python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Check whether a layout is valid under Mesh TensorFlow. Not all layouts can be used to lower a Mesh TensorFlow graph. Some Mesh TensorFlow operations error when a certain Mesh TensorFlow dimension is assigned to a mesh dimension (e.g. mtf.ConcatOperation with its concatenation dimension). A Mesh TensorFlow dimension can only be assigned to a mesh dimension if the former's size is evenly divisible by the latter's size. This module provides methods to check these conditions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import fractions import re class LayoutValidator(object): """Validates potential Mesh TensorFlow layouts. Usage Example: mtf_graph = mtf.Graph() # Add operations to mtf_graph using Mesh TensorFlow. mesh_shape = mtf.Shape([("m1", 4), ("m2", 2)]) layout_validator = valid_layouts.LayoutValidator(mtf_graph, mesh_shape) print(layout_validator.splittable_mtf_dimension_names) # Set of names of Mesh TensorFlow dimensions that may be assigned to mesh # dimensions. print(layout_validator.is_valid_assignment("batch", "m1")) # Whether the 'batch' Mesh TensorFlow dimension may be assigned to the 'm1' # mesh dimension. Unlike the previous method, this ensures that every # occurrence of the 'batch' dimension has a size that is evenly divisible by # the size of 'm1'. Attributes: splittable_mtf_dimension_names: a set(string) of the names of MTF dimensions that may be assigned in a layout. mesh_dimension_name_to_size: a {string: int}, mapping names of mesh dimensions to their size. """ def __init__(self, mtf_graph, mesh_shape): """Initializer. Args: mtf_graph: an mtf.Graph, representing the Mesh TensorFlow computation of interest. mesh_shape: an mtf.Shape, representing the mesh of interest. """ self._splittable_mtf_dimension_names = self._initialize_splittable_dimensions( mtf_graph) self._mtf_dimension_name_to_size_gcd = ( self._initialize_mtf_dimension_name_to_size_gcd(mtf_graph)) self._mesh_dimension_name_to_size = self._initialize_mesh_dimension_name_to_size( mesh_shape) @property def splittable_mtf_dimension_names(self): return self._splittable_mtf_dimension_names @property def mesh_dimension_name_to_size(self): return self._mesh_dimension_name_to_size def is_valid_assignment(self, mtf_dimension_name, mesh_dimension_name): """Whether this MTF dimension may be assigned to this mesh dimension. Args: mtf_dimension_name: string, the name of a Mesh TensorFlow dimension. mesh_dimension_name: string, the name of a mesh dimension. Returns: A boolean indicating whether the assignment is valid. """ return ((mtf_dimension_name in self._splittable_mtf_dimension_names) and (self._mtf_dimension_name_to_size_gcd[mtf_dimension_name] % self._mesh_dimension_name_to_size[mesh_dimension_name] == 0)) def _initialize_splittable_dimensions(self, mtf_graph): """Initializer for self._splittable_mtf_dimension_names. Args: mtf_graph: an mtf.Graph. Returns: A set(string) of the names of Mesh TensorFlow dimensions that may be assigned in a layout. """ all_mtf_dimension_names = set() # set(string) for mtf_operation in mtf_graph.operations: for mtf_tensor in mtf_operation.outputs: for mtf_dimension in mtf_tensor.shape.dims: if not re.match(r"_anonymous_\d*", mtf_dimension.name): all_mtf_dimension_names.add(mtf_dimension.name) unsplittable_mtf_dimension_names = set() # set(string) for mtf_operation in mtf_graph.operations: unsplittable_mtf_dimension_names.update(mtf_operation.unsplittable_dims) return all_mtf_dimension_names - unsplittable_mtf_dimension_names def _initialize_mtf_dimension_name_to_size_gcd(self, mtf_graph): """Initializer for self._mtf_dimension_name_to_size_gcd. Args: mtf_graph: an mtf.Graph. Returns: A {string: int}, mapping the name of an MTF dimension to the greatest common divisor of all the sizes it has. All these sizes being evenly divisible by some x is equivalent to the GCD being divisible by x. """ mtf_dimension_name_to_size_gcd = {} for mtf_operation in mtf_graph.operations: for mtf_tensor in mtf_operation.outputs: for mtf_dimension in mtf_tensor.shape.dims: mtf_dimension_name_to_size_gcd[mtf_dimension.name] = fractions.gcd( mtf_dimension_name_to_size_gcd.get(mtf_dimension.name, mtf_dimension.size), mtf_dimension.size) return mtf_dimension_name_to_size_gcd def _initialize_mesh_dimension_name_to_size(self, mesh_shape): """Initializer for self._mesh_dimension_name_to_size. Args: mesh_shape: an mtf.Shape. Returns: A {string: int} mapping mesh dimension names to their sizes. """ mesh_dimension_name_to_size = {} # {string: int} for mesh_dimension in mesh_shape.dims: mesh_dimension_name_to_size[mesh_dimension.name] = mesh_dimension.size return mesh_dimension_name_to_size
mesh-master
mesh_tensorflow/auto_mtf/valid_layouts.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for mesh_tensorflow.cost_estimator.memory_estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import mesh_tensorflow as mtf from mesh_tensorflow.auto_mtf import memory_estimator import tensorflow.compat.v1 as tf class MemoryEstimatorTest(tf.test.TestCase): def setUp(self): super(MemoryEstimatorTest, self).setUp() mtf_graph = mtf.Graph() mesh = mtf.Mesh(mtf_graph, 'lowering_context_mesh') a_dim = mtf.Dimension('a', 3) b_dim = mtf.Dimension('b', 4) c_dim = mtf.Dimension('c', 5) x = (mtf.Constant(mesh, 0, mtf.Shape([a_dim, b_dim]), tf.int32, 'X') .outputs[0]) y = (mtf.Constant(mesh, 0, mtf.Shape([b_dim, c_dim]), tf.int32, 'Y') .outputs[0]) z = (mtf.EinsumOperation([x, y], mtf.Shape([a_dim, c_dim]), name='Z') .outputs[0]) mesh_shape = mtf.Shape([('m1', 4), ('m2', 3)]) self.estimator = memory_estimator.MemoryEstimator( mtf_graph, mesh_shape, [z]) def test_LayoutValidator(self): validator = self.estimator.get_layout_validator() self.assertCountEqual(validator.splittable_mtf_dimension_names, ['a', 'b', 'c']) self.assertFalse(validator.is_valid_assignment('a', 'm1')) self.assertTrue(validator.is_valid_assignment('a', 'm2')) def test_GraphInterface(self): graph = self.estimator.get_graph_interface() self.assertCountEqual(list(graph.get_all_operation_names()), ['X', 'Y', 'Z']) self.assertEqual(graph.get_tensor_shape('X:0'), tf.TensorShape([3, 4])) self.assertEqual(graph.get_tensor_shape('Z:0'), tf.TensorShape([3, 5])) self.assertFalse(graph.is_tensor_final('Y:0')) self.assertTrue(graph.is_tensor_final('Z:0')) if __name__ == '__main__': tf.disable_v2_behavior() tf.test.main()
mesh-master
mesh_tensorflow/auto_mtf/memory_estimator_test.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Auto MeshTensorflow subpackage.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from mesh_tensorflow.auto_mtf import api from mesh_tensorflow.auto_mtf import graph_interface from mesh_tensorflow.auto_mtf import layout_optimizer from mesh_tensorflow.auto_mtf import memory_estimator from mesh_tensorflow.auto_mtf import print_cp_model_solution from mesh_tensorflow.auto_mtf import scheduler from mesh_tensorflow.auto_mtf import valid_layouts from mesh_tensorflow.auto_mtf.api import layout from mesh_tensorflow.auto_mtf.api import layout_and_mesh_shape
mesh-master
mesh_tensorflow/auto_mtf/__init__.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for mesh_tensorflow.layout_optimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import mesh_tensorflow as mtf from mesh_tensorflow.auto_mtf import layout_optimizer from mesh_tensorflow.auto_mtf import memory_estimator import six import tensorflow.compat.v1 as tf class VariableNamesTest(tf.test.TestCase): def testGlobalVarName(self): self.assertEqual("x_(cake:lie)", layout_optimizer._global_var_name("cake", "lie")) def testLocalVarName(self): self.assertEqual("y_()", layout_optimizer._local_var_name(frozenset(), {})) self.assertEqual( "y_(channel:y,hidden:x)", layout_optimizer._local_var_name(frozenset(["channel", "hidden"]), {"hidden": "x", "channel": "y"})) self.assertEqual( "y_(channel:y,hidden)", layout_optimizer._local_var_name(frozenset(["channel", "hidden"]), {"channel": "y"})) class AssignmentsTest(tf.test.TestCase): def testGenerateAssignments(self): splittable_dims = {"s1", "s2", "s3"} mesh_dims = {"m1": 4, "m2": 8} assignments = layout_optimizer._generate_assignments(splittable_dims, mesh_dims) # Check that some valid assignments of various sizes are included self.assertIn({}, assignments) self.assertIn({"s3": "m2"}, assignments) self.assertIn({"s1": "m2", "s2": "m1"}, assignments) # Not allowed to map two splittable dimensions to the same mesh dimension. self.assertNotIn({"s1": "m2", "s3": "m2"}, assignments) # Check the total number of assignments returned. We are looking for # thirteen because one assignment has no entries, six assignments have one # entry, and six assignments have two entries. self.assertLen(assignments, 13) class OptimizeLayoutTest(tf.test.TestCase): def setUp(self): super(OptimizeLayoutTest, self).setUp() self.mtf_graph = mtf.Graph() self.mesh = mtf.Mesh(self.mtf_graph, "my_mesh") self.mesh_shape = mtf.convert_to_shape("m1:4,m2:2") def get_layout_optimizer(self): return layout_optimizer.LayoutOptimizer(memory_estimator.MemoryEstimator( self.mtf_graph, self.mesh_shape)) def testOptimizeLayout(self): x1 = mtf.zeros(self.mesh, "a:10,b:5") x2 = mtf.zeros(self.mesh, "b:5,c:20") mtf.einsum([x1, x2], "a:10,c:20") optimizer = self.get_layout_optimizer() # Cut dimensions to make them equally sized. layout = optimizer.solve() self.assertEqual(layout, "a:m2;c:m1") # This optimal layout should have the lowest value. layout_value = optimizer.evaluate_layout(layout) self.assertLessEqual(layout_value, optimizer.evaluate_layout("a:m1;b:m2")) self.assertLessEqual(layout_value, optimizer.evaluate_layout("a:m1;c:m2")) self.assertLessEqual(layout_value, optimizer.evaluate_layout("b:m1;a:m2")) self.assertLessEqual(layout_value, optimizer.evaluate_layout("b:m1;c:m2")) self.assertLessEqual(layout_value, optimizer.evaluate_layout("c:m1;b:m2")) self.assertEqual(layout_value, optimizer.evaluate_layout("c:m1;a:m2")) def testOptimizeLayoutRepetition(self): x1 = mtf.zeros(self.mesh, "a:10,b:5") x2 = mtf.zeros(self.mesh, "b:5,c:20") for _ in six.moves.xrange(100): mtf.einsum([x1, x2], "a:10,c:20") optimizer = self.get_layout_optimizer() self.assertGreaterEqual(len(list( optimizer._graph.get_all_operation_names())), 50) self.assertLessEqual(len(optimizer._model.Proto().variables), 50) # Same checks. layout = optimizer.solve() self.assertEqual(layout, "a:m2;c:m1") layout_value = optimizer.evaluate_layout(layout) self.assertLessEqual(layout_value, optimizer.evaluate_layout("a:m1;b:m2")) self.assertLessEqual(layout_value, optimizer.evaluate_layout("a:m1;c:m2")) self.assertLessEqual(layout_value, optimizer.evaluate_layout("b:m1;a:m2")) self.assertLessEqual(layout_value, optimizer.evaluate_layout("b:m1;c:m2")) self.assertLessEqual(layout_value, optimizer.evaluate_layout("c:m1;b:m2")) self.assertEqual(layout_value, optimizer.evaluate_layout("c:m1;a:m2")) def testOptimizeLayoutUnsplittable(self): x1 = mtf.zeros(self.mesh, "a:10,b:5") x2 = mtf.zeros(self.mesh, "b:5,c:20") mtf.UnstackOperation(x1, mtf.Dimension("a", 10)) mtf.UnstackOperation(x2, mtf.Dimension("c", 20)) optimizer = self.get_layout_optimizer() # No dimensions can be split, because a and c are unstack dimensions and # b has size 5 (so there are divisiblity issues). self.assertEqual(optimizer.solve(), "") def testOptimizeLayoutTiebreak(self): x1 = mtf.zeros(self.mesh, "a:10,b:5") x2 = mtf.zeros(self.mesh, "b:5,c:20") mtf.einsum([x1, x2], "a:10,c:20") # Rewrite mesh_shape to have a dummy dimension. self.mesh_shape = mtf.convert_to_shape("m1:4,m2:2,m3:1") optimizer = self.get_layout_optimizer() layout = optimizer.solve() self.assertEqual(layout, "a:m2;b:m3;c:m1") # TODO(joshuawang): Add test to ensure only a single device"s worth of memory is # being measured. if __name__ == "__main__": tf.disable_v2_behavior() tf.test.main()
mesh-master
mesh_tensorflow/auto_mtf/layout_optimizer_test.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrapper function to automatically compute a layout. Sample Usage: import mesh_tensorflow as mtf import mesh_tensorflow.auto_mtf # Construct a Mesh TensorFlow graph and mesh. mtf_graph = mtf.Graph() mesh = mtf.Mesh(mtf_graph, "my_mesh") x = mtf.zeros(self.mesh, "a:10,b:5") y = mtf.zeros(self.mesh, "b:5,c:20") z = mtf.einsum([x, y], "a:10,c:20") # Compute a layout and mesh shape based on graph and 8 machines. # Note that knowing the identity of the outputs is important to the # optimization since they cannot be freed. layout, mesh_shape = mtf.auto_mtf.layout_and_mesh_Shape(mtf_graph, 8, [z]) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import mesh_tensorflow as mtf from mesh_tensorflow.auto_mtf import layout_optimizer from mesh_tensorflow.auto_mtf import memory_estimator import tensorflow.compat.v1 as tf def layout(mtf_graph, mesh_shape, mtf_outputs=()): """Compute layout rules based on a computational graph and mesh shape. Args: mtf_graph: a mtf.Graph. mesh_shape: an mtf.Shape, str, or listlike of mtf.Dimension. mtf_outputs: an optional iterable of mtf.Tensor, representing the outputs of the computation. Returns: a mtf.LayoutRules """ mesh_shape = mtf.convert_to_shape(mesh_shape) estimator = memory_estimator.MemoryEstimator(mtf_graph, mesh_shape, mtf_outputs) optimizer = layout_optimizer.LayoutOptimizer(estimator) return mtf.convert_to_layout_rules(optimizer.solve()) def layout_and_mesh_shape(mtf_graph, num_machines, mtf_outputs=(), max_mesh_shape_dimensions=2): """Compute layout rules and mesh shape based on computational graph. Brute-forces over all possible mesh shapes to find a (layout, mesh_shape) pair. Note that the layout optimizer is more efficient when the mesh_shape has fewer dimensions, so a smaller max_mesh_shape_dimensions makes this call faster. Args: mtf_graph: a mtf.Graph. num_machines: integer, a power of two, the number of machines available. mtf_outputs: an optional iterable of mtf.Tensor, representing the outputs of the computation. max_mesh_shape_dimensions: optional integer, the maximum number of dimensions to consider in any layout. For example, num_machines=1024 and max_mesh_shape_dimensions=2 results in testing the mesh shapes "mesh_0:1024", "mesh_0:512;mesh_1:2", "mesh_0:256;mesh_1:4", "mesh_0:128;mesh_1:8", "mesh_0:64;mesh_1:16", and "mesh_0:32;mesh_1:32". If set to None, there is no maximum. Returns: a (mtf.LayoutRules, mtf.Shape) tuple. """ best_layout_and_mesh_shape = (None, None) best_value = None for mesh_shape_list in _mesh_shape_iterator(num_machines, max_mesh_shape_dimensions): mesh_shape = mtf.Shape([mtf.Dimension("mesh_{}".format(i), size) for i, size in enumerate(mesh_shape_list)]) tf.logging.info("Computing layout for mesh shape: {}".format(mesh_shape)) estimator = memory_estimator.MemoryEstimator(mtf_graph, mesh_shape, mtf_outputs) optimizer = layout_optimizer.LayoutOptimizer(estimator) layout_string = optimizer.solve() value = optimizer.evaluate_layout(layout_string) if best_value is None or value < best_value: best_value = value best_layout_and_mesh_shape = (mtf.convert_to_layout_rules(layout_string), mesh_shape) return best_layout_and_mesh_shape def _mesh_shape_iterator(num_machines, max_mesh_shape_dimensions=None): """Iterable of mesh shapes that use a certain number of machines. Args: num_machines: integer, a power of two, the number of machines available. max_mesh_shape_dimensions: optional integer, the maximum number of dimensions to consider in any layout. Yields: [int], the dimension sizes of a mesh shape. """ if num_machines == 1: yield [1] return current_product = num_machines mesh_shape = [num_machines] while True: if (max_mesh_shape_dimensions is None or len(mesh_shape) <= max_mesh_shape_dimensions): yield list(mesh_shape) while mesh_shape[-1] == 2: current_product //= mesh_shape.pop() if not mesh_shape: return mesh_shape[-1] //= 2 current_product //= 2 while current_product < num_machines: mesh_shape.append(min(mesh_shape[-1], num_machines // current_product)) current_product *= mesh_shape[-1]
mesh-master
mesh_tensorflow/auto_mtf/api.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convenience method to print information about a pywrapcp solver's solution. Sample Usage: model = pywrapcp.CpModel() # Input variables, constraints, and objective into model. solver = pywrapcp.CpSolver() status = solver.Solve(model) # Check the status returned by solver. print_pywrapcp_solution.print_solution(model, solver) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function def print_solution(model, solver): """Prints the solution associated with solver. If solver has already had Solve() called on it, prints the solution. This includes each variable and its assignment, along with the objective function and its optimal value. If solver has not had Solve() called on it, or there is no feasible solution, this will probably crash. Args: model: A pywrapcp.CpModel object. solver: A pywrapcp.CpSolver object. Returns: Nothing, but prints the solution associated with solver. """ model_proto = model.Proto() response_proto = solver.ResponseProto() variables_in_objective_map = {} maximization = False if model_proto.HasField('objective'): objective = model_proto.objective for i in range(len(objective.vars)): variables_in_objective_map[objective.vars[i]] = objective.coeffs[i] if objective.scaling_factor < 0.0: maximization = True variable_assignments = [] variables_in_objective = [] num_vars = len(model_proto.variables) for var_index in range(num_vars): if not model_proto.variables[var_index].name: continue variable_name = model_proto.variables[var_index].name if var_index in variables_in_objective_map: coefficient = variables_in_objective_map[var_index] if coefficient: if maximization: coefficient *= -1 if coefficient < 0: variables_in_objective.append(' - {} * {}'.format( -coefficient, variable_name)) elif coefficient > 0: variables_in_objective.append(' + {} * {}'.format( coefficient, variable_name)) variable_assignments.append(' {} = {}\n'.format( variable_name, response_proto.solution[var_index])) print(''.join(variable_assignments), end='') # Strip the leading '+' if it exists. if variables_in_objective and variables_in_objective[0][1] == '+': variables_in_objective[0] = variables_in_objective[0][2:] print('{}:{}'.format('Maximize' if maximization else 'Minimize', ''.join(variables_in_objective))) print('Objective value: {}\n'.format(solver.ObjectiveValue()))
mesh-master
mesh_tensorflow/auto_mtf/print_cp_model_solution.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class to estimate the memory cost of a MTF computation. We would like to estimate the footprint of computing a Mesh TensorFlow model. Unfortunately, the size of the Mesh TensorFlow tensors isn't the full story; a single Mesh TensorFlow operation with a single output tensor might lower into multiple TensorFlow operations and multiple (temporary and output) TensorFlow tensors. However, the Mesh TensorFlow tensors serve as a quick, rough approximation to the final memory usage. The base MemoryEstimator class uses these tensors to compute a GraphInterface, without needing to lower the graph. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from mesh_tensorflow.auto_mtf import graph_interface from mesh_tensorflow.auto_mtf import valid_layouts class MemoryEstimator(object): """Estimates memory cost of a MTF graph based on the size of MTF tensors. Usage Example: estimator = memory_estimator.MemoryEstimator(mtf_graph, mesh_shape) layout_validator = estimator.get_layout_validator() graph = estimator.get_graph_interface() Attributes: mtf_graph: an mtf.Graph, see argument in __init__. mesh_shape: an mtf.Shape, see argument in __init__. mtf_outputs: an iterable of mtf.Tensor, see argument in __init__. """ def __init__(self, mtf_graph, mesh_shape, mtf_outputs=()): """Initializer. Args: mtf_graph: a mtf.Graph. mesh_shape: an mtf.Shape. mtf_outputs: an optional iterable of mtf.Tensor, representing the outputs of the computation. """ self.mtf_graph = mtf_graph self.mesh_shape = mesh_shape self.mtf_outputs = mtf_outputs self._layout_validator = None # valid_layouts.LayoutValidator self._graph_interface = None # graph_interface.GraphInterface def get_layout_validator(self): """LayoutValidator for the model and mesh_shape. Returns: a valid_layouts.LayoutValidator """ if self._layout_validator is None: self._compute_layout_validator() return self._layout_validator def get_graph_interface(self): """GraphInterface representation of the model's computation graph. Returns: a graph_interface.GraphInterface """ if self._graph_interface is None: self._compute_graph_interface() return self._graph_interface def _compute_layout_validator(self): """Computes self._layout_validator.""" self._layout_validator = valid_layouts.LayoutValidator(self.mtf_graph, self.mesh_shape) def _compute_graph_interface(self): """Computes self._graph_interface.""" self._graph_interface = graph_interface.GraphInterface(self.mtf_graph) for mtf_output in self.mtf_outputs: self._graph_interface.set_tensor_final(mtf_output.name)
mesh-master
mesh_tensorflow/auto_mtf/memory_estimator.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for mesh_tensorflow.auto_mtf.valid_layouts.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import mesh_tensorflow as mtf from mesh_tensorflow.auto_mtf import valid_layouts import tensorflow.compat.v1 as tf class LayoutValidatorTest(tf.test.TestCase): def setUp(self): super(LayoutValidatorTest, self).setUp() graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") a_dim = mtf.Dimension("a", 5) b_dim = mtf.Dimension("b", 10) concat_dim1 = mtf.Dimension("concat", 15) concat_dim2 = mtf.Dimension("concat", 20) x1 = mtf.zeros(mesh, mtf.Shape([a_dim, b_dim, concat_dim1])) x2 = mtf.zeros(mesh, mtf.Shape([a_dim, b_dim, concat_dim2])) mtf.ConcatOperation([x1, x2], "concat") # We add a tensor with anonymous shape, which is supposed to be # unsplittable (i.e. none of its dimensions show up during # test_SplittableMtfDimensionNames). _ = mtf.zeros(mesh, mtf.anonymous_shape(mtf.Shape([a_dim, b_dim]))) mesh_shape = mtf.Shape([("m1", 4), ("m2", 2)]) self.valid_layouts = valid_layouts.LayoutValidator(graph, mesh_shape) def test_SplittableMtfDimensionNames(self): self.assertEqual(self.valid_layouts.splittable_mtf_dimension_names, set(["a", "b"])) def test_MeshDimensionNameToSize(self): self.assertEqual(self.valid_layouts.mesh_dimension_name_to_size, {"m1": 4, "m2": 2}) def test_is_valid_assignment(self): # Due to divisibility, the a dimension cannot be assigned to m1 or m2. self.assertFalse(self.valid_layouts.is_valid_assignment("a", "m1")) self.assertFalse(self.valid_layouts.is_valid_assignment("a", "m2")) # The b dimension can only be assigned to m2. self.assertFalse(self.valid_layouts.is_valid_assignment("b", "m1")) self.assertTrue(self.valid_layouts.is_valid_assignment("b", "m2")) # Due to ConcatOperation, the concat dimension may not be assigned. self.assertFalse(self.valid_layouts.is_valid_assignment("concat", "m1")) self.assertFalse(self.valid_layouts.is_valid_assignment("concat", "m2")) if __name__ == "__main__": tf.disable_v2_behavior() tf.test.main()
mesh-master
mesh_tensorflow/auto_mtf/valid_layouts_test.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compute schedules to minimize peak memory usage. Implementation of alternative methods to compute schedules for the layout optimizer. Sample Usage: # Construct Mesh TensorFlow graph, mtf_graph. graph = mtf.auto_mtf.graph_interface.GraphInterface(mtf_graph) schedule = scheduler.MinimizePeakMemory(graph, 'LIST') """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import heapq import six def minimize_peak_memory(graph, scheduler_alg): """Computes a schedule to minimize peak memory. Args: graph: an mtf.auto_mtf.graph_interface.GraphInterface. scheduler_alg: a string, one of 'NAIVE' or 'LIST' Returns: an iterable of integers representing the schedule. """ if scheduler_alg == 'NAIVE': return _minimize_peak_memory_naive(graph) elif scheduler_alg == 'LIST': return _minimize_peak_memory_list(graph) else: raise NotImplementedError('{} is not a scheduler algorithm. It should be ' 'one of NAIVE or LIST.' .format(scheduler_alg)) def _minimize_peak_memory_naive(graph): """Computes the naive schedule [0, 1, 2, ...]. Args: graph: an mtf.auto_mtf.graph_interface.GraphInterface. Returns: an iterable of integers representing the schedule. """ return six.moves.range(graph.get_num_operations()) def _minimize_peak_memory_list(graph): """Computes schedule according to the greedy list heuristic. Greedy list heuristic: schedule the operation which results in the most bytes of memory being (immediately) freed. TODO(joshuawang): Experiment with tiebreaking by preferring more successors. Args: graph: an mtf.auto_mtf.graph_interface.GraphInterface. Returns: an iterable of integers representing the schedule. """ schedule = [] bytes_freed = {} # {operation_name: bytes freed} users_of = collections.defaultdict(set) # {tensor_name: set(operation_name)} in_degree = collections.defaultdict(int) # {operation_name: in degree} operation_id = {} # {operation_name: id} # We want an updatable priority queue, so we use the following workaround: # docs.python.org/2/library/heapq.html#priority-queue-implementation-notes priority_queue = [] # (negative bytes freed, operation name) # Set up the (greedy) topological sort. for i, operation_name in enumerate(graph.get_all_operation_names()): operation_id[operation_name] = i for input_name in graph.get_operation_input_names(operation_name): # Note that in _HybridGraphInterface, an operation may use a tensor twice, # but we deduplicate (with respect to in_degree) so that we can later use # users_of to decrement in_degree. if operation_name in users_of[input_name]: continue users_of[input_name].add(operation_name) in_degree[operation_name] += 1 for operation_name in graph.get_all_operation_names(): bytes_freed[operation_name] = 0 # For each input, this operation frees memory if it is the final consumer. for input_name in graph.get_operation_input_names(operation_name): if len(users_of[input_name]) == 1 and not graph.is_tensor_final( input_name): bytes_freed[operation_name] += graph.get_tensor_size(input_name) # For each output, this operation will require additional bytes of memory # (hence negative bytes freed). for output_name in graph.get_operation_output_names(operation_name): # If the output is used (or is final), then it eats memory. if users_of[output_name] or graph.is_tensor_final(output_name): bytes_freed[operation_name] -= graph.get_tensor_size(output_name) for operation_name in graph.get_all_operation_names(): if in_degree[operation_name] == 0: heapq.heappush(priority_queue, (-bytes_freed[operation_name], operation_name)) # Do the (greedy) topological sort. while priority_queue: neg_bytes_freed, operation_name = heapq.heappop(priority_queue) if bytes_freed[operation_name] != -neg_bytes_freed: continue schedule.append(operation_id[operation_name]) bytes_freed[operation_name] = None for output_name in graph.get_operation_output_names(operation_name): for other_operation_name in users_of[output_name]: in_degree[other_operation_name] -= 1 if in_degree[other_operation_name] == 0: heapq.heappush(priority_queue, (-bytes_freed[other_operation_name], other_operation_name)) for input_name in graph.get_operation_input_names(operation_name): if operation_name not in users_of[input_name]: # Used twice by this operation and hence already removed. continue users_of[input_name].remove(operation_name) if len(users_of[input_name]) != 1 or graph.is_tensor_final(output_name): continue (other_operation_name,) = users_of[input_name] bytes_freed[other_operation_name] += graph.get_tensor_size( input_name) if in_degree[other_operation_name] > 0: continue # Push another copy into the priority queue with our updated value. # The original copy will be ignored since it does not match bytes_freed. heapq.heappush(priority_queue, (-bytes_freed[other_operation_name], other_operation_name)) return schedule
mesh-master
mesh_tensorflow/auto_mtf/scheduler.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for mesh_tensorflow.auto_mtf.graph_interface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import mesh_tensorflow as mtf from mesh_tensorflow.auto_mtf import graph_interface import tensorflow.compat.v1 as tf from tensorflow.core.framework import cost_graph_pb2 from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.framework import types_pb2 class GraphInterfaceTest(tf.test.TestCase): def setUp(self): super(GraphInterfaceTest, self).setUp() self._cost_graph = cost_graph_pb2.CostGraphDef( node=[ cost_graph_pb2.CostGraphDef.Node( name="X", device="/device:CPU:0", id=0, output_info=[ cost_graph_pb2.CostGraphDef.Node.OutputInfo( size=48, alias_input_port=-1, dtype=types_pb2.DT_INT32, shape=tensor_shape_pb2.TensorShapeProto( dim=[ tensor_shape_pb2.TensorShapeProto.Dim(size=3), tensor_shape_pb2.TensorShapeProto.Dim(size=4), ] ) ), ], ), cost_graph_pb2.CostGraphDef.Node( name="Y", device="/device:CPU:0", id=1, output_info=[ cost_graph_pb2.CostGraphDef.Node.OutputInfo( size=80, alias_input_port=-1, dtype=types_pb2.DT_INT32, shape=tensor_shape_pb2.TensorShapeProto( dim=[ tensor_shape_pb2.TensorShapeProto.Dim(size=4), tensor_shape_pb2.TensorShapeProto.Dim(size=5), ] ) ), ], ), cost_graph_pb2.CostGraphDef.Node( name="Z1", device="/device:CPU:0", id=2, input_info=[ cost_graph_pb2.CostGraphDef.Node.InputInfo( preceding_node=0, preceding_port=0, ), cost_graph_pb2.CostGraphDef.Node.InputInfo( preceding_node=1, preceding_port=0, ), ], output_info=[ cost_graph_pb2.CostGraphDef.Node.OutputInfo( size=60, alias_input_port=-1, dtype=types_pb2.DT_INT32, shape=tensor_shape_pb2.TensorShapeProto( dim=[ tensor_shape_pb2.TensorShapeProto.Dim(size=3), tensor_shape_pb2.TensorShapeProto.Dim(size=5), ] ) ), ], is_final=True, ), cost_graph_pb2.CostGraphDef.Node( name="Z2", device="/device:CPU:0", id=3, input_info=[ cost_graph_pb2.CostGraphDef.Node.InputInfo( preceding_node=0, preceding_port=0, ), cost_graph_pb2.CostGraphDef.Node.InputInfo( preceding_node=1, preceding_port=0, ), ], output_info=[ cost_graph_pb2.CostGraphDef.Node.OutputInfo( size=60, alias_input_port=-1, dtype=types_pb2.DT_INT32, shape=tensor_shape_pb2.TensorShapeProto( dim=[ tensor_shape_pb2.TensorShapeProto.Dim(size=3), tensor_shape_pb2.TensorShapeProto.Dim(size=5), ] ) ), ], ), ] ) self._sizeless_cost_graph = self.StripCostGraphDef( self._cost_graph, "SIZES") self._deviceless_cost_graph = self.StripCostGraphDef( self._cost_graph, "DEVICES") self._cost_graph_string = self._cost_graph.SerializeToString() self._sizeless_cost_graph_string = ( self._sizeless_cost_graph.SerializeToString()) self._deviceless_cost_graph_string = ( self._deviceless_cost_graph.SerializeToString()) def StripCostGraphDef(self, cost_graph, to_strip): """Removes fields from a CostGraphDef protobuf. Helper method to reduce the initialization of CostGraphDef(s). Args: cost_graph: a CostGraphDef to strip. to_strip: a string, either "SIZES" or "DEVICES". Returns: a new CostGraphDef with either size information or device information stripped, as appropriate. """ new_cost_graph = cost_graph_pb2.CostGraphDef() new_cost_graph.CopyFrom(cost_graph) for node in new_cost_graph.node: if to_strip == "SIZES": for output_info in node.output_info: output_info.size = 0 output_info.ClearField("shape") if to_strip == "DEVICES": node.ClearField("device") return new_cost_graph def VerifyGraphInterface(self, graph): self.assertEqual(list(graph.get_all_operation_names()), ["X", "Y", "Z1", "Z2"]) self.assertEqual(list(graph.get_operation_input_names("X")), []) self.assertEqual(list(graph.get_operation_input_names("Y")), []) self.assertEqual(list(graph.get_operation_input_names("Z1")), ["X:0", "Y:0"]) self.assertEqual(list(graph.get_operation_input_names("Z2")), ["X:0", "Y:0"]) self.assertEqual(list(graph.get_operation_output_names("X")), ["X:0"]) self.assertEqual(list(graph.get_operation_output_names("Y")), ["Y:0"]) self.assertEqual(list(graph.get_operation_output_names("Z1")), ["Z1:0"]) self.assertEqual(list(graph.get_operation_output_names("Z2")), ["Z2:0"]) self.assertEqual(list(graph.get_all_tensor_names()), ["X:0", "Y:0", "Z1:0", "Z2:0"]) self.assertEqual(graph.get_tensor_dtype("X:0"), tf.int32) self.assertEqual(graph.get_tensor_dtype("Y:0"), tf.int32) self.assertEqual(graph.get_tensor_dtype("Z1:0"), tf.int32) self.assertEqual(graph.get_tensor_dtype("Z2:0"), tf.int32) self.assertEqual(graph.get_tensor_shape("X:0"), tf.TensorShape([3, 4])) self.assertEqual(graph.get_tensor_shape("Y:0"), tf.TensorShape([4, 5])) self.assertEqual(graph.get_tensor_shape("Z1:0"), tf.TensorShape([3, 5])) self.assertEqual(graph.get_tensor_shape("Z2:0"), tf.TensorShape([3, 5])) self.assertEqual(graph.get_tensor_num_entries("X:0"), 12) self.assertEqual(graph.get_tensor_num_entries("Y:0"), 20) self.assertEqual(graph.get_tensor_num_entries("Z1:0"), 15) self.assertEqual(graph.get_tensor_num_entries("Z2:0"), 15) graph.set_tensor_final("Z1:0") self.assertEqual(graph.compute_memory_contents_under_schedule([0, 1, 2, 3]), [frozenset(["X:0"]), frozenset(["X:0", "Y:0"]), frozenset(["X:0", "Y:0", "Z1:0"]), frozenset(["X:0", "Y:0", "Z1:0", "Z2:0"])]) self.assertEqual(graph.compute_memory_contents_under_schedule([0, 1, 3, 2]), [frozenset(["X:0"]), frozenset(["X:0", "Y:0"]), frozenset(["X:0", "Y:0", "Z2:0"]), frozenset(["X:0", "Y:0", "Z1:0"])]) def testTensorFlowGraph(self): tf_graph = tf.Graph() with tf_graph.as_default(): with tf.device("/device:CPU:0"): x = tf.zeros([3, 4], dtype=tf.int32, name="X") y = tf.zeros([4, 5], dtype=tf.int32, name="Y") tf.matmul(x, y, name="Z1") tf.matmul(x, y, name="Z2") graph = graph_interface.GraphInterface(tf_graph, canonical_device="/device:CPU:0") self.VerifyGraphInterface(graph) self.assertCountEqual(graph.get_operation_mtf_dimension_names("X"), []) self.assertCountEqual(graph.get_operation_mtf_dimension_names("Y"), []) self.assertCountEqual(graph.get_operation_mtf_dimension_names("Z1"), []) self.assertCountEqual(graph.get_operation_mtf_dimension_names("Z2"), []) self.assertCountEqual(graph.get_tensor_mtf_dimension_names("X:0"), []) self.assertCountEqual(graph.get_tensor_mtf_dimension_names("Y:0"), []) self.assertCountEqual(graph.get_tensor_mtf_dimension_names("Z1:0"), []) self.assertCountEqual(graph.get_tensor_mtf_dimension_names("Z2:0"), []) self.assertEqual(graph.get_tensor_device("X:0"), "/device:CPU:0") self.assertEqual(graph.get_tensor_device("Y:0"), "/device:CPU:0") self.assertEqual(graph.get_tensor_device("Z1:0"), "/device:CPU:0") self.assertEqual(graph.get_tensor_device("Z2:0"), "/device:CPU:0") self.assertTrue(graph.is_tensor_on_canonical_device("X:0")) self.assertTrue(graph.is_tensor_on_canonical_device("Y:0")) self.assertTrue(graph.is_tensor_on_canonical_device("Z1:0")) self.assertTrue(graph.is_tensor_on_canonical_device("Z2:0")) self.assertEqual(graph.compute_cost_graph().SerializeToString(), self._cost_graph_string) self.assertEqual(graph.compute_cost_graph(devices=["/device:CPU:0"]) .SerializeToString(), self._cost_graph_string) self.assertEqual(graph.compute_cost_graph(devices=[]).SerializeToString(), self._sizeless_cost_graph_string) def testMeshTensorFlowGraph(self): mtf_graph = mtf.Graph() mesh = mtf.Mesh(mtf_graph, "my_mesh") x = mtf.Constant(mesh, 0, shape=mtf.convert_to_shape("a:3,b:4"), dtype=tf.int32, name="X").outputs[0] y = mtf.Constant(mesh, 0, shape=mtf.convert_to_shape("b:4,c:5"), dtype=tf.int32, name="Y").outputs[0] mtf.EinsumOperation([x, y], mtf.convert_to_shape("a:3,c:5"), name="Z1") mtf.EinsumOperation([x, y], mtf.convert_to_shape("a:3,c:5"), name="Z2") graph = graph_interface.GraphInterface(mtf_graph) self.VerifyGraphInterface(graph) self.assertCountEqual(graph.get_operation_mtf_dimension_names("X"), ["a", "b"]) self.assertCountEqual(graph.get_operation_mtf_dimension_names("Y"), ["b", "c"]) self.assertCountEqual(graph.get_operation_mtf_dimension_names("Z1"), ["a", "b", "c"]) self.assertCountEqual(graph.get_operation_mtf_dimension_names("Z2"), ["a", "b", "c"]) self.assertCountEqual(graph.get_tensor_mtf_dimension_names("X:0"), ["a", "b"]) self.assertCountEqual(graph.get_tensor_mtf_dimension_names("Y:0"), ["b", "c"]) self.assertCountEqual(graph.get_tensor_mtf_dimension_names("Z1:0"), ["a", "c"]) self.assertCountEqual(graph.get_tensor_mtf_dimension_names("Z1:0"), ["a", "c"]) self.assertIsNone(graph.get_tensor_device("X:0")) self.assertIsNone(graph.get_tensor_device("Y:0")) self.assertIsNone(graph.get_tensor_device("Z1:0")) self.assertIsNone(graph.get_tensor_device("Z2:0")) self.assertTrue(graph.is_tensor_on_canonical_device("X:0")) self.assertTrue(graph.is_tensor_on_canonical_device("Y:0")) self.assertTrue(graph.is_tensor_on_canonical_device("Z1:0")) self.assertTrue(graph.is_tensor_on_canonical_device("Z2:0")) self.assertEqual(graph.compute_cost_graph().SerializeToString(), self._deviceless_cost_graph_string) self.assertEqual(graph.compute_cost_graph(devices=[]).SerializeToString(), self._deviceless_cost_graph_string) def testNotAGraph(self): self.assertRaises(TypeError, graph_interface.GraphInterface, "hello") if __name__ == "__main__": tf.disable_v2_behavior() tf.test.main()
mesh-master
mesh_tensorflow/auto_mtf/graph_interface_test.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for mesh_tensorflow.auto_mtf.layout.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import mesh_tensorflow as mtf import mesh_tensorflow.auto_mtf # pylint: disable=unused-import import mesh_tensorflow.auto_mtf.api import tensorflow.compat.v1 as tf class LayoutTest(tf.test.TestCase): def testLayout(self): # Construct a Mesh TensorFlow graph and mesh. mtf_graph = mtf.Graph() mesh = mtf.Mesh(mtf_graph, "my_mesh") x = mtf.zeros(mesh, "a:10,b:5") y = mtf.zeros(mesh, "b:5,c:20") z = mtf.einsum([x, y], "a:10,c:20") # Decide on a mesh shape. mesh_shape = mtf.convert_to_shape("m1:4,m2:2") # Compute a layout based on the graph and mesh. # Note that knowing the identity of the outputs is important to the # optimization since they cannot be freed. layout = mtf.auto_mtf.layout(mtf_graph, mesh_shape, [z]) a_dim = mtf.convert_to_dimension(("a", 10)) b_dim = mtf.convert_to_dimension(("b", 5)) c_dim = mtf.convert_to_dimension(("c", 20)) self.assertEqual(layout.tensor_dimension_to_mesh_axis(a_dim, mesh_shape), 1) self.assertIsNone(layout.tensor_dimension_to_mesh_axis(b_dim, mesh_shape)) self.assertEqual(layout.tensor_dimension_to_mesh_axis(c_dim, mesh_shape), 0) def testLayoutAndMeshShape(self): # Same as previous test, but don't specify a 4x2 mesh. mtf_graph = mtf.Graph() mesh = mtf.Mesh(mtf_graph, "my_mesh") x = mtf.zeros(mesh, "a:10,b:5") y = mtf.zeros(mesh, "b:5,c:20") z = mtf.einsum([x, y], "a:10,c:20") layout, mesh_shape = mtf.auto_mtf.layout_and_mesh_shape(mtf_graph, 8, [z]) a_dim = mtf.convert_to_dimension(("a", 10)) b_dim = mtf.convert_to_dimension(("b", 5)) c_dim = mtf.convert_to_dimension(("c", 20)) self.assertEqual(layout.tensor_dimension_to_mesh_axis(a_dim, mesh_shape), 1) self.assertIsNone(layout.tensor_dimension_to_mesh_axis(b_dim, mesh_shape)) self.assertEqual(layout.tensor_dimension_to_mesh_axis(c_dim, mesh_shape), 0) self.assertCountEqual(mesh_shape.dims, [mtf.Dimension("mesh_0", 4), mtf.Dimension("mesh_1", 2)]) layout, mesh_shape = mtf.auto_mtf.layout_and_mesh_shape( mtf_graph, 8, [z], 1) self.assertIsNone(layout.tensor_dimension_to_mesh_axis(a_dim, mesh_shape)) self.assertIsNone(layout.tensor_dimension_to_mesh_axis(b_dim, mesh_shape)) self.assertIsNone(layout.tensor_dimension_to_mesh_axis(c_dim, mesh_shape)) self.assertCountEqual(mesh_shape.dims, [mtf.Dimension("mesh_0", 8)]) def testMeshShapeIterator(self): self.assertCountEqual( list(mesh_tensorflow.auto_mtf.api._mesh_shape_iterator(1)), [[1]]) self.assertCountEqual( list(mesh_tensorflow.auto_mtf.api._mesh_shape_iterator(2)), [[2]]) self.assertCountEqual( list(mesh_tensorflow.auto_mtf.api._mesh_shape_iterator(4)), [[4], [2, 2]]) self.assertCountEqual( list(mesh_tensorflow.auto_mtf.api._mesh_shape_iterator(8)), [[8], [4, 2], [2, 2, 2]]) self.assertCountEqual( list(mesh_tensorflow.auto_mtf.api._mesh_shape_iterator(512)), [[512], [256, 2], [128, 4], [128, 2, 2], [64, 8], [64, 4, 2], [64, 2, 2, 2], [32, 16], [32, 8, 2], [32, 4, 4], [32, 4, 2, 2], [32, 2, 2, 2, 2], [16, 16, 2], [16, 8, 4], [16, 8, 2, 2], [16, 4, 4, 2], [16, 4, 2, 2, 2], [16, 2, 2, 2, 2, 2], [8, 8, 8], [8, 8, 4, 2], [8, 8, 2, 2, 2], [8, 4, 4, 4], [8, 4, 4, 2, 2], [8, 4, 2, 2, 2, 2], [8, 2, 2, 2, 2, 2, 2], [4, 4, 4, 4, 2], [4, 4, 4, 2, 2, 2], [4, 4, 2, 2, 2, 2, 2], [4, 2, 2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 2, 2, 2, 2, 2]]) self.assertCountEqual( list(mesh_tensorflow.auto_mtf.api._mesh_shape_iterator(512, 1)), [[512]]) self.assertCountEqual( list(mesh_tensorflow.auto_mtf.api._mesh_shape_iterator(512, 2)), [[512], [256, 2], [128, 4], [64, 8], [32, 16]]) if __name__ == "__main__": tf.disable_v2_behavior() tf.test.main()
mesh-master
mesh_tensorflow/auto_mtf/api_test.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Computes layouts for Mesh TensorFlow. Classes and methods to encode a Mesh TensorFlow computation as a series of Operations and then find a layout to minimize per-machine memory usage. Sample Usage: mtf_graph = mtf.Graph() mesh = mtf.Mesh(mtf_graph, "my_mesh") mesh_shape = mtf.convert_to_shape("m1:2;m2:2") # Add some operations to mesh using Mesh TensorFlow. estimator = memory_estimator.MemoryEstimator(mtf_graph, mesh_shape) optimizer = layout_optimizer.LayoutOptimizer(estimator) layout = optimizer.solve() """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools from absl import logging from mesh_tensorflow.auto_mtf import print_cp_model_solution from mesh_tensorflow.auto_mtf import scheduler import six from ortools.sat.python import cp_model class SolverError(Exception): pass class LayoutOptimizer(object): """Tries to compute a good layout for Mesh Tensorflow. Given a mesh shape (see Mesh TensorFlow) and several operations, computes a good layout (a mapping from TensorFlow dimensions to mesh dimensions) using integer programming. More formally, suppose T is the set of TensorFlow dimensions and M is the set of mesh dimensions. A layout L is a map from (T) to (M union {"unassigned"}), designating which tensor dimensions are split using which mesh dimensions. We wish to compute a layout that minimizes memory usage. Unfortunately, the memory usage doesn't just depend on the layout, but also on how the scheduler orders operations; whenever an operation is being performed, there are other tensors in memory besides that operation's input and output tensors. The layout, however, affects the size of the various tensors in memory, as well as *the amount of temporary memory the operation uses*. With this in mind, our (boolean) integer program to minimize memory is: Variables: x_{t->m}: "global" (boolean) variables; takes a value of 1 if t in T is assigned to m in M, and a value of 0 otherwise. y_{assignment}: "local" (boolean) variables; for every set of TensorFlow dimensions used in an operation or tensor and for every (valid) assignment from that set of TF dimensions to (M union {"unassigned"}), we have one of these which takes a value of 1 if the global variables completely agree with that assignment and 0 otherwise. z: memory (continuous) variable; the peak memory usage. Constraints: Operation Constraints: for every operation, no two dimensions used in that operation can be mapped to the same mesh dimension (since doing so would cause some of its computation to be skipped entirely). Global Constraints: we enforce that every TensorFlow dimension is assigned to at most one mesh dimension (it may be unassigned). (Optional) Divisibility Constraints: we enforce that a TensorFlow dimension can only be assigned to a mesh dimension if the latter's size evenly divides the former's size. Local Constraints: we enforce that out of all assignments that share a domain (i.e. set of TensorFlow dimensions), exactly one is chosen. Global-to-Local Constraints: we enforce that assignment(t) = m, then x_{t->m} must be 1 for y_{assignment} to be 1. We also enforce that if assignment(t) = "unassigned", then x_{t->m} must be 0 for all m in M. Memory Constraints: for every operation i, the peak memory usage z must be least the memory usage during that operation. The latter can be derived from memory_contents[i] and the local variables relevant to those tensors (their new sizes) and to the operation (temporary memory needed). Objective Function: We want to minimize the variable z. However, we want to tiebreak by the number of assigned dimensions (preferring more dimensions), so our modified objective is (#MTF Dimensions + 1) * z - sum x_{t->m}. Note that we prefer more splitting because in general splits result in smaller tensors and less duplicated work. """ def __init__(self, memory_estimator, scheduler_alg="LIST"): """Uses a auto_mtf.memory_estimator to set up the integer program. Args: memory_estimator: a memory_estimator.MemoryEstimator. scheduler_alg: an optional string, see scheduler.minimize_peak_memory. """ self._estimator = memory_estimator self._scheduler_alg = scheduler_alg self._layout_validator = self._estimator.get_layout_validator() self._graph = self._estimator.get_graph_interface() self._memory_contents = None # [frozenset(string)] # Initialize the model. self._model = cp_model.CpModel() self._preprocess_input() self._initialize_variables() self._add_constraints() self._build_objective_function() def _preprocess_input(self): """Computing useful input data structures to ease IP construction.""" # Compute the sets of MTF dimensions used in operations/tensors. # a {string: frozenset(string)}, mapping operation name to MTF dimension # names. self._operation_name_to_mtf_dimension_set = {} # a {string: frozenset(string)}, mapping tensor name to MTF dimension names. self._tensor_name_to_mtf_dimension_set = {} for operation_name in self._graph.get_all_operation_names(): self._operation_name_to_mtf_dimension_set[operation_name] = frozenset( set(self._graph.get_operation_mtf_dimension_names( operation_name)).intersection( self._layout_validator.splittable_mtf_dimension_names)) for tensor_name in self._graph.get_all_tensor_names(): self._tensor_name_to_mtf_dimension_set[tensor_name] = frozenset( set(self._graph.get_tensor_mtf_dimension_names(tensor_name)) .intersection(self._layout_validator.splittable_mtf_dimension_names)) self._operation_mtf_dimension_sets = set( self._operation_name_to_mtf_dimension_set.values()) self._mtf_dimension_sets = self._operation_mtf_dimension_sets | set( self._tensor_name_to_mtf_dimension_set.values()) # Compute possible assignments for each set of MTF dimensions. self._assignments = {} # indexed by MTF dimension set for mtf_dimension_set in self._mtf_dimension_sets: self._assignments[mtf_dimension_set] = _generate_assignments( mtf_dimension_set, self._layout_validator.mesh_dimension_name_to_size) def _initialize_variables(self): """Initializing the variables of the IP.""" # Initialize global variables. self._global_vars = {} # Indexed by (MTF dimension, mesh dimension) for mtf_dimension_name in ( self._layout_validator.splittable_mtf_dimension_names): for mesh_dimension_name in ( self._layout_validator.mesh_dimension_name_to_size): name = _global_var_name(mtf_dimension_name, mesh_dimension_name) self._global_vars[(mtf_dimension_name, mesh_dimension_name)] = ( self._model.NewBoolVar(name)) # Initialize local variables. self._local_vars = {} # Indexed by (tensorflow dimension set), then name of # assignment. for mtf_dimension_set in self._mtf_dimension_sets: self._local_vars[mtf_dimension_set] = {} for assignment in self._assignments[mtf_dimension_set]: # TODO(joshuawang): Avoid hash collision no matter what dimension names # are; don't hash by this local var name, swap to using a tuple encoding # of the full assignment instead. name = _local_var_name(mtf_dimension_set, assignment) self._local_vars[mtf_dimension_set][name] = ( self._model.NewBoolVar(name)) # Initialize memory variable. We need a crude upper bound on memory, so we # use the total size of all tensors under the empty assignment. # NOTE(joshuawang): This bound could be improved by factoring in the # schedule. memory_upper_bound = 0 for tensor_name in self._graph.get_all_tensor_names(): if self._graph.is_tensor_on_canonical_device(tensor_name): memory_upper_bound += int(self._graph.get_tensor_size(tensor_name)) self._memory_var = self._model.NewIntVar(0, memory_upper_bound, "z") def _add_constraints(self): """Adding constraints to the IP.""" # Add operation constraints. for mesh_dimension_name in ( self._layout_validator.mesh_dimension_name_to_size): for mtf_dimension_set in self._operation_mtf_dimension_sets: self._model.Add( sum(self._global_vars[(mtf_dimension_name, mesh_dimension_name)] for mtf_dimension_name in mtf_dimension_set) <= 1) # Add global constraints. for mtf_dimension_name in ( self._layout_validator.splittable_mtf_dimension_names): self._model.Add( sum(self._global_vars[(mtf_dimension_name, mesh_dimension_name)] for mesh_dimension_name in ( self._layout_validator.mesh_dimension_name_to_size)) <= 1) # Add divisibility constraints. for mtf_dimension_name in ( self._layout_validator.splittable_mtf_dimension_names): for mesh_dimension_name in ( self._layout_validator.mesh_dimension_name_to_size): if not self._layout_validator.is_valid_assignment(mtf_dimension_name, mesh_dimension_name): self._model.Add(self._global_vars[(mtf_dimension_name, mesh_dimension_name)] == 0) # Add local constraints. for mtf_dimension_set in self._mtf_dimension_sets: self._model.Add( sum(self._local_vars[mtf_dimension_set][_local_var_name( mtf_dimension_set, assignment)] for assignment in self._assignments[mtf_dimension_set]) == 1) # Add local-to-global constraints. for mtf_dimension_set in self._mtf_dimension_sets: for assignment in self._assignments[mtf_dimension_set]: name = _local_var_name(mtf_dimension_set, assignment) for mtf_dimension_name in mtf_dimension_set: if mtf_dimension_name in assignment: mesh_dimension_name = assignment[mtf_dimension_name] self._model.AddImplication( self._local_vars[mtf_dimension_set][name], self._global_vars[(mtf_dimension_name, mesh_dimension_name)]) else: for mesh_dimension_name in ( self._layout_validator.mesh_dimension_name_to_size): self._model.AddImplication( self._global_vars[(mtf_dimension_name, mesh_dimension_name)], self._local_vars[mtf_dimension_set][name].Not()) # Add memory constraints. tensor_memory_sum = {} for tensor_name in self._graph.get_all_tensor_names(): tensor_memory_sum[tensor_name] = 0 mtf_dimension_set = self._tensor_name_to_mtf_dimension_set[tensor_name] if not self._graph.is_tensor_on_canonical_device(tensor_name): continue for assignment in self._assignments[mtf_dimension_set]: size_under_assignment = self._graph.get_tensor_size( tensor_name, assignment, self._layout_validator.mesh_dimension_name_to_size) name = _local_var_name(mtf_dimension_set, assignment) tensor_memory_sum[tensor_name] += ( size_under_assignment * self._local_vars[mtf_dimension_set][name]) for tensor_names in self._get_memory_contents(): self._model.Add( sum(tensor_memory_sum[tensor_name] for tensor_name in tensor_names) <= self._memory_var) def _build_objective_function(self): """Builds the objective function of the IP.""" # Break ties in favor of more assignments. scale = len(self._layout_validator.splittable_mtf_dimension_names) + 1 objective = scale * self._memory_var - sum(six.itervalues( self._global_vars)) self._model.Minimize(objective) def _get_memory_contents(self): """Runs the scheduler to determine memory contents at every point in time. Returns: a list of frozenset of strings, where the ith entry describes the tensors in memory when executing operation i (where schedule[i] is an index into GetAllOperationNames()). """ if self._memory_contents is not None: return self._memory_contents schedule = scheduler.minimize_peak_memory(self._graph, self._scheduler_alg) self._memory_contents = self._graph.compute_memory_contents_under_schedule( schedule) return self._memory_contents def solve(self, print_solution=False): """Solves the current integer program and returns the computed layout. Args: print_solution: An optional boolean indicating whether to print the full solution in human-readable format. Returns: The computed layout (as a string). Raises: SolverError: the internal solver could not find a solution, or the solution found is infeasible. """ # Solve and see how well the solver did. self._cp_solver = cp_model.CpSolver() status = self._cp_solver.Solve(self._model) if status != cp_model.OPTIMAL: if status == cp_model.FEASIBLE: logging.warning("A potentially suboptimal solution was found.") else: logging.error("Solver returned status %d.", status) raise SolverError("The solver could not solve the problem and returned " "status {}.".format(status)) # TODO(joshuawang): Verify the solver's solution. if print_solution: print_cp_model_solution.print_solution(self._model, self._cp_solver) # Reconstruct layout from solution. layout = [] for mtf_dimension_name in ( self._layout_validator.splittable_mtf_dimension_names): for mesh_dimension_name in ( self._layout_validator.mesh_dimension_name_to_size): value = self._cp_solver.Value(self._global_vars[(mtf_dimension_name, mesh_dimension_name)]) if value: # Value is integer. layout.append(mtf_dimension_name + ":" + mesh_dimension_name) layout.sort() return ";".join(layout) def evaluate_layout(self, layout): """The current objective value for the given layout. TODO(joshuawang): The current function does not check that the given layout is valid. Args: layout: a string, representing a layout to evaluate (e.g. "d_ff:m1;heads:m2"). Returns: A float, the objective value. """ layout_dict = {} if layout: for pair in layout.split(";"): mtf_dimension_name, mesh_dimension_name = pair.split(":", 1) if (mtf_dimension_name in self._layout_validator.splittable_mtf_dimension_names): layout_dict[mtf_dimension_name] = mesh_dimension_name else: logging.warning("Skipping unsplittable dimension %s.", mtf_dimension_name) tensor_memory = {} # {string: float}, size of each tensor under our layout for tensor_name in self._graph.get_all_tensor_names(): if self._graph.is_tensor_on_canonical_device(tensor_name): tensor_memory[tensor_name] = self._graph.get_tensor_size( tensor_name, layout_dict, self._layout_validator.mesh_dimension_name_to_size) else: tensor_memory[tensor_name] = 0.0 peak_memory_usage = 0.0 for tensor_names in self._get_memory_contents(): memory_usage = 0.0 for tensor_name in tensor_names: memory_usage += tensor_memory[tensor_name] peak_memory_usage = max(peak_memory_usage, memory_usage) return peak_memory_usage def _global_var_name(splittable_dimension, mesh_dimension): """Name for a global variable. Args: splittable_dimension: the name of a splittable dimension (string) mesh_dimension: the name of a mesh dimension (string) Returns: A string, the variable name. """ return "x_({}:{})".format(splittable_dimension, mesh_dimension) def _local_var_name(splittable_dimensions, assignment): """Name for a local variable. Args: splittable_dimensions: frozenset of names of splittable dimensions. assignment: dict from names of splittable dimensions to names of mesh dimensions. Returns: A string, the variable name. """ assignment_string = [] for splittable in sorted(splittable_dimensions): if splittable in assignment: assignment_string.append("{}:{}".format(splittable, assignment[splittable])) else: assignment_string.append("{}".format(splittable)) return "y_(" + ",".join(assignment_string) + ")" def _generate_assignments(splittable_dimensions, mesh_dimension_to_size): """Generates all ways to map splittable dimensions to mesh dimensions. Args: splittable_dimensions: a frozenset of the names of splittable dimensions. mesh_dimension_to_size: a dictionary from mesh dimension name to size. Returns: A list of the valid assignments. Each assignment is a dict keyed by every splittable dimension, whose value is either a mesh dimension or None. """ assignments = [] for assignment_size in six.moves.xrange( 1 + min(len(splittable_dimensions), len(mesh_dimension_to_size))): for s_dims_chosen in itertools.combinations(splittable_dimensions, assignment_size): for m_dims_chosen in itertools.permutations(mesh_dimension_to_size, assignment_size): assignments.append(dict(zip(s_dims_chosen, m_dims_chosen))) return assignments
mesh-master
mesh_tensorflow/auto_mtf/layout_optimizer.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """tf.data.Dataset interface to the MNIST dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import shutil import tempfile import numpy as np from six.moves import urllib import tensorflow.compat.v1 as tf def read32(bytestream): """Read 4 bytes from bytestream as an unsigned 32-bit integer.""" dt = np.dtype(np.uint32).newbyteorder('>') return np.frombuffer(bytestream.read(4), dtype=dt)[0] def check_image_file_header(filename): """Validate that filename corresponds to images for the MNIST dataset.""" with tf.gfile.Open(filename, 'rb') as f: magic = read32(f) read32(f) # num_images, unused rows = read32(f) cols = read32(f) if magic != 2051: raise ValueError('Invalid magic number %d in MNIST file %s' % (magic, f.name)) if rows != 28 or cols != 28: raise ValueError( 'Invalid MNIST file %s: Expected 28x28 images, found %dx%d' % (f.name, rows, cols)) def check_labels_file_header(filename): """Validate that filename corresponds to labels for the MNIST dataset.""" with tf.gfile.Open(filename, 'rb') as f: magic = read32(f) read32(f) # num_items, unused if magic != 2049: raise ValueError('Invalid magic number %d in MNIST file %s' % (magic, f.name)) def download(directory, filename): """Download (and unzip) a file from the MNIST dataset if not already done.""" filepath = os.path.join(directory, filename) if tf.gfile.Exists(filepath): return filepath if not tf.gfile.Exists(directory): tf.gfile.MakeDirs(directory) url = 'http://yann.lecun.com/exdb/mnist/' + filename + '.gz' _, zipped_filepath = tempfile.mkstemp(suffix='.gz') print('Downloading %s to %s' % (url, zipped_filepath)) urllib.request.urlretrieve(url, zipped_filepath) with gzip.open(zipped_filepath, 'rb') as f_in, \ tf.gfile.Open(filepath, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) os.remove(zipped_filepath) return filepath def dataset(directory, images_file, labels_file): """Download and parse MNIST dataset.""" images_file = download(directory, images_file) labels_file = download(directory, labels_file) check_image_file_header(images_file) check_labels_file_header(labels_file) def decode_image(image): # Normalize from [0, 255] to [0.0, 1.0] image = tf.decode_raw(image, tf.uint8) image = tf.cast(image, tf.float32) image = tf.reshape(image, [784]) return image / 255.0 def decode_label(label): label = tf.decode_raw(label, tf.uint8) # tf.string -> [tf.uint8] label = tf.reshape(label, []) # label is a scalar return tf.to_int32(label) images = tf.data.FixedLengthRecordDataset( images_file, 28 * 28, header_bytes=16).map(decode_image) labels = tf.data.FixedLengthRecordDataset( labels_file, 1, header_bytes=8).map(decode_label) return tf.data.Dataset.zip((images, labels)) def train(directory): """tf.data.Dataset object for MNIST training data.""" return dataset(directory, 'train-images-idx3-ubyte', 'train-labels-idx1-ubyte') def test(directory): """tf.data.Dataset object for MNIST test data.""" return dataset(directory, 't10k-images-idx3-ubyte', 't10k-labels-idx1-ubyte')
