodings self.cond_on_image_embeds = cond_on_image_embeds # for classifier free guidance self.null_image_embed = nn.Parameter(torch.randn(1, num_image_tokens, cond_dim)) self.null_image_hiddens = nn.Parameter(torch.randn(1, time_cond_dim)) self.max_text_len = max_text_len self.null_text_embed = nn.Parameter(torch.randn(1, max_text_len, cond_dim)) # whether to scale skip connection, adopted in Imagen self.skip_connect_scale = 1. if not scale_skip_connection else (2 ** -0.5) # attention related params attn_kwargs = dict(heads = attn_heads, dim_head = attn_dim_head, cosine_sim = cosine_sim_self_attn) self_attn = cast_tuple(self_attn, num_stages) create_self_attn = lambda dim: RearrangeToSequence(Residual(Attention(dim, **attn_kwargs))) # resnet block klass resnet_groups = cast_tuple(resnet_groups, num_stages) top_level_resnet_group = first(resnet_groups) num_resnet_blocks = cast_tuple(num_resnet_blocks, num_stages) # downsample klass downsample_klass = Downsample if cross_embed_downsample: downsample_klass = partial(CrossEmbedLayer, kernel_sizes = cross_embed_downsample_kernel_sizes) # upsample klass upsample_klass = NearestUpsample if not pixel_shuffle_upsample else PixelShuffleUpsample # prepare resnet klass resnet_block = partial(ResnetBlock, cosine_sim_cross_attn = cosine_sim_cross_attn, weight_standardization = resnet_weight_standardization) # give memory efficient unet an initial resnet block self.init_resnet_block = resnet_block(init_dim, init_dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) if memory_efficient else None # layers self.downs = nn.ModuleList([]) self.ups = nn.ModuleList([]) num_resolutions = len(in_out) skip_connect_dims = [] # keeping track of skip connection dimensions upsample_combiner_dims = [] # keeping track of dimensions for final upsample feature map combiner for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(in_out, resnet_groups, num_resnet_blocks, self_attn)): is_first = ind == 0 is_last = ind >= (num_resolutions - 1) layer_cond_dim = cond_dim if not is_first else None dim_layer = dim_out if memory_efficient else dim_in skip_connect_dims.append(dim_layer) attention = nn.Identity() if layer_self_attn: attention = create_self_attn(dim_layer) elif sparse_attn: attention = Residual(LinearAttention(dim_layer, **attn_kwargs)) self.downs.append(nn.ModuleList([ downsample_klass(dim_in, dim_out = dim_out) if memory_efficient else None, resnet_block(dim_layer, dim_layer, time_cond_dim = time_cond_dim, groups = groups), nn.ModuleList([resnet_block(dim_layer, dim_layer, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]), attention, downsample_klass(dim_layer, dim_out = dim_out) if not is_last and not memory_efficient else nn.Conv2d(dim_layer, dim_out, 1) ])) mid_dim = dims[-1] self.mid_block1 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1]) self.mid_attn = create_self_attn(mid_dim) self.mid_block2 = resnet_block(mid_dim, mid_dim, cond_dim = cond_dim, time_cond_dim = time_cond_dim, groups = resnet_groups[-1]) for ind, ((dim_in, dim_out), groups, layer_num_resnet_blocks, layer_self_attn) in enumerate(zip(reversed(in_out), reversed(resnet_groups), reversed(num_resnet_blocks), reversed(self_attn))): is_last = ind >= (len(in_out) - 1) layer_cond_dim = cond_dim if not is_last else None skip_connect_dim = skip_connect_dims.pop() attention = nn.Identity() if layer_self_attn: attention = create_self_attn(dim_out) elif sparse_attn: attention = Residual(LinearAttention(dim_out, **attn_kwargs)) upsample_combiner_dims.append(dim_out) self.ups.append(nn.ModuleList([ resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups), nn.ModuleList([resnet_block(dim_out + skip_connect_dim, dim_out, cond_dim = layer_cond_dim, time_cond_dim = time_cond_dim, groups = groups) for _ in range(layer_num_resnet_blocks)]), attention, upsample_klass(dim_out, dim_in) if not is_last or memory_efficient else nn.Identity() ])) # whether to combine outputs from all upsample blocks for final resnet block self.upsample_combiner = UpsampleCombiner( dim = dim, enabled = combine_upsample_fmaps, dim_ins = upsample_combiner_dims, dim_outs = (dim,) * len(upsample_combiner_dims) ) # a final resnet block self.final_resnet_block = resnet_block(self.upsample_combiner.dim_out + dim, dim, time_cond_dim = time_cond_dim, groups = top_level_resnet_group) out_dim_in = dim + (channels if lowres_cond else 0) self.to_out = nn.Conv2d(out_dim_in, self.channels_out, kernel_size = final_conv_kernel_size, padding = final_conv_kernel_size // 2) zero_init_(self.to_out) # since both OpenAI and @crowsonkb are doing it # whether to checkpoint during training self.checkpoint_during_training = checkpoint_during_training # if the current settings for the unet are not correct # for cascading DDPM, then reinit the unet with the right settings def cast_model_parameters( self, *, lowres_cond, lowres_noise_cond, channels, channels_out, cond_on_image_embeds, cond_on_text_encodings, ): if lowres_cond == self.lowres_cond and \ channels == self.channels and \ cond_on_image_embeds == self.cond_on_image_embeds and \ cond_on_text_encodings == self.cond_on_text_encodings and \ lowres_noise_cond == self.lowres_noise_cond and \ channels_out == self.channels_out: return self updated_kwargs = dict( lowres_cond = lowres_cond, channels = channels, channels_out = channels_out, cond_on_image_embeds = cond_on_image_embeds, cond_on_text_encodings = cond_on_text_encodings, lowres_noise_cond = lowres_noise_cond ) return self.__class__(**{**self._locals, **updated_kwargs}) def forward_with_cond_scale( self, *args, cond_scale = 1., **kwargs ): logits = self.forward(*args, **kwargs) if cond_scale == 1: return logits null_logits = self.forward(*args, text_cond_drop_prob = 1., image_cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, x, time, *, image_embed, lowres_cond_img = None, lowres_noise_level = None, text_encodings = None, image_cond_drop_prob = 0., text_cond_drop_prob = 0., blur_sigma = None, blur_kernel_size = None, disable_checkpoint = False, self_cond = None ): batch_size, device = x.shape[0], x.device # add low resolution conditioning, if present assert not (self.lowres_cond and not exists(lowres_cond_img)), 'low resolution conditioning image must be present' # concat self conditioning, if needed if self.self_cond: self_cond = default(self_cond, lambda: torch.zeros_like(x)) x = torch.cat((x, self_cond), dim = 1) # concat low resolution conditioning if exists(lowres_cond_img): x = torch.cat((x, lowres_cond_img), dim = 1) # initial convolution x = self.init_conv(x) r = x.clone() # final residual # time conditioning time = time.type_as(x) time_hiddens = self.to_time_hiddens(time) time_tokens = self.to_time_tokens(time_hiddens) t = self.to_time_cond(time_hiddens) # low res noise conditioning (similar to time above) if exists(lowres_noise_level): assert exists(self.to_lowres_noise_cond), 'lowres_noise_cond must be set to True on instantiation of the unet in order to conditiong on lowres noise' lowres_noise_level = lowres_noise_level.type_as(x) t = t + self.to_lowres_noise_cond(lowres_noise_level) # conditional dropout image_keep_mask = prob_mask_like((batch_size,), 1 - image_cond_drop_prob, device = device) text_keep_mask = prob_mask_like((batch_size,), 1 - text_cond_drop_prob, device = device) text_keep_mask = rearrange(text_keep_mask, 'b -> b 1 1') # image embedding to be summed to time embedding # discovered by @mhh0318 in the paper if exists(image_embed) and exists(self.to_image_hiddens): image_hiddens = self.to_image_hiddens(image_embed) image_keep_mask_hidden = rearrange(image_keep_mask, 'b -> b 1') null_image_hiddens = self.null_image_hiddens.to(image_hiddens.dtype) image_hiddens = torch.where( image_keep_mask_hidden, image_hiddens, null_image_hiddens ) t = t + image_hiddens # mask out image embedding depending on condition dropout # for classifier free guidance image_tokens = None if self.cond_on_image_embeds: image_keep_mask_embed = rearrange(image_keep_mask, 'b -> b 1 1') image_tokens = self.image_to_tokens(image_embed) null_image_embed = self.null_image_embed.to(image_tokens.dtype) # for some reason pytorch AMP not working image_tokens = torch.where( image_keep_mask_embed, image_tokens, null_image_embed ) # take care of text encodings (optional) text_tokens = None if exists(text_encodings) and self.cond_on_text_encodings: assert text_encodings.shape[0] == batch_size, f'the text encodings being passed into the unet does not have the proper batch size - text encoding shape {text_encodings.shape} - required batch size is {batch_size}' assert self.text_embed_dim == text_encodings.shape[-1], f'the text encodings you are passing in have a dimension of {text_encodings.shape[-1]}, but the unet was created with text_embed_dim of {self.text_embed_dim}.' text_mask = torch.any(text_encodings != 0., dim = -1) text_tokens = self.text_to_cond(text_encodings) text_tokens = text_tokens[:, :self.max_text_len] text_mask = text_mask[:, :self.max_text_len] text_tokens_len = text_tokens.shape[1] remainder = self.max_text_len - text_tokens_len if remainder > 0: text_tokens = F.pad(text_tokens, (0, 0, 0, remainder)) text_mask = F.pad(text_mask, (0, remainder), value = False) text_mask = rearrange(text_mask, 'b n -> b n 1') assert text_mask.shape[0] == text_keep_mask.shape[0], f'text_mask has shape of {text_mask.shape} while text_keep_mask has shape {text_keep_mask.shape}. text encoding is of shape {text_encodings.shape}' text_keep_mask = text_mask & text_keep_mask null_text_embed = self.null_text_embed.to(text_tokens.dtype) # for some reason pytorch AMP not working text_tokens = torch.where( text_keep_mask, text_tokens, null_text_embed ) # main conditioning tokens (c) c = time_tokens if exists(image_tokens): c = torch.cat((c, image_tokens), dim = -2) # text and image conditioning tokens (mid_c) # to save on compute, only do cross attention based conditioning on the inner most layers of the Unet mid_c = c if not exists(text_tokens) else torch.cat((c, text_tokens), dim = -2) # normalize conditioning tokens c = self.norm_cond(c) mid_c = self.norm_mid_cond(mid_c) # gradient checkpointing can_checkpoint = self.training and self.checkpoint_during_training and not disable_checkpoint apply_checkpoint_fn = make_checkpointable if can_checkpoint else identity # make checkpointable modules init_resnet_block, mid_block1, mid_attn, mid_block2, final_resnet_block = [maybe(apply_checkpoint_fn)(module) for module in (self.init_resnet_block, self.mid_block1, self.mid_attn, self.mid_block2, self.final_resnet_block)] can_checkpoint_cond = lambda m: isinstance(m, ResnetBlock) downs, ups = [maybe(apply_checkpoint_fn)(m, condition = can_checkpoint_cond) for m in (self.downs, self.ups)] # initial resnet block if exists(init_resnet_block): x = init_resnet_block(x, t) # go through the layers of the unet, down and up down_hiddens = [] up_hiddens = [] for pre_downsample, init_block, resnet_blocks, attn, post_downsample in downs: if exists(pre_downsample): x = pre_downsample(x) x = init_block(x, t, c) for resnet_block in resnet_blocks: x = resnet_block(x, t, c) down_hiddens.append(x.contiguous()) x = attn(x) down_hiddens.append(x.contiguous()) if exists(post_downsample): x = post_downsample(x) x = mid_block1(x, t, mid_c) if exists(mid_attn): x = mid_attn(x) x = mid_block2(x, t, mid_c) connect_skip = lambda fmap: torch.cat((fmap, down_hiddens.pop() * self.skip_connect_scale), dim = 1) for init_block, resnet_blocks, attn, upsample in ups: x = connect_skip(x) x = init_block(x, t, c) for resnet_block in resnet_blocks: x = connect_skip(x) x = resnet_block(x, t, c) x = attn(x) up_hiddens.append(x.contiguous()) x = upsample(x) x = self.upsample_combiner(x, up_hiddens) x = torch.cat((x, r), dim = 1) x = final_resnet_block(x, t) if exists(lowres_cond_img): x = torch.cat((x, lowres_cond_img), dim = 1) return self.to_out(x) class LowresConditioner(nn.Module): def __init__( self, downsample_first = True, use_blur = True, blur_prob = 0.5, blur_sigma = 0.6, blur_kernel_size = 3, use_noise = False, input_image_range = None, normalize_img_fn = identity, unnormalize_img_fn = identity ): super().__init__() self.downsample_first = downsample_first self.input_image_range = input_image_range self.use_blur = use_blur self.blur_prob = blur_prob self.blur_sigma = blur_sigma self.blur_kernel_size = blur_kernel_size self.use_noise = use_noise self.normalize_img = normalize_img_fn self.unnormalize_img = unnormalize_img_fn self.noise_scheduler = NoiseScheduler(beta_schedule = 'linear', timesteps = 1000, loss_type = 'l2') if use_noise else None def noise_image(self, cond_fmap, noise_levels = None): assert exists(self.noise_scheduler) batch = cond_fmap.shape[0] cond_fmap = self.normalize_img(cond_fmap) random_noise_levels = default(noise_levels, lambda: self.noise_scheduler.sample_random_times(batch)) cond_fmap = self.noise_scheduler.q_sample(cond_fmap, t = random_noise_levels, noise = torch.randn_like(cond_fmap)) cond_fmap = self.unnormalize_img(cond_fmap) return cond_fmap, random_noise_levels def forward( self, cond_fmap, *, target_image_size, downsample_image_size = None, should_blur = True, blur_sigma = None, blur_kernel_size = None ): if self.downsample_first and exists(downsample_image_size): cond_fmap = resize_image_to(cond_fmap, downsample_image_size, clamp_range = self.input_image_range, nearest = True) # blur is only applied 50% of the time # section 3.1 in https://arxiv.org/abs/2106.15282 if self.use_blur and should_blur and random.random() < self.blur_prob: # when training, blur the low resolution conditional image blur_sigma = default(blur_sigma, self.blur_sigma) blur_kernel_size = default(blur_kernel_size, self.blur_kernel_size) # allow for drawing a random sigma between lo and hi float values if isinstance(blur_sigma, tuple): blur_sigma = tuple(map(float, blur_sigma)) blur_sigma = random.uniform(*blur_sigma) # allow for drawing a random kernel size between lo and hi int values if isinstance(blur_kernel_size, tuple): blur_kernel_size = tuple(map(int, blur_kernel_size)) kernel_size_lo, kernel_size_hi = blur_kernel_size blur_kernel_size = random.randrange(kernel_size_lo, kernel_size_hi + 1) cond_fmap = gaussian_blur2d(cond_fmap, cast_tuple(blur_kernel_size, 2), cast_tuple(blur_sigma, 2)) # resize to target image size cond_fmap = resize_image_to(cond_fmap, target_image_size, clamp_range = self.input_image_range, nearest = True) # noise conditioning, as done in Imagen # as a replacement for the BSR noising, and potentially replace blurring for first stage too random_noise_levels = None if self.use_noise: cond_fmap, random_noise_levels = self.noise_image(cond_fmap) # return conditioning feature map, as well as the augmentation noise levels return cond_fmap, random_noise_levels class Decoder(nn.Module): def __init__( self, unet, *, clip = None, image_size = None, channels = 3, vae = tuple(), timesteps = 1000, sample_timesteps = None, image_cond_drop_prob = 0.1, text_cond_drop_prob = 0.5, loss_type = 'l2', beta_schedule = None, predict_x_start = False, predict_v = False, predict_x_start_for_latent_diffusion = False, image_sizes = None, # for cascading ddpm, image size at each stage random_crop_sizes = None, # whether to random crop the image at that stage in the cascade (super resoluting convolutions at the end may be able to generalize on smaller crops) use_noise_for_lowres_cond = False, # whether to use Imagen-like noising for low resolution conditioning use_blur_for_lowres_cond = True, # whether to use the blur conditioning used in the original cascading ddpm paper, as well as DALL-E2 lowres_downsample_first = True, # cascading ddpm - resizes to lower resolution, then to next conditional resolution + blur blur_prob = 0.5, # cascading ddpm - when training, the gaussian blur is only applied 50% of the time blur_sigma = 0.6, # cascading ddpm - blur sigma blur_kernel_size = 3, # cascading ddpm - blur kernel size lowres_noise_sample_level = 0.2, # in imagen paper, they use a 0.2 noise level at sample time for low resolution conditioning clip_denoised = True, clip_x_start = True, clip_adapter_overrides = dict(), learned_variance = True, learned_variance_constrain_frac = False, vb_loss_weight = 0.001, unconditional = False, # set to True for generating images without conditioning auto_normalize_img = True, # whether to take care of normalizing the image from [0, 1] to [-1, 1] and back automatically - you can turn this off if you want to pass in the [-1, 1] ranged image yourself from the dataloader use_dynamic_thres = False, # from the Imagen paper dynamic_thres_percentile = 0.95, p2_loss_weight_gamma = 0., # p2 loss weight, from https://arxiv.org/abs/2204.00227 - 0 is equivalent to weight of 1 across time - 1. is recommended p2_loss_weight_k = 1, ddim_sampling_eta = 0. # can be set to 0. for deterministic sampling afaict ): super().__init__() # clip self.clip = None if exists(clip): assert not unconditional, 'clip must not be given if doing unconditional image training' assert channels == clip.image_channels, f'channels of image ({channels}) should be equal to the channels that CLIP accepts ({clip.image_channels})' if isinstance(clip, CLIP): clip = XClipAdapter(clip, **clip_adapter_overrides) elif isinstance(clip, CoCa): clip = CoCaAdapter(clip, **clip_adapter_overrides) freeze_model_and_make_eval_(clip) assert isinstance(clip, BaseClipAdapter) self.clip = clip # determine image size, with image_size and image_sizes taking precedence if exists(image_size) or exists(image_sizes): assert exists(image_size) ^ exists(image_sizes), 'only one of image_size or image_sizes must be given' image_size = default(image_size, lambda: image_sizes[-1]) elif exists(clip): image_size = clip.image_size else: raise Error('either image_size, image_sizes, or clip must be given to decoder') # channels self.channels = channels # normalize and unnormalize image functions self.normalize_img = normalize_neg_one_to_one if auto_normalize_img else identity self.unnormalize_img = unnormalize_zero_to_one if auto_normalize_img else identity # verify conditioning method unets = cast_tuple(unet) num_unets = len(unets) self.num_unets = num_unets self.unconditional = unconditional # automatically take care of ensuring that first unet is unconditional # while the rest of the unets are conditioned on the low resolution image produced by previous unet vaes = pad_tuple_to_length(cast_tuple(vae), len(unets), fillvalue = NullVQGanVAE(channels = self.channels)) # whether to use learned variance, defaults to True for the first unet in the cascade, as in paper learned_variance = pad_tuple_to_length(cast_tuple(learned_variance), len(unets), fillvalue = False) self.learned_variance = learned_variance self.learned_variance_constrain_frac = learned_variance_constrain_frac # whether to constrain the output of the network (the interpolation fraction) from 0 to 1 self.vb_loss_weight = vb_loss_weight # default and validate conditioning parameters use_noise_for_lowres_cond = cast_tuple(use_noise_for_lowres_cond, num_unets - 1, validate = False) use_blur_for_lowres_cond = cast_tuple(use_blur_for_lowres_cond, num_unets - 1, validate = False) if len(use_noise_for_lowres_cond) < num_unets: use_noise_for_lowres_cond = (False, *use_noise_for_lowres_cond) if len(use_blur_for_lowres_cond) < num_unets: use_blur_for_lowres_cond = (False, *use_blur_for_lowres_cond) assert not use_noise_for_lowres_cond[0], 'first unet will never need low res noise conditioning' assert not use_blur_for_lowres_cond[0], 'first unet will never need low res blur conditioning' assert num_unets == 1 or all((use_noise or use_blur) for use_noise, use_blur in zip(use_noise_for_lowres_cond[1:], use_blur_for_lowres_cond[1:])) # construct unets and vaes self.unets = nn.ModuleList([]) self.vaes = nn.ModuleList([]) for ind, (one_unet, one_vae, one_unet_learned_var, lowres_noise_cond) in enumerate(zip(unets, vaes, learned_variance, use_noise_for_lowres_cond)): assert isinstance(one_unet, Unet) assert isinstance(one_vae, (VQGanVAE, NullVQGanVAE)) is_first = ind == 0 latent_dim = one_vae.encoded_dim if exists(one_vae) else None unet_channels = default(latent_dim, self.channels) unet_channels_out = unet_channels * (1 if not one_unet_learned_var else 2) one_unet = one_unet.cast_model_parameters( lowres_cond = not is_first, lowres_noise_cond = lowres_noise_cond, cond_on_image_embeds = not unconditional and is_first, cond_on_text_encodings = not unconditional and one_unet.cond_on_text_encodings, channels = unet_channels, channels_out = unet_channels_out ) self.unets.append(one_unet) self.vaes.append(one_vae.copy_for_eval()) # sampling timesteps, defaults to non-ddim with full timesteps sampling self.sample_timesteps = cast_tuple(sample_timesteps, num_unets) self.ddim_sampling_eta = ddim_sampling_eta # create noise schedulers per unet if not exists(beta_schedule): beta_schedule = ('cosine', *(('cosine',) * max(num_unets - 2, 0)), *(('linear',) * int(num_unets > 1))) beta_schedule = cast_tuple(beta_schedule, num_unets) p2_loss_weight_gamma = cast_tuple(p2_loss_weight_gamma, num_unets) self.noise_schedulers = nn.ModuleList([]) for ind, (unet_beta_schedule, unet_p2_loss_weight_gamma, sample_timesteps) in enumerate(zip(beta_schedule, p2_loss_weight_gamma, self.sample_timesteps)): assert not exists(sample_timesteps) or sample_timesteps <= timesteps, f'sampling timesteps {sample_timesteps} must be less than or equal to the number of training timesteps {timesteps} for unet {ind + 1}' noise_scheduler = NoiseScheduler( beta_schedule = unet_beta_schedule, timesteps = timesteps, loss_type = loss_type, p2_loss_weight_gamma = unet_p2_loss_weight_gamma, p2_loss_weight_k = p2_loss_weight_k ) self.noise_schedulers.append(noise_scheduler) # unet image sizes image_sizes = default(image_sizes, (image_size,)) image_sizes = tuple(sorted(set(image_sizes))) assert self.num_unets == len(image_sizes), f'you did not supply the correct number of u-nets ({self.num_unets}) for resolutions {image_sizes}' self.image_sizes = image_sizes self.sample_channels = cast_tuple(self.channels, len(image_sizes)) # random crop sizes (for super-resoluting unets at the end of cascade?) self.random_crop_sizes = cast_tuple(random_crop_sizes, len(image_sizes)) assert not exists(self.random_crop_sizes[0]), 'you would not need to randomly crop the image for the base unet' # predict x0 config self.predict_x_start = cast_tuple(predict_x_start, len(unets)) if not predict_x_start_for_latent_diffusion else tuple(map(lambda t: isinstance(t, VQGanVAE), self.vaes)) # predict v self.predict_v = cast_tuple(predict_v, len(unets)) # input image range self.input_image_range = (-1. if not auto_normalize_img else 0., 1.) # cascading ddpm related stuff lowres_conditions = tuple(map(lambda t: t.lowres_cond, self.unets)) assert lowres_conditions == (False, *((True,) * (num_unets - 1))), 'the first unet must be unconditioned (by low resolution image), and the rest of the unets must have `lowres_cond` set to True' self.lowres_conds = nn.ModuleList([]) for unet_index, use_noise, use_blur in zip(range(num_unets), use_noise_for_lowres_cond, use_blur_for_lowres_cond): if unet_index == 0: self.lowres_conds.append(None) continue lowres_cond = LowresConditioner( downsample_first = lowres_downsample_first, use_blur = use_blur, use_noise = use_noise, blur_prob = blur_prob, blur_sigma = blur_sigma, blur_kernel_size = blur_kernel_size, input_image_range = self.input_image_range, normalize_img_fn = self.normalize_img, unnormalize_img_fn = self.unnormalize_img ) self.lowres_conds.append(lowres_cond) self.lowres_noise_sample_level = lowres_noise_sample_level # classifier free guidance self.image_cond_drop_prob = image_cond_drop_prob self.text_cond_drop_prob = text_cond_drop_prob self.can_classifier_guidance = image_cond_drop_prob > 0. or text_cond_drop_prob > 0. # whether to clip when sampling self.clip_denoised = clip_denoised self.clip_x_start = clip_x_start # dynamic thresholding settings, if clipping denoised during sampling self.use_dynamic_thres = use_dynamic_thres self.dynamic_thres_percentile = dynamic_thres_percentile # device tracker self.register_buffer('_dummy', torch.Tensor([True]), persistent = False) @property def device(self): return self._dummy.device @property def condition_on_text_encodings(self): return any([unet.cond_on_text_encodings for unet in self.unets if isinstance(unet, Unet)]) def get_unet(self, unet_number): assert 0 < unet_number <= self.num_unets index = unet_number - 1 return self.unets[index] def parse_unet_output(self, learned_variance, output): var_interp_frac_unnormalized = None if learned_variance: output, var_interp_frac_unnormalized = output.chunk(2, dim = 1) return UnetOutput(output, var_interp_frac_unnormalized) @contextmanager def one_unet_in_gpu(self, unet_number = None, unet = None): assert exists(unet_number) ^ exists(unet) if exists(unet_number): unet = self.get_unet(unet_number) # devices cuda, cpu = torch.device('cuda'), torch.device('cpu') self.cuda() devices = [module_device(unet) for unet in self.unets] self.unets.to(cpu) unet.to(cuda) yield for unet, device in zip(self.unets, devices): unet.to(device) def dynamic_threshold(self, x): """ proposed in https://arxiv.org/abs/2205.11487 as an improved clamping in the setting of classifier free guidance """ # s is the threshold amount # static thresholding would just be s = 1 s = 1. if self.use_dynamic_thres: s = torch.quantile( rearrange(x, 'b ... -> b (...)').abs(), self.dynamic_thres_percentile, dim = -1 ) s.clamp_(min = 1.) s = s.view(-1, *((1,) * (x.ndim - 1))) # clip by threshold, depending on whether static or dynamic x = x.clamp(-s, s) / s return x def p_mean_variance(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, lowres_cond_img = None, self_cond = None, clip_denoised = True, predict_x_start = False, predict_v = False, learned_variance = False, cond_scale = 1., model_output = None, lowres_noise_level = None): assert not (cond_scale != 1. and not self.can_classifier_guidance), 'the decoder was not trained with conditional dropout, and thus one cannot use classifier free guidance (cond_scale anything other than 1)' model_output = default(model_output, lambda: unet.forward_with_cond_scale(x, t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, lowres_noise_level = lowres_noise_level)) pred, var_interp_frac_unnormalized = self.parse_unet_output(learned_variance, model_output) if predict_v: x_start = noise_scheduler.predict_start_from_v(x, t = t, v = pred) elif predict_x_start: x_start = pred else: x_start = noise_scheduler.predict_start_from_noise(x, t = t, noise = pred) if clip_denoised: x_start = self.dynamic_threshold(x_start) model_mean, posterior_variance, posterior_log_variance = noise_scheduler.q_posterior(x_start=x_start, x_t=x, t=t) if learned_variance: # if learned variance, posterio variance and posterior log variance are predicted by the network # by an interpolation of the max and min log beta values # eq 15 - https://arxiv.org/abs/2102.09672 min_log = extract(noise_scheduler.posterior_log_variance_clipped, t, x.shape) max_log = extract(torch.log(noise_scheduler.betas), t, x.shape) var_interp_frac = unnormalize_zero_to_one(var_interp_frac_unnormalized) if self.learned_variance_constrain_frac: var_interp_frac = var_interp_frac.sigmoid() posterior_log_variance = var_interp_frac * max_log + (1 - var_interp_frac) * min_log posterior_variance = posterior_log_variance.exp() return model_mean, posterior_variance, posterior_log_variance, x_start @torch.no_grad() def p_sample(self, unet, x, t, image_embed, noise_scheduler, text_encodings = None, cond_scale = 1., lowres_cond_img = None, self_cond = None, predict_x_start = False, predict_v = False, learned_variance = False, clip_denoised = True, lowres_noise_level = None): b, *_, device = *x.shape, x.device model_mean, _, model_log_variance, x_start = self.p_mean_variance(unet, x = x, t = t, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, lowres_cond_img = lowres_cond_img, self_cond = self_cond, clip_denoised = clip_denoised, predict_x_start = predict_x_start, predict_v = predict_v, noise_scheduler = noise_scheduler, learned_variance = learned_variance, lowres_noise_level = lowres_noise_level) noise = torch.randn_like(x) # no noise when t == 0 nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) pred = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise return pred, x_start @torch.no_grad() def p_sample_loop_ddpm( self, unet, shape, image_embed, noise_scheduler, predict_x_start = False, predict_v = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, cond_scale = 1, is_latent_diffusion = False, lowres_noise_level = None, inpaint_image = None, inpaint_mask = None, inpaint_resample_times = 5 ): device = self.device b = shape[0] img = torch.randn(shape, device = device) x_start = None # for self-conditioning is_inpaint = exists(inpaint_image) resample_times = inpaint_resample_times if is_inpaint else 1 if is_inpaint: inpaint_image = self.normalize_img(inpaint_image) inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True) inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float() inpaint_mask = resize_image_to(inpaint_mask, shape[-1], nearest = True) inpaint_mask = inpaint_mask.bool() if not is_latent_diffusion: lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img) for time in tqdm(reversed(range(0, noise_scheduler.num_timesteps)), desc = 'sampling loop time step', total = noise_scheduler.num_timesteps): is_last_timestep = time == 0 for r in reversed(range(0, resample_times)): is_last_resample_step = r == 0 times = torch.full((b,), time, device = device, dtype = torch.long) if is_inpaint: # following the repaint paper # https://arxiv.org/abs/2201.09865 noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = times) img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask) self_cond = x_start if unet.self_cond else None img, x_start = self.p_sample( unet, img, times, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, self_cond = self_cond, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level, predict_x_start = predict_x_start, predict_v = predict_v, noise_scheduler = noise_scheduler, learned_variance = learned_variance, clip_denoised = clip_denoised ) if is_inpaint and not (is_last_timestep or is_last_resample_step): # in repaint, you renoise and resample up to 10 times every step img = noise_scheduler.q_sample_from_to(img, times - 1, times) if is_inpaint: img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask) unnormalize_img = self.unnormalize_img(img) return unnormalize_img @torch.no_grad() def p_sample_loop_ddim( self, unet, shape, image_embed, noise_scheduler, timesteps, eta = 1., predict_x_start = False, predict_v = False, learned_variance = False, clip_denoised = True, lowres_cond_img = None, text_encodings = None, cond_scale = 1, is_latent_diffusion = False, lowres_noise_level = None, inpaint_image = None, inpaint_mask = None, inpaint_resample_times = 5 ): batch, device, total_timesteps, alphas, eta = shape[0], self.device, noise_scheduler.num_timesteps, noise_scheduler.alphas_cumprod, self.ddim_sampling_eta times = torch.linspace(0., total_timesteps, steps = timesteps + 2)[:-1] times = list(reversed(times.int().tolist())) time_pairs = list(zip(times[:-1], times[1:])) time_pairs = list(filter(lambda t: t[0] > t[1], time_pairs)) is_inpaint = exists(inpaint_image) resample_times = inpaint_resample_times if is_inpaint else 1 if is_inpaint: inpaint_image = self.normalize_img(inpaint_image) inpaint_image = resize_image_to(inpaint_image, shape[-1], nearest = True) inpaint_mask = rearrange(inpaint_mask, 'b h w -> b 1 h w').float() inpaint_mask = resize_image_to(inpaint_mask, shape[-1], nearest = True) inpaint_mask = inpaint_mask.bool() img = torch.randn(shape, device = device) x_start = None # for self-conditioning if not is_latent_diffusion: lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img) for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step'): is_last_timestep = time_next == 0 for r in reversed(range(0, resample_times)): is_last_resample_step = r == 0 alpha = alphas[time] alpha_next = alphas[time_next] time_cond = torch.full((batch,), time, device = device, dtype = torch.long) if is_inpaint: # following the repaint paper # https://arxiv.org/abs/2201.09865 noised_inpaint_image = noise_scheduler.q_sample(inpaint_image, t = time_cond) img = (img * ~inpaint_mask) + (noised_inpaint_image * inpaint_mask) self_cond = x_start if unet.self_cond else None unet_output = unet.forward_with_cond_scale(img, time_cond, image_embed = image_embed, text_encodings = text_encodings, cond_scale = cond_scale, self_cond = self_cond, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level) pred, _ = self.parse_unet_output(learned_variance, unet_output) # predict x0 if predict_v: x_start = noise_scheduler.predict_start_from_v(img, t = time_cond, v = pred) elif predict_x_start: x_start = pred else: x_start = noise_scheduler.predict_start_from_noise(img, t = time_cond, noise = pred) # maybe clip x0 if clip_denoised: x_start = self.dynamic_threshold(x_start) # predict noise pred_noise = noise_scheduler.predict_noise_from_start(img, t = time_cond, x0 = x_start) c1 = eta * ((1 - alpha / alpha_next) * (1 - alpha_next) / (1 - alpha)).sqrt() c2 = ((1 - alpha_next) - torch.square(c1)).sqrt() noise = torch.randn_like(img) if not is_last_timestep else 0. img = x_start * alpha_next.sqrt() + \ c1 * noise + \ c2 * pred_noise if is_inpaint and not (is_last_timestep or is_last_resample_step): # in repaint, you renoise and resample up to 10 times every step time_next_cond = torch.full((batch,), time_next, device = device, dtype = torch.long) img = noise_scheduler.q_sample_from_to(img, time_next_cond, time_cond) if exists(inpaint_image): img = (img * ~inpaint_mask) + (inpaint_image * inpaint_mask) img = self.unnormalize_img(img) return img @torch.no_grad() def p_sample_loop(self, *args, noise_scheduler, timesteps = None, **kwargs): num_timesteps = noise_scheduler.num_timesteps timesteps = default(timesteps, num_timesteps) assert timesteps <= num_timesteps is_ddim = timesteps < num_timesteps if not is_ddim: return self.p_sample_loop_ddpm(*args, noise_scheduler = noise_scheduler, **kwargs) return self.p_sample_loop_ddim(*args, noise_scheduler = noise_scheduler, timesteps = timesteps, **kwargs) def p_losses(self, unet, x_start, times, *, image_embed, noise_scheduler, lowres_cond_img = None, text_encodings = None, predict_x_start = False, predict_v = False, noise = None, learned_variance = False, clip_denoised = False, is_latent_diffusion = False, lowres_noise_level = None): noise = default(noise, lambda: torch.randn_like(x_start)) # normalize to [-1, 1] if not is_latent_diffusion: x_start = self.normalize_img(x_start) lowres_cond_img = maybe(self.normalize_img)(lowres_cond_img) # get x_t x_noisy = noise_scheduler.q_sample(x_start = x_start, t = times, noise = noise) # unet kwargs unet_kwargs = dict( image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level, ) # self conditioning self_cond = None if unet.self_cond and random.random() < 0.5: with torch.no_grad(): unet_output = unet(x_noisy, times, **unet_kwargs) self_cond, _ = self.parse_unet_output(learned_variance, unet_output) self_cond = self_cond.detach() # forward to get model prediction unet_output = unet( x_noisy, times, **unet_kwargs, self_cond = self_cond, image_cond_drop_prob = self.image_cond_drop_prob, text_cond_drop_prob = self.text_cond_drop_prob, ) pred, _ = self.parse_unet_output(learned_variance, unet_output) if predict_v: target = noise_scheduler.calculate_v(x_start, times, noise) elif predict_x_start: target = x_start else: target = noise loss = noise_scheduler.loss_fn(pred, target, reduction = 'none') loss = reduce(loss, 'b ... -> b (...)', 'mean') loss = noise_scheduler.p2_reweigh_loss(loss, times) loss = loss.mean() if not learned_variance: # return simple loss if not using learned variance return loss # most of the code below is transcribed from # https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/diffusion_utils_2.py # the Improved DDPM paper then further modified it so that the mean is detached (shown a couple lines before), and weighted to be smaller than the l1 or l2 "simple" loss # it is questionable whether this is really needed, looking at some of the figures in the paper, but may as well stay faithful to their implementation # if learning the variance, also include the extra weight kl loss true_mean, _, true_log_variance_clipped = noise_scheduler.q_posterior(x_start = x_start, x_t = x_noisy, t = times) model_mean, _, model_log_variance, _ = self.p_mean_variance(unet, x = x_noisy, t = times, image_embed = image_embed, noise_scheduler = noise_scheduler, clip_denoised = clip_denoised, learned_variance = True, model_output = unet_output) # kl loss with detached model predicted mean, for stability reasons as in paper detached_model_mean = model_mean.detach() kl = normal_kl(true_mean, true_log_variance_clipped, detached_model_mean, model_log_variance) kl = meanflat(kl) * NAT decoder_nll = -discretized_gaussian_log_likelihood(x_start, means = detached_model_mean, log_scales = 0.5 * model_log_variance) decoder_nll = meanflat(decoder_nll) * NAT # at the first timestep return the decoder NLL, otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) vb_losses = torch.where(times == 0, decoder_nll, kl) # weight the vb loss smaller, for stability, as in the paper (recommended 0.001) vb_loss = vb_losses.mean() * self.vb_loss_weight return loss + vb_loss @torch.no_grad() @eval_decorator def sample( self, image = None, image_embed = None, text = None, text_encodings = None, batch_size = 1, cond_scale = 1., start_at_unet_number = 1, stop_at_unet_number = None, distributed = False, inpaint_image = None, inpaint_mask = None, inpaint_resample_times = 5, one_unet_in_gpu_at_time = True ): assert self.unconditional or exists(image_embed), 'image embed must be present on sampling from decoder unless if trained unconditionally' if not self.unconditional: batch_size = image_embed.shape[0] if exists(text) and not exists(text_encodings) and not self.unconditional: assert exists(self.clip) _, text_encodings = self.clip.embed_text(text) assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified' assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented' assert not (exists(inpaint_image) ^ exists(inpaint_mask)), 'inpaint_image and inpaint_mask (boolean mask of [batch, height, width]) must be both given for inpainting' img = None if start_at_unet_number > 1: # Then we are not generating the first image and one must have been passed in assert exists(image), 'image must be passed in if starting at unet number > 1' assert image.shape[0] == batch_size, 'image must have batch size of {} if starting at unet number > 1'.format(batch_size) prev_unet_output_size = self.image_sizes[start_at_unet_number - 2] img = resize_image_to(image, prev_unet_output_size, nearest = True) is_cuda = next(self.parameters()).is_cuda num_unets = self.num_unets cond_scale = cast_tuple(cond_scale, num_unets) for unet_number, unet, vae, channel, image_size, predict_x_start, predict_v, learned_variance, noise_scheduler, lowres_cond, sample_timesteps, unet_cond_scale in tqdm(zip(range(1, num_unets + 1), self.unets, self.vaes, self.sample_channels, self.image_sizes, self.predict_x_start, self.predict_v, self.learned_variance, self.noise_schedulers, self.lowres_conds, self.sample_timesteps, cond_scale)): if unet_number < start_at_unet_number: continue # It's the easiest way to do it context = self.one_unet_in_gpu(unet = unet) if is_cuda and one_unet_in_gpu_at_time else null_context() with context: # prepare low resolution conditioning for upsamplers lowres_cond_img = lowres_noise_level = None shape = (batch_size, channel, image_size, image_size) if unet.lowres_cond: lowres_cond_img = resize_image_to(img, target_image_size = image_size, clamp_range = self.input_image_range, nearest = True) if lowres_cond.use_noise: lowres_noise_level = torch.full((batch_size,), int(self.lowres_noise_sample_level * 1000), dtype = torch.long, device = self.device) lowres_cond_img, _ = lowres_cond.noise_image(lowres_cond_img, lowres_noise_level) # latent diffusion is_latent_diffusion = isinstance(vae, VQGanVAE) image_size = vae.get_encoded_fmap_size(image_size) shape = (batch_size, vae.encoded_dim, image_size, image_size) lowres_cond_img = maybe(vae.encode)(lowres_cond_img) # denoising loop for image img = self.p_sample_loop( unet, shape, image_embed = image_embed, text_encodings = text_encodings, cond_scale = unet_cond_scale, predict_x_start = predict_x_start, predict_v = predict_v, learned_variance = learned_variance, clip_denoised = not is_latent_diffusion, lowres_cond_img = lowres_cond_img, lowres_noise_level = lowres_noise_level, is_latent_diffusion = is_latent_diffusion, noise_scheduler = noise_scheduler, timesteps = sample_timesteps, inpaint_image = inpaint_image, inpaint_mask = inpaint_mask, inpaint_resample_times = inpaint_resample_times ) img = vae.decode(img) if exists(stop_at_unet_number) and stop_at_unet_number == unet_number: break return img def forward( self, image, text = None, image_embed = None, text_encodings = None, unet_number = None, return_lowres_cond_image = False # whether to return the low resolution conditioning images, for debugging upsampler purposes ): assert not (self.num_unets > 1 and not exists(unet_number)), f'you must specify which unet you want trained, from a range of 1 to {self.num_unets}, if you are training cascading DDPM (multiple unets)' unet_number = default(unet_number, 1) unet_index = unet_number - 1 unet = self.get_unet(unet_number) vae = self.vaes[unet_index] noise_scheduler = self.noise_schedulers[unet_index] lowres_conditioner = self.lowres_conds[unet_index] target_image_size = self.image_sizes[unet_index] predict_x_start = self.predict_x_start[unet_index] predict_v = self.predict_v[unet_index] random_crop_size = self.random_crop_sizes[unet_index] learned_variance = self.learned_variance[unet_index] b, c, h, w, device, = *image.shape, image.device assert image.shape[1] == self.channels assert h >= target_image_size and w >= target_image_size times = torch.randint(0, noise_scheduler.num_timesteps, (b,), device = device, dtype = torch.long) if not exists(image_embed) and not self.unconditional: assert exists(self.clip), 'if you want to derive CLIP image embeddings automatically, you must supply `clip` to the decoder on init' image_embed, _ = self.clip.embed_image(image) if exists(text) and not exists(text_encodings) and not self.unconditional: assert exists(self.clip), 'if you are passing in raw text, you need to supply `clip` to the decoder' _, text_encodings = self.clip.embed_text(text) assert not (self.condition_on_text_encodings and not exists(text_encodings)), 'text or text encodings must be passed into decoder if specified' assert not (not self.condition_on_text_encodings and exists(text_encodings)), 'decoder specified not to be conditioned on text, yet it is presented' lowres_cond_img, lowres_noise_level = lowres_conditioner(image, target_image_size = target_image_size, downsample_image_size = self.image_sizes[unet_index - 1]) if exists(lowres_conditioner) else (None, None) image = resize_image_to(image, target_image_size, nearest = True) if exists(random_crop_size): aug = K.RandomCrop((random_crop_size, random_crop_size), p = 1.) # make sure low res conditioner and image both get augmented the same way # detailed https://kornia.readthedocs.io/en/latest/augmentation.module.html?highlight=randomcrop#kornia.augmentation.RandomCrop image = aug(image) lowres_cond_img = aug(lowres_cond_img, params = aug._params) is_latent_diffusion = not isinstance(vae, NullVQGanVAE) vae.eval() with torch.no_grad(): image = vae.encode(image) lowres_cond_img = maybe(vae.encode)(lowres_cond_img) losses = self.p_losses(unet, image, times, image_embed = image_embed, text_encodings = text_encodings, lowres_cond_img = lowres_cond_img, predict_x_start = predict_x_start, predict_v = predict_v, learned_variance = learned_variance, is_latent_diffusion = is_latent_diffusion, noise_scheduler = noise_scheduler, lowres_noise_level = lowres_noise_level) if not return_lowres_cond_image: return losses return losses, lowres_cond_img # main class class DALLE2(nn.Module): def __init__( self, *, prior, decoder, prior_num_samples = 2 ): super().__init__() assert isinstance(prior, DiffusionPrior) assert isinstance(decoder, Decoder) self.prior = prior self.decoder = decoder self.prior_num_samples = prior_num_samples self.decoder_need_text_cond = self.decoder.condition_on_text_encodings self.to_pil = T.ToPILImage() @torch.no_grad() @eval_decorator def forward( self, text, cond_scale = 1., prior_cond_scale = 1., return_pil_images = False ): device = module_device(self) one_text = isinstance(text, str) or (not is_list_str(text) and text.shape[0] == 1) if isinstance(text, str) or is_list_str(text): text = [text] if not isinstance(text, (list, tuple)) else text text = tokenizer.tokenize(text).to(device) image_embed = self.prior.sample(text, num_samples_per_batch = self.prior_num_samples, cond_scale = prior_cond_scale) text_cond = text if self.decoder_need_text_cond else None images = self.decoder.sample(image_embed = image_embed, text = text_cond, cond_scale = cond_scale) if return_pil_images: images = list(map(self.to_pil, images.unbind(dim = 0))) if one_text: return first(images) return images
DALLE2-pytorch-main
dalle2_pytorch/dalle2_pytorch.py
