python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
""" Poison images by adding a mask """ from typing import Tuple from dataclasses import replace import numpy as np from typing import Callable, Optional, Tuple from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State from ..pipeline.compiler import Compiler class Poison(Operation): """Poison specified images by adding a mask with given opacity. Operates on raw arrays (not tensors). Parameters ---------- mask : ndarray The mask to apply to each image. alpha: float The opacity of the mask. indices : Sequence[int] The indices of images that should have the mask applied. clamp : Tuple[int, int] Clamps the final pixel values between these two values (default: (0, 255)). """ def __init__(self, mask: np.ndarray, alpha: np.ndarray, indices, clamp = (0, 255)): super().__init__() self.mask = mask self.indices = np.sort(indices) self.clamp = clamp self.alpha = alpha def generate_code(self) -> Callable: alpha = np.repeat(self.alpha[:, :, None], 3, axis=2) mask = self.mask.astype('float') * alpha to_poison = self.indices clamp = self.clamp my_range = Compiler.get_iterator() def poison(images, temp_array, indices): for i in my_range(images.shape[0]): sample_ix = indices[i] # We check if the index is in the list of indices # to poison position = np.searchsorted(to_poison, sample_ix) if position < len(to_poison) and to_poison[position] == sample_ix: temp = temp_array[i] temp[:] = images[i] temp *= 1 - alpha temp += mask np.clip(temp, clamp[0], clamp[1], out=temp) images[i] = temp return images poison.is_parallel = True poison.with_indices = True return poison def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: # We do everything in place return (replace(previous_state, jit_mode=True), \ AllocationQuery(shape=previous_state.shape, dtype=np.dtype('float32')))
ffcv-main
ffcv/transforms/poisoning.py
""" Cutout augmentation (https://arxiv.org/abs/1708.04552) """ import numpy as np from typing import Callable, Optional, Tuple from dataclasses import replace from ffcv.pipeline.compiler import Compiler from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State class Cutout(Operation): """Cutout data augmentation (https://arxiv.org/abs/1708.04552). Parameters ---------- crop_size : int Size of the random square to cut out. fill : Tuple[int, int, int], optional An RGB color ((0, 0, 0) by default) to fill the cutout square with. Useful for when a normalization layer follows cutout, in which case you can set the fill such that the square is zero post-normalization. """ def __init__(self, crop_size: int, fill: Tuple[int, int, int] = (0, 0, 0)): super().__init__() self.crop_size = crop_size self.fill = np.array(fill) def generate_code(self) -> Callable: my_range = Compiler.get_iterator() crop_size = self.crop_size fill = self.fill def cutout_square(images, *_): for i in my_range(images.shape[0]): # Generate random origin coord = ( np.random.randint(images.shape[1] - crop_size + 1), np.random.randint(images.shape[2] - crop_size + 1), ) # Black out image in-place images[i, coord[0]:coord[0] + crop_size, coord[1]:coord[1] + crop_size] = fill return images cutout_square.is_parallel = True return cutout_square def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: return replace(previous_state, jit_mode=True), None
ffcv-main
ffcv/transforms/cutout.py
""" Image normalization """ from collections.abc import Sequence from typing import Tuple import numpy as np import torch as ch from numpy import dtype from numpy.random import rand from dataclasses import replace from typing import Callable, Optional, Tuple from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State from ..pipeline.compiler import Compiler def ch_dtype_from_numpy(dtype): return ch.from_numpy(np.zeros((), dtype=dtype)).dtype class NormalizeImage(Operation): """Fast implementation of normalization and type conversion for uint8 images to any floating point dtype. Works on both GPU and CPU tensors. Parameters ---------- mean: np.ndarray The mean vector. std: np.ndarray The standard deviation vector. type: np.dtype The desired output type for the result as a numpy type. If the transform is applied on a GPU tensor it will be converted as the equivalent torch dtype. """ def __init__(self, mean: np.ndarray, std: np.ndarray, type: np.dtype): super().__init__() table = (np.arange(256)[:, None] - mean[None, :]) / std[None, :] self.original_dtype = type table = table.astype(type) if type == np.float16: type = np.int16 self.dtype = type table = table.view(type) self.lookup_table = table self.previous_shape = None self.mode = 'cpu' def generate_code(self) -> Callable: if self.mode == 'cpu': return self.generate_code_cpu() return self.generate_code_gpu() def generate_code_gpu(self) -> Callable: # We only import cupy if it's truly needed import cupy as cp import pytorch_pfn_extras as ppe tn = np.zeros((), dtype=self.dtype).dtype.name kernel = cp.ElementwiseKernel(f'uint8 input, raw {tn} table', f'{tn} output', 'output = table[input * 3 + i % 3];') final_type = ch_dtype_from_numpy(self.original_dtype) s = self def normalize_convert(images, result): B, C, H, W = images.shape table = self.lookup_table.view(-1) assert images.is_contiguous(memory_format=ch.channels_last), 'Images need to be in channel last' result = result[:B] result_c = result.view(-1) images = images.permute(0, 2, 3, 1).view(-1) current_stream = ch.cuda.current_stream() with ppe.cuda.stream(current_stream): kernel(images, table, result_c) # Mark the result as channel last final_result = result.reshape(B, H, W, C).permute(0, 3, 1, 2) assert final_result.is_contiguous(memory_format=ch.channels_last), 'Images need to be in channel last' return final_result.view(final_type) return normalize_convert def generate_code_cpu(self) -> Callable: table = self.lookup_table.view(dtype=self.dtype) my_range = Compiler.get_iterator() def normalize_convert(images, result, indices): result_flat = result.reshape(result.shape[0], -1, 3) num_pixels = result_flat.shape[1] for i in my_range(len(indices)): image = images[i].reshape(num_pixels, 3) for px in range(num_pixels): # Just in case llvm forgets to unroll this one result_flat[i, px, 0] = table[image[px, 0], 0] result_flat[i, px, 1] = table[image[px, 1], 1] result_flat[i, px, 2] = table[image[px, 2], 2] return result normalize_convert.is_parallel = True normalize_convert.with_indices = True return normalize_convert def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: if previous_state.device == ch.device('cpu'): new_state = replace(previous_state, jit_mode=True, dtype=self.dtype) return new_state, AllocationQuery( shape=previous_state.shape, dtype=self.dtype, device=previous_state.device ) else: self.mode = 'gpu' new_state = replace(previous_state, dtype=self.dtype) gpu_type = ch_dtype_from_numpy(self.dtype) # Copy the lookup table into the proper device try: self.lookup_table = ch.from_numpy(self.lookup_table) except TypeError: pass # This is alredy a tensor self.lookup_table = self.lookup_table.to(previous_state.device) return new_state, AllocationQuery( shape=previous_state.shape, device=previous_state.device, dtype=gpu_type )
ffcv-main
ffcv/transforms/normalize.py
from .cutout import Cutout from .flip import RandomHorizontalFlip from .ops import ToTensor, ToDevice, ToTorchImage, Convert, View from .common import Squeeze from .random_resized_crop import RandomResizedCrop from .poisoning import Poison from .replace_label import ReplaceLabel from .normalize import NormalizeImage from .translate import RandomTranslate from .mixup import ImageMixup, LabelMixup, MixupToOneHot from .module import ModuleWrapper __all__ = ['ToTensor', 'ToDevice', 'ToTorchImage', 'NormalizeImage', 'Convert', 'Squeeze', 'View', 'RandomResizedCrop', 'RandomHorizontalFlip', 'RandomTranslate', 'Cutout', 'ImageMixup', 'LabelMixup', 'MixupToOneHot', 'Poison', 'ReplaceLabel', 'ModuleWrapper']
ffcv-main
ffcv/transforms/__init__.py
""" General operations: - Collation - Conversion to PyTorch Tensor - Change device of Tensor """ import torch as ch import numpy as np from typing import Callable, Optional, Tuple from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State from dataclasses import replace class ToTensor(Operation): """Convert from Numpy array to PyTorch Tensor.""" def __init__(self): super().__init__() def generate_code(self) -> Callable: def to_tensor(inp, dst): return ch.from_numpy(inp) return to_tensor def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: new_dtype = ch.from_numpy(np.empty((), dtype=previous_state.dtype)).dtype return replace(previous_state, jit_mode=False, dtype=new_dtype), None class ToDevice(Operation): """Move tensor to device. Parameters ---------- device: torch.device Device to move to. non_blocking: bool Asynchronous if copying from CPU to GPU. """ def __init__(self, device, non_blocking=True): super().__init__() self.device = device self.non_blocking = non_blocking def generate_code(self) -> Callable: def to_device(inp, dst): if len(inp.shape) == 4: if inp.is_contiguous(memory_format=ch.channels_last): dst = dst.reshape(inp.shape[0], inp.shape[2], inp.shape[3], inp.shape[1]) dst = dst.permute(0, 3, 1, 2) dst = dst[:inp.shape[0]] dst.copy_(inp, non_blocking=self.non_blocking) return dst return to_device def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: return replace(previous_state, device=self.device), AllocationQuery(previous_state.shape, dtype=previous_state.dtype, device=self.device) class ToTorchImage(Operation): """Change tensor to PyTorch format for images (B x C x H x W). Parameters ---------- channels_last : bool Use torch.channels_last. convert_back_int16 : bool Convert to float16. """ def __init__(self, channels_last=True, convert_back_int16=True): super().__init__() self.channels_last = channels_last self.convert_int16 = convert_back_int16 self.enable_int16conv = False def generate_code(self) -> Callable: do_conv = self.enable_int16conv def to_torch_image(inp: ch.Tensor, dst): # Returns a permuted view of the same tensor if do_conv: inp = inp.view(dtype=ch.float16) pass inp = inp.permute([0, 3, 1, 2]) # If channels last, it's already contiguous so we're good if self.channels_last: assert inp.is_contiguous(memory_format=ch.channels_last) return inp # Otherwise, need to fill the allocated memory with the contiguous tensor dst[:inp.shape[0]] = inp.contiguous() return dst[:inp.shape[0]] return to_torch_image def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: alloc = None H, W, C = previous_state.shape new_type = previous_state.dtype if new_type is ch.int16 and self.convert_int16: new_type = ch.float16 self.enable_int16conv = True if not self.channels_last: alloc = AllocationQuery((C, H, W), dtype=new_type) return replace(previous_state, shape=(C, H, W), dtype=new_type), alloc class Convert(Operation): """Convert to target data type. Parameters ---------- target_dtype: numpy.dtype or torch.dtype Target data type. """ def __init__(self, target_dtype): super().__init__() self.target_dtype = target_dtype def generate_code(self) -> Callable: def convert(inp, dst): return inp.type(self.target_dtype) convert.is_parallel = True return convert # TODO: something weird about device to allocate on def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: return replace(previous_state, dtype=self.target_dtype), None class View(Operation): """View array using np.view or torch.view. Parameters ---------- target_dtype: numpy.dtype or torch.dtype Target data type. """ def __init__(self, target_dtype): super().__init__() self.target_dtype = target_dtype def generate_code(self) -> Callable: def convert(inp, dst): return inp.view(self.target_dtype) convert.is_parallel = True return convert def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: return replace(previous_state, dtype=self.target_dtype, jit_mode=False), None
ffcv-main
ffcv/transforms/ops.py
from typing import Callable, Optional, Tuple from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State from dataclasses import replace class Squeeze(Operation): """Remove given dimensions of input of size 1. Operates on tensors. Parameters ---------- *dims : List[int] Dimensions to squeeze. """ def __init__(self, *dims): super().__init__() self.dims = dims def generate_code(self) -> Callable: def squeeze(inp, _): inp.squeeze_(*self.dims) return inp return squeeze def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: return replace(previous_state, shape=[x for x in previous_state.shape if not x == 1]), None
ffcv-main
ffcv/transforms/common.py
""" Random horizontal flip """ from dataclasses import replace from numpy.random import rand from typing import Callable, Optional, Tuple from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State from ..pipeline.compiler import Compiler class RandomHorizontalFlip(Operation): """Flip the image horizontally with probability flip_prob. Operates on raw arrays (not tensors). Parameters ---------- flip_prob : float The probability with which to flip each image in the batch horizontally. """ def __init__(self, flip_prob: float = 0.5): super().__init__() self.flip_prob = flip_prob def generate_code(self) -> Callable: my_range = Compiler.get_iterator() flip_prob = self.flip_prob def flip(images, dst): should_flip = rand(images.shape[0]) < flip_prob for i in my_range(images.shape[0]): if should_flip[i]: dst[i] = images[i, :, ::-1] else: dst[i] = images[i] return dst flip.is_parallel = True return flip def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: return (replace(previous_state, jit_mode=True), AllocationQuery(previous_state.shape, previous_state.dtype))
ffcv-main
ffcv/transforms/flip.py
""" Wrapper for a torch.nn.Module """ import torch as ch from numpy.random import permutation, rand from typing import Callable, Optional, Tuple from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State class ModuleWrapper(Operation): """Transform using the given torch.nn.Module Parameters ---------- module: torch.nn.Module The module for transformation """ def __init__(self, module: ch.nn.Module): super().__init__() self.module = module def generate_code(self) -> Callable: def apply_module(inp, _): res = self.module(inp) return res return apply_module def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: return previous_state, None
ffcv-main
ffcv/transforms/module.py
""" Random resized crop, similar to torchvision.transforms.RandomResizedCrop """ from dataclasses import replace from .utils import fast_crop import numpy as np from typing import Callable, Optional, Tuple from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State class RandomResizedCrop(Operation): """Crop a random portion of image with random aspect ratio and resize it to a given size. Parameters ---------- scale : Tuple[float, float] Lower and upper bounds for the ratio of random area of the crop. ratio : Tuple[float, float] Lower and upper bounds for random aspect ratio of the crop. size : int Side length of the output. """ def __init__(self, scale: Tuple[float, float], ratio: Tuple[float, float], size: int): super().__init__() self.scale = scale self.ratio = ratio self.size = size def generate_code(self) -> Callable: scale, ratio = self.scale, self.ratio def random_resized_crop(im, dst): i, j, h, w = fast_crop.get_random_crop(im.shape[0], im.shape[1], scale, ratio) fast_crop.resize_crop(im, i, i + h, j, j + w, dst) return dst return random_resized_crop def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: assert previous_state.jit_mode return replace(previous_state, shape=(self.size, self.size, 3)), AllocationQuery((self.size, self.size, 3), dtype=np.dtype('uint8'))
ffcv-main
ffcv/transforms/random_resized_crop.py
""" Replace label """ from typing import Tuple import numpy as np from dataclasses import replace from typing import Callable, Optional, Tuple from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State from ..pipeline.compiler import Compiler class ReplaceLabel(Operation): """Replace label of specified images. Parameters ---------- indices : Sequence[int] The indices of images to relabel. new_label : int The new label to assign. """ def __init__(self, indices, new_label: int): super().__init__() self.indices = np.sort(indices) self.new_label = new_label def generate_code(self) -> Callable: to_change = self.indices new_label = self.new_label my_range = Compiler.get_iterator() def replace_label(labels, temp_array, indices): for i in my_range(labels.shape[0]): sample_ix = indices[i] position = np.searchsorted(to_change, sample_ix) if position < len(to_change) and to_change[position] == sample_ix: labels[i] = new_label return labels replace_label.is_parallel = True replace_label.with_indices = True return replace_label def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: return (replace(previous_state, jit_mode=True), None)
ffcv-main
ffcv/transforms/replace_label.py
ffcv-main
ffcv/transforms/utils/__init__.py