mesh-master
examples/mnist_dataset.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A toy model using Mesh TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import mesh_tensorflow as mtf import numpy import tensorflow.compat.v1 as tf from tensorflow.python.data.ops.dataset_ops import Dataset from tensorflow.python.platform import flags from tensorflow.python.platform import tf_logging as logging from tensorflow.python.tpu import tpu_config # pylint: disable=g-direct-tensorflow-import from tensorflow.python.tpu import tpu_estimator # pylint: disable=g-direct-tensorflow-import from tensorflow_estimator.python.estimator import estimator as estimator_lib FLAGS = flags.FLAGS tf.flags.DEFINE_integer('batch_size', 64, 'Training batch size.') tf.flags.DEFINE_integer('io_size', 16, 'Number of channels per feature.') tf.flags.DEFINE_integer('hidden_size', 16, 'Size of each hidden layer.') tf.flags.DEFINE_integer('num_hidden_layers', 1, 'Number of layers.') tf.flags.DEFINE_string('master_dtype', 'bfloat16', 'dtype for master vars.') tf.flags.DEFINE_string('slice_dtype', 'float32', 'dtype for slice vars.') tf.flags.DEFINE_string('activation_dtype', 'float32', 'dtype for activations.') tf.flags.DEFINE_string('optimizer', 'SGD', 'optimizer (SGD or Adafactor).') tf.flags.DEFINE_float('lr', 1e-4, 'Learning rate.') tf.flags.DEFINE_string('mesh_shape', 'all:8', 'mesh shape') tf.flags.DEFINE_string('layout', 'hidden_odd:all', 'layout rules') tf.flags.DEFINE_integer('iterations', 100, 'Number of iterations per training loop.') tf.flags.DEFINE_integer('step_with_nan', -1, 'If >= 0, a NaN tensor is added in forward pass.') tf.flags.DEFINE_integer('train_steps', 10000, 'max steps') tf.flags.DEFINE_integer('steps_per_checkpoint', 200, 'steps_per_checkpoint') tf.flags.DEFINE_string( 'model_dir', default='', help='The directory where the model will be stored.') tf.flags.DEFINE_bool('use_tpu', True, 'use TPU') # Cloud TPU Cluster Resolvers tf.flags.DEFINE_string( 'tpu', default=None, help='The Cloud TPU to use for training. This should be either the name ' 'used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 url.') tf.flags.DEFINE_string( 'gcp_project', default=None, help='Project name for the Cloud TPU-enabled project. If not specified, we ' 'will attempt to automatically detect the GCE project from metadata.') tf.flags.DEFINE_string( 'tpu_zone', default=None, help='GCE zone where the Cloud TPU is located in. If not specified, we ' 'will attempt to automatically detect the GCE project from metadata.') class ToyModelInput(object): """Wrapper class that acts as the input_fn to TPUEstimator.""" def __init__(self): self._num_examples = 10000 # 10k self._images = numpy.random.uniform( 0, 1.0, [self._num_examples, FLAGS.io_size]).astype(numpy.float32) self._labels = self._images logging.info('init ToyModelInput()') def __call__(self, params): """Input function which provides a single batch for train or eval.""" # Retrieves the batch size for the current shard. The # of shards is # computed according to the input pipeline deployment. See # `tf.estimator.tpu.RunConfig` for details. batch_size = params['batch_size'] logging.info('call ToyModelInput() with batch size {}'.format(batch_size)) ds = Dataset.from_tensor_slices((self._images, self._labels)).repeat() dataset = ds.batch(batch_size, drop_remainder=True).prefetch(2) return dataset def toy_model(features, mesh): """A toy model implemented by mesh tensorlfow.""" batch_dim = mtf.Dimension('batch', FLAGS.batch_size) io_dim = mtf.Dimension('io', FLAGS.io_size) master_dtype = tf.as_dtype(FLAGS.master_dtype) slice_dtype = tf.as_dtype(FLAGS.slice_dtype) activation_dtype = tf.as_dtype(FLAGS.activation_dtype) x = mtf.import_tf_tensor(mesh, features, mtf.Shape([batch_dim, io_dim])) x = mtf.cast(x, activation_dtype) h = x for lnum in range(1, FLAGS.num_hidden_layers + 2): if lnum + 1 == FLAGS.num_hidden_layers + 2: # output layer dim = io_dim elif lnum % 2 == 0: dim = mtf.Dimension('hidden_even', FLAGS.hidden_size) else: dim = mtf.Dimension('hidden_odd', FLAGS.hidden_size) h = mtf.layers.dense( h, dim, use_bias=False, master_dtype=master_dtype, slice_dtype=slice_dtype, name='layer_%d' % lnum) y = h g = tf.train.get_global_step() if FLAGS.step_with_nan >= 0: # Trigger NaN in the forward pass, this is used for testing whether # MeshTensorFlow can handle occasional NaN value. y += mtf.import_tf_tensor( mesh, tf.divide( 0.0, tf.cond(tf.equal(g, FLAGS.step_with_nan), lambda: 0., lambda: 1.)), mtf.Shape([])) loss = mtf.reduce_mean(mtf.square(y - x)) return y, loss def model_fn(features, labels, mode, params): """A model is called by TpuEstimator.""" del labels global_step = tf.train.get_global_step() graph = mtf.Graph() mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape) layout_rules = mtf.convert_to_layout_rules(FLAGS.layout) if FLAGS.use_tpu: ctx = params['context'] num_hosts = ctx.num_hosts host_placement_fn = ctx.tpu_host_placement_function device_list = [host_placement_fn(host_id=t) for t in range(num_hosts)] tf.logging.info('device_list = %s' % device_list,) # TODO(ylc): Better estimation of replica cache size? replica_cache_size = 300 * 1000000 # 300M per replica # Worker 0 caches all the TPU binaries. worker0_mem = replica_cache_size * ctx.num_replicas devices_memeory_usage = [worker0_mem] + [0] * (num_hosts - 1) var_placer = mtf.utils.BalancedVariablePlacer(device_list, devices_memeory_usage) mesh_devices = [''] * mesh_shape.size mesh_impl = mtf.simd_mesh_impl.SimdMeshImpl( mesh_shape, layout_rules, mesh_devices, ctx.device_assignment) else: var_placer = None mesh_devices = [''] * mesh_shape.size mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( mesh_shape, layout_rules, mesh_devices) mesh = mtf.Mesh(graph, 'my_mesh', var_placer) with mtf.utils.outside_all_rewrites(): logits, loss = toy_model(features, mesh) # TRAIN mode if mode == tf.estimator.ModeKeys.TRAIN: var_grads = mtf.gradients([loss], [v.outputs[0] for v in graph.trainable_variables]) if FLAGS.optimizer == 'Adafactor': optimizer = mtf.optimize.AdafactorOptimizer() else: assert FLAGS.optimizer == 'SGD' optimizer = mtf.optimize.SgdOptimizer(learning_rate=FLAGS.lr) update_ops = optimizer.apply_grads(var_grads, graph.trainable_variables) else: # for now, we can only export fully-replicated tensors. fully_replicated_logits = mtf.anonymize(logits) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) tf_loss = tf.to_float(lowering.export_to_tf_tensor(loss)) if mode == tf.estimator.ModeKeys.TRAIN: tf_update_ops = [lowering.lowered_operation(op) for op in update_ops] tf_update_ops.append(tf.assign_add(global_step, 1)) tf.logging.info('tf_update_ops: {}'.format(tf_update_ops)) train_op = tf.group(tf_update_ops) else: tf_logits = lowering.export_to_tf_tensor(fully_replicated_logits) with mtf.utils.outside_all_rewrites(): # Copy master variables to slices. Must be called first. restore_hook = mtf.MtfRestoreHook(lowering) if mode == tf.estimator.ModeKeys.TRAIN: saver = tf.train.Saver( tf.global_variables(), sharded=True, max_to_keep=10, keep_checkpoint_every_n_hours=2, defer_build=False, save_relative_paths=True) tf.add_to_collection(tf.GraphKeys.SAVERS, saver) saver_listener = mtf.MtfCheckpointSaverListener(lowering) saver_hook = tf.train.CheckpointSaverHook( FLAGS.model_dir, save_steps=1000, saver=saver, listeners=[saver_listener]) return tpu_estimator.TPUEstimatorSpec( tf.estimator.ModeKeys.TRAIN, loss=tf_loss, train_op=train_op, training_hooks=[restore_hook, saver_hook]) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(tf_logits): mean_logits = tf.metrics.mean(tf_logits) return {'mean_logits': mean_logits} eval_metrics = (metric_fn, [tf_logits]) return tpu_estimator.TPUEstimatorSpec( tf.estimator.ModeKeys.EVAL, evaluation_hooks=[restore_hook], loss=tf_loss, eval_metrics=eval_metrics) def run_toy_model_tpu(): """Run a toy model on TPU.""" tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) iterations_per_loop = FLAGS.iterations mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape) config = tpu_config.RunConfig( cluster=tpu_cluster_resolver, model_dir=FLAGS.model_dir, save_checkpoints_steps=None, # Disable the default saver save_checkpoints_secs=None, # Disable the default saver log_step_count_steps=iterations_per_loop, save_summary_steps=iterations_per_loop, tpu_config=tpu_config.TPUConfig( num_shards=mesh_shape.size, iterations_per_loop=iterations_per_loop, num_cores_per_replica=1, per_host_input_for_training=tpu_config.InputPipelineConfig.BROADCAST)) classifier = tpu_estimator.TPUEstimator( use_tpu=True, model_fn=model_fn, config=config, train_batch_size=FLAGS.batch_size, eval_batch_size=FLAGS.batch_size) current_step = estimator_lib._load_global_step_from_checkpoint_dir(FLAGS.model_dir) # pylint: disable=protected-access,line-too-long logging.info('Current step %d', current_step) if FLAGS.steps_per_checkpoint == 0: classifier.train(input_fn=ToyModelInput(), max_steps=FLAGS.train_steps) return while current_step < FLAGS.train_steps: next_checkpoint = min(current_step + FLAGS.steps_per_checkpoint, FLAGS.train_steps) classifier.train(input_fn=ToyModelInput(), max_steps=next_checkpoint) current_step = next_checkpoint logging.info('Starting to evaluate.') eval_results = classifier.evaluate( input_fn=ToyModelInput(), steps=156) # since we have 10000 examples and batch_size = 64 per host logging.info('Eval results: %s', eval_results) def main(_): run_toy_model_tpu() if __name__ == '__main__': tf.disable_v2_behavior() tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()
mesh-master
examples/toy_model_tpu.py
# coding=utf-8 # Copyright 2021 The Mesh TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MNIST using Mesh TensorFlow and TF Estimator. This is an illustration, not a good model. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import mesh_tensorflow as mtf import mnist_dataset as dataset # local file import import tensorflow.compat.v1 as tf tf.flags.DEFINE_string("data_dir", "/tmp/mnist_data", "Path to directory containing the MNIST dataset") tf.flags.DEFINE_string("model_dir", "/tmp/mnist_model", "Estimator model_dir") tf.flags.DEFINE_integer("batch_size", 200, "Mini-batch size for the training. Note that this " "is the global batch size and not the per-shard batch.") tf.flags.DEFINE_integer("hidden_size", 512, "Size of each hidden layer.") tf.flags.DEFINE_integer("train_epochs", 40, "Total number of training epochs.") tf.flags.DEFINE_integer("epochs_between_evals", 1, "# of epochs between evaluations.") tf.flags.DEFINE_integer("eval_steps", 0, "Total number of evaluation steps. If `0`, evaluation " "after training is skipped.") tf.flags.DEFINE_string("mesh_shape", "b1:2;b2:2", "mesh shape") tf.flags.DEFINE_string("layout", "row_blocks:b1;col_blocks:b2", "layout rules") FLAGS = tf.flags.FLAGS def mnist_model(image, labels, mesh): """The model. Args: image: tf.Tensor with shape [batch, 28*28] labels: a tf.Tensor with shape [batch] and dtype tf.int32 mesh: a mtf.Mesh Returns: logits: a mtf.Tensor with shape [batch, 10] loss: a mtf.Tensor with shape [] """ batch_dim = mtf.Dimension("batch", FLAGS.batch_size) row_blocks_dim = mtf.Dimension("row_blocks", 4) col_blocks_dim = mtf.Dimension("col_blocks", 4) rows_dim = mtf.Dimension("rows_size", 7) cols_dim = mtf.Dimension("cols_size", 7) classes_dim = mtf.Dimension("classes", 10) one_channel_dim = mtf.Dimension("one_channel", 1) x = mtf.import_tf_tensor( mesh, tf.reshape(image, [FLAGS.batch_size, 4, 7, 4, 7, 1]), mtf.Shape( [batch_dim, row_blocks_dim, rows_dim, col_blocks_dim, cols_dim, one_channel_dim])) x = mtf.transpose(x, [ batch_dim, row_blocks_dim, col_blocks_dim, rows_dim, cols_dim, one_channel_dim]) # add some convolutional layers to demonstrate that convolution works. filters1_dim = mtf.Dimension("filters1", 16) filters2_dim = mtf.Dimension("filters2", 16) f1 = mtf.relu(mtf.layers.conv2d_with_blocks( x, filters1_dim, filter_size=[9, 9], strides=[1, 1], padding="SAME", h_blocks_dim=row_blocks_dim, w_blocks_dim=col_blocks_dim, name="conv0")) f2 = mtf.relu(mtf.layers.conv2d_with_blocks( f1, filters2_dim, filter_size=[9, 9], strides=[1, 1], padding="SAME", h_blocks_dim=row_blocks_dim, w_blocks_dim=col_blocks_dim, name="conv1")) x = mtf.reduce_mean(f2, reduced_dim=filters2_dim) # add some fully-connected dense layers. hidden_dim1 = mtf.Dimension("hidden1", FLAGS.hidden_size) hidden_dim2 = mtf.Dimension("hidden2", FLAGS.hidden_size) h1 = mtf.layers.dense( x, hidden_dim1, reduced_dims=x.shape.dims[-4:], activation=mtf.relu, name="hidden1") h2 = mtf.layers.dense( h1, hidden_dim2, activation=mtf.relu, name="hidden2") logits = mtf.layers.dense(h2, classes_dim, name="logits") if labels is None: loss = None else: labels = mtf.import_tf_tensor( mesh, tf.reshape(labels, [FLAGS.batch_size]), mtf.Shape([batch_dim])) loss = mtf.layers.softmax_cross_entropy_with_logits( logits, mtf.one_hot(labels, classes_dim), classes_dim) loss = mtf.reduce_mean(loss) return logits, loss def model_fn(features, labels, mode, params): """The model_fn argument for creating an Estimator.""" tf.logging.info("features = %s labels = %s mode = %s params=%s" % (features, labels, mode, params)) global_step = tf.train.get_global_step() graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") logits, loss = mnist_model(features, labels, mesh) mesh_shape = mtf.convert_to_shape(FLAGS.mesh_shape) layout_rules = mtf.convert_to_layout_rules(FLAGS.layout) mesh_size = mesh_shape.size mesh_devices = [""] * mesh_size mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( mesh_shape, layout_rules, mesh_devices) if mode == tf.estimator.ModeKeys.TRAIN: var_grads = mtf.gradients( [loss], [v.outputs[0] for v in graph.trainable_variables]) optimizer = mtf.optimize.AdafactorOptimizer() update_ops = optimizer.apply_grads(var_grads, graph.trainable_variables) lowering = mtf.Lowering(graph, {mesh: mesh_impl}) restore_hook = mtf.MtfRestoreHook(lowering) tf_logits = lowering.export_to_tf_tensor(logits) if mode != tf.estimator.ModeKeys.PREDICT: tf_loss = lowering.export_to_tf_tensor(loss) tf.summary.scalar("loss", tf_loss) if mode == tf.estimator.ModeKeys.TRAIN: tf_update_ops = [lowering.lowered_operation(op) for op in update_ops] tf_update_ops.append(tf.assign_add(global_step, 1)) train_op = tf.group(tf_update_ops) saver = tf.train.Saver( tf.global_variables(), sharded=True, max_to_keep=10, keep_checkpoint_every_n_hours=2, defer_build=False, save_relative_paths=True) tf.add_to_collection(tf.GraphKeys.SAVERS, saver) saver_listener = mtf.MtfCheckpointSaverListener(lowering) saver_hook = tf.train.CheckpointSaverHook( FLAGS.model_dir, save_steps=1000, saver=saver, listeners=[saver_listener]) accuracy = tf.metrics.accuracy( labels=labels, predictions=tf.argmax(tf_logits, axis=1)) # Name tensors to be logged with LoggingTensorHook. tf.identity(tf_loss, "cross_entropy") tf.identity(accuracy[1], name="train_accuracy") # Save accuracy scalar to Tensorboard output. tf.summary.scalar("train_accuracy", accuracy[1]) # restore_hook must come before saver_hook return tf.estimator.EstimatorSpec( tf.estimator.ModeKeys.TRAIN, loss=tf_loss, train_op=train_op, training_chief_hooks=[restore_hook, saver_hook]) if mode == tf.estimator.ModeKeys.PREDICT: predictions = { "classes": tf.argmax(tf_logits, axis=1), "probabilities": tf.nn.softmax(tf_logits), } return tf.estimator.EstimatorSpec( mode=tf.estimator.ModeKeys.PREDICT, predictions=predictions, prediction_hooks=[restore_hook], export_outputs={ "classify": tf.estimator.export.PredictOutput(predictions) }) if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec( mode=tf.estimator.ModeKeys.EVAL, loss=tf_loss, evaluation_hooks=[restore_hook], eval_metric_ops={ "accuracy": tf.metrics.accuracy( labels=labels, predictions=tf.argmax(tf_logits, axis=1)), }) def run_mnist(): """Run MNIST training and eval loop.""" mnist_classifier = tf.estimator.Estimator( model_fn=model_fn, model_dir=FLAGS.model_dir) # Set up training and evaluation input functions. def train_input_fn(): """Prepare data for training.""" # When choosing shuffle buffer sizes, larger sizes result in better # randomness, while smaller sizes use less memory. MNIST is a small # enough dataset that we can easily shuffle the full epoch. ds = dataset.train(FLAGS.data_dir) ds_batched = ds.cache().shuffle(buffer_size=50000).batch(FLAGS.batch_size) # Iterate through the dataset a set number (`epochs_between_evals`) of times # during each training session. ds = ds_batched.repeat(FLAGS.epochs_between_evals) return ds def eval_input_fn(): return dataset.test(FLAGS.data_dir).batch( FLAGS.batch_size).make_one_shot_iterator().get_next() # Train and evaluate model. for _ in range(FLAGS.train_epochs // FLAGS.epochs_between_evals): mnist_classifier.train(input_fn=train_input_fn, hooks=None) eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn) print("\nEvaluation results:\n\t%s\n" % eval_results) def main(_): run_mnist() if __name__ == "__main__": tf.disable_v2_behavior() tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()
mesh-master
examples/mnist.py
from setuptools import setup, find_packages setup( name = 'autoregressive-linear-attention-cuda', packages = find_packages(exclude=[]), version = '0.0.1', license='MIT', description = 'Autoregressive Linear Attention CUDA kernel', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/autoregressive-linear-attention-cuda', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism', 'linear attention', 'cuda' ], install_requires=[ 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
autoregressive-linear-attention-cuda-main
setup.py
autoregressive-linear-attention-cuda-main
autoregressive_linear_attention_cuda/__init__.py
autoregressive-linear-attention-cuda-main
autoregressive_linear_attention_cuda/autoregressive_linear_attention_cuda.py
from setuptools import setup, find_packages setup( name = 'retro-pytorch', packages = find_packages(exclude=[]), version = '0.3.8', license='MIT', description = 'RETRO - Retrieval Enhanced Transformer - Pytorch', long_description_content_type = 'text/markdown', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/RETRO-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention-mechanism', 'retrieval', ], install_requires=[ 'autofaiss', 'einops>=0.3', 'numpy', 'sentencepiece', 'torch>=1.6', 'tqdm' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
RETRO-pytorch-main
setup.py
from functools import partial import torch import torch.nn.functional as F from torch import nn, einsum from retro_pytorch.retrieval import BERT_VOCAB_SIZE from einops import rearrange, repeat # constants MIN_DIM_HEAD = 32 # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def divisible_by(val, divisor): return (val / divisor).is_integer() def cast_tuple(val, num = 1): return val if isinstance(val, tuple) else ((val,) * num) # deepnet init def deepnorm_init(transformer, beta, module_name_match_list = ['.ff.', '.to_v', '.to_out']): for name, module in transformer.named_modules(): if type(module) != nn.Linear: continue needs_beta_gain = any(map(lambda substr: substr in name, module_name_match_list)) gain = beta if needs_beta_gain else 1 nn.init.xavier_normal_(module.weight.data, gain = gain) if exists(module.bias): nn.init.constant_(module.bias.data, 0) # normalization class RMSNorm(nn.Module): def __init__( self, dim, *, eps = 1e-8, gated = False ): super().__init__() self.eps = eps self.scale = dim ** -0.5 self.gamma = nn.Parameter(torch.ones(dim)) self.weight = nn.Parameter(torch.ones(dim)) if gated else None def forward(self, x): norm = x.norm(keepdim = True, dim = -1) * self.scale out = (x / norm.clamp(min = self.eps)) * self.gamma if not exists(self.weight): return out return out * (x * self.weight).sigmoid() # pre and post norm residual wrapper modules class PreNorm(nn.Module): def __init__(self, dim, fn, norm_klass = RMSNorm): super().__init__() self.fn = fn self.norm = norm_klass(dim) def forward(self, x, *args, **kwargs): return self.fn(self.norm(x), *args, **kwargs) + x class PostNorm(nn.Module): def __init__(self, dim, fn, scale_residual = 1, norm_klass = RMSNorm): super().__init__() self.fn = fn self.scale_residual = scale_residual self.norm = norm_klass(dim) def forward(self, x, *args, **kwargs): residual = x * self.scale_residual out = self.fn(x, *args, **kwargs) + residual return self.norm(out) # positional embedding class RotaryEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, max_seq_len, *, device, offset = 0): seq = torch.arange(max_seq_len, device = device) + offset freqs = einsum('i , j -> i j', seq.type_as(self.inv_freq), self.inv_freq) emb = torch.cat((freqs, freqs), dim = -1) return rearrange(emb, 'n d -> 1 1 n d') def rotate_half(x): x = rearrange(x, '... (j d) -> ... j d', j = 2) x1, x2 = x.unbind(dim = -2) return torch.cat((-x2, x1), dim = -1) def apply_rotary_pos_emb(t, freqs): seq_len, rot_dim = t.shape[-2], freqs.shape[-1] t, t_pass = t[..., :rot_dim], t[..., rot_dim:] t = (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) return torch.cat((t, t_pass), dim = -1) # feedforward class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() inner_dim = int(mult * dim) self.ff = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(inner_dim, dim) ) def forward(self, x): return self.ff(x) # attention class Attention(nn.Module): def __init__( self, dim, *, context_dim = None, dim_head = 64, heads = 8, causal = False, dropout = 0., null_kv = False ): super().__init__() context_dim = default(context_dim, dim) self.heads = heads self.scale = dim_head ** -0.5 self.causal = causal inner_dim = dim_head * heads self.dropout = nn.Dropout(dropout) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_k = nn.Linear(context_dim, inner_dim, bias = False) self.to_v = nn.Linear(context_dim, inner_dim, bias = False) self.to_out = nn.Linear(inner_dim, dim) # allowing for attending to nothing (null function) # and to save attention from breaking if all retrieved chunks are padded out self.null_k = nn.Parameter(torch.randn(inner_dim)) if null_kv else None self.null_v = nn.Parameter(torch.randn(inner_dim)) if null_kv else None def forward(self, x, mask = None, context = None, pos_emb = None): b, device, h, scale = x.shape[0], x.device, self.heads, self.scale kv_input = default(context, x) q, k, v = self.to_q(x), self.to_k(kv_input), self.to_v(kv_input) # split heads q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # scale q = q * scale # apply relative positional encoding (rotary embeddings) if exists(pos_emb): q_pos_emb, k_pos_emb = cast_tuple(pos_emb, num = 2) q = apply_rotary_pos_emb(q, q_pos_emb) k = apply_rotary_pos_emb(k, k_pos_emb) # add null key / values if exists(self.null_k): nk, nv = self.null_k, self.null_v nk, nv = map(lambda t: repeat(t, '(h d) -> b h 1 d', b = b, h = h), (nk, nv)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # derive query key similarities sim = einsum('b h i d, b h j d -> b h i j', q, k) # masking mask_value = -torch.finfo(sim.dtype).max if exists(mask): if exists(self.null_k): mask = F.pad(mask, (1, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, mask_value) if self.causal: i, j = sim.shape[-2:] causal_mask = torch.ones(i, j, device = device, dtype = torch.bool).triu(j - i + 1) sim = sim.masked_fill(causal_mask, mask_value) # attention attn = sim.softmax(dim = -1) attn = self.dropout(attn) # aggregate out = einsum('b h i j, b h j d -> b h i d', attn, v) # merge heads out = rearrange(out, 'b h n d -> b n (h d)') # combine heads linear out return self.to_out(out) class ChunkedCrossAttention(nn.Module): def __init__( self, chunk_size, **kwargs ): super().__init__() self.chunk_size = chunk_size self.cross_attn = Attention(null_kv = True, **kwargs) def forward(self, x, *, context_mask = None, context, pos_emb = None): # derive variables chunk_size = self.chunk_size b, n, num_chunks, num_retrieved = x.shape[0], x.shape[-2], *context.shape[-4:-2] # if sequence length less than chunk size, do an early return if n < self.chunk_size: return torch.zeros_like(x) # causal padding causal_padding = chunk_size - 1 x = F.pad(x, (0, 0, -causal_padding, causal_padding), value = 0.) # remove sequence which is ahead of the neighbors retrieved (during inference) seq_index = (n // chunk_size) * chunk_size x, x_remainder = x[:, :seq_index], x[:, seq_index:] seq_remain_len = x_remainder.shape[-2] # take care of rotary positional embedding # make sure queries positions are properly shifted to the future q_pos_emb, k_pos_emb = pos_emb q_pos_emb = F.pad(q_pos_emb, (0, 0, -causal_padding, causal_padding), value = 0.) k_pos_emb = repeat(k_pos_emb, 'b h n d -> b h (r n) d', r = num_retrieved) pos_emb = (q_pos_emb, k_pos_emb) # reshape so we have chunk to chunk attention, without breaking causality x = rearrange(x, 'b (k n) d -> (b k) n d', k = num_chunks) context = rearrange(context, 'b k r n d -> (b k) (r n) d') if exists(context_mask): context_mask = rearrange(context_mask, 'b k r n -> (b k) (r n)') # cross attention out = self.cross_attn(x, context = context, mask = context_mask, pos_emb = pos_emb) # reshape back to original sequence out = rearrange(out, '(b k) n d -> b (k n) d', b = b) # pad back to original, with 0s at the beginning (which will be added to the residual and be fine) out = F.pad(out, (0, 0, causal_padding, -causal_padding + seq_remain_len), value = 0.) return out # encoder and decoder classes class Encoder(nn.Module): def __init__( self, dim, *, depth, context_dim = None, causal = False, heads = 8, dim_head = 64, attn_dropout = 0., ff_mult = 4, ff_dropout = 0., final_norm = True, cross_attn_layers = None, post_norm = False, output_dim = None, norm_klass = RMSNorm, scale_residual = 1. ): super().__init__() self.layers = nn.ModuleList([]) # partial rotary embeddings, which is better than full rotary # Wang and Komatsuzaki et al https://github.com/kingoflolz/mesh-transformer-jax/ rotary_emb_dim = min(dim_head, MIN_DIM_HEAD) self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) wrapper = partial(PreNorm, dim, norm_klass = norm_klass) if not post_norm else partial(PostNorm, dim, scale_residual = scale_residual, norm_klass = norm_klass) for layer_num in range(1, depth + 1): has_cross_attn = not exists(cross_attn_layers) or layer_num in cross_attn_layers self.layers.append(nn.ModuleList([ wrapper(Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, causal = causal)), wrapper(Attention(dim = dim, context_dim = context_dim, dim_head = dim_head, heads = heads, dropout = attn_dropout)) if has_cross_attn else None, wrapper(FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)), ])) self.norm_out = norm_klass(dim) if final_norm and not post_norm else nn.Identity() self.project_out = nn.Linear(dim, output_dim) if exists(output_dim) else nn.Identity() def forward(self, x, *, mask = None, chunked_seq): device, chunk_size, seq_len = x.device, x.shape[-2], chunked_seq.shape[-2] q_pos_emb = self.rotary_pos_emb(chunk_size, device = device) k_pos_emb = self.rotary_pos_emb(seq_len, device = device) for attn, cross_attn, ff in self.layers: x = attn(x, mask = mask, pos_emb = q_pos_emb) if exists(cross_attn): x = cross_attn(x, context = chunked_seq, pos_emb = (q_pos_emb, k_pos_emb)) x = ff(x) x = self.norm_out(x) return self.project_out(x) class Decoder(nn.Module): def __init__( self, dim, *, depth, heads = 8, dim_head = 64, attn_dropout = 0., ff_mult = 4, ff_dropout = 0., final_norm = True, cross_attn_layers = None, chunk_size = 64, post_norm = False, norm_klass = RMSNorm, scale_residual = 1. ): super().__init__() self.layers = nn.ModuleList([]) # partial rotary embeddings, which is better than full rotary # Wang and Komatsuzaki et al https://github.com/kingoflolz/mesh-transformer-jax/ rotary_emb_dim = min(dim_head, MIN_DIM_HEAD) self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim) wrapper = partial(PreNorm, dim, norm_klass = norm_klass) if not post_norm else partial(PostNorm, dim, scale_residual = scale_residual, norm_klass = norm_klass) self.chunk_size = chunk_size for layer_num in range(1, depth + 1): has_cross_attn = not exists(cross_attn_layers) or layer_num in cross_attn_layers self.layers.append(nn.ModuleList([ wrapper(Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, causal = True)), wrapper(ChunkedCrossAttention(chunk_size = chunk_size, dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout)) if has_cross_attn else None, wrapper(FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)), ])) self.norm_out = norm_klass(dim) if final_norm and not post_norm else nn.Identity() def forward(self, x, *, encoder = None, encoder_retrieved_mask = None, context_mask = None, retrieved = None): device, seq_len = x.device, x.shape[-2] self_attn_pos_emb = self.rotary_pos_emb(seq_len, device = device) # calculate seq index num_seq_chunks = seq_len // self.chunk_size seq_index = num_seq_chunks * self.chunk_size # rotary positions on the retrieved chunks if exists(retrieved): num_chunks, num_neighbors, chunk_size = retrieved.shape[-4:-1] cross_attn_q_pos_emb = self.rotary_pos_emb(self.chunk_size, device = device, offset = self.chunk_size - 1) # need to add extra chunk size, since it will be shifted cross_attn_k_pos_emb = self.rotary_pos_emb(chunk_size, device = device) cross_attn_pos_emb = (cross_attn_q_pos_emb, cross_attn_k_pos_emb) # keep track of whether retrieved tokens are encoded yet retrieved_encoded = False # go through the decoder layers for attn, cross_attn, ff in self.layers: x = attn(x, pos_emb = self_attn_pos_emb) if exists(cross_attn) and exists(retrieved): if not retrieved_encoded: retrieved = rearrange(retrieved, 'b k r n d -> (b k r) n d') seq_as_context = repeat(x[:, :seq_index], 'b (k n) d -> (b k r) n d', n = self.chunk_size, r = num_neighbors) retrieved = encoder(retrieved, mask = encoder_retrieved_mask, chunked_seq = seq_as_context) retrieved = rearrange(retrieved, '(b k r) n d -> b k r n d', k = num_chunks, r = num_neighbors) retrieved_encoded = True x = cross_attn( x, context = retrieved, context_mask = context_mask, pos_emb = cross_attn_pos_emb ) x = ff(x) return self.norm_out(x) # main class class RETRO(nn.Module): def __init__( self, *, num_tokens = BERT_VOCAB_SIZE, max_seq_len = 2048, enc_dim = 896, enc_depth = 2, enc_cross_attn_layers = None, dec_depth = 12, dec_cross_attn_layers = (1, 3, 6, 9), heads = 8, dec_dim = 768, dim_head = 64, enc_attn_dropout = 0., enc_ff_dropout = 0., dec_attn_dropout = 0., dec_ff_dropout = 0., chunk_size = 64, pad_id = 0, enc_scale_residual = None, dec_scale_residual = None, norm_klass = None, gated_rmsnorm = False, use_deepnet = False ): super().__init__() assert dim_head >= MIN_DIM_HEAD, f'dimension per head must be greater than {MIN_DIM_HEAD}' self.seq_len = max_seq_len self.pad_id = pad_id self.token_emb = nn.Embedding(num_tokens, enc_dim) self.pos_emb = nn.Embedding(max_seq_len, enc_dim) self.chunk_size = chunk_size self.to_decoder_model_dim = nn.Linear(enc_dim, dec_dim) if enc_dim != dec_dim else nn.Identity() # for deepnet, residual scales # follow equation in Figure 2. in https://arxiv.org/abs/2203.00555 norm_klass = default(norm_klass, RMSNorm) if use_deepnet: enc_scale_residual = default(enc_scale_residual, 0.81 * ((enc_depth ** 4) * dec_depth) ** .0625) dec_scale_residual = default(dec_scale_residual, (3 * dec_depth) ** 0.25) norm_klass = nn.LayerNorm # allow for gated rmsnorm if gated_rmsnorm: norm_klass = partial(RMSNorm, gated = True) # define encoder and decoders self.encoder = Encoder( dim = enc_dim, context_dim = dec_dim, depth = enc_depth, attn_dropout = enc_attn_dropout, ff_dropout = enc_ff_dropout, cross_attn_layers = enc_cross_attn_layers, post_norm = use_deepnet, norm_klass = norm_klass, scale_residual = enc_scale_residual, output_dim = dec_dim ) self.decoder = Decoder( dim = dec_dim, depth = dec_depth, attn_dropout = dec_attn_dropout, ff_dropout = dec_ff_dropout, cross_attn_layers = dec_cross_attn_layers, chunk_size = chunk_size, post_norm = use_deepnet, norm_klass = norm_klass, scale_residual = dec_scale_residual ) self.to_logits = nn.Linear(dec_dim, num_tokens) # deepnet has special init of weight matrices if use_deepnet: deepnorm_init(self.encoder, 0.87 * ((enc_depth ** 4) * dec_depth) ** -0.0625) deepnorm_init(self.decoder, (12 * dec_depth) ** -0.25) def forward_without_retrieval( self, seq ): # embed sequence embed = self.token_emb(seq) embed = embed[:, :self.seq_len] # get absolute positional embedding pos_emb = self.pos_emb(torch.arange(embed.shape[1], device = embed.device)) pos_emb = rearrange(pos_emb, 'n d -> 1 n d') embed = embed + pos_emb embed = self.to_decoder_model_dim(embed) embed = self.decoder(embed) # project to logits return self.to_logits(embed) def forward( self, seq, retrieved = None, return_loss = False ): """ b - batch n - sequence length / chunk length k - number of chunks d - feature dimension r - num retrieved neighbors """ if not exists(retrieved): return self.forward_without_retrieval(seq) assert not (return_loss and not self.training), 'must be training if returning loss' # assume padding token id (usually 0.) is to be masked out mask = retrieved != self.pad_id # handle some user inputs if retrieved.ndim == 3: retrieved = rearrange(retrieved, 'b k n -> b k 1 n') # 1 neighbor retrieved # if training, derive labels if return_loss: seq, labels = seq[:, :-1], seq[:, 1:] # variables n, num_chunks, num_neighbors, chunk_size, retrieved_shape, device = seq.shape[-1], *retrieved.shape[-3:], retrieved.shape, seq.device assert chunk_size >= self.chunk_size, 'chunk size of retrieval input must be greater or equal to the designated chunk_size on RETRO initialization' num_seq_chunks = n // self.chunk_size assert num_chunks == num_seq_chunks, f'sequence requires {num_seq_chunks} retrieved chunks, but only {num_chunks} passed in' # sequence index at which k-nearest neighbors have not been fetched yet after seq_index = num_seq_chunks * self.chunk_size # embed both sequence and retrieved chunks embed = self.token_emb(seq) retrieved = self.token_emb(retrieved) # get absolute positional embedding pos_emb = self.pos_emb(torch.arange(n, device = device)) pos_emb = rearrange(pos_emb, 'n d -> 1 n d') embed = embed + pos_emb # handle masks for encoder and decoder, if needed encoder_retrieved_mask = decoder_retrieved_mask = None if exists(mask): assert mask.shape == retrieved_shape, 'retrieval mask must be of the same shape as the retrieval tokens' encoder_retrieved_mask = rearrange(mask, 'b k r n -> (b k r) n') decoder_retrieved_mask = mask # project both sequence embedding and retrieved embedding to decoder dimension if necessary embed = self.to_decoder_model_dim(embed) # decode embed = self.decoder( embed, encoder = self.encoder, context_mask = decoder_retrieved_mask, encoder_retrieved_mask = encoder_retrieved_mask, retrieved = retrieved ) # project to logits logits = self.to_logits(embed) if not return_loss: return logits # cross entropy loss loss = F.cross_entropy(rearrange(logits, 'b n c -> b c n'), labels, ignore_index = self.pad_id) return loss
RETRO-pytorch-main
retro_pytorch/retro_pytorch.py
from retro_pytorch.retro_pytorch import RETRO from retro_pytorch.data import RETRODataset from retro_pytorch.training import TrainingWrapper
RETRO-pytorch-main
retro_pytorch/__init__.py
import os import numpy as np from pathlib import Path from shutil import rmtree from contextlib import contextmanager def is_true_env_flag(env_flag): return os.getenv(env_flag, 'false').lower() in ('true', '1', 't') def reset_folder_(p): path = Path(p) rmtree(path, ignore_errors = True) path.mkdir(exist_ok = True, parents = True) @contextmanager def memmap(*args, **kwargs): pointer = np.memmap(*args, **kwargs) yield pointer del pointer
RETRO-pytorch-main
retro_pytorch/utils.py
from pathlib import Path from math import ceil import torch import torch.nn.functional as F import logging import numpy as np from einops import rearrange import faiss from autofaiss import build_index from retro_pytorch.utils import memmap, reset_folder_ # constants SOS_ID = 101 EOS_ID = 102 BERT_MODEL_DIM = 768 BERT_VOCAB_SIZE = 28996 TMP_PATH = Path('./.tmp') INDEX_FOLDER_PATH = TMP_PATH / '.index' EMBEDDING_TMP_SUBFOLDER = 'embeddings' # helper functions def exists(val): return val is not None def range_chunked(max_value, *, batch_size): counter = 0 while counter < max_value: curr = counter + batch_size curr = min(curr, max_value) yield slice(counter, curr) counter = curr # indexing helper functions def faiss_read_index(path): return faiss.read_index(str(path), faiss.IO_FLAG_MMAP | faiss.IO_FLAG_READ_ONLY) # singleton globals MODEL = None TOKENIZER = None def get_tokenizer(): global TOKENIZER if not exists(TOKENIZER): TOKENIZER = torch.hub.load('huggingface/pytorch-transformers', 'tokenizer', 'bert-base-cased') return TOKENIZER def get_bert(): global MODEL if not exists(MODEL): MODEL = torch.hub.load('huggingface/pytorch-transformers', 'model', 'bert-base-cased') if torch.cuda.is_available(): MODEL = MODEL.cuda() return MODEL # tokenize def tokenize(texts, add_special_tokens = True): if not isinstance(texts, (list, tuple)): texts = [texts] tokenizer = get_tokenizer() encoding = tokenizer.batch_encode_plus( texts, add_special_tokens = add_special_tokens, padding = True, return_tensors = 'pt' ) token_ids = encoding.input_ids return token_ids # text to chunks def doc_text_to_chunks_and_seq_indices( *, doc_text, chunk_size = 64, seq_len = 2048, pad_id = 0 ): assert (seq_len % chunk_size) == 0, 'sequence length must be divisible by chunk size' ids = tokenize(doc_text) ids = rearrange(ids, '1 ... -> ...') text_len = ids.shape[-1] # pad to multiple of chunk size with an extra token padding = chunk_size - ((text_len - 1) % chunk_size) ids = F.pad(ids, (0, padding)) # split out very last token ids, last_token = ids[:-1], ids[-1:] ids = rearrange(ids, '(n c) -> n c', c = chunk_size) # first tokens of chunk [2:] and on will become the last token of chunk [1:] last_token_per_chunk = ids[1:, 0] all_last_tokens = torch.cat((last_token_per_chunk, last_token), dim = 0) all_last_tokens = rearrange(all_last_tokens, 'n -> n 1') # append all last tokens to ids for (num_chunks, chunk_size + 1) chunks_with_extra_token = torch.cat((ids, all_last_tokens), dim = -1) # calculate chunk indices starting at 0, spaced number of chunks of seq len apart total_chunks = ids.shape[0] num_chunks_per_seq = seq_len // chunk_size seq = torch.arange(0, total_chunks, num_chunks_per_seq) return chunks_with_extra_token, seq def text_folder_to_chunks_( *, folder, chunks_memmap_path, seqs_memmap_path, doc_ids_memmap_path, chunk_size = 64, seq_len = 2048, glob = '**/*.txt', max_chunks = 1_000_000, max_seqs = 100_000 ): paths = sorted([*Path(folder).glob(glob)]) total_chunks = 0 total_docs = 0 total_seqs = 0 chunks_shape = (max_chunks, chunk_size + 1) seqs_shape = (max_seqs,) doc_ids_shape = (max_chunks,) with memmap(chunks_memmap_path, shape = chunks_shape, dtype = np.int32, mode = 'w+') as chunks_memmap\ , memmap(seqs_memmap_path, shape = seqs_shape, dtype = np.int32, mode = 'w+') as seqs_memmap\ , memmap(doc_ids_memmap_path, shape = doc_ids_shape, dtype = np.int32, mode = 'w+') as doc_ids_memmap: for path in paths: print(f'processing {path}') chunks, seq = doc_text_to_chunks_and_seq_indices( doc_text = path.read_text(), chunk_size = chunk_size, seq_len = seq_len ) doc_chunk_len = chunks.shape[0] doc_seq_len = seq.shape[0] chunks_memmap[total_chunks:(total_chunks + doc_chunk_len)] = chunks.numpy() seqs_memmap[total_seqs:(total_seqs + doc_seq_len)] = seq.numpy() + total_chunks doc_ids_memmap[total_chunks:(total_chunks + doc_chunk_len)] = np.full((doc_chunk_len,), total_docs) total_chunks += doc_chunk_len total_seqs += doc_seq_len total_docs += 1 return dict( chunks = total_chunks, docs = total_docs, seqs = total_seqs ) # embedding function @torch.no_grad() def bert_embed( token_ids, return_cls_repr = False, eps = 1e-8, pad_id = 0. ): model = get_bert() mask = token_ids != pad_id if torch.cuda.is_available(): token_ids = token_ids.cuda() mask = mask.cuda() outputs = model( input_ids = token_ids, attention_mask = mask, output_hidden_states = True ) hidden_state = outputs.hidden_states[-1] if return_cls_repr: return hidden_state[:, 0] # return [cls] as representation if not exists(mask): return hidden_state.mean(dim = 1) mask = mask[:, 1:] # mean all tokens excluding [cls], accounting for length mask = rearrange(mask, 'b n -> b n 1') numer = (hidden_state[:, 1:] * mask).sum(dim = 1) denom = mask.sum(dim = 1) masked_mean = numer / (denom + eps) return masked_mean # chunks to knn def chunks_to_embeddings_( *, num_chunks, chunks_memmap_path, embeddings_memmap_path, chunk_size = 64, embed_dim = BERT_MODEL_DIM, batch_size = 16, use_cls_repr = False, pad_id = 0. ): chunks_shape = (num_chunks, chunk_size + 1) embed_shape = (num_chunks, embed_dim) with memmap(chunks_memmap_path, shape = chunks_shape, dtype = np.int32) as chunks\ , memmap(embeddings_memmap_path, shape = embed_shape, dtype = np.float32, mode = 'w+') as embeddings: for dim_slice in range_chunked(num_chunks, batch_size = batch_size): batch_chunk_npy = chunks[dim_slice] batch_chunk = torch.from_numpy(batch_chunk_npy) cls_tokens = torch.full((batch_chunk.shape[0], 1), SOS_ID) batch_chunk = torch.cat((cls_tokens, batch_chunk), dim = 1) batch_chunk = batch_chunk[:, :-1] # omit last token, the first token of the next chunk, used for autoregressive training batch_embed = bert_embed( batch_chunk, return_cls_repr = use_cls_repr ) embeddings[dim_slice] = batch_embed.detach().cpu().numpy() print(f'embedded {dim_slice.stop} / {num_chunks}') def memmap_file_to_chunks_( memmap_path, *, folder, shape, dtype, max_rows_per_file = 500 ): rows, _ = shape with memmap(memmap_path, shape = shape, dtype = dtype, mode = 'r') as f: root_path = TMP_PATH / folder reset_folder_(root_path) for ind, dim_slice in enumerate(range_chunked(rows, batch_size = max_rows_per_file)): filename = root_path / f'{ind:05d}.npy' data_slice = f[dim_slice] np.save(str(filename), f[dim_slice]) print(f'saved {str(filename)}') def index_embeddings( embeddings_folder, *, index_file = 'knn.index', index_infos_file = 'index_infos.json', max_index_memory_usage = '100m', current_memory_available = '1G' ): embeddings_path = TMP_PATH / embeddings_folder index_path = INDEX_FOLDER_PATH / index_file reset_folder_(INDEX_FOLDER_PATH) build_index( embeddings = str(embeddings_path), index_path = str(index_path), index_infos_path = str(INDEX_FOLDER_PATH / index_infos_file), metric_type = "l2", max_index_memory_usage = max_index_memory_usage, current_memory_available = current_memory_available, make_direct_map = True, should_be_memory_mappable = False, use_gpu = torch.cuda.is_available(), ) index = faiss_read_index(index_path) return index def chunks_to_index_and_embed( *, num_chunks, chunk_size, chunk_memmap_path, use_cls_repr = False, max_rows_per_file = 500, chunks_to_embeddings_batch_size = 16, embed_dim = BERT_MODEL_DIM, index_file = 'knn.index', **index_kwargs ): embedding_path = f'{chunk_memmap_path}.embedded' embed_shape = (num_chunks, embed_dim) chunks_to_embeddings_( num_chunks = num_chunks, chunk_size = chunk_size, chunks_memmap_path = chunk_memmap_path, embeddings_memmap_path = embedding_path, use_cls_repr = use_cls_repr, batch_size = chunks_to_embeddings_batch_size, embed_dim = embed_dim ) memmap_file_to_chunks_( embedding_path, shape = embed_shape, dtype = np.float32, folder = EMBEDDING_TMP_SUBFOLDER, max_rows_per_file = max_rows_per_file ) index = index_embeddings( embeddings_folder = EMBEDDING_TMP_SUBFOLDER, index_file = index_file, **index_kwargs ) embeddings = np.memmap(embedding_path, shape = embed_shape, dtype = np.float32, mode = 'r') return index, embeddings def chunks_to_precalculated_knn_( *, num_nearest_neighbors, num_chunks, chunk_size, chunk_memmap_path, doc_ids_memmap_path, use_cls_repr = False, max_rows_per_file = 500, chunks_to_embeddings_batch_size = 16, embed_dim = BERT_MODEL_DIM, num_extra_neighbors = 10, force_reprocess = False, index_file = 'knn.index', **index_kwargs ): chunk_path = Path(chunk_memmap_path) knn_path = chunk_path.parents[0] / f'{chunk_path.stem}.knn{chunk_path.suffix}' index_path = INDEX_FOLDER_PATH / index_file # early return knn path and faiss index # unless if force_reprocess is True if index_path.exists() and knn_path.exists() and not force_reprocess: print(f'preprocessed knn found at {str(knn_path)}, faiss index reconstituted from {str(index_path)}') index = faiss_read_index(index_path) return knn_path, index # fetch the faiss index and calculated embeddings for the chunks index, embeddings = chunks_to_index_and_embed( num_chunks = num_chunks, chunk_size = chunk_size, chunk_memmap_path = chunk_memmap_path, index_file = index_file, **index_kwargs ) total_neighbors_to_fetch = num_extra_neighbors + num_nearest_neighbors + 1 with memmap(knn_path, shape = (num_chunks, num_nearest_neighbors), dtype = np.int32, mode = 'w+') as knns\ , memmap(doc_ids_memmap_path, shape = (num_chunks,), dtype = np.int32, mode = 'r') as doc_ids: for dim_slice in range_chunked(num_chunks, batch_size = max_rows_per_file): query_vector = embeddings[dim_slice] distances, indices = index.search(query_vector, k = total_neighbors_to_fetch) # remove self from distances and indices distances = distances[:, 1:] indices = indices[:, 1:] # mask out any neighbors that belong to the same document to -1 query_doc_ids = doc_ids[dim_slice] neighbor_doc_ids = doc_ids[indices] neighbor_from_same_doc = query_doc_ids[..., None] == neighbor_doc_ids indices = np.where(neighbor_from_same_doc, -1, indices) distances = np.where(neighbor_from_same_doc, 1e3, distances) # re-sort indices by updated distances indices = np.take_along_axis(indices, np.argsort(distances, axis = 1), axis = 1) # store nearest neighbors to knn memmap knns[dim_slice] = indices[:, :num_nearest_neighbors] print(f'knns calculated for {dim_slice.stop} / {num_chunks}') print(f'knn saved to {knn_path}') return knn_path, index
RETRO-pytorch-main
retro_pytorch/retrieval.py
from torch.optim import AdamW def separate_weight_decayable_params(params): no_wd_params = set([param for param in params if param.ndim < 2]) wd_params = set(params) - no_wd_params return wd_params, no_wd_params def get_optimizer(params, lr = 3e-4, wd = 1e-1, filter_by_requires_grad = False): if filter_by_requires_grad: params = list(filter(lambda t: t.requires_grad, params)) params = set(params) wd_params, no_wd_params = separate_weight_decayable_params(params) param_groups = [ {'params': list(wd_params)}, {'params': list(no_wd_params), 'weight_decay': 0}, ] return AdamW(param_groups, lr = lr, weight_decay = wd)
RETRO-pytorch-main
retro_pytorch/optimizer.py
import numpy as np from functools import partial import json from pathlib import Path import torch from torch import nn import torch.nn.functional as F from torch.utils.data import DataLoader from retro_pytorch import RETRO, RETRODataset from retro_pytorch.data import knn_to_retrieved_chunks from retro_pytorch.optimizer import get_optimizer from retro_pytorch.retrieval import text_folder_to_chunks_, chunks_to_precalculated_knn_, bert_embed, SOS_ID, EOS_ID from retro_pytorch.utils import memmap, is_true_env_flag from einops import rearrange # helpers def exists(val): return val is not None def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner def safe_cat(accum, t, dim = -1): if not exists(accum): return t return torch.cat((accum, t), dim = dim) # sampling helpers def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim) def top_k(logits, thres = 0.9): num_logits = logits.shape[-1] k = max(int((1 - thres) * num_logits), 1) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > (1 - thres) sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) # function that returns knn chunks from seq chunks # # 1. adds sos and eos to seq chunks # 2. embeds the seq chunks with special tokens with frozen BERT # 3. fetches the knn indices with faiss # 4. gets the knn chunks as well as the continuation from a reference to the chunks data (memmap) # def knn_chunks_from_seq_chunks( seq_chunks, *, knn, faiss_index, num_chunks, chunk_size, chunks_memmap_path, ): b, device = seq_chunks.shape[0], seq_chunks.device # prepare last chunk with sos and eos tokens for BERT embed ones = torch.ones((b, 1), dtype = torch.bool, device = device) sos = ones * SOS_ID eos = ones * EOS_ID seq_chunks = torch.cat((sos, seq_chunks, eos), dim = 1) # embed with frozen BERT embeds = bert_embed(seq_chunks.cpu()) # fetch embeds on CPU for now # retrieval of knn with faiss _, knn_indices = faiss_index.search(embeds.cpu().numpy(), k = knn) # numpy to torch with memmap(chunks_memmap_path, dtype = np.int32, shape = (num_chunks + 1, chunk_size + 1)) as chunk_memmap: knn_chunks = knn_to_retrieved_chunks( knn_indices, chunk_memmap, add_continuations = True, num_chunks = num_chunks ) knn_chunks_torch = torch.from_numpy(knn_chunks).to(device) return knn_chunks_torch # training wrapper class class TrainingWrapper(nn.Module): def __init__( self, *, retro, chunk_size, documents_path, knn, glob = '**/*.txt', chunks_memmap_path = './train.chunks.dat', seqs_memmap_path = './train.seq.dat', doc_ids_memmap_path = './train.doc_ids.dat', max_chunks = 1_000_000, max_seqs = 100_000, knn_extra_neighbors = 100, processed_stats_json_path = './processed-stats.json', faiss_index_filename = 'knn.index', **index_kwargs ): super().__init__() assert isinstance(retro, RETRO), 'retro must be instance of RETRO' self.retro = retro force_reprocess = is_true_env_flag('REPROCESS') # store the processed training data statistics # number of chunks, number of sequences stats_path = Path(processed_stats_json_path) # if the statistics file does not exist, process folders of text # force reprocess by setting REPROCESS=1 when running training script if not stats_path.exists() or force_reprocess: self.stats = text_folder_to_chunks_( folder = documents_path, glob = glob, chunks_memmap_path = chunks_memmap_path, seqs_memmap_path = seqs_memmap_path, doc_ids_memmap_path = doc_ids_memmap_path, chunk_size = chunk_size, seq_len = retro.seq_len, max_chunks = max_chunks, max_seqs = max_seqs ) with open(processed_stats_json_path, 'w') as f: json.dump(self.stats, f) else: print(f'found to be previously processed at {str(stats_path)}') self.stats = json.loads(stats_path.read_text()) # get number of chunks and number of sequences num_chunks = self.stats['chunks'] num_seqs = self.stats['seqs'] # calculate knn memmap path and get the faiss index # todo - make sure if faiss_index_filename is found, do not reprocess unless flag is given knn_memmap_path, faiss_index = chunks_to_precalculated_knn_( num_chunks = num_chunks, chunk_size = chunk_size, chunk_memmap_path = chunks_memmap_path, doc_ids_memmap_path = doc_ids_memmap_path, num_nearest_neighbors = knn, num_extra_neighbors = knn_extra_neighbors, index_file = faiss_index_filename, force_reprocess = force_reprocess, **index_kwargs ) # retro dataset self.ds = RETRODataset( num_sequences = num_seqs, num_chunks = num_chunks, num_neighbors = knn, chunk_size = chunk_size, seq_len = retro.seq_len, chunk_memmap_path = chunks_memmap_path, chunk_nn_memmap_path = knn_memmap_path, seq_memmap_path = seqs_memmap_path ) # params needed for generation self.chunk_size = chunk_size self.max_seq_len = self.retro.seq_len self.fetch_knn_chunks_fn = partial( knn_chunks_from_seq_chunks, knn = knn, chunk_size = chunk_size, num_chunks = num_chunks, chunks_memmap_path = chunks_memmap_path, faiss_index = faiss_index ) @torch.no_grad() @eval_decorator def generate( self, start = None, retrieved = None, filter_fn = top_k, filter_thres = 0.9, temperature = 1.0, ): assert filter_fn in {top_k, top_p}, 'filter function must be either top-k or nucleus' device = next(self.retro.parameters()).device # if not prime tokens given, assume sampling from SOS token with batch size of 1 if not exists(start): start = torch.full((1, 1), SOS_ID, device = device).long() b, start_seq_len = start.shape # move onto same device as RETRO start = start.to(device) # prepare retrieval related variables if start_seq_len >= self.chunk_size: seq_index = (start_seq_len // self.chunk_size) * self.chunk_size past_seq_chunks = rearrange(start[:, :seq_index], 'b (n c) -> (b n) c', c = self.chunk_size) retrieved = self.fetch_knn_chunks_fn(past_seq_chunks) retrieved = rearrange(retrieved, '(b n) k c -> b n k c', b = b) # get starting sequence index out = start # sampling loop for i in range(start_seq_len - 1, self.max_seq_len): logits = self.retro(out, retrieved = retrieved) logits = logits[:, i] logits = filter_fn(logits, thres = filter_thres) sampled = gumbel_sample(logits, temperature = temperature, dim = -1) sampled = rearrange(sampled, 'b -> b 1') out = torch.cat((out, sampled), dim = 1) # early terminate if all EOS is_eos_tokens = (out == EOS_ID) if is_eos_tokens.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.retro.pad_id) break # when the sequence length is a multiple of the chunk size # retrieve the next set of knns curr_seq_len = out.shape[-1] if (curr_seq_len % self.chunk_size) == 0: last_chunk = rearrange(out, 'b (c n) -> b c n', n = self.chunk_size)[:, -1] knn_chunks = self.fetch_knn_chunks_fn(last_chunk) # concat retrieved knn chunks to all retrieved # to be sent to Retro for chunked cross attention at the next iteration knn_chunks = rearrange(knn_chunks, 'b k r -> b 1 k r') retrieved = safe_cat(retrieved, knn_chunks, dim = 1) print(f'retrieved at {curr_seq_len} / {self.max_seq_len}') return out def get_dataloader(self, **kwargs): return DataLoader(self.ds, **kwargs) def get_optimizer(self, **kwargs): return get_optimizer(self.retro.parameters(), **kwargs) def forward(self): raise NotImplemented
RETRO-pytorch-main
retro_pytorch/training.py
from functools import partial import numpy as np import torch from torch.utils.data import Dataset from retro_pytorch.retrieval import EOS_ID from retro_pytorch.utils import memmap # knn to retrieved chunks def knn_to_retrieved_chunks( knns, chunks_memmap, *, add_continuations, num_chunks, pad_id = 0, eos_id = EOS_ID, ): # derive mask for no neighbors found (-1) no_neighbor_mask = knns == -1 knns = np.maximum(knns, 0) # get neighbor and continuation chunks knn_chunks = chunks_memmap[knns] is_last_document_chunk = np.any(knn_chunks == eos_id, axis = -1, keepdims = True) # use presence of [EOS] in chunk as way to detect document boundaries # [EOS] in BERT tokenizer is 102 retrieved = knn_chunks[..., :-1] if add_continuations: continuation_indices = np.clip(knns + 1, 0, num_chunks - 1) # chunks are stored contiguously continuation_chunks = chunks_memmap[continuation_indices][..., :-1] continuation_chunks *= ~is_last_document_chunk # combine neighbors with continuations retrieved = np.concatenate((retrieved, continuation_chunks), axis = -1) # mask out any nearest neighbor chunks that was -1 (not found at index time) to padding id retrieved = np.where(~no_neighbor_mask[..., None], retrieved, pad_id) return retrieved # dataset class RETRODataset(Dataset): def __init__( self, *, num_chunks, chunk_size, seq_len, num_sequences, num_neighbors, chunk_memmap_path, chunk_nn_memmap_path, seq_memmap_path, eos_id = EOS_ID, pad_id = 0., add_continuations = True ): super().__init__() self.num_chunks = num_chunks self.num_sequences = num_sequences self.seq_num_chunks = seq_len // chunk_size self.eos_id = eos_id self.pad_id = pad_id num_chunks_with_padding = num_chunks + self.seq_num_chunks chunks_shape = (num_chunks_with_padding, chunk_size + 1) knn_shape = (num_chunks_with_padding, num_neighbors) self.add_continuations = add_continuations self.get_chunks = partial(memmap, chunk_memmap_path, dtype = np.int32, shape = chunks_shape) self.get_knns = partial(memmap, chunk_nn_memmap_path, dtype = np.int32, shape = knn_shape) self.get_seqs = partial(memmap, seq_memmap_path, dtype = np.int32, shape = (num_sequences,)) def __len__(self): return self.num_sequences def __getitem__(self, ind): with self.get_chunks() as chunks_memmap, self.get_knns() as knns_memmap, self.get_seqs() as seqs_memmap: begin_chunk_index = seqs_memmap[ind] chunk_range = slice(begin_chunk_index, (begin_chunk_index + self.seq_num_chunks)) chunks = chunks_memmap[chunk_range] # excise the last token, except for last token of last chunk seq_tokens = np.concatenate((chunks[:, :-1].flatten(), chunks[-1, -1:])) # mask out (with padding tokens) any token following an <eos> | disallow having more than 1 document in a sequence, as it would break RETRO's CCA seq_mask = np.cumsum(seq_tokens == self.eos_id, axis = 0) seq_mask = np.pad(seq_mask, (1, 0))[:-1] == 0. seq_tokens = np.where(seq_mask, seq_tokens, 0.) # derive retrieved tokens knns = knns_memmap[chunk_range] retrieved = knn_to_retrieved_chunks( knns, chunks_memmap, add_continuations = self.add_continuations, eos_id = self.eos_id, num_chunks = self.num_chunks ) seq_tokens_torch = torch.from_numpy(seq_tokens).long() retrieved_torch = torch.from_numpy(retrieved).long() return seq_tokens_torch, retrieved_torch
RETRO-pytorch-main
retro_pytorch/data.py