import json from torchvision import transforms as T from pydantic import BaseModel, validator, model_validator from typing import List, Optional, Union, Tuple, Dict, Any, TypeVar from x_clip import CLIP as XCLIP from open_clip import list_pretrained from coca_pytorch import CoCa from dalle2_pytorch.dalle2_pytorch import ( CoCaAdapter, OpenAIClipAdapter, OpenClipAdapter, Unet, Decoder, DiffusionPrior, DiffusionPriorNetwork, XClipAdapter ) from dalle2_pytorch.trackers import Tracker, create_loader, create_logger, create_saver # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d InnerType = TypeVar('InnerType') ListOrTuple = Union[List[InnerType], Tuple[InnerType]] SingularOrIterable = Union[InnerType, ListOrTuple[InnerType]] # general pydantic classes class TrainSplitConfig(BaseModel): train: float = 0.75 val: float = 0.15 test: float = 0.1 @model_validator(mode = 'after') def validate_all(self, m): actual_sum = sum([*dict(self).values()]) if actual_sum != 1.: raise ValueError(f'{dict(self).keys()} must sum to 1.0. Found: {actual_sum}') return self class TrackerLogConfig(BaseModel): log_type: str = 'console' resume: bool = False # For logs that are saved to unique locations, resume a previous run auto_resume: bool = False # If the process crashes and restarts, resume from the run that crashed verbose: bool = False class Config: # Each individual log type has it's own arguments that will be passed through the config extra = "allow" def create(self, data_path: str): kwargs = self.dict() return create_logger(self.log_type, data_path, **kwargs) class TrackerLoadConfig(BaseModel): load_from: Optional[str] = None only_auto_resume: bool = False # Only attempt to load if the logger is auto-resuming class Config: extra = "allow" def create(self, data_path: str): kwargs = self.dict() if self.load_from is None: return None return create_loader(self.load_from, data_path, **kwargs) class TrackerSaveConfig(BaseModel): save_to: str = 'local' save_all: bool = False save_latest: bool = True save_best: bool = True class Config: extra = "allow" def create(self, data_path: str): kwargs = self.dict() return create_saver(self.save_to, data_path, **kwargs) class TrackerConfig(BaseModel): data_path: str = '.tracker_data' overwrite_data_path: bool = False log: TrackerLogConfig load: Optional[TrackerLoadConfig] save: Union[List[TrackerSaveConfig], TrackerSaveConfig] def create(self, full_config: BaseModel, extra_config: dict, dummy_mode: bool = False) -> Tracker: tracker = Tracker(self.data_path, dummy_mode=dummy_mode, overwrite_data_path=self.overwrite_data_path) # Add the logger tracker.add_logger(self.log.create(self.data_path)) # Add the loader if self.load is not None: tracker.add_loader(self.load.create(self.data_path)) # Add the saver or savers if isinstance(self.save, list): for save_config in self.save: tracker.add_saver(save_config.create(self.data_path)) else: tracker.add_saver(self.save.create(self.data_path)) # Initialize all the components and verify that all data is valid tracker.init(full_config, extra_config) return tracker # diffusion prior pydantic classes class AdapterConfig(BaseModel): make: str = "openai" model: str = "ViT-L/14" base_model_kwargs: Dict[str, Any] = None def create(self): if self.make == "openai": return OpenAIClipAdapter(self.model) elif self.make == "open_clip": pretrained = dict(list_pretrained()) checkpoint = pretrained[self.model] return OpenClipAdapter(name=self.model, pretrained=checkpoint) elif self.make == "x-clip": return XClipAdapter(XCLIP(**self.base_model_kwargs)) elif self.make == "coca": return CoCaAdapter(CoCa(**self.base_model_kwargs)) else: raise AttributeError("No adapter with that name is available.") class DiffusionPriorNetworkConfig(BaseModel): dim: int depth: int max_text_len: int = None num_timesteps: int = None num_time_embeds: int = 1 num_image_embeds: int = 1 num_text_embeds: int = 1 dim_head: int = 64 heads: int = 8 ff_mult: int = 4 norm_in: bool = False norm_out: bool = True attn_dropout: float = 0. ff_dropout: float = 0. final_proj: bool = True normformer: bool = False rotary_emb: bool = True class Config: extra = "allow" def create(self): kwargs = self.dict() return DiffusionPriorNetwork(**kwargs) class DiffusionPriorConfig(BaseModel): clip: AdapterConfig = None net: DiffusionPriorNetworkConfig image_embed_dim: int image_size: int image_channels: int = 3 timesteps: int = 1000 sample_timesteps: Optional[int] = None cond_drop_prob: float = 0. loss_type: str = 'l2' predict_x_start: bool = True beta_schedule: str = 'cosine' condition_on_text_encodings: bool = True class Config: extra = "allow" def create(self): kwargs = self.dict() has_clip = exists(kwargs.pop('clip')) kwargs.pop('net') clip = None if has_clip: clip = self.clip.create() diffusion_prior_network = self.net.create() return DiffusionPrior(net = diffusion_prior_network, clip = clip, **kwargs) class DiffusionPriorTrainConfig(BaseModel): epochs: int = 1 lr: float = 1.1e-4 wd: float = 6.02e-2 max_grad_norm: float = 0.5 use_ema: bool = True ema_beta: float = 0.99 amp: bool = False warmup_steps: int = None # number of warmup steps save_every_seconds: int = 3600 # how often to save eval_timesteps: List[int] = [64] # which sampling timesteps to evaluate with best_validation_loss: float = 1e9 # the current best valudation loss observed current_epoch: int = 0 # the current epoch num_samples_seen: int = 0 # the current number of samples seen random_seed: int = 0 # manual seed for torch class DiffusionPriorDataConfig(BaseModel): image_url: str # path to embeddings folder meta_url: str # path to metadata (captions) for images splits: TrainSplitConfig # define train, validation, test splits for your dataset batch_size: int # per-gpu batch size used to train the model num_data_points: int = 25e7 # total number of datapoints to train on eval_every_seconds: int = 3600 # validation statistics will be performed this often class TrainDiffusionPriorConfig(BaseModel): prior: DiffusionPriorConfig data: DiffusionPriorDataConfig train: DiffusionPriorTrainConfig tracker: TrackerConfig @classmethod def from_json_path(cls, json_path): with open(json_path) as f: config = json.load(f) return cls(**config) # decoder pydantic classes class UnetConfig(BaseModel): dim: int dim_mults: ListOrTuple[int] image_embed_dim: int = None text_embed_dim: int = None cond_on_text_encodings: bool = None cond_dim: int = None channels: int = 3 self_attn: ListOrTuple[int] attn_dim_head: int = 32 attn_heads: int = 16 init_cross_embed: bool = True class Config: extra = "allow" class DecoderConfig(BaseModel): unets: ListOrTuple[UnetConfig] image_size: int = None image_sizes: ListOrTuple[int] = None clip: Optional[AdapterConfig] # The clip model to use if embeddings are not provided channels: int = 3 timesteps: int = 1000 sample_timesteps: Optional[SingularOrIterable[Optional[int]]] = None loss_type: str = 'l2' beta_schedule: ListOrTuple[str] = None # None means all cosine learned_variance: SingularOrIterable[bool] = True image_cond_drop_prob: float = 0.1 text_cond_drop_prob: float = 0.5 def create(self): decoder_kwargs = self.dict() unet_configs = decoder_kwargs.pop('unets') unets = [Unet(**config) for config in unet_configs] has_clip = exists(decoder_kwargs.pop('clip')) clip = None if has_clip: clip = self.clip.create() return Decoder(unets, clip=clip, **decoder_kwargs) @validator('image_sizes') def check_image_sizes(cls, image_sizes, values): if exists(values.get('image_size')) ^ exists(image_sizes): return image_sizes raise ValueError('either image_size or image_sizes is required, but not both') class Config: extra = "allow" class DecoderDataConfig(BaseModel): webdataset_base_url: str # path to a webdataset with jpg images img_embeddings_url: Optional[str] = None # path to .npy files with embeddings text_embeddings_url: Optional[str] = None # path to .npy files with embeddings num_workers: int = 4 batch_size: int = 64 start_shard: int = 0 end_shard: int = 9999999 shard_width: int = 6 index_width: int = 4 splits: TrainSplitConfig shuffle_train: bool = True resample_train: bool = False preprocessing: Dict[str, Any] = {'ToTensor': True} @property def img_preproc(self): def _get_transformation(transformation_name, **kwargs): if transformation_name == "RandomResizedCrop": return T.RandomResizedCrop(**kwargs) elif transformation_name == "RandomHorizontalFlip": return T.RandomHorizontalFlip() elif transformation_name == "ToTensor": return T.ToTensor() transforms = [] for transform_name, transform_kwargs_or_bool in self.preprocessing.items(): transform_kwargs = {} if not isinstance(transform_kwargs_or_bool, dict) else transform_kwargs_or_bool transforms.append(_get_transformation(transform_name, **transform_kwargs)) return T.Compose(transforms) class DecoderTrainConfig(BaseModel): epochs: int = 20 lr: SingularOrIterable[float] = 1e-4 wd: SingularOrIterable[float] = 0.01 warmup_steps: Optional[SingularOrIterable[int]] = None find_unused_parameters: bool = True static_graph: bool = True max_grad_norm: SingularOrIterable[float] = 0.5 save_every_n_samples: int = 100000 n_sample_images: int = 6 # The number of example images to produce when sampling the train and test dataset cond_scale: Union[float, List[float]] = 1.0 device: str = 'cuda:0' epoch_samples: int = None # Limits the number of samples per epoch. None means no limit. Required if resample_train is true as otherwise the number of samples per epoch is infinite. validation_samples: int = None # Same as above but for validation. save_immediately: bool = False use_ema: bool = True ema_beta: float = 0.999 amp: bool = False unet_training_mask: ListOrTuple[bool] = None # If None, use all unets class DecoderEvaluateConfig(BaseModel): n_evaluation_samples: int = 1000 FID: Dict[str, Any] = None IS: Dict[str, Any] = None KID: Dict[str, Any] = None LPIPS: Dict[str, Any] = None class TrainDecoderConfig(BaseModel): decoder: DecoderConfig data: DecoderDataConfig train: DecoderTrainConfig evaluate: DecoderEvaluateConfig tracker: TrackerConfig seed: int = 0 @classmethod def from_json_path(cls, json_path): with open(json_path) as f: config = json.load(f) print(config) return cls(**config) @model_validator(mode = 'after') def check_has_embeddings(self, m): # Makes sure that enough information is provided to get the embeddings specified for training values = dict(self) data_config, decoder_config = values.get('data'), values.get('decoder') if not exists(data_config) or not exists(decoder_config): # Then something else errored and we should just pass through return values using_text_embeddings = any([unet.cond_on_text_encodings for unet in decoder_config.unets]) using_clip = exists(decoder_config.clip) img_emb_url = data_config.img_embeddings_url text_emb_url = data_config.text_embeddings_url if using_text_embeddings: # Then we need some way to get the embeddings assert using_clip or exists(text_emb_url), 'If text conditioning, either clip or text_embeddings_url must be provided' if using_clip: if using_text_embeddings: assert not exists(text_emb_url) or not exists(img_emb_url), 'Loaded clip, but also provided text_embeddings_url and img_embeddings_url. This is redundant. Remove the clip model or the text embeddings' else: assert not exists(img_emb_url), 'Loaded clip, but also provided img_embeddings_url. This is redundant. Remove the clip model or the embeddings' if text_emb_url: assert using_text_embeddings, "Text embeddings are being loaded, but text embeddings are not being conditioned on. This will slow down the dataloader for no reason." return m
DALLE2-pytorch-main
dalle2_pytorch/train_configs.py
__version__ = '1.15.1'
DALLE2-pytorch-main
dalle2_pytorch/version.py
from math import sqrt import copy from random import choice from pathlib import Path from shutil import rmtree from PIL import Image import torch from torch import nn from torch.cuda.amp import autocast, GradScaler from torch.utils.data import Dataset, DataLoader, random_split import torchvision.transforms as T from torchvision.datasets import ImageFolder from torchvision.utils import make_grid, save_image from einops import rearrange from dalle2_pytorch.vqgan_vae import VQGanVAE from dalle2_pytorch.optimizer import get_optimizer from ema_pytorch import EMA # helpers def exists(val): return val is not None def noop(*args, **kwargs): pass def cycle(dl): while True: for data in dl: yield data def cast_tuple(t): return t if isinstance(t, (tuple, list)) else (t,) def yes_or_no(question): answer = input(f'{question} (y/n) ') return answer.lower() in ('yes', 'y') def accum_log(log, new_logs): for key, new_value in new_logs.items(): old_value = log.get(key, 0.) log[key] = old_value + new_value return log # classes class ImageDataset(Dataset): def __init__( self, folder, image_size, exts = ['jpg', 'jpeg', 'png'] ): super().__init__() self.folder = folder self.image_size = image_size self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')] print(f'{len(self.paths)} training samples found at {folder}') self.transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize(image_size), T.RandomHorizontalFlip(), T.CenterCrop(image_size), T.ToTensor() ]) def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] img = Image.open(path) return self.transform(img) # main trainer class class VQGanVAETrainer(nn.Module): def __init__( self, vae, *, num_train_steps, lr, batch_size, folder, grad_accum_every, wd = 0., save_results_every = 100, save_model_every = 1000, results_folder = './results', valid_frac = 0.05, random_split_seed = 42, ema_beta = 0.995, ema_update_after_step = 500, ema_update_every = 10, apply_grad_penalty_every = 4, amp = False ): super().__init__() assert isinstance(vae, VQGanVAE), 'vae must be instance of VQGanVAE' image_size = vae.image_size self.vae = vae self.ema_vae = EMA(vae, update_after_step = ema_update_after_step, update_every = ema_update_every) self.register_buffer('steps', torch.Tensor([0])) self.num_train_steps = num_train_steps self.batch_size = batch_size self.grad_accum_every = grad_accum_every all_parameters = set(vae.parameters()) discr_parameters = set(vae.discr.parameters()) vae_parameters = all_parameters - discr_parameters self.optim = get_optimizer(vae_parameters, lr = lr, wd = wd) self.discr_optim = get_optimizer(discr_parameters, lr = lr, wd = wd) self.amp = amp self.scaler = GradScaler(enabled = amp) self.discr_scaler = GradScaler(enabled = amp) # create dataset self.ds = ImageDataset(folder, image_size = image_size) # split for validation if valid_frac > 0: train_size = int((1 - valid_frac) * len(self.ds)) valid_size = len(self.ds) - train_size self.ds, self.valid_ds = random_split(self.ds, [train_size, valid_size], generator = torch.Generator().manual_seed(random_split_seed)) print(f'training with dataset of {len(self.ds)} samples and validating with randomly splitted {len(self.valid_ds)} samples') else: self.valid_ds = self.ds print(f'training with shared training and valid dataset of {len(self.ds)} samples') # dataloader self.dl = cycle(DataLoader( self.ds, batch_size = batch_size, shuffle = True )) self.valid_dl = cycle(DataLoader( self.valid_ds, batch_size = batch_size, shuffle = True )) self.save_model_every = save_model_every self.save_results_every = save_results_every self.apply_grad_penalty_every = apply_grad_penalty_every self.results_folder = Path(results_folder) if len([*self.results_folder.glob('**/*')]) > 0 and yes_or_no('do you want to clear previous experiment checkpoints and results?'): rmtree(str(self.results_folder)) self.results_folder.mkdir(parents = True, exist_ok = True) def train_step(self): device = next(self.vae.parameters()).device steps = int(self.steps.item()) apply_grad_penalty = not (steps % self.apply_grad_penalty_every) self.vae.train() # logs logs = {} # update vae (generator) for _ in range(self.grad_accum_every): img = next(self.dl) img = img.to(device) with autocast(enabled = self.amp): loss = self.vae( img, return_loss = True, apply_grad_penalty = apply_grad_penalty ) self.scaler.scale(loss / self.grad_accum_every).backward() accum_log(logs, {'loss': loss.item() / self.grad_accum_every}) self.scaler.step(self.optim) self.scaler.update() self.optim.zero_grad() # update discriminator if exists(self.vae.discr): discr_loss = 0 for _ in range(self.grad_accum_every): img = next(self.dl) img = img.to(device) with autocast(enabled = self.amp): loss = self.vae(img, return_discr_loss = True) self.discr_scaler.scale(loss / self.grad_accum_every).backward() accum_log(logs, {'discr_loss': loss.item() / self.grad_accum_every}) self.discr_scaler.step(self.discr_optim) self.discr_scaler.update() self.discr_optim.zero_grad() # log print(f"{steps}: vae loss: {logs['loss']} - discr loss: {logs['discr_loss']}") # update exponential moving averaged generator self.ema_vae.update() # sample results every so often if not (steps % self.save_results_every): for model, filename in ((self.ema_vae.ema_model, f'{steps}.ema'), (self.vae, str(steps))): model.eval() imgs = next(self.dl) imgs = imgs.to(device) recons = model(imgs) nrows = int(sqrt(self.batch_size)) imgs_and_recons = torch.stack((imgs, recons), dim = 0) imgs_and_recons = rearrange(imgs_and_recons, 'r b ... -> (b r) ...') imgs_and_recons = imgs_and_recons.detach().cpu().float().clamp(0., 1.) grid = make_grid(imgs_and_recons, nrow = 2, normalize = True, value_range = (0, 1)) logs['reconstructions'] = grid save_image(grid, str(self.results_folder / f'{filename}.png')) print(f'{steps}: saving to {str(self.results_folder)}') # save model every so often if not (steps % self.save_model_every): state_dict = self.vae.state_dict() model_path = str(self.results_folder / f'vae.{steps}.pt') torch.save(state_dict, model_path) ema_state_dict = self.ema_vae.state_dict() model_path = str(self.results_folder / f'vae.{steps}.ema.pt') torch.save(ema_state_dict, model_path) print(f'{steps}: saving model to {str(self.results_folder)}') self.steps += 1 return logs def train(self, log_fn = noop): device = next(self.vae.parameters()).device while self.steps < self.num_train_steps: logs = self.train_step() log_fn(logs) print('training complete')
DALLE2-pytorch-main
dalle2_pytorch/vqgan_vae_trainer.py
import torch from packaging import version if version.parse(torch.__version__) >= version.parse('2.0.0'): from einops._torch_specific import allow_ops_in_compiled_graph allow_ops_in_compiled_graph() from dalle2_pytorch.version import __version__ from dalle2_pytorch.dalle2_pytorch import DALLE2, DiffusionPriorNetwork, DiffusionPrior, Unet, Decoder from dalle2_pytorch.dalle2_pytorch import OpenAIClipAdapter, OpenClipAdapter from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer from dalle2_pytorch.vqgan_vae import VQGanVAE from x_clip import CLIP
DALLE2-pytorch-main
dalle2_pytorch/__init__.py
# take from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py # to give users a quick easy start to training DALL-E without doing BPE import torch import html import os import ftfy import regex as re from functools import lru_cache from pathlib import Path from dalle2_pytorch.utils import import_or_print_error # OpenAI simple tokenizer @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "data/bpe_simple_vocab_16e6.txt") @lru_cache() def bytes_to_unicode(): bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) cs = bs[:] n = 0 for b in range(2 ** 8): if b not in bs: bs.append(b) cs.append(2 ** 8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, bpe_path = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = Path(bpe_path).read_text(encoding='utf8').split('\n') merges = merges[1:49152 - 256 - 2 + 1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v + '</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.vocab_size = 49408 self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile( r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token + '</w>' while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens, remove_start_end = True, pad_tokens = set()): if torch.is_tensor(tokens): tokens = tokens.tolist() if remove_start_end: tokens = [token for token in tokens if token not in (49406, 40407, 0)] text = ''.join([self.decoder[token] for token in tokens if token not in pad_tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text def tokenize(self, texts, context_length = 256, truncate_text = False): if isinstance(texts, str): texts = [texts] all_tokens = [self.encode(text) for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate_text: tokens = tokens[:context_length] else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) return result tokenizer = SimpleTokenizer() # YTTM tokenizer class YttmTokenizer: def __init__(self, bpe_path = None): bpe_path = Path(bpe_path) assert bpe_path.exists(), f'BPE json path {str(bpe_path)} does not exist' self.yttm = import_or_print_error('youtokentome', 'you need to install youtokentome by `pip install youtokentome`') tokenizer = self.yttm.BPE(model = str(bpe_path)) self.tokenizer = tokenizer self.vocab_size = tokenizer.vocab_size() def decode(self, tokens, pad_tokens = set()): if torch.is_tensor(tokens): tokens = tokens.tolist() return self.tokenizer.decode(tokens, ignore_ids = pad_tokens.union({0})) def encode(self, texts): encoded = self.tokenizer.encode(texts, output_type = self.yttm.OutputType.ID) return list(map(torch.tensor, encoded)) def tokenize(self, texts, context_length = 256, truncate_text = False): if isinstance(texts, str): texts = [texts] all_tokens = self.encode(texts) result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: if truncate_text: tokens = tokens[:context_length] else: raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") result[i, :len(tokens)] = torch.tensor(tokens) return result
DALLE2-pytorch-main
dalle2_pytorch/tokenizer.py
import click import torch import torchvision.transforms as T from functools import reduce from pathlib import Path from dalle2_pytorch import DALLE2, Decoder, DiffusionPrior def safeget(dictionary, keys, default = None): return reduce(lambda d, key: d.get(key, default) if isinstance(d, dict) else default, keys.split('.'), dictionary) def simple_slugify(text, max_length = 255): return text.replace("-", "_").replace(",", "").replace(" ", "_").replace("|", "--").strip('-_')[:max_length] def get_pkg_version(): from pkg_resources import get_distribution return get_distribution('dalle2_pytorch').version def main(): pass @click.command() @click.option('--model', default = './dalle2.pt', help = 'path to trained DALL-E2 model') @click.option('--cond_scale', default = 2, help = 'conditioning scale (classifier free guidance) in decoder') @click.argument('text') def dream( model, cond_scale, text ): model_path = Path(model) full_model_path = str(model_path.resolve()) assert model_path.exists(), f'model not found at {full_model_path}' loaded = torch.load(str(model_path)) version = safeget(loaded, 'version') print(f'loading DALL-E2 from {full_model_path}, saved at version {version} - current package version is {get_pkg_version()}') prior_init_params = safeget(loaded, 'init_params.prior') decoder_init_params = safeget(loaded, 'init_params.decoder') model_params = safeget(loaded, 'model_params') prior = DiffusionPrior(**prior_init_params) decoder = Decoder(**decoder_init_params) dalle2 = DALLE2(prior, decoder) dalle2.load_state_dict(model_params) image = dalle2(text, cond_scale = cond_scale) pil_image = T.ToPILImage()(image) return pil_image.save(f'./{simple_slugify(text)}.png')