import ctypes from numba import njit import numpy as np from ...libffcv import ctypes_resize @njit(inline='always') def resize_crop(source, start_row, end_row, start_col, end_col, destination): ctypes_resize(0, source.ctypes.data, source.shape[0], source.shape[1], start_row, end_row, start_col, end_col, destination.ctypes.data, destination.shape[0], destination.shape[1]) @njit(parallel=False, fastmath=True, inline='always') def get_random_crop(height, width, scale, ratio): area = height * width log_ratio = np.log(ratio) for _ in range(10): target_area = area * np.random.uniform(scale[0], scale[1]) aspect_ratio = np.exp(np.random.uniform(log_ratio[0], log_ratio[1])) w = int(round(np.sqrt(target_area * aspect_ratio))) h = int(round(np.sqrt(target_area / aspect_ratio))) if 0 < w <= width and 0 < h <= height: i = int(np.random.uniform(0, height - h + 1)) j = int(np.random.uniform(0, width - w + 1)) return i, j, h, w in_ratio = float(width) / float(height) if in_ratio < min(ratio): w = width h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = height w = int(round(h * max(ratio))) else: w = width h = height i = (height - h) // 2 j = (width - w) // 2 return i, j, h, w @njit(parallel=False, fastmath=True, inline='always') def get_center_crop(height, width, ratio): s = min(height, width) c = int(ratio * s) delta_h = (height - c) // 2 delta_w = (width - c) // 2 return delta_h, delta_w, c, c
ffcv-main
ffcv/transforms/utils/fast_crop.py
from .loader import Loader, OrderOption __all__ = ['Loader', 'OrderOption']
ffcv-main
ffcv/loader/__init__.py
from collections import defaultdict from threading import Thread, Event from queue import Queue, Full from contextlib import nullcontext from typing import Sequence, TYPE_CHECKING import torch as ch from ..traversal_order.quasi_random import QuasiRandom from ..utils import chunks from ..pipeline.compiler import Compiler if TYPE_CHECKING: from .loader import Loader IS_CUDA = ch.cuda.is_available() QUASIRANDOM_ERROR_MSG = '''Not enough memory; try setting quasi-random ordering (`OrderOption.QUASI_RANDOM`) in the dataloader constructor's `order` argument. ''' class EpochIterator(Thread): def __init__(self, loader: 'Loader', order: Sequence[int]): super().__init__(daemon=True) self.loader: 'Loader' = loader self.order = order self.metadata = loader.reader.metadata self.current_batch_slot = 0 batches = list(chunks(order, self.loader.batch_size)) self.iter_ixes = iter(batches) self.closed = False self.output_queue = Queue(self.loader.batches_ahead) self.terminate_event = Event() self.memory_context = self.loader.memory_manager.schedule_epoch( batches) try: self.memory_context.__enter__() except MemoryError as e: if loader.traversal_order != QuasiRandom: print(QUASIRANDOM_ERROR_MSG) print('Full error below:') raise e self.storage_state = self.memory_context.state self.memory_bank_per_stage = defaultdict(list) self.cuda_streams = [(ch.cuda.Stream() if IS_CUDA else None) for _ in range(self.loader.batches_ahead + 2)] # Allocate all the memory memory_allocations = {} for (p_id, p) in self.loader.pipelines.items(): memory_allocations[p_id] = p.allocate_memory(self.loader.batch_size, self.loader.batches_ahead + 2) # Assign each memory bank to the pipeline stage it belongs to for s_ix, banks in self.loader.memory_bank_keys_per_stage.items(): for (pipeline_name, op_id) in banks: self.memory_bank_per_stage[s_ix].append( memory_allocations[pipeline_name][op_id] ) self.start() def run(self): events = [None for _ in self.cuda_streams] try: b_ix = 0 Compiler.set_num_threads(self.loader.num_workers) while True: ixes = next(self.iter_ixes) slot = self.current_batch_slot self.current_batch_slot = ( slot + 1) % (self.loader.batches_ahead + 2) result = self.run_pipeline(b_ix, ixes, slot, events[slot]) to_output = (slot, result) while True: try: self.output_queue.put(to_output, block=True, timeout=0.5) break except Full: pass if self.terminate_event.is_set(): return if IS_CUDA: # We were able to submit this batch # Therefore it means that the user must have entered the for loop for # (batch_slot - batch_ahead + 1) % (batches ahead + 2) # Therefore batch_slot - batch_ahead must have all it's work submitted # We will record an event of all the work submitted on the main stream # and make sure no one overwrite the data until they are done just_finished_slot = (slot - self.loader.batches_ahead) % (self.loader.batches_ahead + 2) event = ch.cuda.Event() event.record(ch.cuda.default_stream()) events[just_finished_slot] = event b_ix += 1 except StopIteration: self.output_queue.put(None) def run_pipeline(self, b_ix, batch_indices, batch_slot, cuda_event): # print(b_ix, batch_indices) self.memory_context.start_batch(b_ix) args = [] if IS_CUDA: stream = self.cuda_streams[batch_slot] ctx = ch.cuda.stream(stream) else: ctx = nullcontext() first_stage = False with ctx: if IS_CUDA: if cuda_event: cuda_event.wait() for stage, banks in self.memory_bank_per_stage.items(): args.insert(0, batch_indices) for bank in banks: if bank is not None: if isinstance(bank, tuple): bank = tuple(x[batch_slot] for x in bank) else: bank = bank[batch_slot] args.append(bank) args.append(self.metadata) args.append(self.storage_state) code = self.loader.code_per_stage[stage] result = code(*args) args = list(result) if first_stage: first_stage = False self.memory_context.end_batch(b_ix) return tuple(x[:len(batch_indices)] for x in args) def __next__(self): result = self.output_queue.get() if result is None: self.close() raise StopIteration() slot, result = result if IS_CUDA: stream = self.cuda_streams[slot] # We wait for the copy to be done ch.cuda.current_stream().wait_stream(stream) return result def __iter__(self): return self def close(self): self.terminate_event.set() if not self.closed: self.memory_context.__exit__(None, None, None) def __del__(self): self.close()
ffcv-main
ffcv/loader/epoch_iterator.py
""" FFCV loader """ import enum from os import environ import ast from multiprocessing import cpu_count from re import sub from typing import Any, Callable, Mapping, Sequence, Type, Union, Literal from collections import defaultdict from enum import Enum, unique, auto from ffcv.fields.base import Field import torch as ch import numpy as np from .epoch_iterator import EpochIterator from ..reader import Reader from ..traversal_order.base import TraversalOrder from ..traversal_order import Random, Sequential, QuasiRandom from ..pipeline import Pipeline from ..pipeline.compiler import Compiler from ..pipeline.operation import Operation from ..transforms.ops import ToTensor from ..transforms.module import ModuleWrapper from ..memory_managers import ( ProcessCacheManager, OSCacheManager, MemoryManager ) @unique class OrderOption(Enum): SEQUENTIAL = auto() RANDOM = auto() QUASI_RANDOM = auto() ORDER_TYPE = Union[ TraversalOrder, Literal[OrderOption.SEQUENTIAL, OrderOption.RANDOM] ] ORDER_MAP: Mapping[ORDER_TYPE, TraversalOrder] = { OrderOption.RANDOM: Random, OrderOption.SEQUENTIAL: Sequential, OrderOption.QUASI_RANDOM: QuasiRandom } DEFAULT_PROCESS_CACHE = int(environ.get('FFCV_DEFAULT_CACHE_PROCESS', "0")) DEFAULT_OS_CACHE = not DEFAULT_PROCESS_CACHE class Loader: """FFCV loader class that can be used as a drop-in replacement for standard (e.g. PyTorch) data loaders. Parameters ---------- fname: str Full path to the location of the dataset (.beton file format). batch_size : int Batch size. num_workers : int Number of workers used for data loading. Consider using the actual number of cores instead of the number of threads if you only use JITed augmentations as they usually don't benefit from hyper-threading. os_cache : bool Leverages the operating for caching purposes. This is beneficial when there is enough memory to cache the dataset and/or when multiple processes on the same machine training using the same dataset. See https://docs.ffcv.io/performance_guide.html for more information. order : OrderOption Traversal order, one of: SEQEUNTIAL, RANDOM, QUASI_RANDOM QUASI_RANDOM is a random order that tries to be as uniform as possible while minimizing the amount of data read from the disk. Note that it is mostly useful when `os_cache=False`. Currently unavailable in distributed mode. distributed : bool For distributed training (multiple GPUs). Emulates the behavior of DistributedSampler from PyTorch. seed : int Random seed for batch ordering. indices : Sequence[int] Subset of dataset by filtering only some indices. pipelines : Mapping[str, Sequence[Union[Operation, torch.nn.Module]] Dictionary defining for each field the sequence of Decoders and transforms to apply. Fileds with missing entries will use the default pipeline, which consists of the default decoder and `ToTensor()`, but a field can also be disabled by explicitly by passing `None` as its pipeline. custom_fields : Mapping[str, Field] Dictonary informing the loader of the types associated to fields that are using a custom type. drop_last : bool Drop non-full batch in each iteration. batches_ahead : int Number of batches prepared in advance; balances latency and memory. recompile : bool Recompile every iteration. This is necessary if the implementation of some augmentations are expected to change during training. """ def __init__(self, fname: str, batch_size: int, num_workers: int = -1, os_cache: bool = DEFAULT_OS_CACHE, order: ORDER_TYPE = OrderOption.SEQUENTIAL, distributed: bool = False, seed: int = None, # For ordering of samples indices: Sequence[int] = None, # For subset selection pipelines: Mapping[str, Sequence[Union[Operation, ch.nn.Module]]] = {}, custom_fields: Mapping[str, Type[Field]] = {}, drop_last: bool = True, batches_ahead: int = 3, recompile: bool = False, # Recompile at every epoch ): if distributed and order == OrderOption.RANDOM and (seed is None): print('Warning: no ordering seed was specified with distributed=True. ' 'Setting seed to 0 to match PyTorch distributed sampler.') seed = 0 elif seed is None: tinfo = np.iinfo('int32') seed = np.random.randint(0, tinfo.max) # We store the original user arguments to be able to pass it to the # filtered version of the datasets self._args = { 'fname': fname, 'batch_size': batch_size, 'num_workers': num_workers, 'os_cache': os_cache, 'order': order, 'distributed': distributed, 'seed': seed, 'indices': indices, 'pipelines': pipelines, 'drop_last': drop_last, 'batches_ahead': batches_ahead, 'recompile': recompile } self.fname: str = fname self.batch_size: int = batch_size self.batches_ahead = batches_ahead self.seed: int = seed self.reader: Reader = Reader(self.fname, custom_fields) self.num_workers: int = num_workers self.drop_last: bool = drop_last self.distributed: bool = distributed self.code_per_stage = None self.recompile = recompile if self.num_workers < 1: self.num_workers = cpu_count() Compiler.set_num_threads(self.num_workers) if indices is None: self.indices = np.arange(self.reader.num_samples, dtype='uint64') else: self.indices = np.array(indices) if os_cache: self.memory_manager: MemoryManager = OSCacheManager(self.reader) else: self.memory_manager: MemoryManager = ProcessCacheManager( self.reader) self.traversal_order: TraversalOrder = ORDER_MAP[order](self) memory_read = self.memory_manager.compile_reader() self.next_epoch: int = 0 self.pipelines = {} self.field_name_to_f_ix = {} for f_ix, (field_name, field) in enumerate(self.reader.handlers.items()): self.field_name_to_f_ix[field_name] = f_ix DecoderClass = field.get_decoder_class() try: operations = pipelines[field_name] # We check if the user disabled this field if operations is None: continue if not isinstance(operations[0], DecoderClass): msg = "The first operation of the pipeline for " msg += f"'{field_name}' has to be a subclass of " msg += f"{DecoderClass}" raise ValueError(msg) except KeyError: try: operations = [ DecoderClass(), ToTensor() ] except Exception: msg = f"Impossible to create a default pipeline" msg += f"{field_name}, please define one manually" raise ValueError(msg) for i, op in enumerate(operations): assert isinstance(op, (ch.nn.Module, Operation)), op if isinstance(op, ch.nn.Module): operations[i] = ModuleWrapper(op) for op in operations: op.accept_field(field) op.accept_globals(self.reader.metadata[f'f{f_ix}'], memory_read) self.pipelines[field_name] = Pipeline(operations) def next_traversal_order(self): return self.traversal_order.sample_order(self.next_epoch) def __iter__(self): Compiler.set_num_threads(self.num_workers) order = self.next_traversal_order() selected_order = order[:len(self) * self.batch_size] self.next_epoch += 1 # Compile at the first epoch if self.code_per_stage is None or self.recompile: self.generate_code() return EpochIterator(self, selected_order) def filter(self, field_name:str, condition: Callable[[Any], bool]) -> 'Loader': new_args = {**self._args} pipelines = {} # Disabling all the other fields for other_field_name in self.reader.handlers.keys(): pipelines[other_field_name] = None # We reuse the original pipeline for the field we care about try: pipelines[field_name] = new_args['pipelines'][field_name] except KeyError: # We keep the default one if the user didn't setup a custom one del pipelines[field_name] pass new_args['pipelines'] = pipelines # We use sequential order for speed and to know which index we are # filtering new_args['order'] = OrderOption.SEQUENTIAL new_args['drop_last'] = False sub_loader = Loader(**new_args) selected_indices = [] # Iterate through the loader and test the user defined condition for i, (batch,) in enumerate(sub_loader): for j, sample in enumerate(batch): sample_id = i * self.batch_size + j if condition(sample): selected_indices.append(sample_id) final_args = {**self._args} final_args['indices'] = np.array(selected_indices) return Loader(**final_args) def __len__(self): next_order = self.next_traversal_order() if self.drop_last: return len(next_order) // self.batch_size else: return int(np.ceil(len(next_order) / self.batch_size)) def generate_function_call(self, pipeline_name, op_id, needs_indices): p_ix = self.field_name_to_f_ix[pipeline_name] pipeline_identifier = f'code_{pipeline_name}_{op_id}' memory_identifier = f'memory_{pipeline_name}_{op_id}' result_identifier = f'result_{pipeline_name}' arg_id = result_identifier # This is the decoder so we pass the indices instead of the previous # result if op_id == 0: arg_id = 'batch_indices' tree = ast.parse(f""" {result_identifier} = {pipeline_identifier}({arg_id}, {memory_identifier}) """).body[0] # This is the first call of the pipeline, we pass the metadata and # storage state if op_id == 0: tree.value.args.extend([ ast.Subscript(value=ast.Name(id='metadata', ctx=ast.Load()), slice=ast.Index(value=ast.Constant(value=f'f{p_ix}', kind=None)), ctx=ast.Load()), ast.Name(id='storage_state', ctx=ast.Load()), ]) if needs_indices: tree.value.args.extend([ ast.Name(id='batch_indices', ctx=ast.Load()), ]) return tree def generate_stage_code(self, stage, stage_ix, functions): fun_name = f'stage_{stage_ix}' base_code = ast.parse(f""" def {fun_name}(): pass """).body[0] function_calls = [] memory_banks = [] memory_banks_id = [] for p_ix, pipeline_name, op_id, needs_indices in stage: function_calls.append(self.generate_function_call(pipeline_name, op_id, needs_indices)) arg = ast.arg(arg=f'memory_{pipeline_name}_{op_id}') memory_banks.append(arg) memory_banks_id.append((pipeline_name, op_id)) base_code.body.pop() base_code.body.extend(function_calls) return_tuple = ast.Return(value=ast.Tuple(elts=[], ctx=ast.Load())) base_code.args.args.append(ast.arg(arg='batch_indices')) for p_id in self.pipelines.keys(): r = f'result_{p_id}' if stage_ix != 0: base_code.args.args.append(ast.arg(arg=r)) return_tuple.value.elts.append(ast.Name(id=r, ctx=ast.Load())) base_code.body.append(return_tuple) base_code.args.args.extend(memory_banks) base_code.args.args.append(ast.arg(arg='metadata')) base_code.args.args.append(ast.arg(arg='storage_state')) module = ast.fix_missing_locations( ast.Module(body=[base_code], type_ignores=[]) ) namespace = { **functions, } exec(compile(module, '', 'exec'), namespace) final_code = namespace[fun_name] if stage_ix % 2 == 0: final_code = Compiler.compile(final_code) return final_code, memory_banks_id def generate_code(self): schedule = defaultdict(lambda: []) compiled_functions = {} for p_ix, (p_id, p) in enumerate(self.pipelines.items()): stage = 0 for jitted_block, block_content in p.operation_blocks: # Even stages are jitted Odds are not # If this doesn't match for this pipeline we # shift the operations if 1 - jitted_block % 2 != stage % 2: stage += 1 for op in block_content: ops_code = p.compiled_ops[op] needs_indices = False if hasattr(ops_code, 'with_indices'): needs_indices = ops_code.with_indices if stage % 2 == 0: ops_code = Compiler.compile(ops_code) compiled_functions[f'code_{p_id}_{op}'] = ops_code schedule[stage].append((p_ix, p_id, op, needs_indices)) stage += 1 memory_bank_keys_per_stage = {} self.code_per_stage = {} for stage_ix, stage in schedule.items(): code_for_stage, mem_banks_ids = self.generate_stage_code(stage, stage_ix, compiled_functions) self.code_per_stage[stage_ix] = code_for_stage memory_bank_keys_per_stage[stage_ix] = mem_banks_ids self.memory_bank_keys_per_stage = memory_bank_keys_per_stage
ffcv-main
ffcv/loader/loader.py
from abc import ABCMeta, abstractmethod from contextlib import AbstractContextManager class Benchmark(AbstractContextManager, metaclass=ABCMeta): def __init__(self, **kwargs): pass @abstractmethod def run(self): raise NotImplemented()
ffcv-main
ffcv/benchmarks/benchmark.py