from setuptools import setup, find_packages setup( name = 'fast-transformer-pytorch', packages = find_packages(), version = '0.0.4', license='MIT', description = 'Fast Transformer - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/fast-transformer-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'transformers' ], install_requires=[ 'einops>=0.3', 'rotary-embedding-torch', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
fast-transformer-pytorch-main
setup.py
import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, reduce from rotary_embedding_torch import apply_rotary_emb, RotaryEmbedding # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # helper classes class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): x = self.norm(x) return self.fn(x, **kwargs) # blocks def FeedForward(dim, mult = 4): return nn.Sequential( nn.Linear(dim, dim * mult), nn.GELU(), nn.Linear(dim * mult, dim) ) class FastAttention(nn.Module): def __init__( self, dim, *, heads = 8, dim_head = 64, max_seq_len = None, pos_emb = None ): super().__init__() inner_dim = heads * dim_head self.heads = heads self.scale = dim_head ** -0.5 self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) # rotary positional embedding assert not (exists(pos_emb) and not exists(max_seq_len)), 'max_seq_len must be passed in if to use rotary positional embeddings' self.pos_emb = pos_emb self.max_seq_len = max_seq_len # if using relative positional encoding, make sure to reduce pairs of consecutive feature dimension before doing projection to attention logits kv_attn_proj_divisor = 1 if not exists(pos_emb) else 2 self.to_q_attn_logits = nn.Linear(dim_head, 1, bias = False) # for projecting queries to query attention logits self.to_k_attn_logits = nn.Linear(dim_head // kv_attn_proj_divisor, 1, bias = False) # for projecting keys to key attention logits # final transformation of values to "r" as in the paper self.to_r = nn.Linear(dim_head // kv_attn_proj_divisor, dim_head) self.to_out = nn.Linear(inner_dim, dim) def forward(self, x, mask = None): n, device, h, use_rotary_emb = x.shape[1], x.device, self.heads, exists(self.pos_emb) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) mask_value = -torch.finfo(x.dtype).max mask = rearrange(mask, 'b n -> b () n') # if relative positional encoding is needed if use_rotary_emb: freqs = self.pos_emb(torch.arange(self.max_seq_len, device = device), cache_key = self.max_seq_len) freqs = rearrange(freqs[:n], 'n d -> () () n d') q_aggr, k_aggr, v_aggr = map(lambda t: apply_rotary_emb(freqs, t), (q, k, v)) else: q_aggr, k_aggr, v_aggr = q, k, v # calculate query attention logits q_attn_logits = rearrange(self.to_q_attn_logits(q), 'b h n () -> b h n') * self.scale q_attn_logits = q_attn_logits.masked_fill(~mask, mask_value) q_attn = q_attn_logits.softmax(dim = -1) # calculate global query token global_q = einsum('b h n, b h n d -> b h d', q_attn, q_aggr) global_q = rearrange(global_q, 'b h d -> b h () d') # bias keys with global query token k = k * global_q # if using rotary embeddings, do an inner product between adjacent pairs in the feature dimension if use_rotary_emb: k = reduce(k, 'b h n (d r) -> b h n d', 'sum', r = 2) # now calculate key attention logits k_attn_logits = rearrange(self.to_k_attn_logits(k), 'b h n () -> b h n') * self.scale k_attn_logits = k_attn_logits.masked_fill(~mask, mask_value) k_attn = k_attn_logits.softmax(dim = -1) # calculate global key token global_k = einsum('b h n, b h n d -> b h d', k_attn, k_aggr) global_k = rearrange(global_k, 'b h d -> b h () d') # bias the values u = v_aggr * global_k # if using rotary embeddings, do an inner product between adjacent pairs in the feature dimension if use_rotary_emb: u = reduce(u, 'b h n (d r) -> b h n d', 'sum', r = 2) # transformation step r = self.to_r(u) # paper then says to add the queries as a residual r = r + q # combine heads r = rearrange(r, 'b h n d -> b n (h d)') return self.to_out(r) # main class class FastTransformer(nn.Module): def __init__( self, *, num_tokens, dim, depth, max_seq_len, heads = 8, dim_head = 64, ff_mult = 4, absolute_pos_emb = False ): super().__init__() self.token_emb = nn.Embedding(num_tokens, dim) # positional embeddings self.abs_pos_emb = nn.Embedding(max_seq_len, dim) if absolute_pos_emb else None layer_pos_emb = None if not absolute_pos_emb: assert (dim_head % 4) == 0, 'dimension of the head must be divisible by 4 to use rotary embeddings' layer_pos_emb = RotaryEmbedding(dim_head // 2) # layers self.layers = nn.ModuleList([]) for _ in range(depth): attn = FastAttention(dim, dim_head = dim_head, heads = heads, pos_emb = layer_pos_emb, max_seq_len = max_seq_len) ff = FeedForward(dim, mult = ff_mult) self.layers.append(nn.ModuleList([ PreNorm(dim, attn), PreNorm(dim, ff) ])) # weight tie projections across all layers first_block, _ = self.layers[0] for block, _ in self.layers[1:]: block.fn.to_q_attn_logits = first_block.fn.to_q_attn_logits block.fn.to_k_attn_logits = first_block.fn.to_k_attn_logits # to logits self.to_logits = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_tokens) ) def forward( self, x, mask = None ): n, device = x.shape[1], x.device x = self.token_emb(x) if exists(self.abs_pos_emb): pos_emb = self.abs_pos_emb(torch.arange(n, device = device)) x = x + rearrange(pos_emb, 'n d -> () n d') for attn, ff in self.layers: x = attn(x, mask = mask) + x x = ff(x) + x return self.to_logits(x)
fast-transformer-pytorch-main
fast_transformer_pytorch/fast_transformer_pytorch.py
from fast_transformer_pytorch.fast_transformer_pytorch import FastTransformer
fast-transformer-pytorch-main
fast_transformer_pytorch/__init__.py
from setuptools import setup, find_packages setup( name = 'uformer-pytorch', packages = find_packages(), version = '0.0.8', license='MIT', description = 'Uformer - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/uformer-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'image segmentation', 'unet' ], install_requires=[ 'einops>=0.3', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
uformer-pytorch-main
setup.py
from uformer_pytorch.uformer_pytorch import Uformer
uformer-pytorch-main
uformer_pytorch/__init__.py
import math from math import log, pi, sqrt from functools import partial import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat # constants List = nn.ModuleList # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def cast_tuple(val, depth = 1): return val if isinstance(val, tuple) else (val,) * depth # positional embeddings def apply_rotary_emb(q, k, pos_emb): sin, cos = pos_emb dim_rotary = sin.shape[-1] (q, q_pass), (k, k_pass) = map(lambda t: (t[..., :dim_rotary], t[..., dim_rotary:]), (q, k)) q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k)) q, k = map(lambda t: torch.cat(t, dim = -1), ((q, q_pass), (k, k_pass))) return q, k def rotate_every_two(x): x = rearrange(x, '... (d j) -> ... d j', j = 2) x1, x2 = x.unbind(dim = -1) x = torch.stack((-x2, x1), dim = -1) return rearrange(x, '... d j -> ... (d j)') class AxialRotaryEmbedding(nn.Module): def __init__(self, dim, max_freq = 10): super().__init__() self.dim = dim scales = torch.linspace(1., max_freq / 2, self.dim // 4) self.register_buffer('scales', scales) def forward(self, x): device, dtype, h, w = x.device, x.dtype, *x.shape[-2:] seq_x = torch.linspace(-1., 1., steps = h, device = device) seq_x = seq_x.unsqueeze(-1) seq_y = torch.linspace(-1., 1., steps = w, device = device) seq_y = seq_y.unsqueeze(-1) scales = self.scales[(*((None,) * (len(seq_x.shape) - 1)), Ellipsis)] scales = scales.to(x) scales = self.scales[(*((None,) * (len(seq_y.shape) - 1)), Ellipsis)] scales = scales.to(x) seq_x = seq_x * scales * pi seq_y = seq_y * scales * pi x_sinu = repeat(seq_x, 'i d -> i j d', j = w) y_sinu = repeat(seq_y, 'j d -> i j d', i = h) sin = torch.cat((x_sinu.sin(), y_sinu.sin()), dim = -1) cos = torch.cat((x_sinu.cos(), y_sinu.cos()), dim = -1) sin, cos = map(lambda t: rearrange(t, 'i j d -> i j d'), (sin, cos)) sin, cos = map(lambda t: repeat(t, 'i j d -> () i j (d r)', r = 2), (sin, cos)) return sin, cos class TimeSinuPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device = device) * -emb) emb = einsum('i, j -> i j', x, emb) emb = torch.cat((emb.sin(), emb.cos()), dim = -1) return emb # helper classes class LayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) def forward(self, x): std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt() mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) / (std + self.eps) * self.g + self.b class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = LayerNorm(dim) def forward(self, x, **kwargs): x = self.norm(x) return self.fn(x, **kwargs) class Attention(nn.Module): def __init__(self, dim, dim_head = 64, heads = 8, window_size = 16): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads self.window_size = window_size inner_dim = dim_head * heads self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False) self.to_kv = nn.Conv2d(dim, inner_dim * 2, 1, bias = False) self.to_out = nn.Conv2d(inner_dim, dim, 1) def forward(self, x, skip = None, time_emb = None, pos_emb = None): h, w, b = self.heads, self.window_size, x.shape[0] if exists(time_emb): time_emb = rearrange(time_emb, 'b c -> b c () ()') x = x + time_emb q = self.to_q(x) kv_input = x if exists(skip): kv_input = torch.cat((kv_input, skip), dim = 0) k, v = self.to_kv(kv_input).chunk(2, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) x y c', h = h), (q, k, v)) if exists(pos_emb): q, k = apply_rotary_emb(q, k, pos_emb) q, k, v = map(lambda t: rearrange(t, 'b (x w1) (y w2) c -> (b x y) (w1 w2) c', w1 = w, w2 = w), (q, k, v)) if exists(skip): k, v = map(lambda t: rearrange(t, '(r b) n d -> b (r n) d', r = 2), (k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale attn = sim.softmax(dim = -1) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h x y) (w1 w2) c -> b (h c) (x w1) (y w2)', b = b, h = h, y = x.shape[-1] // w, w1 = w, w2 = w) return self.to_out(out) class FeedForward(nn.Module): def __init__(self, dim, mult = 4): super().__init__() hidden_dim = dim * mult self.project_in = nn.Conv2d(dim, hidden_dim, 1) self.project_out = nn.Sequential( nn.Conv2d(hidden_dim, hidden_dim, 3, padding = 1), nn.GELU(), nn.Conv2d(hidden_dim, dim, 1) ) def forward(self, x, time_emb = None): x = self.project_in(x) if exists(time_emb): time_emb = rearrange(time_emb, 'b c -> b c () ()') x = x + time_emb return self.project_out(x) class Block(nn.Module): def __init__( self, dim, depth, dim_head = 64, heads = 8, ff_mult = 4, window_size = 16, time_emb_dim = None, rotary_emb = True ): super().__init__() self.attn_time_emb = None self.ff_time_emb = None if exists(time_emb_dim): self.attn_time_emb = nn.Sequential(nn.GELU(), nn.Linear(time_emb_dim, dim)) self.ff_time_emb = nn.Sequential(nn.GELU(), nn.Linear(time_emb_dim, dim * ff_mult)) self.pos_emb = AxialRotaryEmbedding(dim_head) if rotary_emb else None self.layers = List([]) for _ in range(depth): self.layers.append(List([ PreNorm(dim, Attention(dim, dim_head = dim_head, heads = heads, window_size = window_size)), PreNorm(dim, FeedForward(dim, mult = ff_mult)) ])) def forward(self, x, skip = None, time = None): attn_time_emb = None ff_time_emb = None if exists(time): assert exists(self.attn_time_emb) and exists(self.ff_time_emb), 'time_emb_dim must be given on init if you are conditioning based on time' attn_time_emb = self.attn_time_emb(time) ff_time_emb = self.ff_time_emb(time) pos_emb = None if exists(self.pos_emb): pos_emb = self.pos_emb(x) for attn, ff in self.layers: x = attn(x, skip = skip, time_emb = attn_time_emb, pos_emb = pos_emb) + x x = ff(x, time_emb = ff_time_emb) + x return x # classes class Uformer(nn.Module): def __init__( self, dim = 64, channels = 3, stages = 4, num_blocks = 2, dim_head = 64, window_size = 16, heads = 8, ff_mult = 4, time_emb = False, input_channels = None, output_channels = None ): super().__init__() input_channels = default(input_channels, channels) output_channels = default(output_channels, channels) self.to_time_emb = None time_emb_dim = None if time_emb: time_emb_dim = dim self.to_time_emb = nn.Sequential( TimeSinuPosEmb(dim), nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim) ) self.project_in = nn.Sequential( nn.Conv2d(input_channels, dim, 3, padding = 1), nn.GELU() ) self.project_out = nn.Sequential( nn.Conv2d(dim, output_channels, 3, padding = 1), ) self.downs = List([]) self.ups = List([]) heads, window_size, dim_head, num_blocks = map(partial(cast_tuple, depth = stages), (heads, window_size, dim_head, num_blocks)) for ind, heads, window_size, dim_head, num_blocks in zip(range(stages), heads, window_size, dim_head, num_blocks): is_last = ind == (stages - 1) self.downs.append(List([ Block(dim, depth = num_blocks, dim_head = dim_head, heads = heads, ff_mult = ff_mult, window_size = window_size, time_emb_dim = time_emb_dim), nn.Conv2d(dim, dim * 2, 4, stride = 2, padding = 1) ])) self.ups.append(List([ nn.ConvTranspose2d(dim * 2, dim, 2, stride = 2), Block(dim, depth = num_blocks, dim_head = dim_head, heads = heads, ff_mult = ff_mult, window_size = window_size, time_emb_dim = time_emb_dim) ])) dim *= 2 if is_last: self.mid = Block(dim = dim, depth = num_blocks, dim_head = dim_head, heads = heads, ff_mult = ff_mult, window_size = window_size, time_emb_dim = time_emb_dim) def forward( self, x, time = None ): if exists(time): assert exists(self.to_time_emb), 'time_emb must be set to true to condition on time' time = time.to(x) time = self.to_time_emb(time) x = self.project_in(x) skips = [] for block, downsample in self.downs: x = block(x, time = time) skips.append(x) x = downsample(x) x = self.mid(x, time = time) for (upsample, block), skip in zip(reversed(self.ups), reversed(skips)): x = upsample(x) x = block(x, skip = skip, time = time) x = self.project_out(x) return x
uformer-pytorch-main
uformer_pytorch/uformer_pytorch.py
import os import gzip import click import re import random from math import ceil from functools import partial from itertools import islice, chain from operator import itemgetter from pyfaidx import Faidx import numpy as np from random import random from pathlib import Path import toml from google.cloud import storage from prefect import Parameter, task, Flow from progen_transformer.data import with_tfrecord_writer from progen_transformer.utils import clear_directory_ # constants GCS_WRITE_TIMEOUT = 60 * 30 TMP_DIR = Path('./.tmp') # functions def order_dict_by(d, fn): keys = fn(d.keys()) return dict(tuple(map(lambda k: (k, d[k]), keys))) def get_annotations_from_description(config, description): taxonomy_matches = re.findall(r'Tax=([a-zA-Z\s]*)\s[a-zA-Z\=]', description) annotations = dict() if len(taxonomy_matches) > 0: annotations['tax'] = taxonomy_matches[0] return annotations def fasta_row_to_sequence_strings(config, fa, uid): seq_len = fa.index[uid].rlen seq = str(fa.fetch(uid, 1, seq_len)) description = fa.get_long_name(uid) sequences = [] annotations = get_annotations_from_description(config, description) # todo: gather annotations from GO if len(annotations) > 0: sort_annot_by = random.shuffle if not config['sort_annotations'] else sorted annotations = order_dict_by(annotations, sort_annot_by) annotation_str = [f"[{annot_name}={annot}]" for annot_name, annot in annotations.items()] annotation_str = ' '.join(annotation_str) seq_annot_pair = (annotation_str, seq) if random() <= config['prob_invert_seq_annotation']: seq_annot_pair = tuple(reversed(seq_annot_pair)) sequence = ' # '.join(seq_annot_pair) sequence = sequence.encode('utf-8') sequences.append(sequence) sequence = f'# {seq}' sequence = sequence.encode('utf-8') sequences.append(sequence) return sequences def process_and_write_to_tmp_file(i, seq_str): filename = TMP_DIR / str(i) with gzip.open(str(filename), 'wb') as f: f.write(seq_str) def foreach(fn, it): for el in it: fn(*el) # DAG functions @task def fasta_to_tmp_files(config): clear_directory_(TMP_DIR) print('reading from fasta') fa = Faidx(config['read_from'], sequence_always_upper = True) print('filtering by length') it = iter(fa.index.items()) it = filter(lambda el: el[1].rlen <= config['max_seq_len'], it) print('parallel processing to tmp files') it = islice(it, 0, config['num_samples']) it = map(itemgetter(0), it) fasta_to_seq_fn = partial(fasta_row_to_sequence_strings, config, fa) it = map(fasta_to_seq_fn, it) it = enumerate(chain.from_iterable(it)) foreach(process_and_write_to_tmp_file, it) @task def files_to_tfrecords(config): filenames = [*TMP_DIR.glob('**/*')] num_samples = len(filenames) num_valids = ceil(config['fraction_valid_data'] * num_samples) num_sequences_per_file = config['num_sequences_per_file'] # split out validation sequences permuted_sequences = np.random.permutation(num_samples) valid_seqs, train_seqs = np.split(permuted_sequences, [num_valids]) # clear directory to write to write_to = config['write_to'] upload_gcs = write_to.startswith('gs://') if upload_gcs: write_to = write_to[5:] client = storage.Client() bucket_name = write_to bucket = client.get_bucket(bucket_name) bucket.delete_blobs(list(bucket.list_blobs())) write_to_path = Path(write_to) clear_directory_(write_to_path) # loop and write all train and valid files to tfrecords for (seq_type, seqs) in (('train', train_seqs), ('valid', valid_seqs)): num_split = ceil(seqs.shape[0] / num_sequences_per_file) for file_index, indices in enumerate(np.array_split(seqs, num_split)): num_sequences = len(indices) tfrecord_filename = f'{file_index}.{num_sequences}.{seq_type}.tfrecord.gz' tfrecord_path = str(write_to_path / tfrecord_filename) with with_tfrecord_writer(tfrecord_path) as write: for index in indices: filename = filenames[index] with gzip.open(filename, 'rb') as f: write(f.read()) if upload_gcs: blob = bucket.blob(tfrecord_filename) blob.upload_from_filename(tfrecord_path, timeout = GCS_WRITE_TIMEOUT) with Flow('parse-fasta') as flow: config = Parameter('config', required = True) fasta_to_tmp_files(config = config) files_to_tfrecords(config = config) @click.command() @click.option('--data_dir', default = './configs/data') @click.option('--name', default = 'default') def main( data_dir, name ): data_dir = Path(data_dir) config_path = data_dir / f'{name}.toml' assert config_path.exists(), f'config does not exist at {str(config_path)}' config = toml.loads(config_path.read_text()) flow.run(config = config) if __name__ == '__main__': main()
progen-main
generate_data.py
from dotenv import load_dotenv load_dotenv() import click import humanize from jinja2 import Template from pathlib import Path import tqdm import numpy as np import toml import jax from jax import nn, random, jit, tree_util, tree_map from optax import adamw, clip_by_global_norm, chain, apply_updates, apply_every from haiku import PRNGSequence from progen_transformer import ProGen from progen_transformer.data import decode_tokens, iterator_from_tfrecords_folder from progen_transformer.utils import sample, get_loss_fn, set_hardware_rng_, confirm, exists from progen_transformer.checkpoint import get_checkpoint_fns import wandb # sample html sample_tmpl = Template("""<i>{{prime_str}}</i><br/><br/><div style="overflow-wrap: break-word;">{{sampled_str}}</div>""") # speedup rng set_hardware_rng_(jax) # main functions @click.command() @click.option('--seed', default = 42) @click.option('--batch_size', default = 4) @click.option('--grad_accum_every', default = 4) @click.option('--learning_rate', default = 2e-4) @click.option('--weight_decay', default = 1e-3) @click.option('--data_parallel', default = False, is_flag = True) @click.option('--max_grad_norm', default = 0.5) @click.option('--validate_every', default = 100) @click.option('--sample_every', default = 500) @click.option('--checkpoint_every', default = 1000) @click.option('--checkpoint_path', default = './ckpts') @click.option('--checkpoint_keep_n', default = 500) @click.option('--config_path', default = './configs/model') @click.option('--model_name', default = 'default') @click.option('--prime_length', default = 25) @click.option('--seq_len', default = 1024) @click.option('--mixed_precision', default = False, is_flag = True) @click.option('--data_path', default = './train_data') @click.option('--wandb_off', default = False, is_flag = True) @click.option('--wandb_project_name', default = 'progen-training') @click.option('--new', default = False, is_flag = True) def main( seed, batch_size, grad_accum_every, learning_rate, weight_decay, data_parallel, max_grad_norm, validate_every, sample_every, checkpoint_every, checkpoint_path, checkpoint_keep_n, config_path, model_name, prime_length, seq_len, mixed_precision, data_path, wandb_off, wandb_project_name, new ): # prepare folders reset_checkpoint, get_last_checkpoint, save_checkpoint = get_checkpoint_fns(checkpoint_path) if new: if not confirm('are you sure you want to clear all your checkpoints and restart training?'): exit() reset_checkpoint() # initialize all states, or load from checkpoint last_checkpoint = get_last_checkpoint() if not exists(last_checkpoint): config_folder_path = Path(config_path) config_path = config_folder_path / f'{model_name}.toml' assert config_path.exists(), f'path to your model config {str(config_path)} does not exist' model_kwargs = toml.loads(config_path.read_text()) else: model_kwargs = last_checkpoint['model_config'] # setup model and params model = ProGen(**{ **model_kwargs, 'mixed_precision': mixed_precision }) model_apply = jit(model.apply) rng = PRNGSequence(seed) loss_fn = get_loss_fn(model, data_parallel = data_parallel) # optimizer exclude_norm_and_bias_params = lambda p: tree_map(lambda x: x.ndim > 1, p) optim = chain( clip_by_global_norm(max_grad_norm), adamw(learning_rate, weight_decay = weight_decay, mask = exclude_norm_and_bias_params), apply_every(grad_accum_every) ) # get params and optimizer state if exists(last_checkpoint): params = last_checkpoint['params'] optim_state = last_checkpoint['optim_state'] start_seq_index = last_checkpoint['next_seq_index'] else: mock_data = np.zeros((model_kwargs['seq_len'],), dtype = np.uint8) params = model.init(next(rng), mock_data) optim_state = optim.init(params) start_seq_index = 0 # experiment tracker seq_len = model_kwargs['seq_len'] num_params = tree_util.tree_reduce(lambda acc, el: acc + el.size, params, 0) num_params_readable = humanize.naturalsize(num_params) wandb.config.num_params = num_params wandb_kwargs = {'mode': 'disabled'} if wandb_off else {} if exists(last_checkpoint) and exists(last_checkpoint['run_id']): run_id = last_checkpoint['run_id'] wandb_kwargs = {**wandb_kwargs, 'id': run_id, 'resume': 'allow'} wandb.init(project = wandb_project_name, **wandb_kwargs) wandb_run_id = wandb.run.id if not wandb_off else None # get tf dataset total_train_seqs, get_train_dataset = iterator_from_tfrecords_folder(data_path, data_type = 'train') total_valid_seqs, get_valid_dataset = iterator_from_tfrecords_folder(data_path, data_type = 'valid',) assert total_train_seqs > 0, 'no protein sequences found for training' assert total_valid_seqs > 0, 'no protein sequences found for validation' train_dataset = get_train_dataset( seq_len = seq_len, batch_size = batch_size, skip = start_seq_index ) valid_dataset = get_valid_dataset( seq_len = seq_len, batch_size = batch_size, loop = True ) # print print(f'params: {num_params_readable}') print(f'sequence length: {seq_len}') print(f'num sequences: {total_train_seqs}') print(f'starting from sequence {start_seq_index}') # training effective_batch_size = batch_size * grad_accum_every seq_index_ranges = range(start_seq_index, total_train_seqs, effective_batch_size) for i, seq_index in tqdm.tqdm(enumerate(seq_index_ranges), mininterval = 10., desc = 'training', total = len(seq_index_ranges)): for _ in range(grad_accum_every): data = next(train_dataset) loss, grads = loss_fn(params, next(rng), data) updates, optim_state = optim.update(grads, optim_state, params) params = apply_updates(params, updates) print(f'loss: {loss.item()}') wandb.log({'loss': loss.item()}) if i % checkpoint_every == 0: package = { 'next_seq_index': seq_index + effective_batch_size, 'params': params, 'optim_state': optim_state, 'model_config': model_kwargs, 'run_id': wandb_run_id } save_checkpoint(package, checkpoint_keep_n) print(f"checkpoint to start at sequence index of {package['next_seq_index']}") if i % validate_every == 0: valid_data = next(valid_dataset) loss, _ = loss_fn(params, next(rng), valid_data) print(f'valid_loss: {loss.item()}') wandb.log({'valid_loss': loss.item()}) if i % sample_every == 0: valid_data = next(valid_dataset)[0] prime = valid_data[:prime_length] prime_str = decode_tokens(prime) sampled = sample(rng, model_apply, params, prime, seq_len, top_k = 25) sampled_str = decode_tokens(sampled[prime_length:]) print(prime_str, "\n", "*" * 40, "\n", sampled_str) wandb.log({'samples': wandb.Html(sample_tmpl.render(prime_str = prime_str, sampled_str = sampled_str))}) if __name__ == '__main__': main()
progen-main
train.py
from dotenv import load_dotenv load_dotenv() import click import humanize import jax from jax import nn, random, jit, tree_util, numpy as np from haiku import PRNGSequence from progen_transformer import ProGen from progen_transformer.data import decode_tokens, encode_tokens from progen_transformer.utils import sample, set_hardware_rng_ from progen_transformer.checkpoint import get_checkpoint_fns # speedup rng set_hardware_rng_(jax) # main functions @click.command() @click.option('--seed', default = 42) @click.option('--checkpoint_path', default = './ckpts') @click.option('--prime', default = '') def main( seed, checkpoint_path, prime, ): # prepare folders _, get_last_checkpoint, _ = get_checkpoint_fns(checkpoint_path) last_checkpoint = get_last_checkpoint() if last_checkpoint is None: exit(f'no checkpoints found at {checkpoint_path}') params = last_checkpoint['params'] num_seqs = max(last_checkpoint['next_seq_index'], 0) # setup model and params model_kwargs = last_checkpoint['model_config'] model = ProGen(**model_kwargs) model_apply = jit(model.apply) rng = PRNGSequence(seed) # initialize all states, or load from checkpoint seq_len = model_kwargs['seq_len'] num_params = tree_util.tree_reduce(lambda acc, el: acc + el.size, params, 0) num_params_readable = humanize.naturalsize(num_params) # print print(f'params: {num_params_readable}') print(f'sequence length: {seq_len}') print(f'trained for {num_seqs} sequences') # sample with prime prime_tokens = encode_tokens(prime) prime_length = len(prime_tokens) + 1 prime_tensor = np.array(prime_tokens, dtype = np.uint16) sampled = sample(rng, jit(model_apply), params, prime_tensor, seq_len, top_k = 25, add_bos = True) sampled_str = decode_tokens(sampled[prime_length:]) print("\n", prime, "\n", "*" * 40, "\n", sampled_str) if __name__ == '__main__': main()
progen-main
sample.py
import time import os, errno from pathlib import Path from functools import partial from google.cloud import storage from cloudpickle import pickle from progen_transformer.utils import clear_directory_, silentremove # filesystem checkpoint fns def file_reset_checkpoint(path): clear_directory_(path) def file_get_last_checkpoint(path): checkpoints = sorted(path.glob('**/ckpt_*')) if len(checkpoints) == 0: return None with open(str(checkpoints[-1]), 'rb') as f: package = pickle.load(f) return package def file_save_checkpoint(path, package, keep_last_n = None): unix_time = int(time.time()) checkpoints = sorted(path.glob('**/ckpt_*')) num_checkpoints = len(checkpoints) with open(str(path / f'ckpt_{unix_time}.pkl'), 'wb') as f: pickle.dump(package, f) if keep_last_n is None: return for path_to_rm in checkpoints[:max(0, num_checkpoints - keep_last_n)]: silentremove(path_to_rm) # gcs checkpoint fns GCS_READ_TIMEOUT = 60 * 30 GCS_WRITE_TIMEOUT = 60 * 30 def gcs_reset_checkpoint(bucket): bucket.delete_blobs(list(bucket.list_blobs())) def gcs_get_last_checkpoint(bucket): blobs = sorted(list(bucket.list_blobs())) if len(blobs) == 0: return None last_checkpoint = blobs[-1] filename = f'/tmp/{last_checkpoint.name}' with open(filename, 'wb') as f: last_checkpoint.download_to_file(f, timeout = GCS_READ_TIMEOUT) with open(filename, 'rb') as f: package = pickle.load(f) return package def gcs_save_checkpoint(bucket, package, keep_last_n = None): unix_time = int(time.time()) blobs = sorted(list(bucket.list_blobs())) num_checkpoints = len(blobs) filename = f'ckpt_{unix_time}.pkl' tmp_path = f'/tmp/{filename}' with open(tmp_path, 'wb') as f: pickle.dump(package, f) blob = bucket.blob(filename) blob.upload_from_filename(tmp_path, timeout = GCS_WRITE_TIMEOUT) if keep_last_n is None: return bucket.delete_blobs(blobs[:max(0, num_checkpoints - keep_last_n)]) # factory fn def get_checkpoint_fns(path): use_gcs = path.startswith('gs://') if not use_gcs: obj = Path(path) obj.mkdir(exist_ok = True, parents = True) fns = ( file_reset_checkpoint, file_get_last_checkpoint, file_save_checkpoint ) else: client = storage.Client() bucket_name = path[5:] obj = client.get_bucket(bucket_name) fns = ( gcs_reset_checkpoint, gcs_get_last_checkpoint, gcs_save_checkpoint ) fns = tuple(map(lambda fn: partial(fn, obj), fns)) return fns
progen-main
progen_transformer/checkpoint.py
from functools import partial import jax from jax import random from jax import nn from jax.lax import stop_gradient import jax.numpy as np import jmp import haiku as hk from haiku import initializers from einops import rearrange, repeat from progen_transformer.utils import exists # constants ATTN_MASK_VALUE = -1e10 # helpers LayerNorm = partial(hk.LayerNorm, create_scale = True, create_offset = False, axis = -1) def fixed_pos_embedding(seq, dim): inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) sinusoid_inp = np.einsum("i , j -> i j", np.arange(seq), inv_freq) sinusoid_inp = repeat(sinusoid_inp, "b n -> b (n r)", r = 2)[None, :, :] return np.sin(sinusoid_inp), np.cos(sinusoid_inp) def rotate_every_two(x): x = rearrange(x, '... (d r) -> ... d r', r = 2) x1, x2 = x[..., 0], x[..., 1] x = np.stack((-x2, x1), axis = -1) return rearrange(x, "... d r -> ... (d r)") def apply_rotary_pos_emb(x, sincos): sin, cos = sincos rot_dim = sin.shape[-1] x, x_pass = x[..., :rot_dim], x[..., rot_dim:] x = (x * cos) + (rotate_every_two(x) * sin) return np.concatenate((x, x_pass), axis = -1) def shift_tokens(x): x_shift, x_pass = np.array_split(x, 2, axis = -1) x_shift = np.pad(x_shift, ((1, 0), (0, 0)), mode = 'constant')[:-1] return np.concatenate((x_shift, x_pass), axis = -1) # classes class LocalAttention(hk.Module): def __init__( self, *, name, dim, window_size, heads = 8, dim_head = 64, shift_tokens = True ): super().__init__(name = name) self.heads = heads self.scale = dim_head ** -0.5 self.window_size = window_size inner_dim = dim_head * heads self.norm = LayerNorm() self.shift_tokens = shift_tokens self.to_qkv = hk.Linear(inner_dim * 3, with_bias = False) self.to_out = hk.Linear(dim) def __call__(self, x, *, pos_emb): x = self.norm(x) if self.shift_tokens: x = shift_tokens(x) n, h, wsz = x.shape[0], self.heads, self.window_size assert (n % wsz) == 0, 'sequence length must be divisible by the window size' window = n // wsz qkv = self.to_qkv(x) q, k, v = np.split(qkv, 3, axis = -1) q, k, v = map(lambda t: rearrange(t, 'n (h d) -> h n d', h = h), (q, k, v)) q, k, v = map(lambda t: apply_rotary_pos_emb(t, pos_emb), (q, k, v)) q, k, v = map(lambda t: rearrange(t, 'h (w n) d -> h w n d', w = window), (q, k, v)) k, v = map(lambda t: np.pad(t, ((0, 0), (1, 0), (0, 0), (0, 0)), constant_values = 0.), (k ,v)) k, v = map(lambda t: np.concatenate((t[:, :-1], t[:, 1:]), axis = 2), (k, v)) sim = np.einsum('h w i d, h w j d -> h w i j', q, k) * self.scale mask = np.tril(np.ones((wsz, wsz * 2)), wsz) sim = np.where(mask, sim, ATTN_MASK_VALUE) sim = sim - stop_gradient(np.amax(sim, axis = -1, keepdims = True)) attn = nn.softmax(sim, axis = -1) out = np.einsum('h w i j, h w j d -> h w i d', attn, v) out = rearrange(out, 'h w n d -> (w n) (h d)') return self.to_out(out) class FeedForward(hk.Module): def __init__( self, *, name, dim, ff_mult = 4, glu = False, seq_len = None, spatial_gate = False, shift_tokens = True ): super().__init__(name = name) assert not (glu and spatial_gate), 'glu and sgu cannot be turned on at the same time' hidden_dim = dim * ff_mult hidden_dim *= (1 if not glu else 2) self.norm = LayerNorm() self.shift_tokens = shift_tokens self.proj_in = hk.Linear(hidden_dim) self.proj_out = hk.Linear(dim) self.glu = glu self.sgu = SGU(dim = hidden_dim, dim_out = hidden_dim // 2, seq_len = seq_len) if spatial_gate else None def __call__(self, x): x = self.norm(x) if self.shift_tokens: x = shift_tokens(x) x = self.proj_in(x) if self.glu: x, gate = np.split(x, 2, axis = -1) x *= nn.gelu(gate) else: x = nn.gelu(x) if exists(self.sgu): x = self.sgu(x) x = self.proj_out(x) return x class SGU(hk.Module): def __init__( self, *, dim, dim_out, seq_len, eps = 1e-3 ): super().__init__() self.eps = eps self.seq_len = seq_len self.norm = LayerNorm() self.proj_out = hk.Linear(dim_out) def __call__(self, x): n = self.seq_len x, gate = np.split(x, 2, axis = -1) gate = self.norm(gate) init_scale = self.eps / n init_eps = initializers.RandomUniform(minval = -init_scale, maxval = init_scale) weights = hk.get_parameter('spatial_weights', shape = (n, n), init = init_eps) biases = hk.get_parameter('spatial_biases', shape = (n, 1), init = np.ones) mask = np.tril(np.ones((n, n))) weights = weights * mask gate = np.einsum('n d, m n -> m d', gate, weights) gate += biases x = x * gate return self.proj_out(x) class ProGenBase(hk.Module): def __init__( self, *, num_tokens, dim, seq_len, depth, window_size = 256, global_mlp_depth = 2, heads = 8, dim_head = 64, ff_mult = 4, ff_glu = True, attn_dim = None, clamp_gate = True, shift_tokens = True ): super().__init__() self.dim_head = dim_head self.embed = hk.Embed(num_tokens, dim) self.layers = [] for i in range(depth): use_gmlp = (depth - i) <= global_mlp_depth use_ff_glu = not use_gmlp and ff_glu self.layers.append([ LocalAttention(name = f'attn{i}', dim = dim, window_size = window_size, heads = heads, dim_head = dim_head, shift_tokens = shift_tokens), FeedForward(name = f'ff{i}', dim = dim, ff_mult = ff_mult, seq_len = seq_len, spatial_gate = use_gmlp, glu = use_ff_glu, shift_tokens = shift_tokens) ]) self.to_logits = hk.Sequential([ LayerNorm(), hk.Linear(num_tokens) ]) def __call__(self, x): n = x.shape[0] x = self.embed(x) rotary_emb = fixed_pos_embedding(n, self.dim_head) for attn, ff in self.layers: x += attn(x, pos_emb = rotary_emb) x += ff(x) return self.to_logits(x) def ProGen(mixed_precision = False, mixed_precision_policy = dict(params = 'float32', compute = 'float16', output = 'float32'), **kwargs): @hk.transform def inner(seq): if mixed_precision: serialized_policy = ','.join([f'{k}={v}' for k, v in mixed_precision_policy.items()]) policy = jmp.get_policy(serialized_policy) hk.mixed_precision.set_policy(ProGenBase, policy) return ProGenBase(**kwargs)(seq) return inner
progen-main
progen_transformer/progen.py
from progen_transformer.progen import ProGen
progen-main
progen_transformer/__init__.py
from math import ceil import os, errno from shutil import rmtree import jax from jax import random, nn, value_and_grad, vmap, pmap, jit, lax from jax.lax import top_k import jax.numpy as np from einops import rearrange # helper functions def noop(x): return x def exists(val): return val is not None def log(t, eps = 1e-20): return np.log(t + eps) def confirm(question): while True: resp = input(f'{question} (y/n) ') lower_resp = resp.lower() if lower_resp in ('y', 'n'): return lower_resp == 'y' def clear_directory_(path): rmtree(str(path), ignore_errors = True) path.mkdir(exist_ok = True, parents = True) def silentremove(filename): try: os.remove(filename) except OSError: pass # training functions def masked_mean(t, mask, axis = None): return (t * mask).sum(axis = axis) / mask.sum(axis = axis) def cross_entropy(logits, targets, axis = -1, ignore_index = 0): logprobs = nn.log_softmax(logits, axis = axis) nll = np.take_along_axis(logprobs, np.expand_dims(targets, axis = axis), axis = axis) nll = nll.squeeze(-1) # mask for loss is engineered so that it learns from the first padding token # the padding token is reused as end-of-string for simplicity mask = (targets != ignore_index) eos_mask = (~mask).cumsum(axis = -1) == 1 mask = mask | eos_mask ce = -masked_mean(nll, mask, axis = -1) return ce def get_loss_fn(model, data_parallel = False): def loss_fn(params, key, data): ids, labels = data[:-1], data[1:] logits = model.apply(params, key, ids) return cross_entropy(logits, labels, axis = -1) loss_fn = jit(vmap(loss_fn, in_axes = (None, None, 0), out_axes = 0)) if data_parallel: loss_fn = pmap(loss_fn, in_axes = (None, None, 0), out_axes = 0) @value_and_grad def batched_loss_fn(params, key, data): if not data_parallel: values = loss_fn(params, key, data) return np.mean(values) mask = np.ones((data.shape[0],)) device_count = jax.local_device_count() batch_size = data.shape[0] remainder = (batch_size % device_count) if remainder != 0: padding = device_count - remainder data = np.pad(data, ((0, padding), (0, 0))) mask = np.pad(mask, ((0, padding))) data, mask = map(lambda t: rearrange(t, '(p b) ... -> p b ...', p = device_count), (data, mask)) values = loss_fn(params, key, data) return masked_mean(values, mask) return batched_loss_fn # sampling functions def select_top_k(tensor, k): values, _ = top_k(tensor, k) mask = tensor > values.min() return mask, np.where(mask, tensor, 0.) def gumbel_noise(rng, shape): noise = random.uniform(rng, shape = shape, minval = 0., maxval = 1.) return -log(-log(noise)) def sample(rng, fn, params, prime, length, top_k = None, add_bos = False): start_pos = prime.shape[-1] pad_right = length - prime.shape[-1] padding = (0, pad_right) if not add_bos else (1, pad_right - 1) seq = np.pad(prime, padding) one_hots = np.eye(length, dtype = int) for curr_pos in range(start_pos, length): logits = fn(params, next(rng), seq) logits = logits[curr_pos - 1] noise = gumbel_noise(next(rng), logits.shape) if exists(top_k): mask, logits = select_top_k(logits, top_k) noise *= mask logits += noise sampled_ind = np.argmax(logits, axis = -1) one_hot = one_hots[curr_pos] seq += one_hot * sampled_ind # for now, just set everything after second padding token (eos) to padding remove_after_eos_mask = (seq == 0).cumsum(axis = -1) > 1 seq *= ~remove_after_eos_mask return seq # rng hacks def hardware_uniform( rng_key, shape, dtype = np.float32, minval = np.float32(0), maxval = np.float32(1) ): del rng_key minval = lax.convert_element_type(minval, dtype) maxval = lax.convert_element_type(maxval, dtype) return lax.rng_uniform(minval, maxval, shape) def hardware_bernoulli(rng_key, p = np.float32(0.5), shape = None): del rng_key return lax.rng_uniform(0.0, 1.0, shape) < p def set_hardware_rng_(jax): jax.random.bernoulli = hardware_bernoulli jax.random.uniform = hardware_uniform jax._src.random.uniform = hardware_uniform
progen-main
progen_transformer/utils.py
import tensorflow as tf import numpy as np from functools import partial from pathlib import Path from contextlib import contextmanager # writing tfrecords def write(writer, values): record_bytes = tf.train.Example(features = tf.train.Features(feature={ 'seq': tf.train.Feature(bytes_list = tf.train.BytesList(value=[values])) })).SerializeToString() writer.write(record_bytes) @contextmanager def with_tfrecord_writer(path): options = tf.io.TFRecordOptions(compression_type = 'GZIP') with tf.io.TFRecordWriter(path, options = options) as writer: yield partial(write, writer) # reading tfrecords def parse_fn(sample): return tf.io.parse_single_example(sample, { 'seq': tf.io.FixedLenFeature([], tf.string) }) def collate_fn(batch, pad_length, offset = 0): tensors = [np.frombuffer(el, dtype = np.uint8).astype(np.uint16) for el in batch.numpy()] tensors = map(lambda t: t[..., :pad_length], tensors) tensors = map(lambda t: t + offset, tensors) padded_tensors = map(lambda t: np.pad(t, (0, pad_length - t.shape[-1])), tensors) return np.stack(list(padded_tensors)) def iterator_from_tfrecords_folder(folder, data_type = 'train'): is_gcs_path = folder.startswith('gs://') if is_gcs_path: filenames = tf.io.gfile.glob(f'{folder}/*.{data_type}.tfrecord.gz') else: folder = Path(folder) filenames = [str(p) for p in folder.glob(f'**/*.{data_type}.tfrecord.gz')] num_seqs = sum(map(lambda t: int(t.split('.')[-4]), filenames)) def iter_fn( seq_len, batch_size, skip = 0, loop = False ): dataset = tf.data.TFRecordDataset(filenames, compression_type = 'GZIP') dataset = dataset.skip(skip) dataset = dataset.map(parse_fn) dataset = dataset.batch(batch_size) dataset = dataset.prefetch(tf.data.AUTOTUNE) if loop: dataset = dataset.repeat() for batch in dataset: seq = batch['seq'] batch_size = seq.shape[0] seq = collate_fn(seq, pad_length = seq_len, offset = 1) bos = np.zeros((batch_size, 1), dtype = np.uint16) seq = np.concatenate((bos, seq), axis = 1) yield seq return num_seqs, iter_fn # tokenization def encode_token(token): return ord(token) + 1 def decode_token(token): if token < 0: return '' return str(chr(token)) def encode_tokens(tokens): return list(map(encode_token, tokens)) def decode_tokens(tokens, offset = 1): return ''.join(list(map(decode_token, tokens.astype(np.int16) - offset)))
progen-main
progen_transformer/data.py
from setuptools import setup, find_packages setup( name = 'einops-exts', packages = find_packages(exclude=[]), version = '0.0.4', license='MIT', description = 'Einops Extensions', long_description_content_type = 'text/markdown', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/einops-exts', keywords = [ 'artificial intelligence', 'deep learning', 'tensor manipulation' ], install_requires=[ 'einops>=0.4', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
einops-exts-main
setup.py
from einops_exts.einops_exts import check_shape from einops_exts.einops_exts import rearrange_many, repeat_many, reduce_many from einops_exts.einops_exts import rearrange_with_anon_dims, repeat_with_anon_dims, reduce_with_anon_dims
einops-exts-main
einops_exts/__init__.py
import re from torch import nn from functools import wraps, partial from einops import rearrange, reduce, repeat # checking shape # @nils-werner # https://github.com/arogozhnikov/einops/issues/168#issuecomment-1042933838 def check_shape(tensor, pattern, **kwargs): return rearrange(tensor, f"{pattern} -> {pattern}", **kwargs) # do same einops operations on a list of tensors def _many(fn): @wraps(fn) def inner(tensors, pattern, **kwargs): return (fn(tensor, pattern, **kwargs) for tensor in tensors) return inner # do einops with unflattening of anonymously named dimensions # (...flattened) -> ...flattened def _with_anon_dims(fn): @wraps(fn) def inner(tensor, pattern, **kwargs): regex = r'(\.\.\.[a-zA-Z]+)' matches = re.findall(regex, pattern) get_anon_dim_name = lambda t: t.lstrip('...') dim_prefixes = tuple(map(get_anon_dim_name, set(matches))) update_kwargs_dict = dict() for prefix in dim_prefixes: assert prefix in kwargs, f'dimension list "{prefix}" was not passed in' dim_list = kwargs[prefix] assert isinstance(dim_list, (list, tuple)), f'dimension list "{prefix}" needs to be a tuple of list of dimensions' dim_names = list(map(lambda ind: f'{prefix}{ind}', range(len(dim_list)))) update_kwargs_dict[prefix] = dict(zip(dim_names, dim_list)) def sub_with_anonymous_dims(t): dim_name_prefix = get_anon_dim_name(t.groups()[0]) return ' '.join(update_kwargs_dict[dim_name_prefix].keys()) pattern_new = re.sub(regex, sub_with_anonymous_dims, pattern) for prefix, update_dict in update_kwargs_dict.items(): del kwargs[prefix] kwargs.update(update_dict) return fn(tensor, pattern_new, **kwargs) return inner # generate all helper functions rearrange_many = _many(rearrange) repeat_many = _many(repeat) reduce_many = _many(reduce) rearrange_with_anon_dims = _with_anon_dims(rearrange) repeat_with_anon_dims = _with_anon_dims(repeat) reduce_with_anon_dims = _with_anon_dims(reduce)
einops-exts-main
einops_exts/einops_exts.py
from torch import nn from einops import rearrange # for rearranging to and from a pattern class EinopsToAndFrom(nn.Module): def __init__(self, from_einops, to_einops, fn): super().__init__() self.from_einops = from_einops self.to_einops = to_einops self.fn = fn if '...' in from_einops: before, after = [part.strip().split() for part in from_einops.split('...')] self.reconstitute_keys = tuple(zip(before, range(len(before)))) + tuple(zip(after, range(-len(after), 0))) else: split = from_einops.strip().split() self.reconstitute_keys = tuple(zip(split, range(len(split)))) def forward(self, x, **kwargs): shape = x.shape reconstitute_kwargs = {key: shape[position] for key, position in self.reconstitute_keys} x = rearrange(x, f'{self.from_einops} -> {self.to_einops}') x = self.fn(x, **kwargs) x = rearrange(x, f'{self.to_einops} -> {self.from_einops}', **reconstitute_kwargs) return x
einops-exts-main
einops_exts/torch.py
from setuptools import setup, find_packages setup( name = 'phenaki-pytorch', packages = find_packages(exclude=[]), version = '0.3.1', license='MIT', description = 'Phenaki - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/phenaki-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanisms', 'text-to-video' ], install_requires=[ 'accelerate', 'beartype', 'einops>=0.6', 'ema-pytorch>=0.2.2', 'opencv-python', 'pillow', 'numpy', 'sentencepiece', 'torch>=1.6', 'torchtyping', 'torchvision', 'transformers>=4.20.1', 'tqdm', 'vector-quantize-pytorch>=0.10.15' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
phenaki-pytorch-main
setup.py
import math import torch import torch.nn.functional as F from torch import nn, einsum from beartype import beartype from typing import Tuple from einops import rearrange, repeat # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def leaky_relu(p = 0.1): return nn.LeakyReLU(p) def l2norm(t): return F.normalize(t, dim = -1) # bias-less layernorm, being used in more recent T5s, PaLM, also in @borisdayma 's experiments shared with me # greater stability class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.register_buffer("beta", torch.zeros(dim)) def forward(self, x): return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) # feedforward class GEGLU(nn.Module): def forward(self, x): x, gate = x.chunk(2, dim = -1) return F.gelu(gate) * x def FeedForward(dim, mult = 4, dropout = 0.): inner_dim = int(mult * (2 / 3) * dim) return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, inner_dim * 2, bias = False), GEGLU(), nn.Dropout(dropout), nn.Linear(inner_dim, dim, bias = False) ) # PEG - position generating module class PEG(nn.Module): def __init__(self, dim, causal = False): super().__init__() self.causal = causal self.dsconv = nn.Conv3d(dim, dim, 3, groups = dim) @beartype def forward(self, x, shape: Tuple[int, int, int, int] = None): needs_shape = x.ndim == 3 assert not (needs_shape and not exists(shape)) orig_shape = x.shape if needs_shape: x = x.reshape(*shape, -1) x = rearrange(x, 'b ... d -> b d ...') frame_padding = (2, 0) if self.causal else (1, 1) x = F.pad(x, (1, 1, 1, 1, *frame_padding), value = 0.) x = self.dsconv(x) x = rearrange(x, 'b d ... -> b ... d') if needs_shape: x = rearrange(x, 'b ... d -> b (...) d') return x.reshape(orig_shape) # attention class Attention(nn.Module): def __init__( self, dim, dim_context = None, dim_head = 64, heads = 8, causal = False, num_null_kv = 0, norm_context = True, dropout = 0., scale = 8 ): super().__init__() self.heads = heads self.causal = causal self.scale = scale inner_dim = dim_head * heads dim_context = default(dim_context, dim) if causal: self.rel_pos_bias = AlibiPositionalBias(heads = heads) self.attn_dropout = nn.Dropout(dropout) self.norm = LayerNorm(dim) self.context_norm = LayerNorm(dim_context) if norm_context else nn.Identity() self.num_null_kv = num_null_kv self.null_kv = nn.Parameter(torch.randn(heads, 2 * num_null_kv, dim_head)) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim_context, inner_dim * 2, bias = False) self.q_scale = nn.Parameter(torch.ones(dim_head)) self.k_scale = nn.Parameter(torch.ones(dim_head)) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward( self, x, mask = None, context = None, attn_bias = None ): batch, device, dtype = x.shape[0], x.device, x.dtype if exists(context): context = self.context_norm(context) kv_input = default(context, x) x = self.norm(x) q, k, v = self.to_q(x), *self.to_kv(kv_input).chunk(2, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v)) nk, nv = repeat(self.null_kv, 'h (n r) d -> b h n r d', b = batch, r = 2).unbind(dim = -2) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) q, k = map(l2norm, (q, k)) q = q * self.q_scale k = k * self.k_scale sim = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale i, j = sim.shape[-2:] if exists(attn_bias): attn_bias = F.pad(attn_bias, (self.num_null_kv, 0), value = 0.) sim = sim + attn_bias if exists(mask): mask = F.pad(mask, (self.num_null_kv, 0), value = True) mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) if self.causal: sim = sim + self.rel_pos_bias(sim) causal_mask = torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) attn = sim.softmax(dim = -1) attn = self.attn_dropout(attn) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # alibi positional bias for extrapolation class AlibiPositionalBias(nn.Module): def __init__(self, heads): super().__init__() self.heads = heads slopes = torch.Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> h 1 1') self.register_buffer('slopes', slopes, persistent = False) self.register_buffer('bias', None, persistent = False) def get_bias(self, i, j, device): i_arange = torch.arange(j - i, j, device = device) j_arange = torch.arange(j, device = device) bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) return bias @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2**(-2**-(math.log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] def forward(self, sim): h, i, j, device = *sim.shape[-3:], sim.device if exists(self.bias) and self.bias.shape[-1] >= j: return self.bias[..., :i, :j] bias = self.get_bias(i, j, device) bias = bias * self.slopes num_heads_unalibied = h - bias.shape[0] bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied)) self.register_buffer('bias', bias, persistent = False) return self.bias class ContinuousPositionBias(nn.Module): """ from https://arxiv.org/abs/2111.09883 """ def __init__( self, *, dim, heads, num_dims = 2, # 2 for images, 3 for video layers = 2, log_dist = True, cache_rel_pos = False ): super().__init__() self.num_dims = num_dims self.log_dist = log_dist self.net = nn.ModuleList([]) self.net.append(nn.Sequential(nn.Linear(self.num_dims, dim), leaky_relu())) for _ in range(layers - 1): self.net.append(nn.Sequential(nn.Linear(dim, dim), leaky_relu())) self.net.append(nn.Linear(dim, heads)) self.cache_rel_pos = cache_rel_pos self.register_buffer('rel_pos', None, persistent = False) def forward(self, *dimensions, device = torch.device('cpu')): if not exists(self.rel_pos) or not self.cache_rel_pos: positions = [torch.arange(d, device = device) for d in dimensions] grid = torch.stack(torch.meshgrid(*positions, indexing = 'ij')) grid = rearrange(grid, 'c ... -> (...) c') rel_pos = rearrange(grid, 'i c -> i 1 c') - rearrange(grid, 'j c -> 1 j c') if self.log_dist: rel_pos = torch.sign(rel_pos) * torch.log(rel_pos.abs() + 1) self.register_buffer('rel_pos', rel_pos, persistent = False) rel_pos = self.rel_pos.float() for layer in self.net: rel_pos = layer(rel_pos) return rearrange(rel_pos, 'i j h -> h i j') # transformer class Transformer(nn.Module): def __init__( self, dim, *, depth, dim_context = None, causal = False, dim_head = 64, heads = 8, ff_mult = 4, peg = False, peg_causal = False, attn_num_null_kv = 2, has_cross_attn = False, attn_dropout = 0., ff_dropout = 0. ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PEG(dim = dim, causal = peg_causal) if peg else None, Attention(dim = dim, dim_head = dim_head, heads = heads, causal = causal, dropout = attn_dropout), Attention(dim = dim, dim_head = dim_head, dim_context = dim_context, heads = heads, causal = False, num_null_kv = attn_num_null_kv, dropout = attn_dropout) if has_cross_attn else None, FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout) ])) self.norm_out = LayerNorm(dim) @beartype def forward( self, x, video_shape: Tuple[int, int, int, int] = None, attn_bias = None, context = None, self_attn_mask = None, cross_attn_context_mask = None ): for peg, self_attn, cross_attn, ff in self.layers: if exists(peg): x = peg(x, shape = video_shape) + x x = self_attn(x, attn_bias = attn_bias, mask = self_attn_mask) + x if exists(cross_attn) and exists(context): x = cross_attn(x, context = context, mask = cross_attn_context_mask) + x x = ff(x) + x return self.norm_out(x)
phenaki-pytorch-main
phenaki_pytorch/attention.py