DALLE2-pytorch-main
dalle2_pytorch/cli.py
import urllib.request import os import json from pathlib import Path import shutil from itertools import zip_longest from typing import Any, Optional, List, Union from pydantic import BaseModel import torch from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior from dalle2_pytorch.utils import import_or_print_error from dalle2_pytorch.trainer import DecoderTrainer, DiffusionPriorTrainer from dalle2_pytorch.version import __version__ from packaging import version # constants DEFAULT_DATA_PATH = './.tracker-data' # helper functions def exists(val): return val is not None class BaseLogger: """ An abstract class representing an object that can log data. Parameters: data_path (str): A file path for storing temporary data. verbose (bool): Whether of not to always print logs to the console. """ def __init__(self, data_path: str, resume: bool = False, auto_resume: bool = False, verbose: bool = False, **kwargs): self.data_path = Path(data_path) self.resume = resume self.auto_resume = auto_resume self.verbose = verbose def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None: """ Initializes the logger. Errors if the logger is invalid. full_config is the config file dict while extra_config is anything else from the script that is not defined the config file. """ raise NotImplementedError def log(self, log, **kwargs) -> None: raise NotImplementedError def log_images(self, images, captions=[], image_section="images", **kwargs) -> None: raise NotImplementedError def log_file(self, file_path, **kwargs) -> None: raise NotImplementedError def log_error(self, error_string, **kwargs) -> None: raise NotImplementedError def get_resume_data(self, **kwargs) -> dict: """ Sets tracker attributes that along with { "resume": True } will be used to resume training. It is assumed that after init is called this data will be complete. If the logger does not have any resume functionality, it should return an empty dict. """ raise NotImplementedError class ConsoleLogger(BaseLogger): def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None: print("Logging to console") def log(self, log, **kwargs) -> None: print(log) def log_images(self, images, captions=[], image_section="images", **kwargs) -> None: pass def log_file(self, file_path, **kwargs) -> None: pass def log_error(self, error_string, **kwargs) -> None: print(error_string) def get_resume_data(self, **kwargs) -> dict: return {} class WandbLogger(BaseLogger): """ Logs to a wandb run. Parameters: data_path (str): A file path for storing temporary data. wandb_entity (str): The wandb entity to log to. wandb_project (str): The wandb project to log to. wandb_run_id (str): The wandb run id to resume. wandb_run_name (str): The wandb run name to use. """ def __init__(self, data_path: str, wandb_entity: str, wandb_project: str, wandb_run_id: Optional[str] = None, wandb_run_name: Optional[str] = None, **kwargs ): super().__init__(data_path, **kwargs) self.entity = wandb_entity self.project = wandb_project self.run_id = wandb_run_id self.run_name = wandb_run_name def init(self, full_config: BaseModel, extra_config: dict, **kwargs) -> None: assert self.entity is not None, "wandb_entity must be specified for wandb logger" assert self.project is not None, "wandb_project must be specified for wandb logger" self.wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb logger') os.environ["WANDB_SILENT"] = "true" # Initializes the wandb run init_object = { "entity": self.entity, "project": self.project, "config": {**full_config.dict(), **extra_config} } if self.run_name is not None: init_object['name'] = self.run_name if self.resume: assert self.run_id is not None, '`wandb_run_id` must be provided if `wandb_resume` is True' if self.run_name is not None: print("You are renaming a run. I hope that is what you intended.") init_object['resume'] = 'must' init_object['id'] = self.run_id self.wandb.init(**init_object) print(f"Logging to wandb run {self.wandb.run.path}-{self.wandb.run.name}") def log(self, log, **kwargs) -> None: if self.verbose: print(log) self.wandb.log(log, **kwargs) def log_images(self, images, captions=[], image_section="images", **kwargs) -> None: """ Takes a tensor of images and a list of captions and logs them to wandb. """ wandb_images = [self.wandb.Image(image, caption=caption) for image, caption in zip_longest(images, captions)] self.wandb.log({ image_section: wandb_images }, **kwargs) def log_file(self, file_path, base_path: Optional[str] = None, **kwargs) -> None: if base_path is None: # Then we take the basepath as the parent of the file_path base_path = Path(file_path).parent self.wandb.save(str(file_path), base_path = str(base_path)) def log_error(self, error_string, step=None, **kwargs) -> None: if self.verbose: print(error_string) self.wandb.log({"error": error_string, **kwargs}, step=step) def get_resume_data(self, **kwargs) -> dict: # In order to resume, we need wandb_entity, wandb_project, and wandb_run_id return { "entity": self.entity, "project": self.project, "run_id": self.wandb.run.id } logger_type_map = { 'console': ConsoleLogger, 'wandb': WandbLogger, } def create_logger(logger_type: str, data_path: str, **kwargs) -> BaseLogger: if logger_type == 'custom': raise NotImplementedError('Custom loggers are not supported yet. Please use a different logger type.') try: logger_class = logger_type_map[logger_type] except KeyError: raise ValueError(f'Unknown logger type: {logger_type}. Must be one of {list(logger_type_map.keys())}') return logger_class(data_path, **kwargs) class BaseLoader: """ An abstract class representing an object that can load a model checkpoint. Parameters: data_path (str): A file path for storing temporary data. """ def __init__(self, data_path: str, only_auto_resume: bool = False, **kwargs): self.data_path = Path(data_path) self.only_auto_resume = only_auto_resume def init(self, logger: BaseLogger, **kwargs) -> None: raise NotImplementedError def recall() -> dict: raise NotImplementedError class UrlLoader(BaseLoader): """ A loader that downloads the file from a url and loads it Parameters: data_path (str): A file path for storing temporary data. url (str): The url to download the file from. """ def __init__(self, data_path: str, url: str, **kwargs): super().__init__(data_path, **kwargs) self.url = url def init(self, logger: BaseLogger, **kwargs) -> None: # Makes sure the file exists to be downloaded pass # TODO: Actually implement that def recall(self) -> dict: # Download the file save_path = self.data_path / 'loaded_checkpoint.pth' urllib.request.urlretrieve(self.url, str(save_path)) # Load the file return torch.load(str(save_path), map_location='cpu') class LocalLoader(BaseLoader): """ A loader that loads a file from a local path Parameters: data_path (str): A file path for storing temporary data. file_path (str): The path to the file to load. """ def __init__(self, data_path: str, file_path: str, **kwargs): super().__init__(data_path, **kwargs) self.file_path = Path(file_path) def init(self, logger: BaseLogger, **kwargs) -> None: # Makes sure the file exists to be loaded if not self.file_path.exists() and not self.only_auto_resume: raise FileNotFoundError(f'Model not found at {self.file_path}') def recall(self) -> dict: # Load the file return torch.load(str(self.file_path), map_location='cpu') class WandbLoader(BaseLoader): """ A loader that loads a model from an existing wandb run """ def __init__(self, data_path: str, wandb_file_path: str, wandb_run_path: Optional[str] = None, **kwargs): super().__init__(data_path, **kwargs) self.run_path = wandb_run_path self.file_path = wandb_file_path def init(self, logger: BaseLogger, **kwargs) -> None: self.wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb recall function') # Make sure the file can be downloaded if self.wandb.run is not None and self.run_path is None: self.run_path = self.wandb.run.path assert self.run_path is not None, 'wandb run was not found to load from. If not using the wandb logger must specify the `wandb_run_path`.' assert self.run_path is not None, '`wandb_run_path` must be provided for the wandb loader' assert self.file_path is not None, '`wandb_file_path` must be provided for the wandb loader' os.environ["WANDB_SILENT"] = "true" pass # TODO: Actually implement that def recall(self) -> dict: file_reference = self.wandb.restore(self.file_path, run_path=self.run_path) return torch.load(file_reference.name, map_location='cpu') loader_type_map = { 'url': UrlLoader, 'local': LocalLoader, 'wandb': WandbLoader, } def create_loader(loader_type: str, data_path: str, **kwargs) -> BaseLoader: if loader_type == 'custom': raise NotImplementedError('Custom loaders are not supported yet. Please use a different loader type.') try: loader_class = loader_type_map[loader_type] except KeyError: raise ValueError(f'Unknown loader type: {loader_type}. Must be one of {list(loader_type_map.keys())}') return loader_class(data_path, **kwargs) class BaseSaver: def __init__(self, data_path: str, save_latest_to: Optional[Union[str, bool]] = None, save_best_to: Optional[Union[str, bool]] = None, save_meta_to: Optional[str] = None, save_type: str = 'checkpoint', **kwargs ): self.data_path = Path(data_path) self.save_latest_to = save_latest_to self.saving_latest = save_latest_to is not None and save_latest_to is not False self.save_best_to = save_best_to self.saving_best = save_best_to is not None and save_best_to is not False self.save_meta_to = save_meta_to self.saving_meta = save_meta_to is not None self.save_type = save_type assert save_type in ['checkpoint', 'model'], '`save_type` must be one of `checkpoint` or `model`' assert self.saving_latest or self.saving_best or self.saving_meta, 'At least one saving option must be specified' def init(self, logger: BaseLogger, **kwargs) -> None: raise NotImplementedError def save_file(self, local_path: Path, save_path: str, is_best=False, is_latest=False, **kwargs) -> None: """ Save a general file under save_meta_to """ raise NotImplementedError class LocalSaver(BaseSaver): def __init__(self, data_path: str, **kwargs ): super().__init__(data_path, **kwargs) def init(self, logger: BaseLogger, **kwargs) -> None: # Makes sure the directory exists to be saved to print(f"Saving {self.save_type} locally") if not self.data_path.exists(): self.data_path.mkdir(parents=True) def save_file(self, local_path: str, save_path: str, **kwargs) -> None: # Copy the file to save_path save_path_file_name = Path(save_path).name # Make sure parent directory exists save_path_parent = Path(save_path).parent if not save_path_parent.exists(): save_path_parent.mkdir(parents=True) print(f"Saving {save_path_file_name} {self.save_type} to local path {save_path}") shutil.copy(local_path, save_path) class WandbSaver(BaseSaver): def __init__(self, data_path: str, wandb_run_path: Optional[str] = None, **kwargs): super().__init__(data_path, **kwargs) self.run_path = wandb_run_path def init(self, logger: BaseLogger, **kwargs) -> None: self.wandb = import_or_print_error('wandb', '`pip install wandb` to use the wandb logger') os.environ["WANDB_SILENT"] = "true" # Makes sure that the user can upload tot his run if self.run_path is not None: entity, project, run_id = self.run_path.split("/") self.run = self.wandb.init(entity=entity, project=project, id=run_id) else: assert self.wandb.run is not None, 'You must be using the wandb logger if you are saving to wandb and have not set `wandb_run_path`' self.run = self.wandb.run # TODO: Now actually check if upload is possible print(f"Saving to wandb run {self.run.path}-{self.run.name}") def save_file(self, local_path: Path, save_path: str, **kwargs) -> None: # In order to log something in the correct place in wandb, we need to have the same file structure here save_path_file_name = Path(save_path).name print(f"Saving {save_path_file_name} {self.save_type} to wandb run {self.run.path}-{self.run.name}") save_path = Path(self.data_path) / save_path save_path.parent.mkdir(parents=True, exist_ok=True) shutil.copy(local_path, save_path) self.run.save(str(save_path), base_path = str(self.data_path), policy='now') class HuggingfaceSaver(BaseSaver): def __init__(self, data_path: str, huggingface_repo: str, token_path: Optional[str] = None, **kwargs): super().__init__(data_path, **kwargs) self.huggingface_repo = huggingface_repo self.token_path = token_path def init(self, logger: BaseLogger, **kwargs): # Makes sure this user can upload to the repo self.hub = import_or_print_error('huggingface_hub', '`pip install huggingface_hub` to use the huggingface saver') try: identity = self.hub.whoami() # Errors if not logged in # Then we are logged in except: # We are not logged in. Use the token_path to set the token. if not os.path.exists(self.token_path): raise Exception("Not logged in to huggingface and no token_path specified. Please login with `huggingface-cli login` or if that does not work set the token_path.") with open(self.token_path, "r") as f: token = f.read().strip() self.hub.HfApi.set_access_token(token) identity = self.hub.whoami() print(f"Saving to huggingface repo {self.huggingface_repo}") def save_file(self, local_path: Path, save_path: str, **kwargs) -> None: # Saving to huggingface is easy, we just need to upload the file with the correct name save_path_file_name = Path(save_path).name print(f"Saving {save_path_file_name} {self.save_type} to huggingface repo {self.huggingface_repo}") self.hub.upload_file( path_or_fileobj=str(local_path), path_in_repo=str(save_path), repo_id=self.huggingface_repo ) saver_type_map = { 'local': LocalSaver, 'wandb': WandbSaver, 'huggingface': HuggingfaceSaver } def create_saver(saver_type: str, data_path: str, **kwargs) -> BaseSaver: if saver_type == 'custom': raise NotImplementedError('Custom savers are not supported yet. Please use a different saver type.') try: saver_class = saver_type_map[saver_type] except KeyError: raise ValueError(f'Unknown saver type: {saver_type}. Must be one of {list(saver_type_map.keys())}') return saver_class(data_path, **kwargs) class Tracker: def __init__(self, data_path: Optional[str] = DEFAULT_DATA_PATH, overwrite_data_path: bool = False, dummy_mode: bool = False): self.data_path = Path(data_path) if not dummy_mode: if not overwrite_data_path: assert not self.data_path.exists(), f'Data path {self.data_path} already exists. Set overwrite_data_path to True to overwrite.' if not self.data_path.exists(): self.data_path.mkdir(parents=True) self.logger: BaseLogger = None self.loader: Optional[BaseLoader] = None self.savers: List[BaseSaver]= [] self.dummy_mode = dummy_mode def _load_auto_resume(self) -> bool: # If the file does not exist, we return False. If autoresume is enabled we print a warning so that the user can know that this is the first run. if not self.auto_resume_path.exists(): if self.logger.auto_resume: print("Auto_resume is enabled but no auto_resume.json file exists. Assuming this is the first run.") return False # Now we know that the autoresume file exists, but if we are not auto resuming we should remove it so that we don't accidentally load it next time if not self.logger.auto_resume: print(f'Removing auto_resume.json because auto_resume is not enabled in the config') self.auto_resume_path.unlink() return False # Otherwise we read the json into a dictionary will will override parts of logger.__dict__ with open(self.auto_resume_path, 'r') as f: auto_resume_dict = json.load(f) # Check if the logger is of the same type as the autoresume save if auto_resume_dict["logger_type"] != self.logger.__class__.__name__: raise Exception(f'The logger type in the auto_resume file is {auto_resume_dict["logger_type"]} but the current logger is {self.logger.__class__.__name__}. Either use the original logger type, set `auto_resume` to `False`, or delete your existing tracker-data folder.') # Then we are ready to override the logger with the autoresume save self.logger.__dict__["resume"] = True print(f"Updating {self.logger.__dict__} with {auto_resume_dict}") self.logger.__dict__.update(auto_resume_dict) return True def _save_auto_resume(self): # Gets the autoresume dict from the logger and adds "logger_type" to it then saves it to the auto_resume file auto_resume_dict = self.logger.get_resume_data() auto_resume_dict['logger_type'] = self.logger.__class__.__name__ with open(self.auto_resume_path, 'w') as f: json.dump(auto_resume_dict, f) def init(self, full_config: BaseModel, extra_config: dict): self.auto_resume_path = self.data_path / 'auto_resume.json' # Check for resuming the run self.did_auto_resume = self._load_auto_resume() if self.did_auto_resume: print(f'\n\nWARNING: RUN HAS BEEN AUTO-RESUMED WITH THE LOGGER TYPE {self.logger.__class__.__name__}.\nIf this was not your intention, stop this run and set `auto_resume` to `False` in the config.\n\n') print(f"New logger config: {self.logger.__dict__}") self.save_metadata = dict( version = version.parse(__version__) ) # Data that will be saved alongside the checkpoint or model self.blacklisted_checkpoint_metadata_keys = ['scaler', 'optimizer', 'model', 'version', 'step', 'steps'] # These keys would cause us to error if we try to save them as metadata assert self.logger is not None, '`logger` must be set before `init` is called' if self.dummy_mode: # The only thing we need is a loader if self.loader is not None: self.loader.init(self.logger) return assert len(self.savers) > 0, '`savers` must be set before `init` is called' self.logger.init(full_config, extra_config) if self.loader is not None: self.loader.init(self.logger) for saver in self.savers: saver.init(self.logger) if self.logger.auto_resume: # Then we need to save the autoresume file. It is assumed after logger.init is called that the logger is ready to be saved. self._save_auto_resume() def add_logger(self, logger: BaseLogger): self.logger = logger def add_loader(self, loader: BaseLoader): self.loader = loader def add_saver(self, saver: BaseSaver): self.savers.append(saver) def log(self, *args, **kwargs): if self.dummy_mode: return self.logger.log(*args, **kwargs) def log_images(self, *args, **kwargs): if self.dummy_mode: return self.logger.log_images(*args, **kwargs) def log_file(self, *args, **kwargs): if self.dummy_mode: return self.logger.log_file(*args, **kwargs) def save_config(self, current_config_path: str, config_name = 'config.json'): if self.dummy_mode: return # Save the config under config_name in the root folder of data_path shutil.copy(current_config_path, self.data_path / config_name) for saver in self.savers: if saver.saving_meta: remote_path = Path(saver.save_meta_to) / config_name saver.save_file(current_config_path, str(remote_path)) def add_save_metadata(self, state_dict_key: str, metadata: Any): """ Adds a new piece of metadata that will be saved along with the model or decoder. """ self.save_metadata[state_dict_key] = metadata def _save_state_dict(self, trainer: Union[DiffusionPriorTrainer, DecoderTrainer], save_type: str, file_path: str, **kwargs) -> Path: """ Gets the state dict to be saved and writes it to file_path. If save_type is 'checkpoint', we save the entire trainer state dict. If save_type is 'model', we save only the model state dict. """ assert save_type in ['checkpoint', 'model'] if save_type == 'checkpoint': # Create a metadata dict without the blacklisted keys so we do not error when we create the state dict metadata = {k: v for k, v in self.save_metadata.items() if k not in self.blacklisted_checkpoint_metadata_keys} trainer.save(file_path, overwrite=True, **kwargs, **metadata) elif save_type == 'model': if isinstance(trainer, DiffusionPriorTrainer): prior = trainer.ema_diffusion_prior.ema_model if trainer.use_ema else trainer.diffusion_prior prior: DiffusionPrior = trainer.accelerator.unwrap_model(prior) # Remove CLIP if it is part of the model original_clip = prior.clip prior.clip = None model_state_dict = prior.state_dict() prior.clip = original_clip elif isinstance(trainer, DecoderTrainer): decoder: Decoder = trainer.accelerator.unwrap_model(trainer.decoder) # Remove CLIP if it is part of the model original_clip = decoder.clip decoder.clip = None if trainer.use_ema: trainable_unets = decoder.unets decoder.unets = trainer.unets # Swap EMA unets in model_state_dict = decoder.state_dict() decoder.unets = trainable_unets # Swap back else: model_state_dict = decoder.state_dict() decoder.clip = original_clip else: raise NotImplementedError('Saving this type of model with EMA mode enabled is not yet implemented. Actually, how did you get here?') state_dict = { **self.save_metadata, 'model': model_state_dict } torch.save(state_dict, file_path) return Path(file_path) def save(self, trainer, is_best: bool, is_latest: bool, **kwargs): if self.dummy_mode: return if not is_best and not is_latest: # Nothing to do return # Save the checkpoint and model to data_path checkpoint_path = self.data_path / 'checkpoint.pth' self._save_state_dict(trainer, 'checkpoint', checkpoint_path, **kwargs) model_path = self.data_path / 'model.pth' self._save_state_dict(trainer, 'model', model_path, **kwargs) print("Saved cached models") # Call the save methods on the savers for saver in self.savers: local_path = checkpoint_path if saver.save_type == 'checkpoint' else model_path if saver.saving_latest and is_latest: latest_checkpoint_path = saver.save_latest_to.format(**kwargs) try: saver.save_file(local_path, latest_checkpoint_path, is_latest=True, **kwargs) except Exception as e: self.logger.log_error(f'Error saving checkpoint: {e}', **kwargs) print(f'Error saving checkpoint: {e}') if saver.saving_best and is_best: best_checkpoint_path = saver.save_best_to.format(**kwargs) try: saver.save_file(local_path, best_checkpoint_path, is_best=True, **kwargs) except Exception as e: self.logger.log_error(f'Error saving checkpoint: {e}', **kwargs) print(f'Error saving checkpoint: {e}') @property def can_recall(self): # Defines whether a recall can be performed. return self.loader is not None and (not self.loader.only_auto_resume or self.did_auto_resume) def recall(self): if self.can_recall: return self.loader.recall() else: raise ValueError('Tried to recall, but no loader was set or auto-resume was not performed.')