from itertools import product from time import time from collections import defaultdict from contextlib import redirect_stderr import pathlib import numpy as np from tqdm import tqdm from .benchmark import Benchmark ALL_SUITES = {} class FakeSink(object): def write(self, *args): pass def writelines(self, *args): pass def close(self, *args): pass def flush(self, *args): pass def benchmark(arg_values={}): args_list = product(*arg_values.values()) runs = [dict(zip(arg_values.keys(), x)) for x in args_list] def wrapper(cls): ALL_SUITES[cls.__name__] = (cls, runs) return wrapper def run_all(runs=3, warm_up=1, pattern='*'): results = defaultdict(list) selected_suites = {} for sname in ALL_SUITES.keys(): if pathlib.PurePath(sname).match(pattern): selected_suites[sname] = ALL_SUITES[sname] it_suite = tqdm(selected_suites.items(), desc='Suite', leave=False) for suite_name, (cls, args_list) in it_suite: it_suite.set_postfix({'name': suite_name}) it_args = tqdm(args_list, desc='configuration', leave=False) for args in it_args: # with redirect_stderr(FakeSink()): if True: benchmark: Benchmark = cls(**args) with benchmark: for _ in range(warm_up): benchmark.run() timings = [] for _ in range(runs): start = time() benchmark.run() timings.append(time() - start) median_time = np.median(timings) throughput = None if 'n' in args: throughput = args['n'] / median_time unit = 'it/sec' if throughput < 1: unit = 'sec/it' throughput = 1 /throughput throughput = np.round(throughput * 10) / 10 results[suite_name].append({ **args, 'time': median_time, 'throughput': str(throughput) + ' ' + unit }) it_args.close() it_suite.close() return results
ffcv-main
ffcv/benchmarks/decorator.py
ffcv-main
ffcv/benchmarks/__init__.py
import argparse import pandas as pd from terminaltables import SingleTable from .suites import * from .decorator import run_all parser = argparse.ArgumentParser(description='Run ffcv micro benchmarks') parser.add_argument('--runs', '-n', type=int, help='Use the median of --runs runs of each test', default=3) parser.add_argument('--warm-up', '-w', type=int, help='Runs each test --warm-up times before measuring', default=1) parser.add_argument('--pattern', '-p', type=str, help='Run only tests matching this (glob style) pattern', default='*') parser.add_argument('--output', '-o', type=str, default=None, help='If defined will write to file instead of stdout.') args = parser.parse_args() all_results = run_all(args.runs, args.warm_up, pattern=args.pattern) result_data = [] for suite_name, results in all_results.items(): column_names = results[0].keys() table_data = [list(column_names)] for result in results: result_data.append({ 'suite_name': suite_name, **result }) table_data.append(result.values()) table = SingleTable(table_data, title=suite_name) if args.output is None: print(table.table) if args.output is not None: frame = pd.DataFrame(result_data) frame.to_csv(args.output)
ffcv-main
ffcv/benchmarks/__main__.py
from os import path import numpy as np import cv2 from numpy.core.numeric import full from ..decorator import benchmark from ..benchmark import Benchmark from ...pipeline.compiler import Compiler from ...libffcv import imdecode @benchmark({ 'n': [500], 'source_image': ['../../../test_data/pig.png'], 'image_width': [500, 256, 1024], 'quality': [50, 90], 'compile': [True] }) class JPEGDecodeBenchmark(Benchmark): def __init__(self, n, source_image, image_width, quality, compile): self.n = n self.compile = compile self.source_image = source_image self.image_width = image_width self.quality = quality def __enter__(self): full_path = path.join(path.dirname(__file__), self.source_image) loaded_image = cv2.imread(full_path, cv2.IMREAD_COLOR) previous_width = loaded_image.shape[1] new_width = self.image_width factor = new_width / previous_width new_height = int(loaded_image.shape[0] * factor) resized_image = cv2.resize(loaded_image, (new_width, new_height), interpolation=cv2.INTER_AREA) _, self.encoded_image = cv2.imencode('.jpg', resized_image, [int(cv2.IMWRITE_JPEG_QUALITY), self.quality]) self.destination = np.zeros((new_height, new_width, 3), dtype='uint8') Compiler.set_enabled(self.compile) n = self.n decode = Compiler.compile(imdecode) def code(source, dest): for _ in range(n): decode(source, dest, new_height, new_width, new_height, new_width, 0, 0, 1, 1, False) self.code = Compiler.compile(code) def run(self): self.code(self.encoded_image, self.destination) def __exit__(self, *args): pass
ffcv-main
ffcv/benchmarks/suites/jpeg_decode.py
import logging import os from tempfile import NamedTemporaryFile from time import sleep, time import numpy as np from assertpy import assert_that from ffcv.fields import BytesField, IntField, RGBImageField from ffcv.memory_managers import OSCacheManager from ffcv.pipeline.compiler import Compiler from ffcv.reader import Reader from ffcv.writer import DatasetWriter from torch.utils.data import Dataset from tqdm import tqdm from ..benchmark import Benchmark from ..decorator import benchmark class DummyDataset(Dataset): def __init__(self, length, size): self.length = length self.size = size def __len__(self): return self.length def __getitem__(self, index): if index > self.length: raise IndexError dims = tuple([*self.size, 3]) image_data = np.random.randint(low=0, high=255, size=dims, dtype='uint8') return index, image_data @benchmark({ 'n': [3000], 'length': [3000], 'mode': [ 'raw', 'jpg' ], 'num_workers': [ 1, 8, 16 ], 'batch_size': [ 500 ], 'size': [ (32, 32), # CIFAR (300, 500), # ImageNet ], 'compile': [ True, # False ], 'random_reads': [ True, # False ] }) class ImageReadBench(Benchmark): def __init__(self, n, length, mode, size, random_reads, compile, num_workers, batch_size): self.n = n self.mode = mode self.length = length self.num_workers = num_workers self.batch_size = batch_size self.size = size self.compile = compile self.random_reads = random_reads self.dataset = DummyDataset(length, size) def __enter__(self): self.handle = NamedTemporaryFile() self.handle.__enter__() name = self.handle.name writer = DatasetWriter(self.length, name, { 'index': IntField(), 'value': RGBImageField(write_mode=self.mode) }) with writer: writer.write_pytorch_dataset(self.dataset, num_workers=-1, chunksize=100) reader = Reader(name) manager = OSCacheManager(reader) Compiler.set_enabled(self.compile) Compiler.set_num_threads(self.num_workers) memreader = manager.compile_reader() Decoder = RGBImageField().get_decoder_class() decoder = Decoder() decoder.accept_globals(reader.metadata['f1'], memreader) context = manager.schedule_epoch(np.arange(self.n)) context.__enter__() self.context = context decode = decoder.generate_code() decode = Compiler.compile(decode) self.buff = np.zeros((self.batch_size, *self.size, 3), dtype='uint8') if self.random_reads: self.indices = np.random.choice(self.n, size=self.n, replace=False) else: self.indices = np.arange(self.n) def code(indices, buff, state): result = 0 for i in range(0, len(indices), self.batch_size): result += decode(indices[i:i + self.batch_size], buff, reader.metadata['f1'], state)[0, 5, 5] return result self.code = code def run(self): self.code(self.indices, self.buff, self.context.state) def __exit__(self, *args): self.handle.__exit__(*args) self.context.__exit__(*args) pass
ffcv-main
ffcv/benchmarks/suites/image_read.py
from os import listdir from os.path import dirname __all__ = [i[:-3] for i in listdir(dirname(__file__)) if not i.startswith('__') and i.endswith('.py')]
ffcv-main
ffcv/benchmarks/suites/__init__.py
import os from tempfile import NamedTemporaryFile from time import sleep, time import numpy as np from tqdm import tqdm from assertpy import assert_that from torch.utils.data import Dataset from ffcv.writer import DatasetWriter from ffcv.reader import Reader from ffcv.fields import BytesField, IntField from ffcv.pipeline.compiler import Compiler from ffcv.memory_managers import OSCacheManager from ffcv.libffcv import memcpy from ..decorator import benchmark from ..benchmark import Benchmark class DummyDataset(Dataset): def __init__(self, l, size): self.l = l self.size = size def __len__(self): return self.l def __getitem__(self, index): if index > self.l: raise IndexError np.random.seed(index) return index, np.random.randint(0, 255, size=self.size, dtype='u1') @benchmark({ 'num_samples': [3000], 'size_bytes': [ 32 * 32 * 3, # CIFAR RAW image size, 500 * 300 * 3, # IMAGENET raw image size, 128 * 1024, # IMAGENET jpg image size, ], 'compiled': [ True ], 'random_reads': [True, False], 'n': [3000] }) class MemoryReadBytesBench(Benchmark): def __init__(self, num_samples, size_bytes, random_reads, n, compiled): self.num_samples = num_samples self.size_bytes = size_bytes self.random_reads = random_reads self.n = n self.compiled = compiled def __enter__(self): self.handle = NamedTemporaryFile() handle = self.handle.__enter__() name = handle.name dataset = DummyDataset(self.num_samples, self.size_bytes) writer = DatasetWriter(self.num_samples, name, { 'index': IntField(), 'value': BytesField() }) with writer: writer.write_pytorch_dataset(dataset, num_workers=-1, chunksize=100) reader = Reader(name) manager = OSCacheManager(reader) context = manager.schedule_epoch(np.arange(self.num_samples)) context.__enter__() self.context = context Compiler.set_enabled(self.compiled) memcpy_c = Compiler.compile(memcpy) read_fn = manager.compile_reader() if self.random_reads: indices = np.random.choice(self.num_samples, self.n, replace=False) else: indices = np.arange(self.num_samples)[:self.n] addresses = reader.alloc_table['ptr'][indices] self.buffer = np.zeros(self.size_bytes, dtype='<u1') def code(buff, state): for i in range(addresses.shape[0]): memcpy_c(read_fn(addresses[i], state), buff) self.code = Compiler.compile(code) def run(self): self.code(self.buffer, self.context.state) def __exit__(self, *args): self.handle.__exit__(*args)
ffcv-main
ffcv/benchmarks/suites/memory_read.py
from abc import ABCMeta, abstractmethod from dataclasses import replace from typing import Optional, Callable, TYPE_CHECKING, Tuple, Type import cv2 import numpy as np from numba.typed import Dict from PIL.Image import Image from .base import Field, ARG_TYPE from ..pipeline.operation import Operation from ..pipeline.state import State from ..pipeline.compiler import Compiler from ..pipeline.allocation_query import AllocationQuery from ..libffcv import imdecode, memcpy, resize_crop if TYPE_CHECKING: from ..memory_managers.base import MemoryManager from ..reader import Reader IMAGE_MODES = Dict() IMAGE_MODES['jpg'] = 0 IMAGE_MODES['raw'] = 1 def encode_jpeg(numpy_image, quality): numpy_image = cv2.cvtColor(numpy_image, cv2.COLOR_RGB2BGR) success, result = cv2.imencode('.jpg', numpy_image, [int(cv2.IMWRITE_JPEG_QUALITY), quality]) if not success: raise ValueError("Impossible to encode image in jpeg") return result.reshape(-1) def resizer(image, target_resolution): if target_resolution is None: return image original_size = np.array([image.shape[1], image.shape[0]]) ratio = target_resolution / original_size.max() if ratio < 1: new_size = (ratio * original_size).astype(int) image = cv2.resize(image, tuple(new_size), interpolation=cv2.INTER_AREA) return image def get_random_crop(height, width, scale, ratio): area = height * width log_ratio = np.log(ratio) for _ in range(10): target_area = area * np.random.uniform(scale[0], scale[1]) aspect_ratio = np.exp(np.random.uniform(log_ratio[0], log_ratio[1])) w = int(round(np.sqrt(target_area * aspect_ratio))) h = int(round(np.sqrt(target_area / aspect_ratio))) if 0 < w <= width and 0 < h <= height: i = int(np.random.uniform(0, height - h + 1)) j = int(np.random.uniform(0, width - w + 1)) return i, j, h, w in_ratio = float(width) / float(height) if in_ratio < min(ratio): w = width h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = height w = int(round(h * max(ratio))) else: w = width h = height i = (height - h) // 2 j = (width - w) // 2 return i, j, h, w def get_center_crop(height, width, _, ratio): s = min(height, width) c = int(ratio * s) delta_h = (height - c) // 2 delta_w = (width - c) // 2 return delta_h, delta_w, c, c class SimpleRGBImageDecoder(Operation): """Most basic decoder for the :class:`~ffcv.fields.RGBImageField`. It only supports dataset with constant image resolution and will simply read (potentially decompress) and pass the images as is. """ def __init__(self): super().__init__() def declare_state_and_memory(self, previous_state: State) -> Tuple[State, AllocationQuery]: widths = self.metadata['width'] heights = self.metadata['height'] max_width = widths.max() max_height = heights.max() min_height = heights.min() min_width = widths.min() if min_width != max_width or max_height != min_height: msg = """SimpleRGBImageDecoder ony supports constant image, consider RandomResizedCropRGBImageDecoder or CenterCropRGBImageDecoder instead.""" raise TypeError(msg) biggest_shape = (max_height, max_width, 3) my_dtype = np.dtype('<u1') return ( replace(previous_state, jit_mode=True, shape=biggest_shape, dtype=my_dtype), AllocationQuery(biggest_shape, my_dtype) ) def generate_code(self) -> Callable: mem_read = self.memory_read imdecode_c = Compiler.compile(imdecode) jpg = IMAGE_MODES['jpg'] raw = IMAGE_MODES['raw'] my_range = Compiler.get_iterator() my_memcpy = Compiler.compile(memcpy) def decode(batch_indices, destination, metadata, storage_state): for dst_ix in my_range(len(batch_indices)): source_ix = batch_indices[dst_ix] field = metadata[source_ix] image_data = mem_read(field['data_ptr'], storage_state) height, width = field['height'], field['width'] if field['mode'] == jpg: imdecode_c(image_data, destination[dst_ix], height, width, height, width, 0, 0, 1, 1, False, False) else: my_memcpy(image_data, destination[dst_ix]) return destination[:len(batch_indices)] decode.is_parallel = True return decode class ResizedCropRGBImageDecoder(SimpleRGBImageDecoder, metaclass=ABCMeta): """Abstract decoder for :class:`~ffcv.fields.RGBImageField` that performs a crop and and a resize operation. It supports both variable and constant resolution datasets. """ def __init__(self, output_size): super().__init__() self.output_size = output_size def declare_state_and_memory(self, previous_state: State) -> Tuple[State, AllocationQuery]: widths = self.metadata['width'] heights = self.metadata['height'] # We convert to uint64 to avoid overflows self.max_width = np.uint64(widths.max()) self.max_height = np.uint64(heights.max()) output_shape = (self.output_size[0], self.output_size[1], 3) my_dtype = np.dtype('<u1') return ( replace(previous_state, jit_mode=True, shape=output_shape, dtype=my_dtype), (AllocationQuery(output_shape, my_dtype), AllocationQuery((self.max_height * self.max_width * np.uint64(3),), my_dtype), ) ) def generate_code(self) -> Callable: jpg = IMAGE_MODES['jpg'] mem_read = self.memory_read my_range = Compiler.get_iterator() imdecode_c = Compiler.compile(imdecode) resize_crop_c = Compiler.compile(resize_crop) get_crop_c = Compiler.compile(self.get_crop_generator) scale = self.scale ratio = self.ratio if isinstance(scale, tuple): scale = np.array(scale) if isinstance(ratio, tuple): ratio = np.array(ratio) def decode(batch_indices, my_storage, metadata, storage_state): destination, temp_storage = my_storage for dst_ix in my_range(len(batch_indices)): source_ix = batch_indices[dst_ix] field = metadata[source_ix] image_data = mem_read(field['data_ptr'], storage_state) height = np.uint32(field['height']) width = np.uint32(field['width']) if field['mode'] == jpg: temp_buffer = temp_storage[dst_ix] imdecode_c(image_data, temp_buffer, height, width, height, width, 0, 0, 1, 1, False, False) selected_size = 3 * height * width temp_buffer = temp_buffer.reshape(-1)[:selected_size] temp_buffer = temp_buffer.reshape(height, width, 3) else: temp_buffer = image_data.reshape(height, width, 3) i, j, h, w = get_crop_c(height, width, scale, ratio) resize_crop_c(temp_buffer, i, i + h, j, j + w, destination[dst_ix]) return destination[:len(batch_indices)] decode.is_parallel = True return decode @property @abstractmethod def get_crop_generator(): raise NotImplementedError class RandomResizedCropRGBImageDecoder(ResizedCropRGBImageDecoder): """Decoder for :class:`~ffcv.fields.RGBImageField` that performs a Random crop and and a resize operation. It supports both variable and constant resolution datasets. Parameters ---------- output_size : Tuple[int] The desired resized resolution of the images scale : Tuple[float] The range of possible ratios (in area) than can randomly sampled ratio : Tuple[float] The range of potential aspect ratios that can be randomly sampled """ def __init__(self, output_size, scale=(0.08, 1.0), ratio=(0.75, 4/3)): super().__init__(output_size) self.scale = scale self.ratio = ratio self.output_size = output_size @property def get_crop_generator(self): return get_random_crop class CenterCropRGBImageDecoder(ResizedCropRGBImageDecoder): """Decoder for :class:`~ffcv.fields.RGBImageField` that performs a center crop followed by a resize operation. It supports both variable and constant resolution datasets. Parameters ---------- output_size : Tuple[int] The desired resized resolution of the images ratio: float ratio of (crop size) / (min side length) """ # output size: resize crop size -> output size def __init__(self, output_size, ratio): super().__init__(output_size) self.scale = None self.ratio = ratio @property def get_crop_generator(self): return get_center_crop class RGBImageField(Field): """ A subclass of :class:`~ffcv.fields.Field` supporting RGB image data. Parameters ---------- write_mode : str, optional How to write the image data to the dataset file. Should be either 'raw' (``uint8`` pixel values), 'jpg' (compress to JPEG format), 'smart' (decide between saving pixel values and JPEG compressing based on image size), and 'proportion' (JPEG compress a random subset of the data with size specified by the ``compress_probability`` argument). By default: 'raw'. max_resolution : int, optional If specified, will resize images to have maximum side length equal to this value before saving, by default None smart_threshold : int, optional When `write_mode='smart`, will compress an image if it would take more than `smart_threshold` times to use RAW instead of jpeg. jpeg_quality : int, optional The quality parameter for JPEG encoding (ignored for ``write_mode='raw'``), by default 90 compress_probability : float, optional Ignored unless ``write_mode='proportion'``; in the latter case it is the probability with which image is JPEG-compressed, by default 0.5. """ def __init__(self, write_mode='raw', max_resolution: int = None, smart_threshold: int = None, jpeg_quality: int = 90, compress_probability: float = 0.5) -> None: self.write_mode = write_mode self.smart_threshold = smart_threshold self.max_resolution = max_resolution self.jpeg_quality = int(jpeg_quality) self.proportion = compress_probability @property def metadata_type(self) -> np.dtype: return np.dtype([ ('mode', '<u1'), ('width', '<u2'), ('height', '<u2'), ('data_ptr', '<u8'), ]) def get_decoder_class(self) -> Type[Operation]: return SimpleRGBImageDecoder @staticmethod def from_binary(binary: ARG_TYPE) -> Field: return RGBImageField() def to_binary(self) -> ARG_TYPE: return np.zeros(1, dtype=ARG_TYPE)[0] def encode(self, destination, image, malloc): if isinstance(image, Image): image = np.array(image) if not isinstance(image, np.ndarray): raise TypeError(f"Unsupported image type {type(image)}") if image.dtype != np.uint8: raise ValueError("Image type has to be uint8") if image.shape[2] != 3: raise ValueError(f"Invalid shape for rgb image: {image.shape}") assert image.dtype == np.uint8 image = resizer(image, self.max_resolution) write_mode = self.write_mode as_jpg = None if write_mode == 'smart': as_jpg = encode_jpeg(image, self.jpeg_quality) write_mode = 'raw' if self.smart_threshold is not None: if image.nbytes > self.smart_threshold: write_mode = 'jpg' elif write_mode == 'proportion': if np.random.rand() < self.proportion: write_mode = 'jpg' else: write_mode = 'raw' destination['mode'] = IMAGE_MODES[write_mode] destination['height'], destination['width'] = image.shape[:2] if write_mode == 'jpg': if as_jpg is None: as_jpg = encode_jpeg(image, self.jpeg_quality) destination['data_ptr'], storage = malloc(as_jpg.nbytes) storage[:] = as_jpg elif write_mode == 'raw': image_bytes = np.ascontiguousarray(image).view('<u1').reshape(-1) destination['data_ptr'], storage = malloc(image.nbytes) storage[:] = image_bytes else: raise ValueError(f"Unsupported write mode {self.write_mode}")