import math import copy from pathlib import Path from random import random, choices from functools import partial from collections import namedtuple from multiprocessing import cpu_count from beartype import beartype from beartype.door import is_bearable from beartype.vale import Is from typing import Optional, List, Iterable, Tuple from typing_extensions import Annotated import torch from torch import nn, einsum import torch.nn.functional as F from torch.utils.data import Dataset from torch.optim import Adam from torchvision import transforms as T from torchvision.utils import make_grid, save_image from einops import rearrange, reduce from einops.layers.torch import Rearrange from PIL import Image from tqdm.auto import tqdm from phenaki_pytorch.optimizer import get_optimizer from accelerate import Accelerator from phenaki_pytorch.phenaki_pytorch import Phenaki from phenaki_pytorch.data import ImageDataset, VideoDataset, video_tensor_to_gif, DataLoader # constants DATASET_FIELD_TYPE_CONFIG = dict( videos = Annotated[ torch.Tensor, Is[lambda t: t.dtype == torch.float and t.ndim in {4, 5}] ], texts = List[str], video_codebook_ids = Annotated[ torch.Tensor, Is[lambda t: t.dtype == torch.long] ], video_frame_mask = Annotated[ torch.Tensor, Is[lambda t: t.dtype == torch.bool] ], text_embeds = Annotated[ torch.Tensor, Is[lambda t: t.dtype == torch.float and t.ndim == 3] ], ) # helpers functions def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def identity(t, *args, **kwargs): return t def cycle(dl): while True: for data in dl: yield data def has_int_squareroot(num): return (math.sqrt(num) ** 2) == num def num_to_groups(num, divisor): groups = num // divisor remainder = num % divisor arr = [divisor] * groups if remainder > 0: arr.append(remainder) return arr def elements_to_device_if_tensor(arr, device): output = [] for el in arr: if isinstance(el, torch.Tensor): el = el.to(device) output.append(el) return output def split_iterable(it, split_size): accum = [] for ind in range(math.ceil(len(it) / split_size)): start_index = ind * split_size accum.append(it[start_index: (start_index + split_size)]) return accum def split(t, split_size = None): if not exists(split_size): return t if isinstance(t, torch.Tensor): return t.split(split_size, dim = 0) if isinstance(t, Iterable): return split_iterable(t, split_size) return TypeError def find_first(cond, arr): for el in arr: if cond(el): return el return None def split_args_and_kwargs(*args, batch_size = None, split_size = None, **kwargs): all_args = (*args, *kwargs.values()) len_all_args = len(all_args) if not exists(batch_size): first_tensor = find_first(lambda t: isinstance(t, torch.Tensor), all_args) assert exists(first_tensor) batch_size = len(first_tensor) split_size = default(split_size, batch_size) num_chunks = math.ceil(batch_size / split_size) dict_len = len(kwargs) dict_keys = kwargs.keys() split_kwargs_index = len_all_args - dict_len split_all_args = [split(arg, split_size = split_size) if exists(arg) and isinstance(arg, (torch.Tensor, Iterable)) else ((arg,) * num_chunks) for arg in all_args] chunk_sizes = tuple(map(len, split_all_args[0])) for (chunk_size, *chunked_all_args) in tuple(zip(chunk_sizes, *split_all_args)): chunked_args, chunked_kwargs_values = chunked_all_args[:split_kwargs_index], chunked_all_args[split_kwargs_index:] chunked_kwargs = dict(tuple(zip(dict_keys, chunked_kwargs_values))) chunk_size_frac = chunk_size / batch_size yield chunk_size_frac, (chunked_args, chunked_kwargs) def simple_slugify(text, max_length = 255): return text.replace('-', '_').replace(',', '').replace(' ', '_').replace('|', '--').strip('-_')[:max_length] def has_duplicates(tup): counts = dict() for el in tup: if el not in counts: counts[el] = 0 counts[el] += 1 return any(filter(lambda count: count > 1, counts.values())) def determine_types(data, config): output = [] for el in data: for name, data_type in config.items(): if is_bearable(el, data_type): output.append(name) break else: raise TypeError(f'unable to determine type of {data}') return tuple(output) # trainer class @beartype class PhenakiTrainer(object): def __init__( self, phenaki: Phenaki, *, folder = None, train_on_images = False, batch_size = 16, grad_accum_every = 1, num_frames = 17, sample_num_frames = None, train_lr = 1e-4, train_num_steps = 100000, max_grad_norm = None, ema_update_every = 10, ema_decay = 0.995, adam_betas = (0.9, 0.99), wd = 0, save_and_sample_every = 1000, num_samples = 25, results_folder = './results', amp = False, fp16 = False, split_batches = True, convert_image_to = None, sample_texts_file_path = None, # path to a text file with video captions, delimited by newline sample_texts: Optional[List[str]] = None, dataset: Optional[Dataset] = None, dataset_fields: Optional[Tuple[str, ...]] = None ): super().__init__() maskgit = phenaki.maskgit cvivit = phenaki.cvivit assert exists(cvivit), 'cvivit must be present on phenaki' # define accelerator self.accelerator = Accelerator( split_batches = split_batches, mixed_precision = 'fp16' if fp16 else 'no' ) self.accelerator.native_amp = amp self.model = phenaki assert has_int_squareroot(num_samples), 'number of samples must have an integer square root' self.unconditional = maskgit.unconditional # training related variables self.batch_size = batch_size self.grad_accum_every = grad_accum_every self.max_grad_norm = max_grad_norm self.train_num_steps = train_num_steps self.image_size = cvivit.image_size # sampling related variables self.num_samples = num_samples self.sample_texts = None if exists(sample_texts_file_path): sample_texts_file_path = Path(sample_texts_file_path) assert sample_texts_file_path.exists() captions = sample_texts_file_path.read_text().split('\n') self.sample_texts = list(filter(len, captions)) elif exists(self.sample_texts): self.sample_texts = sample_texts assert maskgit.unconditional or exists(self.sample_texts), 'if maskgit is to be trained text conditioned, `sample_texts` List[str] or `sample_texts_file_path` must be given' self.save_and_sample_every = save_and_sample_every # dataset and dataloader dataset_klass = ImageDataset if train_on_images else VideoDataset self.sample_num_frames = default(sample_num_frames, num_frames) self.train_on_images = train_on_images if dataset: self.ds = dataset elif train_on_images: assert exists(folder) self.ds = ImageDataset(folder, self.image_size) else: assert exists(folder) self.ds = VideoDataset(folder, self.image_size, num_frames = num_frames) dl = DataLoader(self.ds, batch_size = batch_size, shuffle = True, pin_memory = True, num_workers = cpu_count()) dl = self.accelerator.prepare(dl) self.dl = cycle(dl) if exists(dataset_fields): assert not has_duplicates(dataset_fields), 'dataset fields must not have duplicate field names' valid_dataset_fields = set(DATASET_FIELD_TYPE_CONFIG.keys()) assert len(set(dataset_fields) - valid_dataset_fields) == 0, f'dataset fields must be one of {valid_dataset_fields}' self.dataset_fields = dataset_fields # optimizer self.opt = get_optimizer(maskgit.parameters(), lr = train_lr, wd = wd, betas = adam_betas) # step counter state self.step = 0 # prepare model, dataloader, optimizer with accelerator self.model, self.opt = self.accelerator.prepare(self.model, self.opt) self.results_folder = Path(results_folder) self.results_folder.mkdir(parents = True, exist_ok = True) def data_tuple_to_kwargs(self, data): if not exists(self.dataset_fields): self.dataset_fields = determine_types(data, DATASET_FIELD_TYPE_CONFIG) assert not has_duplicates(self.dataset_fields), 'dataset fields must not have duplicate field names' return dict(zip(self.dataset_fields, data)) def print(self, msg): self.accelerator.print(msg) @property def device(self): return self.accelerator.device @property def is_distributed(self): return not (self.accelerator.distributed_type == DistributedType.NO and self.accelerator.num_processes == 1) @property def is_main(self): return self.accelerator.is_main_process @property def is_local_main(self): return self.accelerator.is_local_main_process def save(self, milestone): if not self.accelerator.is_local_main_process: return data = { 'step': self.step, 'model': self.accelerator.get_state_dict(self.model), 'opt': self.opt.state_dict(), 'scaler': self.accelerator.scaler.state_dict() if exists(self.accelerator.scaler) else None } torch.save(data, str(self.results_folder / f'model-{milestone}.pt')) def load(self, milestone): accelerator = self.accelerator device = accelerator.device data = torch.load(str(self.results_folder / f'model-{milestone}.pt'), map_location=device) model = self.accelerator.unwrap_model(self.model) model.load_state_dict(data['model']) self.step = data['step'] self.opt.load_state_dict(data['opt']) if exists(self.accelerator.scaler) and exists(data['scaler']): self.accelerator.scaler.load_state_dict(data['scaler']) def train_step( self, only_train_generator = False, only_train_critic = False ): accelerator = self.accelerator device = self.device total_loss = 0. for _ in range(self.grad_accum_every): data = next(self.dl) data = elements_to_device_if_tensor(data, device) data_kwargs = self.data_tuple_to_kwargs(data) assert not (self.train_on_images and data_kwargs['videos'].ndim != 4), 'you have it set to train on images, but the dataset is not returning tensors of 4 dimensions (batch, channels, height, width)' with self.accelerator.autocast(): loss = self.model(**{ **data_kwargs, 'only_train_generator': only_train_generator, 'only_train_critic': only_train_critic }) loss = loss / self.grad_accum_every total_loss += loss.item() self.accelerator.backward(loss) if exists(self.max_grad_norm): accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) accelerator.wait_for_everyone() self.opt.step() self.opt.zero_grad() accelerator.wait_for_everyone() if self.is_main and self.step % self.save_and_sample_every == 0: self.model.eval() milestone = self.step // self.save_and_sample_every # whether to pass in texts or not sample_kwargs = dict() if not self.unconditional: texts = choices(self.sample_texts, k = self.num_samples) else: texts = (None,) * self.num_samples sample_kwargs = {'texts': texts} # method to call if self.train_on_images: sample_method = self.model.sample_images else: sample_method = partial(self.model.sample, num_frames = self.sample_num_frames) # evaluate in groups, splitting the kwargs appropriately with torch.no_grad(): groups = num_to_groups(self.num_samples, self.batch_size) args_kwargs_iter = split_args_and_kwargs(batch_size = self.num_samples, split_size = self.batch_size, **sample_kwargs) all_sampled = [] for group_batch_size, (_, (_, kwargs)) in zip(groups, args_kwargs_iter): _kwargs = kwargs if not self.unconditional else dict() sampled = sample_method(num_frames = self.sample_num_frames, batch_size = group_batch_size, **_kwargs) all_sampled.append(sampled) # save video and images differently if not self.train_on_images: sampled_videos = torch.cat(all_sampled, dim = 0) milestone_folder = self.results_folder / f'videos.{milestone}' milestone_folder.mkdir(parents = True, exist_ok = True) for ind, (video_tensor, video_caption) in enumerate(zip(sampled_videos.unbind(dim = 0), texts)): slugged_video_caption = simple_slugify(video_caption) if exists(video_caption) else str(ind) video_tensor_to_gif(video_tensor, str(milestone_folder / f'{slugged_video_caption}.gif')) else: nrows = int(math.sqrt(self.num_samples)) sampled_images = sampled_videos.detach().cpu().float().clamp(0., 1.) grid = make_grid(sampled_images, nrow = nrows, normalize = True, value_range = (0, 1)) save_image(grid, str(self.results_folder / f'{milestone}.png')) # save checkpoints self.save(milestone) self.step += 1 return total_loss def train( self, only_train_generator = False, only_train_critic = False ): with tqdm( initial = self.step, total = self.train_num_steps, disable = not self.is_main ) as pbar: while self.step < self.train_num_steps: loss = self.train_step( only_train_generator = only_train_generator, only_train_critic = only_train_critic ) pbar.set_description(f'loss: {loss:.4f}') pbar.update(1) self.print('training complete')
phenaki-pytorch-main
phenaki_pytorch/phenaki_trainer.py
from pathlib import Path import copy import math from functools import wraps import torch import torch.nn.functional as F from torch import nn, einsum from torch.autograd import grad as torch_grad import torchvision from einops import rearrange, repeat, pack, unpack from einops.layers.torch import Rearrange from vector_quantize_pytorch import VectorQuantize from phenaki_pytorch.attention import Attention, Transformer, ContinuousPositionBias # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def divisible_by(numer, denom): return (numer % denom) == 0 def leaky_relu(p = 0.1): return nn.LeakyReLU(p) def remove_vgg(fn): @wraps(fn) def inner(self, *args, **kwargs): has_vgg = hasattr(self, 'vgg') if has_vgg: vgg = self.vgg delattr(self, 'vgg') out = fn(self, *args, **kwargs) if has_vgg: self.vgg = vgg return out return inner def pair(val): ret = (val, val) if not isinstance(val, tuple) else val assert len(ret) == 2 return ret def cast_tuple(val, l = 1): return val if isinstance(val, tuple) else (val,) * l def gradient_penalty(images, output, weight = 10): batch_size = images.shape[0] gradients = torch_grad( outputs = output, inputs = images, grad_outputs = torch.ones(output.size(), device = images.device), create_graph = True, retain_graph = True, only_inputs = True )[0] gradients = rearrange(gradients, 'b ... -> b (...)') return weight * ((gradients.norm(2, dim = 1) - 1) ** 2).mean() def l2norm(t): return F.normalize(t, dim = -1) def leaky_relu(p = 0.1): return nn.LeakyReLU(p) def safe_div(numer, denom, eps = 1e-8): return numer / (denom + eps) # gan losses def hinge_discr_loss(fake, real): return (F.relu(1 + fake) + F.relu(1 - real)).mean() def hinge_gen_loss(fake): return -fake.mean() def bce_discr_loss(fake, real): return (-log(1 - torch.sigmoid(fake)) - log(torch.sigmoid(real))).mean() def bce_gen_loss(fake): return -log(torch.sigmoid(fake)).mean() def grad_layer_wrt_loss(loss, layer): return torch_grad( outputs = loss, inputs = layer, grad_outputs = torch.ones_like(loss), retain_graph = True )[0].detach() # discriminator class DiscriminatorBlock(nn.Module): def __init__( self, input_channels, filters, downsample = True ): super().__init__() self.conv_res = nn.Conv2d(input_channels, filters, 1, stride = (2 if downsample else 1)) self.net = nn.Sequential( nn.Conv2d(input_channels, filters, 3, padding=1), leaky_relu(), nn.Conv2d(filters, filters, 3, padding=1), leaky_relu() ) self.downsample = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (c p1 p2) h w', p1 = 2, p2 = 2), nn.Conv2d(filters * 4, filters, 1) ) if downsample else None def forward(self, x): res = self.conv_res(x) x = self.net(x) if exists(self.downsample): x = self.downsample(x) x = (x + res) * (1 / math.sqrt(2)) return x class Discriminator(nn.Module): def __init__( self, *, dim, image_size, channels = 3, attn_res_layers = (16,), max_dim = 512 ): super().__init__() image_size = pair(image_size) min_image_resolution = min(image_size) num_layers = int(math.log2(min_image_resolution) - 2) attn_res_layers = cast_tuple(attn_res_layers, num_layers) blocks = [] layer_dims = [channels] + [(dim * 4) * (2 ** i) for i in range(num_layers + 1)] layer_dims = [min(layer_dim, max_dim) for layer_dim in layer_dims] layer_dims_in_out = tuple(zip(layer_dims[:-1], layer_dims[1:])) blocks = [] attn_blocks = [] image_resolution = min_image_resolution for ind, (in_chan, out_chan) in enumerate(layer_dims_in_out): num_layer = ind + 1 is_not_last = ind != (len(layer_dims_in_out) - 1) block = DiscriminatorBlock(in_chan, out_chan, downsample = is_not_last) blocks.append(block) attn_block = None if image_resolution in attn_res_layers: attn_block = Attention(dim = out_chan) attn_blocks.append(attn_block) image_resolution //= 2 self.blocks = nn.ModuleList(blocks) self.attn_blocks = nn.ModuleList(attn_blocks) dim_last = layer_dims[-1] downsample_factor = 2 ** num_layers last_fmap_size = tuple(map(lambda n: n // downsample_factor, image_size)) latent_dim = last_fmap_size[0] * last_fmap_size[1] * dim_last self.to_logits = nn.Sequential( nn.Conv2d(dim_last, dim_last, 3, padding = 1), leaky_relu(), Rearrange('b ... -> b (...)'), nn.Linear(latent_dim, 1), Rearrange('b 1 -> b') ) def forward(self, x): for block, attn_block in zip(self.blocks, self.attn_blocks): x = block(x) if exists(attn_block): x, ps = pack([x], 'b c *') x = rearrange(x, 'b c n -> b n c') x = attn_block(x) + x x = rearrange(x, 'b n c -> b c n') x, = unpack(x, ps, 'b c *') return self.to_logits(x) # c-vivit - 3d ViT with factorized spatial and temporal attention made into an vqgan-vae autoencoder def pick_video_frame(video, frame_indices): batch, device = video.shape[0], video.device video = rearrange(video, 'b c f ... -> b f c ...') batch_indices = torch.arange(batch, device = device) batch_indices = rearrange(batch_indices, 'b -> b 1') images = video[batch_indices, frame_indices] images = rearrange(images, 'b 1 c ... -> b c ...') return images class CViViT(nn.Module): def __init__( self, *, dim, codebook_size, image_size, patch_size, temporal_patch_size, spatial_depth, temporal_depth, discr_base_dim = 16, dim_head = 64, heads = 8, channels = 3, use_vgg_and_gan = True, vgg = None, discr_attn_res_layers = (16,), use_hinge_loss = True, attn_dropout = 0., ff_dropout = 0. ): """ einstein notations: b - batch c - channels t - time d - feature dimension p1, p2, pt - image patch sizes and then temporal patch size """ super().__init__() self.image_size = pair(image_size) self.patch_size = pair(patch_size) patch_height, patch_width = self.patch_size self.temporal_patch_size = temporal_patch_size self.spatial_rel_pos_bias = ContinuousPositionBias(dim = dim, heads = heads) image_height, image_width = self.image_size assert (image_height % patch_height) == 0 and (image_width % patch_width) == 0 self.to_patch_emb_first_frame = nn.Sequential( Rearrange('b c 1 (h p1) (w p2) -> b 1 h w (c p1 p2)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(channels * patch_width * patch_height), nn.Linear(channels * patch_width * patch_height, dim), nn.LayerNorm(dim) ) self.to_patch_emb = nn.Sequential( Rearrange('b c (t pt) (h p1) (w p2) -> b t h w (c pt p1 p2)', p1 = patch_height, p2 = patch_width, pt = temporal_patch_size), nn.LayerNorm(channels * patch_width * patch_height * temporal_patch_size), nn.Linear(channels * patch_width * patch_height * temporal_patch_size, dim), nn.LayerNorm(dim) ) transformer_kwargs = dict( dim = dim, dim_head = dim_head, heads = heads, attn_dropout = attn_dropout, ff_dropout = ff_dropout, peg = True, peg_causal = True, ) self.enc_spatial_transformer = Transformer(depth = spatial_depth, **transformer_kwargs) self.enc_temporal_transformer = Transformer(depth = temporal_depth, **transformer_kwargs) self.vq = VectorQuantize(dim = dim, codebook_size = codebook_size, use_cosine_sim = True) self.dec_spatial_transformer = Transformer(depth = spatial_depth, **transformer_kwargs) self.dec_temporal_transformer = Transformer(depth = temporal_depth, **transformer_kwargs) self.to_pixels_first_frame = nn.Sequential( nn.Linear(dim, channels * patch_width * patch_height), Rearrange('b 1 h w (c p1 p2) -> b c 1 (h p1) (w p2)', p1 = patch_height, p2 = patch_width) ) self.to_pixels = nn.Sequential( nn.Linear(dim, channels * patch_width * patch_height * temporal_patch_size), Rearrange('b t h w (c pt p1 p2) -> b c (t pt) (h p1) (w p2)', p1 = patch_height, p2 = patch_width, pt = temporal_patch_size), ) # turn off GAN and perceptual loss if grayscale self.vgg = None self.discr = None self.use_vgg_and_gan = use_vgg_and_gan if not use_vgg_and_gan: return # preceptual loss if exists(vgg): self.vgg = vgg else: self.vgg = torchvision.models.vgg16(pretrained = True) self.vgg.classifier = nn.Sequential(*self.vgg.classifier[:-2]) # gan related losses self.discr = Discriminator( image_size = self.image_size, dim = discr_base_dim, channels = channels, attn_res_layers = discr_attn_res_layers ) self.discr_loss = hinge_discr_loss if use_hinge_loss else bce_discr_loss self.gen_loss = hinge_gen_loss if use_hinge_loss else bce_gen_loss def calculate_video_token_mask(self, videos, video_frame_mask): *_, h, w = videos.shape ph, pw = self.patch_size assert torch.all(((video_frame_mask.sum(dim = -1) - 1) % self.temporal_patch_size) == 0), 'number of frames must be divisible by temporal patch size, subtracting off the first frame' first_frame_mask, rest_frame_mask = video_frame_mask[:, :1], video_frame_mask[:, 1:] rest_vq_mask = rearrange(rest_frame_mask, 'b (f p) -> b f p', p = self.temporal_patch_size) video_mask = torch.cat((first_frame_mask, rest_vq_mask.any(dim = -1)), dim = -1) return repeat(video_mask, 'b f -> b (f hw)', hw = (h // ph) * (w // pw)) def get_video_patch_shape(self, num_frames, include_first_frame = True): patch_frames = 0 if include_first_frame: num_frames -= 1 patch_frames += 1 patch_frames += (num_frames // self.temporal_patch_size) return (patch_frames, *self.patch_height_width) @property def image_num_tokens(self): return int(self.image_size[0] / self.patch_size[0]) * int(self.image_size[1] / self.patch_size[1]) def frames_per_num_tokens(self, num_tokens): tokens_per_frame = self.image_num_tokens assert (num_tokens % tokens_per_frame) == 0, f'number of tokens must be divisible by number of tokens per frame {tokens_per_frame}' assert (num_tokens > 0) pseudo_frames = num_tokens // tokens_per_frames return (pseudo_frames - 1) * self.temporal_patch_size + 1 def num_tokens_per_frames(self, num_frames, include_first_frame = True): image_num_tokens = self.image_num_tokens total_tokens = 0 if include_first_frame: num_frames -= 1 total_tokens += image_num_tokens assert (num_frames % self.temporal_patch_size) == 0 return total_tokens + int(num_frames / self.temporal_patch_size) * image_num_tokens def copy_for_eval(self): device = next(self.parameters()).device vae_copy = copy.deepcopy(self.cpu()) if vae_copy.use_vgg_and_gan: del vae_copy.discr del vae_copy.vgg vae_copy.eval() return vae_copy.to(device) @remove_vgg def state_dict(self, *args, **kwargs): return super().state_dict(*args, **kwargs) @remove_vgg def load_state_dict(self, *args, **kwargs): return super().load_state_dict(*args, **kwargs) def load(self, path): path = Path(path) assert path.exists() pt = torch.load(str(path)) self.load_state_dict(pt) def decode_from_codebook_indices(self, indices): codes = self.vq.codebook[indices] return self.decode(codes) @property def patch_height_width(self): return self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1] def encode( self, tokens ): b = tokens.shape[0] h, w = self.patch_height_width video_shape = tuple(tokens.shape[:-1]) tokens = rearrange(tokens, 'b t h w d -> (b t) (h w) d') attn_bias = self.spatial_rel_pos_bias(h, w, device = tokens.device) tokens = self.enc_spatial_transformer(tokens, attn_bias = attn_bias, video_shape = video_shape) tokens = rearrange(tokens, '(b t) (h w) d -> b t h w d', b = b, h = h , w = w) # encode - temporal tokens = rearrange(tokens, 'b t h w d -> (b h w) t d') tokens = self.enc_temporal_transformer(tokens, video_shape = video_shape) tokens = rearrange(tokens, '(b h w) t d -> b t h w d', b = b, h = h, w = w) return tokens def decode( self, tokens ): b = tokens.shape[0] h, w = self.patch_height_width if tokens.ndim == 3: tokens = rearrange(tokens, 'b (t h w) d -> b t h w d', h = h, w = w) video_shape = tuple(tokens.shape[:-1]) # decode - temporal tokens = rearrange(tokens, 'b t h w d -> (b h w) t d') tokens = self.dec_temporal_transformer(tokens, video_shape = video_shape) tokens = rearrange(tokens, '(b h w) t d -> b t h w d', b = b, h = h, w = w) # decode - spatial tokens = rearrange(tokens, 'b t h w d -> (b t) (h w) d') attn_bias = self.spatial_rel_pos_bias(h, w, device = tokens.device) tokens = self.dec_spatial_transformer(tokens, attn_bias = attn_bias, video_shape = video_shape) tokens = rearrange(tokens, '(b t) (h w) d -> b t h w d', b = b, h = h , w = w) # to pixels first_frame_token, rest_frames_tokens = tokens[:, :1], tokens[:, 1:] first_frame = self.to_pixels_first_frame(first_frame_token) rest_frames = self.to_pixels(rest_frames_tokens) recon_video = torch.cat((first_frame, rest_frames), dim = 2) return recon_video def forward( self, video, mask = None, return_recons = False, return_recons_only = False, return_discr_loss = False, apply_grad_penalty = True, return_only_codebook_ids = False ): assert video.ndim in {4, 5} is_image = video.ndim == 4 if is_image: video = rearrange(video, 'b c h w -> b c 1 h w') assert not exists(mask) b, c, f, *image_dims, device = *video.shape, video.device assert tuple(image_dims) == self.image_size assert not exists(mask) or mask.shape[-1] == f assert divisible_by(f - 1, self.temporal_patch_size), f'number of frames ({f}) minus one ({f - 1}) must be divisible by temporal patch size ({self.temporal_patch_size})' first_frame, rest_frames = video[:, :, :1], video[:, :, 1:] # derive patches first_frame_tokens = self.to_patch_emb_first_frame(first_frame) rest_frames_tokens = self.to_patch_emb(rest_frames) tokens = torch.cat((first_frame_tokens, rest_frames_tokens), dim = 1) # save height and width in shape = tokens.shape *_, h, w, _ = shape # encode - spatial tokens = self.encode(tokens) # quantize tokens, packed_fhw_shape = pack([tokens], 'b * d') vq_mask = None if exists(mask): vq_mask = self.calculate_video_token_mask(video, mask) tokens, indices, commit_loss = self.vq(tokens, mask = vq_mask) if return_only_codebook_ids: indices, = unpack(indices, packed_fhw_shape, 'b *') return indices tokens = rearrange(tokens, 'b (t h w) d -> b t h w d', h = h, w = w) recon_video = self.decode(tokens) returned_recon = rearrange(recon_video, 'b c 1 h w -> b c h w') if is_image else recon_video.clone() if return_recons_only: return returned_recon if exists(mask): # variable lengthed video / images training recon_loss = F.mse_loss(video, recon_video, reduction = 'none') recon_loss = recon_loss[repeat(mask, 'b t -> b c t', c = c)] recon_loss = recon_loss.mean() else: recon_loss = F.mse_loss(video, recon_video) # prepare a random frame index to be chosen for discriminator and perceptual loss pick_frame_logits = torch.randn(b, f) if exists(mask): mask_value = -torch.finfo(pick_frame_logits.dtype).max pick_frame_logits = pick_frame_logits.masked_fill(~mask, mask_value) frame_indices = pick_frame_logits.topk(1, dim = -1).indices # whether to return discriminator loss if return_discr_loss: assert exists(self.discr), 'discriminator must exist to train it' video = pick_video_frame(video, frame_indices) recon_video = pick_video_frame(recon_video, frame_indices) recon_video = recon_video.detach() video.requires_grad_() recon_video_discr_logits, video_discr_logits = map(self.discr, (recon_video, video)) discr_loss = self.discr_loss(recon_video_discr_logits, video_discr_logits) if apply_grad_penalty: gp = gradient_penalty(video, video_discr_logits) loss = discr_loss + gp if return_recons: return loss, returned_recon return loss # early return if training on grayscale if not self.use_vgg_and_gan: if return_recons: return recon_loss, returned_recon return recon_loss # perceptual loss input_vgg_input = pick_video_frame(video, frame_indices) recon_vgg_input = pick_video_frame(recon_video, frame_indices) # handle grayscale for vgg if video.shape[1] == 1: input_vgg_input, recon_vgg_input = map(lambda t: repeat(t, 'b 1 ... -> b c ...', c = 3), (img_vgg_input, fmap_vgg_input)) input_vgg_feats = self.vgg(input_vgg_input) recon_vgg_feats = self.vgg(recon_vgg_input) perceptual_loss = F.mse_loss(input_vgg_feats, recon_vgg_feats) # generator loss gen_loss = self.gen_loss(self.discr(recon_vgg_input)) # calculate adaptive weight last_dec_layer = self.to_pixels[0].weight norm_grad_wrt_gen_loss = grad_layer_wrt_loss(gen_loss, last_dec_layer).norm(p = 2) norm_grad_wrt_perceptual_loss = grad_layer_wrt_loss(perceptual_loss, last_dec_layer).norm(p = 2) adaptive_weight = safe_div(norm_grad_wrt_perceptual_loss, norm_grad_wrt_gen_loss) adaptive_weight.clamp_(max = 1e4) # combine losses loss = recon_loss + perceptual_loss + commit_loss + adaptive_weight * gen_loss if return_recons: return loss, returned_recon return loss
phenaki-pytorch-main
phenaki_pytorch/cvivit.py
from math import sqrt from random import choice from pathlib import Path from shutil import rmtree from beartype import beartype import torch from torch import nn from torch.utils.data import Dataset, DataLoader, random_split import torchvision.transforms as T from torchvision.datasets import ImageFolder from torchvision.utils import make_grid, save_image from einops import rearrange from phenaki_pytorch.optimizer import get_optimizer from ema_pytorch import EMA from phenaki_pytorch.cvivit import CViViT from phenaki_pytorch.data import ImageDataset, VideoDataset, video_tensor_to_gif from accelerate import Accelerator # helpers def exists(val): return val is not None def noop(*args, **kwargs): pass def cycle(dl): while True: for data in dl: yield data def cast_tuple(t): return t if isinstance(t, (tuple, list)) else (t,) def yes_or_no(question): answer = input(f'{question} (y/n) ') return answer.lower() in ('yes', 'y') def accum_log(log, new_logs): for key, new_value in new_logs.items(): old_value = log.get(key, 0.) log[key] = old_value + new_value return log # main trainer class @beartype class CViViTTrainer(nn.Module): def __init__( self, vae: CViViT, *, num_train_steps, batch_size, folder, train_on_images = False, num_frames = 17, lr = 3e-4, grad_accum_every = 1, wd = 0., max_grad_norm = 0.5, discr_max_grad_norm = None, save_results_every = 100, save_model_every = 1000, results_folder = './results', valid_frac = 0.05, random_split_seed = 42, use_ema = True, ema_beta = 0.995, ema_update_after_step = 0, ema_update_every = 1, apply_grad_penalty_every = 4, accelerate_kwargs: dict = dict() ): super().__init__() image_size = vae.image_size self.accelerator = Accelerator(**accelerate_kwargs) self.vae = vae self.use_ema = use_ema if self.is_main and use_ema: self.ema_vae = EMA(vae, update_after_step = ema_update_after_step, update_every = ema_update_every) self.register_buffer('steps', torch.Tensor([0])) self.num_train_steps = num_train_steps self.batch_size = batch_size self.grad_accum_every = grad_accum_every all_parameters = set(vae.parameters()) discr_parameters = set(vae.discr.parameters()) vae_parameters = all_parameters - discr_parameters self.vae_parameters = vae_parameters self.optim = get_optimizer(vae_parameters, lr = lr, wd = wd) self.discr_optim = get_optimizer(discr_parameters, lr = lr, wd = wd) self.max_grad_norm = max_grad_norm self.discr_max_grad_norm = discr_max_grad_norm # create dataset dataset_klass = ImageDataset if train_on_images else VideoDataset if train_on_images: self.ds = ImageDataset(folder, image_size) else: self.ds = VideoDataset(folder, image_size, num_frames = num_frames) # split for validation if valid_frac > 0: train_size = int((1 - valid_frac) * len(self.ds)) valid_size = len(self.ds) - train_size self.ds, self.valid_ds = random_split(self.ds, [train_size, valid_size], generator = torch.Generator().manual_seed(random_split_seed)) self.print(f'training with dataset of {len(self.ds)} samples and validating with randomly splitted {len(self.valid_ds)} samples') else: self.valid_ds = self.ds self.print(f'training with shared training and valid dataset of {len(self.ds)} samples') # dataloader self.dl = DataLoader( self.ds, batch_size = batch_size, shuffle = True ) self.valid_dl = DataLoader( self.valid_ds, batch_size = batch_size, shuffle = True ) # prepare with accelerator ( self.vae, self.optim, self.discr_optim, self.dl, self.valid_dl ) = self.accelerator.prepare( self.vae, self.optim, self.discr_optim, self.dl, self.valid_dl ) self.dl_iter = cycle(self.dl) self.valid_dl_iter = cycle(self.valid_dl) self.save_model_every = save_model_every self.save_results_every = save_results_every self.apply_grad_penalty_every = apply_grad_penalty_every self.results_folder = Path(results_folder) if len([*self.results_folder.glob('**/*')]) > 0 and yes_or_no('do you want to clear previous experiment checkpoints and results?'): rmtree(str(self.results_folder)) self.results_folder.mkdir(parents = True, exist_ok = True) def save(self, path): if not self.accelerator.is_local_main_process: return pkg = dict( model = self.accelerator.get_state_dict(self.vae), optim = self.optim.state_dict(), discr_optim = self.discr_optim.state_dict() ) torch.save(pkg, path) def load(self, path): path = Path(path) assert path.exists() pkg = torch.load(path) vae = self.accelerator.unwrap_model(self.vae) vae.load_state_dict(pkg['model']) self.optim.load_state_dict(pkg['optim']) self.discr_optim.load_state_dict(pkg['discr_optim']) def print(self, msg): self.accelerator.print(msg) @property def device(self): return self.accelerator.device @property def is_distributed(self): return not (self.accelerator.distributed_type == DistributedType.NO and self.accelerator.num_processes == 1) @property def is_main(self): return self.accelerator.is_main_process @property def is_local_main(self): return self.accelerator.is_local_main_process def train_step(self): device = self.device steps = int(self.steps.item()) apply_grad_penalty = not (steps % self.apply_grad_penalty_every) self.vae.train() # logs logs = {} # update vae (generator) for _ in range(self.grad_accum_every): img = next(self.dl_iter) img = img.to(device) with self.accelerator.autocast(): loss = self.vae( img, apply_grad_penalty = apply_grad_penalty ) self.accelerator.backward(loss / self.grad_accum_every) accum_log(logs, {'loss': loss.item() / self.grad_accum_every}) if exists(self.max_grad_norm): self.accelerator.clip_grad_norm_(self.vae.parameters(), self.max_grad_norm) self.optim.step() self.optim.zero_grad() # update discriminator if exists(self.vae.discr): self.discr_optim.zero_grad() for _ in range(self.grad_accum_every): img = next(self.dl_iter) img = img.to(device) loss = self.vae(img, return_discr_loss = True) self.accelerator.backward(loss / self.grad_accum_every) accum_log(logs, {'discr_loss': loss.item() / self.grad_accum_every}) if exists(self.discr_max_grad_norm): self.accelerator.clip_grad_norm_(self.vae.discr.parameters(), self.discr_max_grad_norm) self.discr_optim.step() # log self.print(f"{steps}: vae loss: {logs['loss']} - discr loss: {logs['discr_loss']}") # update exponential moving averaged generator if self.is_main and self.use_ema: self.ema_vae.update() # sample results every so often if self.is_main and not (steps % self.save_results_every): vaes_to_evaluate = ((self.vae, str(steps)),) if self.use_ema: vaes_to_evaluate = ((self.ema_vae.ema_model, f'{steps}.ema'),) + vaes_to_evaluate for model, filename in vaes_to_evaluate: model.eval() valid_data = next(self.valid_dl_iter) is_video = valid_data.ndim == 5 valid_data = valid_data.to(device) recons = model(valid_data, return_recons_only = True) # if is video, save gifs to folder # else save a grid of images if is_video: sampled_videos_path = self.results_folder / f'samples.{filename}' (sampled_videos_path).mkdir(parents = True, exist_ok = True) for tensor in recons.unbind(dim = 0): video_tensor_to_gif(tensor, str(sampled_videos_path / f'{filename}.gif')) else: imgs_and_recons = torch.stack((valid_data, recons), dim = 0) imgs_and_recons = rearrange(imgs_and_recons, 'r b ... -> (b r) ...') imgs_and_recons = imgs_and_recons.detach().cpu().float().clamp(0., 1.) grid = make_grid(imgs_and_recons, nrow = 2, normalize = True, value_range = (0, 1)) logs['reconstructions'] = grid save_image(grid, str(self.results_folder / f'{filename}.png')) self.print(f'{steps}: saving to {str(self.results_folder)}') # save model every so often if self.is_main and not (steps % self.save_model_every): state_dict = self.vae.state_dict() model_path = str(self.results_folder / f'vae.{steps}.pt') torch.save(state_dict, model_path) if self.use_ema: ema_state_dict = self.ema_vae.state_dict() model_path = str(self.results_folder / f'vae.{steps}.ema.pt') torch.save(ema_state_dict, model_path) self.print(f'{steps}: saving model to {str(self.results_folder)}') self.steps += 1 return logs def train(self, log_fn = noop): device = next(self.vae.parameters()).device while self.steps < self.num_train_steps: logs = self.train_step() log_fn(logs) self.print('training complete')
phenaki-pytorch-main
phenaki_pytorch/cvivit_trainer.py
import torch import transformers from transformers import T5Tokenizer, T5EncoderModel, T5Config # less warning messages since only using encoder transformers.logging.set_verbosity_error() # helper functions def exists(val): return val is not None # config MAX_LENGTH = 256 DEFAULT_T5_NAME = 'google/t5-v1_1-base' T5_CONFIGS = {} # singleton globals def get_tokenizer(name): tokenizer = T5Tokenizer.from_pretrained(name) return tokenizer def get_model(name): model = T5EncoderModel.from_pretrained(name) return model def get_model_and_tokenizer(name): global T5_CONFIGS if name not in T5_CONFIGS: T5_CONFIGS[name] = dict() if "model" not in T5_CONFIGS[name]: T5_CONFIGS[name]["model"] = get_model(name) if "tokenizer" not in T5_CONFIGS[name]: T5_CONFIGS[name]["tokenizer"] = get_tokenizer(name) return T5_CONFIGS[name]['model'], T5_CONFIGS[name]['tokenizer'] def get_encoded_dim(name): if name not in T5_CONFIGS: config = T5Config.from_pretrained(name) T5_CONFIGS[name] = dict(config = config) elif "config" in T5_CONFIGS[name]: config = T5_CONFIGS[name]["config"] elif "model" in T5_CONFIGS[name]: config = T5_CONFIGS[name]["model"].config else: raise ValueError(f'unknown t5 name {name}') return config.d_model # encoding text def t5_encode_text( texts, name = DEFAULT_T5_NAME, output_device = None ): t5, tokenizer = get_model_and_tokenizer(name) if torch.cuda.is_available(): t5 = t5.cuda() device = next(t5.parameters()).device encoded = tokenizer.batch_encode_plus( texts, return_tensors = 'pt', padding = 'longest', max_length = MAX_LENGTH, truncation = True ) input_ids = encoded.input_ids.to(device) attn_mask = encoded.attention_mask.to(device) t5.eval() with torch.no_grad(): output = t5(input_ids = input_ids, attention_mask = attn_mask) encoded_text = output.last_hidden_state.detach() attn_mask = attn_mask[..., None].bool() if not exists(output_device): encoded_text = encoded_text.masked_fill(~attn_mask, 0.) return encoded_text encoded_text = encoded_text.to(output_device) attn_mask = attn_mask.to(output_device) encoded_text = encoded_text.masked_fill(~attn_mask, 0.) return encoded_text
phenaki-pytorch-main
phenaki_pytorch/t5.py
import math import functools from contextlib import nullcontext from functools import partial, wraps from typing import Optional, List, Union from beartype import beartype import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat, pack, unpack from einops.layers.torch import Rearrange from phenaki_pytorch.t5 import t5_encode_text, get_encoded_dim, DEFAULT_T5_NAME from phenaki_pytorch.cvivit import CViViT from phenaki_pytorch.attention import Attention, Transformer, ContinuousPositionBias # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def cast_tuple(val, length = 1): return val if isinstance(val, tuple) else (val,) * length def reduce_mult(arr): return functools.reduce(lambda x, y: x * y, arr) def divisible_by(numer, denom): return (numer % denom) == 0 # tensor helpers def get_mask_subset_with_prob(mask, prob): batch, seq_len, device = *mask.shape, mask.device num_tokens = mask.sum(dim = -1) num_pads = seq_len - num_tokens num_masked = (prob * num_tokens).round().clamp(min = 1) randperm_indices = torch.rand((batch, seq_len), device = device).argsort(dim = -1) randperm_indices -= rearrange(num_pads, 'b -> b 1') randperm_indices.masked_fill_(randperm_indices < 0, seq_len) # set to max out of bounds, so never chosen mask_subset = randperm_indices < rearrange(num_masked, 'b -> b 1') return mask_subset # decorators def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner # classifier free guidance functions def uniform(shape, device): return torch.zeros(shape, device = device).float().uniform_(0, 1) def prob_mask_like(shape, prob, device): if prob == 1: return torch.ones(shape, device = device, dtype = torch.bool) elif prob == 0: return torch.zeros(shape, device = device, dtype = torch.bool) else: return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob # tensor helper functions def log(t, eps = 1e-10): return torch.log(t + eps) # sampling helpers def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim = dim) def top_k(logits, thres = 0.5): num_logits = logits.shape[-1] k = max(int((1 - thres) * num_logits), 1) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # mask git class MaskGit(nn.Module): def __init__( self, *, dim, num_tokens, max_seq_len, gradient_shrink_alpha = 0.1, heads = 8, dim_head = 64, unconditional = False, attn_dropout = 0., ff_dropout = 0., **kwargs ): super().__init__() self.dim = dim self.mask_id = num_tokens self.unconditional = unconditional self.token_emb = nn.Embedding(num_tokens + 1, dim) # last token is used as mask_id self.max_seq_len = max_seq_len self.pos_emb = nn.Embedding(max_seq_len, dim) self.gradient_shrink_alpha = gradient_shrink_alpha # used with great success in cogview and GLM 130B attention net self.continuous_pos_bias = ContinuousPositionBias(dim = dim_head, heads = heads, num_dims = 3) self.transformer = Transformer( dim = dim, attn_num_null_kv = 2, has_cross_attn = not self.unconditional, dim_head = dim_head, heads = heads, attn_dropout = attn_dropout, ff_dropout = ff_dropout, peg = True, **kwargs ) self.to_logits = nn.Linear(dim, num_tokens) def forward_with_cond_scale( self, *args, cond_scale = 3, **kwargs ): logits = self.forward(*args, cond_drop_prob = 0., **kwargs) if cond_scale == 1: return logits null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, x, cond_drop_prob = 0., text_mask = None, video_mask = None, video_patch_shape = None, return_embeds = False, **kwargs ): assert x.ndim in {2, 4}, 'video token ids must be of shape (batch, seq) or (batch, frame, height, width)' if x.ndim == 4: video_patch_shape = x.shape[1:] x = rearrange(x, 'b ... -> b (...)') b, n, device = *x.shape, x.device if not exists(text_mask): text_mask = torch.ones((b, n), device = device, dtype = torch.bool) assert exists(video_patch_shape), 'video patch shape must be given' rel_pos_bias = self.continuous_pos_bias(*video_patch_shape, device = device) if cond_drop_prob > 0: keep_mask = prob_mask_like((b,), 1 - cond_drop_prob, device = device) text_mask = rearrange(keep_mask, 'b -> b 1') & text_mask video_shape = (b, *video_patch_shape) x = self.token_emb(x) assert n <= self.max_seq_len, f'the video token sequence length you are passing in ({n}) is greater than the `max_seq_len` ({self.max_seq_len}) set on your `MaskGit`' x = self.pos_emb(torch.arange(n, device = device)) + x x = x * self.gradient_shrink_alpha + x.detach() * (1 - self.gradient_shrink_alpha) x = self.transformer( x, video_shape = video_shape, attn_bias = rel_pos_bias, self_attn_mask = video_mask, cross_attn_context_mask = text_mask, **kwargs ) if return_embeds: return x return self.to_logits(x) # token critic class TokenCritic(nn.Module): def __init__( self, *, dim, num_tokens, max_seq_len, has_cross_attn = False, attn_dropout = 0., ff_dropout = 0., **kwargs ): super().__init__() self.has_cross_attn = has_cross_attn self.mask_id = num_tokens self.token_emb = nn.Embedding(num_tokens + 1, dim) # last token is used as mask_id self.pos_emb = nn.Embedding(max_seq_len, dim) self.transformer = Transformer( dim = dim, peg = True, attn_dropout = attn_dropout, ff_dropout = ff_dropout, has_cross_attn = has_cross_attn, **kwargs ) self.to_logits = nn.Sequential( nn.Linear(dim, 1), Rearrange('... 1 -> ...') ) def forward_with_cond_scale( self, *args, cond_scale = 3, **kwargs ): logits = self.forward(*args, cond_drop_prob = 0., **kwargs) if cond_scale == 1: return logits null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, x, text_mask = None, cond_drop_prob = None, context = None, video_mask = None, video_patch_shape = None, **kwargs ): if exists(video_patch_shape): video_shape = (x.shape[0], *video_patch_shape) else: video_shape = x.shape x = rearrange(x, 'b ... -> b (...)') b, n, device = *x.shape, x.device if not exists(text_mask): text_mask = torch.ones((b, n), device = device, dtype = torch.bool) if exists(context) and cond_drop_prob > 0: keep_mask = prob_mask_like((b,), 1 - cond_drop_prob, device = device) text_mask = rearrange(keep_mask, 'b -> b 1') & text_mask x = self.token_emb(x) x = self.pos_emb(torch.arange(n, device = device)) + x x = self.transformer( x, video_shape = video_shape, context = context, self_attn_mask = video_mask, cross_attn_context_mask = text_mask, **kwargs ) return self.to_logits(x) # self critic - inspired by Nijkamp et al. (https://aclanthology.org/2021.naacl-main.409/) @beartype class SelfCritic(nn.Module): def __init__( self, maskgit: MaskGit ): super().__init__() self.maskgit = maskgit self.to_pred = nn.Sequential( nn.Linear(maskgit.dim, 1), Rearrange('... 1 -> ...') ) def forward_with_cond_scale( self, *args, cond_scale = 3, **kwargs ): logits = self.forward(*args, cond_drop_prob = 0., **kwargs) if cond_scale == 1: return logits null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward(self, x, *args, **kwargs): embeds = self.maskgit(x, *args, return_embeds = True, **kwargs) return self.to_pred(embeds) # main class @beartype class Phenaki(nn.Module): def __init__( self, *, maskgit: MaskGit, cvivit: CViViT, critic: Optional[Union[TokenCritic, SelfCritic]] = None, steps = 18, # 18 is the ideal steps with token critic t5_name = DEFAULT_T5_NAME, sample_temperature = 0., text_embed_dim = None, cond_drop_prob = 0.25, max_text_len = 128, self_token_critic = False, critic_loss_weight = 1., critic_noise_anneal_schedule = 'decay', critic_train_sample_temperature = 1. ): super().__init__() self.cvivit = cvivit.copy_for_eval() self.maskgit = maskgit self.unconditional = maskgit.unconditional self.mask_id = maskgit.mask_id assert not (self_token_critic and exists(critic)) # sampling if self_token_critic: critic = SelfCritic(maskgit) if exists(critic): critic = critic.eval() assert not exists(critic) or self_token_critic or (not maskgit.unconditional) == critic.has_cross_attn self.critic = critic self.critic_noise_anneal_schedule = critic_noise_anneal_schedule self.critic_loss_weight = critic_loss_weight self.critic_train_sample_temperature = critic_train_sample_temperature self.steps = steps self.sample_temperature = sample_temperature # text conditioning text_embed_dim = default(text_embed_dim, get_encoded_dim(t5_name)) self.encode_texts = partial(t5_encode_text, name = t5_name) self.text_embed_dim = text_embed_dim self.max_text_len = max_text_len assert cond_drop_prob > 0. self.cond_drop_prob = cond_drop_prob # classifier free guidance for transformers - @crowsonkb def sample_images( self, *, texts: Union[List[str], str] = None, batch_size = 1, cond_scale = 3., starting_temperature = 0.9, noise_K = 1. ): single_framed_video = self.sample( texts = texts, num_frames = 1, cond_scale = cond_scale, starting_temperature = starting_temperature, noise_K = noise_K ) return rearrange(single_framed_video, '... c 1 h w -> ... c h w') @eval_decorator @torch.no_grad() def sample( self, *, num_frames, texts: Union[List[str], str] = None, prime_frames = None, batch_size = 1, cond_scale = 3., starting_temperature = 0.9, noise_K = 1. # hyperparameter for noising of critic score in section 3.2 of token-critic paper, need to find correct value ): device = next(self.parameters()).device # derive the priming token ids, to be prepended to the input being demasked by mask-git at each round has_prime = exists(prime_frames) prime_token_ids = None prime_token_length = 0 prime_num_frames = 0 if has_prime: with torch.no_grad(): prime_token_ids = self.cvivit(prime_frames, return_only_codebook_ids = True) patch_shape = prime_token_ids.shape[1:] prime_token_ids = rearrange(prime_token_ids, 'b ... -> b (...)') prime_token_length = prime_token_ids.shape[-1] prime_num_frames = prime_frames.shape[2] num_tokens = self.cvivit.num_tokens_per_frames(num_frames, include_first_frame = not exists(prime_frames)) # get text embeds and mask text_embeds = text_mask = None if exists(texts): if isinstance(texts, str): texts = [texts] with torch.no_grad(): text_embeds = self.encode_texts(texts, output_device = device) text_mask = torch.any(text_embeds != 0, dim = -1) batch_size = len(texts) # derive video patch shape patch_shape = self.cvivit.get_video_patch_shape(num_frames + prime_num_frames, include_first_frame = True) # get video token ids shape = (batch_size, num_tokens) video_token_ids = torch.full(shape, self.mask_id, device = device) mask = torch.ones(shape, device = device, dtype = torch.bool) scores = None # keeping track of the confidence or critic scores, determining what should be masked at the next iteration for step in range(self.steps): is_first_step = step == 0 is_last_step = step == (self.steps - 1) steps_til_x0 = self.steps - (step + 1) if not is_first_step and exists(scores): time = torch.full((1,), step / self.steps, device = device) num_tokens_mask = (num_tokens * torch.cos(time * math.pi * 0.5)).round().long().clamp(min = 1) _, indices = scores.topk(num_tokens_mask.item(), dim = -1) mask = torch.zeros(shape, device = device).scatter(1, indices, 1).bool() video_token_ids = torch.where(mask, self.mask_id, video_token_ids) input_token_ids = video_token_ids if not has_prime else torch.cat((prime_token_ids, video_token_ids), dim = -1) logits = self.maskgit.forward_with_cond_scale( input_token_ids, video_patch_shape = patch_shape, context = text_embeds, text_mask = text_mask, cond_scale = cond_scale ) if has_prime: logits = logits[:, prime_token_length:] temperature = starting_temperature * (steps_til_x0 / self.steps) pred_video_ids = gumbel_sample(logits, temperature = temperature) video_token_ids = torch.where(mask, pred_video_ids, video_token_ids) if not is_last_step: if exists(self.critic): critic_kwargs = dict( video_patch_shape = patch_shape, context = text_embeds, text_mask = text_mask, cond_scale = cond_scale ) with torch.no_grad(): critic_input_token_ids = video_token_ids if not has_prime else torch.cat((prime_token_ids, video_token_ids), dim = -1) scores = self.critic.forward_with_cond_scale( critic_input_token_ids, **critic_kwargs ) if has_prime: scores = scores[:, prime_token_length:] # different types of annealing if self.critic_noise_anneal_schedule == 'fixed': noise_multiplier = 1. elif self.critic_noise_anneal_schedule == 'decay': noise_multiplier = steps_til_x0 / self.steps elif self.critic_noise_anneal_schedule == 'increase': noise_multiplier = (step + 1) / self.steps else: raise ValueError(f'invalid critic noise anneal schedule name') # noise to add to critic scores noise = noise_K * (uniform(scores.shape, device) - 0.5) * noise_multiplier scores = scores + noise else: probs = logits.softmax(dim = -1) scores = probs.gather(2, rearrange(pred_video_ids, '... -> ... 1')) scores = 1 - rearrange(scores, '... 1 -> ...') scores = torch.where(mask, scores, -1e4) if has_prime: video_token_ids = torch.cat((prime_token_ids, video_token_ids), dim = -1) video = self.cvivit.decode_from_codebook_indices(video_token_ids) if has_prime: video = video[:, :, prime_num_frames:] return video def forward( self, videos = None, *, texts: Optional[List[str]] = None, video_codebook_ids = None, video_frame_mask = None, text_embeds = None, cond_drop_prob = None, only_train_generator = False, only_train_critic = False ): assert not (only_train_generator and only_train_critic) assert exists(videos) ^ exists(video_codebook_ids), 'either raw video or ' assert not (exists(videos) and not exists(self.cvivit)), 'cvivit must be provided if one wants to encode the videos live during training' assert (exists(text_embeds) ^ exists(texts)) ^ self.unconditional, 'either raw text of text embeds must be given, and if unconditional, none should be given' assert not (exists(text_embeds) and text_embeds.shape[-1] != self.text_embed_dim), 'text embedding dimension is not correct' if not exists(video_codebook_ids): assert videos.ndim in {4, 5} if videos.ndim == 4: videos = rearrange(videos, 'b c h w -> b c 1 h w') with torch.no_grad(): self.cvivit.eval() video_codebook_ids = self.cvivit(videos, return_only_codebook_ids = True) # derive text embeddings, mask, conditional dropout text_mask = None cond_drop_prob = 0 if not self.unconditional: if not exists(text_embeds): with torch.no_grad(): text_embeds = self.encode_texts(texts, output_device = video_codebook_ids.device) text_mask = torch.any(text_embeds != 0, dim = -1) # save the researcher from having to think about mask, by assuming if all of the feature dimension is 0, it is masked out # condition dropout for Katherine's (@crowsonkb) version of classifier free guidance for transformers cond_drop_prob = default(cond_drop_prob, self.cond_drop_prob) # calculate video frame mask video_mask = None if exists(video_frame_mask): video_mask = self.cvivit.calculate_video_token_mask( videos, video_frame_mask = video_frame_mask ) # train maskgit with text condition video_codebook_ids, packed_shape = pack([video_codebook_ids], 'b *') batch, seq, device = *video_codebook_ids.shape, video_codebook_ids.device rand_step = torch.randint(0, self.steps, (batch,), device = device) mask_token_prob = torch.cos(rand_step * math.pi * 0.5 / self.steps) # cosine schedule was best if not exists(video_mask): video_mask = torch.ones((batch, seq), device = device).bool() mask_token_mask = get_mask_subset_with_prob(video_mask, mask_token_prob) masked_input = torch.where(mask_token_mask, self.mask_id, video_codebook_ids) masked_input, = unpack(masked_input, packed_shape, 'b *') maskgit_forward_context = torch.no_grad if only_train_critic else nullcontext with maskgit_forward_context(): logits = self.maskgit( masked_input, video_mask = video_mask, cond_drop_prob = cond_drop_prob, text_mask = text_mask, context = text_embeds ) if not only_train_critic: loss = F.cross_entropy( logits[mask_token_mask], video_codebook_ids[mask_token_mask] ) if not exists(self.critic) or only_train_generator: return loss # sample the predicted masked tokens pred_video_ids = gumbel_sample(logits, temperature = self.critic_train_sample_temperature) # derive critic input critic_input = torch.where(mask_token_mask, pred_video_ids, video_codebook_ids) # critic may or may not need text conditioning critic_input, = unpack(critic_input, packed_shape, 'b *') pred_fake_or_real_logits = self.critic( critic_input, video_mask = video_mask, cond_drop_prob = cond_drop_prob, text_mask = text_mask, context = text_embeds ) critic_labels = (video_codebook_ids != pred_video_ids).float() critic_loss = F.binary_cross_entropy_with_logits( pred_fake_or_real_logits, critic_labels ) critic_loss_weight = self.critic_loss_weight if only_train_critic: loss = 0 critic_loss_weight = 1. return loss + critic_loss * critic_loss_weight # make video function @beartype def make_video( phenaki: Phenaki, texts: List[str], num_frames, prime_lengths ): num_scenes = len(texts) num_frames = cast_tuple(num_frames, num_scenes) prime_lengths = cast_tuple(prime_lengths, num_scenes - 1) prime_lengths = (*prime_lengths, 0) # last scene needs no priming entire_video = [] video_prime = None scenes = [] for text, scene_num_frames, next_scene_prime_length in zip(texts, num_frames, prime_lengths): video = phenaki.sample(texts = text, prime_frames = video_prime, num_frames = scene_num_frames) scenes.append(video) video_prime = video[:, :, -next_scene_prime_length:] return torch.cat(scenes, dim = 2), scenes
phenaki-pytorch-main
phenaki_pytorch/phenaki_pytorch.py
from phenaki_pytorch.phenaki_pytorch import Phenaki, CViViT, MaskGit, TokenCritic, make_video from phenaki_pytorch.cvivit_trainer import CViViTTrainer from phenaki_pytorch.phenaki_trainer import PhenakiTrainer
phenaki-pytorch-main
phenaki_pytorch/__init__.py
from torch.optim import AdamW, Adam def separate_weight_decayable_params(params): wd_params, no_wd_params = [], [] for param in params: param_list = no_wd_params if param.ndim < 2 else wd_params param_list.append(param) return wd_params, no_wd_params def get_optimizer( params, lr = 1e-4, wd = 1e-2, betas = (0.9, 0.99), eps = 1e-8, filter_by_requires_grad = False, group_wd_params = True, **kwargs ): if filter_by_requires_grad: params = list(filter(lambda t: t.requires_grad, params)) if wd == 0: return Adam(params, lr = lr, betas = betas, eps = eps) if group_wd_params: wd_params, no_wd_params = separate_weight_decayable_params(params) params = [ {'params': wd_params}, {'params': no_wd_params, 'weight_decay': 0}, ] return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
phenaki-pytorch-main
phenaki_pytorch/optimizer.py
from pathlib import Path import cv2 from PIL import Image from functools import partial from typing import Tuple, List from beartype.door import is_bearable import numpy as np import torch import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader as PytorchDataLoader from torchvision import transforms as T, utils from einops import rearrange # helper functions def exists(val): return val is not None def identity(t, *args, **kwargs): return t def pair(val): return val if isinstance(val, tuple) else (val, val) def cast_num_frames(t, *, frames): f = t.shape[1] if f == frames: return t if f > frames: return t[:, :frames] return F.pad(t, (0, 0, 0, 0, 0, frames - f)) def convert_image_to_fn(img_type, image): if image.mode != img_type: return image.convert(img_type) return image # image related helpers fnuctions and dataset class ImageDataset(Dataset): def __init__( self, folder, image_size, exts = ['jpg', 'jpeg', 'png'] ): super().__init__() self.folder = folder self.image_size = image_size self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')] print(f'{len(self.paths)} training samples found at {folder}') self.transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize(image_size), T.RandomHorizontalFlip(), T.CenterCrop(image_size), T.ToTensor() ]) def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] img = Image.open(path) return self.transform(img) # tensor of shape (channels, frames, height, width) -> gif # handle reading and writing gif CHANNELS_TO_MODE = { 1 : 'L', 3 : 'RGB', 4 : 'RGBA' } def seek_all_images(img, channels = 3): assert channels in CHANNELS_TO_MODE, f'channels {channels} invalid' mode = CHANNELS_TO_MODE[channels] i = 0 while True: try: img.seek(i) yield img.convert(mode) except EOFError: break i += 1 # tensor of shape (channels, frames, height, width) -> gif def video_tensor_to_gif( tensor, path, duration = 120, loop = 0, optimize = True ): images = map(T.ToPILImage(), tensor.unbind(dim = 1)) first_img, *rest_imgs = images first_img.save(path, save_all = True, append_images = rest_imgs, duration = duration, loop = loop, optimize = optimize) return images # gif -> (channels, frame, height, width) tensor def gif_to_tensor( path, channels = 3, transform = T.ToTensor() ): img = Image.open(path) tensors = tuple(map(transform, seek_all_images(img, channels = channels))) return torch.stack(tensors, dim = 1) # handle reading and writing mp4 def video_to_tensor( path: str, # Path of the video to be imported num_frames = -1, # Number of frames to be stored in the output tensor crop_size = None ) -> torch.Tensor: # shape (1, channels, frames, height, width) video = cv2.VideoCapture(path) frames = [] check = True while check: check, frame = video.read() if not check: continue if exists(crop_size): frame = crop_center(frame, *pair(crop_size)) frames.append(rearrange(frame, '... -> 1 ...')) frames = np.array(np.concatenate(frames[:-1], axis = 0)) # convert list of frames to numpy array frames = rearrange(frames, 'f h w c -> c f h w') frames_torch = torch.tensor(frames).float() return frames_torch[:, :num_frames, :, :] def tensor_to_video( tensor, # Pytorch video tensor path: str, # Path of the video to be saved fps = 25, # Frames per second for the saved video video_format = 'MP4V' ): # Import the video and cut it into frames. tensor = tensor.cpu() num_frames, height, width = tensor.shape[-3:] fourcc = cv2.VideoWriter_fourcc(*video_format) # Changes in this line can allow for different video formats. video = cv2.VideoWriter(path, fourcc, fps, (width, height)) frames = [] for idx in range(num_frames): numpy_frame = tensor[:, idx, :, :].numpy() numpy_frame = np.uint8(rearrange(numpy_frame, 'c h w -> h w c')) video.write(numpy_frame) video.release() cv2.destroyAllWindows() return video def crop_center( img, # tensor cropx, # Length of the final image in the x direction. cropy # Length of the final image in the y direction. ) -> torch.Tensor: y, x, c = img.shape startx = x // 2 - cropx // 2 starty = y // 2 - cropy // 2 return img[starty:(starty + cropy), startx:(startx + cropx), :] # video dataset class VideoDataset(Dataset): def __init__( self, folder, image_size, channels = 3, num_frames = 17, horizontal_flip = False, force_num_frames = True, exts = ['gif', 'mp4'] ): super().__init__() self.folder = folder self.image_size = image_size self.channels = channels self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')] self.transform = T.Compose([ T.Resize(image_size), T.RandomHorizontalFlip() if horizontal_flip else T.Lambda(identity), T.CenterCrop(image_size), T.ToTensor() ]) # functions to transform video path to tensor self.gif_to_tensor = partial(gif_to_tensor, channels = self.channels, transform = self.transform) self.mp4_to_tensor = partial(video_to_tensor, crop_size = self.image_size) self.cast_num_frames_fn = partial(cast_num_frames, frames = num_frames) if force_num_frames else identity def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] ext = path.suffix if ext == '.gif': tensor = self.gif_to_tensor(path) elif ext == '.mp4': tensor = self.mp4_to_tensor(str(path)) else: raise ValueError(f'unknown extension {ext}') return self.cast_num_frames_fn(tensor) # override dataloader to be able to collate strings def collate_tensors_and_strings(data): if is_bearable(data, List[torch.Tensor]): return (torch.stack(data, dim = 0),) data = zip(*data) output = [] for datum in data: if is_bearable(datum, Tuple[torch.Tensor, ...]): datum = torch.stack(datum, dim = 0) elif is_bearable(datum, Tuple[str, ...]): datum = list(datum) else: raise ValueError('detected invalid type being passed from dataset') output.append(datum) return tuple(output) def DataLoader(*args, **kwargs): return PytorchDataLoader(*args, collate_fn = collate_tensors_and_strings, **kwargs)
phenaki-pytorch-main
phenaki_pytorch/data.py
from setuptools import setup, find_packages setup( name = 'adjacent-attention-pytorch', packages = find_packages(), version = '0.0.12', license='MIT', description = 'Adjacent Attention Network - Pytorch', long_description_content_type = 'text/markdown', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/adjacent-attention-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'graph neural network', 'transformers' ], install_requires=[ 'einops>=0.3', 'torch>=1.6', 'isab-pytorch<0.2' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
adjacent-attention-network-main
setup.py
from adjacent_attention_network.adjacent_attention_network import AdjacentAttentionNetwork
adjacent-attention-network-main
adjacent_attention_network/__init__.py