DALLE2-pytorch-main
dalle2_pytorch/trackers.py
import time import importlib # helper functions def exists(val): return val is not None # time helpers class Timer: def __init__(self): self.reset() def reset(self): self.last_time = time.time() def elapsed(self): return time.time() - self.last_time # print helpers def print_ribbon(s, symbol = '=', repeat = 40): flank = symbol * repeat return f'{flank} {s} {flank}' # import helpers def import_or_print_error(pkg_name, err_str = None): try: return importlib.import_module(pkg_name) except ModuleNotFoundError as e: if exists(err_str): print(err_str) exit()
DALLE2-pytorch-main
dalle2_pytorch/utils.py
from torch.optim import AdamW, Adam def separate_weight_decayable_params(params): wd_params, no_wd_params = [], [] for param in params: param_list = no_wd_params if param.ndim < 2 else wd_params param_list.append(param) return wd_params, no_wd_params def get_optimizer( params, lr = 1e-4, wd = 1e-2, betas = (0.9, 0.99), eps = 1e-8, filter_by_requires_grad = False, group_wd_params = True, **kwargs ): if filter_by_requires_grad: params = list(filter(lambda t: t.requires_grad, params)) if wd == 0: return Adam(params, lr = lr, betas = betas, eps = eps) if group_wd_params: wd_params, no_wd_params = separate_weight_decayable_params(params) params = [ {'params': wd_params}, {'params': no_wd_params, 'weight_decay': 0}, ] return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
DALLE2-pytorch-main
dalle2_pytorch/optimizer.py
import copy import math from math import sqrt from functools import partial, wraps from vector_quantize_pytorch import VectorQuantize as VQ import torch from torch import nn, einsum import torch.nn.functional as F from torch.autograd import grad as torch_grad import torchvision from einops import rearrange, reduce, repeat, pack, unpack from einops.layers.torch import Rearrange # constants MList = nn.ModuleList # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # decorators def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner def remove_vgg(fn): @wraps(fn) def inner(self, *args, **kwargs): has_vgg = hasattr(self, 'vgg') if has_vgg: vgg = self.vgg delattr(self, 'vgg') out = fn(self, *args, **kwargs) if has_vgg: self.vgg = vgg return out return inner # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(),dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, string_input): return string_input.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # tensor helper functions def log(t, eps = 1e-10): return torch.log(t + eps) def gradient_penalty(images, output, weight = 10): batch_size = images.shape[0] gradients = torch_grad(outputs = output, inputs = images, grad_outputs = torch.ones(output.size(), device = images.device), create_graph = True, retain_graph = True, only_inputs = True)[0] gradients = rearrange(gradients, 'b ... -> b (...)') return weight * ((gradients.norm(2, dim = 1) - 1) ** 2).mean() def l2norm(t): return F.normalize(t, dim = -1) def leaky_relu(p = 0.1): return nn.LeakyReLU(0.1) def stable_softmax(t, dim = -1, alpha = 32 ** 2): t = t / alpha t = t - torch.amax(t, dim = dim, keepdim = True).detach() return (t * alpha).softmax(dim = dim) def safe_div(numer, denom, eps = 1e-8): return numer / (denom + eps) # gan losses def hinge_discr_loss(fake, real): return (F.relu(1 + fake) + F.relu(1 - real)).mean() def hinge_gen_loss(fake): return -fake.mean() def bce_discr_loss(fake, real): return (-log(1 - torch.sigmoid(fake)) - log(torch.sigmoid(real))).mean() def bce_gen_loss(fake): return -log(torch.sigmoid(fake)).mean() def grad_layer_wrt_loss(loss, layer): return torch_grad( outputs = loss, inputs = layer, grad_outputs = torch.ones_like(loss), retain_graph = True )[0].detach() # vqgan vae class LayerNormChan(nn.Module): def __init__( self, dim, eps = 1e-5 ): super().__init__() self.eps = eps self.gamma = nn.Parameter(torch.ones(1, dim, 1, 1)) def forward(self, x): var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) / (var + self.eps).sqrt() * self.gamma # discriminator class Discriminator(nn.Module): def __init__( self, dims, channels = 3, groups = 16, init_kernel_size = 5 ): super().__init__() dim_pairs = zip(dims[:-1], dims[1:]) self.layers = MList([nn.Sequential(nn.Conv2d(channels, dims[0], init_kernel_size, padding = init_kernel_size // 2), leaky_relu())]) for dim_in, dim_out in dim_pairs: self.layers.append(nn.Sequential( nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1), nn.GroupNorm(groups, dim_out), leaky_relu() )) dim = dims[-1] self.to_logits = nn.Sequential( # return 5 x 5, for PatchGAN-esque training nn.Conv2d(dim, dim, 1), leaky_relu(), nn.Conv2d(dim, 1, 4) ) def forward(self, x): for net in self.layers: x = net(x) return self.to_logits(x) # positional encoding class ContinuousPositionBias(nn.Module): """ from https://arxiv.org/abs/2111.09883 """ def __init__(self, *, dim, heads, layers = 2): super().__init__() self.net = MList([]) self.net.append(nn.Sequential(nn.Linear(2, dim), leaky_relu())) for _ in range(layers - 1): self.net.append(nn.Sequential(nn.Linear(dim, dim), leaky_relu())) self.net.append(nn.Linear(dim, heads)) self.register_buffer('rel_pos', None, persistent = False) def forward(self, x): n, device = x.shape[-1], x.device fmap_size = int(sqrt(n)) if not exists(self.rel_pos): pos = torch.arange(fmap_size, device = device) grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij')) grid = rearrange(grid, 'c i j -> (i j) c') rel_pos = rearrange(grid, 'i c -> i 1 c') - rearrange(grid, 'j c -> 1 j c') rel_pos = torch.sign(rel_pos) * torch.log(rel_pos.abs() + 1) self.register_buffer('rel_pos', rel_pos, persistent = False) rel_pos = self.rel_pos.float() for layer in self.net: rel_pos = layer(rel_pos) bias = rearrange(rel_pos, 'i j h -> h i j') return x + bias # resnet encoder / decoder class ResnetEncDec(nn.Module): def __init__( self, dim, *, channels = 3, layers = 4, layer_mults = None, num_resnet_blocks = 1, resnet_groups = 16, first_conv_kernel_size = 5, use_attn = True, attn_dim_head = 64, attn_heads = 8, attn_dropout = 0., ): super().__init__() assert dim % resnet_groups == 0, f'dimension {dim} must be divisible by {resnet_groups} (groups for the groupnorm)' self.layers = layers self.encoders = MList([]) self.decoders = MList([]) layer_mults = default(layer_mults, list(map(lambda t: 2 ** t, range(layers)))) assert len(layer_mults) == layers, 'layer multipliers must be equal to designated number of layers' layer_dims = [dim * mult for mult in layer_mults] dims = (dim, *layer_dims) self.encoded_dim = dims[-1] dim_pairs = zip(dims[:-1], dims[1:]) append = lambda arr, t: arr.append(t) prepend = lambda arr, t: arr.insert(0, t) if not isinstance(num_resnet_blocks, tuple): num_resnet_blocks = (*((0,) * (layers - 1)), num_resnet_blocks) if not isinstance(use_attn, tuple): use_attn = (*((False,) * (layers - 1)), use_attn) assert len(num_resnet_blocks) == layers, 'number of resnet blocks config must be equal to number of layers' assert len(use_attn) == layers for layer_index, (dim_in, dim_out), layer_num_resnet_blocks, layer_use_attn in zip(range(layers), dim_pairs, num_resnet_blocks, use_attn): append(self.encoders, nn.Sequential(nn.Conv2d(dim_in, dim_out, 4, stride = 2, padding = 1), leaky_relu())) prepend(self.decoders, nn.Sequential(nn.ConvTranspose2d(dim_out, dim_in, 4, 2, 1), leaky_relu())) if layer_use_attn: prepend(self.decoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout)) for _ in range(layer_num_resnet_blocks): append(self.encoders, ResBlock(dim_out, groups = resnet_groups)) prepend(self.decoders, GLUResBlock(dim_out, groups = resnet_groups)) if layer_use_attn: append(self.encoders, VQGanAttention(dim = dim_out, heads = attn_heads, dim_head = attn_dim_head, dropout = attn_dropout)) prepend(self.encoders, nn.Conv2d(channels, dim, first_conv_kernel_size, padding = first_conv_kernel_size // 2)) append(self.decoders, nn.Conv2d(dim, channels, 1)) def get_encoded_fmap_size(self, image_size): return image_size // (2 ** self.layers) @property def last_dec_layer(self): return self.decoders[-1].weight def encode(self, x): for enc in self.encoders: x = enc(x) return x def decode(self, x): for dec in self.decoders: x = dec(x) return x class GLUResBlock(nn.Module): def __init__(self, chan, groups = 16): super().__init__() self.net = nn.Sequential( nn.Conv2d(chan, chan * 2, 3, padding = 1), nn.GLU(dim = 1), nn.GroupNorm(groups, chan), nn.Conv2d(chan, chan * 2, 3, padding = 1), nn.GLU(dim = 1), nn.GroupNorm(groups, chan), nn.Conv2d(chan, chan, 1) ) def forward(self, x): return self.net(x) + x class ResBlock(nn.Module): def __init__(self, chan, groups = 16): super().__init__() self.net = nn.Sequential( nn.Conv2d(chan, chan, 3, padding = 1), nn.GroupNorm(groups, chan), leaky_relu(), nn.Conv2d(chan, chan, 3, padding = 1), nn.GroupNorm(groups, chan), leaky_relu(), nn.Conv2d(chan, chan, 1) ) def forward(self, x): return self.net(x) + x # vqgan attention layer class VQGanAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, dropout = 0. ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 inner_dim = heads * dim_head self.dropout = nn.Dropout(dropout) self.pre_norm = LayerNormChan(dim) self.cpb = ContinuousPositionBias(dim = dim // 4, heads = heads) self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(inner_dim, dim, 1, bias = False) def forward(self, x): h = self.heads height, width, residual = *x.shape[-2:], x.clone() x = self.pre_norm(x) q, k, v = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = h), (q, k, v)) sim = einsum('b h c i, b h c j -> b h i j', q, k) * self.scale sim = self.cpb(sim) attn = stable_softmax(sim, dim = -1) attn = self.dropout(attn) out = einsum('b h i j, b h c j -> b h c i', attn, v) out = rearrange(out, 'b h c (x y) -> b (h c) x y', x = height, y = width) out = self.to_out(out) return out + residual # ViT encoder / decoder class RearrangeImage(nn.Module): def forward(self, x): n = x.shape[1] w = h = int(sqrt(n)) return rearrange(x, 'b (h w) ... -> b h w ...', h = h, w = w) class Attention(nn.Module): def __init__( self, dim, *, heads = 8, dim_head = 32 ): super().__init__() self.norm = nn.LayerNorm(dim) self.heads = heads self.scale = dim_head ** -0.5 inner_dim = dim_head * heads self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim) def forward(self, x): h = self.heads x = self.norm(x) q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j', q, k) sim = sim - sim.amax(dim = -1, keepdim = True).detach() attn = sim.softmax(dim = -1) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) def FeedForward(dim, mult = 4): return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, dim * mult, bias = False), nn.GELU(), nn.Linear(dim * mult, dim, bias = False) ) class Transformer(nn.Module): def __init__( self, dim, *, layers, dim_head = 32, heads = 8, ff_mult = 4 ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(layers): self.layers.append(nn.ModuleList([ Attention(dim = dim, dim_head = dim_head, heads = heads), FeedForward(dim = dim, mult = ff_mult) ])) self.norm = nn.LayerNorm(dim) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class ViTEncDec(nn.Module): def __init__( self, dim, channels = 3, layers = 4, patch_size = 8, dim_head = 32, heads = 8, ff_mult = 4 ): super().__init__() self.encoded_dim = dim self.patch_size = patch_size input_dim = channels * (patch_size ** 2) self.encoder = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.Linear(input_dim, dim), Transformer( dim = dim, dim_head = dim_head, heads = heads, ff_mult = ff_mult, layers = layers ), RearrangeImage(), Rearrange('b h w c -> b c h w') ) self.decoder = nn.Sequential( Rearrange('b c h w -> b (h w) c'), Transformer( dim = dim, dim_head = dim_head, heads = heads, ff_mult = ff_mult, layers = layers ), nn.Sequential( nn.Linear(dim, dim * 4, bias = False), nn.Tanh(), nn.Linear(dim * 4, input_dim, bias = False), ), RearrangeImage(), Rearrange('b h w (p1 p2 c) -> b c (h p1) (w p2)', p1 = patch_size, p2 = patch_size) ) def get_encoded_fmap_size(self, image_size): return image_size // self.patch_size @property def last_dec_layer(self): return self.decoder[-3][-1].weight def encode(self, x): return self.encoder(x) def decode(self, x): return self.decoder(x) # main vqgan-vae classes class NullVQGanVAE(nn.Module): def __init__( self, *, channels ): super().__init__() self.encoded_dim = channels self.layers = 0 def get_encoded_fmap_size(self, size): return size def copy_for_eval(self): return self def encode(self, x): return x def decode(self, x): return x class VQGanVAE(nn.Module): def __init__( self, *, dim, image_size, channels = 3, layers = 4, l2_recon_loss = False, use_hinge_loss = True, vgg = None, vq_codebook_dim = 256, vq_codebook_size = 512, vq_decay = 0.8, vq_commitment_weight = 1., vq_kmeans_init = True, vq_use_cosine_sim = True, use_vgg_and_gan = True, vae_type = 'resnet', discr_layers = 4, **kwargs ): super().__init__() vq_kwargs, kwargs = groupby_prefix_and_trim('vq_', kwargs) encdec_kwargs, kwargs = groupby_prefix_and_trim('encdec_', kwargs) self.image_size = image_size self.channels = channels self.codebook_size = vq_codebook_size if vae_type == 'resnet': enc_dec_klass = ResnetEncDec elif vae_type == 'vit': enc_dec_klass = ViTEncDec else: raise ValueError(f'{vae_type} not valid') self.enc_dec = enc_dec_klass( dim = dim, channels = channels, layers = layers, **encdec_kwargs ) self.vq = VQ( dim = self.enc_dec.encoded_dim, codebook_dim = vq_codebook_dim, codebook_size = vq_codebook_size, decay = vq_decay, commitment_weight = vq_commitment_weight, accept_image_fmap = True, kmeans_init = vq_kmeans_init, use_cosine_sim = vq_use_cosine_sim, **vq_kwargs ) # reconstruction loss self.recon_loss_fn = F.mse_loss if l2_recon_loss else F.l1_loss # turn off GAN and perceptual loss if grayscale self.vgg = None self.discr = None self.use_vgg_and_gan = use_vgg_and_gan if not use_vgg_and_gan: return # preceptual loss if exists(vgg): self.vgg = vgg else: self.vgg = torchvision.models.vgg16(pretrained = True) self.vgg.classifier = nn.Sequential(*self.vgg.classifier[:-2]) # gan related losses layer_mults = list(map(lambda t: 2 ** t, range(discr_layers))) layer_dims = [dim * mult for mult in layer_mults] dims = (dim, *layer_dims) self.discr = Discriminator(dims = dims, channels = channels) self.discr_loss = hinge_discr_loss if use_hinge_loss else bce_discr_loss self.gen_loss = hinge_gen_loss if use_hinge_loss else bce_gen_loss @property def encoded_dim(self): return self.enc_dec.encoded_dim def get_encoded_fmap_size(self, image_size): return self.enc_dec.get_encoded_fmap_size(image_size) def copy_for_eval(self): device = next(self.parameters()).device vae_copy = copy.deepcopy(self.cpu()) if vae_copy.use_vgg_and_gan: del vae_copy.discr del vae_copy.vgg vae_copy.eval() return vae_copy.to(device) @remove_vgg def state_dict(self, *args, **kwargs): return super().state_dict(*args, **kwargs) @remove_vgg def load_state_dict(self, *args, **kwargs): return super().load_state_dict(*args, **kwargs) @property def codebook(self): return self.vq.codebook def encode(self, fmap): fmap = self.enc_dec.encode(fmap) return fmap def decode(self, fmap, return_indices_and_loss = False): fmap, indices, commit_loss = self.vq(fmap) fmap = self.enc_dec.decode(fmap) if not return_indices_and_loss: return fmap return fmap, indices, commit_loss def forward( self, img, return_loss = False, return_discr_loss = False, return_recons = False, add_gradient_penalty = True ): batch, channels, height, width, device = *img.shape, img.device assert height == self.image_size and width == self.image_size, 'height and width of input image must be equal to {self.image_size}' assert channels == self.channels, 'number of channels on image or sketch is not equal to the channels set on this VQGanVAE' fmap = self.encode(img) fmap, indices, commit_loss = self.decode(fmap, return_indices_and_loss = True) if not return_loss and not return_discr_loss: return fmap assert return_loss ^ return_discr_loss, 'you should either return autoencoder loss or discriminator loss, but not both' # whether to return discriminator loss if return_discr_loss: assert exists(self.discr), 'discriminator must exist to train it' fmap.detach_() img.requires_grad_() fmap_discr_logits, img_discr_logits = map(self.discr, (fmap, img)) discr_loss = self.discr_loss(fmap_discr_logits, img_discr_logits) if add_gradient_penalty: gp = gradient_penalty(img, img_discr_logits) loss = discr_loss + gp if return_recons: return loss, fmap return loss # reconstruction loss recon_loss = self.recon_loss_fn(fmap, img) # early return if training on grayscale if not self.use_vgg_and_gan: if return_recons: return recon_loss, fmap return recon_loss # perceptual loss img_vgg_input = img fmap_vgg_input = fmap if img.shape[1] == 1: # handle grayscale for vgg img_vgg_input, fmap_vgg_input = map(lambda t: repeat(t, 'b 1 ... -> b c ...', c = 3), (img_vgg_input, fmap_vgg_input)) img_vgg_feats = self.vgg(img_vgg_input) recon_vgg_feats = self.vgg(fmap_vgg_input) perceptual_loss = F.mse_loss(img_vgg_feats, recon_vgg_feats) # generator loss gen_loss = self.gen_loss(self.discr(fmap)) # calculate adaptive weight last_dec_layer = self.enc_dec.last_dec_layer norm_grad_wrt_gen_loss = grad_layer_wrt_loss(gen_loss, last_dec_layer).norm(p = 2) norm_grad_wrt_perceptual_loss = grad_layer_wrt_loss(perceptual_loss, last_dec_layer).norm(p = 2) adaptive_weight = safe_div(norm_grad_wrt_perceptual_loss, norm_grad_wrt_gen_loss) adaptive_weight.clamp_(max = 1e4) # combine losses loss = recon_loss + perceptual_loss + commit_loss + adaptive_weight * gen_loss if return_recons: return loss, fmap return loss
DALLE2-pytorch-main
dalle2_pytorch/vqgan_vae.py
import time import copy from pathlib import Path from math import ceil from functools import partial, wraps from contextlib import nullcontext from collections.abc import Iterable import torch import torch.nn.functional as F from torch import nn from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR from torch.cuda.amp import autocast, GradScaler from dalle2_pytorch.dalle2_pytorch import Decoder, DiffusionPrior from dalle2_pytorch.optimizer import get_optimizer from dalle2_pytorch.version import __version__ from packaging import version import pytorch_warmup as warmup from ema_pytorch import EMA from accelerate import Accelerator, DistributedType import numpy as np # helper functions def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def cast_tuple(val, length = 1): return val if isinstance(val, tuple) else ((val,) * length) def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(),dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs def num_to_groups(num, divisor): groups = num // divisor remainder = num % divisor arr = [divisor] * groups if remainder > 0: arr.append(remainder) return arr # decorators def cast_torch_tensor(fn): @wraps(fn) def inner(model, *args, **kwargs): device = kwargs.pop('_device', next(model.parameters()).device) cast_device = kwargs.pop('_cast_device', True) cast_deepspeed_precision = kwargs.pop('_cast_deepspeed_precision', True) kwargs_keys = kwargs.keys() all_args = (*args, *kwargs.values()) split_kwargs_index = len(all_args) - len(kwargs_keys) all_args = tuple(map(lambda t: torch.from_numpy(t) if exists(t) and isinstance(t, np.ndarray) else t, all_args)) if cast_device: all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args)) if cast_deepspeed_precision: try: accelerator = model.accelerator if accelerator is not None and accelerator.distributed_type == DistributedType.DEEPSPEED: cast_type_map = { "fp16": torch.half, "bf16": torch.bfloat16, "no": torch.float } precision_type = cast_type_map[accelerator.mixed_precision] all_args = tuple(map(lambda t: t.to(precision_type) if exists(t) and isinstance(t, torch.Tensor) else t, all_args)) except AttributeError: # Then this model doesn't have an accelerator pass args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:] kwargs = dict(tuple(zip(kwargs_keys, kwargs_values))) out = fn(model, *args, **kwargs) return out return inner # gradient accumulation functions def split_iterable(it, split_size): accum = [] for ind in range(ceil(len(it) / split_size)): start_index = ind * split_size accum.append(it[start_index: (start_index + split_size)]) return accum def split(t, split_size = None): if not exists(split_size): return t if isinstance(t, torch.Tensor): return t.split(split_size, dim = 0) if isinstance(t, Iterable): return split_iterable(t, split_size) return TypeError def find_first(cond, arr): for el in arr: if cond(el): return el return None def split_args_and_kwargs(*args, split_size = None, **kwargs): all_args = (*args, *kwargs.values()) len_all_args = len(all_args) first_tensor = find_first(lambda t: isinstance(t, torch.Tensor), all_args) assert exists(first_tensor) batch_size = len(first_tensor) split_size = default(split_size, batch_size) num_chunks = ceil(batch_size / split_size) dict_len = len(kwargs) dict_keys = kwargs.keys() split_kwargs_index = len_all_args - dict_len split_all_args = [split(arg, split_size = split_size) if exists(arg) and isinstance(arg, (torch.Tensor, Iterable)) else ((arg,) * num_chunks) for arg in all_args] chunk_sizes = tuple(map(len, split_all_args[0])) for (chunk_size, *chunked_all_args) in tuple(zip(chunk_sizes, *split_all_args)): chunked_args, chunked_kwargs_values = chunked_all_args[:split_kwargs_index], chunked_all_args[split_kwargs_index:] chunked_kwargs = dict(tuple(zip(dict_keys, chunked_kwargs_values))) chunk_size_frac = chunk_size / batch_size yield chunk_size_frac, (chunked_args, chunked_kwargs) # diffusion prior trainer def prior_sample_in_chunks(fn): @wraps(fn) def inner(self, *args, max_batch_size = None, **kwargs): if not exists(max_batch_size): return fn(self, *args, **kwargs) outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)] return torch.cat(outputs, dim = 0) return inner class DiffusionPriorTrainer(nn.Module): def __init__( self, diffusion_prior, accelerator = None, use_ema = True, lr = 3e-4, wd = 1e-2, eps = 1e-6, max_grad_norm = None, group_wd_params = True, warmup_steps = None, cosine_decay_max_steps = None, **kwargs ): super().