ffcv-main
ffcv/fields/rgb_image.py
from .basics import FloatDecoder, IntDecoder from .ndarray import NDArrayDecoder from .rgb_image import RandomResizedCropRGBImageDecoder, CenterCropRGBImageDecoder, SimpleRGBImageDecoder from .bytes import BytesDecoder __all__ = ['FloatDecoder', 'IntDecoder', 'NDArrayDecoder', 'RandomResizedCropRGBImageDecoder', 'CenterCropRGBImageDecoder', 'SimpleRGBImageDecoder', 'BytesDecoder']
ffcv-main
ffcv/fields/decoders.py
from .base import Field from .basics import FloatField, IntField from .rgb_image import RGBImageField from .bytes import BytesField from .ndarray import NDArrayField from .json import JSONField __all__ = ['Field', 'BytesField', 'IntField', 'FloatField', 'RGBImageField', 'NDArrayField', 'JSONField']
ffcv-main
ffcv/fields/__init__.py
from typing import Callable, TYPE_CHECKING, Tuple, Type import json from dataclasses import replace import numpy as np from .base import Field, ARG_TYPE from ..pipeline.operation import Operation from ..pipeline.state import State from ..pipeline.compiler import Compiler from ..pipeline.allocation_query import AllocationQuery from ..libffcv import memcpy if TYPE_CHECKING: from ..memory_managers.base import MemoryManager class NDArrayDecoder(Operation): """ Default decoder for :class:`~ffcv.fields.NDArrayField`. """ def declare_state_and_memory(self, previous_state: State) -> Tuple[State, AllocationQuery]: return ( replace(previous_state, jit_mode=True, shape=self.field.shape, dtype=self.field.dtype), AllocationQuery(self.field.shape, self.field.dtype) ) def generate_code(self) -> Callable: my_range = Compiler.get_iterator() mem_read = self.memory_read my_memcpy = Compiler.compile(memcpy) def decoder(indices, destination, metadata, storage_state): for ix in my_range(indices.shape[0]): sample_id = indices[ix] ptr = metadata[sample_id] data = mem_read(ptr, storage_state) my_memcpy(data, destination[ix].view(np.uint8)) return destination return decoder NDArrayArgsType = np.dtype([ ('shape', '<u8', 32), # 32 is the max number of dimensions for numpy ('type_length', '<u8'), # length of the dtype description ]) class NDArrayField(Field): """A subclass of :class:`~ffcv.fields.Field` supporting multi-dimensional fixed size matrices of any numpy type. """ def __init__(self, dtype:np.dtype, shape:Tuple[int, ...]): self.dtype = dtype self.shape = shape self.element_size = dtype.itemsize * np.prod(shape) @property def metadata_type(self) -> np.dtype: return np.dtype('<u8') @staticmethod def from_binary(binary: ARG_TYPE) -> Field: header_size = NDArrayArgsType.itemsize header = binary[:header_size].view(NDArrayArgsType)[0] type_length = header['type_length'] type_data = binary[header_size:][:type_length].tobytes().decode('ascii') type_desc = json.loads(type_data) type_desc = [tuple(x) for x in type_desc] assert len(type_desc) == 1 dtype = np.dtype(type_desc)['f0'] shape = list(header['shape']) while shape[-1] == 0: shape.pop() return NDArrayField(dtype, tuple(shape)) def to_binary(self) -> ARG_TYPE: result = np.zeros(1, dtype=ARG_TYPE)[0] header = np.zeros(1, dtype=NDArrayArgsType) s = np.array(self.shape).astype('<u8') header['shape'][0][:len(s)] = s encoded_type = json.dumps(self.dtype.descr) encoded_type = np.frombuffer(encoded_type.encode('ascii'), dtype='<u1') header['type_length'][0] = len(encoded_type) to_write = np.concatenate([header.view('<u1'), encoded_type]) result[0][:to_write.shape[0]] = to_write return result def encode(self, destination, field, malloc): destination[0], data_region = malloc(self.element_size) data_region[:] = field.reshape(-1).view('<u1') def get_decoder_class(self) -> Type[Operation]: return NDArrayDecoder
ffcv-main
ffcv/fields/ndarray.py
from typing import Callable, TYPE_CHECKING, Tuple, Type from dataclasses import replace import numpy as np from .base import Field, ARG_TYPE from ..pipeline.operation import Operation from ..pipeline.state import State from ..pipeline.allocation_query import AllocationQuery if TYPE_CHECKING: from ..memory_managers.base import MemoryManager class BasicDecoder(Operation): """For decoding scalar fields This Decoder can be extend to decode any fixed length numpy data type """ def declare_state_and_memory(self, previous_state: State) -> Tuple[State, AllocationQuery]: my_shape = (1,) return ( replace(previous_state, jit_mode=True, shape=my_shape, dtype=self.dtype), AllocationQuery(my_shape, dtype=self.dtype) ) def generate_code(self) -> Callable: def decoder(indices, destination, metadata, storage_state): for ix, sample_id in enumerate(indices): destination[ix] = metadata[sample_id] return destination[:len(indices)] return decoder class IntDecoder(BasicDecoder): """Decoder for signed integers scalars (int64) """ dtype = np.dtype('<i8') class FloatDecoder(BasicDecoder): """Decoder for floating point scalars (float64) """ dtype = np.dtype('<f8') class FloatField(Field): """ A subclass of :class:`~ffcv.fields.Field` supporting (scalar) floating-point (float64) values. """ def __init__(self): pass @property def metadata_type(self) -> np.dtype: return np.dtype('<f8') @staticmethod def from_binary(binary: ARG_TYPE) -> Field: return FloatField() def to_binary(self) -> ARG_TYPE: return np.zeros(1, dtype=ARG_TYPE)[0] def encode(self, destination, field, malloc): destination[0] = field def get_decoder_class(self) -> Type[Operation]: return FloatDecoder class IntField(Field): """ A subclass of :class:`~ffcv.fields.Field` supporting (scalar) integer values. """ @property def metadata_type(self) -> np.dtype: return np.dtype('<i8') @staticmethod def from_binary(binary: ARG_TYPE) -> Field: return IntField() def to_binary(self) -> ARG_TYPE: return np.zeros(1, dtype=ARG_TYPE)[0] def encode(self, destination, field, malloc): # We just allocate 1024bytes for fun destination[0] = field def get_decoder_class(self) -> Type[Operation]: return IntDecoder
ffcv-main
ffcv/fields/basics.py
from typing import Callable, TYPE_CHECKING, Tuple, Type from dataclasses import replace import numpy as np from .base import Field, ARG_TYPE from ..pipeline.operation import Operation from ..pipeline.state import State from ..pipeline.compiler import Compiler from ..pipeline.allocation_query import AllocationQuery from ..libffcv import memcpy class BytesDecoder(Operation): def declare_state_and_memory(self, previous_state: State) -> Tuple[State, AllocationQuery]: max_size = self.metadata['size'].max() my_shape = (max_size,) return ( replace(previous_state, jit_mode=True, shape=my_shape, dtype='<u1'), AllocationQuery(my_shape, dtype='<u1') ) def generate_code(self) -> Callable: mem_read = self.memory_read my_memcpy = Compiler.compile(memcpy) my_range = Compiler.get_iterator() def decoder(batch_indices, destination, metadata, storage_state): for dest_ix in my_range(batch_indices.shape[0]): source_ix = batch_indices[dest_ix] data = mem_read(metadata[source_ix]['ptr'], storage_state) my_memcpy(data, destination[dest_ix]) return destination return decoder class BytesField(Field): """ A subclass of :class:`~ffcv.fields.Field` supporting variable-length byte arrays. Intended for use with data such as text or raw data which may not have a fixed size. Data is written sequentially while saving pointers and read by pointer lookup. The writer expects to be passed a 1D uint8 numpy array of variable length for each sample. """ def __init__(self): pass @property def metadata_type(self) -> np.dtype: return np.dtype([ ('ptr', '<u8'), ('size', '<u8') ]) @staticmethod def from_binary(binary: ARG_TYPE) -> Field: return BytesField() def to_binary(self) -> ARG_TYPE: return np.zeros(1, dtype=ARG_TYPE)[0] def encode(self, destination, field, malloc): ptr, buffer = malloc(field.size) buffer[:] = field destination['ptr'] = ptr destination['size'] = field.size def get_decoder_class(self) -> Type[Operation]: return BytesDecoder
ffcv-main
ffcv/fields/bytes.py
import json import torch as ch import numpy as np from .bytes import BytesField ENCODING = 'utf8' SEPARATOR = '\0' # Null byte class JSONField(BytesField): """A subclass of :class:`~ffcv.fields.BytesField` that encodes JSON data. The writer expects to be passed a dict that is compatible with the JSON specification. .. warning :: Because FFCV is based on tensors/ndarrays the reader and therefore the loader can't give return JSON to the user. This is why we provide :class:`~ffcv.fields.JSONField.unpack` which does the conversion. It's up to the user to call it in the main body of the loop """ @property def metadata_type(self) -> np.dtype: return np.dtype([ ('ptr', '<u8'), ('size', '<u8') ]) def encode(self, destination, field, malloc): # Add null terminating byte content = (json.dumps(field) + SEPARATOR).encode(ENCODING) field = np.frombuffer(content, dtype='uint8') return super().encode(destination, field, malloc) @staticmethod def unpack(batch): """Convert back the output of a :class:`~ffcv.fields.JSONField` field produced by :class:`~ffcv.Loader` into an actual JSON. It works both on an entire batch and will return an array of python dicts or a single sample and will simply return a dict. """ if isinstance(batch, ch.Tensor): batch = batch.numpy() single_instance = len(batch.shape) == 1 if single_instance: batch = [batch] result = [] for b in batch: sep_location = np.where(b == ord(SEPARATOR))[0][0] b = b[:sep_location] string = b.tobytes().decode(ENCODING) result.append(json.loads(string)) if single_instance: result = result[0] return result
ffcv-main
ffcv/fields/json.py
from __future__ import annotations from typing import Type import numpy as np from abc import ABC, abstractmethod from ..pipeline.operation import Operation ARG_TYPE = np.dtype([('', '<u1', 1024)]) class Field(ABC): """ Abstract Base Class for implementing fields (e.g., images, integers). Each dataset entry is comprised of one or more fields (for example, standard object detection datasets may have one field for images, and one for bounding boxes). Fields are responsible for implementing encode and get_decoder_class functions that determine how they will be written and read from the dataset file, respectively. .. note :: It is possible to have multiple potential decoder for a given Field. ``RGBImageField`` one example. Users can specify which decoder to use in the ``piplines`` argument of the ``Loader`` class. See :ref:`here <TODO>` for information on how to implement a subclass of Field. """ @property @abstractmethod def metadata_type(self) -> np.dtype: raise NotImplemented @staticmethod @abstractmethod def from_binary(binary: ARG_TYPE) -> Field: raise NotImplementedError @abstractmethod def to_binary(self) -> ARG_TYPE: raise NotImplementedError @abstractmethod def encode(field, metadata_destination, malloc): raise NotImplementedError @abstractmethod def get_decoder_class(self) -> Type[Operation]: raise NotImplementedError
ffcv-main
ffcv/fields/base.py
""" Example of defining a custom (image) transform using FFCV. For tutorial, see https://docs.ffcv.io/ffcv_examples/transform_with_inds.html. """ from dataclasses import replace import time from typing import Callable, Optional, Tuple import numpy as np import torchvision from ffcv.fields import IntField, RGBImageField from ffcv.fields.decoders import IntDecoder from ffcv.loader import Loader, OrderOption from ffcv.pipeline.compiler import Compiler from ffcv.pipeline.operation import Operation, AllocationQuery from ffcv.pipeline.state import State from ffcv.transforms import ToTensor from ffcv.writer import DatasetWriter class CorruptFixedLabels(Operation): def generate_code(self) -> Callable: # dst will be None since we don't ask for an allocation parallel_range = Compiler.get_iterator() def corrupt_fixed(labs, _, inds): for i in parallel_range(labs.shape[0]): # Because the random seed is tied to the image index, the # same images will be corrupted every epoch: np.random.seed(inds[i]) if np.random.rand() < 0.2: # They will also be corrupted to a deterministic label: labs[i] = np.random.randint(low=0, high=10) return labs corrupt_fixed.is_parallel = True corrupt_fixed.with_indices = True return corrupt_fixed def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: # No updates to state or extra memory necessary! return previous_state, None # Step 1: Create an FFCV-compatible CIFAR-10 dataset ds = torchvision.datasets.CIFAR10('/tmp', train=True, download=True) writer = DatasetWriter('/tmp/cifar.beton', { 'image': RGBImageField(), 'label': IntField() }) writer.from_indexed_dataset(ds) # Step 2: Create data loaders BATCH_SIZE = 512 label_pipelines = { 'with': [IntDecoder(), CorruptFixedLabels(), ToTensor()], 'without': [IntDecoder(), ToTensor()] } for name, pipeline in label_pipelines.items(): # Use SEQUENTIAL ordering to compare labels. loader = Loader(f'/tmp/cifar.beton', batch_size=BATCH_SIZE, num_workers=8, order=OrderOption.SEQUENTIAL, drop_last=True, pipelines={'label': pipeline}) # First epoch includes compilation time for ims, labs in loader: pass start_time = time.time() for ep in range(20): for i, (ims, labs) in enumerate(loader): if i == 0: # Inspect first batch print(f'> Labels (epoch {ep:2}): {labs[:40,0].tolist()}') print(f'Method: {name} | Shape: {ims.shape} | Time per epoch: {(time.time() - start_time) / 100:.5f}s')
ffcv-main
examples/docs_examples/transform_with_inds.py
""" Example of using FFCV to speed up large scale linear regression. For tutorial, see https://docs.ffcv.io/ffcv_examples/linear_regression.html. """ from tqdm import tqdm import time import numpy as np import pickle as pkl import torch as ch from torch.utils.data import TensorDataset, DataLoader from ffcv.fields import NDArrayField, FloatField from ffcv.fields.basics import FloatDecoder from ffcv.fields.decoders import NDArrayDecoder from ffcv.loader import Loader, OrderOption from ffcv.writer import DatasetWriter from ffcv.transforms import ToTensor, ToDevice, Squeeze import os # 1,000,000 inputs each of dimension 10,000 = 40GB of data N, D = 1000000, 10000 USE_FFCV = True if not os.path.exists('/tmp/linreg_data.pkl'): X = np.random.rand(N, D).astype('float32') # Ground-truth vector W, b = np.random.rand(D).astype('float32'), np.random.rand() # Response variables Y = X @ W + b + np.random.randn(N).astype('float32') pkl.dump((X, W, b, Y), open('/tmp/linreg_data.pkl', 'wb')) elif not USE_FFCV: print('Loading from disk...') X, W, b, Y = pkl.load(open('/tmp/linreg_data.pkl', 'rb')) if USE_FFCV and not os.path.exists('/tmp/linreg_data.beton'): X, W, b, Y = pkl.load(open('/tmp/linreg_data.pkl', 'rb')) class LinearRegressionDataset: def __getitem__(self, idx): return (X[idx], np.array(Y[idx]).astype('float32')) def __len__(self): return len(X) writer = DatasetWriter('/tmp/linreg_data.beton', { 'covariate': NDArrayField(shape=(D,), dtype=np.dtype('float32')), 'label': NDArrayField(shape=(1,), dtype=np.dtype('float32')), }, num_workers=16) writer.from_indexed_dataset(LinearRegressionDataset()) else: print('FFCV file already written') ### PART 2: actual regression if not USE_FFCV: dataset = TensorDataset(ch.tensor(X), ch.tensor(Y)) train_loader = DataLoader(dataset, batch_size=2048, num_workers=8, shuffle=True) else: train_loader = Loader('/tmp/linreg_data.beton', batch_size=2048, num_workers=8, order=OrderOption.QUASI_RANDOM, os_cache=False, pipelines={ 'covariate': [NDArrayDecoder(), ToTensor(), ToDevice(ch.device('cuda:0'))], 'label': [NDArrayDecoder(), ToTensor(), Squeeze(), ToDevice(ch.device('cuda:0'))] }) # Calculate data mean and variance for normalization def calculate_stats(loader, N): mean, stdev = 0., 0. for x_batch, _ in tqdm(loader): mean += x_batch.sum(0) / N stdev += x_batch.pow(2).sum(0) / N return mean, ch.sqrt(stdev - mean.pow(2)) mean, stdev = calculate_stats(train_loader, N) mean, stdev = mean.cuda(), stdev.cuda() w_est, b_est = ch.zeros(D).cuda(), ch.zeros(1).cuda() # Initial guess for W num_epochs = 10 # Number of full passes over the data to do lr = 5e-2 for _ in range(num_epochs): total_loss, num_examples = 0., 0. start_time = time.time() for (x_batch, y_batch) in tqdm(train_loader): if not USE_FFCV: x_batch = x_batch.cuda() y_batch = y_batch.cuda() # Normalize the data for stability x_batch = (x_batch - mean) / stdev residual = x_batch @ w_est + b_est - y_batch # Gradients w_grad = x_batch.T @ residual / x_batch.shape[0] b_grad = ch.mean(residual, dim=0) w_est = w_est - lr * w_grad b_est = b_est - lr * b_grad total_loss += residual.pow(2).sum() num_examples += x_batch.shape[0] print('Epoch time:', time.time() - start_time) print(f'Average loss: {total_loss / num_examples:.3f}')