import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from isab_pytorch import ISAB # helpers def exists(val): return val is not None def batched_index_select(values, indices): last_dim = values.shape[-1] return values.gather(1, indices[:, :, None].expand(-1, -1, last_dim)) # helper classes class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = nn.LayerNorm(dim) def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, dim * mult), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) def forward(self, x, **kwargs): return self.net(x) # adjacent attention class class AdjacentAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 4, dropout = 0. ): super().__init__() inner_dim = dim_head * heads self.scale = dim_head ** -0.5 self.heads = heads self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim) self.null_k = nn.Parameter(torch.randn(heads, dim_head)) self.null_v = nn.Parameter(torch.randn(heads, dim_head)) self.dropout = nn.Dropout(dropout) def forward( self, x, adj_kv_indices, mask ): b, n, d, h = *x.shape, self.heads flat_indices = repeat(adj_kv_indices, 'b n a -> (b h) (n a)', h = h) # derive query, key, value q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # gather keys and values according to adjacency matrix k, v = map(lambda t: rearrange(t, 'b h n d -> (b h) n d'), (k, v)) k = batched_index_select(k, flat_indices) v = batched_index_select(v, flat_indices) k, v = map(lambda t: rearrange(t, '(b h) (n a) d -> b h n a d', h = h, n = n), (k, v)) # add null key / value, so a node can attend to nothing # have come across this in GNN literature as some other name nk, nv = map(lambda t: rearrange(t, 'h d -> () h () () d').expand(b, -1, n, 1, -1), (self.null_k, self.null_v)) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) mask = F.pad(mask, (1, 0), value = 1) # similarity of each node to its neighbors sim = einsum('b h n d, b h n a d -> b h n a', q, k) * self.scale # mask out neighbors that are just padding mask_value = -torch.finfo(sim.dtype).max mask = rearrange(mask.bool(), 'b n a -> b () n a') sim.masked_fill_(~mask.bool(), mask_value) # attention attn = sim.softmax(dim = -1) # dropout attn = self.dropout(attn) # get weighted average of the values of all neighbors out = einsum('b h n a, b h n a d -> b h n d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') # combine output return self.to_out(out) # adjacent network (layers of adjacent attention) class AdjacentAttentionNetwork(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 4, num_neighbors_cutoff = None, num_global_nodes = 0, attn_dropout = 0., ff_dropout = 0. ): super().__init__() self.num_neighbors_cutoff = num_neighbors_cutoff self.layers = nn.ModuleList([]) for _ in range(depth): global_attn = PreNorm(dim, ISAB( dim = dim, heads = heads, num_induced_points = num_global_nodes )) if num_global_nodes > 0 else None self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, AdjacentAttention( dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout ))), global_attn, Residual(PreNorm(dim, FeedForward( dim = dim, dropout = ff_dropout ))) ])) def forward(self, x, adjacency_mat, mask = None): device, n = x.device, x.shape[1] diag = torch.eye(adjacency_mat.shape[-1], device = device).bool() adjacency_mat |= diag # nodes should pay attention itself (self-interacting) # zero out points on adjacency matrix # where the nodes are just padding if exists(mask): adjacency_mat &= (mask[:, :, None] * mask[:, None, :]) adj_mat = adjacency_mat.float() # if we don't set a hard limit to the number of neighbors: # - get the maximum number of neighbors and pad the rest of the nodes with less than that number of neighbors # else: # - randomly sample the cutoff number of neighbors for any node that exceeds the max # - this would be similar to random sparse attention (bigbird) # get the maximum number of neighbors max_neighbors = int(adj_mat.sum(dim = -1).max()) if exists(self.num_neighbors_cutoff) and max_neighbors > self.num_neighbors_cutoff: # to randomly sample the neighbors, add a small uniform noise to the mask and topk noise = torch.empty((n, n), device = device).uniform_(-0.01, 0.01) adj_mat = adj_mat + noise adj_mask, adj_kv_indices = adj_mat.topk(dim = -1, k = self.num_neighbors_cutoff) # cast the mask back to 0s and 1s adj_mask = (adj_mask > 0.5).float() else: # todo - get distribution of number of neighbors, and strategically break up attention (message passing) to multiple steps # - start with a bimodal num neighbors test case, then generalize # use topk to get all the neighbors # also pass the mask into the attention, as some neighbors will be just padding and not actually neighbors adj_mask, adj_kv_indices = adj_mat.topk(dim = -1, k = max_neighbors) for attn, global_attn, ff in self.layers: x = attn( x, adj_kv_indices = adj_kv_indices, mask = adj_mask ) if exists(global_attn): out, _ = global_attn(x, mask = mask) x = x + out x = ff(x) return x
adjacent-attention-network-main
adjacent_attention_network/adjacent_attention_network.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import sys import warnings import os from pathlib import Path from setuptools import setup, find_packages import subprocess import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] return raw_output, bare_metal_major, bare_metal_minor def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) torch_binary_major = torch.version.cuda.split(".")[0] torch_binary_minor = torch.version.cuda.split(".")[1] print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, We cross-compile for Volta (compute capability 7.0), " "Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) == 11: os.environ["TORCH_CUDA_ARCH_LIST"] = "7.0;7.5;8.0" if int(bare_metal_minor) > 0: os.environ["TORCH_CUDA_ARCH_LIST"] = "7.0;7.5;8.0;8.6" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h # See https://github.com/pytorch/pytorch/pull/70650 generator_flag = [] torch_dir = torch.__path__[0] if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")): generator_flag = ["-DOLD_GENERATOR_PATH"] raise_if_cuda_home_none("flash_attn") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] _, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) < 11: raise RuntimeError("FlashAttention is only supported on CUDA 11") cc_flag.append("-gencode") cc_flag.append("arch=compute_75,code=sm_75") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") subprocess.run(["git", "submodule", "update", "--init", "csrc/flash_attn/cutlass"]) ext_modules.append( CUDAExtension( name="flash_attn_cuda", sources=[ "csrc/flash_attn/fmha_api.cpp", "csrc/flash_attn/src/fmha_fprop_fp16_kernel.sm80.cu", "csrc/flash_attn/src/fmha_dgrad_fp16_kernel_loop.sm80.cu", "csrc/flash_attn/src/fmha_block_fprop_fp16_kernel.sm80.cu", "csrc/flash_attn/src/fmha_block_dgrad_fp16_kernel_loop.sm80.cu", ], extra_compile_args={ "cxx": ["-O3", "-std=c++17"] + generator_flag, "nvcc": append_nvcc_threads( [ "-O3", "-std=c++17", "-U__CUDA_NO_HALF_OPERATORS__", "-U__CUDA_NO_HALF_CONVERSIONS__", "--expt-relaxed-constexpr", "--expt-extended-lambda", "--use_fast_math", "--ptxas-options=-v", "-lineinfo" ] + generator_flag + cc_flag ), }, include_dirs=[ Path(this_dir) / 'csrc' / 'flash_attn', Path(this_dir) / 'csrc' / 'flash_attn' / 'src', Path(this_dir) / 'csrc' / 'flash_attn' / 'cutlass' / 'include', ], ) ) setup( name="flash_attn", version="0.1", packages=find_packages( exclude=("build", "csrc", "include", "tests", "dist", "docs", "benchmarks", "flash_attn.egg-info",) ), author="Tri Dao", author_email="[email protected]", description="Flash Attention: Fast and Memory-Efficient Exact Attention", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/HazyResearch/flash-attention", classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: Unix", ], ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, python_requires=">=3.7", install_requires=[ "torch", "einops", ], )
flash-attention-main
setup.py
# Copied from https://github.com/NVIDIA/apex/tree/master/csrc/megatron # We add the case where seqlen = 4k and seqlen = 8k import os import subprocess import torch from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] return raw_output, bare_metal_major, bare_metal_minor def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args cc_flag = [] cc_flag.append("-gencode") cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") setup( name='fused_softmax_lib', ext_modules=[ CUDAExtension( name='fused_softmax_lib', sources=['fused_softmax.cpp', 'scaled_masked_softmax_cuda.cu', 'scaled_upper_triang_masked_softmax_cuda.cu'], extra_compile_args={ 'cxx': ['-O3',], 'nvcc': append_nvcc_threads(['-O3', '--use_fast_math'] + cc_flag) } ) ], cmdclass={ 'build_ext': BuildExtension })
flash-attention-main
csrc/fused_softmax/setup.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME from setuptools import setup, find_packages import subprocess import sys import warnings import os # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] return raw_output, bare_metal_major, bare_metal_minor def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) torch_binary_major = torch.version.cuda.split(".")[0] torch_binary_minor = torch.version.cuda.split(".")[1] print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n" "Volta (compute capability 7.0), Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) == 11: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" if int(bare_metal_minor) > 0: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h # See https://github.com/pytorch/pytorch/pull/70650 generator_flag = [] torch_dir = torch.__path__[0] if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")): generator_flag = ["-DOLD_GENERATOR_PATH"] raise_if_cuda_home_none("--xentropy") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] cc_flag.append("-gencode") cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") ext_modules.append( CUDAExtension( name="xentropy_cuda_lib", sources=[ "interface.cpp", "xentropy_kernel.cu" ], extra_compile_args={ "cxx": ["-O3"] + generator_flag, "nvcc": append_nvcc_threads( ["-O3"] + generator_flag + cc_flag ), }, include_dirs=[this_dir], ) ) setup( name="xentropy_cuda_lib", version="0.1", description="Cross-entropy loss", ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, )
flash-attention-main
csrc/xentropy/setup.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME from setuptools import setup, find_packages import subprocess import sys import warnings import os # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] return raw_output, bare_metal_major, bare_metal_minor def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) torch_binary_major = torch.version.cuda.split(".")[0] torch_binary_minor = torch.version.cuda.split(".")[1] print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n" "Volta (compute capability 7.0), Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) == 11: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" if int(bare_metal_minor) > 0: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h # See https://github.com/pytorch/pytorch/pull/70650 generator_flag = [] torch_dir = torch.__path__[0] if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")): generator_flag = ["-DOLD_GENERATOR_PATH"] raise_if_cuda_home_none("--fast_layer_norm") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] # cc_flag.append("-gencode") # cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") ext_modules.append( CUDAExtension( name="dropout_layer_norm", sources=[ "ln_api.cpp", "ln_fwd_cuda_kernel.cu", "ln_bwd_semi_cuda_kernel.cu", ], extra_compile_args={ "cxx": ["-O3"] + generator_flag, "nvcc": append_nvcc_threads( [ "-O3", "-U__CUDA_NO_HALF_OPERATORS__", "-U__CUDA_NO_HALF_CONVERSIONS__", "-U__CUDA_NO_BFLOAT16_OPERATORS__", "-U__CUDA_NO_BFLOAT16_CONVERSIONS__", "-U__CUDA_NO_BFLOAT162_OPERATORS__", "-U__CUDA_NO_BFLOAT162_CONVERSIONS__", "--expt-relaxed-constexpr", "--expt-extended-lambda", "--use_fast_math", ] + generator_flag + cc_flag ), }, include_dirs=[this_dir], ) ) setup( name="dropout_layer_norm", version="0.1", description="Fused dropout + add + layer norm", ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, )
flash-attention-main
csrc/layer_norm/setup.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py import torch from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME from setuptools import setup, find_packages import subprocess import sys import warnings import os # ninja build does not work unless include_dirs are abs path this_dir = os.path.dirname(os.path.abspath(__file__)) def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] return raw_output, bare_metal_major, bare_metal_minor def check_cuda_torch_binary_vs_bare_metal(cuda_dir): raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir) torch_binary_major = torch.version.cuda.split(".")[0] torch_binary_minor = torch.version.cuda.split(".")[1] print("\nCompiling cuda extensions with") print(raw_output + "from " + cuda_dir + "/bin\n") if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor): raise RuntimeError( "Cuda extensions are being compiled with a version of Cuda that does " "not match the version used to compile Pytorch binaries. " "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) + "In some cases, a minor-version mismatch will not cause later errors: " "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. " "You can try commenting out this check (at your own risk)." ) def raise_if_cuda_home_none(global_option: str) -> None: if CUDA_HOME is not None: return raise RuntimeError( f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " "only images whose names contain 'devel' will provide nvcc." ) def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args if not torch.cuda.is_available(): # https://github.com/NVIDIA/apex/issues/486 # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(), # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command). print( "\nWarning: Torch did not find available GPUs on this system.\n", "If your intention is to cross-compile, this is not an error.\n" "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n" "Volta (compute capability 7.0), Turing (compute capability 7.5),\n" "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n" "If you wish to cross-compile for a single specific architecture,\n" 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n', ) if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None: _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) == 11: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0" if int(bare_metal_minor) > 0: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6" else: os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5" print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) TORCH_MAJOR = int(torch.__version__.split(".")[0]) TORCH_MINOR = int(torch.__version__.split(".")[1]) cmdclass = {} ext_modules = [] raise_if_cuda_home_none("rotary_emb") # Check, if CUDA11 is installed for compute capability 8.0 cc_flag = [] cc_flag.append("-gencode") cc_flag.append("arch=compute_70,code=sm_70") cc_flag.append("-gencode") cc_flag.append("arch=compute_80,code=sm_80") ext_modules.append( CUDAExtension( 'rotary_emb', [ 'rotary.cpp', 'rotary_cuda.cu', ], extra_compile_args={'cxx': ['-g', '-march=native', '-funroll-loops'], 'nvcc': append_nvcc_threads([ '-O3', '--use_fast_math', '--expt-extended-lambda' ] + cc_flag) } ) ) setup( name="rotary_emb", version="0.1", ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension} if ext_modules else {}, )
flash-attention-main
csrc/rotary/setup.py
import os import subprocess import torch from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME def get_cuda_bare_metal_version(cuda_dir): raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = raw_output.split() release_idx = output.index("release") + 1 release = output[release_idx].split(".") bare_metal_major = release[0] bare_metal_minor = release[1][0] return raw_output, bare_metal_major, bare_metal_minor def append_nvcc_threads(nvcc_extra_args): _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME) if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2: return nvcc_extra_args + ["--threads", "4"] return nvcc_extra_args setup( name='fused_dense_lib', ext_modules=[ CUDAExtension( name='fused_dense_lib', sources=['fused_dense.cpp', 'fused_dense_cuda.cu'], extra_compile_args={ 'cxx': ['-O3',], 'nvcc': append_nvcc_threads(['-O3']) } ) ], cmdclass={ 'build_ext': BuildExtension })
flash-attention-main
csrc/fused_dense_lib/setup.py
import math import torch import torch.nn.functional as F import pytest from einops import rearrange from flash_attn.layers.rotary import apply_rotary_emb_func, apply_rotary_emb_torch is_sm8x = torch.cuda.get_device_capability('cuda') >= (8, 0) @pytest.mark.parametrize('dtype', ([torch.float16] if not is_sm8x else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', ([torch.float16])) @pytest.mark.parametrize('rotary_fraction', [1.0, 0.5]) # @pytest.mark.parametrize('rotary_fraction', [0.5]) @pytest.mark.parametrize('inplace', [False, True]) # @pytest.mark.parametrize('inplace', [False]) def test_rotary_single_tensor(inplace, rotary_fraction, dtype): rtol = 1e-3 batch_size = 32 nheads = 4 seqlen = 217 headdim = 128 x = torch.randn(batch_size, seqlen, nheads, headdim, dtype=dtype, device='cuda', requires_grad=True) x_pt = x.detach().clone().requires_grad_() rotary_dim = int(rotary_fraction * headdim) assert rotary_dim % 2 == 0 angle = torch.randn(seqlen, rotary_dim // 2, device='cuda') cos = torch.cos(angle).to(dtype=dtype) sin = torch.sin(angle).to(dtype=dtype) out = apply_rotary_emb_func(x, cos, sin, inplace) out_pt = apply_rotary_emb_torch(x_pt, cos, sin) # Numerical error if we just do any arithmetic atol = ((out + 0.3 - 0.3) - out).abs().max().item() assert torch.allclose(out, out_pt, rtol=rtol, atol=2 * atol) g = torch.randn_like(out) g_pt = g.clone() # If inplace=True, we might modify the gradient inplace out.backward(g) out_pt.backward(g_pt) atol = ((x_pt.grad + 0.3 - 0.3) - x_pt.grad).abs().max().item() assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=2 * atol)
flash-attention-main
tests/test_rotary.py
import math from functools import partial import torch import torch.nn.functional as F import pytest from einops import rearrange, repeat from flash_attn.flash_attn_interface import flash_attn_func, flash_attn_unpadded_qkvpacked_func, _get_block_size, flash_attn_unpadded_kvpacked_func, flash_attn_unpadded_func from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_split_func from flash_attn.bert_padding import unpad_input, pad_input, index_first_axis try: from flash_attn.flash_attn_triton import flash_attn_func except (ImportError, AttributeError): # Older version of Triton doesn't have tl.constexpr flash_attn_func = None is_sm75 = torch.cuda.get_device_capability('cuda') == (7, 5) is_sm80 = torch.cuda.get_device_capability('cuda') == (8, 0) def generate_random_padding_mask(max_seqlen, batch_size, device, mode='random'): assert mode in ['full', 'random', 'third', 'split'] if mode == 'full': lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32) elif mode == 'random': lengths = torch.randint(max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device) elif mode == 'third': lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device) elif mode == 'split': lengths0 = torch.randint(min(128, max_seqlen), max_seqlen + 1, (batch_size // 4 * 3, 1), device=device) lengths1 = torch.randint(min(max(1, max_seqlen - 20), 128), min(max_seqlen, 128) + 1, (batch_size - batch_size // 4 * 3, 1), device=device) lengths = torch.cat([lengths0, lengths1], dim=0) padding_mask = repeat(torch.arange(max_seqlen, device=device), 's -> b s', b=batch_size) < lengths return padding_mask def generate_qkv(x, Wqkv, nheads, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False): """ Arguments: x: (batch_size, seqlen, nheads * d) Wqkv: nn.Linear(nheads * d, 3 * nheads * d) query_padding_mask: (batch_size, seqlen), bool key_padding_mask: (batch_size, seqlen), bool """ assert not (kvpacked and qkvpacked) batch_size, seqlen, dim = x.shape q, k, v = Wqkv(x).chunk(3, dim=-1) if query_padding_mask is not None: q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask) q_unpad = rearrange(q_unpad, 'nnz (h d) -> nnz h d', h=nheads) output_pad_fn = lambda output_unpad: rearrange( pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads ) else: q_unpad = rearrange(q, 'b s (h d) -> (b s) h d', h=nheads) cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=q_unpad.device) max_seqlen_q = seqlen output_pad_fn = lambda output_unpad: rearrange(output_unpad, '(b s) h d -> b s h d', b=batch_size) if key_padding_mask is not None: k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask) k_unpad = rearrange(k_unpad, 'nnz (h d) -> nnz h d', h=nheads) v_unpad, _, _, _ = unpad_input(v, key_padding_mask) v_unpad = rearrange(v_unpad, 'nnz (h d) -> nnz h d', h=nheads) else: k_unpad = rearrange(k, 'b s (h d) -> (b s) h d', h=nheads) v_unpad = rearrange(v, 'b s (h d) -> (b s) h d', h=nheads) cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=q_unpad.device) max_seqlen_k = seqlen if qkvpacked: assert (query_padding_mask == key_padding_mask).all() qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1) qkv = rearrange(torch.stack([q, k, v], dim=2), 'b s t (h d) -> b s t h d', h=nheads) if query_padding_mask is not None: dqkv_pad_fn = lambda dqkv_unpad: rearrange( pad_input(rearrange(dqkv_unpad, 'nnz t h d -> nnz (t h d)'), indices_q, batch_size, seqlen), 'b s (t h d) -> b s t h d', t=3, h=nheads ) else: dqkv_pad_fn = lambda dqkv_unpad: rearrange(dqkv_unpad, '(b s) t h d -> b s t h d', b=batch_size) return (qkv_unpad.detach().requires_grad_(), cu_seqlens_q, max_seqlen_q, qkv.detach().requires_grad_(), output_pad_fn, dqkv_pad_fn) elif kvpacked: kv_unpad = torch.stack([k_unpad, v_unpad], dim=1) q = rearrange(q, 'b s (h d) -> b s h d', h=nheads) kv = rearrange(torch.stack([k, v], dim=2), 'b s t (h d) -> b s t h d', h=nheads) dq_pad_fn = output_pad_fn if key_padding_mask is not None: dkv_pad_fn = lambda dkv_unpad: rearrange( pad_input(rearrange(dkv_unpad, 'nnz t h d -> nnz (t h d)'), indices_k, batch_size, seqlen), 'b s (t h d) -> b s t h d', t=2, h=nheads ) else: dkv_pad_fn = lambda dkv_unpad: rearrange(dkv_unpad, '(b s) t h d -> b s t h d', b=batch_size) return (q_unpad.detach().requires_grad_(), kv_unpad.detach().requires_grad_(), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q.detach().requires_grad_(), kv.detach().requires_grad_(), output_pad_fn, dq_pad_fn, dkv_pad_fn) else: q, k, v = [rearrange(z, 'b s (h d) -> b s h d', h=nheads).detach().requires_grad_() for z in [q, k, v]] dq_pad_fn = output_pad_fn if key_padding_mask is not None: dk_pad_fn = lambda dk_unpad: rearrange( pad_input(rearrange(dk_unpad, 'nnz h d -> nnz (h d)'), indices_k, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads ) else: dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, '(b s) h d -> b s h d', b=batch_size) return (q_unpad.detach().requires_grad_(), k_unpad.detach().requires_grad_(), v_unpad.detach().requires_grad_(), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn) def attention_ref(q, k, v, query_padding_mask=None, key_padding_mask=None, dropout_p=0.0, dropout_mask=None, causal=False, bias=None, upcast=True, reorder_ops=False): """ Arguments: q: (batch_size, seqlen_q, nheads, head_dim) k: (batch_size, seqlen_k, nheads, head_dim) v: (batch_size, seqlen_k, nheads, head_dim) query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) dropout_p: float dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k) bias: (batch_size, nheads, seqlen_q, seqlen_k) upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast output back to fp16/bf16. reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.) without changing the math. This is to estimate the numerical error from operation reordering. Output: output: (batch_size, seqlen_q, nheads, head_dim) attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout """ dtype_og = q.dtype if upcast: q, k, v = q.float(), k.float(), v.float() seqlen_q, seqlen_k = q.shape[1], k.shape[1] d = q.shape[-1] if not reorder_ops: scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(d), k) else: scores = torch.einsum('bthd,bshd->bhts', q, k / math.sqrt(d)) if bias is not None: scores = (scores + bias).to(dtype=scores.dtype) if key_padding_mask is not None: scores.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), float('-inf')) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1) scores.masked_fill_(causal_mask, float('-inf')) attention = torch.softmax(scores, dim=-1) dropout_scaling = 1.0 / (1 - dropout_p) # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling # output = torch.einsum('bhts,bshd->bthd', attention_drop , v) if dropout_mask is not None: attention_drop = attention.masked_fill(~dropout_mask, 0.0) else: attention_drop = attention output = torch.einsum('bhts,bshd->bthd', attention_drop, v * dropout_scaling) if query_padding_mask is not None: output.masked_fill_(rearrange(~query_padding_mask, 'b s -> b s 1 1'), 0.0) attention = attention.masked_fill(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0) return output.to(dtype=dtype_og), attention.to(dtype=dtype_og) def attention_kvpacked_ref(q, kv, query_padding_mask=None, key_padding_mask=None, dropout_p=0.0, dropout_mask=None, causal=False, upcast=True, reorder_ops=False): return attention_ref(q, kv[:, :, 0], kv[:, :, 1], query_padding_mask, key_padding_mask, dropout_p, dropout_mask, upcast=upcast, causal=causal, reorder_ops=reorder_ops) def attention_qkvpacked_ref(qkv, key_padding_mask=None, dropout_p=0.0, dropout_mask=None, causal=False, upcast=True, reorder_ops=False): return attention_ref(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p, dropout_mask, upcast=upcast, causal=causal, reorder_ops=reorder_ops) def generate_sparsity_mask(seqlen, sparsity=0.3): repeats = seqlen // 16 // 2 # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'), # torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1) # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'), # torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1) # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1) # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1) nrow, ncol = seqlen // 16, seqlen // 256 mask = torch.rand(nrow, ncol, device='cuda') < sparsity return mask def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) blockmask: (seqlen / 16, seqlen / 256) attn_mask: (batch_size, seqlen) dropout_p: float dropout_mask: (batch_size, nheads, seqlen, seqlen) Output: output: (batch_size, seqlen, nheads, head_dim) attention: softmax after dropout """ q, k, v = qkv.float().unbind(dim=2) d = qkv.shape[-1] seqlen = qkv.shape[1] scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(d), k) scores.masked_fill_(rearrange(~attn_mask, 'b s -> b 1 1 s'), float('-inf')) blockmask = repeat(blockmask, 's_16 s_256 -> (s_16 16) (s_256 256)') blockmask = blockmask[:seqlen, :seqlen] scores.masked_fill_(rearrange(~blockmask, 't s -> 1 1 t s'), float('-inf')) attention = torch.softmax(scores, dim=-1) attention = attention.masked_fill(rearrange(~attn_mask, 'b s -> b 1 s 1'), 0.0) attention = attention.masked_fill_(rearrange(~blockmask, 't s -> 1 1 t s'), 0.0) attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) output.masked_fill_(rearrange(~attn_mask, 'b s -> b s 1 1'), 0) return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype) def convert_flash_attn_S_to_softmax(S, query_padding_mask, key_padding_mask, head_dim, is_dropout, causal=False): """FlashAttention stores the S matrix in a different way. Arguments: S: (batch_size, nheads, seqlen_q, seqlen_k) query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) """ S_flat = rearrange(S, 'b h t s -> b h (t s)') seqlen_q, seqlen_k = S.shape[-2:] block_size = _get_block_size(S.device, head_dim, is_dropout) loop_steps = (seqlen_k + block_size - 1) // block_size warps_n = 4 mmas_n = (seqlen_k // warps_n // 16) if seqlen_k <= block_size else (block_size // warps_n // 16) S_converted = rearrange(S_flat, 'b h (loop nsteps mmas_n warps_n eight t r c0 c1) -> b h (nsteps r eight) (loop mmas_n warps_n c0 t c1)', loop=loop_steps, nsteps=seqlen_q // 16, mmas_n=mmas_n, warps_n=warps_n, eight=8, t=4, r=2, c0=2, c1=2) # Need to zero out things not in attention_mask in case S was initialized with random values # and some of those values aren't overwritten. seqlen_q_og = query_padding_mask.shape[-1] if seqlen_q_og < seqlen_q: query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q - seqlen_q_og)) else: query_padding_mask = query_padding_mask[:, :seqlen_q] S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0) seqlen_k_og = key_padding_mask.shape[-1] if seqlen_k_og < seqlen_k: key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k - seqlen_k_og)) else: key_padding_mask = key_padding_mask[:, :seqlen_k] S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), 0.0) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=S.device), 1) S_converted.masked_fill_(causal_mask, 0.0) if seqlen_q_og < seqlen_q: S_converted = S_converted[:, :, :seqlen_q_og, :] else: S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q)) if seqlen_k_og < seqlen_k: S_converted = S_converted[:, :, :, :seqlen_k_og] else: S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k)) return S_converted def normalize_flash_attn_S(attn_unnorm, q, k, v, query_padding_mask=None, key_padding_mask=None, is_dropout=False, causal=False): """ Arguments: q: (batch_size, seqlen_q, nheads, head_dim) k, v: (batch_size, seqlen_k, nheads, head_dim) key_padding_mask: (batch_size, seqlen_q) Output: softmax_lse: (batch_size, nheads, seqlen_q) softmax_max: (batch_size, nheads, seqlen_q) """ q, k, v = q.float(), k.float(), v.float() _, seqlen_q, _, head_dim = q.shape seqlen_k = k.shape[1] scores = torch.einsum('bthd,bshd->bhts', q / math.sqrt(head_dim), k) if key_padding_mask is not None: scores.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), float('-inf')) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1) scores.masked_fill_(causal_mask, float('-inf')) block_size = _get_block_size(scores.device, head_dim, is_dropout) scores_block = scores.split(block_size, dim=-1) lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1) lcse_block = torch.logcumsumexp(lse_block, dim=-1).unbind(dim=-1) scores_max_block = ([torch.amax(scores_block[0], dim=-1)] + [torch.maximum(torch.amax(s, dim=-1), lcse) for s, lcse in zip(scores_block[1:], lcse_block[:-1])]) attn_unnorm_block = attn_unnorm.split(block_size, dim=-1) attn_norm = torch.cat([a / rearrange(torch.exp(lcse_block[-1] - m), 'b h s -> b h s 1') for a, m in zip(attn_unnorm_block, scores_max_block)], dim=-1) if query_padding_mask is not None: attn_norm.masked_fill_(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), 0.0) return attn_norm.to(dtype=attn_unnorm.dtype) def get_dropout_fraction(dropout_mask, query_padding_mask=None, key_padding_mask=None, causal=False): """ dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop. query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) """ batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape dropped = ~dropout_mask if query_padding_mask is not None: dropped.masked_fill_(rearrange(~query_padding_mask, 'b s -> b 1 s 1'), False) if key_padding_mask is not None: dropped.masked_fill_(rearrange(~key_padding_mask, 'b s -> b 1 1 s'), False) if causal: causal_mask = torch.triu(torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=dropout_mask.device), 1) dropped.masked_fill_(causal_mask, False) dropped_total = dropped.sum() query_lengths = (query_padding_mask.sum(dim=-1) if query_padding_mask is not None else torch.full((batch_size,), seqlen_q, device=dropout_mask.device)) key_lengths = (key_padding_mask.sum(dim=-1) if key_padding_mask is not None else torch.full((batch_size,), seqlen_k, device=dropout_mask.device)) if not causal: numel_per_batch = query_lengths * key_lengths else: numel_per_batch = torch.where( query_lengths <= key_lengths, query_lengths * (query_lengths + 1) / 2, query_lengths * key_lengths - (key_lengths * (key_lengths - 1) / 2) ) return dropped_total / (numel_per_batch.sum() * nheads) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [False]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_unpadded_qkvpacked(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) # Set smaller batch size so it would trigger num_splits > 1 batch_size = 8 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full') qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv( x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_qkvpacked_func( qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask, causal=causal).item() output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g) dqkv = dqkv_pad_fn(dqkv_unpad) dqkv_ref, = torch.autograd.grad(output_ref, qkv, g) dqkv_pt, = torch.autograd.grad(output_pt, qkv, g) print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.98 <= dropout_fraction / dropout_p <= 1.02 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 # Error for dK and dV could be a bit higher if we're splitting along seqlen_q dimension assert (dqkv - dqkv_ref).abs().max().item() <= 4 * (dqkv_pt - dqkv_ref).abs().max().item() # assert torch.allclose(dqkv, dqkv_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_unpadded_kvpacked(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') (q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, kv, output_pad_fn, dq_pad_fn, dkv_pad_fn) = generate_qkv( x, Wqkv, nheads, query_padding_mask, key_padding_mask, kvpacked=True ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_kvpacked_func( q_unpad, kv_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, q, kv[:, :, 0], kv[:, :, 1], query_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, query_padding_mask, key_padding_mask, causal=causal) output_ref, attn_ref = attention_kvpacked_ref(q, kv, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_kvpacked_ref(q, kv, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dq_unpad, dkv_unpad, = torch.autograd.grad(output, (q_unpad, kv_unpad), g) dq = dq_pad_fn(dq_unpad) dkv = dkv_pad_fn(dkv_unpad) dq_ref, dkv_ref, = torch.autograd.grad(output_ref, (q, kv), g) dq_pt, dkv_pt = torch.autograd.grad(output_pt, (q, kv), g) print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}') print(f'dK max diff: {(dkv[:, :, 0] - dkv_ref[:, :, 0]).abs().max().item()}') print(f'dV max diff: {(dkv[:, :, 1] - dkv_ref[:, :, 1]).abs().max().item()}') print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}') print(f'dK Pytorch max diff: {(dkv_pt[:, :, 0] - dkv_ref[:, :, 0]).abs().max().item()}') print(f'dV Pytorch max diff: {(dkv_pt[:, :, 1] - dkv_ref[:, :, 1]).abs().max().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() assert (dkv - dkv_ref).abs().max().item() <= 2 * (dkv_pt - dkv_ref).abs().max().item() # assert torch.allclose(dq, dq_ref, rtol=rtol, atol=atol) # assert torch.allclose(dkv, dkv_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_unpadded(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') (q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn) = generate_qkv( x, Wqkv, nheads, query_padding_mask, key_padding_mask ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, q, k, v, query_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, query_padding_mask, key_padding_mask, causal=causal) output_ref, attn_ref = attention_ref(q, k, v, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_ref(q, k, v, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dq_unpad, dk_unpad, dv_unpad, = torch.autograd.grad(output, (q_unpad, k_unpad, v_unpad), g) dq = dq_pad_fn(dq_unpad) dk = dk_pad_fn(dk_unpad) dv = dk_pad_fn(dv_unpad) dq_ref, dk_ref, dv_ref, = torch.autograd.grad(output_ref, (q, k, v), g) dq_pt, dk_pt, dv_pt, = torch.autograd.grad(output_pt, (q, k, v), g) print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}') print(f'dK max diff: {(dk - dk_ref).abs().max().item()}') print(f'dV max diff: {(dv - dv_ref).abs().max().item()}') print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}') print(f'dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}') print(f'dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() # assert torch.allclose(dq, dq_ref, rtol=rtol, atol=atol) # assert torch.allclose(dk, dk_ref, rtol=rtol, atol=atol) # assert torch.allclose(dv, dv_ref, rtol=rtol, atol=atol) @pytest.mark.skipif(True, reason='Experimental, not being used') @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [False]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [512]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_split(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # if dtype == torch.float16: # rtol, atol = (1e-3, 3e-4) if not causal else (1e-3, 1e-3) # else: # torch.bfloat16 # rtol, atol = (3e-3, 3e-3) if not causal else (1e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='split') batch_size0 = batch_size // 4 * 3 # this must match what's in generate_random_padding_mask # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full') qkv_unpad, cu_seqlens, max_seqlen0, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv( x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True ) max_seqlen1 = 128 output_unpad, sm_lse, S_dmask0, S_dmask1 = flash_attn_unpadded_qkvpacked_split_func( qkv_unpad, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask0_converted = convert_flash_attn_S_to_softmax( S_dmask0, key_padding_mask[:batch_size0], key_padding_mask[:batch_size0], d, dropout_p > 0.0, causal=causal ) S_dmask1_converted = convert_flash_attn_S_to_softmax( S_dmask1, key_padding_mask[batch_size0:, :max_seqlen1], key_padding_mask[batch_size0:, :max_seqlen1], d, dropout_p > 0.0, causal=causal ) padding = (S_dmask0_converted.shape[-1] - S_dmask1_converted.shape[-1], S_dmask0_converted.shape[-2] - S_dmask1_converted.shape[-2]) S_dmask_converted = torch.cat([S_dmask0_converted, F.pad(S_dmask1_converted, (0, padding[0], 0, padding[1]))], dim=0) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask, causal=causal).item() output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output) dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g) dqkv = dqkv_pad_fn(dqkv_unpad) dqkv_ref, = torch.autograd.grad(output_ref, qkv, g) dqkv_pt, = torch.autograd.grad(output_pt, qkv, g) print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 if is_sm80 or d <= 64: # Only run backward for d=128 on A100 assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item() # assert torch.allclose(dqkv, dqkv_ref, rtol=rtol, atol=atol) @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('causal', [False, True]) @pytest.mark.parametrize('d', [128, 64, 80, 40, 32, 16]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048]) # @pytest.mark.parametrize('seqlen', [128]) @pytest.mark.parametrize('dropout_p', [0.0, 0.17]) # @pytest.mark.parametrize('dropout_p', [0.0]) def test_flash_attn_race_condition(seqlen, d, dropout_p, causal, dtype): if seqlen >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) query_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') (q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn) = generate_qkv( x, Wqkv, nheads, query_padding_mask, key_padding_mask ) torch.random.manual_seed(0) output_unpad_0, sm_lse_0, S_dmask_0 = flash_attn_unpadded_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) S_dmask_converted_0 = convert_flash_attn_S_to_softmax( S_dmask_0, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) if is_sm80 or d <= 64: # Only run backward for d=128 on A100 g = torch.randn_like(output_unpad_0) dq_unpad_0, dk_unpad_0, dv_unpad_0, = torch.autograd.grad(output_unpad_0, (q_unpad, k_unpad, v_unpad), g) # Parallelizing over seqlen_k makes dq non-deterministic deterministic_dq = False # Numerical error if we just do any arithmetic on dq dq_atol = ((dq_unpad_0 + 0.3 - 0.3) - dq_unpad_0).abs().max().item() equal_fn = torch.equal if deterministic_dq else partial(torch.allclose, atol=dq_atol) for _ in range(10): torch.random.manual_seed(0) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, return_attn_probs=True, causal=causal ) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) assert torch.equal(output_unpad, output_unpad_0) # sm_lse has some parts that are uninitialized from torch.empty # assert torch.equal(sm_lse, sm_lse_0) assert torch.equal(S_dmask_converted, S_dmask_converted_0) if is_sm80 or d <= 64: # Only run backward for d=128 on A100 dq_unpad, dk_unpad, dv_unpad, = torch.autograd.grad(output_unpad, (q_unpad, k_unpad, v_unpad), g) assert equal_fn(dq_unpad, dq_unpad_0) assert torch.equal(dk_unpad, dk_unpad_0) assert torch.equal(dv_unpad, dv_unpad_0) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason='requires multiple GPUs') def test_flash_attn_multigpu(): seqlen = 256 d = 64 dropout_p = 0.0 causal = False dtype = torch.float16 device = 'cuda:1' torch.random.manual_seed(0) batch_size = 32 nheads = 4 x = torch.randn(batch_size, seqlen, nheads * d, device=device, dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='random') # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full') qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv( x, Wqkv, nheads, key_padding_mask, key_padding_mask, qkvpacked=True ) output_unpad, sm_lse, S_dmask = flash_attn_unpadded_qkvpacked_func( qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal ) output = output_pad_fn(output_unpad) S_dmask_converted = convert_flash_attn_S_to_softmax( S_dmask, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal ) dropout_mask = S_dmask_converted >= 0 attn_unnorm = S_dmask_converted.abs() attn = normalize_flash_attn_S(attn_unnorm, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], key_padding_mask, key_padding_mask, dropout_p > 0.0, causal=causal) dropout_fraction = get_dropout_fraction(dropout_mask, key_padding_mask, key_padding_mask, causal=causal).item() output_ref, attn_ref = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal) output_pt, attn_pt = attention_qkvpacked_ref(qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True) print(f'Actual dropout fraction: {dropout_fraction}') print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') print(f'Attention max diff: {(attn - attn_ref).abs().max().item()}') print(f'Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}') g = torch.randn_like(output) dqkv_unpad, = torch.autograd.grad(output, qkv_unpad, g) dqkv = dqkv_pad_fn(dqkv_unpad) dqkv_ref, = torch.autograd.grad(output_ref, qkv, g) dqkv_pt, = torch.autograd.grad(output_pt, qkv, g) print(f'dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}') print(f'dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}') print(f'dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}') print(f'dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item() # assert torch.allclose(attn, attn_ref, rtol=rtol, atol=atol) if dropout_p == 0.0: assert dropout_mask.all() else: assert 0.99 <= dropout_fraction / dropout_p <= 1.01 assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item() @pytest.mark.skipif(flash_attn_func is None, reason='Triton is not installed or is too old') @pytest.mark.skipif(not is_sm80, reason='Triton version is only tested on A100') @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.bfloat16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [True]) @pytest.mark.parametrize('d', [40, 48, 64, 128, 80, 88, 96]) # @pytest.mark.parametrize('d', [48]) @pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203), (128, 217), (113, 211), (108, 256), (256, 512), (512, 256), (1024, 1024), (1023, 1024), (1024, 1023), (2048, 2048)]) # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(1024, 1023)]) @pytest.mark.parametrize('bias_shape', ([None, '1h1k', '1hqk', 'b11k', 'b1qk'])) # @pytest.mark.parametrize('bias_shape', (['1hqk'])) def test_flash_attn_triton_output(seqlen_q, seqlen_k, d, causal, dtype, bias_shape): if seqlen_q >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype) k, v = torch.randn(batch_size, seqlen_k, 2, nheads, d, device=device, dtype=dtype).unbind(dim=2) if bias_shape == '1h1k': bias = torch.randn(1, nheads, 1, seqlen_k, dtype=torch.float, device=device) elif bias_shape == '1hqk': bias = torch.randn(1, nheads, seqlen_q, seqlen_k, dtype=torch.float, device=device) elif bias_shape == 'b11k': bias = torch.randn(batch_size, 1, 1, seqlen_k, dtype=torch.float, device=device) elif bias_shape == 'b1qk': bias = torch.randn(batch_size, 1, seqlen_q, seqlen_k, dtype=torch.float, device=device) else: bias = None q, k, v = [x.detach().requires_grad_() for x in [q, k, v]] output = flash_attn_func(q, k, v, bias, causal) output_ref, attn_ref = attention_ref(q, k, v, bias=bias, causal=causal) output_pt, attn_pt = attention_ref(q, k, v, bias=bias, causal=causal, upcast=False, reorder_ops=True) print(f'Output max diff: {(output - output_ref).abs().max().item()}') print(f'Output mean diff: {(output - output_ref).abs().mean().item()}') print(f'Pytorch max diff: {(output_pt - output_ref).abs().max().item()}') print(f'Pytorch mean diff: {(output_pt - output_ref).abs().mean().item()}') g = torch.randn_like(output) dq, dk, dv = torch.autograd.grad(output, (q, k, v), g) dq_ref, dk_ref, dv_ref, = torch.autograd.grad(output_ref, (q, k, v), g) dq_pt, dk_pt, dv_pt, = torch.autograd.grad(output_pt, (q, k, v), g) print(f'dQ max diff: {(dq - dq_ref).abs().max().item()}') print(f'dK max diff: {(dk - dk_ref).abs().max().item()}') print(f'dV max diff: {(dv - dv_ref).abs().max().item()}') print(f'dQ mean diff: {(dq - dq_ref).abs().mean().item()}') print(f'dK mean diff: {(dk - dk_ref).abs().mean().item()}') print(f'dV mean diff: {(dv - dv_ref).abs().mean().item()}') print(f'dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}') print(f'dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}') print(f'dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}') print(f'dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}') print(f'dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}') print(f'dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}') # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. assert (output - output_ref).abs().max().item() <= 2 * (output_pt - output_ref).abs().max().item() # assert torch.allclose(output, output_ref, rtol=rtol, atol=atol) assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() @pytest.mark.skipif(flash_attn_func is None, reason='Triton is not installed or is too old') @pytest.mark.skipif(not is_sm80, reason='Triton version is only tested on A100') @pytest.mark.parametrize('dtype', ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16])) # @pytest.mark.parametrize('dtype', [torch.bfloat16]) @pytest.mark.parametrize('causal', [False, True]) # @pytest.mark.parametrize('causal', [True]) @pytest.mark.parametrize('d', [40, 48, 64, 128, 80, 88, 96]) # @pytest.mark.parametrize('d', [64]) @pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203), (128, 217), (91, 211), (108, 256), (256, 512), (512, 256), (1024, 1024), (1023, 1024), (1024, 1023), (2048, 2048)]) # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(113, 203)]) @pytest.mark.parametrize('bias_shape', ([None, '1h1k', '1hqk', 'b11k', 'b1qk'])) # @pytest.mark.parametrize('bias_shape', (['b1qk'])) def test_flash_attn_triton_race_condition(seqlen_q, seqlen_k, d, causal, dtype, bias_shape): if seqlen_q >= 2048 and torch.cuda.get_device_properties('cuda').total_memory <= 16 * 2**30: pytest.skip() # Reference implementation OOM device = 'cuda' # set seed torch.random.manual_seed(0) batch_size = 32 nheads = 4 q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype) k, v = torch.randn(batch_size, seqlen_k, 2, nheads, d, device=device, dtype=dtype).unbind(dim=2) if bias_shape == '1h1k': bias = torch.randn(1, nheads, 1, seqlen_k, dtype=torch.float, device=device) elif bias_shape == '1hqk': bias = torch.randn(1, nheads, seqlen_q, seqlen_k, dtype=torch.float, device=device) elif bias_shape == 'b11k': bias = torch.randn(batch_size, 1, 1, seqlen_k, dtype=torch.float, device=device) elif bias_shape == 'b1qk': bias = torch.randn(batch_size, 1, seqlen_q, seqlen_k, dtype=torch.float, device=device) else: bias = None q, k, v = [x.detach().requires_grad_() for x in [q, k, v]] output_0 = flash_attn_func(q, k, v, bias, causal) g = torch.randn_like(output_0) dq_0, dk_0, dv_0 = torch.autograd.grad(output_0, (q, k, v), g) # The SEQUENCE_PARALLEL option for the bwd to makes dq non-deterministic deterministic_dq = False # Numerical error if we just do any arithmetic on dq dq_atol = ((dq_0 + 0.3 - 0.3) - dq_0).abs().max().item() equal_fn = torch.equal if deterministic_dq else partial(torch.allclose, atol=dq_atol) # Run 10000 times and check that the results don't change for i in range(10000): output = flash_attn_func(q, k, v, bias, causal) output_equal = torch.equal(output, output_0) if not output_equal: # Printing / computing diff sometimes makes the race condition disappear print(f'{dtype = }, {causal = }, {d = }, {seqlen_q = }, {seqlen_k = }, {bias_shape = }, {i = }') print(f'Output max diff: {(output - output_0).abs().max().item()}') assert torch.equal(output, output_0) dq, dk, dv = torch.autograd.grad(output, (q, k, v), g) dq_equal = equal_fn(dq, dq_0) dk_equal = torch.equal(dk, dk_0) dv_equal = torch.equal(dv, dv_0) if not (dq_equal and dk_equal and dv_equal): print(f'{dtype = }, {causal = }, {d = }, {seqlen_q = }, {seqlen_k = }, {bias_shape = }, {i = }') print(f'dQ max diff: {(dq - dq_0).abs().max().item()}') print(f'dK max diff: {(dk - dk_0).abs().max().item()}') print(f'dV max diff: {(dv - dv_0).abs().max().item()}') assert equal_fn(dq, dq_0) assert torch.equal(dk, dk_0) assert torch.equal(dv, dv_0)
flash-attention-main
tests/test_flash_attn.py
# Run test with: # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/losses/test_cross_entropy_parallel.py import math import torch import torch.nn.functional as F import pytest from apex.transformer import parallel_state from apex.transformer import tensor_parallel from flash_attn.losses.cross_entropy_parallel import CrossEntropyLossParallel is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.bfloat16]) @pytest.mark.parametrize('inplace_backward', [False, True]) # @pytest.mark.parametrize('inplace_backward', [False]) @pytest.mark.parametrize('vocab_size', [50264]) @pytest.mark.parametrize('world_size', [1, 2, 4, 8]) # @pytest.mark.parametrize('world_size', [2]) def test_cross_entropy_loss_apex(vocab_size, world_size, inplace_backward, dtype): assert vocab_size % world_size == 0 rtol, atol = ((1e-5, 1e-6) if dtype == torch.float32 else ((1e-3, 1e-4) if dtype == torch.float16 else (1e-2, 3e-3))) if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl', init_method='env://') partition_vocab_size = vocab_size // world_size device = f'cuda:{torch.distributed.get_rank()}' assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 128 x_pt = (torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype) * 10).requires_grad_() x = tensor_parallel.scatter_to_tensor_model_parallel_region(x_pt).detach().clone().requires_grad_() y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device) y[torch.randperm(batch_size * seqlen)[:10]] = -100 model_pt = torch.nn.CrossEntropyLoss(reduction='none') model = CrossEntropyLossParallel(reduction='none', inplace_backward=inplace_backward) out = model(x, y) out_pt = model_pt(x_pt.float(), y) assert torch.allclose(out, out_pt, rtol=1e-5, atol=1e-6) g = torch.randn_like(out) out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad[:, (rank * partition_vocab_size):(rank + 1) * partition_vocab_size], rtol=rtol, atol=atol) parallel_state.destroy_model_parallel()
flash-attention-main
tests/losses/test_cross_entropy_parallel.py
import math import torch import torch.nn.functional as F import pytest from einops import rearrange from flass_attn.losses.cross_entropy_apex import CrossEntropyLossApex is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('dtype', [torch.float16, torch.float32] + ([torch.bfloat16] if is_sm8x else [])) # @pytest.mark.parametrize('dtype', [torch.float16]) @pytest.mark.parametrize('inplace_backward', [False, True]) # @pytest.mark.parametrize('inplace_backward', [False]) @pytest.mark.parametrize('vocab_size', [50257]) def test_cross_entropy_loss_apex(vocab_size, inplace_backward, dtype): device = 'cuda' rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 128 x_pt = torch.randn(batch_size * seqlen, vocab_size, device=device, dtype=dtype, requires_grad=True) x = x_pt.detach().clone().requires_grad_() y = torch.randint(0, vocab_size, (batch_size * seqlen,), dtype=torch.long, device=device) y[torch.randperm(batch_size * seqlen)[:10]] = -100 model_pt = torch.nn.CrossEntropyLoss() model = CrossEntropyLossApex(inplace_backward=inplace_backward) out = model(x, y) out_pt = model_pt(x_pt.float(), y) assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) g = torch.randn_like(out) out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
flash-attention-main
tests/losses/test_cross_entropy_apex.py
import math import torch import torch.nn.functional as F import pytest from einops import rearrange from flash_attn.ops.layer_norm import DropoutAddLayerNorm, dropout_add_layer_norm is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8 @pytest.mark.parametrize('has_rowscale', [True, False]) # @pytest.mark.parametrize('has_rowscale', [True]) @pytest.mark.parametrize('has_residual', [True, False]) # @pytest.mark.parametrize('has_residual', [False]) @pytest.mark.parametrize('dropout_p', [0.37, 0.0]) # @pytest.mark.parametrize('dropout_p', [0.0]) @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16]) # @pytest.mark.parametrize('weight_dtype', [torch.float32]) @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else [])) # @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)]) @pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120]) # @pytest.mark.parametrize('hidden_size', [768]) def test_dropout_layer_norm_training(hidden_size, input_dtype, residual_dtype, weight_dtype, dropout_p, has_residual, has_rowscale): if weight_dtype == torch.float16 and input_dtype == torch.bfloat16: pytest.skip() # Not supported # Backward numerical error is high, and this case isn't used if has_rowscale and not has_residual: pytest.skip() device = 'cuda' # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4) rtol, atol = (1e-3, 1e-4) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True) x0 = x0_pt.detach().clone().requires_grad_() x0_ref = x0_pt.detach().clone().float().requires_grad_() if has_residual: x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) x1 = x1_pt.detach().clone().requires_grad_() x1_ref = x1_pt.detach().clone().float().requires_grad_() else: x1 = None if has_rowscale: rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype) survival_rate = 0.87 rowscale = rowscale.bernoulli_(survival_rate) / survival_rate x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1') x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1') else: rowscale = None x0_scaled_pt = x0_pt x0_scaled_ref = x0_ref model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype) torch.nn.init.normal_(model_pt.weight) torch.nn.init.normal_(model_pt.bias) model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32) model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype) with torch.no_grad(): model.weight.copy_(model_pt.weight) model.bias.copy_(model_pt.bias) model_ref.weight.copy_(model_pt.weight) model_ref.bias.copy_(model_pt.bias) residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32 out, dmask = dropout_add_layer_norm(x0, x1, model.weight, model.bias, model.p, model.epsilon, rowscale=rowscale, residual_in_fp32=residual_in_fp32, return_dropout_mask=True) assert out.dtype == input_dtype print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}') if has_residual: residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref else: residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype) out_ref = model_ref(residual_ref) assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4 g = torch.randn_like(out) / batch_size out_pt.backward(g) out.backward(g) out_ref.backward(g) assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4 if has_residual: assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4 assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 3e-5 assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 3e-5 @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16]) @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else [])) @pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120]) def test_dropout_layer_norm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype): if weight_dtype == torch.float16 and input_dtype == torch.bfloat16: pytest.skip() # Not supported device = 'cuda' # rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4) rtol, atol = (1e-3, 1e-4) dropout_p = 0.37 # set seed torch.random.manual_seed(0) batch_size = 32 seqlen = 512 x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True) x0 = x0_pt.detach().clone().requires_grad_() x0_ref = x0_pt.detach().clone().float().requires_grad_() x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) x1 = x1_pt.detach().clone().requires_grad_() x1_ref = x1_pt.detach().clone().float().requires_grad_() model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype) model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype) model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32) with torch.no_grad(): model.weight.copy_(model_pt.weight) model.bias.copy_(model_pt.bias) model_ref.weight.copy_(model_pt.weight) model_ref.bias.copy_(model_pt.bias) model_pt.eval() model.eval() model_ref.eval() out = model(x0, x1) residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype) residual_ref = x0_ref + x1_ref out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype) out_ref = model_ref(residual_ref) assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4 @pytest.mark.parametrize('has_rowscale', [True, False]) @pytest.mark.parametrize('has_residual', [True, False]) @pytest.mark.parametrize('dropout_p', [0.37, 0.0]) @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16]) @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else [])) @pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120]) def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_dtype, weight_dtype, dropout_p, has_residual, has_rowscale): if weight_dtype == torch.float16 and input_dtype == torch.bfloat16: pytest.skip() # Not supported # Backward numerical error is high, and this case isn't used if has_rowscale and not has_residual: pytest.skip() device = 'cuda' # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4) rtol, atol = (1e-3, 2e-4) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True) x0 = x0_pt.detach().clone().requires_grad_() x0_ref = x0_pt.detach().clone().float().requires_grad_() if has_residual: x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) x1 = x1_pt.detach().clone().requires_grad_() x1_ref = x1_pt.detach().clone().float().requires_grad_() else: x1 = None if has_rowscale: rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype) survival_rate = 0.87 rowscale = rowscale.bernoulli_(survival_rate) / survival_rate x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1') x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1') else: rowscale = None x0_scaled_pt = x0_pt x0_scaled_ref = x0_ref model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype) model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32) model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device, dtype=weight_dtype) with torch.no_grad(): model.weight.copy_(model_pt.weight) model.bias.copy_(model_pt.bias) model_ref.weight.copy_(model_pt.weight) model_ref.bias.copy_(model_pt.bias) residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32 out, residual, dmask = dropout_add_layer_norm(x0, x1, model.weight, model.bias, model.p, model.epsilon, rowscale=rowscale, prenorm=True, residual_in_fp32=residual_in_fp32, return_dropout_mask=True) print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}') if has_residual: residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref else: residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype) residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype) out_ref = model_ref(residual_ref) assert out.dtype == input_dtype assert residual.dtype == residual_dtype assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4 assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4 g = torch.randn_like(out) / batch_size (out_pt * F.sigmoid(residual_pt)).backward(g) (out * F.sigmoid(residual)).backward(g) (out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g) assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4 if has_residual: assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4 assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 2e-4 assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 2e-4 @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16]) @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float16), (torch.float16, torch.float32), (torch.float32, torch.float32)] + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else [])) @pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120]) def test_dropout_layer_norm_prenorm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype): if weight_dtype == torch.float16 and input_dtype == torch.bfloat16: pytest.skip() # Not supported device = 'cuda' # rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4) rtol, atol = (1e-3, 1e-4) dropout_p = 0.37 # set seed torch.random.manual_seed(0) batch_size = 32 seqlen = 512 x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype, requires_grad=True) x0 = x0_pt.detach().clone().requires_grad_() x0_ref = x0_pt.detach().clone().float().requires_grad_() x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True) x1 = x1_pt.detach().clone().requires_grad_() x1_ref = x1_pt.detach().clone().float().requires_grad_() model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype) model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device, dtype=weight_dtype) model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32) with torch.no_grad(): model.weight.copy_(model_pt.weight) model.bias.copy_(model_pt.bias) model_ref.weight.copy_(model_pt.weight) model_ref.bias.copy_(model_pt.bias) model_pt.eval() model.eval() model_ref.eval() out, residual = model(x0, x1) residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype) residual_ref = x0_ref + x1_ref out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype) out_ref = model_ref(residual_ref) assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4 assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4