__init__() assert isinstance(diffusion_prior, DiffusionPrior) ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs) accelerator_kwargs, kwargs = groupby_prefix_and_trim('accelerator_', kwargs) if not exists(accelerator): accelerator = Accelerator(**accelerator_kwargs) # assign some helpful member vars self.accelerator = accelerator self.text_conditioned = diffusion_prior.condition_on_text_encodings # setting the device self.device = accelerator.device diffusion_prior.to(self.device) # save model self.diffusion_prior = diffusion_prior # mixed precision checks if ( exists(self.accelerator) and self.accelerator.distributed_type == DistributedType.DEEPSPEED and self.diffusion_prior.clip is not None ): # Then we need to make sure clip is using the correct precision or else deepspeed will error cast_type_map = { "fp16": torch.half, "bf16": torch.bfloat16, "no": torch.float } precision_type = cast_type_map[accelerator.mixed_precision] assert precision_type == torch.float, "DeepSpeed currently only supports float32 precision when using on the fly embedding generation from clip" self.diffusion_prior.clip.to(precision_type) # optimizer stuff self.optim_kwargs = dict(lr=lr, wd=wd, eps=eps, group_wd_params=group_wd_params) self.optimizer = get_optimizer( self.diffusion_prior.parameters(), **self.optim_kwargs, **kwargs ) if exists(cosine_decay_max_steps): self.scheduler = CosineAnnealingLR(self.optimizer, T_max = cosine_decay_max_steps) else: self.scheduler = LambdaLR(self.optimizer, lr_lambda = lambda _: 1.0) self.warmup_scheduler = warmup.LinearWarmup(self.optimizer, warmup_period = warmup_steps) if exists(warmup_steps) else None # distribute the model if using HFA self.diffusion_prior, self.optimizer, self.scheduler = self.accelerator.prepare(self.diffusion_prior, self.optimizer, self.scheduler) # exponential moving average stuff self.use_ema = use_ema if self.use_ema: self.ema_diffusion_prior = EMA(self.accelerator.unwrap_model(self.diffusion_prior), **ema_kwargs) # gradient clipping if needed self.max_grad_norm = max_grad_norm # track steps internally self.register_buffer('step', torch.tensor([0], device = self.device)) # utility def save(self, path, overwrite = True, **kwargs): # only save on the main process if self.accelerator.is_main_process: print(f"Saving checkpoint at step: {self.step.item()}") path = Path(path) assert not (path.exists() and not overwrite) path.parent.mkdir(parents = True, exist_ok = True) # FIXME: LambdaLR can't be saved due to pickling issues save_obj = dict( optimizer = self.optimizer.state_dict(), scheduler = self.scheduler.state_dict(), warmup_scheduler = self.warmup_scheduler, model = self.accelerator.unwrap_model(self.diffusion_prior).state_dict(), version = version.parse(__version__), step = self.step, **kwargs ) if self.use_ema: save_obj = { **save_obj, 'ema': self.ema_diffusion_prior.state_dict(), 'ema_model': self.ema_diffusion_prior.ema_model.state_dict() # save the ema model specifically for easy ema-only reload } torch.save(save_obj, str(path)) def load(self, path_or_state, overwrite_lr = True, strict = True): """ Load a checkpoint of a diffusion prior trainer. Will load the entire trainer, including the optimizer and EMA. Params: - path_or_state (str | torch): a path to the DiffusionPriorTrainer checkpoint file - overwrite_lr (bool): wether or not to overwrite the stored LR with the LR specified in the new trainer - strict (bool): kwarg for `torch.nn.Module.load_state_dict`, will force an exact checkpoint match Returns: loaded_obj (dict): The loaded checkpoint dictionary """ # all processes need to load checkpoint. no restriction here if isinstance(path_or_state, str): path = Path(path_or_state) assert path.exists() loaded_obj = torch.load(str(path), map_location=self.device) elif isinstance(path_or_state, dict): loaded_obj = path_or_state if version.parse(__version__) != loaded_obj['version']: print(f'loading saved diffusion prior at version {loaded_obj["version"]} but current package version is at {__version__}') # unwrap the model when loading from checkpoint self.accelerator.unwrap_model(self.diffusion_prior).load_state_dict(loaded_obj['model'], strict = strict) self.step.copy_(torch.ones_like(self.step, device=self.device) * loaded_obj['step'].to(self.device)) self.optimizer.load_state_dict(loaded_obj['optimizer']) self.scheduler.load_state_dict(loaded_obj['scheduler']) # set warmupstep if exists(self.warmup_scheduler): self.warmup_scheduler.last_step = self.step.item() # ensure new lr is used if different from old one if overwrite_lr: new_lr = self.optim_kwargs["lr"] for group in self.optimizer.param_groups: group["lr"] = new_lr if group["lr"] > 0.0 else 0.0 if self.use_ema: assert 'ema' in loaded_obj self.ema_diffusion_prior.load_state_dict(loaded_obj['ema'], strict = strict) # below might not be necessary, but I had a suspicion that this wasn't being loaded correctly self.ema_diffusion_prior.ema_model.load_state_dict(loaded_obj["ema_model"]) return loaded_obj # model functionality def update(self): if exists(self.max_grad_norm): self.accelerator.clip_grad_norm_(self.diffusion_prior.parameters(), self.max_grad_norm) self.optimizer.step() self.optimizer.zero_grad() # accelerator will ocassionally skip optimizer steps in a "dynamic loss scaling strategy" if not self.accelerator.optimizer_step_was_skipped: sched_context = self.warmup_scheduler.dampening if exists(self.warmup_scheduler) else nullcontext with sched_context(): self.scheduler.step() if self.use_ema: self.ema_diffusion_prior.update() self.step += 1 @torch.no_grad() @cast_torch_tensor @prior_sample_in_chunks def p_sample_loop(self, *args, **kwargs): model = self.ema_diffusion_prior.ema_model if self.use_ema else self.diffusion_prior return model.p_sample_loop(*args, **kwargs) @torch.no_grad() @cast_torch_tensor @prior_sample_in_chunks def sample(self, *args, **kwargs): model = self.ema_diffusion_prior.ema_model if self.use_ema else self.diffusion_prior return model.sample(*args, **kwargs) @torch.no_grad() def sample_batch_size(self, *args, **kwargs): model = self.ema_diffusion_prior.ema_model if self.use_ema else self.diffusion_prior return model.sample_batch_size(*args, **kwargs) @torch.no_grad() @cast_torch_tensor @prior_sample_in_chunks def embed_text(self, *args, **kwargs): return self.accelerator.unwrap_model(self.diffusion_prior).clip.embed_text(*args, **kwargs) @cast_torch_tensor def forward( self, *args, max_batch_size = None, **kwargs ): total_loss = 0. for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs): with self.accelerator.autocast(): loss = self.diffusion_prior(*chunked_args, **chunked_kwargs) loss = loss * chunk_size_frac total_loss += loss.item() if self.training: self.accelerator.backward(loss) return total_loss # decoder trainer def decoder_sample_in_chunks(fn): @wraps(fn) def inner(self, *args, max_batch_size = None, **kwargs): if not exists(max_batch_size): return fn(self, *args, **kwargs) if self.decoder.unconditional: batch_size = kwargs.get('batch_size') batch_sizes = num_to_groups(batch_size, max_batch_size) outputs = [fn(self, *args, **{**kwargs, 'batch_size': sub_batch_size}) for sub_batch_size in batch_sizes] else: outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)] return torch.cat(outputs, dim = 0) return inner class DecoderTrainer(nn.Module): def __init__( self, decoder, accelerator = None, dataloaders = None, use_ema = True, lr = 1e-4, wd = 1e-2, eps = 1e-8, warmup_steps = None, cosine_decay_max_steps = None, max_grad_norm = 0.5, amp = False, group_wd_params = True, **kwargs ): super().__init__() assert isinstance(decoder, Decoder) ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs) self.accelerator = default(accelerator, Accelerator) self.num_unets = len(decoder.unets) self.use_ema = use_ema self.ema_unets = nn.ModuleList([]) self.amp = amp # be able to finely customize learning rate, weight decay # per unet lr, wd, eps, warmup_steps, cosine_decay_max_steps = map(partial(cast_tuple, length = self.num_unets), (lr, wd, eps, warmup_steps, cosine_decay_max_steps)) assert all([unet_lr <= 1e-2 for unet_lr in lr]), 'your learning rate is too high, recommend sticking with 1e-4, at most 5e-4' optimizers = [] schedulers = [] warmup_schedulers = [] for unet, unet_lr, unet_wd, unet_eps, unet_warmup_steps, unet_cosine_decay_max_steps in zip(decoder.unets, lr, wd, eps, warmup_steps, cosine_decay_max_steps): if isinstance(unet, nn.Identity): optimizers.append(None) schedulers.append(None) warmup_schedulers.append(None) else: optimizer = get_optimizer( unet.parameters(), lr = unet_lr, wd = unet_wd, eps = unet_eps, group_wd_params = group_wd_params, **kwargs ) optimizers.append(optimizer) if exists(unet_cosine_decay_max_steps): scheduler = CosineAnnealingLR(optimizer, T_max = unet_cosine_decay_max_steps) else: scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0) warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps) if exists(unet_warmup_steps) else None warmup_schedulers.append(warmup_scheduler) schedulers.append(scheduler) if self.use_ema: self.ema_unets.append(EMA(unet, **ema_kwargs)) # gradient clipping if needed self.max_grad_norm = max_grad_norm self.register_buffer('steps', torch.tensor([0] * self.num_unets)) if self.accelerator.distributed_type == DistributedType.DEEPSPEED and decoder.clip is not None: # Then we need to make sure clip is using the correct precision or else deepspeed will error cast_type_map = { "fp16": torch.half, "bf16": torch.bfloat16, "no": torch.float } precision_type = cast_type_map[accelerator.mixed_precision] assert precision_type == torch.float, "DeepSpeed currently only supports float32 precision when using on the fly embedding generation from clip" clip = decoder.clip clip.to(precision_type) decoder, *optimizers = list(self.accelerator.prepare(decoder, *optimizers)) self.decoder = decoder # prepare dataloaders train_loader = val_loader = None if exists(dataloaders): train_loader, val_loader = self.accelerator.prepare(dataloaders["train"], dataloaders["val"]) self.train_loader = train_loader self.val_loader = val_loader # store optimizers for opt_ind, optimizer in zip(range(len(optimizers)), optimizers): setattr(self, f'optim{opt_ind}', optimizer) # store schedulers for sched_ind, scheduler in zip(range(len(schedulers)), schedulers): setattr(self, f'sched{sched_ind}', scheduler) # store warmup schedulers self.warmup_schedulers = warmup_schedulers def validate_and_return_unet_number(self, unet_number = None): if self.num_unets == 1: unet_number = default(unet_number, 1) assert exists(unet_number) and 1 <= unet_number <= self.num_unets return unet_number def num_steps_taken(self, unet_number = None): unet_number = self.validate_and_return_unet_number(unet_number) return self.steps[unet_number - 1].item() def save(self, path, overwrite = True, **kwargs): path = Path(path) assert not (path.exists() and not overwrite) path.parent.mkdir(parents = True, exist_ok = True) save_obj = dict( model = self.accelerator.unwrap_model(self.decoder).state_dict(), version = __version__, steps = self.steps.cpu(), **kwargs ) for ind in range(0, self.num_unets): optimizer_key = f'optim{ind}' scheduler_key = f'sched{ind}' optimizer = getattr(self, optimizer_key) scheduler = getattr(self, scheduler_key) optimizer_state_dict = optimizer.state_dict() if exists(optimizer) else None scheduler_state_dict = scheduler.state_dict() if exists(scheduler) else None save_obj = {**save_obj, optimizer_key: optimizer_state_dict, scheduler_key: scheduler_state_dict} if self.use_ema: save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()} self.accelerator.save(save_obj, str(path)) def load_state_dict(self, loaded_obj, only_model = False, strict = True): if version.parse(__version__) != version.parse(loaded_obj['version']): self.accelerator.print(f'loading saved decoder at version {loaded_obj["version"]}, but current package version is {__version__}') self.accelerator.unwrap_model(self.decoder).load_state_dict(loaded_obj['model'], strict = strict) self.steps.copy_(loaded_obj['steps']) if only_model: return loaded_obj for ind, last_step in zip(range(0, self.num_unets), self.steps.tolist()): optimizer_key = f'optim{ind}' optimizer = getattr(self, optimizer_key) scheduler_key = f'sched{ind}' scheduler = getattr(self, scheduler_key) warmup_scheduler = self.warmup_schedulers[ind] if exists(optimizer): optimizer.load_state_dict(loaded_obj[optimizer_key]) if exists(scheduler): scheduler.load_state_dict(loaded_obj[scheduler_key]) if exists(warmup_scheduler): warmup_scheduler.last_step = last_step if self.use_ema: assert 'ema' in loaded_obj self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict) def load(self, path, only_model = False, strict = True): path = Path(path) assert path.exists() loaded_obj = torch.load(str(path), map_location = 'cpu') self.load_state_dict(loaded_obj, only_model = only_model, strict = strict) return loaded_obj @property def unets(self): return nn.ModuleList([ema.ema_model for ema in self.ema_unets]) def increment_step(self, unet_number): assert 1 <= unet_number <= self.num_unets unet_index_tensor = torch.tensor(unet_number - 1, device = self.steps.device) self.steps += F.one_hot(unet_index_tensor, num_classes = len(self.steps)) def update(self, unet_number = None): unet_number = self.validate_and_return_unet_number(unet_number) index = unet_number - 1 optimizer = getattr(self, f'optim{index}') scheduler = getattr(self, f'sched{index}') if exists(self.max_grad_norm): self.accelerator.clip_grad_norm_(self.decoder.parameters(), self.max_grad_norm) # Automatically unscales gradients optimizer.step() optimizer.zero_grad() warmup_scheduler = self.warmup_schedulers[index] scheduler_context = warmup_scheduler.dampening if exists(warmup_scheduler) else nullcontext with scheduler_context(): scheduler.step() if self.use_ema: ema_unet = self.ema_unets[index] ema_unet.update() self.increment_step(unet_number) @torch.no_grad() @cast_torch_tensor @decoder_sample_in_chunks def sample(self, *args, **kwargs): distributed = self.accelerator.num_processes > 1 base_decoder = self.accelerator.unwrap_model(self.decoder) was_training = base_decoder.training base_decoder.eval() if kwargs.pop('use_non_ema', False) or not self.use_ema: out = base_decoder.sample(*args, **kwargs, distributed = distributed) base_decoder.train(was_training) return out trainable_unets = self.accelerator.unwrap_model(self.decoder).unets base_decoder.unets = self.unets # swap in exponential moving averaged unets for sampling output = base_decoder.sample(*args, **kwargs, distributed = distributed) base_decoder.unets = trainable_unets # restore original training unets # cast the ema_model unets back to original device for ema in self.ema_unets: ema.restore_ema_model_device() base_decoder.train(was_training) return output @torch.no_grad() @cast_torch_tensor @prior_sample_in_chunks def embed_text(self, *args, **kwargs): return self.accelerator.unwrap_model(self.decoder).clip.embed_text(*args, **kwargs) @torch.no_grad() @cast_torch_tensor @prior_sample_in_chunks def embed_image(self, *args, **kwargs): return self.accelerator.unwrap_model(self.decoder).clip.embed_image(*args, **kwargs) @cast_torch_tensor def forward( self, *args, unet_number = None, max_batch_size = None, return_lowres_cond_image=False, **kwargs ): unet_number = self.validate_and_return_unet_number(unet_number) total_loss = 0. cond_images = [] for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs): with self.accelerator.autocast(): loss_obj = self.decoder(*chunked_args, unet_number = unet_number, return_lowres_cond_image=return_lowres_cond_image, **chunked_kwargs) # loss_obj may be a tuple with loss and cond_image if return_lowres_cond_image: loss, cond_image = loss_obj else: loss = loss_obj cond_image = None loss = loss * chunk_size_frac if cond_image is not None: cond_images.append(cond_image) total_loss += loss.item() if self.training: self.accelerator.backward(loss) if return_lowres_cond_image: return total_loss, torch.stack(cond_images) else: return total_loss
DALLE2-pytorch-main
dalle2_pytorch/trainer.py
import os import webdataset as wds import torch from torch.utils.data import DataLoader import numpy as np import fsspec import shutil def get_shard(filename): """ Filenames with shards in them have a consistent structure that we can take advantage of Standard structure: path/to/file/prefix_string_00001.ext """ try: return filename.split("_")[-1].split(".")[0] except ValueError: raise RuntimeError(f"Could not find shard for filename {filename}") def get_example_file(fs, path, file_format): """ Given a file system and a file extension, return the example file """ return fs.glob(os.path.join(path, f"*.{file_format}"))[0] def embedding_inserter(samples, embeddings_url, index_width, sample_key='npy', handler=wds.handlers.reraise_exception): """Given a datum of {"__key__": str, "__url__": str, ...} adds the cooresponding embedding and yields""" previous_tar_url = None current_embeddings = None # Get a reference to an abstract file system where the embeddings are stored embeddings_fs, embeddings_path = fsspec.core.url_to_fs(embeddings_url) example_embedding_file = get_example_file(embeddings_fs, embeddings_path, "npy") example_embedding_shard = get_shard(example_embedding_file) emb_shard_width = len(example_embedding_shard) # Easier to get the basename without the shard once than search through for the correct file every time embedding_file_basename = '_'.join(example_embedding_file.split("_")[:-1]) + "_" def load_corresponding_embeds(tar_url): """Finds and reads the npy files that contains embeddings for the given webdataset tar""" shard = int(tar_url.split("/")[-1].split(".")[0]) embedding_url = embedding_file_basename + str(shard).zfill(emb_shard_width) + '.npy' with embeddings_fs.open(embedding_url) as f: data = np.load(f) return torch.from_numpy(data) for sample in samples: try: tar_url = sample["__url__"] key = sample["__key__"] if tar_url != previous_tar_url: # If the tar changed, we need to download new embeddings # This means if we shuffle before inserting it will load many more files than we expect and be very inefficient. previous_tar_url = tar_url current_embeddings = load_corresponding_embeds(tar_url) embedding_index = int(key[-index_width:]) embedding = current_embeddings[embedding_index] # We need to check if this sample is nonzero. If it is, this embedding is not valid and we should continue to the next loop if torch.count_nonzero(embedding) == 0: raise RuntimeError(f"Webdataset had a sample, but no embedding was found. ImgShard: {key[:-index_width]} - Index: {key[-index_width:]}") sample[sample_key] = embedding yield sample except Exception as exn: # From wds implementation if handler(exn): continue else: break insert_embedding = wds.filters.pipelinefilter(embedding_inserter) def unassociated_shard_skipper(tarfiles, embeddings_url, handler=wds.handlers.reraise_exception): """Finds if the is a corresponding embedding for the tarfile at { url: [URL] }""" embeddings_fs, embeddings_path = fsspec.core.url_to_fs(embeddings_url) embedding_files = embeddings_fs.ls(embeddings_path) get_embedding_shard = lambda embedding_file: int(embedding_file.split("_")[-1].split(".")[0]) embedding_shards = set([get_embedding_shard(filename) for filename in embedding_files]) # Sets have O(1) check for member get_tar_shard = lambda tar_file: int(tar_file.split("/")[-1].split(".")[0]) for tarfile in tarfiles: try: webdataset_shard = get_tar_shard(tarfile["url"]) # If this shard has an associated embeddings file, we pass it through. Otherwise we iterate until we do have one if webdataset_shard in embedding_shards: yield tarfile except Exception as exn: # From wds implementation if handler(exn): continue else: break skip_unassociated_shards = wds.filters.pipelinefilter(unassociated_shard_skipper) def join_embeddings(samples, handler=wds.handlers.reraise_exception): """ Takes the img_emb and text_emb keys and turns them into one key "emb": { "text": text_emb, "img": img_emb } either or both of text_emb and img_emb may not be in the sample so we only add the ones that exist """ for sample in samples: try: sample['emb'] = {} if 'text_emb' in sample: sample['emb']['text'] = sample['text_emb'] if 'img_emb' in sample: sample['emb']['img'] = sample['img_emb'] yield sample except Exception as exn: # From wds implementation if handler(exn): continue else: break def verify_keys(samples, required_keys, handler=wds.handlers.reraise_exception): """ Requires that both the image and embedding are present in the sample This is important to do as a user may forget they do not have embeddings in their webdataset and neglect to add them using the embedding_folder_url parameter. """ for sample in samples: try: for key in required_keys: assert key in sample, f"Sample {sample['__key__']} missing {key}. Has keys {sample.keys()}" yield sample except Exception as exn: # From wds implementation if handler(exn): continue else: break key_verifier = wds.filters.pipelinefilter(verify_keys) class ImageEmbeddingDataset(wds.DataPipeline, wds.compat.FluidInterface): """ A fluid interface wrapper for DataPipline that returns image embedding pairs Reads embeddings as npy files from the webdataset if they exist. If embedding_folder_url is set, they will be inserted in from the alternate source. """ def __init__( self, urls, img_embedding_folder_url=None, text_embedding_folder_url=None, index_width=None, img_preproc=None, extra_keys=[], handler=wds.handlers.reraise_exception, resample=False, shuffle_shards=True ): """ Modeled directly off of the WebDataset constructor :param urls: A url pointing to the tar files of the webdataset formatted as /path/to/webdataset/{0000..9999}.tar :param embedding_folder_url: Required if webdataset does not contain embeddings. A url pointing to the npy files of the embeddings. Should have the same number of shards as the webdataset. Webdataset image keys should align with the index of the embedding. This means missing image indices must have a corresponding embedding of all zeros. :param index_width: The number of digits in the index. This is used to align the embedding index with the image index. For example, if a file in the webdataset shard 3 is named 0003039.jpg, we know the shard is 4 digits and the last 3 digits are the index_width. :param img_preproc: This function is run on the img before it is batched and returned. Useful for data augmentation or converting to torch tensor. :param handler: A webdataset handler. :param resample: If true, resample webdataset shards with replacement. You need to set your own epoch size if this is true since it will resample infinitely. :param shuffle_shards: If true, shuffle the shards before resampling. This cannot be true if resample is true. """ super().__init__() keys = ["jpg", "emb"] + extra_keys # if img_embedding_folder_url is not None: # keys.append("img_emb") # if text_embedding_folder_url is not None: # keys.append("text_emb") # keys.extend(extra_keys) self.key_map = {key: i for i, key in enumerate(keys)} self.resampling = resample self.img_preproc = img_preproc # If s3, check if s3fs is installed and s3cmd is installed and check if the data is piped instead of straight up if (isinstance(urls, str) and "s3:" in urls) or (isinstance(urls, list) and any(["s3:" in url for url in urls])): # Then this has an s3 link for the webdataset and we need extra packages if shutil.which("s3cmd") is None: raise RuntimeError("s3cmd is required for s3 webdataset") if (img_embedding_folder_url is not None and "s3:" in img_embedding_folder_url) or (text_embedding_folder_url is not None and "s3:" in text_embedding_folder_url): # Then the embeddings are being loaded from s3 and fsspec requires s3fs try: import s3fs except ImportError: raise RuntimeError("s3fs is required to load embeddings from s3") # Add the shardList and randomize or resample if requested if resample: assert not shuffle_shards, "Cannot both resample and shuffle" self.append(wds.ResampledShards(urls)) else: self.append(wds.SimpleShardList(urls)) if shuffle_shards: self.append(wds.filters.shuffle(1000)) if img_embedding_folder_url is not None: # There may be webdataset shards that do not have a embedding shard associated with it. If we do not skip these, they would cause issues. self.append(skip_unassociated_shards(embeddings_url=img_embedding_folder_url, handler=handler)) if text_embedding_folder_url is not None: self.append(skip_unassociated_shards(embeddings_url=text_embedding_folder_url, handler=handler)) self.append(wds.tarfile_to_samples(handler=handler)) self.append(wds.decode("pilrgb", handler=handler)) if img_embedding_folder_url is not None: # Then we are loading image embeddings for a remote source assert index_width is not None, "Reading embeddings separately requires index width length to be given" self.append(insert_embedding(embeddings_url=img_embedding_folder_url, index_width=index_width, sample_key='img_emb', handler=handler)) if text_embedding_folder_url is not None: # Then we are loading image embeddings for a remote source assert index_width is not None, "Reading embeddings separately requires index width length to be given" self.append(insert_embedding(embeddings_url=text_embedding_folder_url, index_width=index_width, sample_key='text_emb', handler=handler)) self.append(join_embeddings) self.append(key_verifier(required_keys=keys, handler=handler)) # Apply preprocessing self.append(wds.map(self.preproc)) self.append(wds.to_tuple(*keys)) def preproc(self, sample): """Applies the preprocessing for images""" if self.img_preproc is not None: sample["jpg"] = self.img_preproc(sample["jpg"]) return sample def create_image_embedding_dataloader( tar_url, num_workers, batch_size, img_embeddings_url=None, text_embeddings_url=None, index_width=None, shuffle_num = None, shuffle_shards = True, resample_shards = False, img_preproc=None, extra_keys=[], handler=wds.handlers.reraise_exception#warn_and_continue ): """ Convenience function to create an image embedding dataseta and dataloader in one line :param tar_url: A url pointing to the tar files of the webdataset formatted as /path/to/webdataset/{0000..9999}.tar :param num_workers: The number of workers to use for the dataloader :param batch_size: The batch size to use for the dataloader :param embeddings_url: Required if webdataset does not contain embeddings. A url pointing to the npy files of the embeddings. Should have the same number of shards as the webdataset. Webdataset image keys should align with the index of the embedding. This means missing image indices must have a corresponding embedding of all zeros. :param index_width: The number of digits in the index. This is used to align the embedding index with the image index. For example, if a file in the webdataset shard 3 is named 0003039.jpg, we know the shard is 4 digits and the last 3 digits are the index_width. :param shuffle_num: If not None, shuffle the dataset with this size buffer after sampling. :param shuffle_shards: If true, shuffle the shards before sampling. This cannot be true if resample is true. :param resample_shards: If true, resample webdataset shards with replacement. You need to set your own epoch size if this is true since it will resample infinitely. :param handler: A webdataset handler. """ ds = ImageEmbeddingDataset( tar_url, img_embedding_folder_url=img_embeddings_url, text_embedding_folder_url=text_embeddings_url, index_width=index_width, shuffle_shards=shuffle_shards, resample=resample_shards, extra_keys=extra_keys, img_preproc=img_preproc, handler=handler ) if shuffle_num is not None and shuffle_num > 0: ds.shuffle(1000) return DataLoader( ds, num_workers=num_workers, batch_size=batch_size, prefetch_factor=2, # This might be good to have high so the next npy file is prefetched pin_memory=True, shuffle=False )