ffcv-main
examples/docs_examples/linear_regression.py
""" Example of defining a custom (image) transform using FFCV. For tutorial, see https://docs.ffcv.io/ffcv_examples/custom_transforms.html. """ import time import numpy as np import torchvision from ffcv.fields import IntField, RGBImageField from ffcv.fields.decoders import SimpleRGBImageDecoder from ffcv.loader import Loader, OrderOption from ffcv.pipeline.compiler import Compiler from ffcv.pipeline.operation import Operation, AllocationQuery from ffcv.transforms import ToTensor from ffcv.writer import DatasetWriter from dataclasses import replace class PickACorner(Operation): def generate_code(self): parallel_range = Compiler.get_iterator() def pick_a_corner(images, dst): which_corner = np.random.rand(images.shape[0]) for i in parallel_range(images.shape[0]): if which_corner[i] == 0: dst[i] = images[i,:images.shape[1]//2, :images.shape[2]//2] else: dst[i] = images[i,-images.shape[1]//2:, -images.shape[2]//2:] return dst pick_a_corner.is_parallel = True return pick_a_corner def declare_state_and_memory(self, previous_state): h, w, c = previous_state.shape new_shape = (h // 2, w // 2, c) new_state = replace(previous_state, shape=new_shape) mem_allocation = AllocationQuery(new_shape, previous_state.dtype) return (new_state, mem_allocation) # Step 1: Create an FFCV-compatible CIFAR-10 dataset ds = torchvision.datasets.CIFAR10('/tmp', train=True, download=True) writer = DatasetWriter('/tmp/cifar.beton', { 'image': RGBImageField(), 'label': IntField() }) writer.from_indexed_dataset(ds) # Step 2: Create data loaders BATCH_SIZE = 512 # Create loaders image_pipelines = { 'with': [SimpleRGBImageDecoder(), PickACorner(), ToTensor()], 'without': [SimpleRGBImageDecoder(), ToTensor()] } for name, pipeline in image_pipelines.items(): loader = Loader(f'/tmp/cifar.beton', batch_size=BATCH_SIZE, num_workers=16, order=OrderOption.RANDOM, drop_last=True, pipelines={'image': pipeline}) # First epoch includes compilation time for ims, labs in loader: pass start_time = time.time() for _ in range(100): for ims, labs in loader: pass print(f'Method: {name} | Shape: {ims.shape} | Time per epoch: {(time.time() - start_time) / 100:.5f}s')
ffcv-main
examples/docs_examples/custom_transform.py
""" Fast training script for CIFAR-10 using FFCV. For tutorial, see https://docs.ffcv.io/ffcv_examples/cifar10.html. First, from the same directory, run: `python write_datasets.py --data.train_dataset [TRAIN_PATH] \ --data.val_dataset [VAL_PATH]` to generate the FFCV-formatted versions of CIFAR. Then, simply run this to train models with default hyperparameters: `python train_cifar.py --config-file default_config.yaml` You can override arguments as follows: `python train_cifar.py --config-file default_config.yaml \ --training.lr 0.2 --training.num_workers 4 ... [etc]` or by using a different config file. """ from argparse import ArgumentParser from typing import List import time import numpy as np from tqdm import tqdm import torch as ch from torch.cuda.amp import GradScaler, autocast from torch.nn import CrossEntropyLoss, Conv2d, BatchNorm2d from torch.optim import SGD, lr_scheduler import torchvision from fastargs import get_current_config, Param, Section from fastargs.decorators import param from fastargs.validation import And, OneOf from ffcv.fields import IntField, RGBImageField from ffcv.fields.decoders import IntDecoder, SimpleRGBImageDecoder from ffcv.loader import Loader, OrderOption from ffcv.pipeline.operation import Operation from ffcv.transforms import RandomHorizontalFlip, Cutout, \ RandomTranslate, Convert, ToDevice, ToTensor, ToTorchImage from ffcv.transforms.common import Squeeze from ffcv.writer import DatasetWriter Section('training', 'Hyperparameters').params( lr=Param(float, 'The learning rate to use', required=True), epochs=Param(int, 'Number of epochs to run for', required=True), lr_peak_epoch=Param(int, 'Peak epoch for cyclic lr', required=True), batch_size=Param(int, 'Batch size', default=512), momentum=Param(float, 'Momentum for SGD', default=0.9), weight_decay=Param(float, 'l2 weight decay', default=5e-4), label_smoothing=Param(float, 'Value of label smoothing', default=0.1), num_workers=Param(int, 'The number of workers', default=8), lr_tta=Param(bool, 'Test time augmentation by averaging with horizontally flipped version', default=True) ) Section('data', 'data related stuff').params( train_dataset=Param(str, '.dat file to use for training', required=True), val_dataset=Param(str, '.dat file to use for validation', required=True), ) @param('data.train_dataset') @param('data.val_dataset') @param('training.batch_size') @param('training.num_workers') def make_dataloaders(train_dataset=None, val_dataset=None, batch_size=None, num_workers=None): paths = { 'train': train_dataset, 'test': val_dataset } start_time = time.time() CIFAR_MEAN = [125.307, 122.961, 113.8575] CIFAR_STD = [51.5865, 50.847, 51.255] loaders = {} for name in ['train', 'test']: label_pipeline: List[Operation] = [IntDecoder(), ToTensor(), ToDevice('cuda:0'), Squeeze()] image_pipeline: List[Operation] = [SimpleRGBImageDecoder()] if name == 'train': image_pipeline.extend([ RandomHorizontalFlip(), RandomTranslate(padding=2, fill=tuple(map(int, CIFAR_MEAN))), Cutout(4, tuple(map(int, CIFAR_MEAN))), ]) image_pipeline.extend([ ToTensor(), ToDevice('cuda:0', non_blocking=True), ToTorchImage(), Convert(ch.float16), torchvision.transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) ordering = OrderOption.RANDOM if name == 'train' else OrderOption.SEQUENTIAL loaders[name] = Loader(paths[name], batch_size=batch_size, num_workers=num_workers, order=ordering, drop_last=(name == 'train'), pipelines={'image': image_pipeline, 'label': label_pipeline}) return loaders, start_time # Model (from KakaoBrain: https://github.com/wbaek/torchskeleton) class Mul(ch.nn.Module): def __init__(self, weight): super(Mul, self).__init__() self.weight = weight def forward(self, x): return x * self.weight class Flatten(ch.nn.Module): def forward(self, x): return x.view(x.size(0), -1) class Residual(ch.nn.Module): def __init__(self, module): super(Residual, self).__init__() self.module = module def forward(self, x): return x + self.module(x) def conv_bn(channels_in, channels_out, kernel_size=3, stride=1, padding=1, groups=1): return ch.nn.Sequential( ch.nn.Conv2d(channels_in, channels_out, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False), ch.nn.BatchNorm2d(channels_out), ch.nn.ReLU(inplace=True) ) def construct_model(): num_class = 10 model = ch.nn.Sequential( conv_bn(3, 64, kernel_size=3, stride=1, padding=1), conv_bn(64, 128, kernel_size=5, stride=2, padding=2), Residual(ch.nn.Sequential(conv_bn(128, 128), conv_bn(128, 128))), conv_bn(128, 256, kernel_size=3, stride=1, padding=1), ch.nn.MaxPool2d(2), Residual(ch.nn.Sequential(conv_bn(256, 256), conv_bn(256, 256))), conv_bn(256, 128, kernel_size=3, stride=1, padding=0), ch.nn.AdaptiveMaxPool2d((1, 1)), Flatten(), ch.nn.Linear(128, num_class, bias=False), Mul(0.2) ) model = model.to(memory_format=ch.channels_last).cuda() return model @param('training.lr') @param('training.epochs') @param('training.momentum') @param('training.weight_decay') @param('training.label_smoothing') @param('training.lr_peak_epoch') def train(model, loaders, lr=None, epochs=None, label_smoothing=None, momentum=None, weight_decay=None, lr_peak_epoch=None): opt = SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) iters_per_epoch = len(loaders['train']) # Cyclic LR with single triangle lr_schedule = np.interp(np.arange((epochs+1) * iters_per_epoch), [0, lr_peak_epoch * iters_per_epoch, epochs * iters_per_epoch], [0, 1, 0]) scheduler = lr_scheduler.LambdaLR(opt, lr_schedule.__getitem__) scaler = GradScaler() loss_fn = CrossEntropyLoss(label_smoothing=label_smoothing) for _ in range(epochs): for ims, labs in tqdm(loaders['train']): opt.zero_grad(set_to_none=True) with autocast(): out = model(ims) loss = loss_fn(out, labs) scaler.scale(loss).backward() scaler.step(opt) scaler.update() scheduler.step() @param('training.lr_tta') def evaluate(model, loaders, lr_tta=False): model.eval() with ch.no_grad(): for name in ['train', 'test']: total_correct, total_num = 0., 0. for ims, labs in tqdm(loaders[name]): with autocast(): out = model(ims) if lr_tta: out += model(ch.fliplr(ims)) total_correct += out.argmax(1).eq(labs).sum().cpu().item() total_num += ims.shape[0] print(f'{name} accuracy: {total_correct / total_num * 100:.1f}%') if __name__ == "__main__": config = get_current_config() parser = ArgumentParser(description='Fast CIFAR-10 training') config.augment_argparse(parser) # Also loads from args.config_path if provided config.collect_argparse_args(parser) config.validate(mode='stderr') config.summary() loaders, start_time = make_dataloaders() model = construct_model() train(model, loaders) print(f'Total time: {time.time() - start_time:.5f}') evaluate(model, loaders)
ffcv-main
examples/cifar/train_cifar.py
from argparse import ArgumentParser from typing import List import time import numpy as np from tqdm import tqdm import torch as ch import torchvision from fastargs import get_current_config from fastargs.decorators import param from fastargs import Param, Section from fastargs.validation import And, OneOf from ffcv.writer import DatasetWriter from ffcv.fields import IntField, RGBImageField Section('data', 'arguments to give the writer').params( train_dataset=Param(str, 'Where to write the new dataset', required=True), val_dataset=Param(str, 'Where to write the new dataset', required=True), ) @param('data.train_dataset') @param('data.val_dataset') def main(train_dataset, val_dataset): datasets = { 'train': torchvision.datasets.CIFAR10('/tmp', train=True, download=True), 'test': torchvision.datasets.CIFAR10('/tmp', train=False, download=True) } for (name, ds) in datasets.items(): path = train_dataset if name == 'train' else val_dataset writer = DatasetWriter(path, { 'image': RGBImageField(), 'label': IntField() }) writer.from_indexed_dataset(ds) if __name__ == "__main__": config = get_current_config() parser = ArgumentParser(description='Fast CIFAR-10 training') config.augment_argparse(parser) config.collect_argparse_args(parser) config.validate(mode='stderr') config.summary() main()
ffcv-main
examples/cifar/write_datasets.py
import random import torch import torch.linalg import numpy as np class BlackHole(object): def __setattr__(self, name, value): pass def __call__(self, *args, **kwargs): return self def __getattr__(self, name): return self def seed_all(seed): torch.backends.cudnn.deterministic = True torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def recursive_to(obj, device): if isinstance(obj, torch.Tensor): try: return obj.cuda(device=device, non_blocking=True) except RuntimeError: return obj.to(device) elif isinstance(obj, list): return [recursive_to(o, device=device) for o in obj] elif isinstance(obj, tuple): return (recursive_to(o, device=device) for o in obj) elif isinstance(obj, dict): return {k: recursive_to(v, device=device) for k, v in obj.items()} else: return obj
binding-ddg-predictor-main
utils/misc.py
import warnings import torch from Bio import BiopythonWarning from Bio.PDB import Selection from Bio.PDB.PDBParser import PDBParser from Bio.PDB.Polypeptide import three_to_one, three_to_index, is_aa NON_STANDARD_SUBSTITUTIONS = { '2AS':'ASP', '3AH':'HIS', '5HP':'GLU', 'ACL':'ARG', 'AGM':'ARG', 'AIB':'ALA', 'ALM':'ALA', 'ALO':'THR', 'ALY':'LYS', 'ARM':'ARG', 'ASA':'ASP', 'ASB':'ASP', 'ASK':'ASP', 'ASL':'ASP', 'ASQ':'ASP', 'AYA':'ALA', 'BCS':'CYS', 'BHD':'ASP', 'BMT':'THR', 'BNN':'ALA', 'BUC':'CYS', 'BUG':'LEU', 'C5C':'CYS', 'C6C':'CYS', 'CAS':'CYS', 'CCS':'CYS', 'CEA':'CYS', 'CGU':'GLU', 'CHG':'ALA', 'CLE':'LEU', 'CME':'CYS', 'CSD':'ALA', 'CSO':'CYS', 'CSP':'CYS', 'CSS':'CYS', 'CSW':'CYS', 'CSX':'CYS', 'CXM':'MET', 'CY1':'CYS', 'CY3':'CYS', 'CYG':'CYS', 'CYM':'CYS', 'CYQ':'CYS', 'DAH':'PHE', 'DAL':'ALA', 'DAR':'ARG', 'DAS':'ASP', 'DCY':'CYS', 'DGL':'GLU', 'DGN':'GLN', 'DHA':'ALA', 'DHI':'HIS', 'DIL':'ILE', 'DIV':'VAL', 'DLE':'LEU', 'DLY':'LYS', 'DNP':'ALA', 'DPN':'PHE', 'DPR':'PRO', 'DSN':'SER', 'DSP':'ASP', 'DTH':'THR', 'DTR':'TRP', 'DTY':'TYR', 'DVA':'VAL', 'EFC':'CYS', 'FLA':'ALA', 'FME':'MET', 'GGL':'GLU', 'GL3':'GLY', 'GLZ':'GLY', 'GMA':'GLU', 'GSC':'GLY', 'HAC':'ALA', 'HAR':'ARG', 'HIC':'HIS', 'HIP':'HIS', 'HMR':'ARG', 'HPQ':'PHE', 'HTR':'TRP', 'HYP':'PRO', 'IAS':'ASP', 'IIL':'ILE', 'IYR':'TYR', 'KCX':'LYS', 'LLP':'LYS', 'LLY':'LYS', 'LTR':'TRP', 'LYM':'LYS', 'LYZ':'LYS', 'MAA':'ALA', 'MEN':'ASN', 'MHS':'HIS', 'MIS':'SER', 'MLE':'LEU', 'MPQ':'GLY', 'MSA':'GLY', 'MSE':'MET', 'MVA':'VAL', 'NEM':'HIS', 'NEP':'HIS', 'NLE':'LEU', 'NLN':'LEU', 'NLP':'LEU', 'NMC':'GLY', 'OAS':'SER', 'OCS':'CYS', 'OMT':'MET', 'PAQ':'TYR', 'PCA':'GLU', 'PEC':'CYS', 'PHI':'PHE', 'PHL':'PHE', 'PR3':'CYS', 'PRR':'ALA', 'PTR':'TYR', 'PYX':'CYS', 'SAC':'SER', 'SAR':'GLY', 'SCH':'CYS', 'SCS':'CYS', 'SCY':'CYS', 'SEL':'SER', 'SEP':'SER', 'SET':'SER', 'SHC':'CYS', 'SHR':'LYS', 'SMC':'CYS', 'SOC':'CYS', 'STY':'TYR', 'SVA':'SER', 'TIH':'ALA', 'TPL':'TRP', 'TPO':'THR', 'TPQ':'ALA', 'TRG':'LYS', 'TRO':'TRP', 'TYB':'TYR', 'TYI':'TYR', 'TYQ':'TYR', 'TYS':'TYR', 'TYY':'TYR' } RESIDUE_SIDECHAIN_POSTFIXES = { 'A': ['B'], 'R': ['B', 'G', 'D', 'E', 'Z', 'H1', 'H2'], 'N': ['B', 'G', 'D1', 'D2'], 'D': ['B', 'G', 'D1', 'D2'], 'C': ['B', 'G'], 'E': ['B', 'G', 'D', 'E1', 'E2'], 'Q': ['B', 'G', 'D', 'E1', 'E2'], 'G': [], 'H': ['B', 'G', 'D1', 'D2', 'E1', 'E2'], 'I': ['B', 'G1', 'G2', 'D1'], 'L': ['B', 'G', 'D1', 'D2'], 'K': ['B', 'G', 'D', 'E', 'Z'], 'M': ['B', 'G', 'D', 'E'], 'F': ['B', 'G', 'D1', 'D2', 'E1', 'E2', 'Z'], 'P': ['B', 'G', 'D'], 'S': ['B', 'G'], 'T': ['B', 'G1', 'G2'], 'W': ['B', 'G', 'D1', 'D2', 'E1', 'E2', 'E3', 'Z2', 'Z3', 'H2'], 'Y': ['B', 'G', 'D1', 'D2', 'E1', 'E2', 'Z', 'H'], 'V': ['B', 'G1', 'G2'], } GLY_INDEX = 5 ATOM_N, ATOM_CA, ATOM_C, ATOM_O, ATOM_CB = 0, 1, 2, 3, 4 def augmented_three_to_one(three): if three in NON_STANDARD_SUBSTITUTIONS: three = NON_STANDARD_SUBSTITUTIONS[three] return three_to_one(three) def augmented_three_to_index(three): if three in NON_STANDARD_SUBSTITUTIONS: three = NON_STANDARD_SUBSTITUTIONS[three] return three_to_index(three) def augmented_is_aa(three): if three in NON_STANDARD_SUBSTITUTIONS: three = NON_STANDARD_SUBSTITUTIONS[three] return is_aa(three, standard=True) def is_hetero_residue(res): return len(res.id[0].strip()) > 0 def get_atom_name_postfix(atom): name = atom.get_name() if name in ('N', 'CA', 'C', 'O'): return name if name[-1].isnumeric(): return name[-2:] else: return name[-1:] def get_residue_pos14(res): pos14 = torch.full([14, 3], float('inf')) suffix_to_atom = {get_atom_name_postfix(a):a for a in res.get_atoms()} atom_order = ['N', 'CA', 'C', 'O'] + RESIDUE_SIDECHAIN_POSTFIXES[augmented_three_to_one(res.get_resname())] for i, atom_suffix in enumerate(atom_order): if atom_suffix not in suffix_to_atom: continue pos14[i,0], pos14[i,1], pos14[i,2] = suffix_to_atom[atom_suffix].get_coord().tolist() return pos14 def parse_pdb(path, model_id=0): warnings.simplefilter('ignore', BiopythonWarning) parser = PDBParser() structure = parser.get_structure(None, path) return parse_complex(structure, model_id) def parse_complex(structure, model_id=None): if model_id is not None: structure = structure[model_id] chains = Selection.unfold_entities(structure, 'C') aa, resseq, icode, seq = [], [], [], [] pos14, pos14_mask = [], [] chain_id, chain_seq = [], [] for i, chain in enumerate(chains): seq_this = 0 for res in chain: resname = res.get_resname() if not augmented_is_aa(resname): continue if not (res.has_id('CA') and res.has_id('C') and res.has_id('N')): continue # Chain chain_id.append(chain.get_id()) chain_seq.append(i+1) # Residue types restype = augmented_three_to_index(resname) aa.append(restype) # Atom coordinates pos14_this = get_residue_pos14(res) pos14_mask_this = pos14_this.isfinite() pos14.append(pos14_this.nan_to_num(posinf=99999)) pos14_mask.append(pos14_mask_this) # Sequential number resseq_this = int(res.get_id()[1]) icode_this = res.get_id()[2] if seq_this == 0: seq_this = 1 else: d_resseq = resseq_this - resseq[-1] if d_resseq == 0: seq_this += 1 else: seq_this += d_resseq resseq.append(resseq_this) icode.append(icode_this) seq.append(seq_this) if len(aa) == 0: return None return { 'name': structure.get_id(), # Chain 'chain_id': ''.join(chain_id), 'chain_seq': torch.LongTensor(chain_seq), # Sequence 'aa': torch.LongTensor(aa), 'resseq': torch.LongTensor(resseq), 'icode': ''.join(icode), 'seq': torch.LongTensor(seq), # Atom positions 'pos14': torch.stack(pos14), 'pos14_mask': torch.stack(pos14_mask), }