flash-attention-main
tests/ops/test_dropout_layer_norm.py
import math import torch import torch.nn.functional as F import pytest from einops import rearrange from flash_attn.ops.fused_dense import FusedDenseTD, FusedDenseGeluDenseTD from flash_attn.ops.fused_dense import FusedDenseResidual, FusedDenseResGeluDense @pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16]) @pytest.mark.parametrize('out_features', [1024, 4096]) @pytest.mark.parametrize('in_features', [1024, 4096]) def test_fused_linear_bias(in_features, out_features, dtype): device = 'cuda' rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True) x = x_pt.detach().clone().requires_grad_() model_pt = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype) model = FusedDenseTD(in_features, out_features, device=device, dtype=dtype) with torch.no_grad(): model.weight.copy_(model_pt.weight) model.bias.copy_(model_pt.bias) out_pt = model_pt(x_pt) out = model(x) # with torch.no_grad(): # out_fl = F.linear(x_pt.float(), model.weight.float(), model.bias.float()).half() assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(out) / 32 out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose(model.weight.grad, model_pt.weight.grad, rtol=rtol, atol=atol * 10) assert torch.allclose(model.bias.grad, model_pt.bias.grad, rtol=rtol, atol=atol * 5) @pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16]) @pytest.mark.parametrize('out_features,in_features', [(1024, 1024), (4096, 4096)]) def test_fused_linear_bias_residual(in_features, out_features, dtype): device = 'cuda' rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True) x = x_pt.detach().clone().requires_grad_() model_pt = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype) model = FusedDenseResidual(in_features, out_features, device=device, dtype=dtype) with torch.no_grad(): model.weight.copy_(model_pt.weight) model.bias.copy_(model_pt.bias) out_pt = model_pt(x_pt) + F.gelu(x_pt) # Just add some random function of the residual x_pt out, x_copy = model(x) out = out + F.gelu(x_copy) assert torch.allclose(out, out_pt, rtol=rtol, atol=atol * 2) # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(out) / 32 out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose(model.weight.grad, model_pt.weight.grad, rtol=rtol, atol=atol * 10) assert torch.allclose(model.bias.grad, model_pt.bias.grad, rtol=rtol, atol=atol * 5) @pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16]) @pytest.mark.parametrize('heuristic', [1, -1]) @pytest.mark.parametrize('checkpoint_lvl', [0, 1, 2]) @pytest.mark.parametrize('out_features', [1024, 4096]) @pytest.mark.parametrize('in_features', [1024, 4096]) def test_fused_dense_gelu_dense(in_features, out_features, checkpoint_lvl, heuristic, dtype): device = 'cuda' rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True) x = x_pt.detach().clone().requires_grad_() model_pt_fc1 = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype) model_pt_fc2 = torch.nn.Linear(out_features, in_features, device=device, dtype=dtype) model = FusedDenseGeluDenseTD(in_features, out_features, in_features, checkpoint_lvl=checkpoint_lvl, heuristic=heuristic, device=device, dtype=dtype) with torch.no_grad(): model.fc1.weight.copy_(model_pt_fc1.weight) model.fc1.bias.copy_(model_pt_fc1.bias) model.fc2.weight.copy_(model_pt_fc2.weight) model.fc2.bias.copy_(model_pt_fc2.bias) out_pt = model_pt_fc2(F.gelu(model_pt_fc1(x_pt), approximate='tanh')) out = model(x) assert torch.allclose(out, out_pt, rtol=rtol, atol=atol) # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(out) / 32 out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose(model.fc1.weight.grad, model_pt_fc1.weight.grad, rtol=rtol, atol=atol * 10) assert torch.allclose(model.fc1.bias.grad, model_pt_fc1.bias.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.fc2.weight.grad, model_pt_fc2.weight.grad, rtol=rtol, atol=atol * 10) assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5) @pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16]) @pytest.mark.parametrize('checkpoint_lvl', [0, 1, 2]) @pytest.mark.parametrize('out_features', [1024, 4096]) @pytest.mark.parametrize('in_features', [1024, 4096]) def test_fused_dense_residual_gelu_dense(in_features, out_features, checkpoint_lvl, dtype): device = 'cuda' rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3) # set seed torch.random.manual_seed(0) batch_size = 8 seqlen = 512 x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype, requires_grad=True) x = x_pt.detach().clone().requires_grad_() model_pt_fc1 = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype) model_pt_fc2 = torch.nn.Linear(out_features, in_features, device=device, dtype=dtype) model = FusedDenseResGeluDense(in_features, out_features, in_features, checkpoint_lvl=checkpoint_lvl, device=device, dtype=dtype) with torch.no_grad(): model.fc1.weight.copy_(model_pt_fc1.weight) model.fc1.bias.copy_(model_pt_fc1.bias) model.fc2.weight.copy_(model_pt_fc2.weight) model.fc2.bias.copy_(model_pt_fc2.bias) out_pt = model_pt_fc2(F.gelu(model_pt_fc1(x_pt), approximate='tanh')) + F.gelu(x_pt) out, x_copy = model(x) out = out + F.gelu(x_copy) assert torch.allclose(out, out_pt, rtol=rtol, atol=atol * 2) # If we don't divide by batch_size, the gradient gets a bit too large. g = torch.randn_like(out) / 32 out_pt.backward(g) out.backward(g) assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol) # The error for d_weight and d_bias is quite a bit higher assert torch.allclose(model.fc1.weight.grad, model_pt_fc1.weight.grad, rtol=rtol, atol=atol * 10) assert torch.allclose(model.fc1.bias.grad, model_pt_fc1.bias.grad, rtol=rtol, atol=atol * 5) assert torch.allclose(model.fc2.weight.grad, model_pt_fc2.weight.grad, rtol=rtol, atol=atol * 10) assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)
flash-attention-main
tests/ops/test_fused_dense.py
from functools import partial import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from flash_attn.utils.benchmark import benchmark_forward, benchmark_all, pytorch_profiler from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func # from flash_attn.triton.fused_attention import attention as attention from flash_attn.flash_attn_triton import flash_attn_qkvpacked_func from flash_attn.flash_attn_triton_og import attention as attention_og try: from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax except ImportError: scaled_upper_triang_masked_softmax = None def attention_pytorch(qkv, dropout_p=0.0, causal=True): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) dropout_p: float Output: output: (batch_size, seqlen, nheads, head_dim) """ batch_size, seqlen, _, nheads, d = qkv.shape q, k, v = qkv.unbind(dim=2) q = rearrange(q, 'b t h d -> (b h) t d') k = rearrange(k, 'b s h d -> (b h) d s') softmax_scale = 1.0 / math.sqrt(d) # Preallocate attn_weights for `baddbmm` scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), '(b h) t s -> b h t s', h=nheads) if causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1) attention_drop = F.dropout(attention, dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) return output.to(dtype=qkv.dtype) def attention_megatron(qkv): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) Output: output: (batch_size, seqlen, nheads, head_dim) """ batch_size, seqlen, _, nheads, d = qkv.shape q, k, v = qkv.unbind(dim=2) q = rearrange(q, 'b t h d -> (b h) t d') k = rearrange(k, 'b s h d -> (b h) d s') softmax_scale = 1.0 / math.sqrt(d) # Preallocate attn_weights for `baddbmm` scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), '(b h) t s -> b h t s', h=nheads) attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0) output = torch.einsum('bhts,bshd->bthd', attention, v) return output.to(dtype=qkv.dtype) torch.manual_seed(0) repeats = 30 batch_size = 2 seqlen = 4096 nheads = 12 headdim = 128 # batch_size = 64 # seqlen = 512 # nheads = 8 # headdim = 128 dropout_p = 0.0 causal = True dtype = torch.bfloat16 device = 'cuda' qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, requires_grad=True) cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) benchmark_all(flash_attn_unpadded_qkvpacked_func, rearrange(qkv, 'b s ... -> (b s) ...'), cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, desc='FlashAttention') benchmark_all(attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, desc='PyTorch Attention') benchmark_all(flash_attn_qkvpacked_func, qkv, causal, repeats=repeats, desc='FlashAttention Triton') pytorch_profiler(flash_attn_qkvpacked_func, qkv, causal, backward=True) q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype, requires_grad=True) for _ in range(3)] benchmark_all(attention_og, q, k, v, 1.0, repeats=repeats, desc='FlashAttention Triton OG') # pytorch_profiler(attention, q, k, v, 1.0, backward=True) if scaled_upper_triang_masked_softmax is not None: benchmark_all(attention_megatron, qkv, repeats=repeats, desc='Megatron Attention')
flash-attention-main
benchmarks/benchmark_causal.py
from functools import partial import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward, benchmark_combined from flash_attn.bert_padding import unpad_input, pad_input from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func def attention_ref(qkv, attn_mask, dropout_p, upcast=False, causal=False): """ Arguments: qkv: (batch_size, seqlen, 3, nheads, head_dim) attn_mask: (batch_size, seqlen) dropout_p: float Output: output: (batch_size, seqlen, nheads, head_dim) attention: softmax after dropout """ q, k, v = (qkv.float() if upcast else qkv).unbind(dim=2) seqlen = qkv.shape[1] d = qkv.shape[-1] scores = torch.einsum('bthd,bshd->bhts', q, k / math.sqrt(d)) scores.masked_fill_(rearrange(~attn_mask, 'b s -> b 1 1 s'), float('-inf')) if causal: causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1) scores.masked_fill_(causal_mask, float('-inf')) attention = torch.softmax(scores, dim=-1) attention_drop = F.dropout(attention, dropout_p) output = torch.einsum('bhts,bshd->bthd', attention_drop , v) # return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype) return output.to(dtype=qkv.dtype) torch.manual_seed(0) repeats = 30 batch_size = 64 nheads = 16 seqlen = 1024 n = 1024 d = n // nheads dropout_p = 0.1 causal = False dtype = torch.float16 device = 'cuda' x = torch.randn(batch_size, seqlen, n, device='cuda', dtype=dtype, requires_grad=True) Wqkv = torch.nn.Linear(nheads * d, 3 * nheads * d, device=device, dtype=dtype) lengths = torch.randint(seqlen - 20, seqlen, (batch_size, 1), device='cuda') attention_mask_bool = repeat(torch.arange(seqlen, device='cuda'), 's -> b s', b=batch_size) < lengths attention_mask = torch.zeros(batch_size, seqlen, device='cuda', dtype=dtype) attention_mask[~attention_mask_bool] = -10000.0 attention_mask = rearrange(attention_mask, 'b s -> b 1 1 s') x_unpad, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(x, attention_mask_bool) qkv_unpad = rearrange(Wqkv(x_unpad), 'nnz (t h d) -> nnz t h d', t=3, h=nheads).detach().requires_grad_() qkv = rearrange(Wqkv(x), 'b s (t h d) -> b s t h d', t=3, h=nheads).detach().requires_grad_() fn = lambda qkv_unpad: flash_attn_unpadded_qkvpacked_func( qkv_unpad, cu_seqlens, max_seqlen_in_batch, dropout_p, causal=causal ) benchmark_all(fn, qkv_unpad, repeats=repeats, desc='FlashAttention') fn = lambda qkv: attention_ref(qkv, attention_mask_bool, dropout_p, causal=causal) benchmark_all(fn, qkv, repeats=repeats, desc='PyTorch Standard Attention')
flash-attention-main
benchmarks/benchmark_flash_attention.py
# [2022-10-23] Copied from https://github.com/NVIDIA/apex/blob/master/apex/transformer/functional/fused_softmax.py # for benchmarking. # We added support for seqlen=2k and seqlen=4k # coding=utf-8 # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from apex._autocast_utils import _cast_if_autocast_enabled from apex.transformer.enums import AttnMaskType from fused_softmax_lib import scaled_masked_softmax_forward, scaled_masked_softmax_backward from fused_softmax_lib import scaled_masked_softmax_get_batch_per_block from fused_softmax_lib import scaled_upper_triang_masked_softmax_forward, scaled_upper_triang_masked_softmax_backward class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function): """ Fused operation which performs following three operations in sequence 1. Scale the tensor. 2. Apply upper triangular mask (typically used in gpt models). 3. Perform softmax. """ @staticmethod def forward(ctx, inputs, scale): scale_t = torch.tensor([scale]) softmax_results = scaled_upper_triang_masked_softmax_forward( inputs, scale_t[0] ) ctx.save_for_backward(softmax_results, scale_t) return softmax_results @staticmethod def backward(ctx, output_grads): softmax_results, scale_t = ctx.saved_tensors input_grads = scaled_upper_triang_masked_softmax_backward( output_grads, softmax_results, scale_t[0] ) return input_grads, None def scaled_upper_triang_masked_softmax(inputs, _, scale): b, np, sq, sk = inputs.size() assert sq == sk, "causal mask is only for self attention" # Reshaping input to 3D tensor (attn_batches, sq, sk) inputs = inputs.view(-1, sq, sk) args = _cast_if_autocast_enabled(inputs, scale) with torch.cuda.amp.autocast(enabled=False): probs = ScaledUpperTriangMaskedSoftmax.apply(*args) return probs.view(b, np, sq, sk) # NOTE (mkozuki): `ScaledMaskedSoftmax` somehow doesn't work well with `torch.cuda.amp.custom_fwd`. # Without `cast_inputs` kwarg, somehow inputs are not cast to dtype used in the autocast context. # So I needed to manually write two `torch.autograd.Function` inheritances. # Fused operation which performs following three operations in sequence # 1. Scale the tensor. # 2. Apply the mask. # 3. Perform softmax. class ScaledMaskedSoftmax(torch.autograd.Function): @staticmethod def forward(ctx, inputs, mask, scale): scale_t = torch.tensor([scale]) softmax_results = scaled_masked_softmax_forward(inputs, mask, scale_t[0]) ctx.save_for_backward(softmax_results, scale_t) return softmax_results @staticmethod def backward(ctx, output_grads): softmax_results, scale_t = ctx.saved_tensors input_grads = scaled_masked_softmax_backward( output_grads, softmax_results, scale_t[0] ) return input_grads, None, None def scaled_masked_softmax(inputs, mask, scale): # input is 4D tensor (b, np, sq, sk) args = _cast_if_autocast_enabled(inputs, mask, scale) with torch.cuda.amp.autocast(enabled=False): return ScaledMaskedSoftmax.apply(*args) class FusedScaleMaskSoftmax(torch.nn.Module): """ fused operation: scaling + mask + softmax Arguments: input_in_fp16: flag to indicate if input in fp16 data format. input_in_bf16: flag to indicate if input in bf16 data format. attn_mask_type: attention mask type (pad or causal) scaled_masked_softmax_fusion: flag to indicate user want to use softmax fusion mask_func: mask function to be applied. softmax_in_fp32: if true, softmax in performed at fp32 precision. scale: scaling factor used in input tensor scaling. """ def __init__( self, input_in_fp16, input_in_bf16, attn_mask_type, scaled_masked_softmax_fusion, mask_func, softmax_in_fp32, scale, ): super().__init__() self.input_in_fp16 = input_in_fp16 self.input_in_bf16 = input_in_bf16 if self.input_in_fp16 and self.input_in_bf16: raise RuntimeError( "both fp16 and bf16 flags cannot be active at the same time." ) self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16 self.attn_mask_type = attn_mask_type self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion self.mask_func = mask_func self.softmax_in_fp32 = softmax_in_fp32 self.scale = scale if not (self.scale is None or softmax_in_fp32): raise RuntimeError("softmax should be in fp32 when scaled") if self.scaled_masked_softmax_fusion: if self.attn_mask_type == AttnMaskType.causal: self.fused_softmax_func = scaled_upper_triang_masked_softmax elif self.attn_mask_type == AttnMaskType.padding: self.fused_softmax_func = scaled_masked_softmax else: raise ValueError("Invalid attn_mask_type.") def forward(self, input, mask): # [b, np, sq, sk] assert input.dim() == 4 if self.is_kernel_available(mask, *input.size()): return self.forward_fused_softmax(input, mask) else: return self.forward_torch_softmax(input, mask) def is_kernel_available(self, mask, b, np, sq, sk): attn_batches = b * np if ( self.scaled_masked_softmax_fusion # user want to fuse and self.input_in_float16 # input must be fp16 and ( self.attn_mask_type == AttnMaskType.causal or (self.attn_mask_type == AttnMaskType.padding and mask is not None) ) and 16 < sk <= 8192 # sk must be 16 ~ 8192 and sq % 4 == 0 # sq must be divisor of 4 and sk % 4 == 0 # sk must be divisor of 4 and attn_batches % 4 == 0 # np * b must be divisor of 4 ): if 0 <= sk <= 8192: batch_per_block = self.get_batch_per_block(sq, sk, b, np) if self.attn_mask_type == AttnMaskType.causal: if attn_batches % batch_per_block == 0: return True else: if sq % batch_per_block == 0: return True return False def forward_fused_softmax(self, input, mask): # input.shape = [b, np, sq, sk] scale = self.scale if self.scale is not None else 1.0 return self.fused_softmax_func(input, mask, scale) def forward_torch_softmax(self, input, mask): if self.input_in_float16 and self.softmax_in_fp32: input = input.float() if self.scale is not None: input = input * self.scale mask_output = self.mask_func(input, mask) if mask is not None else input probs = torch.nn.Softmax(dim=-1)(mask_output) if self.input_in_float16 and self.softmax_in_fp32: if self.input_in_fp16: probs = probs.half() else: probs = probs.bfloat16() return probs @staticmethod def get_batch_per_block(sq, sk, b, np): return scaled_masked_softmax_get_batch_per_block(sq, sk, b, np)
flash-attention-main
flash_attn/fused_softmax.py
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/fmha.py import torch import torch.nn as nn import flash_attn_cuda def convert_blockmask(blockmask, causal): """Convert from the 0-1 format to the format used by the CUDA code. 0 means the block is skipped. nonzero means the block is not skipped. Argument: blockmask: (row, col): a 0-1 tensor Return: blockmask_converted: (col, row), dtype torch.int32: for each column, it contains the row indices of the nonzero blocks, padded with -1 to reach length @row. The indices are multiplied by 4, with the smallest bit used to encode whether it is the first nonzero in its row, and the 2nd smallest bit to encode whether it is the last nonzero in its row.. """ assert not causal # TD [2022-05-13]: The indexing and sorting is very tricky nrow, ncol = blockmask.shape # Sort does not support bool on CUDA blockmask = blockmask.to(dtype=torch.uint8) nonzero_val, nonzero_sorted_rowidx = blockmask.sort(dim=0, stable=True, descending=True) nonzero_unsorted_rowidx = nonzero_sorted_rowidx.argsort(dim=0) last_nonzero_col_per_row = blockmask.sort(dim=-1, stable=True).indices[:, -1] last_nonzero_col_per_row_after_sort = nonzero_unsorted_rowidx[ torch.arange(nrow, device=blockmask.device), last_nonzero_col_per_row ] first_nonzero_col_per_row = blockmask.sort(dim=-1, stable=True, descending=True).indices[:, 0] first_nonzero_col_per_row_after_sort = nonzero_unsorted_rowidx[ torch.arange(nrow, device=blockmask.device), first_nonzero_col_per_row ] nonzero_idx = nonzero_sorted_rowidx * 4 nonzero_idx[last_nonzero_col_per_row_after_sort, last_nonzero_col_per_row] += 2 nonzero_idx[first_nonzero_col_per_row_after_sort, first_nonzero_col_per_row] += 1 nonzero_idx[nonzero_val == 0] = -1 return nonzero_idx.T.contiguous().to(dtype=torch.int32) def _flash_blocksparse_attn_forward(qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal, return_softmax): context, softmax_lse, *rest = flash_attn_cuda.fwd_block(qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal, return_softmax, None) # if context.isnan().any() or softmax_lse.isnan().any(): # breakpoint() S_dmask = rest[0] if return_softmax else None return context, softmax_lse, S_dmask def _flash_blocksparse_attn_backward(dout, qkv, out, S_dmask, softmax_lse, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal): dqkv, dp, softmax_d = flash_attn_cuda.bwd_block(dout, qkv, out, S_dmask, softmax_lse, cu_seqlens, blockmask, dropout_p, softmax_scale, max_s, causal, None) # if dqkv.isnan().any() or softmax_d.isnan().any(): # breakpoint() return dqkv class FlashBlocksparseAttnFun(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal): # Save rng_state because the backward pass will regenerate the dropout mask rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) context, softmax_lse, S_dmask = _flash_blocksparse_attn_forward( qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal=causal, return_softmax=False ) ctx.save_for_backward(qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state) ctx.dropout_p = dropout_p ctx.max_s = max_s ctx.softmax_scale = softmax_scale ctx.causal = causal return context @staticmethod def backward(ctx, dout): qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state = ctx.saved_tensors if rng_state is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state) # S_dmask is None, temporarily use another tensor just to get it running dqkv = _flash_blocksparse_attn_backward( dout, qkv, context, context, softmax_lse, cu_seqlens, blockmask, ctx.dropout_p, ctx.max_s, ctx.softmax_scale, ctx.causal ) if rng_state is not None: torch.cuda.set_rng_state(cur_rng_state) return dqkv, None, None, None, None, None, None, None # We duplicate code to return both the output and the softmax for testing # Returning both makes backward a bit slower, so we want to keep using the other version for speed. class FlashBlocksparseAttnFunWithS(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal): # Save rng_state because the backward pass is gonna regenerate the dropout mask rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) context, softmax_lse, S_dmask = _flash_blocksparse_attn_forward( qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal=causal, return_softmax=True ) ctx.save_for_backward(qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state) ctx.dropout_p = dropout_p ctx.max_s = max_s ctx.softmax_scale = softmax_scale ctx.causal = causal return context, S_dmask, softmax_lse @staticmethod def backward(ctx, dout, _dS_dmask_ignored, _dsoftmax_sum_ignored): qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, rng_state = ctx.saved_tensors if rng_state is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state) dqkv = _flash_blocksparse_attn_backward( dout, qkv, context, S_dmask, softmax_lse, cu_seqlens, blockmask, ctx.dropout_p, ctx.max_s, ctx.softmax_scale, ctx.causal ) if rng_state is not None: torch.cuda.set_rng_state(cur_rng_state) return dqkv, None, None, None, None, None, None def flash_blocksparse_attn_func(qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale=None, causal=False, return_attn_probs=False, convert_mask=True): """dropout_p should be set to 0.0 during evaluation """ func = FlashBlocksparseAttnFun if not return_attn_probs else FlashBlocksparseAttnFunWithS if convert_mask: blockmask = convert_blockmask(blockmask, causal=causal) return func.apply(qkv, cu_seqlens, blockmask, dropout_p, max_s, softmax_scale, causal)
flash-attention-main
flash_attn/flash_blocksparse_attn_interface.py
import math import torch import torch.nn as nn from einops import rearrange import hydra from flash_attn.flash_blocksparse_attn_interface import flash_blocksparse_attn_func from flash_attn.flash_blocksparse_attn_interface import convert_blockmask from flash_attn.bert_padding import unpad_input, pad_input, index_first_axis class FlashBlocksparseAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_temp: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.1) """ def __init__(self, sparsity_config, softmax_temp=None, attention_dropout=0.0, max_seq_length=2048, device=None, dtype=None): super().__init__() self.sparsity_config = hydra.utils.instantiate(sparsity_config) self.softmax_temp = softmax_temp self.dropout_p = attention_dropout # initialize sparse layout and register as buffer max_seq_length = ((max_seq_length + 256 - 1) // 256) * 256 layout = self.sparsity_config.make_layout(max_seq_length) self.register_buffer("layout", layout) blockmask_converted = convert_blockmask(self.layout, causal=False) self.register_buffer("blockmask_converted", blockmask_converted) # logger.info(f'Attention class {self.__class__}: saving={self.layout.float().mean()}') def forward(self, qkv, attn_mask=None, key_padding_mask=None, causal=False, cu_seqlens=None, max_s=None, need_weights=False, convert_mask=True): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None attn_mask: An implementation of BaseMask that encodes where each query can attend to key_padding_mask: An implementation of BaseMask that encodes how many query each sequence in the batch consists of """ assert not need_weights assert attn_mask is None assert qkv.dtype == torch.float16 assert qkv.is_cuda if cu_seqlens is None: batch_size = qkv.shape[0] seqlen = qkv.shape[1] # Convert mask to take a subset seqlen_rounded = ((seqlen + 256 - 1) // 256) * 256 assert seqlen_rounded // 16 <= self.layout.shape[0], seqlen_rounded // 256 <= self.layout.shape[1] blockmask = self.layout[:seqlen_rounded // 16, :seqlen_rounded // 256] if key_padding_mask is None: qkv = rearrange(qkv, 'b s ... -> (b s) ...') max_s = seqlen cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) output = flash_blocksparse_attn_func( qkv, cu_seqlens, blockmask, self.dropout_p if self.training else 0.0, max_s, softmax_scale=self.softmax_temp, causal=causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) else: key_padding_mask_bool = key_padding_mask.bool_matrix nheads = qkv.shape[-2] x = rearrange(qkv, 'b s three h d -> b s (three h d)') x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask_bool) x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) output_unpad = flash_blocksparse_attn_func( x_unpad, cu_seqlens, blockmask, self.dropout_p if self.training else 0.0, max_s, softmax_scale=self.softmax_temp, causal=causal ) output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads) else: assert max_s is not None seqlen = max_s # Convert mask to take a subset seqlen_rounded = ((seqlen + 256 - 1) // 256) * 256 assert seqlen_rounded // 16 <= self.layout.shape[0], seqlen_rounded // 256 <= self.layout.shape[1] blockmask = self.layout[:seqlen_rounded // 16, :seqlen_rounded // 256] if convert_mask: output = flash_blocksparse_attn_func( qkv, cu_seqlens, blockmask, self.dropout_p if self.training else 0.0, max_s, softmax_scale=self.softmax_temp, causal=causal ) else: output = flash_blocksparse_attn_func( qkv, cu_seqlens, self.blockmask_converted, self.dropout_p if self.training else 0.0, max_s, softmax_scale=self.softmax_temp, causal=causal, convert_mask=False, ) return output, None class FlashBlocksparseMHA(nn.Module): def __init__(self, embed_dim, num_heads, sparsity_config, bias=True, batch_first=True, attention_dropout=0.0, causal=False, max_seq_length=2048, device=None, dtype=None, **kwargs) -> None: assert batch_first factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.embed_dim = embed_dim self.causal = causal self.num_heads = num_heads assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads assert self.head_dim in [16, 32, 64], "Only support head_dim == 16, 32, or 64" self.Wqkv = nn.Linear(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) self.inner_attn = FlashBlocksparseAttention( sparsity_config, attention_dropout=attention_dropout, max_seq_length=max_seq_length, **factory_kwargs ) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, **factory_kwargs) def forward(self, x, x_ignored_, x_ignored_1_, attn_mask=None, key_padding_mask=None, need_weights=False): qkv = self.Wqkv(x) qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads) context, attn_weights = self.inner_attn(qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal) return self.out_proj(rearrange(context, 'b s h d -> b s (h d)')), attn_weights
flash-attention-main
flash_attn/flash_blocksparse_attention.py
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py import torch import torch.nn.functional as F from einops import rearrange, repeat class IndexFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, input, indices): ctx.save_for_backward(indices) assert input.ndim >= 2 ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] second_dim = other_shape.numel() # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. # return input[indices] return torch.gather(rearrange(input, 'b ... -> b (...)'), 0, repeat(indices, 'z -> z d', d=second_dim)).reshape(-1, *other_shape) @staticmethod def backward(ctx, grad_output): indices, = ctx.saved_tensors assert grad_output.ndim >= 2 other_shape = grad_output.shape[1:] grad_output = rearrange(grad_output, 'b ... -> b (...)') grad_input = torch.zeros([ctx.first_axis_dim, grad_output.shape[1]], device=grad_output.device, dtype=grad_output.dtype) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. # grad_input[indices] = grad_output grad_input.scatter_(0, repeat(indices, 'z -> z d', d=grad_output.shape[1]), grad_output) return grad_input.reshape(ctx.first_axis_dim, *other_shape), None index_first_axis = IndexFirstAxis.apply class IndexPutFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, values, indices, first_axis_dim): ctx.save_for_backward(indices) assert indices.ndim == 1 assert values.ndim >= 2 output = torch.zeros(first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. output[indices] = values # output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values) return output @staticmethod def backward(ctx, grad_output): indices, = ctx.saved_tensors # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. grad_values = grad_output[indices] # grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1])) return grad_values, None, None index_put_first_axis = IndexPutFirstAxis.apply class IndexFirstAxisResidual(torch.autograd.Function): @staticmethod def forward(ctx, input, indices): ctx.save_for_backward(indices) assert input.ndim >= 2 ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] second_dim = other_shape.numel() # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. output = input[indices] # We don't want to reshape input (b ... -> b (...)) since it could change the channel_last # memory format to channel_first. In other words, input might not be contiguous. # If we don't detach, Pytorch complains about output being a view and is being modified inplace return output, input.detach() @staticmethod def backward(ctx, grad_output, grad_residual): indices, = ctx.saved_tensors assert grad_output.ndim >= 2 other_shape = grad_output.shape[1:] assert grad_residual.shape[1:] == other_shape grad_input = grad_residual # grad_input[indices] += grad_output indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1))) indices = indices.expand_as(grad_output) grad_input.scatter_add_(0, indices, grad_output) return grad_input.reshape(ctx.first_axis_dim, *other_shape), None index_first_axis_residual = IndexFirstAxisResidual.apply def unpad_input(hidden_states, attention_mask): """ Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. Return: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int """ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. Moreover, torch's index is a bit slower than it needs to be, # so we write custom forward and backward to make it a bit faster. return (index_first_axis(rearrange(hidden_states, 'b s ... -> (b s) ...'), indices), indices, cu_seqlens, max_seqlen_in_batch) def pad_input(hidden_states, indices, batch, seqlen): """ Arguments: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz) Return: hidden_states: (batch, seqlen, ...) """ dim = hidden_states.shape[-1] # output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype) # output[indices] = hidden_states output = index_put_first_axis(hidden_states, indices, batch * seqlen) return rearrange(output, '(b s) ... -> b s ...', b=batch)
flash-attention-main
flash_attn/bert_padding.py
flash-attention-main
flash_attn/__init__.py
# [2022-10-23] Downloaded from https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py # for benchmarking. # We fixed a few dtype cast to make it work for bf16 """ Fused Attention =============== This is a Triton implementation of the Flash Attention algorithm (see: Dao et al., https://arxiv.org/pdf/2205.14135v2.pdf; Rabe and Staats https://arxiv.org/pdf/2112.05682v2.pdf) """ import pytest import torch import triton import triton.language as tl @triton.jit def _fwd_kernel( Q, K, V, sm_scale, TMP, L, M, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, ): start_m = tl.program_id(0) off_hz = tl.program_id(1) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) off_q = off_hz * stride_qh + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk off_k = off_hz * stride_qh + offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kk off_v = off_hz * stride_qh + offs_n[:, None] * stride_qm + offs_d[None, :] * stride_qk # Initialize pointers to Q, K, V q_ptrs = Q + off_q k_ptrs = K + off_k v_ptrs = V + off_v # initialize pointer to m and l t_ptrs = TMP + off_hz * N_CTX + offs_m m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # load q: it will stay in SRAM throughout q = tl.load(q_ptrs) # loop over k, v and update accumulator for start_n in range(0, (start_m + 1) * BLOCK_M, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- k = tl.load(k_ptrs + start_n * stride_kn) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k, trans_b=True) qk *= sm_scale qk += tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), 0, float("-inf")) # -- compute m_ij, p, l_ij m_ij = tl.max(qk, 1) p = tl.exp(qk - m_ij[:, None]) l_ij = tl.sum(p, 1) # -- update m_i and l_i m_i_new = tl.maximum(m_i, m_ij) alpha = tl.exp(m_i - m_i_new) beta = tl.exp(m_ij - m_i_new) l_i_new = alpha * l_i + beta * l_ij # -- update output accumulator -- # scale p p_scale = beta / l_i_new p = p * p_scale[:, None] # scale acc acc_scale = l_i / l_i_new * alpha tl.store(t_ptrs, acc_scale) acc_scale = tl.load(t_ptrs) # BUG: have to store and immediately load acc = acc * acc_scale[:, None] # update acc v = tl.load(v_ptrs + start_n * stride_vk) p = p.to(v.dtype) acc += tl.dot(p, v) # update m_i and l_i l_i = l_i_new m_i = m_i_new # rematerialize offsets to save registers start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) # write back l and m l_ptrs = L + off_hz * N_CTX + offs_m m_ptrs = M + off_hz * N_CTX + offs_m tl.store(l_ptrs, l_i) tl.store(m_ptrs, m_i) # initialize pointers to output offs_n = tl.arange(0, BLOCK_DMODEL) off_o = off_hz * stride_oh + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on out_ptrs = Out + off_o tl.store(out_ptrs, acc) @triton.jit def _bwd_preprocess( Out, DO, L, NewDO, Delta, BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr, ): off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) off_n = tl.arange(0, D_HEAD) # load o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) denom = tl.load(L + off_m).to(tl.float32) # compute do = do / denom[:, None] delta = tl.sum(o * do, axis=1) # write-back tl.store(NewDO + off_m[:, None] * D_HEAD + off_n[None, :], do) tl.store(Delta + off_m, delta) @triton.jit def _bwd_kernel( Q, K, V, sm_scale, Out, DO, DQ, DK, DV, L, M, D, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn, Z, H, N_CTX, num_block, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, ): off_hz = tl.program_id(0) off_z = off_hz // H off_h = off_hz % H # offset pointers for batch/head Q += off_z * stride_qz + off_h * stride_qh K += off_z * stride_qz + off_h * stride_qh V += off_z * stride_qz + off_h * stride_qh DO += off_z * stride_qz + off_h * stride_qh DQ += off_z * stride_qz + off_h * stride_qh DK += off_z * stride_qz + off_h * stride_qh DV += off_z * stride_qz + off_h * stride_qh for start_n in range(0, num_block): lo = start_n * BLOCK_M # initialize row/col offsets offs_qm = lo + tl.arange(0, BLOCK_M) offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M) offs_m = tl.arange(0, BLOCK_N) offs_k = tl.arange(0, BLOCK_DMODEL) # initialize pointers to value-like data q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) v_ptrs = V + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) do_ptrs = DO + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) # pointer to row-wise quantities in value-like data D_ptrs = D + off_hz * N_CTX m_ptrs = M + off_hz * N_CTX # initialize dv amd dk dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # k and v stay in SRAM throughout k = tl.load(k_ptrs) v = tl.load(v_ptrs) # loop over rows for start_m in range(lo, num_block * BLOCK_M, BLOCK_M): offs_m_curr = start_m + offs_m # load q, k, v, do on-chip q = tl.load(q_ptrs) # recompute p = softmax(qk, dim=-1).T # NOTE: `do` is pre-divided by `l`; no normalization here qk = tl.dot(q, k, trans_b=True) qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf")) m = tl.load(m_ptrs + offs_m_curr) p = tl.exp(qk * sm_scale - m[:, None]) # compute dv do = tl.load(do_ptrs) dv += tl.dot(p.to(do.dtype), do, trans_a=True) # compute dp = dot(v, do) Di = tl.load(D_ptrs + offs_m_curr) dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None] dp += tl.dot(do, v, trans_b=True) # compute ds = p * (dp - delta[:, None]) ds = p * dp * sm_scale # compute dk = dot(ds.T, q) dk += tl.dot(ds.to(q.dtype), q, trans_a=True) # # compute dq dq = tl.load(dq_ptrs, eviction_policy="evict_last") dq += tl.dot(ds.to(k.dtype), k) tl.store(dq_ptrs, dq, eviction_policy="evict_last") # # increment pointers dq_ptrs += BLOCK_M * stride_qm q_ptrs += BLOCK_M * stride_qm do_ptrs += BLOCK_M * stride_qm # write-back dv_ptrs = DV + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) dk_ptrs = DK + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk) class _attention(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, sm_scale): BLOCK = 128 # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} o = torch.empty_like(q) grid = (triton.cdiv(q.shape[2], BLOCK), q.shape[0] * q.shape[1]) tmp = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) m = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) num_warps = 4 if Lk <= 64 else 8 _fwd_kernel[grid]( q, k, v, sm_scale, tmp, L, m, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], BLOCK_M=BLOCK, BLOCK_N=BLOCK, BLOCK_DMODEL=Lk, num_warps=num_warps, num_stages=1, ) ctx.save_for_backward(q, k, v, o, L, m) ctx.BLOCK = BLOCK ctx.grid = grid ctx.sm_scale = sm_scale ctx.BLOCK_DMODEL = Lk return o @staticmethod def backward(ctx, do): q, k, v, o, l, m = ctx.saved_tensors do = do.contiguous() dq = torch.zeros_like(q, dtype=torch.float32) dk = torch.empty_like(k) dv = torch.empty_like(v) do_scaled = torch.empty_like(do) delta = torch.empty_like(l) _bwd_preprocess[(ctx.grid[0] * ctx.grid[1], )]( o, do, l, do_scaled, delta, BLOCK_M=ctx.BLOCK, D_HEAD=ctx.BLOCK_DMODEL, ) # NOTE: kernel currently buggy for other values of `num_warps` num_warps = 8 _bwd_kernel[(ctx.grid[1],)]( q, k, v, ctx.sm_scale, o, do_scaled, dq, dk, dv, l, m, delta, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), q.shape[0], q.shape[1], q.shape[2], ctx.grid[0], BLOCK_M=ctx.BLOCK, BLOCK_N=ctx.BLOCK, BLOCK_DMODEL=ctx.BLOCK_DMODEL, num_warps=num_warps, num_stages=1, ) return dq.to(q.dtype), dk, dv, None attention = _attention.apply
flash-attention-main
flash_attn/flash_attn_triton_og.py
import math import torch import torch.nn as nn from einops import rearrange from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func from flash_attn.bert_padding import unpad_input, pad_input, index_first_axis class FlashAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.1) """ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): super().__init__() self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, max_s=None, need_weights=False): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None if unpadded: (nnz, 3, h, d) key_padding_mask: a bool tensor of shape (B, S) """ assert not need_weights assert qkv.dtype in [torch.float16, torch.bfloat16] assert qkv.is_cuda if cu_seqlens is None: batch_size = qkv.shape[0] seqlen = qkv.shape[1] if key_padding_mask is None: qkv = rearrange(qkv, 'b s ... -> (b s) ...') max_s = seqlen cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) output = flash_attn_unpadded_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) else: nheads = qkv.shape[-2] x = rearrange(qkv, 'b s three h d -> b s (three h d)') x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) output_unpad = flash_attn_unpadded_qkvpacked_func( x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices, batch_size, seqlen), 'b s (h d) -> b s h d', h=nheads) else: assert max_s is not None output = flash_attn_unpadded_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=causal ) return output, None class FlashMHA(nn.Module): def __init__(self, embed_dim, num_heads, bias=True, batch_first=True, attention_dropout=0.0, causal=False, device=None, dtype=None, **kwargs) -> None: assert batch_first factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.embed_dim = embed_dim self.causal = causal self.num_heads = num_heads assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8" self.Wqkv = nn.Linear(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) self.inner_attn = FlashAttention(attention_dropout=attention_dropout, **factory_kwargs) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, **factory_kwargs) def forward(self, x, key_padding_mask=None, need_weights=False): """x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) key_padding_mask: bool tensor of shape (batch, seqlen) """ qkv = self.Wqkv(x) qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads) context, attn_weights = self.inner_attn(qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal) return self.out_proj(rearrange(context, 'b s h d -> b s (h d)')), attn_weights
flash-attention-main
flash_attn/flash_attention.py
""" *Experimental* implementation of FlashAttention in Triton. We use the FlashAttention implementation from Phil Tillet a starting point. https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py Changes: - Implement both causal and non-causal attention. - Implement both self-attention and cross-attention. - Support arbitrary seqlens (not just multiples of 128), for both forward and backward. - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward. - Support attention bias. - Speed up the forward pass a bit, and only store the LSE instead of m and l. - Make the backward for d=128 much faster by reducing register spilling. - Optionally parallelize the backward pass across seqlen_k, to deal with the case of small batch size * nheads. Caution: - This is an *experimental* implementation. The forward pass should be quite robust but I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler). - This implementation has only been tested on A100. - If you plan to use headdim other than 64 and 128, you should test for race conditions (due to the Triton compiler), as done in tests/test_flash_attn.py "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident that there are none left for other head dimensions. Differences between this Triton version and the CUDA version: - Triton version doesn't support dropout. - Triton forward is generally faster than CUDA forward, while Triton backward is generally slower than CUDA backward. Overall Triton forward + backward is slightly slower than CUDA forward + backward. - Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor). - Triton version supports attention bias, while CUDA version doesn't. """ import math import torch from einops import rearrange, repeat import triton import triton.language as tl # Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128 # @triton.autotune( # configs=[ # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1), # # This config has a race condition when EVEN_M == False, disabling it for now. # # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1), # ], # key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'] # ) @triton.heuristics( { "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0, "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0, "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], } ) @triton.jit def _fwd_kernel( Q, K, V, Bias, Out, Lse, TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # off_b = tl.program_id(1) # off_h = tl.program_id(2) # off_hb = off_b * nheads + off_h # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_HEADDIM) # Initialize pointers to Q, K, V # Adding parenthesis around indexing might use int32 math instead of int64 math? # https://github.com/openai/triton/issues/741 # I'm seeing a tiny bit of difference (5-7us) q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :]) k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :]) v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :]) if BIAS_TYPE == 'vector': b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n elif BIAS_TYPE == 'matrix': b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :]) # initialize pointer to m and l t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) # load q: it will stay in SRAM throughout # [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call # tl.load(q_ptrs), we get the wrong output! if EVEN_M & EVEN_N: if EVEN_HEADDIM: q = tl.load(q_ptrs) else: q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0) else: q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # loop over k, v and update accumulator end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k) for start_n in range(0, end_n, BLOCK_N): start_n = tl.multiple_of(start_n, BLOCK_N) # -- compute qk ---- if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition if EVEN_HEADDIM: k = tl.load(k_ptrs + start_n * stride_kn) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) else: k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk += tl.dot(q, k, trans_b=True) # Trying to combine the two masks seem to make the result wrong if not EVEN_N: # Need to mask out otherwise the softmax is wrong qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf")) if IS_CAUSAL: qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf")) if BIAS_TYPE != 'none': if BIAS_TYPE == 'vector': if EVEN_N: bias = tl.load(b_ptrs + start_n).to(tl.float32) else: bias = tl.load(b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0).to(tl.float32) bias = bias[None, :] elif BIAS_TYPE == 'matrix': if EVEN_M & EVEN_N: bias = tl.load(b_ptrs + start_n).to(tl.float32) else: bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32) # Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler # can then fuse the mult and add into an fma instruction. But if we have bias we need to # to multiply with softmax_scale here. qk = qk * softmax_scale + bias m_ij = tl.maximum(tl.max(qk, 1), lse_i) p = tl.exp(qk - m_ij[:, None]) else: m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i) p = tl.exp(qk * softmax_scale - m_ij[:, None]) l_ij = tl.sum(p, 1) # scale acc_o acc_o_scale = tl.exp(m_i - m_ij) # # -- update output accumulator -- # BUG: have to store and immediately load tl.store(t_ptrs, acc_o_scale) acc_o_scale = tl.load(t_ptrs) acc_o = acc_o * acc_o_scale[:, None] # update acc_o if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition if EVEN_HEADDIM: v = tl.load(v_ptrs + start_n * stride_vn) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) else: v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) p = p.to(v.dtype) acc_o += tl.dot(p, v) # -- update statistics m_i = m_ij l_i_new = tl.exp(lse_i - m_ij) + l_ij lse_i = m_ij + tl.log(l_i_new) o_scale = tl.exp(m_i - lse_i) # BUG: have to store and immediately load tl.store(t_ptrs, o_scale) o_scale = tl.load(t_ptrs) acc_o = acc_o * o_scale[:, None] # rematerialize offsets to save registers start_m = tl.program_id(0) offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) # write back l and m lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m tl.store(lse_ptrs, lse_i) # initialize pointers to output offs_n = tl.arange(0, BLOCK_HEADDIM) out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_n[None, :]) if EVEN_M: if EVEN_HEADDIM: tl.store(out_ptrs, acc_o) else: tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim) else: if EVEN_HEADDIM: tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q) else: tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)) @triton.jit def _bwd_preprocess_do_o_dot( Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, ): start_m = tl.program_id(0) off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) # load o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32) do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32) delta = tl.sum(o * do, axis=1) # write-back tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta) @triton.jit def _bwd_store_dk_dv( dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, ): # [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False, # if we just call tl.store(dv_ptrs), there's a race condition if EVEN_N & EVEN_M: if EVEN_HEADDIM: tl.store(dv_ptrs, dv) tl.store(dk_ptrs, dk) else: tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim) tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim) else: if EVEN_HEADDIM: tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k) tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k) else: tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) @triton.jit def _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N) begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M # initialize row/col offsets offs_qm = begin_m + tl.arange(0, BLOCK_M) offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N) offs_m = tl.arange(0, BLOCK_M) offs_d = tl.arange(0, BLOCK_HEADDIM) # initialize pointers to value-like data q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :]) k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :]) v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :]) do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :]) dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :]) if BIAS_TYPE == 'vector': b_ptrs = Bias + offs_n elif BIAS_TYPE == 'matrix': b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :]) # initialize dv and dk dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) # There seems to be some problem with Triton pipelining that makes results wrong for # headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop # may have zero step, and pipelining with the bias matrix could screw it up. # So we just exit early. if begin_m >= seqlen_q: dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM) return # k and v stay in SRAM throughout # [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False, # if we just call tl.load(k_ptrs), we get the wrong output! if EVEN_N & EVEN_M: if EVEN_HEADDIM: k = tl.load(k_ptrs) v = tl.load(v_ptrs) else: k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0) v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0) else: if EVEN_HEADDIM: k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) else: k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) # loop over rows num_block_m = tl.cdiv(seqlen_q, BLOCK_M) for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M): start_m = tl.multiple_of(start_m, BLOCK_M) offs_m_curr = start_m + offs_m # load q, k, v, do on-chip # Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117) if EVEN_M & EVEN_HEADDIM: q = tl.load(q_ptrs) else: if EVEN_HEADDIM: q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) else: q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # recompute p = softmax(qk, dim=-1).T qk = tl.dot(q, k, trans_b=True) # Trying to combine the two masks seem to make the result wrong if not EVEN_N: # Need to mask out otherwise the softmax is wrong qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf")) if IS_CAUSAL: qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf")) if BIAS_TYPE != 'none': tl.debug_barrier() # Race condition otherwise if BIAS_TYPE == 'vector': if EVEN_N: bias = tl.load(b_ptrs).to(tl.float32) else: bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32) bias = bias[None, :] elif BIAS_TYPE == 'matrix': if EVEN_M & EVEN_N: bias = tl.load(b_ptrs).to(tl.float32) else: bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32) qk = qk * softmax_scale + bias # There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong. # Also wrong for headdim=64. if not (EVEN_M & EVEN_HEADDIM): tl.debug_barrier() lse_i = tl.load(LSE + offs_m_curr) if BIAS_TYPE == 'none': p = tl.exp(qk * softmax_scale - lse_i[:, None]) else: p = tl.exp(qk - lse_i[:, None]) # compute dv # [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs # in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512, # the output is correct. if EVEN_M & EVEN_HEADDIM: do = tl.load(do_ptrs) else: # [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask. do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) # if EVEN_M: # if EVEN_HEADDIM: # do = tl.load(do_ptrs) # else: # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0) # else: # if EVEN_HEADDIM: # do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) # else: # do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) # & (offs_d[None, :] < headdim), other=0.0) dv += tl.dot(p.to(do.dtype), do, trans_a=True) # compute dp = dot(v, do) # There seems to be a race condition when headdim=48/96, and dq, dk are wrong. # Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True # Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False if not (EVEN_M & EVEN_HEADDIM): tl.debug_barrier() dp = tl.dot(do, v, trans_b=True) # There's a race condition for headdim=48 if not EVEN_HEADDIM: tl.debug_barrier() # compute ds = p * (dp - delta[:, None]) # Putting the subtraction after the dp matmul (instead of before) is slightly faster Di = tl.load(D + offs_m_curr) # Converting ds to q.dtype here reduces register pressure and makes it much faster # for BLOCK_HEADDIM=128 ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype) # compute dk = dot(ds.T, q) dk += tl.dot(ds, q, trans_a=True) # compute dq if not (EVEN_M & EVEN_HEADDIM): # Otherewise there's a race condition when BIAS_TYPE='matrix' tl.debug_barrier() if not ATOMIC_ADD: if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M dq = tl.load(dq_ptrs, eviction_policy="evict_last") dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, eviction_policy="evict_last") else: if EVEN_HEADDIM: dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy="evict_last") dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy="evict_last") else: dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy="evict_last") dq += tl.dot(ds, k) tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy="evict_last") else: # If we're parallelizing across the seqlen_k dimension dq = tl.dot(ds, k) if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M tl.atomic_add(dq_ptrs, dq) else: if EVEN_HEADDIM: tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q) else: tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)) # increment pointers dq_ptrs += BLOCK_M * stride_dqm q_ptrs += BLOCK_M * stride_qm do_ptrs += BLOCK_M * stride_dom if BIAS_TYPE == 'matrix': b_ptrs += BLOCK_M * stride_bm # write-back dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM) def init_to_zero(name): return lambda nargs: nargs[name].zero_() @triton.autotune( configs=[ triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now # # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4* # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')), # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')), ], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'], ) @triton.heuristics( { "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0, "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0, "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"], } ) @triton.jit def _bwd_kernel( Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): off_hb = tl.program_id(1) off_b = off_hb // nheads off_h = off_hb % nheads # offset pointers for batch/head Q += off_b * stride_qb + off_h * stride_qh K += off_b * stride_kb + off_h * stride_kh V += off_b * stride_vb + off_h * stride_vh DO += off_b * stride_dob + off_h * stride_doh DQ += off_b * stride_dqb + off_h * stride_dqh DK += off_b * stride_dkb + off_h * stride_dkh DV += off_b * stride_dvb + off_h * stride_dvh if BIAS_TYPE != 'none': Bias += off_b * stride_bb + off_h * stride_bh # pointer to row-wise quantities in value-like data D += off_hb * seqlen_q_rounded LSE += off_hb * seqlen_q_rounded if not SEQUENCE_PARALLEL: num_block_n = tl.cdiv(seqlen_k, BLOCK_N) for start_n in range(0, num_block_n): _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N ) else: start_n = tl.program_id(0) _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N ) def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None): # shape constraints batch, seqlen_q, nheads, d = q.shape _, seqlen_k, _, _ = k.shape assert k.shape == (batch, seqlen_k, nheads, d) assert v.shape == (batch, seqlen_k, nheads, d) assert d <= 128, 'FlashAttention only support head dimensions up to 128' assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type' assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16' assert q.is_cuda and k.is_cuda and v.is_cuda softmax_scale = softmax_scale or 1.0 / math.sqrt(d) has_bias = bias is not None bias_type = 'none' if has_bias: assert bias.dtype in [q.dtype, torch.float] assert bias.is_cuda assert bias.dim() == 4 if bias.stride(-1) != 1: bias = bias.contiguous() if bias.shape[2:] == (1, seqlen_k): bias_type = 'vector' elif bias.shape[2:] == (seqlen_q, seqlen_k): bias_type = 'matrix' else: raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)' ' or (seqlen_q, seqlen_k)') if bias.shape[:2] == (1, nheads): bias = repeat(bias, '1 h ... -> b h ...', b=batch) elif bias.shape[:2] == (batch, 1): bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads) assert bias.shape[:2] == (batch, nheads), 'First 2 dimensions of bias must be broadcastible to (batch, nheads)' bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) o = torch.empty_like(q) BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) BLOCK = 128 num_warps = 4 if d <= 64 else 8 grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads) _fwd_kernel[grid]( q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations) # Can't use kwargs here because triton autotune expects key to be args, not kwargs # IS_CAUSAL=causal, BLOCK_HEADDIM=d, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1, ) return o, lse, softmax_scale # softmax_scale could have been updated def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None): # Make sure that the last dimension is contiguous if do.stride(-1) != 1: do = do.contiguous() batch, seqlen_q, nheads, d = q.shape _, seqlen_k, _, _ = k.shape # assert d in {16, 32, 64, 128} assert d <= 128 seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 assert lse.shape == (batch, nheads, seqlen_q_rounded) assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1 assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1 softmax_scale = softmax_scale or 1.0 / math.sqrt(d) # dq_accum = torch.zeros_like(q, dtype=torch.float32) dq_accum = torch.empty_like(q, dtype=torch.float32) delta = torch.empty_like(lse) # delta = torch.zeros_like(lse) BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads) _bwd_preprocess_do_o_dot[grid]( o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM, ) has_bias = bias is not None bias_type = 'none' if has_bias: assert bias.dtype in [q.dtype, torch.float] assert bias.is_cuda assert bias.dim() == 4 assert bias.stride(-1) == 1 if bias.shape[2:] == (1, seqlen_k): bias_type = 'vector' elif bias.shape[2:] == (seqlen_q, seqlen_k): bias_type = 'matrix' else: raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k)' ' or (seqlen_q, seqlen_k)') if bias.shape[:2] == (1, nheads): bias = repeat(bias, '1 h ... -> b h ...', b=batch) elif bias.shape[:2] == (batch, 1): bias = repeat(bias, 'b 1 ... -> b h ...', h=nheads) assert bias.shape[:2] == (batch, nheads), 'First 2 dimensions of bias must be broadcastible to (batch, nheads)' bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) # BLOCK_M = 128 # BLOCK_N = 64 # num_warps = 4 grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1, batch * nheads) _bwd_kernel[grid]( q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, # key for triton cache (limit number of compilations) # Can't use kwargs here because triton autotune expects key to be args, not kwargs # IS_CAUSAL=causal, BLOCK_HEADDIM=d, bias_type, causal, BLOCK_HEADDIM, # SEQUENCE_PARALLEL=False, # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, # num_warps=num_warps, # num_stages=1, ) dq.copy_(dq_accum) class FlashAttnQKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None): """ qkv: (batch, seqlen, 3, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen). ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen) """ # Make sure that the last dimension is contiguous if qkv.stride(-1) != 1: qkv = qkv.contiguous() o, lse, ctx.softmax_scale = _flash_attn_forward( qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale ) ctx.save_for_backward(qkv, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): qkv, o, lse, bias = ctx.saved_tensors assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dqkv = torch.empty_like(qkv) _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dqkv, None, None, None flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply class FlashAttnKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None): """ q: (batch, seqlen_q, nheads, headdim) kv: (batch, seqlen_k, 2, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) """ # Make sure that the last dimension is contiguous q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]] o, lse, ctx.softmax_scale = _flash_attn_forward( q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale ) ctx.save_for_backward(q, kv, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): q, kv, o, lse, bias = ctx.saved_tensors assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dq = torch.empty_like(q) dkv = torch.empty_like(kv) _flash_attn_backward(do, q, qkv[:, :, 0], qkv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dq, dkv, None, None, None flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply class FlashAttnFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None): """ q: (batch_size, seqlen_q, nheads, headdim) k, v: (batch_size, seqlen_k, nheads, headdim) bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) """ # Make sure that the last dimension is contiguous q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]] o, lse, ctx.softmax_scale = _flash_attn_forward( q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale ) ctx.save_for_backward(q, k, v, o, lse, bias) ctx.causal = causal return o @staticmethod def backward(ctx, do): q, k, v, o, lse, bias = ctx.saved_tensors assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet' # Triton's autotune causes the Tensor._version to change, and so Pytorch autograd # does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. with torch.inference_mode(): dq = torch.empty_like(q) dk = torch.empty_like(k) dv = torch.empty_like(v) _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) return dq, dk, dv, None, None, None flash_attn_func = FlashAttnFunc.apply
flash-attention-main
flash_attn/flash_attn_triton.py
import torch import torch.nn as nn import torch.nn.functional as F import flash_attn_cuda def _get_block_size(device, head_dim, is_dropout): assert head_dim % 8 == 0 and head_dim <= 128 return 256 if head_dim <= 64 else 128 def _flash_attn_forward(q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_softmax, num_splits=0, generator=None): """ num_splits: how much to parallelize over the seqlen_q dimension. num_splits=0 means it will be set by an internal heuristic. We're exposing num_splits mostly for benchmarking. Don't change it unless you know what you're doing. """ softmax_lse, *rest = flash_attn_cuda.fwd( q, k, v, out, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, return_softmax, num_splits, generator ) # if out.isnan().any() or softmax_lse.isnan().any(): # breakpoint() S_dmask = rest[0] if return_softmax else None return out, softmax_lse, S_dmask def _flash_attn_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, num_splits=0, generator=None): """ num_splits: whether to parallelize over the seqlen_k dimension (num_splits > 1) or not (num_splits = 1). num_splits=0 means it will be set by an internal heuristic. Any value above 1 will call the same kernel (i.e. num_splits=2 would call the same kernel as num_splits=3), so effectively the choices are 0, 1, and 2. This hyperparameter can be tuned for performance, but default value (heuristic) should work fine. """ _, _, _, softmax_d = flash_attn_cuda.bwd( dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal, num_splits, generator) # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any(): # breakpoint() return dq, dk, dv, softmax_d class FlashAttnQKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_softmax): # Save rng_state because the backward pass will regenerate the dropout mask rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) out, softmax_lse, S_dmask = _flash_attn_forward( qkv[:, 0], qkv[:, 1], qkv[:, 2], torch.empty_like(qkv[:, 0]), cu_seqlens, cu_seqlens, max_seqlen, max_seqlen, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) ctx.save_for_backward(qkv, out, softmax_lse, cu_seqlens, rng_state) ctx.dropout_p = dropout_p ctx.max_seqlen = max_seqlen ctx.softmax_scale = softmax_scale ctx.causal = causal return out if not return_softmax else (out, softmax_lse, S_dmask) @staticmethod def backward(ctx, dout, *args): qkv, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors if rng_state is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state) dqkv = torch.empty_like(qkv) _flash_attn_backward( dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens, cu_seqlens, ctx.max_seqlen, ctx.max_seqlen, ctx.dropout_p, ctx.softmax_scale, ctx.causal ) if rng_state is not None: torch.cuda.set_rng_state(cur_rng_state) return dqkv, None, None, None, None, None, None class FlashAttnKVPackedFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_softmax): # Save rng_state because the backward pass will regenerate the dropout mask rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None if softmax_scale is None: softmax_scale = q.shape[-1] ** (-0.5) out, softmax_lse, S_dmask = _flash_attn_forward( q, kv[:, 0], kv[:, 1], torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) ctx.save_for_backward(q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state) ctx.dropout_p = dropout_p ctx.max_seqlen_q = max_seqlen_q ctx.max_seqlen_k = max_seqlen_k ctx.softmax_scale = softmax_scale ctx.causal = causal return out if not return_softmax else (out, softmax_lse, S_dmask) @staticmethod def backward(ctx, dout, *args): q, kv, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors if rng_state is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state) dq = torch.empty_like(q) dkv = torch.empty_like(kv) _flash_attn_backward( dout, q, kv[:, 0], kv[:, 1], out, softmax_lse, dq, dkv[:, 0], dkv[:, 1], cu_seqlens_q, cu_seqlens_k, ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal ) if rng_state is not None: torch.cuda.set_rng_state(cur_rng_state) return dq, dkv, None, None, None, None, None, None, None, None class FlashAttnFunc(torch.autograd.Function): @staticmethod def forward(ctx, q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_softmax): # Save rng_state because the backward pass will regenerate the dropout mask rng_state = torch.cuda.get_rng_state() if dropout_p > 0 else None if softmax_scale is None: softmax_scale = q.shape[-1] ** (-0.5) out, softmax_lse, S_dmask = _flash_attn_forward( q, k, v, torch.empty_like(q), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state) ctx.dropout_p = dropout_p ctx.max_seqlen_q = max_seqlen_q ctx.max_seqlen_k = max_seqlen_k ctx.softmax_scale = softmax_scale ctx.causal = causal return out if not return_softmax else (out, softmax_lse, S_dmask) @staticmethod def backward(ctx, dout, *args): q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors if rng_state is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state) dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v) _flash_attn_backward( dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, ctx.max_seqlen_q, ctx.max_seqlen_k, ctx.dropout_p, ctx.softmax_scale, ctx.causal ) if rng_state is not None: torch.cuda.set_rng_state(cur_rng_state) return dq, dk, dv, None, None, None, None, None, None, None, None class FlashAttnQKVPackedSplitFunc(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale, causal, return_softmax): # Save rng_state because the backward pass will regenerate the dropout mask if dropout_p > 0: rng_state0 = torch.cuda.get_rng_state() generator1 = torch.Generator(device='cuda') rng_state1 = generator1.get_state() else: rng_state0, generator1, rng_state1 = None, None, None if softmax_scale is None: softmax_scale = qkv.shape[-1] ** (-0.5) out = torch.empty_like(qkv[:, 0]) _, softmax_lse0, S_dmask0 = _flash_attn_forward( qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[:batch_size0 + 1], cu_seqlens[:batch_size0 + 1], max_seqlen0, max_seqlen0, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax ) s = torch.cuda.Stream() with torch.cuda.stream(s): _, softmax_lse1, S_dmask1 = _flash_attn_forward( qkv[:, 0], qkv[:, 1], qkv[:, 2], out, cu_seqlens[batch_size0:], cu_seqlens[batch_size0:], max_seqlen1, max_seqlen1, dropout_p, softmax_scale, causal=causal, return_softmax=return_softmax, generator=generator1 ) torch.cuda.current_stream().wait_stream(s) ctx.save_for_backward(qkv, out, softmax_lse0, softmax_lse1, cu_seqlens, rng_state0, rng_state1) ctx.dropout_p = dropout_p ctx.max_seqlen0 = max_seqlen0 ctx.max_seqlen1 = max_seqlen1 ctx.batch_size0 = batch_size0 ctx.softmax_scale = softmax_scale ctx.causal = causal if not return_softmax: return out else: max_seqlen_q = max(softmax_lse0.shape[2], softmax_lse1.shape[2]) max_seqlen_k = max(S_dmask0.shape[3], S_dmask1.shape[3]) softmax_lse = torch.cat([F.pad(softmax_lse0, (0, max_seqlen_q - softmax_lse0.shape[2])), F.pad(softmax_lse1, (0, max_seqlen_q - softmax_lse1.shape[2]))], dim=0) return out, softmax_lse, S_dmask0, S_dmask1 @staticmethod def backward(ctx, dout, *args): qkv, out, softmax_lse0, softmax_lse1, cu_seqlens, rng_state0, rng_state1 = ctx.saved_tensors batch_size0 = ctx.batch_size0 if rng_state0 is not None: cur_rng_state = torch.cuda.get_rng_state() torch.cuda.set_rng_state(rng_state0) if rng_state1 is not None: generator1 = torch.Generator(device='cuda') generator1.set_state(rng_state1) else: generator1 = None dqkv = torch.empty_like(qkv) _flash_attn_backward( dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse0, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[:batch_size0 + 1], cu_seqlens[:batch_size0 + 1], ctx.max_seqlen0, ctx.max_seqlen0, ctx.dropout_p, ctx.softmax_scale, ctx.causal ) s = torch.cuda.Stream() with torch.cuda.stream(s): _flash_attn_backward( dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse1, dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens[batch_size0:], cu_seqlens[batch_size0:], ctx.max_seqlen1, ctx.max_seqlen1, ctx.dropout_p, ctx.softmax_scale, ctx.causal, generator=generator1 ) torch.cuda.current_stream().wait_stream(s) if rng_state0 is not None: torch.cuda.set_rng_state(cur_rng_state) return dqkv, None, None, None, None, None, None, None, None def flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False): """dropout_p should be set to 0.0 during evaluation Arguments: qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch. cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into qkv. max_seqlen: int. Maximum sequence length in the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnQKVPackedFunc.apply(qkv, cu_seqlens, max_seqlen, dropout_p, softmax_scale, causal, return_attn_probs) def flash_attn_unpadded_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False): """dropout_p should be set to 0.0 during evaluation Arguments: q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch. kv: (total_k, 2, nheads, headdim), where total_k = total number of key tokens in the batch. cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into q. cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into kv. max_seqlen_q: int. Maximum query sequence length in the batch. max_seqlen_k: int. Maximum key sequence length in the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnKVPackedFunc.apply(q, kv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_attn_probs) def flash_attn_unpadded_func(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False): """dropout_p should be set to 0.0 during evaluation Arguments: q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch. k: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch. v: (total_k, nheads, headdim), where total_k = total number of key tokens in the batch. cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into q. cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into kv. max_seqlen_q: int. Maximum query sequence length in the batch. max_seqlen_k: int. Maximum key sequence length in the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnFunc.apply(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, return_attn_probs) def flash_attn_unpadded_qkvpacked_split_func( qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale=None, causal=False, return_attn_probs=False): """ Split attention into 2 kernels running on 2 separate streams for performance reason: e.g., if the batch has some sequences of length <= 128 and some > 128, it might be faster to have one kernel dealing with seqlen <= 128 and one kernel for seqlen > 128. dropout_p should be set to 0.0 during evaluation. Arguments: qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch. cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into qkv. max_seqlen0: int. Maximum sequence length in 1st part of the batch. max_seqlen1: int. Maximum sequence length in 2nd part of the batch. batch_size0: int. Number of sequences in the 1st part of the batch. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(headdim). causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling). return_attn_probs: bool. Whether to return the attention probabilities. This option is for testing only. The returned probabilities are not guaranteed to be correct (they might not have the right scaling). Return: out: (total, nheads, headdim). softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen). The output of softmax (possibly with different scaling). It also encodes the dropout pattern (negative means that location was dropped, nonnegative means it was kept). """ return FlashAttnQKVPackedSplitFunc.apply(qkv, cu_seqlens, max_seqlen0, max_seqlen1, batch_size0, dropout_p, softmax_scale, causal, return_attn_probs) def flash_attn_func(qkv, cu_seqlens, dropout_p, max_s, softmax_scale=None, causal=False, return_attn_probs=False): """For backward-compatibility only, will remove soon. dropout_p should be set to 0.0 during evaluation """ return flash_attn_unpadded_qkvpacked_func(qkv, cu_seqlens, max_s, dropout_p, softmax_scale, causal, return_attn_probs)
flash-attention-main
flash_attn/flash_attn_interface.py
import torch import torch.nn as nn import xentropy_cuda_lib # https://github.com/NVIDIA/apex/blob/master/apex/contrib/xentropy/softmax_xentropy.py class SoftmaxCrossEntropyLossFn(torch.autograd.Function): @staticmethod def forward(ctx, logits, labels, smoothing=0.0, padding_idx=0, inplace_backward=False): losses, max_log_sum_exp = xentropy_cuda_lib.forward( logits, labels, smoothing) losses.masked_fill_(labels==padding_idx, 0) ctx.save_for_backward(logits, max_log_sum_exp, labels) ctx.smoothing = smoothing ctx.padding_idx = padding_idx ctx.inplace_backward = inplace_backward return losses @staticmethod def backward(ctx, grad_loss): logits, max_log_sum_exp, labels = ctx.saved_tensors if not grad_loss.is_contiguous(): grad_loss = grad_loss.contiguous() grad_loss.masked_fill_(labels==ctx.padding_idx, 0) grad_logits = xentropy_cuda_lib.backward(grad_loss, logits, max_log_sum_exp, labels, ctx.smoothing, ctx.inplace_backward) return grad_logits, None, None, None, None class CrossEntropyLossApex(nn.Module): def __init__(self, ignore_index=-100, reduction='mean', label_smoothing=0.0, inplace_backward=False): super().__init__() if reduction not in ['mean', 'none']: raise NotImplementedError("Only support reduction = 'mean' or 'none'") self.ignore_index = ignore_index self.reduction = reduction self.label_smoothing = label_smoothing self.inplace_backward = inplace_backward def forward(self, input, target): assert input.is_cuda and target.is_cuda # SoftmaxCrossEntropyLoss implicitly casts to float loss = SoftmaxCrossEntropyLossFn.apply(input, target, self.label_smoothing, self.ignore_index, self.inplace_backward) if self.reduction == 'mean': return loss.sum() / (target != self.ignore_index).sum() else: return loss
flash-attention-main
flash_attn/losses/cross_entropy_apex.py
# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/cross_entropy.py # But we make it much faster: we compute the local loss and the LSE, and by exchanging the LSE and # the losses we can get the global loss. There's no need to do it step by step # (compute local max, exchange, compute exp, compute local sum, exchange, etc.) import torch import torch.nn as nn import xentropy_cuda_lib from apex.transformer.parallel_state import get_tensor_model_parallel_group from apex.transformer.parallel_state import get_tensor_model_parallel_rank from apex.transformer.parallel_state import get_tensor_model_parallel_world_size from apex.transformer.tensor_parallel.utils import VocabUtility # `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for # `_all_gather_base` and `_reduce_scatter_base`. They require the most recent # version of PyTorch. The following 4 lines are for backward comparability with # older PyTorch. if "all_gather_into_tensor" not in dir(torch.distributed): torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base if "reduce_scatter_tensor" not in dir(torch.distributed): torch.distributed.reduce_scatter_tensor = torch.distributed._reduce_scatter_base class SoftmaxCrossEntropyLossParallelFn(torch.autograd.Function): @staticmethod def forward(ctx, logits_parallel, labels, smoothing=0.0, ignored_index=-100, inplace_backward=False): """ logits_parallel: (batch, vocab_size / world_size) labels: (batch,) """ assert smoothing == 0.0, 'smoothing != 0.0 is not yet implemented, file an issue if you need it' batch, partition_vocab_size = logits_parallel.shape assert labels.shape == (batch,) rank = get_tensor_model_parallel_rank() world_size = get_tensor_model_parallel_world_size() if world_size == 1: losses, lse = xentropy_cuda_lib.forward(logits_parallel, labels, smoothing) losses.masked_fill_(labels==ignored_index, 0) labels_local = labels else: vocab_start_index, vocab_end_index = VocabUtility.vocab_range_from_per_partition_vocab_size( partition_vocab_size, get_tensor_model_parallel_rank(), get_tensor_model_parallel_world_size() ) # Create a mask of valid vocab ids (1 means it needs to be masked). labels_mask = (labels < vocab_start_index) | (labels >= vocab_end_index) ignored_mask = labels == ignored_index labels_local = torch.where(ignored_mask, labels, labels - vocab_start_index) masked_labels = labels_local.clone() masked_labels[labels_mask] = ignored_index losses, lse_local = xentropy_cuda_lib.forward(logits_parallel, masked_labels, smoothing) assert lse_local.shape == (batch,) assert losses.shape == (batch,) losses.masked_fill_(masked_labels==ignored_index, 0) lse_allgather = torch.empty(world_size, batch, dtype=lse_local.dtype, device=lse_local.device) handle_lse = torch.distributed.all_gather_into_tensor( lse_allgather, lse_local.contiguous(), group=get_tensor_model_parallel_group(), async_op=True ) handle_losses = torch.distributed.all_reduce( losses, op=torch.distributed.ReduceOp.SUM, group=get_tensor_model_parallel_group(), async_op=True ) handle_lse.wait() lse = torch.logsumexp(lse_allgather, dim=0) # The losses are going to be lse_local - predicted_logit, we just have to subtract # the lse_local and add the lse (global). rank_per_sample = torch.div(labels, partition_vocab_size, rounding_mode='floor') lse_local = lse_allgather[rank_per_sample, torch.arange(batch, device=lse_allgather.device)] handle_losses.wait() losses += lse - lse_local losses.masked_fill_(ignored_mask, 0) ctx.save_for_backward(logits_parallel, lse, labels_local) ctx.smoothing = smoothing ctx.ignored_index = ignored_index ctx.inplace_backward = inplace_backward return losses @staticmethod def backward(ctx, grad_loss): logits_parallel, lse, labels = ctx.saved_tensors if not grad_loss.is_contiguous(): grad_loss = grad_loss.contiguous() grad_loss.masked_fill_(labels==ctx.ignored_index, 0) grad_logits = xentropy_cuda_lib.backward(grad_loss, logits_parallel, lse, labels, ctx.smoothing, ctx.inplace_backward) return grad_logits, None, None, None, None, None class CrossEntropyLossParallel(nn.Module): def __init__(self, ignore_index=-100, reduction='mean', label_smoothing=0.0, inplace_backward=False): super().__init__() if reduction not in ['mean', 'none']: raise NotImplementedError("Only support reduction = 'mean' or 'none'") self.ignore_index = ignore_index self.reduction = reduction self.label_smoothing = label_smoothing self.inplace_backward = inplace_backward def forward(self, input, target): assert input.is_cuda and target.is_cuda # SoftmaxCrossEntropyLoss implicitly casts to float loss = SoftmaxCrossEntropyLossParallelFn.apply( input, target, self.label_smoothing, self.ignore_index, self.inplace_backward ) if self.reduction == 'mean': return loss.sum() / (target != self.ignore_index).sum() else: return loss
flash-attention-main
flash_attn/losses/cross_entropy_parallel.py
# Inspired by https://github.com/facebookresearch/xformers/blob/main/xformers/components/positional_embedding/rotary.py from typing import Tuple import math import torch from einops import rearrange, repeat import rotary_emb def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_emb_torch(x, cos, sin): """ x: (batch_size, seqlen, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) """ rotary_dim = cos.shape[-1] * 2 assert rotary_dim <= x.shape[-1] cos = repeat(cos, 's d -> s 1 (2 d)') sin = repeat(sin, 's d -> s 1 (2 d)') return torch.cat([x[..., :rotary_dim] * cos + rotate_half(x[..., :rotary_dim]) * sin, x[..., rotary_dim:]], dim=-1) class ApplyRotaryEmb(torch.autograd.Function): @staticmethod def forward(ctx, x, cos, sin, inplace=False): """ x: (batch_size, seqlen, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) rotary_dim must be <= headdim Apply rotary embedding to the first rotary_dim of x. """ batch, seqlen, nheads, headdim = x.shape rotary_seqlen, rotary_dim = cos.shape rotary_dim *= 2 assert rotary_dim <= headdim assert seqlen <= rotary_seqlen assert cos.shape == (rotary_seqlen, rotary_dim // 2) assert sin.shape == (rotary_seqlen, rotary_dim // 2) x1, x2 = x[..., :rotary_dim].chunk(2, dim=-1) out = torch.empty_like(x) if not inplace else x o1, o2 = out[..., :rotary_dim].chunk(2, dim=-1) if not inplace else (x1, x2) rotary_emb.apply_rotary(x1, x2, rearrange(cos[:, :seqlen], 's d -> s 1 d'), rearrange(sin[:, :seqlen], 's d -> s 1 d'), o1, o2, False) if not inplace and rotary_dim < headdim: out[..., rotary_dim:].copy_(x[..., rotary_dim:]) ctx.save_for_backward(cos, sin) ctx.inplace = inplace return out if not inplace else x @staticmethod def backward(ctx, do): cos, sin = ctx.saved_tensors _, seqlen, _, headdim = do.shape rotary_dim = cos.shape[-1] rotary_dim *= 2 inplace = ctx.inplace do1, do2 = do[..., :rotary_dim].chunk(2, dim=-1) dx = torch.empty_like(do) if not inplace else do dx1, dx2 = dx[..., :rotary_dim].chunk(2, dim=-1) if not inplace else (do1, do2) rotary_emb.apply_rotary(do1, do2, rearrange(cos[:, :seqlen], 's d -> s 1 d'), rearrange(sin[:, :seqlen], 's d -> s 1 d'), dx1, dx2, True) if not inplace and rotary_dim < headdim: dx[..., rotary_dim:].copy_(do[..., rotary_dim:]) return dx, None, None, None apply_rotary_emb_func = ApplyRotaryEmb.apply class ApplyRotaryEmbQKV_(torch.autograd.Function): @staticmethod def forward(ctx, qkv, cos, sin): """ qkv: (batch_size, seqlen, 3, nheads, headdim) cos, sin: (seqlen, rotary_dim / 2) rotary_dim must be <= headdim Apply rotary embedding *inplace* to the first rotary_dim of q and k. """ batch, seqlen, three, nheads, headdim = qkv.shape assert three == 3 rotary_seqlen, rotary_dim = cos.shape rotary_dim *= 2 assert rotary_dim <= headdim assert seqlen <= rotary_seqlen assert cos.shape == (seqlen, rotary_dim // 2) assert sin.shape == (seqlen, rotary_dim // 2) q1, q2 = qkv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1) rotary_emb.apply_rotary(q1, q2, rearrange(cos[:, :seqlen], 's d -> s 1 d'), rearrange(sin[:, :seqlen], 's d -> s 1 d'), q1, q2, False) k1, k2 = qkv[:, :, 1, :, :rotary_dim].chunk(2, dim=-1) rotary_emb.apply_rotary(k1, k2, rearrange(cos[:, :seqlen], 's d -> s 1 d'), rearrange(sin[:, :seqlen], 's d -> s 1 d'), k1, k2, False) ctx.save_for_backward(cos, sin) return qkv @staticmethod def backward(ctx, dqkv): cos, sin = ctx.saved_tensors _, seqlen, _, _, headdim = dqkv.shape rotary_dim = cos.shape[-1] rotary_dim *= 2 dq1, dq2 = dqkv[:, :, 0, :, :rotary_dim].chunk(2, dim=-1) rotary_emb.apply_rotary(dq1, dq2, rearrange(cos[:, :seqlen], 's d -> s 1 d'), rearrange(sin[:, :seqlen], 's d -> s 1 d'), dq1, dq2, True) dk1, dk2 = dqkv[:, :, 1, :, :rotary_dim].chunk(2, dim=-1) rotary_emb.apply_rotary(dk1, dk2, rearrange(cos[:, :seqlen], 's d -> s 1 d'), rearrange(sin[:, :seqlen], 's d -> s 1 d'), dk1, dk2, True) return dqkv, None, None apply_rotary_emb_qkv_ = ApplyRotaryEmbQKV_.apply class RotaryEmbedding(torch.nn.Module): """ The rotary position embeddings from RoFormer_ (Su et. al). A crucial insight from the method is that the query and keys are transformed by rotation matrices which depend on the relative positions. Other implementations are available in the Rotary Transformer repo_ and in GPT-NeoX_, GPT-NeoX was an inspiration .. _RoFormer: https://arxiv.org/abs/2104.09864 .. _repo: https://github.com/ZhuiyiTechnology/roformer .. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox """ def __init__(self, dim_model: int, *_, **__): super().__init__() # Generate and save the inverse frequency buffer (non trainable) inv_freq = 1.0 / (10000 ** (torch.arange(0, dim_model, 2).float() / dim_model)) self.register_buffer("inv_freq", inv_freq) self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None def _update_cos_sin_cache(self, x): """x: (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim) """ seqlen = x.shape[1] # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if (seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype): self._seq_len_cached = seqlen t = torch.arange(seqlen, device=x.device, dtype=self.inv_freq.dtype) # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq) self._cos_cached = torch.cos(freqs).to(x.dtype) self._sin_cached = torch.sin(freqs).to(x.dtype) def forward(self, qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: self._update_cos_sin_cache(qkv) return apply_rotary_emb_qkv_(qkv, self._cos_cached, self._sin_cached)
flash-attention-main
flash_attn/layers/rotary.py
# Copyright (c) 2022, Tri Dao. """ Useful functions for writing test code. """ import torch import torch.utils.benchmark as benchmark def benchmark_forward(fn, *inputs, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the forward pass of an arbitrary function. """ if verbose: print(desc, '- Forward pass') def fn_amp(*inputs, **kwinputs): with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): fn(*inputs, **kwinputs) for _ in range(repeats): # warmup fn_amp(*inputs, **kwinputs) t = benchmark.Timer( stmt='fn_amp(*inputs, **kwinputs)', globals={'fn_amp': fn_amp, 'inputs': inputs, 'kwinputs': kwinputs}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m def benchmark_backward(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the backward pass of an arbitrary function. """ if verbose: print(desc, '- Backward pass') with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): y = fn(*inputs, **kwinputs) if type(y) is tuple: y = y[0] if grad is None: grad = torch.randn_like(y) else: if grad.shape != y.shape: raise RuntimeError('Grad shape does not match output shape') for _ in range(repeats): # warmup y.backward(grad, retain_graph=True) t = benchmark.Timer( stmt='y.backward(grad, retain_graph=True)', globals={'y': y, 'grad': grad}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m def benchmark_combined(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """ if verbose: print(desc, '- Forward + Backward pass') def f(grad, *inputs, **kwinputs): with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): y = fn(*inputs, **kwinputs) if type(y) is tuple: y = y[0] if grad is None: grad = torch.randn_like(y) else: if grad.shape != y.shape: raise RuntimeError('Grad shape does not match output shape') y.backward(grad, retain_graph=True) for _ in range(repeats): # warmup f(grad, *inputs, **kwinputs) t = benchmark.Timer( stmt='f(grad, *inputs, **kwinputs)', globals={'f': f, 'fn': fn, 'inputs': inputs, 'grad': grad, 'kwinputs': kwinputs}, num_threads=torch.get_num_threads(), ) m = t.timeit(repeats) if verbose: print(m) return t, m def benchmark_all(fn, *inputs, grad=None, repeats=10, desc='', verbose=True, amp=False, amp_dtype=torch.float16, **kwinputs): """ Use Pytorch Benchmark on the forward+backward pass of an arbitrary function. """ return ( benchmark_forward(fn, *inputs, repeats=repeats, desc=desc, verbose=verbose, amp=amp, amp_dtype=amp_dtype, **kwinputs), benchmark_backward(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose, amp=amp, amp_dtype=amp_dtype, **kwinputs), benchmark_combined(fn, *inputs, grad=grad, repeats=repeats, desc=desc, verbose=verbose, amp=amp, amp_dtype=amp_dtype, **kwinputs), ) def pytorch_profiler(fn, *inputs, trace_filename=None, backward=False, amp=False, amp_dtype=torch.float16, cpu=False, verbose=True, **kwinputs): """ Wrap benchmark functions in Pytorch profiler to see CUDA information. """ if backward: with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): g = torch.randn_like(fn(*inputs, **kwinputs)) for _ in range(30): # Warm up with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): if backward: for x in inputs: if isinstance(x, torch.Tensor): x.grad = None # fn(*inputs, **kwinputs) if not backward else fn(*inputs, **kwinputs).backward(g) out = fn(*inputs, **kwinputs) # Backward should be done outside autocast if backward: out.backward(g) activities = ([torch.profiler.ProfilerActivity.CPU] if cpu else []) + [torch.profiler.ProfilerActivity.CUDA] with torch.profiler.profile( activities=activities, record_shapes=True, # profile_memory=True, with_stack=True, ) as prof: with torch.autocast(device_type='cuda', dtype=amp_dtype, enabled=amp): if backward: for x in inputs: if isinstance(x, torch.Tensor): x.grad = None out = fn(*inputs, **kwinputs) if backward: out.backward(g) if verbose: # print(prof.key_averages().table(sort_by="self_cuda_time_total", row_limit=50)) print(prof.key_averages().table(row_limit=50)) if trace_filename is not None: prof.export_chrome_trace(trace_filename) def benchmark_memory(fn, *inputs, desc='', verbose=True, **kwinputs): torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() torch.cuda.synchronize() fn(*inputs, **kwinputs) torch.cuda.synchronize() mem = torch.cuda.max_memory_allocated() / ((2 ** 20) * 1000) if verbose: print(f'{desc} max memory: {mem}GB') torch.cuda.empty_cache() return mem
flash-attention-main
flash_attn/utils/benchmark.py
# Copyright (c) 2022, Tri Dao. # Inspired by / adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py import math from functools import partial from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.init import trunc_normal_ from einops import rearrange from timm.models.helpers import named_apply from flash_attn.layers.patch_embed import PatchEmbed from flash_attn.modules.mha import MHA from flash_attn.modules.mlp import Mlp, FusedDenseGeluDense from flash_attn.modules.block import Block def create_mixer_cls(num_heads, qkv_bias, attn_drop, use_flash_attn, fused_bias_fc, cross_attn=False): mixer_cls = partial(MHA, num_heads=num_heads, cross_attn=cross_attn, bias=qkv_bias, dropout=attn_drop, fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn) return mixer_cls def create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_dense_gelu_dense): inner_dim = int(embed_dim * mlp_ratio) if not fused_dense_gelu_dense: mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=act_layer()) else: mlp_cls = partial(FusedDenseGeluDense, hidden_features=inner_dim) return mlp_cls def create_block(embed_dim, num_heads, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, drop_path, norm_layer, act_layer, use_flash_attn, fused_bias_fc, fused_dense_gelu_dense, fused_dropout_add_ln, layer_idx=None, n_layer=None, last_layer_subset=False): mixer_cls = create_mixer_cls(num_heads, qkv_bias, attn_drop_rate, use_flash_attn, fused_bias_fc, cross_attn=(last_layer_subset and layer_idx == n_layer - 1)) mlp_cls = create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_dense_gelu_dense) block = Block(embed_dim, mixer_cls, mlp_cls, norm_cls=norm_layer, prenorm=True, resid_dropout=drop_rate, drop_path=drop_path, fused_dropout_add_ln=fused_dropout_add_ln) return block class VisionTransformer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, init_values=None, class_token=True, no_embed_class=False, pre_norm=False, fc_norm=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., weight_init='', embed_layer=PatchEmbed, norm_layer=None, act_layer=None, use_flash_attn=False, fused_bias_fc=False, fused_dense_gelu_dense=False, fused_dropout_add_ln=False, ): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head global_pool (str): type of global pooling for final sequence (default: 'token') embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True init_values: (float): layer-scale init values class_token (bool): use class token fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None) drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate weight_init (str): weight init scheme embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer act_layer: (nn.Module): MLP activation layer """ super().__init__() assert global_pool == 'token', 'Only support pooling with CLS token' assert class_token assert init_values is None, 'LayerScale is not supported yet' assert weight_init == '' assert fc_norm is None # pre_norm seems redundant, as there's a LayerNorm right at the start of each block, idk assert not pre_norm use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_prefix_tokens = 1 if class_token else 0 self.no_embed_class = no_embed_class patch_embed_extra_kwargs = ({'fused_bias_fc': fused_bias_fc} if embed_layer is PatchEmbed else {}) self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP) **patch_embed_extra_kwargs ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule # We change the order of residual and layer norm: # Instead of LN -> Attn / MLP -> Dropout -> Add, we do: # Attn / MLP -> Dropout -> Add -> LN, returning both the residual branch (output of Add) and # the main branch (output of LN). The model definition is unchanged, but the mapping of the # nn.LayerNorm weights are changed. # This is for performance reason: we can fuse dropout + add + layer_norm. # self.norm_0 is the first layer norm in the model, while self.norm # (in the pretrained weight) is the final layer norm. self.norm_0 = norm_layer(embed_dim) self.blocks = nn.ModuleList([create_block( embed_dim, num_heads, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, use_flash_attn=use_flash_attn, fused_bias_fc=fused_bias_fc, fused_dense_gelu_dense=fused_dense_gelu_dense, fused_dropout_add_ln=fused_dropout_add_ln, layer_idx=i, n_layer=depth, last_layer_subset=(global_pool == 'token') ) for i in range(depth)]) # Classifier Head self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() self.init_weights(weight_init) def init_weights(self, mode=''): assert mode == '' trunc_normal_(self.pos_embed, std=.02) if self.cls_token is not None: nn.init.normal_(self.cls_token, std=1e-6) named_apply(init_weights_vit_timm, self) def _init_weights(self, m): # this fn left here for compat with downstream users init_weights_vit_timm(m) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def _pos_embed(self, x): if self.no_embed_class: # deit-3, updated JAX (big vision) # position embedding does not overlap with class token, add then concat x = x + self.pos_embed if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) else: # original timm, JAX, and deit vit impl # pos_embed has entry for class token, concat then add if self.cls_token is not None: x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) x = x + self.pos_embed return self.pos_drop(x) def forward_features(self, x, all_tokens=True): """ If all_tokens==False and self.global_pool == 'token', we only return the features for the cls token. """ x = self.patch_embed(x) # TD [2022-10-15]: Force residual in fp32 in case of DeepSpeed residual = self._pos_embed(x).float() hidden_states = self.norm_0(residual.to(dtype=self.norm_0.weight.dtype)) if self.global_pool != 'token' or all_tokens: for block in self.blocks: hidden_states, residual = block(hidden_states, residual) else: for block in self.blocks[:-1]: hidden_states, residual = block(hidden_states, residual) # For the last layer, we only want the 1st token of the output. So we do cross-attention # where the query is the 1st token and the key/value is the whole sequence. hidden_states_1st = rearrange(hidden_states[:, 0], 'b d -> b 1 d') residual_1st = rearrange(residual[:, 0], 'b d -> b 1 d') hidden_states, _ = self.blocks[-1](hidden_states_1st, residual_1st, mixer_kwargs={'x_kv': hidden_states}) return hidden_states def forward_head(self, x, pre_logits: bool = False): if self.global_pool: x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x, all_tokens=False) x = self.forward_head(x) return x def init_weights_vit_timm(module: nn.Module, name: str = ''): """ ViT weight initialization, original timm impl (for reproducibility) """ if isinstance(module, nn.Linear): trunc_normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif hasattr(module, 'init_weights'): module.init_weights() def vit_base_patch16_224(pretrained=False, **kwargs): """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. """ assert not pretrained model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = VisionTransformer(**model_kwargs) return model
flash-attention-main
flash_attn/models/vit.py
# Copyright (c) 2022, Tri Dao. import math from functools import partial from collections import namedtuple from collections.abc import Sequence import torch import torch.nn as nn import torch.nn.functional as F from transformers.models.gpt2.configuration_gpt2 import GPT2Config from flash_attn.modules.mha import MHA from flash_attn.modules.mlp import Mlp, FusedDenseGeluDense from flash_attn.modules.block import Block from flash_attn.modules.embedding import GPT2Embeddings try: from flash_attn.ops.layer_norm import dropout_add_layer_norm except ImportError: dropout_add_layer_norm = None try: from flash_attn.ops.triton.mlp import FusedDenseSqreluDense except ImportError: FusedDenseSqreluDense = None def create_mixer_cls(config, layer_idx=None): head_dim = getattr(config, 'head_dim', config.hidden_size // config.num_attention_heads) softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5) if config.scale_attn_by_inverse_layer_idx: assert layer_idx is not None softmax_scale /= float(layer_idx + 1) dwconv = getattr(config, 'attn_dwconv', False) rotary_emb_dim = int(getattr(config, 'rotary_emb_fraction', 0.0) * head_dim) use_flash_attn = getattr(config, 'use_flash_attn', False) fused_bias_fc = getattr(config, 'fused_bias_fc', False) mixer_cls = partial(MHA, num_heads=config.num_attention_heads, dropout=config.attn_pdrop, softmax_scale=softmax_scale, causal=True, dwconv=dwconv, rotary_emb_dim=rotary_emb_dim, fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn) return mixer_cls def create_mlp_cls(config, layer_idx=None): inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size fused_dense_gelu_dense = getattr(config, 'fused_dense_gelu_dense', False) fused_dense_sqrelu_dense = getattr(config, 'fused_dense_sqrelu_dense', False) assert not (fused_dense_sqrelu_dense and fused_dense_gelu_dense) if not fused_dense_gelu_dense and not fused_dense_sqrelu_dense: mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=partial(F.gelu, approximate='tanh')) else: mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0) # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer if isinstance(mlp_checkpoint_lvl, Sequence): assert layer_idx is not None mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] if fused_dense_gelu_dense: mlp_cls = partial(FusedDenseGeluDense, hidden_features=inner_dim, checkpoint_lvl=mlp_checkpoint_lvl) elif fused_dense_sqrelu_dense: assert FusedDenseSqreluDense is not None mlp_cls = partial(FusedDenseSqreluDense, hidden_features=inner_dim, checkpoint_lvl=mlp_checkpoint_lvl) else: raise RuntimeError('MLP type not supported') return mlp_cls def create_block(config, layer_idx=None): mixer_cls = create_mixer_cls(config, layer_idx) mlp_cls = create_mlp_cls(config, layer_idx) norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_epsilon) block = Block(config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls, prenorm=True, resid_dropout=config.resid_pdrop, fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False)) block.layer_idx = layer_idx return block # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True): if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=initializer_range) if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight", "fc2.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer)) class GPT2Model(nn.Module): def __init__(self, config: GPT2Config): super().__init__() self.pad_vocab_size_multiple_8 = getattr(config, 'pad_vocab_size_multiple_8', False) if self.pad_vocab_size_multiple_8: if config.vocab_size % 8 != 0: config.vocab_size += 8 - (config.vocab_size % 8) self.embeddings = GPT2Embeddings(config.hidden_size, config.vocab_size, config.max_position_embeddings) self.emb_drop = nn.Dropout(config.embd_pdrop) # We change the order of residual and layer norm: # Instead of LN -> Attn / MLP -> Dropout -> Add, we do: # Attn / MLP -> Dropout -> Add -> LN, returning both the residual branch (output of Add) and # the main branch (output of LN). The model definition is unchanged, but the mapping of the # nn.LayerNorm weights are changed. # This is for performance reason: we can fuse dropout + add + layer_norm. self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False) if self.fused_dropout_add_ln and dropout_add_layer_norm is None: raise ImportError('dropout_add_layer_norm is not installed') # self.ln_0 is the first layer norm in the model, while self.ln_f (in the pretrained weight) # is the final layer norm. self.ln_0 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.layers = nn.ModuleList([create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self.apply(partial(_init_weights, n_layer=config.num_hidden_layers, initializer_range=config.initializer_range)) def forward(self, input_ids, position_ids=None): hidden_states = self.embeddings(input_ids, position_ids=position_ids) # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable if not self.fused_dropout_add_ln: residual = self.emb_drop(hidden_states).float() hidden_states = self.ln_0(residual.to(dtype=self.ln_0.weight.dtype)) else: hidden_states, residual = dropout_add_layer_norm( hidden_states, None, self.ln_0.weight, self.ln_0.bias, self.emb_drop.p if self.training else 0.0, self.ln_0.eps, prenorm=True, residual_in_fp32=True ) for layer in self.layers: hidden_states, residual = layer(hidden_states, residual) return hidden_states class GPT2LMHeadModel(nn.Module): def __init__(self, config: GPT2Config): super().__init__() self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Initialize weights and apply final processing self.apply(partial(_init_weights, n_layer=config.num_hidden_layers, initializer_range=config.initializer_range)) self.tie_weights() def tie_weights(self): self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight def forward(self, input_ids, position_ids=None): hidden_states = self.transformer(input_ids, position_ids=position_ids) lm_logits = self.lm_head(hidden_states) CausalLMOutput = namedtuple('CausalLMOutput', ['logits']) return CausalLMOutput(logits=lm_logits)
flash-attention-main
flash_attn/models/gpt.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py # We make it work with pytorch amp and with bfloat16. import torch import torch.nn as nn import torch.nn.functional as F from torch.cuda.amp import custom_bwd, custom_fwd # import fused_dense_cuda # from apex import fused_dense_lib as fused_dense_cuda from flash_attn.ops.gelu_activation import gelu_bwd # implements fused GEMM+bias in forward pass using mlp_cuda from apex class FusedDenseFuncTD(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight, bias): if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() x, weight, bias = [a.to(dtype=dtype) for a in [x, weight, bias]] x = x.contiguous() weight = weight.contiguous() bias = bias.contiguous() ctx.save_for_backward(x, weight) batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k' output = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight, bias) return output.reshape(*batch_shape, output.shape[-1]) @staticmethod @custom_bwd def backward(ctx, grad_output): grad_output = grad_output.contiguous() x, weight = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() if ctx.needs_input_grad[0]: grad_input, grad_weight, grad_bias = fused_dense_cuda.linear_bias_backward( x.reshape(batch_dim, n), weight, grad_output.reshape(batch_dim, grad_output.shape[-1]) ) grad_input = grad_input.reshape_as(x) else: grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad( x.reshape(batch_dim, n), grad_output.reshape(batch_dim, grad_output.shape[-1]) ) grad_input = None # print((grad_bias - grad_output.view(-1, grad_output.shape[-1]).sum(dim=0)).abs().max()) return grad_input, grad_weight, grad_bias # grad_input, grad_weight = None, None # grad_output_reshaped = grad_output.reshape(batch_dim, grad_output.shape[-1]) # if ctx.needs_input_grad[0]: # grad_input = (grad_output_reshaped @ weight.conj()).reshape(*batch_shape, n) # if ctx.needs_input_grad[1]: # grad_weight = grad_output_reshaped.t() @ x.conj().reshape(batch_dim, n) # # We don't need to compute grad_bias explicitly, when we return grad_out Pytorch # # will sum over the batch dimension to get grad_bias. # return grad_input, grad_weight, grad_output fused_dense_function_td = FusedDenseFuncTD.apply class FusedDenseTD(nn.Linear): def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype) def forward(self, x): if x.is_cuda and self.bias is not None: return fused_dense_function_td(x, self.weight, self.bias) else: return F.linear(x, self.weight, self.bias) class FusedDenseResidualFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight, bias): if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() x, weight, bias = [a.to(dtype=dtype) for a in [x, weight, bias]] x = x.contiguous() x = x.contiguous() weight = weight.contiguous() bias = bias.contiguous() ctx.save_for_backward(x, weight) batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k' output = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight, bias) return output.reshape(*batch_shape, output.shape[-1]), x @staticmethod @custom_bwd def backward(ctx, grad_output, grad_input): grad_output = grad_output.contiguous() grad_input = grad_input.contiguous() x, weight = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() grad_input, grad_weight, grad_bias = fused_dense_cuda.linear_bias_residual_backward( x.reshape(batch_dim, n), weight, grad_output.reshape(batch_dim, grad_output.shape[-1]), grad_input.reshape(batch_dim, n) ) return grad_input.reshape_as(x), grad_weight, grad_bias fused_dense_residual_function = FusedDenseResidualFunc.apply class FusedDenseResidual(nn.Linear): """Similar to FusedDense, but we return both the output and the input. This is so that in the backward pass, we can combine the input gradient from the residual branch with the input gradient from the matrix multiply, without having to do a separate addition. """ def forward(self, x): if x.is_cuda and self.bias is not None: return fused_dense_residual_function(x, self.weight, self.bias) else: return F.linear(x, self.weight, self.bias), x class FusedDenseGeluDenseFuncTD(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0, heuristic=0): """checkpoint_lvl: 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute gelu_in and gelu_out in the bwd """ assert -1 <= heuristic <= 4 if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() x, weight1, bias1, weight2, bias2 = [a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2]] assert checkpoint_lvl in [0, 1, 2] x = x.contiguous() weight1 = weight1.contiguous() bias1 = bias1.contiguous() weight2 = weight2.contiguous() bias2 = bias2.contiguous() batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k' # output1, output2, gelu_in = fused_dense_cuda.linear_gelu_linear_forward( # x.reshape(batch_dim, n), weight1, bias1, weight2, bias2 # ) if heuristic == -1: gelu_in = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight1, bias1) output1 = F.gelu(gelu_in, approximate='tanh') # gelu_in = F.linear(x.reshape(batch_dim, n), weight1) # This is before adding bias1 # with torch.jit.fuser('fuser2'): # output1 = bias_gelu(gelu_in, bias1) else: save_gelu_in = checkpoint_lvl != 2 output1, *rest = fused_dense_cuda.linear_gelu_forward(x.reshape(batch_dim, n), weight1, bias1, save_gelu_in, heuristic) if save_gelu_in: gelu_in = rest[0] output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2) ctx.checkpoint_lvl = checkpoint_lvl ctx.heuristic = heuristic if checkpoint_lvl == 0: ctx.save_for_backward(x, weight1, bias1, weight2, gelu_in, output1) elif checkpoint_lvl == 1: ctx.save_for_backward(x, weight1, bias1, weight2, gelu_in) elif checkpoint_lvl == 2: ctx.save_for_backward(x, weight1, bias1, weight2) return output2.reshape(*batch_shape, output2.shape[-1]) @staticmethod @custom_bwd def backward(ctx, grad_output): grad_output = grad_output.contiguous() checkpoint_lvl = ctx.checkpoint_lvl x, weight1, bias1, weight2, *rest = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() if checkpoint_lvl == 0: gelu_in, output1 = rest elif checkpoint_lvl == 1: gelu_in, = rest output1 = F.gelu(gelu_in, approximate='tanh') elif checkpoint_lvl == 2: # bias1, = rest if ctx.heuristic == -1: gelu_in = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight1, bias1) output1 = F.gelu(gelu_in, approximate='tanh') else: output1, gelu_in = fused_dense_cuda.linear_gelu_forward(x.reshape(batch_dim, n), weight1, bias1, True, ctx.heuristic) if ctx.heuristic == -1: grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) # grad_output1, grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_backward(output1, weight2, grad_output) grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) # grad_gelu = matmul_dgelu(grad_output, weight2, gelu_in) grad_output1 = grad_output @ weight2 with torch.jit.fuser('fuser2'): grad_gelu = gelu_bwd(grad_output1, gelu_in) grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( x.reshape(batch_dim, n), weight1, grad_gelu ) # with torch.jit.fuser('fuser2'): # grad_gelu, grad_bias1 = bias_gelu_back(grad_output1, gelu_in, bias1) # grad_input = grad_gelu @ weight1 # grad_weight1 = grad_gelu.reshape(batch_dim, -1).T @ x.reshape(batch_dim, n) # grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( # x.reshape(batch_dim, n), weight1, grad_gelu # ) else: grad_input, grad_weight1, grad_bias1, grad_weight2, grad_bias2 = fused_dense_cuda.linear_gelu_linear_backward( x.reshape(batch_dim, n), gelu_in, output1, weight1, weight2, grad_output.reshape(batch_dim, grad_output.shape[-1]), ctx.heuristic ) # grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) # # grad_output1, grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_backward(output1, weight2, grad_output) # grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) # grad_gelu = matmul_dgelu(grad_output, weight2, gelu_in) # grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( # x.reshape(batch_dim, n), weight1, grad_gelu # ) return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None, None fused_dense_gelu_dense_function_td = FusedDenseGeluDenseFuncTD.apply class FusedDenseGeluDenseTD(nn.Module): def __init__(self, in_features, intermediate_features, out_features=None, bias=True, checkpoint_lvl=0, heuristic=0, device=None, dtype=None): """ checkpoint_lvl (increasing lvl means slower but more memory saving): 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute gelu_in and gelu_out in the bwd heuristic: -1: don't fuse gemm + gelu (separate kernel) 0..4: use this heuristic for the algo section in the fused gemm + gelu """ assert checkpoint_lvl in [0, 1, 2] factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() if out_features is None: out_features = in_features assert bias == True, "DenseGeluDense module without bias is currently not supported" self.checkpoint_lvl = checkpoint_lvl self.heuristic = heuristic self.fc1 = nn.Linear(in_features, intermediate_features, bias=bias, **factory_kwargs) self.fc2 = nn.Linear(intermediate_features, out_features, bias=bias, **factory_kwargs) def forward(self, x): return fused_dense_gelu_dense_function_td(x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl, self.heuristic) class FusedDenseResGeluDenseFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0, heuristic=0): """checkpoint_lvl: 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute gelu_in and gelu_out in the bwd """ assert -1 <= heuristic <= 4 if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() x, weight1, bias1, weight2, bias2 = [a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2]] assert checkpoint_lvl in [0, 1, 2] x = x.contiguous() weight1 = weight1.contiguous() bias1 = bias1.contiguous() weight2 = weight2.contiguous() bias2 = bias2.contiguous() batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k' # output1, output2, gelu_in = fused_dense_cuda.linear_gelu_linear_forward( # x.reshape(batch_dim, n), weight1, bias1, weight2, bias2 # ) # gelu_in = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight1, bias1) # output1 = F.gelu(gelu_in, approximate='tanh') save_gelu_in = checkpoint_lvl != 2 output1, *rest = fused_dense_cuda.linear_gelu_forward(x.reshape(batch_dim, n), weight1, bias1, save_gelu_in, heuristic) if save_gelu_in: gelu_in = rest[0] output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2) ctx.checkpoint_lvl = checkpoint_lvl ctx.heuristic = heuristic if checkpoint_lvl == 0: ctx.save_for_backward(x, weight1, weight2, gelu_in, output1) elif checkpoint_lvl == 1: ctx.save_for_backward(x, weight1, weight2, gelu_in) elif checkpoint_lvl == 2: ctx.save_for_backward(x, weight1, weight2, bias1) return output2.reshape(*batch_shape, output2.shape[-1]), x @staticmethod @custom_bwd def backward(ctx, grad_output, grad_input): grad_output = grad_output.contiguous() grad_input = grad_input.contiguous() checkpoint_lvl = ctx.checkpoint_lvl x, weight1, weight2, *rest = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() if checkpoint_lvl == 0: gelu_in, output1 = rest elif checkpoint_lvl == 1: gelu_in, = rest output1 = F.gelu(gelu_in, approximate='tanh') elif checkpoint_lvl == 2: bias1, = rest output1, gelu_in = fused_dense_cuda.linear_gelu_forward(x.reshape(batch_dim, n), weight1, bias1, True, ctx.heuristic) grad_input, grad_weight1, grad_bias1, grad_weight2, grad_bias2 = fused_dense_cuda.linear_residual_gelu_linear_backward( x.reshape(batch_dim, n), gelu_in, output1, weight1, weight2, grad_output.reshape(batch_dim, grad_output.shape[-1]), grad_input.reshape(batch_dim, n), ctx.heuristic ) # grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) # # grad_output1, grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_backward(output1, weight2, grad_output) # grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) # grad_gelu = matmul_dgelu(grad_output, weight2, gelu_in) # grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_residual_backward( # x.reshape(batch_dim, n), weight1, grad_gelu, # grad_input.reshape(batch_dim, n) # ) return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None, None fused_dense_res_gelu_dense_function_td = FusedDenseResGeluDenseFunc.apply class FusedDenseResGeluDense(FusedDenseGeluDenseTD): def forward(self, x): return fused_dense_res_gelu_dense_function_td(x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl, False, self.heuristic)