DALLE2-pytorch-main
dalle2_pytorch/dataloaders/decoder_loader.py
from math import ceil from clip import tokenize from embedding_reader import EmbeddingReader from torch import from_numpy from torch.utils.data import IterableDataset, DataLoader class PriorEmbeddingDataset(IterableDataset): """ PriorEmbeddingDataset is a wrapper of EmbeddingReader. It enables one to simplify the logic necessary to yield samples from the different EmbeddingReader configurations available. """ def __init__( self, text_conditioned: bool, batch_size: int, start: int, stop: int, image_reader, text_reader: EmbeddingReader = None, ) -> None: super(PriorEmbeddingDataset).__init__() self.text_conditioned = text_conditioned if not self.text_conditioned: self.text_reader = text_reader self.image_reader = image_reader self.start = start self.stop = stop self.batch_size = batch_size def __len__(self): return self.stop - self.start def __iter__(self): # D.R.Y loader args loader_args = dict( batch_size=self.batch_size, start=self.start, end=self.stop, show_progress=False, ) # if the data requested is text conditioned, only load images if self.text_conditioned: self.loader = self.image_reader(**loader_args) # otherwise, include text embeddings and bypass metadata else: self.loader = zip( self.image_reader(**loader_args), self.text_reader(**loader_args) ) # return the data loader in its formatted state return self def __next__(self): try: return self.get_sample() except StopIteration: raise StopIteration def __str__(self): return f"<PriorEmbeddingDataset: start: {self.start}, stop: {self.stop}, len: {self.__len__()}>" def set_start(self, start): """ Adjust the starting point within the reader, useful for resuming an epoch """ self.start = start def get_start(self): return self.start def get_sample(self): """ pre-proocess data from either reader into a common format """ if self.text_conditioned: image_embedding, caption = next(self.loader) image_embedding = from_numpy(image_embedding) tokenized_caption = tokenize(caption["caption"].to_list(), truncate=True) return image_embedding, tokenized_caption else: (image_embedding, _), (text_embedding, _) = next(self.loader) image_embedding = from_numpy(image_embedding) text_embedding = from_numpy(text_embedding) return image_embedding, text_embedding # helper functions def distribute_to_rank(start, stop, rank, world_size): """ Distribute data to each rank given the world size. Return: - New start and stop points for this rank. """ num_samples = int(stop - start) per_rank = int(ceil((num_samples) / float(world_size))) assert ( per_rank > 0 ), f"Number of samples per rank must be larger than 0, (found: {per_rank})" rank_start = start + rank * per_rank rank_stop = min(rank_start + per_rank, stop) new_length = rank_stop - rank_start assert ( new_length > 0 ), "Calculated start and stop points result in a length of zero for this rank." return rank_start, rank_stop def get_reader( text_conditioned: bool, img_url: str, meta_url: str = None, txt_url: str = None ): """ Create an EmbeddingReader object from the specified URLs get_reader() will always expect a url to image embeddings. If text-conditioned, it will also expect a meta_url for the captions. Otherwise, it will need txt_url for the matching text embeddings. Returns an image_reader object if text-conditioned. Otherwise it returns both an image_reader and a text_reader """ assert img_url is not None, "Must supply a image url" if text_conditioned: assert meta_url is not None, "Must supply meta url if text-conditioned" image_reader = EmbeddingReader( embeddings_folder=img_url, file_format="parquet_npy", # will assume the caption column exists and is the only one requested meta_columns=["caption"], metadata_folder=meta_url, ) return image_reader # otherwise we will require text embeddings as well and return two readers assert ( txt_url is not None ), "Must supply text embedding url if not text-conditioning" image_reader = EmbeddingReader(img_url, file_format="npy") text_reader = EmbeddingReader(txt_url, file_format="npy") return image_reader, text_reader def make_splits( text_conditioned: bool, batch_size: int, num_data_points: int, train_split: float, eval_split: float, image_reader: EmbeddingReader, text_reader: EmbeddingReader = None, start=0, rank=0, world_size=1, ): """ Split an embedding reader object as needed. NOTE: make_splits() will infer the test set size from your train and eval. Input: - text_conditioned: whether to prepare text-conditioned training data - batch_size: the batch size for a single gpu - num_data_points: the total number of data points you wish to train on - train_split: the percentage of data you wish to train on - eval_split: the percentage of data you wish to validate on - image_reader: the image_reader you wish to split - text_reader: the text_reader you want to split (if !text_conditioned) - start: the starting point within your dataset - rank: the rank of your worker - world_size: the total world size of your distributed training run Returns: - PyTorch Dataloaders that yield tuples of (img, txt) data. """ assert start < image_reader.count, "start position cannot exceed reader count." # verify that the num_data_points does not exceed the max points if num_data_points > (image_reader.count - start): print( "Specified count is larger than what's available...defaulting to reader's count." ) num_data_points = image_reader.count # compute split points train_set_size = int(train_split * num_data_points) eval_set_size = int(eval_split * num_data_points) eval_start = train_set_size eval_stop = int(eval_start + eval_set_size) assert ( train_split + eval_split ) < 1.0, "Specified train and eval split is too large to infer a test split." # distribute to rank rank_train_start, rank_train_stop = distribute_to_rank( start, train_set_size, rank, world_size ) rank_eval_start, rank_eval_stop = distribute_to_rank( train_set_size, eval_stop, rank, world_size ) rank_test_start, rank_test_stop = distribute_to_rank( eval_stop, num_data_points, rank, world_size ) # wrap up splits into a dict train_split_args = dict( start=rank_train_start, stop=rank_train_stop, batch_size=batch_size ) eval_split_args = dict( start=rank_eval_start, stop=rank_eval_stop, batch_size=batch_size ) test_split_args = dict( start=rank_test_start, stop=rank_test_stop, batch_size=batch_size ) if text_conditioned: # add the text-conditioned args to a unified dict reader_args = dict( text_conditioned=text_conditioned, image_reader=image_reader, ) train_split_args = dict(**reader_args, **train_split_args) eval_split_args = dict(**reader_args, **eval_split_args) test_split_args = dict(**reader_args, **test_split_args) train = PriorEmbeddingDataset(**train_split_args) val = PriorEmbeddingDataset(**eval_split_args) test = PriorEmbeddingDataset(**test_split_args) else: # add the non-conditioned args to a unified dict reader_args = dict( text_conditioned=text_conditioned, image_reader=image_reader, text_reader=text_reader, ) train_split_args = dict(**reader_args, **train_split_args) eval_split_args = dict(**reader_args, **eval_split_args) test_split_args = dict(**reader_args, **test_split_args) train = PriorEmbeddingDataset(**train_split_args) val = PriorEmbeddingDataset(**eval_split_args) test = PriorEmbeddingDataset(**test_split_args) # true batch size is specifed in the PriorEmbeddingDataset train_loader = DataLoader(train, batch_size=None) eval_loader = DataLoader(val, batch_size=None) test_loader = DataLoader(test, batch_size=None) return train_loader, eval_loader, test_loader
DALLE2-pytorch-main
dalle2_pytorch/dataloaders/prior_loader.py
from dalle2_pytorch.dataloaders.decoder_loader import ImageEmbeddingDataset, create_image_embedding_dataloader from dalle2_pytorch.dataloaders.prior_loader import make_splits, get_reader, PriorEmbeddingDataset
DALLE2-pytorch-main
dalle2_pytorch/dataloaders/__init__.py
from pathlib import Path import torch from torch.utils import data from torchvision import transforms, utils from PIL import Image # helpers functions def cycle(dl): while True: for data in dl: yield data # dataset and dataloader class Dataset(data.Dataset): def __init__( self, folder, image_size, exts = ['jpg', 'jpeg', 'png'] ): super().__init__() self.folder = folder self.image_size = image_size self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')] self.transform = transforms.Compose([ transforms.Resize(image_size), transforms.RandomHorizontalFlip(), transforms.CenterCrop(image_size), transforms.ToTensor() ]) def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] img = Image.open(path) return self.transform(img) def get_images_dataloader( folder, *, batch_size, image_size, shuffle = True, cycle_dl = True, pin_memory = True ): ds = Dataset(folder, image_size) dl = data.DataLoader(ds, batch_size = batch_size, shuffle = shuffle, pin_memory = pin_memory) if cycle_dl: dl = cycle(dl) return dl
DALLE2-pytorch-main
dalle2_pytorch/dataloaders/simple_image_only_dataloader.py
from setuptools import setup, find_packages setup( name = 'chroma-pytorch', packages = find_packages(exclude=[]), version = '0.0.1', license='MIT', description = 'Chroma - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/chroma-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'denoising diffusion', 'protein design' ], install_requires=[ 'einops>=0.6', 'invariant-point-attention', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
chroma-pytorch-main
setup.py
import torch import os import logging from transformers import AutoTokenizer, AutoModelForMaskedLM, logging from tf_bind_transformer.cache_utils import cache_fn, run_once logging.set_verbosity_error() def exists(val): return val is not None def map_values(fn, dictionary): return {k: fn(v) for k, v in dictionary.items()} CONTEXT_EMBED_USE_CPU = os.getenv('CONTEXT_EMBED_USE_CPU', None) is not None if CONTEXT_EMBED_USE_CPU: print('calculating context embed only on cpu') MODELS = dict( pubmed = dict( dim = 768, path = 'microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract', ) ) GLOBAL_VARIABLES = dict(model = None, tokenizer = None) def get_contextual_dim(model_name): assert model_name in MODELS return MODELS[model_name]['dim'] @run_once('init_transformer') def init_transformer(model_name): path = MODELS[model_name]['path'] GLOBAL_VARIABLES['tokenizer'] = AutoTokenizer.from_pretrained(path) model = AutoModelForMaskedLM.from_pretrained(path) if not CONTEXT_EMBED_USE_CPU: model = model.cuda() GLOBAL_VARIABLES['model'] = model @torch.no_grad() def tokenize_text( text, max_length = 256, model_name = 'pubmed', hidden_state_index = -1, return_cls_token = True ): init_transformer(model_name) model = GLOBAL_VARIABLES['model'] tokenizer = GLOBAL_VARIABLES['tokenizer'] encoding = tokenizer.batch_encode_plus( [text], add_special_tokens = True, padding = True, truncation = True, max_length = max_length, return_attention_mask = True, return_tensors = 'pt' ) if not CONTEXT_EMBED_USE_CPU: encoding = map_values(lambda t: t.cuda(), encoding) model.eval() with torch.no_grad(): outputs = model(**encoding, output_hidden_states = True) hidden_state = outputs.hidden_states[hidden_state_index][0] if return_cls_token: return hidden_state[0] return hidden_state.mean(dim = 0) def get_text_repr( texts, *, device, max_length = 256, model_name = 'pubmed', hidden_state_index = -1, return_cls_token = True, ): assert model_name in MODELS, f'{model_name} not found in available text transformers to use' if isinstance(texts, str): texts = [texts] get_context_repr_fn = cache_fn(tokenize_text, path = f'contexts/{model_name}') representations = [get_context_repr_fn(text, max_length = max_length, model_name = model_name, hidden_state_index = hidden_state_index, return_cls_token = return_cls_token) for text in texts] return torch.stack(representations).to(device)
chroma-pytorch-main
chroma_pytorch/semantic_conditioner.py
from chroma_pytorch.chroma_pytorch import Chroma
chroma-pytorch-main
chroma_pytorch/__init__.py
import torch from torch import nn, einsum from einops import rearrange, repeat import math from pathlib import Path from random import random from functools import partial from multiprocessing import cpu_count import torch from torch import nn, einsum from torch.special import expm1 import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch.optim import Adam from torchvision import transforms as T, utils from einops import rearrange, reduce, repeat from einops.layers.torch import Rearrange from tqdm.auto import tqdm from ema_pytorch import EMA from accelerate import Accelerator # helpers functions def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def cycle(dl): while True: for data in dl: yield data def has_int_squareroot(num): return (math.sqrt(num) ** 2) == num def num_to_groups(num, divisor): groups = num // divisor remainder = num % divisor arr = [divisor] * groups if remainder > 0: arr.append(remainder) return arr def convert_image_to(img_type, image): if image.mode != img_type: return image.convert(img_type) return image # small helper modules class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, *args, **kwargs): return self.fn(x, *args, **kwargs) + x def Upsample(dim, dim_out = None): return nn.Sequential( nn.Upsample(scale_factor = 2, mode = 'nearest'), nn.Conv2d(dim, default(dim_out, dim), 3, padding = 1) ) def Downsample(dim, dim_out = None): return nn.Conv2d(dim, default(dim_out, dim), 4, 2, 1) class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) def forward(self, x): eps = 1e-5 if x.dtype == torch.float32 else 1e-3 var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) * (var + eps).rsqrt() * self.g class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = LayerNorm(dim) def forward(self, x): x = self.norm(x) return self.fn(x) # positional embeds class LearnedSinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() assert (dim % 2) == 0 half_dim = dim // 2 self.weights = nn.Parameter(torch.randn(half_dim)) def forward(self, x): x = rearrange(x, 'b -> b 1') freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1) fouriered = torch.cat((x, fouriered), dim = -1) return fouriered # building block modules class Block(nn.Module): def __init__(self, dim, dim_out, groups = 8): super().__init__() self.proj = nn.Conv2d(dim, dim_out, 3, padding = 1) self.norm = nn.GroupNorm(groups, dim_out) self.act = nn.SiLU() def forward(self, x, scale_shift = None): x = self.proj(x) x = self.norm(x) if exists(scale_shift): scale, shift = scale_shift x = x * (scale + 1) + shift x = self.act(x) return x class ResnetBlock(nn.Module): def __init__(self, dim, dim_out, *, time_emb_dim = None, groups = 8): super().__init__() self.mlp = nn.Sequential( nn.SiLU(), nn.Linear(time_emb_dim, dim_out * 2) ) if exists(time_emb_dim) else None self.block1 = Block(dim, dim_out, groups = groups) self.block2 = Block(dim_out, dim_out, groups = groups) self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() def forward(self, x, time_emb = None): scale_shift = None if exists(self.mlp) and exists(time_emb): time_emb = self.mlp(time_emb) time_emb = rearrange(time_emb, 'b c -> b c 1 1') scale_shift = time_emb.chunk(2, dim = 1) h = self.block1(x, scale_shift = scale_shift) h = self.block2(h) return h + self.res_conv(x) class LinearAttention(nn.Module): def __init__(self, dim, heads = 4, dim_head = 32): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Sequential( nn.Conv2d(hidden_dim, dim, 1), LayerNorm(dim) ) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) q = q.softmax(dim = -2) k = k.softmax(dim = -1) q = q * self.scale v = v / (h * w) context = torch.einsum('b h d n, b h e n -> b h d e', k, v) out = torch.einsum('b h d e, b h d n -> b h e n', context, q) out = rearrange(out, 'b h c (x y) -> b (h c) x y', h = self.heads, x = h, y = w) return self.to_out(out) class Attention(nn.Module): def __init__(self, dim, heads = 4, dim_head = 32): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) q = q * self.scale sim = einsum('b h d i, b h d j -> b h i j', q, k) attn = sim.softmax(dim = -1) out = einsum('b h i j, b h d j -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w) return self.to_out(out) # model class Unet(nn.Module): def __init__( self, dim, init_dim = None, dim_mults=(1, 2, 4, 8), channels = 3, resnet_block_groups = 8, learned_sinusoidal_dim = 16 ): super().__init__() # determine dimensions self.channels = channels input_channels = channels * 2 init_dim = default(init_dim, dim) self.init_conv = nn.Conv2d(input_channels, init_dim, 7, padding = 3) dims = [init_dim, *map(lambda m: dim * m, dim_mults)] in_out = list(zip(dims[:-1], dims[1:])) block_klass = partial(ResnetBlock, groups = resnet_block_groups) # time embeddings time_dim = dim * 4 sinu_pos_emb = LearnedSinusoidalPosEmb(learned_sinusoidal_dim) fourier_dim = learned_sinusoidal_dim + 1 self.time_mlp = nn.Sequential( sinu_pos_emb, nn.Linear(fourier_dim, time_dim), nn.GELU(), nn.Linear(time_dim, time_dim) ) # layers self.downs = nn.ModuleList([]) self.ups = nn.ModuleList([]) num_resolutions = len(in_out) for ind, (dim_in, dim_out) in enumerate(in_out): is_last = ind >= (num_resolutions - 1) self.downs.append(nn.ModuleList([ block_klass(dim_in, dim_in, time_emb_dim = time_dim), block_klass(dim_in, dim_in, time_emb_dim = time_dim), Residual(PreNorm(dim_in, LinearAttention(dim_in))), Downsample(dim_in, dim_out) if not is_last else nn.Conv2d(dim_in, dim_out, 3, padding = 1) ])) mid_dim = dims[-1] self.mid_block1 = block_klass(mid_dim, mid_dim, time_emb_dim = time_dim) self.mid_attn = Residual(PreNorm(mid_dim, Attention(mid_dim))) self.mid_block2 = block_klass(mid_dim, mid_dim, time_emb_dim = time_dim) for ind, (dim_in, dim_out) in enumerate(reversed(in_out)): is_last = ind == (len(in_out) - 1) self.ups.append(nn.ModuleList([ block_klass(dim_out + dim_in, dim_out, time_emb_dim = time_dim), block_klass(dim_out + dim_in, dim_out, time_emb_dim = time_dim), Residual(PreNorm(dim_out, LinearAttention(dim_out))), Upsample(dim_out, dim_in) if not is_last else nn.Conv2d(dim_out, dim_in, 3, padding = 1) ])) self.final_res_block = block_klass(dim * 2, dim, time_emb_dim = time_dim) self.final_conv = nn.Conv2d(dim, channels, 1) def forward(self, x, time, x_self_cond = None): x_self_cond = default(x_self_cond, lambda: torch.zeros_like(x)) x = torch.cat((x_self_cond, x), dim = 1) x = self.init_conv(x) r = x.clone() t = self.time_mlp(time) h = [] for block1, block2, attn, downsample in self.downs: x = block1(x, t) h.append(x) x = block2(x, t) x = attn(x) h.append(x) x = downsample(x) x = self.mid_block1(x, t) x = self.mid_attn(x) x = self.mid_block2(x, t) for block1, block2, attn, upsample in self.ups: x = torch.cat((x, h.pop()), dim = 1) x = block1(x, t) x = torch.cat((x, h.pop()), dim = 1) x = block2(x, t) x = attn(x) x = upsample(x) x = torch.cat((x, r), dim = 1) x = self.final_res_block(x, t) return self.final_conv(x) # chroma class def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def right_pad_dims_to(x, t): padding_dims = x.ndim - t.ndim if padding_dims <= 0: return t return t.view(*t.shape, *((1,) * padding_dims)) def beta_linear_log_snr(t): return -torch.log(expm1(1e-4 + 10 * (t ** 2))) def alpha_cosine_log_snr(t, s: float = 0.008): return -log((torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** -2) - 1, eps = 1e-5) # not sure if this accounts for beta being clipped to 0.999 in discrete version def log_snr_to_alpha_sigma(log_snr): return torch.sqrt(torch.sigmoid(log_snr)), torch.sqrt(torch.sigmoid(-log_snr)) class Chroma(nn.Module): def __init__( self, model, *, image_size, timesteps = 1000, use_ddim = False, noise_schedule = 'cosine', time_difference = 0. ): super().__init__() self.model = model self.channels = self.model.channels self.image_size = image_size if noise_schedule == "linear": self.log_snr = beta_linear_log_snr elif noise_schedule == "cosine": self.log_snr = alpha_cosine_log_snr else: raise ValueError(f'invalid noise schedule {noise_schedule}') self.timesteps = timesteps self.use_ddim = use_ddim # proposed in the paper, summed to time_next # as a way to fix a deficiency in self-conditioning and lower FID when the number of sampling timesteps is < 400 self.time_difference = time_difference @property def device(self): return next(self.model.parameters()).device def get_sampling_timesteps(self, batch, *, device): times = torch.linspace(1., 0., self.timesteps + 1, device = device) times = repeat(times, 't -> b t', b = batch) times = torch.stack((times[:, :-1], times[:, 1:]), dim = 0) times = times.unbind(dim = -1) return times @torch.no_grad() def ddpm_sample(self, shape, time_difference = None): batch, device = shape[0], self.device time_difference = default(time_difference, self.time_difference) time_pairs = self.get_sampling_timesteps(batch, device = device) img = torch.randn(shape, device=device) x_start = None for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step', total = self.timesteps): # add the time delay time_next = (time_next - self.time_difference).clamp(min = 0.) noise_cond = self.log_snr(time) # get predicted x0 x_start = self.model(img, noise_cond, x_start) # clip x0 x_start.clamp_(-1., 1.) # get log(snr) log_snr = self.log_snr(time) log_snr_next = self.log_snr(time_next) log_snr, log_snr_next = map(partial(right_pad_dims_to, img), (log_snr, log_snr_next)) # get alpha sigma of time and next time alpha, sigma = log_snr_to_alpha_sigma(log_snr) alpha_next, sigma_next = log_snr_to_alpha_sigma(log_snr_next) # derive posterior mean and variance c = -expm1(log_snr - log_snr_next) mean = alpha_next * (img * (1 - c) / alpha + c * x_start) variance = (sigma_next ** 2) * c log_variance = log(variance) # get noise noise = torch.where( rearrange(time_next > 0, 'b -> b 1 1 1'), torch.randn_like(img), torch.zeros_like(img) ) img = mean + (0.5 * log_variance).exp() * noise return img @torch.no_grad() def ddim_sample(self, shape, time_difference = None): batch, device = shape[0], self.device time_difference = default(time_difference, self.time_difference) time_pairs = self.get_sampling_timesteps(batch, device = device) img = torch.randn(shape, device = device) x_start = None for times, times_next in tqdm(time_pairs, desc = 'sampling loop time step'): # get times and noise levels log_snr = self.log_snr(times) log_snr_next = self.log_snr(times_next) padded_log_snr, padded_log_snr_next = map(partial(right_pad_dims_to, img), (log_snr, log_snr_next)) alpha, sigma = log_snr_to_alpha_sigma(padded_log_snr) alpha_next, sigma_next = log_snr_to_alpha_sigma(padded_log_snr_next) # add the time delay times_next = (times_next - time_difference).clamp(min = 0.) # predict x0 x_start = self.model(img, log_snr, x_start) # clip x0 x_start.clamp_(-1., 1.) # get predicted noise pred_noise = (img - alpha * x_start) / sigma.clamp(min = 1e-8) # calculate x next img = x_start * alpha_next + pred_noise * sigma_next return img @torch.no_grad() def sample(self, batch_size = 16): image_size, channels = self.image_size, self.channels sample_fn = self.ddpm_sample if not self.use_ddim else self.ddim_sample return sample_fn((batch_size, channels, image_size, image_size)) def forward(self, img, *args, **kwargs): batch, c, h, w, device, img_size, = *img.shape, img.device, self.image_size assert h == img_size and w == img_size, f'height and width of image must be {img_size}' # sample random times times = torch.zeros((batch,), device = device).float().uniform_(0, 1.) # noise sample noise = torch.randn_like(img) noise_level = self.log_snr(times) padded_noise_level = right_pad_dims_to(img, noise_level) alpha, sigma = log_snr_to_alpha_sigma(padded_noise_level) noised_img = alpha * img + sigma * noise # if doing self-conditioning, 50% of the time, predict x_start from current set of times # and condition with unet with that # this technique will slow down training by 25%, but seems to lower FID significantly self_cond = None if random() < 0.5: with torch.no_grad(): self_cond = self.model(noised_img, noise_level).detach_() # predict and take gradient step pred = self.model(noised_img, noise_level, self_cond) return F.mse_loss(pred, img) # trainer class class Trainer(object): def __init__( self, diffusion_model, folder, *, train_batch_size = 16, gradient_accumulate_every = 1, augment_horizontal_flip = True, train_lr = 1e-4, train_num_steps = 100000, ema_update_every = 10, ema_decay = 0.995, adam_betas = (0.9, 0.99), save_and_sample_every = 1000, num_samples = 25, results_folder = './results', amp = False, fp16 = False, split_batches = True, convert_image_to = None ): super().