binding-ddg-predictor-main
utils/protein.py
import math import torch from torch.utils.data._utils.collate import default_collate from .protein import ATOM_CA, parse_pdb class PaddingCollate(object): def __init__(self, length_ref_key='mutation_mask', pad_values={'aa': 20, 'pos14': float('999'), 'icode': ' ', 'chain_id': '-'}, donot_pad={'foldx'}, eight=False): super().__init__() self.length_ref_key = length_ref_key self.pad_values = pad_values self.donot_pad = donot_pad self.eight = eight def _pad_last(self, x, n, value=0): if isinstance(x, torch.Tensor): assert x.size(0) <= n if x.size(0) == n: return x pad_size = [n - x.size(0)] + list(x.shape[1:]) pad = torch.full(pad_size, fill_value=value).to(x) return torch.cat([x, pad], dim=0) elif isinstance(x, list): pad = [value] * (n - len(x)) return x + pad elif isinstance(x, str): if value == 0: # Won't pad strings if not specified return x pad = value * (n - len(x)) return x + pad elif isinstance(x, dict): padded = {} for k, v in x.items(): if k in self.donot_pad: padded[k] = v else: padded[k] = self._pad_last(v, n, value=self._get_pad_value(k)) return padded else: return x @staticmethod def _get_pad_mask(l, n): return torch.cat([ torch.ones([l], dtype=torch.bool), torch.zeros([n-l], dtype=torch.bool) ], dim=0) def _get_pad_value(self, key): if key not in self.pad_values: return 0 return self.pad_values[key] def __call__(self, data_list): max_length = max([data[self.length_ref_key].size(0) for data in data_list]) if self.eight: max_length = math.ceil(max_length / 8) * 8 data_list_padded = [] for data in data_list: data_padded = { k: self._pad_last(v, max_length, value=self._get_pad_value(k)) for k, v in data.items() if k in ('wt', 'mut', 'ddG', 'mutation_mask', 'index', 'mutation') } data_padded['mask'] = self._get_pad_mask(data[self.length_ref_key].size(0), max_length) data_list_padded.append(data_padded) return default_collate(data_list_padded) def _mask_list(l, mask): return [l[i] for i in range(len(l)) if mask[i]] def _mask_string(s, mask): return ''.join([s[i] for i in range(len(s)) if mask[i]]) def _mask_dict_recursively(d, mask): out = {} for k, v in d.items(): if isinstance(v, torch.Tensor) and v.size(0) == mask.size(0): out[k] = v[mask] elif isinstance(v, list) and len(v) == mask.size(0): out[k] = _mask_list(v, mask) elif isinstance(v, str) and len(v) == mask.size(0): out[k] = _mask_string(v, mask) elif isinstance(v, dict): out[k] = _mask_dict_recursively(v, mask) else: out[k] = v return out class KnnResidue(object): def __init__(self, num_neighbors=128): super().__init__() self.num_neighbors = num_neighbors def __call__(self, data): pos_CA = data['wt']['pos14'][:, ATOM_CA] pos_CA_mut = pos_CA[data['mutation_mask']] diff = pos_CA_mut.view(1, -1, 3) - pos_CA.view(-1, 1, 3) dist = torch.linalg.norm(diff, dim=-1) try: mask = torch.zeros([dist.size(0)], dtype=torch.bool) mask[ dist.min(dim=1)[0].argsort()[:self.num_neighbors] ] = True except IndexError as e: print(data) raise e return _mask_dict_recursively(data, mask) def load_wt_mut_pdb_pair(wt_path, mut_path): data_wt = parse_pdb(wt_path) data_mut = parse_pdb(mut_path) transform = KnnResidue() collate_fn = PaddingCollate() mutation_mask = (data_wt['aa'] != data_mut['aa']) batch = collate_fn([transform({'wt': data_wt, 'mut': data_mut, 'mutation_mask': mutation_mask})]) return batch
binding-ddg-predictor-main
utils/data.py
import torch import torch.nn as nn import torch.nn.functional as F from models.residue import PerResidueEncoder from models.attention import GAEncoder from models.common import get_pos_CB, construct_3d_basis from utils.protein import ATOM_N, ATOM_CA, ATOM_C class ComplexEncoder(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.relpos_embedding = nn.Embedding(cfg.max_relpos*2+2, cfg.pair_feat_dim) self.residue_encoder = PerResidueEncoder(cfg.node_feat_dim) if cfg.geomattn is not None: self.ga_encoder = GAEncoder( node_feat_dim = cfg.node_feat_dim, pair_feat_dim = cfg.pair_feat_dim, num_layers = cfg.geomattn.num_layers, spatial_attn_mode = cfg.geomattn.spatial_attn_mode, ) else: self.out_mlp = nn.Sequential( nn.Linear(cfg.node_feat_dim, cfg.node_feat_dim), nn.ReLU(), nn.Linear(cfg.node_feat_dim, cfg.node_feat_dim), nn.ReLU(), nn.Linear(cfg.node_feat_dim, cfg.node_feat_dim), ) def forward(self, pos14, aa, seq, chain, mask_atom): """ Args: pos14: (N, L, 14, 3). aa: (N, L). seq: (N, L). chain: (N, L). mask_atom: (N, L, 14) Returns: (N, L, node_ch) """ same_chain = (chain[:, None, :] == chain[:, :, None]) # (N, L, L) relpos = (seq[:, None, :] - seq[:, :, None]).clamp(min=-self.cfg.max_relpos, max=self.cfg.max_relpos) + self.cfg.max_relpos # (N, L, L) relpos = torch.where(same_chain, relpos, torch.full_like(relpos, fill_value=self.cfg.max_relpos*2+1)) pair_feat = self.relpos_embedding(relpos) # (N, L, L, pair_ch) R = construct_3d_basis(pos14[:, :, ATOM_CA], pos14[:, :, ATOM_C], pos14[:, :, ATOM_N]) # Residue encoder res_feat = self.residue_encoder(aa, pos14, mask_atom) # Geom encoder t = pos14[:, :, ATOM_CA] mask_residue = mask_atom[:, :, ATOM_CA] res_feat = self.ga_encoder(R, t, get_pos_CB(pos14, mask_atom), res_feat, pair_feat, mask_residue) return res_feat class DDGReadout(nn.Module): def __init__(self, feat_dim): super().__init__() self.mlp = nn.Sequential( nn.Linear(feat_dim*2, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim) ) self.project = nn.Linear(feat_dim, 1, bias=False) def forward(self, node_feat_wt, node_feat_mut, mask=None): """ Args: node_feat_wt: (N, L, F). node_feat_mut: (N, L, F). mask: (N, L). """ feat_wm = torch.cat([node_feat_wt, node_feat_mut], dim=-1) feat_mw = torch.cat([node_feat_mut, node_feat_wt], dim=-1) feat_diff = self.mlp(feat_wm) - self.mlp(feat_mw) # (N, L, F) # feat_diff = self.mlp(node_feat_wt) - self.mlp(node_feat_mut) per_residue_ddg = self.project(feat_diff).squeeze(-1) # (N, L) if mask is not None: per_residue_ddg = per_residue_ddg * mask ddg = per_residue_ddg.sum(dim=1) # (N,) return ddg class DDGPredictor(nn.Module): def __init__(self, cfg): super().__init__() self.encoder = ComplexEncoder(cfg) self.ddG_readout = DDGReadout(cfg.node_feat_dim) def forward(self, complex_wt, complex_mut, ddG_true=None): mask_atom_wt = complex_wt['pos14_mask'].all(dim=-1) # (N, L, 14) mask_atom_mut = complex_mut['pos14_mask'].all(dim=-1) feat_wt = self.encoder(complex_wt['pos14'], complex_wt['aa'], complex_wt['seq'], complex_wt['chain_seq'], mask_atom_wt) feat_mut = self.encoder(complex_mut['pos14'], complex_mut['aa'], complex_mut['seq'], complex_mut['chain_seq'], mask_atom_mut) mask_res = mask_atom_wt[:, :, ATOM_CA] ddG_pred = self.ddG_readout(feat_wt, feat_mut, mask_res) # One mask is enough if ddG_true is None: return ddG_pred else: losses = { 'ddG': F.mse_loss(ddG_pred, ddG_true), } return losses, ddG_pred
binding-ddg-predictor-main
models/predictor.py
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from .common import mask_zero, global_to_local, local_to_global, normalize_vector def _alpha_from_logits(logits, mask, inf=1e5): """ Args: logits: Logit matrices, (N, L_i, L_j, num_heads). mask: Masks, (N, L). Returns: alpha: Attention weights. """ N, L, _, _ = logits.size() mask_row = mask.view(N, L, 1, 1).expand_as(logits) # (N, L, *, *) mask_pair = mask_row * mask_row.permute(0, 2, 1, 3) # (N, L, L, *) logits = torch.where(mask_pair, logits, logits-inf) alpha = torch.softmax(logits, dim=2) # (N, L, L, num_heads) alpha = torch.where(mask_row, alpha, torch.zeros_like(alpha)) return alpha def _heads(x, n_heads, n_ch): """ Args: x: (..., num_heads * num_channels) Returns: (..., num_heads, num_channels) """ s = list(x.size())[:-1] + [n_heads, n_ch] return x.view(*s) class GeometricAttention(nn.Module): def __init__(self, node_feat_dim, pair_feat_dim, spatial_attn_mode='CB', value_dim=16, query_key_dim=16, num_query_points=8, num_value_points=8, num_heads=12): super().__init__() self.node_feat_dim = node_feat_dim self.pair_feat_dim = pair_feat_dim self.value_dim = value_dim self.query_key_dim = query_key_dim self.num_query_points = num_query_points self.num_value_points = num_value_points self.num_heads = num_heads assert spatial_attn_mode in ('CB', 'vpoint') self.spatial_attn_mode = spatial_attn_mode # Node self.proj_query = nn.Linear(node_feat_dim, query_key_dim*num_heads, bias=False) self.proj_key = nn.Linear(node_feat_dim, query_key_dim*num_heads, bias=False) self.proj_value = nn.Linear(node_feat_dim, value_dim*num_heads, bias=False) # Pair self.proj_pair_bias = nn.Linear(pair_feat_dim, num_heads, bias=False) # Spatial self.spatial_coef = nn.Parameter(torch.full([1, 1, 1, self.num_heads], fill_value=np.log(np.exp(1.) - 1.)), requires_grad=True) if spatial_attn_mode == 'vpoint': self.proj_query_point = nn.Linear(node_feat_dim, num_query_points*num_heads*3, bias=False) self.proj_key_point = nn.Linear(node_feat_dim, num_query_points*num_heads*3, bias=False) self.proj_value_point = nn.Linear(node_feat_dim, num_value_points*num_heads*3, bias=False) # Output if spatial_attn_mode == 'CB': self.out_transform = nn.Linear( in_features = (num_heads*pair_feat_dim) + (num_heads*value_dim) + (num_heads*(3+3+1)), out_features = node_feat_dim, ) elif spatial_attn_mode == 'vpoint': self.out_transform = nn.Linear( in_features = (num_heads*pair_feat_dim) + (num_heads*value_dim) + (num_heads*num_value_points*(3+3+1)), out_features = node_feat_dim, ) self.layer_norm = nn.LayerNorm(node_feat_dim) def _node_logits(self, x): query_l = _heads(self.proj_query(x), self.num_heads, self.query_key_dim) # (N, L, n_heads, qk_ch) key_l = _heads(self.proj_key(x), self.num_heads, self.query_key_dim) # (N, L, n_heads, qk_ch) query_l = query_l.permute(0, 2, 1, 3) # (N,L1,H,C) -> (N,H,L1,C) key_l = key_l.permute(0, 2, 3, 1) # (N,L2,H,C) -> (N,H,C,L2) logits = torch.matmul(query_l, key_l) # (N,H,L1,L2) logits = logits.permute(0, 2, 3, 1) # (N,L1,L2,H) # logits = (query_l.unsqueeze(2) * key_l.unsqueeze(1) * (1 / np.sqrt(self.query_key_dim))).sum(-1) # (N, L, L, num_heads) return logits def _pair_logits(self, z): logits_pair = self.proj_pair_bias(z) return logits_pair def _beta_logits(self, R, t, p_CB): N, L, _ = t.size() qk = p_CB[:, :, None, :].expand(N, L, self.num_heads, 3) sum_sq_dist = ((qk.unsqueeze(2) - qk.unsqueeze(1)) ** 2).sum(-1) # (N, L, L, n_heads) gamma = F.softplus(self.spatial_coef) logtis_beta = sum_sq_dist * ((-1 * gamma * np.sqrt(2 / 9)) / 2) return logtis_beta def _spatial_logits(self, R, t, x): N, L, _ = t.size() # Query query_points = _heads(self.proj_query_point(x), self.num_heads*self.num_query_points, 3) # (N, L, n_heads * n_pnts, 3) query_points = local_to_global(R, t, query_points) # Global query coordinates, (N, L, n_heads * n_pnts, 3) query_s = query_points.reshape(N, L, self.num_heads, -1) # (N, L, n_heads, n_pnts*3) # Key key_points = _heads(self.proj_key_point(x), self.num_heads*self.num_query_points, 3) # (N, L, 3, n_heads * n_pnts) key_points = local_to_global(R, t, key_points) # Global key coordinates, (N, L, n_heads * n_pnts, 3) key_s = key_points.reshape(N, L, self.num_heads, -1) # (N, L, n_heads, n_pnts*3) # Q-K Product sum_sq_dist = ((query_s.unsqueeze(2) - key_s.unsqueeze(1)) ** 2).sum(-1) # (N, L, L, n_heads) gamma = F.softplus(self.spatial_coef) logits_spatial = sum_sq_dist * ((-1 * gamma * np.sqrt(2 / (9 * self.num_query_points))) / 2) # (N, L, L, n_heads) return logits_spatial def _pair_aggregation(self, alpha, z): N, L = z.shape[:2] feat_p2n = alpha.unsqueeze(-1) * z.unsqueeze(-2) # (N, L, L, n_heads, C) feat_p2n = feat_p2n.sum(dim=2) # (N, L, n_heads, C) return feat_p2n.reshape(N, L, -1) def _node_aggregation(self, alpha, x): N, L = x.shape[:2] value_l = _heads(self.proj_value(x), self.num_heads, self.query_key_dim) # (N, L, n_heads, v_ch) feat_node = alpha.unsqueeze(-1) * value_l.unsqueeze(1) # (N, L, L, n_heads, *) @ (N, *, L, n_heads, v_ch) feat_node = feat_node.sum(dim=2) # (N, L, n_heads, v_ch) return feat_node.reshape(N, L, -1) def _beta_aggregation(self, alpha, R, t, p_CB, x): N, L, _ = t.size() v = p_CB[:, :, None, :].expand(N, L, self.num_heads, 3) # (N, L, n_heads, 3) aggr = alpha.reshape(N, L, L, self.num_heads, 1) * v.unsqueeze(1) # (N, *, L, n_heads, 3) aggr = aggr.sum(dim=2) feat_points = global_to_local(R, t, aggr) # (N, L, n_heads, 3) feat_distance = feat_points.norm(dim=-1) feat_direction = normalize_vector(feat_points, dim=-1, eps=1e-4) feat_spatial = torch.cat([ feat_points.reshape(N, L, -1), feat_distance.reshape(N, L, -1), feat_direction.reshape(N, L, -1), ], dim=-1) return feat_spatial def _spatial_aggregation(self, alpha, R, t, x): N, L, _ = t.size() value_points = _heads(self.proj_value_point(x), self.num_heads*self.num_value_points, 3) # (N, L, n_heads * n_v_pnts, 3) value_points = local_to_global(R, t, value_points.reshape(N, L, self.num_heads, self.num_value_points, 3)) # (N, L, n_heads, n_v_pnts, 3) aggr_points = alpha.reshape(N, L, L, self.num_heads, 1, 1) * value_points.unsqueeze(1) # (N, *, L, n_heads, n_pnts, 3) aggr_points = aggr_points.sum(dim=2) # (N, L, n_heads, n_pnts, 3) feat_points = global_to_local(R, t, aggr_points) # (N, L, n_heads, n_pnts, 3) feat_distance = feat_points.norm(dim=-1) # (N, L, n_heads, n_pnts) feat_direction = normalize_vector(feat_points, dim=-1, eps=1e-4) # (N, L, n_heads, n_pnts, 3) feat_spatial = torch.cat([ feat_points.reshape(N, L, -1), feat_distance.reshape(N, L, -1), feat_direction.reshape(N, L, -1), ], dim=-1) return feat_spatial def forward_beta(self, R, t, p_CB, x, z, mask): """ Args: R: Frame basis matrices, (N, L, 3, 3_index). t: Frame external (absolute) coordinates, (N, L, 3). x: Node-wise features, (N, L, F). z: Pair-wise features, (N, L, L, C). mask: Masks, (N, L). Returns: x': Updated node-wise features, (N, L, F). """ # Attention logits logits_node = self._node_logits(x) logits_pair = self._pair_logits(z) logits_spatial = self._beta_logits(R, t, p_CB) # Summing logits up and apply `softmax`. logits_sum = logits_node + logits_pair + logits_spatial alpha = _alpha_from_logits(logits_sum * np.sqrt(1 / 3), mask) # (N, L, L, n_heads) # Aggregate features feat_p2n = self._pair_aggregation(alpha, z) feat_node = self._node_aggregation(alpha, x) feat_spatial = self._beta_aggregation(alpha, R, t, p_CB, x) # Finally feat_all = self.out_transform(torch.cat([feat_p2n, feat_node, feat_spatial], dim=-1)) # (N, L, F) feat_all = mask_zero(mask.unsqueeze(-1), feat_all) x_updated = self.layer_norm(x + feat_all) return x_updated def forward_vpoint(self, R, t, p_CB, x, z, mask): """ Args: R: Frame basis matrices, (N, L, 3, 3_index). t: Frame external (absolute) coordinates, (N, L, 3). x: Node-wise features, (N, L, F). z: Pair-wise features, (N, L, L, C). mask: Masks, (N, L). Returns: x': Updated node-wise features, (N, L, F). """ # Attention logits logits_node = self._node_logits(x) logits_pair = self._pair_logits(z) logits_spatial = self._spatial_logits(R, t, x) # Summing logits up and apply `softmax`. logits_sum = logits_node + logits_pair + logits_spatial alpha = _alpha_from_logits(logits_sum * np.sqrt(1 / 3), mask) # (N, L, L, n_heads) # Aggregate features feat_p2n = self._pair_aggregation(alpha, z) feat_node = self._node_aggregation(alpha, x) feat_spatial = self._spatial_aggregation(alpha, R, t, x) # Finally feat_all = self.out_transform(torch.cat([feat_p2n, feat_node, feat_spatial], dim=-1)) # (N, L, F) feat_all = mask_zero(mask.unsqueeze(-1), feat_all) x_updated = self.layer_norm(x + feat_all) return x_updated def forward(self, R, t, p_CB, x, z, mask): if self.spatial_attn_mode == 'CB': return self.forward_beta(R, t, p_CB, x, z, mask) else: return self.forward_vpoint(R, t, p_CB, x, z, mask) class GAEncoder(nn.Module): def __init__(self, node_feat_dim, pair_feat_dim, num_layers, spatial_attn_mode='CB'): super().__init__() self.blocks = nn.ModuleList([ GeometricAttention(node_feat_dim, pair_feat_dim, spatial_attn_mode=spatial_attn_mode) for _ in range(num_layers) ]) def forward(self, R, t, p_CB, x, z, mask): for block in self.blocks: x = block(R, t, p_CB, x, z, mask) # Residual connection within the block return x
binding-ddg-predictor-main
models/attention.py
import torch import torch.nn as nn from models.common import PositionalEncoding, construct_3d_basis, global_to_local class PerResidueEncoder(nn.Module): def __init__(self, feat_dim): super().__init__() self.aatype_embed = nn.Embedding(21, feat_dim) self.torsion_embed = PositionalEncoding() self.mlp = nn.Sequential( nn.Linear(21*14*3 + feat_dim, feat_dim * 2), nn.ReLU(), nn.Linear(feat_dim * 2, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim), nn.ReLU(), nn.Linear(feat_dim, feat_dim) ) def forward(self, aa, pos14, atom_mask): """ Args: aa: (N, L). pos14: (N, L, 14, 3). atom_mask: (N, L, 14). """ N, L = aa.size() R = construct_3d_basis(pos14[:, :, 1], pos14[:, :, 2], pos14[:, :, 0]) # (N, L, 3, 3) t = pos14[:, :, 1] # (N, L, 3) crd14 = global_to_local(R, t, pos14) # (N, L, 14, 3) crd14_mask = atom_mask[:, :, :, None].expand_as(crd14) crd14 = torch.where(crd14_mask, crd14, torch.zeros_like(crd14)) aa_expand = aa[:, :, None, None, None].expand(N, L, 21, 14, 3) rng_expand = torch.arange(0, 21)[None, None, :, None, None].expand(N, L, 21, 14, 3).to(aa_expand) place_mask = (aa_expand == rng_expand) crd_expand = crd14[:, :, None, :, :].expand(N, L, 21, 14, 3) crd_expand = torch.where(place_mask, crd_expand, torch.zeros_like(crd_expand)) crd_feat = crd_expand.reshape(N, L, 21 * 14 * 3) aa_feat = self.aatype_embed(aa) # (N, L, feat) out_feat = self.mlp(torch.cat([crd_feat, aa_feat], dim=-1)) return out_feat