flash-attention-main
flash_attn/ops/fused_dense.py
# Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py import torch from torch.nn import init # from apex._autocast_utils import _cast_if_autocast_enabled import dropout_layer_norm def _dropout_add_layer_norm_forward(x0, x1, gamma, beta, rowscale, dropout_p, epsilon, residual_in_fp32): """ Assume that arguments are contiguous """ hidden_size = gamma.numel() x0mat = x0.view((-1, hidden_size)) x1mat = x1.view((-1, hidden_size)) if x1 is not None else None rowscale = rowscale.view(-1) if rowscale is not None else None zmat, xmat, dmask, mu, rsigma = dropout_layer_norm.dropout_add_ln_fwd( x0mat, x1mat, gamma, beta, rowscale, dropout_p, epsilon, None, residual_in_fp32 ) # dmask is None if dropout_p == 0.0 # xmat is None if dropout_p == 0.0 and x1 is None and residual_dtype != input_dtype return zmat, xmat if xmat is not None else x0mat, dmask, mu, rsigma def _dropout_add_layer_norm_backward(dz, x, dmask, mu, rsigma, gamma, rowscale, dropout_p, has_residual): """ Assume that arguments are contiguous """ # dmask is None if dropout_p == 0.0 hidden_size = gamma.numel() xmat = x.view((-1, hidden_size)) dzmat = dz.view(xmat.shape) rowscale = rowscale.view(-1) if rowscale is not None else None dx0mat, dx1mat, dgamma, dbeta, _, _ = dropout_layer_norm.dropout_add_ln_bwd( dzmat, xmat, dmask, mu, rsigma, gamma, rowscale, dropout_p, has_residual ) # dx1mat is None if not has_residual return dx0mat, dx1mat, dgamma, dbeta def _dropout_add_layer_norm_prenorm_backward(dz, dx, x, dmask, mu, rsigma, gamma, rowscale, dropout_p, has_residual): """ Assume that arguments are contiguous """ hidden_size = gamma.numel() xmat = x.view((-1, hidden_size)) dzmat = dz.view(xmat.shape) dxmat = dx.view(xmat.shape) rowscale = rowscale.view(-1) if rowscale is not None else None dx0mat, dx1mat, dgamma, dbeta, _, _ = dropout_layer_norm.dropout_add_ln_prenorm_bwd( dzmat, dxmat, xmat, dmask, mu, rsigma, gamma, rowscale, dropout_p, has_residual ) return dx0mat, dx1mat, dgamma, dbeta class DropoutAddLayerNormFN(torch.autograd.Function): @staticmethod def forward(ctx, x0, x1, gamma, beta, rowscale, dropout_p, epsilon, residual_in_fp32, return_dmask=False): x0 = x0.contiguous() x1 = x1.contiguous() if x1 is not None else None gamma = gamma.contiguous() beta = beta.contiguous() rowscale = rowscale.contiguous() if rowscale is not None else None zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_forward( x0, x1, gamma, beta, rowscale, dropout_p, epsilon, residual_in_fp32 ) ctx.save_for_backward(xmat.view(x0.shape), dmask, gamma, mu, rsigma, rowscale) ctx.dropout_p = dropout_p ctx.has_residual = x1 is not None if not return_dmask: return zmat.view(x0.shape) else: dmask = (dmask.view(x0.shape) if dropout_p > 0. else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)) ctx.mark_non_differentiable(dmask) return zmat.view(x0.shape), dmask @staticmethod def backward(ctx, dz, *args): # assert dz.is_contiguous() dz = dz.contiguous() # this happens! x, dmask, gamma, mu, rsigma, rowscale = ctx.saved_tensors dropout_p = ctx.dropout_p has_residual = ctx.has_residual dx0mat, dx1mat, dgamma, dbeta = _dropout_add_layer_norm_backward( dz, x, dmask, mu, rsigma, gamma, rowscale, dropout_p, has_residual ) dx0 = dx0mat.view(x.shape) dx1 = dx1mat.view(x.shape) if dx1mat is not None else None return dx0, dx1, dgamma, dbeta, None, None, None, None, None class DropoutAddLayerNormPrenormFN(torch.autograd.Function): @staticmethod def forward(ctx, x0, x1, gamma, beta, rowscale, dropout_p, epsilon, residual_in_fp32, return_dmask=False): x0 = x0.contiguous() x1 = x1.contiguous() if x1 is not None else None gamma = gamma.contiguous() beta = beta.contiguous() rowscale = rowscale.contiguous() if rowscale is not None else None zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_forward( x0, x1, gamma, beta, rowscale, dropout_p, epsilon, residual_in_fp32 ) ctx.save_for_backward(xmat.view(x0.shape), dmask, gamma, mu, rsigma, rowscale) ctx.dropout_p = dropout_p ctx.has_residual = x1 is not None if not return_dmask: return zmat.view(x0.shape), xmat.view(x0.shape) else: dmask = (dmask.view(x0.shape) if dropout_p > 0. else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)) ctx.mark_non_differentiable(dmask) return zmat.view(x0.shape), xmat.view(x0.shape), dmask @staticmethod def backward(ctx, dz, dx, *args): # assert dz.is_contiguous() dz = dz.contiguous() # this happens! dx = dx.contiguous() # this happens! x, dmask, gamma, mu, rsigma, rowscale = ctx.saved_tensors dropout_p = ctx.dropout_p has_residual = ctx.has_residual dx0mat, dx1mat, dgamma, dbeta = _dropout_add_layer_norm_prenorm_backward( dz, dx, x, dmask, mu, rsigma, gamma, rowscale, dropout_p, has_residual ) dx0 = dx0mat.view(x.shape) dx1 = dx1mat.view(x.shape) if dx1mat is not None else None return dx0, dx1, dgamma, dbeta, None, None, None, None, None def dropout_add_layer_norm(x0, x1, weight, bias, dropout_p, epsilon, rowscale=None, prenorm=False, residual_in_fp32=False, return_dropout_mask=False): """residual_in_fp32 only has an effect if x1 is None. Otherwise residual dtype is x1.dtype. """ args = (x0, x1, weight, bias, rowscale, dropout_p, epsilon, residual_in_fp32, return_dropout_mask) if not prenorm: return DropoutAddLayerNormFN.apply(*args) else: return DropoutAddLayerNormPrenormFN.apply(*args) class DropoutAddLayerNorm(torch.nn.Module): def __init__(self, hidden_size, prenorm=False, p=0.5, eps=1e-5, residual_in_fp32=False, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.prenorm = prenorm self.p = p self.epsilon = eps self.residual_in_fp32 = residual_in_fp32 self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.bias = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.reset_parameters() def reset_parameters(self): init.ones_(self.weight) init.zeros_(self.bias) def forward(self, x0, x1=None): return dropout_add_layer_norm(x0, x1, self.weight, self.bias, self.p if self.training else 0.0, self.epsilon, prenorm=self.prenorm, residual_in_fp32=self.residual_in_fp32)
flash-attention-main
flash_attn/ops/layer_norm.py
# Copied from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/model/layers/activations.py import math import torch from torch import nn # 1/sqrt(2*pi)-> 0.3989423 # 1/sqrt(2) -> 0.70710678 # sqrt(2/pi) -> 0.79788456 # this function is tanh approximation of gelu # actual gelu is: # x * 0.5 * (1.0 + torch.erf(x * 0.70710678)) @torch.jit.script def bias_gelu(y, bias): x = bias + y return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=y.dtype) # gradient of tanh approximation of gelu # gradient of actual gelu is: # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) @torch.jit.script def bias_gelu_back(g, y, bias): """Assume that y has shape (B, D) and bias has shape (D) """ x = bias + y tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) grad_y = ff * g return grad_y.to(dtype=y.dtype), grad_y.sum(dim=(0), dtype=bias.dtype) class GeLUFunction(torch.autograd.Function): @staticmethod # bias is an optional argument def forward(ctx, input, bias): ctx.save_for_backward(input, bias) return bias_gelu(input, bias) @staticmethod def backward(ctx, grad_output): input, bias = ctx.saved_tensors tmp = bias_gelu_back(grad_output, input, bias) return tmp, tmp bias_gelu_impl = GeLUFunction.apply # this function is tanh approximation of gelu # actual gelu is: # x * 0.5 * (1.0 + torch.erf(x * 0.70710678)) @torch.jit.script def gelu_fwd(x): return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=x.dtype) # gradient of tanh approximation of gelu # gradient of actual gelu is: # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) @torch.jit.script def gelu_bwd(g, x): tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) return (ff * g).to(dtype=x.dtype) class FastGeLUFunction(torch.autograd.Function): @staticmethod # bias is an optional argument def forward(ctx, input): ctx.save_for_backward(input) return gelu_fwd(input) @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors tmp = gelu_bwd(grad_output, input) return tmp fast_gelu_impl = FastGeLUFunction.apply
flash-attention-main
flash_attn/ops/gelu_activation.py
# Adapted on https://github.com/ELS-RD/kernl/blob/main/src/kernl/implementations/linear_layer.py # and https://github.com/openai/triton/blob/master/python/triton/ops/matmul.py from typing import Optional import torch import triton import triton.language as tl from torch.autograd.function import FunctionCtx from torch.cuda.amp import custom_fwd from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time from flash_attn.ops.triton.k_activations import gelu, gelu_grad, gelu_approx, gelu_approx_grad, squared_relu, squared_relu_grad # CREDITS: Initially inspired by the Triton tutorial on matrix multiplications def init_to_zero(name): return lambda nargs: nargs[name].zero_() def get_configs_io_bound(): configs = [] for num_stages in [2, 3, 4, 5, 6]: for block_m in [16, 32]: for block_k in [32, 64]: for block_n in [32, 64, 128, 256]: num_warps = 2 if block_n <= 64 else 4 configs.append( triton.Config( {"BLOCK_M": block_m, "BLOCK_N": block_n, "BLOCK_K": block_k, "SPLIT_K": 1}, num_stages=num_stages, num_warps=num_warps, ) ) # split_k not used # for split_k in [2, 4, 8, 16]: # configs.append(triton.Config( # {'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k, 'SPLIT_K': split_k}, # num_stages=num_stages, num_warps=num_warps, pre_hook=init_to_zero('C'))) return configs @triton.autotune( configs=[ triton.Config({"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=5, num_warps=2), # good for int8 triton.Config({"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=5, num_warps=2), ] + get_configs_io_bound(), key=["CACHE_KEY_M", "CACHE_KEY_N", "CACHE_KEY_K"], prune_configs_by={"early_config_prune": early_config_prune, "perf_model": estimate_matmul_time, "top_k": 10}, ) @triton.heuristics( { "EVEN_K": lambda args: args["K"] % (args["BLOCK_K"] * args["SPLIT_K"]) == 0, } ) @triton.jit def kernel_fwd( C, # Pointers to matrices ACT_INPUT, A, B, bias, # Matrix dimensions M, N, K, CACHE_KEY_M, CACHE_KEY_N, CACHE_KEY_K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. stride_am is how much to increase a_ptr # by to get the element one row down (A has M rows) stride_cm, # stride_cn, # Assume that stride_cn == 1 stride_am, stride_ak, stride_bn, stride_bk, # Meta-parameters BLOCK_M: tl.constexpr, GROUP_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, # split k not used, not performant with activation, kept because early_config_prune is expecting it SPLIT_K: tl.constexpr, EVEN_K: tl.constexpr, A_ROWMAJOR: tl.constexpr, B_COLMAJOR: tl.constexpr, BIAS: tl.constexpr, SAVE_ACT_INPUT: tl.constexpr, ACTIVATION: tl.constexpr, ): """ Kernel for computing Out = activation(A x W + C) - Input has shape (M, K) - Weight has shape (K, N) - Bias has shape (N,) - Output has shape (M, N) - ActInputs (optional) has shape (M, N) 'ActInputs' optionally saves the A x W + C intermediate for backward computations This kernel will consolidate over K """ pid = tl.program_id(axis=0) grid_m = (M + BLOCK_M - 1) // BLOCK_M grid_n = (N + BLOCK_N - 1) // BLOCK_N # re-order program ID for better L2 performance width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + (pid % group_size) pid_n = (pid % width) // (group_size) # now compute the block that each program will go through # rm (resp. rn) denotes a range of indices # for rows (resp. col) of C rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) # trick to avoid masking on M and N axis ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = tl.arange(0, BLOCK_K) if A_ROWMAJOR: A = A + (ram[:, None] * stride_am + rk[None, :]) else: A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) if B_COLMAJOR: B = B + (rk[:, None] + rbn[None, :] * stride_bn) else: B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for k in range(K, 0, -BLOCK_K): if EVEN_K: a = tl.load(A) b = tl.load(B) else: a = tl.load(A, mask=rk[None, :] < k, other=0.0) b = tl.load(B, mask=rk[:, None] < k, other=0.0) acc += tl.dot(a, b) if A_ROWMAJOR: A += BLOCK_K else: A += BLOCK_K * stride_ak if B_COLMAJOR: B += BLOCK_K else: B += BLOCK_K * stride_bk # Putting bias after the matmul (instead of before) is faster, idk why if BIAS: bias = tl.load(bias + rn, mask=rn < N, other=0.0).to(tl.float32) acc += bias[None, :] # optional: save the activation inputs if SAVE_ACT_INPUT: # act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :] * stride_cn act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :] tl.store(act_in_ptrs, acc) # optional: fused activation (while the data is in shared memory) if ACTIVATION == "gelu": acc = gelu(acc) elif ACTIVATION == "gelu_approx": acc = gelu_approx(acc) elif ACTIVATION == "squared_relu": acc = squared_relu(acc) # rematerialize rm and rn to save registers rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) # write back result # C = C + rm[:, None] * stride_cm + rn[None, :] * stride_cn C = C + rm[:, None] * stride_cm + rn[None, :] mask = (rm < M)[:, None] & (rn < N)[None, :] tl.store(C, acc) def triton_linear_act( x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, activation: str = 'id', save_act_input: bool = False, ) -> torch.Tensor: """ Compute e = activation(x @ weight.T + bias). This wrapper kicks the `kernel_fwd` Triton kernel :param x: input tensor :param weight: weight matrix :param bias: an optional bias tensor :param activation: Activation name. Needs to be a Triton kernel. :param act_input: an optional tensor to save the activation inputs (for backward) :return: result tensor """ # if torch.is_autocast_enabled(): # dtype = torch.get_autocast_gpu_dtype() # x, weight, bias = [a.to(dtype=dtype) for a in [x, weight, bias]] assert activation in ['id', 'gelu', 'gelu_approx', 'squared_relu'] batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() x_reshaped = x.reshape(batch_dim, n) if x_reshaped.stride(0) > 1 and x_reshaped.stride(1) > 1: x_reshaped = x_reshaped.contiguous() if weight.stride(0) > 1 and weight.stride(1) > 1: weight = weight.contiguous() bias = bias.contiguous() if bias is not None else None assert x.dtype == weight.dtype, f"Input and weight must have the same dtype, got {x.dtype} and {weight.dtype}" if bias is not None: assert x.dtype == bias.dtype, f"Input and bias must have the same dtype, got {x.dtype} and {bias.dtype}" assert x_reshaped.shape[1] == weight.shape[1], f"Incompatible dimensions: {x_reshaped.shape} - {weight.shape}" assert bias is None or bias.shape[0] == weight.shape[0], "Incompatible dimensions in between weight and bias" M, K = x_reshaped.shape N, K = weight.shape output = torch.empty((M, N), device=x.device, dtype=x.dtype) act_input = torch.empty_like(output) if save_act_input else None # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) # noqa kernel_fwd[grid]( output, act_input, x_reshaped, weight, # data ptrs bias if bias is not None else x, # auto skip bias if not present M, # shapes N, K, M // 32, # key for triton cache (limit number of compilations) N // 32, K // 32, stride_cm=output.stride(0), # strides # stride_cn=output.stride(1), stride_am=x_reshaped.stride(0), stride_ak=x_reshaped.stride(1), stride_bk=weight.stride(1), stride_bn=weight.stride(0), BIAS=bias is not None, # optional fused bias SAVE_ACT_INPUT=save_act_input, # optional save activation inputs ACTIVATION=activation, # optional fused activation A_ROWMAJOR=x_reshaped.stride(1) == 1, B_COLMAJOR=weight.stride(1) == 1, GROUP_M=8, # speed optimization: group the programs ) if not save_act_input: return output.reshape(*batch_shape, output.shape[-1]) else: return (output.reshape(*batch_shape, output.shape[-1]), act_input.reshape(*batch_shape, act_input.shape[-1])) @triton.autotune( configs=[ triton.Config({"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=5, num_warps=2), # good for int8 triton.Config({"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=3, num_warps=8), triton.Config({"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4), triton.Config({"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=5, num_warps=2), ] + get_configs_io_bound(), key=["CACHE_KEY_M", "CACHE_KEY_N", "CACHE_KEY_K"], prune_configs_by={"early_config_prune": early_config_prune, "perf_model": estimate_matmul_time, "top_k": 10}, ) @triton.heuristics( { "EVEN_K": lambda args: args["K"] % (args["BLOCK_K"] * args["SPLIT_K"]) == 0, } ) @triton.jit def kernel_bwd( C, # Pointers to matrices ACT_INPUT, A, B, # Matrix dimensions M, N, K, CACHE_KEY_M, CACHE_KEY_N, CACHE_KEY_K, # The stride variables represent how much to increase the ptr by when moving by 1 # element in a particular dimension. E.g. stride_am is how much to increase a_ptr # by to get the element one row down (A has M rows) stride_cm, # stride_cn, # Assume that stride_cn == 1 stride_am, stride_ak, stride_bk, stride_bn, # Meta-parameters BLOCK_M: tl.constexpr, GROUP_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, # split k not used, not performant with activation, kept because early_config_prune is expecting it SPLIT_K: tl.constexpr, EVEN_K: tl.constexpr, ACTIVATION: tl.constexpr, ): """ Kernel for computing Out = activation(A x W + C) - Input has shape (M, K) - Weight has shape (K, N) - Output has shape (M, N) - ActInputs (optional) has shape (M, N) 'ActInputs' optionally saves the A x W + C intermediate for backward computations This kernel will consolidate over K """ pid = tl.program_id(axis=0) grid_m = (M + BLOCK_M - 1) // BLOCK_M grid_n = (N + BLOCK_N - 1) // BLOCK_N # re-order program ID for better L2 performance width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + (pid % group_size) pid_n = (pid % width) // (group_size) # now compute the block that each program will go through # rm (resp. rn) denotes a range of indices # for rows (resp. col) of C rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) # trick to avoid masking on M and N axis ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = tl.arange(0, BLOCK_K) A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for k in range(K, 0, -BLOCK_K): if EVEN_K: a = tl.load(A) b = tl.load(B) else: a = tl.load(A, mask=rk[None, :] < k, other=0.0) b = tl.load(B, mask=rk[:, None] < k, other=0.0) acc += tl.dot(a, b) A += BLOCK_K * stride_ak B += BLOCK_K * stride_bk # optional: fused activation (while the data is in shared memory) if ACTIVATION != 'id': act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :] act_input = tl.load(act_in_ptrs).to(acc.dtype) if ACTIVATION == "gelu": acc *= gelu_grad(act_input) elif ACTIVATION == "gelu_approx": acc *= gelu_approx_grad(act_input) elif ACTIVATION == "squared_relu": acc *= squared_relu_grad(act_input) # rematerialize rm and rn to save registers rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) # write back result C = C + rm[:, None] * stride_cm + rn[None, :] mask = (rm < M)[:, None] & (rn < N)[None, :] tl.store(C, acc, mask=mask) def triton_dgrad_act( grad_output: torch.Tensor, weight: torch.Tensor, activation: str = 'id', act_input: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Compute e = activation(grad_output @ weight + bias). This wrapper kicks the `kernel_fwd` Triton kernel :param grad_output: input tensor :param weight: weight matrix :param activation: Activation name. Needs to be a Triton kernel. :param act_input: an optional tensor to save the activation inputs (for backward) :return: result tensor """ assert activation in ['id', 'gelu', 'gelu_approx', 'squared_relu'] batch_shape, n = grad_output.shape[:-1], grad_output.shape[-1] batch_dim = batch_shape.numel() grad_output_reshaped = grad_output.reshape(batch_dim, n) if grad_output_reshaped.stride(0) > 1 and grad_output_reshaped.stride(1) > 1: grad_output_reshaped = grad_output_reshaped.contiguous() if weight.stride(0) > 1 and weight.stride(1) > 1: weight = weight.contiguous() assert grad_output.dtype == weight.dtype, f"grad_output and weight must have the same dtype, got {grad_output.dtype} and {weight.dtype}" assert grad_output_reshaped.shape[1] == weight.shape[0], f"Incompatible dimensions: {grad_output_reshaped.shape} - {weight.shape}" if activation != 'id': assert act_input is not None, f'act_input is required for activation {activation}' # M, N, K in bwd are different from M, N, K in fwd M, K = grad_output_reshaped.shape K, N = weight.shape grad_input = torch.empty((M, N), device=grad_output.device, dtype=grad_output.dtype) # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) # noqa kernel_bwd[grid]( grad_input, act_input, grad_output_reshaped, weight, # data ptrs M, # shapes N, K, M // 32, # key for triton cache (limit number of compilations) N // 32, K // 32, stride_cm=grad_input.stride(0), # strides # stride_cn=grad_input.stride(1), stride_am=grad_output_reshaped.stride(0), stride_ak=grad_output_reshaped.stride(1), stride_bk=weight.stride(0), stride_bn=weight.stride(1), ACTIVATION=activation, # optional fused activation GROUP_M=8, # speed optimization: group the programs ) return grad_input.reshape(*batch_shape, grad_input.shape[-1])
flash-attention-main
flash_attn/ops/triton/linear.py
# Adapted from https://github.com/facebookresearch/xformers/blob/main/xformers/triton/k_activations.py # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import math from enum import Enum from typing import Optional import triton import triton.language as tl _sqrt2pi = math.sqrt(2.0 / math.pi) _sqrt1_2 = math.sqrt(1.0 / 2) _gaussian_pdf_normalization = 1.0 / math.sqrt(2 * math.pi) class Activation(str, Enum): SquaredReLU = "squared_relu" GeLU = "gelu" GeLUApprox = "gelu_approx" LeakyReLU = "leaky_relu" ReLU = "relu" def get_triton_activation_kernel(activation: Optional[Activation]): return ( { Activation.ReLU: relu, Activation.LeakyReLU: leaky_relu, Activation.GeLU: gelu, Activation.GeLUApprox: gelu_approx, Activation.SquaredReLU: squared_relu, }[activation] if activation else None ) def get_triton_activation_bwd_kernel(activation: Optional[Activation]): return ( { Activation.ReLU: relu_grad, Activation.LeakyReLU: leaky_relu_grad, Activation.GeLU: gelu_grad, Activation.GeLUApprox: gelu_approx_grad, Activation.SquaredReLU: squared_relu_grad, }[activation] if activation else None ) @triton.jit def tanh(x): # Tanh is just a scaled sigmoid return 2 * tl.sigmoid(2 * x) - 1 @triton.jit def cosh(x): exp_x = tl.exp(x) return (exp_x + 1.0 / exp_x) * 0.5 # a Triton implementation of the most used activations # See for instance http://arxiv.org/abs/1606.08415 for an overview # ReLU @triton.jit def relu(x): """ ReLU_ activation function .. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html """ zero = 0.0 return tl.where(x >= 0, x, zero.to(x.dtype)) @triton.jit def relu_grad(x): # ReLU is different from other activations # in that it does not require the input to retrospectively compute its gradient # here the input is the downstream gradient, and we return the upstream gradient directly zero = 0.0 one = 1.0 return tl.where(x >= 0, one.to(x.dtype), zero.to(x.dtype)) @triton.jit def squared_relu(x): """ Squared ReLU activation, as proposed in the Primer_ paper. .. _Primer: https://arxiv.org/abs/2109.08668 """ x_ = relu(x) return (x_ * x_).to(x.dtype) @triton.jit def squared_relu_grad(x): return tl.where(x >= 0, 2.0 * x, 0.0) # Leaky ReLU @triton.jit def leaky_relu(x): """ LeakyReLU_ activation .. _LeakyReLU: https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html """ scale = 0.01 + 0.0 scale = scale.to(x.dtype) return tl.where(x >= 0, x, scale * x) @triton.jit def leaky_relu_grad(x): min_grad = 0.01 max_grad = 1 min_grad = min_grad.to(x.dtype) max_grad = max_grad.to(x.dtype) return tl.where(x >= 0, max_grad, min_grad) @triton.jit def gelu(x): """Gaussian Error Linear Unit (GELU)""" return x * 0.5 * (1.0 + tl.libdevice.erf(x * _sqrt1_2)) @triton.jit def gelu_grad(x): cdf = 0.5 * (1.0 + tl.libdevice.erf(x * _sqrt1_2)) pdf = tl.exp(-0.5 * x * x) * _gaussian_pdf_normalization return cdf + x * pdf @triton.jit def gelu_approx(x): """ GeLU_ activation - Gaussian error linear unit, with tanh approximation .. _GeLU: https://arxiv.org/pdf/1606.08415.pdf """ return 0.5 * x * (1.0 + tanh(_sqrt2pi * x * (1.0 + 0.044715 * x * x))) @triton.jit def gelu_approx_grad(x): # CREDITS: Fast implementation proposed in # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/fused_bias_gelu.py#L30 tanh_out = tanh(0.79788456 * x * (1 + 0.044715 * x * x)) return 0.5 * x * ( (1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x) ) + 0.5 * (1 + tanh_out)
flash-attention-main
flash_attn/ops/triton/k_activations.py
# The triton fused matmul + sqrelu is faster for fp16 but slower for bf16, compared # to naive implementation. import torch import torch.nn as nn import torch.nn.functional as F from torch.cuda.amp import custom_bwd, custom_fwd import fused_dense_lib as fused_dense_cuda from flash_attn.ops.triton.linear import triton_linear_act, triton_dgrad_act @torch.jit.script def sqrelu_fwd(x): r = F.relu(x) return (r * r).to(dtype=x.dtype) @torch.jit.script def sqrelu_bwd(g, x): return (2.0 * g * F.relu(x)).to(dtype=x.dtype) class FusedDenseSqreluDenseFunc(torch.autograd.Function): @staticmethod @custom_fwd def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0): """checkpoint_lvl: 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute act_input and gelu_out in the bwd """ if torch.is_autocast_enabled(): dtype = torch.get_autocast_gpu_dtype() x, weight1, bias1, weight2, bias2 = [a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2]] is_bf16 = x.dtype == torch.bfloat16 assert checkpoint_lvl in [0, 1, 2] x = x.contiguous() weight1 = weight1.contiguous() bias1 = bias1.contiguous() weight2 = weight2.contiguous() bias2 = bias2.contiguous() batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() if is_bf16: act_input = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight1, bias1) output1 = sqrelu_fwd(act_input) else: save_act_input = checkpoint_lvl != 2 result = triton_linear_act( x.reshape(batch_dim, n), weight1, bias1, activation='squared_relu', save_act_input=save_act_input ) if save_act_input: output1, act_input = result else: output1 = result output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2) ctx.checkpoint_lvl = checkpoint_lvl if checkpoint_lvl == 0: ctx.save_for_backward(x, weight1, bias1, weight2, act_input, output1) elif checkpoint_lvl == 1: ctx.save_for_backward(x, weight1, bias1, weight2, act_input) elif checkpoint_lvl == 2: ctx.save_for_backward(x, weight1, bias1, weight2) return output2.reshape(*batch_shape, output2.shape[-1]) @staticmethod @custom_bwd def backward(ctx, grad_output): grad_output = grad_output.contiguous() checkpoint_lvl = ctx.checkpoint_lvl x, weight1, bias1, weight2, *rest = ctx.saved_tensors batch_shape, n = x.shape[:-1], x.shape[-1] batch_dim = batch_shape.numel() is_bf16 = x.dtype == torch.bfloat16 if checkpoint_lvl == 0: act_input, output1 = rest elif checkpoint_lvl == 1: act_input, = rest output1 = sqrelu_fwd(act_input) elif checkpoint_lvl == 2: if is_bf16: act_input = fused_dense_cuda.linear_bias_forward(x.reshape(batch_dim, n), weight1, bias1) output1 = sqrelu_fwd(act_input) else: output1, act_input = triton_linear_act( x.reshape(batch_dim, n), weight1, bias1, activation='squared_relu', save_act_input=True ) if is_bf16: grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) grad_output1 = grad_output @ weight2 grad_act_input = sqrelu_bwd(grad_output1, act_input) grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( x.reshape(batch_dim, n), weight1, grad_act_input ) else: grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1]) grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output) grad_act_input = triton_dgrad_act(grad_output, weight2, activation='squared_relu', act_input=act_input) grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward( x.reshape(batch_dim, n), weight1, grad_act_input ) return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None fused_dense_sqrelu_dense_function = FusedDenseSqreluDenseFunc.apply class FusedDenseSqreluDense(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, bias=True, checkpoint_lvl=0, device=None, dtype=None): """ checkpoint_lvl (increasing lvl means slower but more memory saving): 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute gelu_in and gelu_out in the bwd """ assert checkpoint_lvl in [0, 1, 2] factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features assert bias == True, "DenseSqreluDense module without bias is currently not supported" self.checkpoint_lvl = checkpoint_lvl self.fc1 = nn.Linear(in_features, hidden_features, bias=bias, **factory_kwargs) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, **factory_kwargs) def forward(self, x): assert x.is_cuda return fused_dense_sqrelu_dense_function(x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl)
flash-attention-main
flash_attn/ops/triton/mlp.py
# Copyright (c) 2022, Tri Dao. import torch import torch.nn as nn from einops import repeat class GPT2Embeddings(nn.Module): def __init__(self, embed_dim, vocab_size, max_position_embeddings, padding_idx=None): """ If max_position_embeddings <= 0, there's no position embeddings """ super().__init__() self.word_embeddings = nn.Embedding(vocab_size, embed_dim, padding_idx=padding_idx) self.max_position_embeddings = max_position_embeddings if self.max_position_embeddings > 0: self.position_embeddings = nn.Embedding(max_position_embeddings, embed_dim) def forward(self, input_ids, position_ids=None): """ input_ids: (batch, seqlen) """ batch_size, seqlen = input_ids.shape input_embeddings = self.word_embeddings(input_ids) if self.max_position_embeddings > 0: if position_ids is None: position_ids = repeat(torch.arange(seqlen, dtype=torch.long, device=input_ids.device), 's -> b s', b=batch_size) position_embeddings = self.position_embeddings(position_ids) return input_embeddings + position_embeddings else: return input_embeddings
flash-attention-main
flash_attn/modules/embedding.py
# Copyright (c) 2022, Tri Dao. import torch import torch.nn as nn import torch.nn.functional as F try: from flash_attn.ops.fused_dense import fused_dense_gelu_dense_function_td from flash_attn.ops.fused_dense import fused_dense_res_gelu_dense_function_td except ImportError: fused_dense_gelu_dense_function_td = None fused_dense_res_gelu_dense_function_td = None class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, activation=F.gelu, device=None, dtype=None): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features, **factory_kwargs) self.activation = activation self.fc2 = nn.Linear(hidden_features, out_features, **factory_kwargs) def forward(self, x): x = self.fc1(x) x = self.activation(x) x = self.fc2(x) return x class FusedDenseGeluDense(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, bias=True, checkpoint_lvl=0, heuristic=0, return_residual=False, device=None, dtype=None): """ checkpoint_lvl (increasing lvl means slower but more memory saving): 0: no recomputation in the bwd 1: recompute gelu_out in the bwd 2: recompute gelu_in and gelu_out in the bwd heuristic: -1: don't fuse gemm + gelu (separate kernel) 0..4: use this heuristic for the algo section in the fused gemm + gelu For CUDA >= 11.8, you'd want heuristic=0 for both fp16 and bf16 for best perf. For CUDA <= 11.7, you'd want heuristic=1 for fp16 and heuristic=-1 for bf16. return_residual: whether to return the input x along with the output. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ assert checkpoint_lvl in [0, 1, 2] factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features assert bias == True, "DenseGeluDense module without bias is currently not supported" assert (fused_dense_gelu_dense_function_td is not None and fused_dense_res_gelu_dense_function_td is not None), 'fused_dense_lib is not installed' self.checkpoint_lvl = checkpoint_lvl self.heuristic = heuristic self.return_residual = return_residual self.fc1 = nn.Linear(in_features, hidden_features, bias=bias, **factory_kwargs) self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, **factory_kwargs) def forward(self, x): assert x.dtype in [torch.float16, torch.bfloat16] assert x.is_cuda fn = (fused_dense_gelu_dense_function_td if not self.return_residual else fused_dense_res_gelu_dense_function_td) return fn(x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl, self.heuristic)
flash-attention-main
flash_attn/modules/mlp.py
# Copyright (c) 2022, Tri Dao. from typing import Optional from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from torchvision.ops import StochasticDepth from flash_attn.modules.mha import MHA from flash_attn.modules.mlp import Mlp try: from flash_attn.ops.layer_norm import dropout_add_layer_norm except ImportError: dropout_add_layer_norm = None class Block(nn.Module): def __init__(self, dim, mixer_cls=None, mlp_cls=None, norm_cls=nn.LayerNorm, dropout_cls=nn.Dropout, prenorm=True, resid_dropout=0., drop_path=0., fused_dropout_add_ln=False): super().__init__() self.prenorm = prenorm self.fused_dropout_add_ln = fused_dropout_add_ln if mixer_cls is None: mixer_cls = partial(MHA, num_heads=dim // 64) if mlp_cls is None: mlp_cls = partial(Mlp, hidden_features=4 * dim) self.mixer = mixer_cls(dim) self.dropout1 = dropout_cls(resid_dropout) self.drop_path1 = StochasticDepth(drop_path, mode='row') self.norm1 = norm_cls(dim) self.mlp = mlp_cls(dim) if not isinstance(self.mlp, nn.Identity): self.dropout2 = dropout_cls(resid_dropout) self.drop_path2 = StochasticDepth(drop_path, mode='row') self.norm2 = norm_cls(dim) if self.fused_dropout_add_ln: assert dropout_add_layer_norm is not None, 'dropout_add_ln is not installed' assert isinstance(self.norm1, nn.LayerNorm) and isinstance(self.dropout1, nn.Dropout) def forward(self, hidden_states: Tensor, residual: Optional[Tensor] = None, mixer_kwargs=None): r"""Pass the input through the encoder layer. Args: hidden_states: the sequence to the encoder layer (required). residual: if postnorm, residual=None, If prenorm, hidden_states = LayerNorm(residual) """ if self.prenorm: assert residual is not None mixer_out = self.mixer(hidden_states, **(mixer_kwargs if mixer_kwargs is not None else {})) if not self.fused_dropout_add_ln: residual = self.drop_path1(self.dropout1(mixer_out)) + residual hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype)) else: if self.drop_path1.p == 0 or not self.training: rowscale1 = None else: rowscale1 = self.drop_path1(torch.ones( mixer_out.shape[:-1], device=mixer_out.device, dtype=mixer_out.dtype) ) hidden_states, residual = dropout_add_layer_norm( mixer_out, residual, self.norm1.weight, self.norm1.bias, self.dropout1.p if self.training else 0.0, self.norm1.eps, rowscale=rowscale1, prenorm=True ) if not isinstance(self.mlp, nn.Identity): mlp_out = self.mlp(hidden_states) if not self.fused_dropout_add_ln: residual = self.drop_path2(self.dropout2(mlp_out)) + residual hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype)) else: if self.drop_path2.p == 0 or not self.training: rowscale2 = None else: rowscale2 = self.drop_path2(torch.ones( mlp_out.shape[:-1], device=mlp_out.device, dtype=mlp_out.dtype) ) hidden_states, residual = dropout_add_layer_norm( mlp_out, residual, self.norm2.weight, self.norm2.bias, self.dropout2.p if self.training else 0.0, self.norm2.eps, rowscale=rowscale2, prenorm=True ) return hidden_states, residual else: assert residual is None mixer_out = self.mixer(hidden_states, **(mixer_kwargs if mixer_kwargs is not None else {})) if not self.fused_dropout_add_ln: hidden_states = self.norm1((self.drop_path1(self.dropout1(mixer_out)) + hidden_states).to(dtype=self.norm1.weight.dtype)) else: if self.drop_path1.p == 0 or not self.training: rowscale1 = None else: rowscale1 = self.drop_path1(torch.ones( mixer_out.shape[:-1], device=mixer_out.device, dtype=mixer_out.dtype) ) hidden_states = dropout_add_layer_norm( mixer_out, hidden_states, self.norm1.weight, self.norm1.bias, self.dropout1.p if self.training else 0.0, self.norm1.eps, rowscale=rowscale1, prenorm=False ) if not isinstance(self.mlp, nn.Identity): mlp_out = self.mlp(hidden_states) if not self.fused_dropout_add_ln: hidden_states = self.norm2((self.drop_path2(self.dropout2(mlp_out)) + hidden_states).to(dtype=self.norm2.weight.dtype)) else: if self.drop_path2.p == 0 or not self.training: rowscale2 = None else: rowscale2 = self.drop_path2(torch.ones( mlp_out.shape[:-1], device=mlp_out.device, dtype=mlp_out.dtype) ) hidden_states = dropout_add_layer_norm( mlp_out, hidden_states, self.norm2.weight, self.norm2.bias, self.dropout2.p if self.training else 0.0, self.norm2.eps, rowscale=rowscale2, prenorm=False ) return hidden_states
flash-attention-main
flash_attn/modules/block.py
# Copyright (c) 2022, Tri Dao. import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange try: from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func from flash_attn.flash_attn_interface import flash_attn_unpadded_kvpacked_func except ImportError: flash_attn_unpadded_qkvpacked_func, flash_attn_unpadded_kvpacked_func = None, None try: from flash_attn.ops.flash_attn_triton import flash_attn_qkvpacked_func, flash_attn_kvpacked_func except ImportError: flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None try: from flash_attn.ops.fused_dense import FusedDenseTD, FusedDenseResidual except ImportError: FusedDenseTD, FusedDenseResidual = None, None try: from flash_attn.layers.rotary import RotaryEmbedding except ImportError: RotaryEmbedding = None class FlashSelfAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, triton=False, device=None, dtype=None): super().__init__() if attention_dropout != 0.0 or not triton: assert flash_attn_unpadded_qkvpacked_func is not None, 'FlashAttention is not installed' if attention_dropout == 0.0 and triton: assert flash_attn_qkvpacked_func is not None, 'FlashAttention Triton is not installed' self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout self.triton = triton def forward(self, qkv): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) """ assert qkv.dtype in [torch.float16, torch.bfloat16] assert qkv.is_cuda batch_size, seqlen = qkv.shape[0], qkv.shape[1] if self.triton and (self.dropout_p == 0 or not self.training): # Triton version doesn't support dropout output = flash_attn_qkvpacked_func(qkv, None, self.causal, self.softmax_scale) else: qkv = rearrange(qkv, 'b s ... -> (b s) ...') max_s = seqlen cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device) output = flash_attn_unpadded_qkvpacked_func( qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=self.causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) return output class FlashCrossAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, triton=False, device=None, dtype=None): super().__init__() if attention_dropout != 0.0 or not triton: assert flash_attn_unpadded_kvpacked_func is not None, 'FlashAttention is not installed' if attention_dropout == 0.0 and triton: assert flash_attn_kvpacked_func is not None, 'FlashAttention Triton is not installed' self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout self.triton = triton def forward(self, q, kv): """Implements the multihead softmax attention. Arguments --------- q: The tensor containing the query. (B, Sq, H, D) kv: The tensor containing the key and value. (B, Sk, 2, H, D) """ assert q.dtype in [torch.float16, torch.bfloat16] assert q.is_cuda and kv.is_cuda batch_size, seqlen_q = q.shape[0], q.shape[1] seqlen_k = kv.shape[1] assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3] if self.triton and (self.dropout_p == 0.0 or not self.training): # Triton version doesn't support dropout output = flash_attn_kvpacked_func(q, kv, None, self.causal, self.softmax_scale) else: q = rearrange(q, 'b s ... -> (b s) ...') kv = rearrange(kv, 'b s ... -> (b s) ...') cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q.device) cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=kv.device) output = flash_attn_unpadded_kvpacked_func( q, kv, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k, self.dropout_p if self.training else 0.0, softmax_scale=self.softmax_scale, causal=self.causal ) output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) return output class SelfAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): super().__init__() self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, qkv): """Implements the multihead softmax attention. Arguments --------- qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) """ batch_size, seqlen = qkv.shape[0], qkv.shape[1] q, k, v = qkv.unbind(dim=2) softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale) if self.causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1, dtype=v.dtype) attention_drop = F.dropout(attention, self.dropout_p if self.training else 0.0) output = torch.einsum('bhts,bshd->bthd', attention_drop, v) return output class CrossAttention(nn.Module): """Implement the scaled dot product attention with softmax. Arguments --------- softmax_scale: The temperature to use for the softmax attention. (default: 1/sqrt(d_keys) where d_keys is computed at runtime) attention_dropout: The dropout rate to apply to the attention (default: 0.0) """ def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): super().__init__() self.causal = causal self.softmax_scale = softmax_scale self.dropout_p = attention_dropout def forward(self, q, kv): """Implements the multihead softmax attention. Arguments --------- q: The tensor containing the query. (B, Sq, H, D) kv: The tensor containing the key and value. (B, Sk, 2, H, D) """ batch_size, seqlen_q = q.shape[0], q.shape[1] seqlen_k = kv.shape[1] assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3] k, v = kv.unbind(dim=2) softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1]) scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale) if self.causal: # "triu_tril_cuda_template" not implemented for 'BFloat16' # So we have to construct the mask in float causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0, device=scores.device), 1) # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) scores = scores + causal_mask.to(dtype=scores.dtype) attention = torch.softmax(scores, dim=-1, dtype=v.dtype) attention_drop = F.dropout(attention, self.dropout_p if self.training else 0.0) output = torch.einsum('bhts,bshd->bthd', attention_drop, v) return output class LinearResidual(nn.Linear): """Wrap nn.Linear to return the residual as well. For compatibility with FusedDenseResidual. """ def forward(self, input: torch.Tensor) -> torch.Tensor: return super().forward(input), input class MHA(nn.Module): """Multi-head self-attention and cross-attention """ def __init__(self, embed_dim, num_heads, cross_attn=False, bias=True, dropout=0.0, softmax_scale=None, causal=False, dwconv=False, rotary_emb_dim=0, fused_bias_fc=False, use_flash_attn=False, return_residual=False, checkpointing=False, device=None, dtype=None) -> None: """ return_residual: whether to return the input x along with the output. This is for performance reason: for post-norm architecture, returning the input allows us to fuse the backward of nn.Linear with the residual connection. """ factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.embed_dim = embed_dim self.cross_attn = cross_attn self.causal = causal self.dwconv = dwconv self.rotary_emb_dim = rotary_emb_dim self.return_residual = return_residual self.checkpointing = checkpointing self.num_heads = num_heads assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads" self.head_dim = self.embed_dim // num_heads if self.rotary_emb_dim > 0: assert not cross_attn, 'MHA with rotary embedding does not support cross-attention yet' assert RotaryEmbedding is not None, 'rotary_emb is not installed' self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim) if fused_bias_fc and FusedDenseTD is None: raise ImportError('fused_dense is not installed') linear_cls = nn.Linear if not fused_bias_fc else FusedDenseTD linear_resid_cls = LinearResidual if not fused_bias_fc else FusedDenseResidual if not self.cross_attn: if not self.return_residual: self.Wqkv = linear_cls(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) else: self.Wqkv = linear_resid_cls(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs) if self.dwconv: self.dwconv_qkv = nn.Conv1d(3 * embed_dim, 3 * embed_dim, kernel_size=3, padding=2, groups=3 * embed_dim) inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention else: # TODO: use the residual linear class for Wq self.Wq = linear_cls(embed_dim, embed_dim, bias=bias, **factory_kwargs) self.Wkv = linear_cls(embed_dim, 2 * embed_dim, bias=bias, **factory_kwargs) if self.dwconv: self.dwconv_q = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim) self.dwconv_kv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, kernel_size=3, padding=2, groups=2 * embed_dim) inner_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout, **factory_kwargs) # output projection always have the bias (for now) self.out_proj = linear_cls(embed_dim, embed_dim, **factory_kwargs) def forward(self, x, x_kv=None): """ Arguments: x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x. """ if not self.cross_attn: if not self.return_residual: qkv = self.Wqkv(x) else: qkv, x = self.Wqkv(x) if self.dwconv: qkv = rearrange(self.dwconv_qkv(rearrange(qkv, 'b s d -> b d s'))[..., :-2], 'b d s -> b s d').contiguous() qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads) if self.rotary_emb_dim > 0: qkv = self.rotary_emb(qkv) if not self.checkpointing: context = self.inner_attn(qkv) else: # context = torch.utils.checkpoint.checkpoint(self._inner_attention, qkv) context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv) else: q = rearrange(self.Wq(x), 'b s (h d) -> b s h d', h=self.num_heads) kv = rearrange(self.Wkv(x if x_kv is None else x_kv), 'b s (two h d) -> b s two h d', two=2, h=self.num_heads) if self.dwconv: q = rearrange(self.dwconv_q(rearrange(q, 'b s d -> b d s'))[..., :-2], 'b d s -> b s d').contiguous() kv = rearrange(self.dwconv_kv(rearrange(kv, 'b s d -> b d s'))[..., :-2], 'b d s -> b s d').contiguous() if not self.checkpointing: context = self.inner_attn(q, kv) else: # context = torch.utils.checkpoint.checkpoint(self._inner_attention, qkv) context = torch.utils.checkpoint.checkpoint(self.inner_attn, q, kv) out = self.out_proj(rearrange(context, 'b s h d -> b s (h d)')) return out if not self.return_residual else (out, x)
flash-attention-main
flash_attn/modules/mha.py
from setuptools import setup, find_packages setup( name = 'feedback-transformer-pytorch', packages = find_packages(), version = '0.0.11', license='MIT', description = 'Implementation of Feedback Transformer in Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/feedback-transformer-pytorch', keywords = [ 'attention', 'artificial intelligence', 'transformer', 'deep learning', 'memory' ], install_requires=[ 'torch>=1.6', 'einops' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
feedback-transformer-pytorch-main
setup.py
from feedback_transformer_pytorch.feedback_transformer_pytorch import FeedbackTransformer
feedback-transformer-pytorch-main
feedback_transformer_pytorch/__init__.py
import math from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange # constants Memory = namedtuple('Memory', ['keys', 'values']) # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def safe_cat(arr, el, dim = 1): if not exists(arr): return el return torch.cat((arr, el), dim = dim) # positional embedding class RelativePositionBias(nn.Module): def __init__( self, causal = False, num_buckets = 32, max_distance = 128, heads = 8 ): super().__init__() self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, qk_dots): i, j, device = *qk_dots.shape[-2:], qk_dots.device q_pos = torch.arange(i, dtype = torch.long, device = device) k_pos = torch.arange(j, dtype = torch.long, device = device) rel_pos = k_pos[None, :] - q_pos[:, None] rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j h -> () h i j') return bias # helper classes class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = nn.LayerNorm(dim) def forward(self, x, **kwargs): x = self.norm(x) return self.fn(x, **kwargs) class SkipIf(nn.Module): def __init__(self, cond, fn): super().__init__() self.cond = cond self.fn = fn def forward(self, x, *args, **kwargs): if self.cond(x, *args, **kwargs): return x return self.fn(x, *args, **kwargs) # feedforward class GEGLU(nn.Module): def forward(self, x): x, gate = x.chunk(2, dim = -1) return F.gelu(gate) * x class FeedForward(nn.Module): def __init__( self, *, dim, mult = 4, dropout = 0. ): super().__init__() self.net = nn.Sequential( nn.Linear(dim, dim * mult * 2), GEGLU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) def forward(self, x): return self.net(x) # attention class Attention(nn.Module): def __init__( self, *, dim, heads = 8, dim_head = 64, dropout = 0. ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 inner_dim = dim_head * heads self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim) self.dropout = nn.Dropout(dropout) def forward(self, x, memory, pos_emb = None): h, n, device = self.heads, x.shape[1], x.device self_attend = n > 1 # only self attend if going at greater than 1 token at a time q = self.to_q(x) * self.scale k, v = memory if exists(memory) else (None, None) if self_attend: self_k, self_v = self.to_kv(x).chunk(2, dim = -1) k = safe_cat(k, self_k, dim = 1) v = safe_cat(v, self_v, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) sim = einsum('b h i d, b h j d -> b h i j', q, k) i, j = sim.shape[-2:] if exists(pos_emb): sim = sim + pos_emb(sim) if self_attend: causal_mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool() causal_mask = rearrange(causal_mask, 'i j -> () () i j') mask_value = -torch.finfo(q.dtype).max sim.masked_fill_(causal_mask, mask_value) attn = sim.softmax(dim = -1) attn = self.dropout(attn) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # main class class FeedbackTransformer(nn.Module): def __init__( self, *, num_tokens, dim, depth, mem_len, seq_len = 2, heads = 8, dim_head = 64, attn_dropout = 0., ff_dropout = 0., keep_last_hidden = False ): super().__init__() self.seq_len = seq_len self.mem_len = mem_len self.token_emb = nn.Embedding(num_tokens, dim) self.pos_emb = RelativePositionBias(causal = True, heads = heads) # main layers self.layers = nn.ModuleList([]) shared_kv_proj = None for _ in range(depth): attn = Attention(dim = dim, heads = heads, dim_head = dim_head, dropout = attn_dropout) ff = FeedForward(dim = dim, dropout = ff_dropout) shared_kv_proj = default(shared_kv_proj, attn.to_kv) attn.to_kv = shared_kv_proj attn, ff = map(lambda fn: Residual(PreNorm(dim, fn)), (attn, ff)) if seq_len == 1: memory_is_empty = lambda *args, **kwargs: not exists(kwargs['memory']) attn = SkipIf(memory_is_empty, attn) self.layers.append(nn.ModuleList([ attn, ff ])) # memory parameters self.layer_weight = nn.Parameter(torch.ones(depth + 1)) self.shared_kv_proj = shared_kv_proj self.keep_last_hidden = keep_last_hidden # final projection to logits self.to_logits = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_tokens) ) def forward(self, x, memory = None, return_memory = False): b, n, device = *x.shape, x.device x = self.token_emb(x) memory_keys = None memory_values = None if exists(memory): memory_keys, memory_values = memory outputs = [] # calculate weighting of layers for storing to memory layer_weight = self.layer_weight.softmax(dim = -1) layer_weight = rearrange(layer_weight, 'd -> d () () ()') for x in x.split(self.seq_len, dim = 1): hiddens = [x] # prepare memory for attention, if it exists memory = None if exists(memory_keys): memory = (memory_keys, memory_values) for attn, ff in self.layers: x = attn(x, memory = memory, pos_emb = self.pos_emb) x = ff(x) hiddens.append(x) outputs.append(x) # calculate new memory key / values and store to FIFO queue if self.keep_last_hidden: # secret option for only keeping last hidden layer, as in paper agg_hiddens = hiddens[-1] else: hiddens = torch.stack(hiddens) agg_hiddens = (hiddens * layer_weight).sum(dim = 0) # pre-calculate memory key / values and store to buffer mem_k, mem_v = self.shared_kv_proj(agg_hiddens).chunk(2, dim = -1) memory_keys = safe_cat(memory_keys, mem_k, dim = 1) memory_values = safe_cat(memory_values, mem_v, dim = 1) # enforce max length on memory buffer memory_keys = memory_keys[:, -self.mem_len:] memory_values = memory_values[:, -self.mem_len:] x = torch.cat((outputs), dim = 1) out = self.to_logits(x) if not return_memory: return out return out, Memory(memory_keys, memory_values)
feedback-transformer-pytorch-main
feedback_transformer_pytorch/feedback_transformer_pytorch.py
from setuptools import setup, find_packages setup( name = 'memory-transformer-xl', packages = find_packages(exclude=['examples']), version = '0.1.0', license='MIT', description = 'Memory Transformer-XL, a variant of Transformer-XL that uses linear attention update long term memory', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/memory-transformer-xl', keywords = ['attention mechanism', 'artificial intelligence', 'transformer', 'deep learning'], install_requires=[ 'torch', 'mogrifier' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
memory-transformer-xl-master
setup.py