__init__() self.accelerator = Accelerator( split_batches = split_batches, mixed_precision = 'fp16' if fp16 else 'no' ) self.accelerator.native_amp = amp self.model = diffusion_model assert has_int_squareroot(num_samples), 'number of samples must have an integer square root' self.num_samples = num_samples self.save_and_sample_every = save_and_sample_every self.batch_size = train_batch_size self.gradient_accumulate_every = gradient_accumulate_every self.train_num_steps = train_num_steps self.image_size = diffusion_model.image_size # dataset and dataloader self.ds = Dataset(folder, self.image_size, augment_horizontal_flip = augment_horizontal_flip, convert_image_to = convert_image_to) dl = DataLoader(self.ds, batch_size = train_batch_size, shuffle = True, pin_memory = True, num_workers = cpu_count()) dl = self.accelerator.prepare(dl) self.dl = cycle(dl) # optimizer self.opt = Adam(diffusion_model.parameters(), lr = train_lr, betas = adam_betas) # for logging results in a folder periodically if self.accelerator.is_main_process: self.ema = EMA(diffusion_model, beta = ema_decay, update_every = ema_update_every) self.results_folder = Path(results_folder) self.results_folder.mkdir(exist_ok = True) # step counter state self.step = 0 # prepare model, dataloader, optimizer with accelerator self.model, self.opt = self.accelerator.prepare(self.model, self.opt) def save(self, milestone): if not self.accelerator.is_local_main_process: return data = { 'step': self.step, 'model': self.accelerator.get_state_dict(self.model), 'opt': self.opt.state_dict(), 'ema': self.ema.state_dict(), 'scaler': self.accelerator.scaler.state_dict() if exists(self.accelerator.scaler) else None } torch.save(data, str(self.results_folder / f'model-{milestone}.pt')) def load(self, milestone): data = torch.load(str(self.results_folder / f'model-{milestone}.pt')) model = self.accelerator.unwrap_model(self.model) model.load_state_dict(data['model']) self.step = data['step'] self.opt.load_state_dict(data['opt']) self.ema.load_state_dict(data['ema']) if exists(self.accelerator.scaler) and exists(data['scaler']): self.accelerator.scaler.load_state_dict(data['scaler']) def train(self): accelerator = self.accelerator device = accelerator.device with tqdm(initial = self.step, total = self.train_num_steps, disable = not accelerator.is_main_process) as pbar: while self.step < self.train_num_steps: total_loss = 0. for _ in range(self.gradient_accumulate_every): data = next(self.dl).to(device) with self.accelerator.autocast(): loss = self.model(data) loss = loss / self.gradient_accumulate_every total_loss += loss.item() self.accelerator.backward(loss) pbar.set_description(f'loss: {total_loss:.4f}') accelerator.wait_for_everyone() self.opt.step() self.opt.zero_grad() accelerator.wait_for_everyone() if accelerator.is_main_process: self.ema.to(device) self.ema.update() if self.step != 0 and self.step % self.save_and_sample_every == 0: self.ema.ema_model.eval() with torch.no_grad(): milestone = self.step // self.save_and_sample_every batches = num_to_groups(self.num_samples, self.batch_size) all_images_list = list(map(lambda n: self.ema.ema_model.sample(batch_size=n), batches)) all_images = torch.cat(all_images_list, dim = 0) utils.save_image(all_images, str(self.results_folder / f'sample-{milestone}.png'), nrow = int(math.sqrt(self.num_samples))) self.save(milestone) self.step += 1 pbar.update(1) accelerator.print('training complete')
chroma-pytorch-main
chroma_pytorch/chroma_pytorch.py
from setuptools import setup, find_packages setup( name = 'nwt-pytorch', packages = find_packages(), version = '0.0.4', license='MIT', description = 'NWT - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/NWT-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'pytorch', 'audio to video synthesis' ], install_requires=[ 'einops>=0.4', 'torch' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
NWT-pytorch-main
setup.py
import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from einops.layers.torch import EinMix as Mix class Memcodes(nn.Module): def __init__( self, *, dim, num_codes, heads = 8, temperature = 1., ): super().__init__() assert (dim % heads) == 0, 'dimension must be divisible by number of heads' self.heads = heads self.dim = dim self.scale = (dim // heads) ** -0.5 self.temperature = temperature self.num_codes = num_codes num_codebooks = heads codebook_dim = dim // heads self.codes = nn.Parameter(torch.randn(num_codebooks, num_codes, codebook_dim)) self.to_k = Mix('h n d -> h n c', weight_shape = 'h d c', h = heads, d = codebook_dim, c = codebook_dim) self.to_v = Mix('h n d -> h n c', weight_shape = 'h d c', h = heads, d = codebook_dim, c = codebook_dim) def get_codes_from_indices(self, codebook_indices, *, merge_output_heads = True): batch = codebook_indices.shape[0] values = self.to_v(self.codes) values = repeat(values, 'h n d -> b h n d', b = batch) codebook_indices = repeat(codebook_indices, '... -> ... d', d = values.shape[-1]) out = values.gather(2, codebook_indices) if not merge_output_heads: return out return rearrange(out, 'b h n d -> b n (h d)') def forward(self, x, *, merge_output_heads = True): assert x.shape[-1] == self.dim # split out heads q = rearrange(x, 'b n (h d) -> b h n d', h = self.heads) q = q * self.scale # get key / values of codes k, v = self.to_k(self.codes), self.to_v(self.codes) # straight through gumbel softmax logits = einsum('b h i d, h j d -> b h i j', q, k) if self.training: attn = F.gumbel_softmax(logits, tau = self.temperature, dim = -1, hard = True) codebook_indices = attn.argmax(dim = -1) else: codebook_indices = logits.argmax(dim = -1) attn = F.one_hot(codebook_indices, num_classes = self.num_codes).float() out = einsum('b h i j, h j d -> b h i d', attn, v) if not merge_output_heads: return out, codebook_indices # merge heads if specified out = rearrange(out, 'b h n d -> b n (h d)') return out, codebook_indices
NWT-pytorch-main
nwt_pytorch/nwt_pytorch.py
from nwt_pytorch.nwt_pytorch import Memcodes
NWT-pytorch-main
nwt_pytorch/__init__.py
from setuptools import setup, find_packages setup( name = 'n-grammer-pytorch', packages = find_packages(exclude=[]), version = '0.0.14', license='MIT', description = 'N-Grammer - Pytorch', long_description_content_type = 'text/markdown', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/n-grammer-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'transformers', 'n-grams', 'memory' ], install_requires=[ 'einops>=0.3', 'sympy', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
n-grammer-pytorch-main
setup.py
from n_grammer_pytorch.n_grammer_pytorch import VQNgrammer, Ngrammer, get_ngrammer_parameters, get_ngrammer_param_groups
n-grammer-pytorch-main
n_grammer_pytorch/__init__.py
# based off the jax code # https://github.com/tensorflow/lingvo/blob/master/lingvo/jax/layers/ngrammer.py import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat import sympy # helper functions def exists(val): return val is not None def sum_squares(t, dim = -1): return (t ** 2).sum(dim = dim) # bigram related functions def multi_way_hash_ids(x, a, b, prime, buckets): return ((x * a + b) % prime) % buckets def get_bigram_ids(ids, vocab_size, segment_pos = None): # ids are in shape (batch, seq, heads) ids = ids.long() ids_0 = F.pad(ids, (0, 0, 0, 1)) ids_1 = F.pad(ids, (0, 0, 1, 0)) if exists(segment_pos): segment_pos = rearrange(segment_pos, 'b n -> b n 1') mask = (segment_pos == 0).long() mask = 1 - mask mask = F.pad(mask, (0, 0, 0, 1)) ids_1 *= mask ngram_ids = ids_0 + ids_1 * vocab_size ngram_ids = ngram_ids[:, :-1] return ngram_ids # optimizer related functions def get_ngrammer_parameters(module): params = set() for m in module.modules(): if isinstance(m, Ngrammer): params.update(m.parameters()) rest = set(module.parameters()) - params return list(params), list(rest) def get_ngrammer_param_groups(module, ngrammer_learning_rate = 1e-2): ngrammer_params, rest = get_ngrammer_parameters(module) return [{'params': rest}, {'params': ngrammer_params, 'lr': ngrammer_learning_rate}] # layernorm class MultiheadLayerNorm(nn.Module): def __init__(self, dim, heads = 1, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(heads, dim)) self.b = nn.Parameter(torch.zeros(heads, dim)) def forward(self, x): std = torch.var(x, dim = -1, unbiased = False, keepdim = True).sqrt() mean = torch.mean(x, dim = -1, keepdim = True) return (x - mean) / (std + self.eps) * self.g + self.b # classes class VectorQuantization(nn.Module): def __init__( self, *, num_clusters, num_heads, dim_per_head, decay = 0.999, epsilon = 1e-6 ): super().__init__() self.decay = decay self.epsilon = epsilon self.num_heads = num_heads self.dim_per_head = dim_per_head self.num_clusters = num_clusters self.register_buffer('means', torch.randn(num_heads, num_clusters, dim_per_head)) def forward( self, x, mask = None ): h, dim_head, num_clusters, eps, decay, means = self.num_heads, self.dim_per_head, self.num_clusters, self.epsilon, self.decay, self.means assert x.shape[-1] == (h * dim_head), f'input embedding feature dimension must be {h * dim_head}' # split heads from input x = rearrange(x, 'b n (h d) -> b n h d', h = h) # get distance of input embeddings from means dists = ( rearrange(sum_squares(x), 'b n h -> b n h 1') - 2 * einsum('b n h d, h k d -> b n h k', x, means) + rearrange(sum_squares(means), 'h k -> 1 1 h k') ) # get cluster ids cluster_ids = dists.argmin(dim = -1) if self.training: # get one hot, for calculating number of matches per mean nearest_one_hot = F.one_hot(cluster_ids, num_classes = num_clusters) per_cluster_count = nearest_one_hot.sum(dim = (0, 1)) # sum of the input per each closest centroid. sum_x = einsum('b n h k, b n h d -> h k d', nearest_one_hot.float(), x) # calculate new means new_means = sum_x / (eps + rearrange(per_cluster_count, '... -> ... 1')) # exponential moving average updated_means = (1. - decay) * new_means + decay * means self.means.data.copy_(updated_means) return cluster_ids class Ngrammer(nn.Module): def __init__( self, *, unigram_vocab_size, dim_per_head, num_heads = 1, ngram_emb_dim = 8, ngram_vocab_size = 768 * 256, concat_ngrams = True ): super().__init__() assert not (concat_ngrams and dim_per_head <= ngram_emb_dim), 'unigram head dimension cannot be smaller than ngram embedding dimension when concatting' assert not (not concat_ngrams and dim_per_head != ngram_emb_dim), 'unigram head dimension must be equal to ngram embedding dimension if not concatting' self.num_heads = num_heads self.ngram_vocab_size = ngram_vocab_size self.unigram_vocab_size = unigram_vocab_size self.concat_ngrams = concat_ngrams self.embeddings = nn.ModuleList([]) self.ngram_layernorm = MultiheadLayerNorm(ngram_emb_dim, heads = num_heads) self.embeds_layernorm = MultiheadLayerNorm(dim_per_head, heads = num_heads) self.ngram_embeds = nn.Embedding(ngram_vocab_size * num_heads, ngram_emb_dim) primes = list(sympy.primerange(ngram_vocab_size + 1, 2 * ngram_vocab_size))[:num_heads] self.register_buffer('primes', torch.tensor(primes), persistent = False) def forward( self, embeds, cluster_ids, mask = None, segment_pos = None ): num_heads, vocab_size, unigram_vocab_size, device = self.num_heads, self.ngram_vocab_size, self.unigram_vocab_size, embeds.device if cluster_ids.ndim == 2: cluster_ids = repeat(cluster_ids, '... -> ... h', h = num_heads) ngram_cluster_ids = get_bigram_ids(cluster_ids, unigram_vocab_size, segment_pos) # prepare arange of heads for parallel computation of multi-way hash ids head_range = torch.arange(num_heads, device = device) head_range = rearrange(head_range, 'h -> 1 1 h') primes = rearrange(self.primes, 'h -> 1 1 h') # multi-way hash ids, using https://arxiv.org/abs/1504.06804 ngram_ids = multi_way_hash_ids(ngram_cluster_ids, head_range + 1, head_range + 1, primes, vocab_size) # shift vocab range for each head appropriately by the head number ngram_ids = ngram_ids + (vocab_size * head_range) # get all n-gram embeddings in one go, and multi-head layernorm ngram_embeds = self.ngram_embeds(ngram_ids) normed_ngram_embeds = self.ngram_layernorm(ngram_embeds) # multi-head layernorm inputs embeds = rearrange(embeds, 'b n (h d) -> b n h d', h = num_heads) normed_embeds = self.embeds_layernorm(embeds) # concat original unigram embeds with bigram if self.concat_ngrams: input_sliced_dim = normed_embeds.shape[-1] - normed_ngram_embeds.shape[-1] out = torch.cat(( normed_embeds[..., :input_sliced_dim], normed_ngram_embeds ), dim = -1) else: out = normed_embeds + normed_ngram_embeds # flatten out = rearrange(out, 'b n ... -> b n (...)') # mask if needed if exists(mask): out = out * rearrange(mask, 'b n -> b n 1').float() return out # main class class VQNgrammer(nn.Module): def __init__( self, *, num_clusters, num_heads, dim_per_head, ngram_vocab_size = 768 * 256, ngram_emb_dim = 8, concat_ngrams = True, decay = 0.999, epsilon = 1e-6 ): super().__init__() assert ngram_vocab_size < (num_clusters ** 2), 'the ngram vocab size should be less than the number of clusters squared' self.vq = VectorQuantization( num_clusters = num_clusters, num_heads = num_heads, dim_per_head = dim_per_head, decay = decay, epsilon = epsilon ) self.ngram = Ngrammer( unigram_vocab_size = num_clusters, ngram_vocab_size = ngram_vocab_size, ngram_emb_dim = ngram_emb_dim, concat_ngrams = concat_ngrams, num_heads = num_heads, dim_per_head = dim_per_head ) def forward( self, x, mask = None, segment_pos = None ): cluster_ids = self.vq(x, mask = mask) out = self.ngram( x, cluster_ids = cluster_ids, mask = mask, segment_pos = segment_pos ) return out
n-grammer-pytorch-main
n_grammer_pytorch/n_grammer_pytorch.py
from setuptools import setup with open("README.md", "r") as fh: long_description = fh.read() setup( name = 'revtorch', packages = ['revtorch'], version = '0.2.3', license='bsd-3-clause', description = 'Framework for creating (partially) reversible neural networks with PyTorch', long_description=long_description, long_description_content_type="text/markdown", author = 'Robin Brügger', author_email = '[email protected]', url = 'https://github.com/RobinBruegger/RevTorch', download_url = 'https://github.com/RobinBruegger/RevTorch/archive/v0.2.3.tar.gz', keywords = ['reversbile neural network'], install_requires=[], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], )
RevTorch-master
setup.py
from revtorch.revtorch import ReversibleBlock, ReversibleSequence
RevTorch-master
revtorch/__init__.py
import torch import torch.nn as nn #import torch.autograd.function as func import sys import random class ReversibleBlock(nn.Module): ''' Elementary building block for building (partially) reversible architectures Implementation of the Reversible block described in the RevNet paper (https://arxiv.org/abs/1707.04585). Must be used inside a :class:`revtorch.ReversibleSequence` for autograd support. Arguments: f_block (nn.Module): arbitrary subnetwork whos output shape is equal to its input shape g_block (nn.Module): arbitrary subnetwork whos output shape is equal to its input shape split_along_dim (integer): dimension along which the tensor is split into the two parts requried for the reversible block fix_random_seed (boolean): Use the same random seed for the forward and backward pass if set to true ''' def __init__(self, f_block, g_block, split_along_dim=1, fix_random_seed = False): super(ReversibleBlock, self).__init__() self.f_block = f_block self.g_block = g_block self.split_along_dim = split_along_dim self.fix_random_seed = fix_random_seed self.random_seeds = {} def _init_seed(self, namespace): if self.fix_random_seed: self.random_seeds[namespace] = random.randint(0, sys.maxsize) self._set_seed(namespace) def _set_seed(self, namespace): if self.fix_random_seed: torch.manual_seed(self.random_seeds[namespace]) def forward(self, x): """ Performs the forward pass of the reversible block. Does not record any gradients. :param x: Input tensor. Must be splittable along dimension 1. :return: Output tensor of the same shape as the input tensor """ x1, x2 = torch.chunk(x, 2, dim=self.split_along_dim) y1, y2 = None, None with torch.no_grad(): self._init_seed('f') y1 = x1 + self.f_block(x2) self._init_seed('g') y2 = x2 + self.g_block(y1) return torch.cat([y1, y2], dim=self.split_along_dim) def backward_pass(self, y, dy, retain_graph): """ Performs the backward pass of the reversible block. Calculates the derivatives of the block's parameters in f_block and g_block, as well as the inputs of the forward pass and its gradients. :param y: Outputs of the reversible block :param dy: Derivatives of the outputs :param retain_graph: Whether to retain the graph on intercepted backwards :return: A tuple of (block input, block input derivatives). The block inputs are the same shape as the block outptus. """ # Split the arguments channel-wise y1, y2 = torch.chunk(y, 2, dim=self.split_along_dim) del y assert (not y1.requires_grad), "y1 must already be detached" assert (not y2.requires_grad), "y2 must already be detached" dy1, dy2 = torch.chunk(dy, 2, dim=self.split_along_dim) del dy assert (not dy1.requires_grad), "dy1 must not require grad" assert (not dy2.requires_grad), "dy2 must not require grad" # Enable autograd for y1 and y2. This ensures that PyTorch # keeps track of ops. that use y1 and y2 as inputs in a DAG y1.requires_grad = True y2.requires_grad = True # Ensures that PyTorch tracks the operations in a DAG with torch.enable_grad(): self._set_seed('g') gy1 = self.g_block(y1) # Use autograd framework to differentiate the calculation. The # derivatives of the parameters of G are set as a side effect gy1.backward(dy2, retain_graph = retain_graph) with torch.no_grad(): x2 = y2 - gy1 # Restore first input of forward() del y2, gy1 # The gradient of x1 is the sum of the gradient of the output # y1 as well as the gradient that flows back through G # (The gradient that flows back through G is stored in y1.grad) dx1 = dy1 + y1.grad del dy1 y1.grad = None with torch.enable_grad(): x2.requires_grad = True self._set_seed('f') fx2 = self.f_block(x2) # Use autograd framework to differentiate the calculation. The # derivatives of the parameters of F are set as a side effec fx2.backward(dx1, retain_graph = retain_graph) with torch.no_grad(): x1 = y1 - fx2 # Restore second input of forward() del y1, fx2 # The gradient of x2 is the sum of the gradient of the output # y2 as well as the gradient that flows back through F # (The gradient that flows back through F is stored in x2.grad) dx2 = dy2 + x2.grad del dy2 x2.grad = None # Undo the channelwise split x = torch.cat([x1, x2.detach()], dim=self.split_along_dim) dx = torch.cat([dx1, dx2], dim=self.split_along_dim) return x, dx class _ReversibleModuleFunction(torch.autograd.function.Function): ''' Integrates the reversible sequence into the autograd framework ''' @staticmethod def forward(ctx, x, reversible_blocks, eagerly_discard_variables): ''' Performs the forward pass of a reversible sequence within the autograd framework :param ctx: autograd context :param x: input tensor :param reversible_blocks: nn.Modulelist of reversible blocks :return: output tensor ''' assert (isinstance(reversible_blocks, nn.ModuleList)) for block in reversible_blocks: assert (isinstance(block, ReversibleBlock)) x = block(x) ctx.y = x.detach() #not using ctx.save_for_backward(x) saves us memory by beeing able to free ctx.y earlier in the backward pass ctx.reversible_blocks = reversible_blocks ctx.eagerly_discard_variables = eagerly_discard_variables return x @staticmethod def backward(ctx, dy): ''' Performs the backward pass of a reversible sequence within the autograd framework :param ctx: autograd context :param dy: derivatives of the outputs :return: derivatives of the inputs ''' y = ctx.y if ctx.eagerly_discard_variables: del ctx.y for i in range(len(ctx.reversible_blocks) - 1, -1, -1): y, dy = ctx.reversible_blocks[i].backward_pass(y, dy, ctx.multiple_backwards) if ctx.eagerly_discard_variables: del ctx.reversible_blocks return dy, None, None class ReversibleSequence(nn.Module): ''' Basic building element for (partially) reversible networks A reversible sequence is a sequence of arbitrarly many reversible blocks. The entire sequence is reversible. The activations are only saved at the end of the sequence. Backpropagation leverages the reversible nature of the reversible sequece to save memory. Arguments: reversible_blocks (nn.ModuleList): A ModuleList that exclusivly contains instances of ReversibleBlock whic which are to be used in the reversible sequence. eagerly_discard_variables (bool): Should the module eagerly discard the output and not retain the graph for the individual backwards called on the reversible blocks, for further memory savings ''' def __init__(self, reversible_blocks, eagerly_discard_variables = True): super(ReversibleSequence, self).__init__() assert (isinstance(reversible_blocks, nn.ModuleList)) for block in reversible_blocks: assert(isinstance(block, ReversibleBlock)) self.reversible_blocks = reversible_blocks self.eagerly_discard_variables = eagerly_discard_variables def forward(self, x): ''' Forward pass of a reversible sequence :param x: Input tensor :return: Output tensor ''' x = _ReversibleModuleFunction.apply(x, self.reversible_blocks, self.eagerly_discard_variables) return x
RevTorch-master
revtorch/revtorch.py
import os import pkg_resources from setuptools import setup, find_packages from pathlib import Path if __name__ == "__main__": # Read description from README with Path(Path(__file__).parent, "README.md").open(encoding="utf-8") as file: long_description = file.read() setup( name="clip-anytorch", long_description=long_description, long_description_content_type="text/markdown", description=long_description.split("\n")[0], url="https://github.com/rom1504/CLIP", py_modules=["clip"], version="2.5.2", author="OpenAI", packages=find_packages(exclude=["tests*"]), install_requires=[ str(r) for r in pkg_resources.parse_requirements( open(os.path.join(os.path.dirname(__file__), "requirements.txt")) ) ], include_package_data=True, extras_require={'dev': ['pytest']}, )
CLIP-main
setup.py
from .clip import *
CLIP-main
clip/__init__.py
from collections import OrderedDict from typing import Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ ("-1", nn.AvgPool2d(stride)), ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) return x[0] class ModifiedResNet(nn.Module): """ A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): layers = [Bottleneck(self._inplanes, planes, stride)] self._inplanes = planes * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self._inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): def stem(x): for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): attn_mask = None if self.attn_mask is not None: n_ctx = x.shape[0] attn_mask = self.attn_mask[..., -n_ctx:, -n_ctx:].to(dtype=x.dtype, device=x.device) return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): return self.resblocks(x) class VisionTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int ): super().__init__() self.context_length = context_length if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // 64 self.visual = VisionTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask() ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): return self.visual.conv1.weight.dtype def encode_image(self, image): return self.visual(image.type(self.dtype)) def encode_text(self, text): n_ctx = text.shape[-1] x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding[:n_ctx].type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logits_per_image.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: if hasattr(l, name): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16) def build_model(state_dict: dict): vit = "visual.proj" in state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size else: counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] convert_weights(model) model.load_state_dict(state_dict) return model.eval()
CLIP-main
clip/model.py