binding-ddg-predictor-main
models/residue.py
import torch import torch.nn as nn from utils.protein import ATOM_CA, ATOM_CB def get_pos_CB(pos14, atom_mask): """ Args: pos14: (N, L, 14, 3) atom_mask: (N, L, 14) """ N, L = pos14.shape[:2] mask_CB = atom_mask[:, :, ATOM_CB] # (N, L) mask_CB = mask_CB[:, :, None].expand(N, L, 3) pos_CA = pos14[:, :, ATOM_CA] # (N, L, 3) pos_CB = pos14[:, :, ATOM_CB] return torch.where(mask_CB, pos_CB, pos_CA) def mask_zero(mask, value): return torch.where(mask, value, torch.zeros_like(value)) class PositionalEncoding(nn.Module): def __init__(self, num_funcs=6): super().__init__() self.num_funcs = num_funcs self.register_buffer('freq_bands', 2.0 ** torch.linspace(0.0, num_funcs-1, num_funcs)) def get_out_dim(self, in_dim): return in_dim * (2 * self.num_funcs + 1) def forward(self, x): """ Args: x: (..., d). """ shape = list(x.shape[:-1]) + [-1] x = x.unsqueeze(-1) # (..., d, 1) code = torch.cat([x, torch.sin(x * self.freq_bands), torch.cos(x * self.freq_bands)], dim=-1) # (..., d, 2f+1) code = code.reshape(shape) return code def safe_norm(x, dim=-1, keepdim=False, eps=1e-8, sqrt=True): out = torch.clamp(torch.sum(torch.square(x), dim=dim, keepdim=keepdim), min=eps) return torch.sqrt(out) if sqrt else out def normalize_vector(v, dim, eps=1e-6): return v / (torch.linalg.norm(v, ord=2, dim=dim, keepdim=True) + eps) def project_v2v(v, e, dim): """ Description: Project vector `v` onto vector `e`. Args: v: (N, L, 3). e: (N, L, 3). """ return (e * v).sum(dim=dim, keepdim=True) * e def construct_3d_basis(center, p1, p2): """ Args: center: (N, L, 3), usually the position of C_alpha. p1: (N, L, 3), usually the position of C. p2: (N, L, 3), usually the position of N. Returns A batch of orthogonal basis matrix, (N, L, 3, 3cols_index). The matrix is composed of 3 column vectors: [e1, e2, e3]. """ v1 = p1 - center # (N, L, 3) e1 = normalize_vector(v1, dim=-1) v2 = p2 - center # (N, L, 3) u2 = v2 - project_v2v(v2, e1, dim=-1) e2 = normalize_vector(u2, dim=-1) e3 = torch.cross(e1, e2, dim=-1) # (N, L, 3) mat = torch.cat([ e1.unsqueeze(-1), e2.unsqueeze(-1), e3.unsqueeze(-1) ], dim=-1) # (N, L, 3, 3_index) return mat def local_to_global(R, t, p): """ Description: Convert local (internal) coordinates to global (external) coordinates q. q <- Rp + t Args: R: (N, L, 3, 3). t: (N, L, 3). p: Local coordinates, (N, L, ..., 3). Returns: q: Global coordinates, (N, L, ..., 3). """ assert p.size(-1) == 3 p_size = p.size() N, L = p_size[0], p_size[1] p = p.view(N, L, -1, 3).transpose(-1, -2) # (N, L, *, 3) -> (N, L, 3, *) q = torch.matmul(R, p) + t.unsqueeze(-1) # (N, L, 3, *) q = q.transpose(-1, -2).reshape(p_size) # (N, L, 3, *) -> (N, L, *, 3) -> (N, L, ..., 3) return q def global_to_local(R, t, q): """ Description: Convert global (external) coordinates q to local (internal) coordinates p. p <- R^{T}(q - t) Args: R: (N, L, 3, 3). t: (N, L, 3). q: Global coordinates, (N, L, ..., 3). Returns: p: Local coordinates, (N, L, ..., 3). """ assert q.size(-1) == 3 q_size = q.size() N, L = q_size[0], q_size[1] q = q.reshape(N, L, -1, 3).transpose(-1, -2) # (N, L, *, 3) -> (N, L, 3, *) if t is None: p = torch.matmul(R.transpose(-1, -2), q) # (N, L, 3, *) else: p = torch.matmul(R.transpose(-1, -2), (q - t.unsqueeze(-1))) # (N, L, 3, *) p = p.transpose(-1, -2).reshape(q_size) # (N, L, 3, *) -> (N, L, *, 3) -> (N, L, ..., 3) return p
binding-ddg-predictor-main
models/common.py
import os import sys sys.path.append(os.path.dirname(os.path.dirname(__file__))) import argparse import torch from models.predictor import DDGPredictor from utils.misc import * from utils.data import * from utils.protein import * if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('wt_pdb', type=str) parser.add_argument('mut_pdb', type=str) parser.add_argument('--model', type=str, default='./data/model.pt') parser.add_argument('--device', type=str, default='cuda') args = parser.parse_args() batch = load_wt_mut_pdb_pair(args.wt_pdb, args.mut_pdb) batch = recursive_to(batch, args.device) ckpt = torch.load(args.model) config = ckpt['config'] weight = ckpt['model'] model = DDGPredictor(config.model).to(args.device) model.load_state_dict(weight) with torch.no_grad(): model.eval() pred = model(batch['wt'], batch['mut']) print('Predicted ddG: %.2f' % pred.item())
binding-ddg-predictor-main
scripts/predict.py
from setuptools import setup, find_packages setup( name = 'vit-pytorch', packages = find_packages(exclude=['examples']), version = '1.4.5 ', license='MIT', description = 'Vision Transformer (ViT) - Pytorch', long_description_content_type = 'text/markdown', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/vit-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'image recognition' ], install_requires=[ 'einops>=0.6.1', 'torch>=1.10', 'torchvision' ], setup_requires=[ 'pytest-runner', ], tests_require=[ 'pytest', 'torch==1.12.1', 'torchvision==0.13.1' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
vit-pytorch-main
setup.py
import torch from vit_pytorch import ViT def test(): v = ViT( image_size = 256, patch_size = 32, num_classes = 1000, dim = 1024, depth = 6, heads = 16, mlp_dim = 2048, dropout = 0.1, emb_dropout = 0.1 ) img = torch.randn(1, 3, 256, 256) preds = v(img) assert preds.shape == (1, 1000), 'correct logits outputted'
vit-pytorch-main
tests/test.py
from functools import partial import torch from torch import nn, einsum from einops import rearrange, repeat from einops.layers.torch import Rearrange, Reduce # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def cast_tuple(val, length = 1): return val if isinstance(val, tuple) else ((val,) * length) # helper classes class Residual(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn def forward(self, x): return self.fn(x) + x class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() inner_dim = int(dim * mult) self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, inner_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) # MBConv class SqueezeExcitation(nn.Module): def __init__(self, dim, shrinkage_rate = 0.25): super().__init__() hidden_dim = int(dim * shrinkage_rate) self.gate = nn.Sequential( Reduce('b c h w -> b c', 'mean'), nn.Linear(dim, hidden_dim, bias = False), nn.SiLU(), nn.Linear(hidden_dim, dim, bias = False), nn.Sigmoid(), Rearrange('b c -> b c 1 1') ) def forward(self, x): return x * self.gate(x) class MBConvResidual(nn.Module): def __init__(self, fn, dropout = 0.): super().__init__() self.fn = fn self.dropsample = Dropsample(dropout) def forward(self, x): out = self.fn(x) out = self.dropsample(out) return out + x class Dropsample(nn.Module): def __init__(self, prob = 0): super().__init__() self.prob = prob def forward(self, x): device = x.device if self.prob == 0. or (not self.training): return x keep_mask = torch.FloatTensor((x.shape[0], 1, 1, 1), device = device).uniform_() > self.prob return x * keep_mask / (1 - self.prob) def MBConv( dim_in, dim_out, *, downsample, expansion_rate = 4, shrinkage_rate = 0.25, dropout = 0. ): hidden_dim = int(expansion_rate * dim_out) stride = 2 if downsample else 1 net = nn.Sequential( nn.Conv2d(dim_in, hidden_dim, 1), nn.BatchNorm2d(hidden_dim), nn.GELU(), nn.Conv2d(hidden_dim, hidden_dim, 3, stride = stride, padding = 1, groups = hidden_dim), nn.BatchNorm2d(hidden_dim), nn.GELU(), SqueezeExcitation(hidden_dim, shrinkage_rate = shrinkage_rate), nn.Conv2d(hidden_dim, dim_out, 1), nn.BatchNorm2d(dim_out) ) if dim_in == dim_out and not downsample: net = MBConvResidual(net, dropout = dropout) return net # attention related classes class Attention(nn.Module): def __init__( self, dim, dim_head = 32, dropout = 0., window_size = 7 ): super().__init__() assert (dim % dim_head) == 0, 'dimension should be divisible by dimension per head' self.heads = dim // dim_head self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.to_qkv = nn.Linear(dim, dim * 3, bias = False) self.attend = nn.Sequential( nn.Softmax(dim = -1), nn.Dropout(dropout) ) self.to_out = nn.Sequential( nn.Linear(dim, dim, bias = False), nn.Dropout(dropout) ) # relative positional bias self.rel_pos_bias = nn.Embedding((2 * window_size - 1) ** 2, self.heads) pos = torch.arange(window_size) grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij')) grid = rearrange(grid, 'c i j -> (i j) c') rel_pos = rearrange(grid, 'i ... -> i 1 ...') - rearrange(grid, 'j ... -> 1 j ...') rel_pos += window_size - 1 rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(dim = -1) self.register_buffer('rel_pos_indices', rel_pos_indices, persistent = False) def forward(self, x): batch, height, width, window_height, window_width, _, device, h = *x.shape, x.device, self.heads x = self.norm(x) # flatten x = rearrange(x, 'b x y w1 w2 d -> (b x y) (w1 w2) d') # project for queries, keys, values q, k, v = self.to_qkv(x).chunk(3, dim = -1) # split heads q, k, v = map(lambda t: rearrange(t, 'b n (h d ) -> b h n d', h = h), (q, k, v)) # scale q = q * self.scale # sim sim = einsum('b h i d, b h j d -> b h i j', q, k) # add positional bias bias = self.rel_pos_bias(self.rel_pos_indices) sim = sim + rearrange(bias, 'i j h -> h i j') # attention attn = self.attend(sim) # aggregate out = einsum('b h i j, b h j d -> b h i d', attn, v) # merge heads out = rearrange(out, 'b h (w1 w2) d -> b w1 w2 (h d)', w1 = window_height, w2 = window_width) # combine heads out out = self.to_out(out) return rearrange(out, '(b x y) ... -> b x y ...', x = height, y = width) class MaxViT(nn.Module): def __init__( self, *, num_classes, dim, depth, dim_head = 32, dim_conv_stem = None, window_size = 7, mbconv_expansion_rate = 4, mbconv_shrinkage_rate = 0.25, dropout = 0.1, channels = 3 ): super().__init__() assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage' # convolutional stem dim_conv_stem = default(dim_conv_stem, dim) self.conv_stem = nn.Sequential( nn.Conv2d(channels, dim_conv_stem, 3, stride = 2, padding = 1), nn.Conv2d(dim_conv_stem, dim_conv_stem, 3, padding = 1) ) # variables num_stages = len(depth) dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages))) dims = (dim_conv_stem, *dims) dim_pairs = tuple(zip(dims[:-1], dims[1:])) self.layers = nn.ModuleList([]) # shorthand for window size for efficient block - grid like attention w = window_size # iterate through stages for ind, ((layer_dim_in, layer_dim), layer_depth) in enumerate(zip(dim_pairs, depth)): for stage_ind in range(layer_depth): is_first = stage_ind == 0 stage_dim_in = layer_dim_in if is_first else layer_dim block = nn.Sequential( MBConv( stage_dim_in, layer_dim, downsample = is_first, expansion_rate = mbconv_expansion_rate, shrinkage_rate = mbconv_shrinkage_rate ), Rearrange('b d (x w1) (y w2) -> b x y w1 w2 d', w1 = w, w2 = w), # block-like attention Residual(layer_dim, Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = w)), Residual(layer_dim, FeedForward(dim = layer_dim, dropout = dropout)), Rearrange('b x y w1 w2 d -> b d (x w1) (y w2)'), Rearrange('b d (w1 x) (w2 y) -> b x y w1 w2 d', w1 = w, w2 = w), # grid-like attention Residual(layer_dim, Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = w)), Residual(layer_dim, FeedForward(dim = layer_dim, dropout = dropout)), Rearrange('b x y w1 w2 d -> b d (w1 x) (w2 y)'), ) self.layers.append(block) # mlp head out self.mlp_head = nn.Sequential( Reduce('b d h w -> b d', 'mean'), nn.LayerNorm(dims[-1]), nn.Linear(dims[-1], num_classes) ) def forward(self, x): x = self.conv_stem(x) for stage in self.layers: x = stage(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/max_vit.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d # feedforward class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) # attention class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, context = None, kv_include_self = False): b, n, _, h = *x.shape, self.heads x = self.norm(x) context = default(context, x) if kv_include_self: context = torch.cat((x, context), dim = 1) # cross attention requires CLS token includes itself as key / value qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # transformer encoder, for small and large patches class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) self.norm = nn.LayerNorm(dim) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) # projecting CLS tokens, in the case that small and large patch tokens have different dimensions class ProjectInOut(nn.Module): def __init__(self, dim_in, dim_out, fn): super().__init__() self.fn = fn need_projection = dim_in != dim_out self.project_in = nn.Linear(dim_in, dim_out) if need_projection else nn.Identity() self.project_out = nn.Linear(dim_out, dim_in) if need_projection else nn.Identity() def forward(self, x, *args, **kwargs): x = self.project_in(x) x = self.fn(x, *args, **kwargs) x = self.project_out(x) return x # cross attention transformer class CrossTransformer(nn.Module): def __init__(self, sm_dim, lg_dim, depth, heads, dim_head, dropout): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ ProjectInOut(sm_dim, lg_dim, Attention(lg_dim, heads = heads, dim_head = dim_head, dropout = dropout)), ProjectInOut(lg_dim, sm_dim, Attention(sm_dim, heads = heads, dim_head = dim_head, dropout = dropout)) ])) def forward(self, sm_tokens, lg_tokens): (sm_cls, sm_patch_tokens), (lg_cls, lg_patch_tokens) = map(lambda t: (t[:, :1], t[:, 1:]), (sm_tokens, lg_tokens)) for sm_attend_lg, lg_attend_sm in self.layers: sm_cls = sm_attend_lg(sm_cls, context = lg_patch_tokens, kv_include_self = True) + sm_cls lg_cls = lg_attend_sm(lg_cls, context = sm_patch_tokens, kv_include_self = True) + lg_cls sm_tokens = torch.cat((sm_cls, sm_patch_tokens), dim = 1) lg_tokens = torch.cat((lg_cls, lg_patch_tokens), dim = 1) return sm_tokens, lg_tokens # multi-scale encoder class MultiScaleEncoder(nn.Module): def __init__( self, *, depth, sm_dim, lg_dim, sm_enc_params, lg_enc_params, cross_attn_heads, cross_attn_depth, cross_attn_dim_head = 64, dropout = 0. ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Transformer(dim = sm_dim, dropout = dropout, **sm_enc_params), Transformer(dim = lg_dim, dropout = dropout, **lg_enc_params), CrossTransformer(sm_dim = sm_dim, lg_dim = lg_dim, depth = cross_attn_depth, heads = cross_attn_heads, dim_head = cross_attn_dim_head, dropout = dropout) ])) def forward(self, sm_tokens, lg_tokens): for sm_enc, lg_enc, cross_attend in self.layers: sm_tokens, lg_tokens = sm_enc(sm_tokens), lg_enc(lg_tokens) sm_tokens, lg_tokens = cross_attend(sm_tokens, lg_tokens) return sm_tokens, lg_tokens # patch-based image to token embedder class ImageEmbedder(nn.Module): def __init__( self, *, dim, image_size, patch_size, dropout = 0. ): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_size // patch_size) ** 2 patch_dim = 3 * patch_size ** 2 self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(dropout) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] return self.dropout(x) # cross ViT class class CrossViT(nn.Module): def __init__( self, *, image_size, num_classes, sm_dim, lg_dim, sm_patch_size = 12, sm_enc_depth = 1, sm_enc_heads = 8, sm_enc_mlp_dim = 2048, sm_enc_dim_head = 64, lg_patch_size = 16, lg_enc_depth = 4, lg_enc_heads = 8, lg_enc_mlp_dim = 2048, lg_enc_dim_head = 64, cross_attn_depth = 2, cross_attn_heads = 8, cross_attn_dim_head = 64, depth = 3, dropout = 0.1, emb_dropout = 0.1 ): super().__init__() self.sm_image_embedder = ImageEmbedder(dim = sm_dim, image_size = image_size, patch_size = sm_patch_size, dropout = emb_dropout) self.lg_image_embedder = ImageEmbedder(dim = lg_dim, image_size = image_size, patch_size = lg_patch_size, dropout = emb_dropout) self.multi_scale_encoder = MultiScaleEncoder( depth = depth, sm_dim = sm_dim, lg_dim = lg_dim, cross_attn_heads = cross_attn_heads, cross_attn_dim_head = cross_attn_dim_head, cross_attn_depth = cross_attn_depth, sm_enc_params = dict( depth = sm_enc_depth, heads = sm_enc_heads, mlp_dim = sm_enc_mlp_dim, dim_head = sm_enc_dim_head ), lg_enc_params = dict( depth = lg_enc_depth, heads = lg_enc_heads, mlp_dim = lg_enc_mlp_dim, dim_head = lg_enc_dim_head ), dropout = dropout ) self.sm_mlp_head = nn.Sequential(nn.LayerNorm(sm_dim), nn.Linear(sm_dim, num_classes)) self.lg_mlp_head = nn.Sequential(nn.LayerNorm(lg_dim), nn.Linear(lg_dim, num_classes)) def forward(self, img): sm_tokens = self.sm_image_embedder(img) lg_tokens = self.lg_image_embedder(img) sm_tokens, lg_tokens = self.multi_scale_encoder(sm_tokens, lg_tokens) sm_cls, lg_cls = map(lambda t: t[:, 0], (sm_tokens, lg_tokens)) sm_logits = self.sm_mlp_head(sm_cls) lg_logits = self.lg_mlp_head(lg_cls) return sm_logits + lg_logits
vit-pytorch-main
vit_pytorch/cross_vit.py
from functools import partial import torch from torch import nn, einsum from einops import rearrange from einops.layers.torch import Rearrange, Reduce # helpers def cast_tuple(val, depth): return val if isinstance(val, tuple) else ((val,) * depth) # classes class LayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) def forward(self, x): var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) / (var + self.eps).sqrt() * self.g + self.b class FeedForward(nn.Module): def __init__(self, dim, mlp_mult = 4, dropout = 0.): super().__init__() self.net = nn.Sequential( LayerNorm(dim), nn.Conv2d(dim, dim * mlp_mult, 1), nn.GELU(), nn.Dropout(dropout), nn.Conv2d(dim * mlp_mult, dim, 1), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dropout = 0.): super().__init__() dim_head = dim // heads inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False) self.to_out = nn.Sequential( nn.Conv2d(inner_dim, dim, 1), nn.Dropout(dropout) ) def forward(self, x): b, c, h, w, heads = *x.shape, self.heads x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> b h (x y) d', h = heads), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w) return self.to_out(out) def Aggregate(dim, dim_out): return nn.Sequential( nn.Conv2d(dim, dim_out, 3, padding = 1), LayerNorm(dim_out), nn.MaxPool2d(3, stride = 2, padding = 1) ) class Transformer(nn.Module): def __init__(self, dim, seq_len, depth, heads, mlp_mult, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) self.pos_emb = nn.Parameter(torch.randn(seq_len)) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dropout = dropout), FeedForward(dim, mlp_mult, dropout = dropout) ])) def forward(self, x): *_, h, w = x.shape pos_emb = self.pos_emb[:(h * w)] pos_emb = rearrange(pos_emb, '(h w) -> () () h w', h = h, w = w) x = x + pos_emb for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class NesT(nn.Module): def __init__( self, *, image_size, patch_size, num_classes, dim, heads, num_hierarchies, block_repeats, mlp_mult = 4, channels = 3, dim_head = 64, dropout = 0. ): super().__init__() assert (image_size % patch_size) == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 fmap_size = image_size // patch_size blocks = 2 ** (num_hierarchies - 1) seq_len = (fmap_size // blocks) ** 2 # sequence length is held constant across hierarchy hierarchies = list(reversed(range(num_hierarchies))) mults = [2 ** i for i in reversed(hierarchies)] layer_heads = list(map(lambda t: t * heads, mults)) layer_dims = list(map(lambda t: t * dim, mults)) last_dim = layer_dims[-1] layer_dims = [*layer_dims, layer_dims[-1]] dim_pairs = zip(layer_dims[:-1], layer_dims[1:]) self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (p1 p2 c) h w', p1 = patch_size, p2 = patch_size), LayerNorm(patch_dim), nn.Conv2d(patch_dim, layer_dims[0], 1), LayerNorm(layer_dims[0]) ) block_repeats = cast_tuple(block_repeats, num_hierarchies) self.layers = nn.ModuleList([]) for level, heads, (dim_in, dim_out), block_repeat in zip(hierarchies, layer_heads, dim_pairs, block_repeats): is_last = level == 0 depth = block_repeat self.layers.append(nn.ModuleList([ Transformer(dim_in, seq_len, depth, heads, mlp_mult, dropout), Aggregate(dim_in, dim_out) if not is_last else nn.Identity() ])) self.mlp_head = nn.Sequential( LayerNorm(last_dim), Reduce('b c h w -> b c', 'mean'), nn.Linear(last_dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, c, h, w = x.shape num_hierarchies = len(self.layers) for level, (transformer, aggregate) in zip(reversed(range(num_hierarchies)), self.layers): block_size = 2 ** level x = rearrange(x, 'b c (b1 h) (b2 w) -> (b b1 b2) c h w', b1 = block_size, b2 = block_size) x = transformer(x) x = rearrange(x, '(b b1 b2) c h w -> b c (b1 h) (b2 w)', b1 = block_size, b2 = block_size) x = aggregate(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/nest.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def pair(t): return t if isinstance(t, tuple) else (t, t) # positional embedding def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32): _, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij') assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb' omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1) omega = 1. / (temperature ** omega) y = y.flatten()[:, None] * omega[None, :] x = x.flatten()[:, None] * omega[None, :] pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1) return pe.type(dtype) # feedforward class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) # (cross)attention class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.norm = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, context = None): b, n, _, h = *x.shape, self.heads x = self.norm(x) context = self.norm(context) if exists(context) else x qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x, context = None): for attn, ff in self.layers: x = attn(x, context = context) + x x = ff(x) + x return x class ViT(nn.Module): def __init__(self, *, num_classes, image_size, patch_size, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width self.dim = dim self.num_patches = num_patches self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.to_latent = nn.Identity() self.linear_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): *_, h, w, dtype = *img.shape, img.dtype x = self.to_patch_embedding(img) pe = posemb_sincos_2d(x) x = rearrange(x, 'b ... d -> b (...) d') + pe x = self.transformer(x) x = x.mean(dim = 1) x = self.to_latent(x) return self.linear_head(x) # Masked Position Prediction Pre-Training class MP3(nn.Module): def __init__(self, vit: ViT, masking_ratio): super().__init__() self.vit = vit assert masking_ratio > 0 and masking_ratio < 1, 'masking ratio must be kept between 0 and 1' self.masking_ratio = masking_ratio dim = vit.dim self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, vit.num_patches) ) def forward(self, img): device = img.device tokens = self.vit.to_patch_embedding(img) tokens = rearrange(tokens, 'b ... d -> b (...) d') batch, num_patches, *_ = tokens.shape # Masking num_masked = int(self.masking_ratio * num_patches) rand_indices = torch.rand(batch, num_patches, device = device).argsort(dim = -1) masked_indices, unmasked_indices = rand_indices[:, :num_masked], rand_indices[:, num_masked:] batch_range = torch.arange(batch, device = device)[:, None] tokens_unmasked = tokens[batch_range, unmasked_indices] attended_tokens = self.vit.transformer(tokens, tokens_unmasked) logits = rearrange(self.mlp_head(attended_tokens), 'b n d -> (b n) d') # Define labels labels = repeat(torch.arange(num_patches, device = device), 'n -> (b n)', b = batch) loss = F.cross_entropy(logits, labels) return loss
vit-pytorch-main
vit_pytorch/mp3.py
import torch from torch import nn, einsum from einops import rearrange from einops.layers.torch import Rearrange, Reduce import torch.nn.functional as F # helpers def cast_tuple(val, length = 1): return val if isinstance(val, tuple) else ((val,) * length) # cross embed layer class CrossEmbedLayer(nn.Module): def __init__( self, dim_in, dim_out, kernel_sizes, stride = 2 ): super().__init__() kernel_sizes = sorted(kernel_sizes) num_scales = len(kernel_sizes) # calculate the dimension at each scale dim_scales = [int(dim_out / (2 ** i)) for i in range(1, num_scales)] dim_scales = [*dim_scales, dim_out - sum(dim_scales)] self.convs = nn.ModuleList([]) for kernel, dim_scale in zip(kernel_sizes, dim_scales): self.convs.append(nn.Conv2d(dim_in, dim_scale, kernel, stride = stride, padding = (kernel - stride) // 2)) def forward(self, x): fmaps = tuple(map(lambda conv: conv(x), self.convs)) return torch.cat(fmaps, dim = 1) # dynamic positional bias def DynamicPositionBias(dim): return nn.Sequential( nn.Linear(2, dim), nn.LayerNorm(dim), nn.ReLU(), nn.Linear(dim, dim), nn.LayerNorm(dim), nn.ReLU(), nn.Linear(dim, dim), nn.LayerNorm(dim), nn.ReLU(), nn.Linear(dim, 1), Rearrange('... () -> ...') ) # transformer classes class LayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) def forward(self, x): var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) / (var + self.eps).sqrt() * self.g + self.b def FeedForward(dim, mult = 4, dropout = 0.): return nn.Sequential( LayerNorm(dim), nn.Conv2d(dim, dim * mult, 1), nn.GELU(), nn.Dropout(dropout), nn.Conv2d(dim * mult, dim, 1) ) class Attention(nn.Module): def __init__( self, dim, attn_type, window_size, dim_head = 32, dropout = 0. ): super().__init__() assert attn_type in {'short', 'long'}, 'attention type must be one of local or distant' heads = dim // dim_head self.heads = heads self.scale = dim_head ** -0.5 inner_dim = dim_head * heads self.attn_type = attn_type self.window_size = window_size self.norm = LayerNorm(dim) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(inner_dim, dim, 1) # positions self.dpb = DynamicPositionBias(dim // 4) # calculate and store indices for retrieving bias pos = torch.arange(window_size) grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij')) grid = rearrange(grid, 'c i j -> (i j) c') rel_pos = grid[:, None] - grid[None, :] rel_pos += window_size - 1 rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(dim = -1) self.register_buffer('rel_pos_indices', rel_pos_indices, persistent = False) def forward(self, x): *_, height, width, heads, wsz, device = *x.shape, self.heads, self.window_size, x.device # prenorm x = self.norm(x) # rearrange for short or long distance attention if self.attn_type == 'short': x = rearrange(x, 'b d (h s1) (w s2) -> (b h w) d s1 s2', s1 = wsz, s2 = wsz) elif self.attn_type == 'long': x = rearrange(x, 'b d (l1 h) (l2 w) -> (b h w) d l1 l2', l1 = wsz, l2 = wsz) # queries / keys / values q, k, v = self.to_qkv(x).chunk(3, dim = 1) # split heads q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> b h (x y) d', h = heads), (q, k, v)) q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j', q, k) # add dynamic positional bias pos = torch.arange(-wsz, wsz + 1, device = device) rel_pos = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij')) rel_pos = rearrange(rel_pos, 'c i j -> (i j) c') biases = self.dpb(rel_pos.float()) rel_pos_bias = biases[self.rel_pos_indices] sim = sim + rel_pos_bias # attend attn = sim.softmax(dim = -1) attn = self.dropout(attn) # merge heads out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = wsz, y = wsz) out = self.to_out(out) # rearrange back for long or short distance attention if self.attn_type == 'short': out = rearrange(out, '(b h w) d s1 s2 -> b d (h s1) (w s2)', h = height // wsz, w = width // wsz) elif self.attn_type == 'long': out = rearrange(out, '(b h w) d l1 l2 -> b d (l1 h) (l2 w)', h = height // wsz, w = width // wsz) return out class Transformer(nn.Module): def __init__( self, dim, *, local_window_size, global_window_size, depth = 4, dim_head = 32, attn_dropout = 0., ff_dropout = 0., ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, attn_type = 'short', window_size = local_window_size, dim_head = dim_head, dropout = attn_dropout), FeedForward(dim, dropout = ff_dropout), Attention(dim, attn_type = 'long', window_size = global_window_size, dim_head = dim_head, dropout = attn_dropout), FeedForward(dim, dropout = ff_dropout) ])) def forward(self, x): for short_attn, short_ff, long_attn, long_ff in self.layers: x = short_attn(x) + x x = short_ff(x) + x x = long_attn(x) + x x = long_ff(x) + x return x # classes class CrossFormer(nn.Module): def __init__( self, *, dim = (64, 128, 256, 512), depth = (2, 2, 8, 2), global_window_size = (8, 4, 2, 1), local_window_size = 7, cross_embed_kernel_sizes = ((4, 8, 16, 32), (2, 4), (2, 4), (2, 4)), cross_embed_strides = (4, 2, 2, 2), num_classes = 1000, attn_dropout = 0., ff_dropout = 0., channels = 3 ): super().__init__() dim = cast_tuple(dim, 4) depth = cast_tuple(depth, 4) global_window_size = cast_tuple(global_window_size, 4) local_window_size = cast_tuple(local_window_size, 4) cross_embed_kernel_sizes = cast_tuple(cross_embed_kernel_sizes, 4) cross_embed_strides = cast_tuple(cross_embed_strides, 4) assert len(dim) == 4 assert len(depth) == 4 assert len(global_window_size) == 4 assert len(local_window_size) == 4 assert len(cross_embed_kernel_sizes) == 4 assert len(cross_embed_strides) == 4 # dimensions last_dim = dim[-1] dims = [channels, *dim] dim_in_and_out = tuple(zip(dims[:-1], dims[1:])) # layers self.layers = nn.ModuleList([]) for (dim_in, dim_out), layers, global_wsz, local_wsz, cel_kernel_sizes, cel_stride in zip(dim_in_and_out, depth, global_window_size, local_window_size, cross_embed_kernel_sizes, cross_embed_strides): self.layers.append(nn.ModuleList([ CrossEmbedLayer(dim_in, dim_out, cel_kernel_sizes, stride = cel_stride), Transformer(dim_out, local_window_size = local_wsz, global_window_size = global_wsz, depth = layers, attn_dropout = attn_dropout, ff_dropout = ff_dropout) ])) # final logits self.to_logits = nn.Sequential( Reduce('b c h w -> b c', 'mean'), nn.Linear(last_dim, num_classes) ) def forward(self, x): for cel, transformer in self.layers: x = cel(x) x = transformer(x) return self.to_logits(x)
vit-pytorch-main
vit_pytorch/crossformer.py
import torch import torch.nn as nn from einops import rearrange from einops.layers.torch import Reduce # helpers def conv_1x1_bn(inp, oup): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.SiLU() ) def conv_nxn_bn(inp, oup, kernel_size=3, stride=1): return nn.Sequential( nn.Conv2d(inp, oup, kernel_size, stride, 1, bias=False), nn.BatchNorm2d(oup), nn.SiLU() ) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout=0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.SiLU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim=-1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim=-1) q, k, v = map(lambda t: rearrange(t, 'b p n (h d) -> b p h n d', h=self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b p h n d -> b p n (h d)') return self.to_out(out) class Transformer(nn.Module): """Transformer block described in ViT. Paper: https://arxiv.org/abs/2010.11929 Based on: https://github.com/lucidrains/vit-pytorch """ def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads, dim_head, dropout), FeedForward(dim, mlp_dim, dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class MV2Block(nn.Module): """MV2 block described in MobileNetV2. Paper: https://arxiv.org/pdf/1801.04381 Based on: https://github.com/tonylins/pytorch-mobilenet-v2 """ def __init__(self, inp, oup, stride=1, expansion=4): super().__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(inp * expansion) self.use_res_connect = self.stride == 1 and inp == oup if expansion == 1: self.conv = nn.Sequential( # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.SiLU(), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) else: self.conv = nn.Sequential( # pw nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), nn.SiLU(), # dw nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False), nn.BatchNorm2d(hidden_dim), nn.SiLU(), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ) def forward(self, x): out = self.conv(x) if self.use_res_connect: out = out + x return out class MobileViTBlock(nn.Module): def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.): super().__init__() self.ph, self.pw = patch_size self.conv1 = conv_nxn_bn(channel, channel, kernel_size) self.conv2 = conv_1x1_bn(channel, dim) self.transformer = Transformer(dim, depth, 4, 8, mlp_dim, dropout) self.conv3 = conv_1x1_bn(dim, channel) self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size) def forward(self, x): y = x.clone() # Local representations x = self.conv1(x) x = self.conv2(x) # Global representations _, _, h, w = x.shape x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d', ph=self.ph, pw=self.pw) x = self.transformer(x) x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)', h=h//self.ph, w=w//self.pw, ph=self.ph, pw=self.pw) # Fusion x = self.conv3(x) x = torch.cat((x, y), 1) x = self.conv4(x) return x class MobileViT(nn.Module): """MobileViT. Paper: https://arxiv.org/abs/2110.02178 Based on: https://github.com/chinhsuanwu/mobilevit-pytorch """ def __init__( self, image_size, dims, channels, num_classes, expansion=4, kernel_size=3, patch_size=(2, 2), depths=(2, 4, 3) ): super().__init__() assert len(dims) == 3, 'dims must be a tuple of 3' assert len(depths) == 3, 'depths must be a tuple of 3' ih, iw = image_size ph, pw = patch_size assert ih % ph == 0 and iw % pw == 0 init_dim, *_, last_dim = channels self.conv1 = conv_nxn_bn(3, init_dim, stride=2) self.stem = nn.ModuleList([]) self.stem.append(MV2Block(channels[0], channels[1], 1, expansion)) self.stem.append(MV2Block(channels[1], channels[2], 2, expansion)) self.stem.append(MV2Block(channels[2], channels[3], 1, expansion)) self.stem.append(MV2Block(channels[2], channels[3], 1, expansion)) self.trunk = nn.ModuleList([]) self.trunk.append(nn.ModuleList([ MV2Block(channels[3], channels[4], 2, expansion), MobileViTBlock(dims[0], depths[0], channels[5], kernel_size, patch_size, int(dims[0] * 2)) ])) self.trunk.append(nn.ModuleList([ MV2Block(channels[5], channels[6], 2, expansion), MobileViTBlock(dims[1], depths[1], channels[7], kernel_size, patch_size, int(dims[1] * 4)) ])) self.trunk.append(nn.ModuleList([ MV2Block(channels[7], channels[8], 2, expansion), MobileViTBlock(dims[2], depths[2], channels[9], kernel_size, patch_size, int(dims[2] * 4)) ])) self.to_logits = nn.Sequential( conv_1x1_bn(channels[-2], last_dim), Reduce('b c h w -> b c', 'mean'), nn.Linear(channels[-1], num_classes, bias=False) ) def forward(self, x): x = self.conv1(x) for conv in self.stem: x = conv(x) for conv, attn in self.trunk: x = conv(x) x = attn(x) return self.to_logits(x)
vit-pytorch-main
vit_pytorch/mobile_vit.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.dropout = nn.Dropout(dropout) self.reattn_weights = nn.Parameter(torch.randn(heads, heads)) self.reattn_norm = nn.Sequential( Rearrange('b h i j -> b i j h'), nn.LayerNorm(heads), Rearrange('b i j h -> b h i j') ) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x): b, n, _, h = *x.shape, self.heads x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) # attention dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = dots.softmax(dim=-1) attn = self.dropout(attn) # re-attention attn = einsum('b h i j, h g -> b g i j', attn, self.reattn_weights) attn = self.reattn_norm(attn) # aggregate and out out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class DeepViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/deepvit.py
import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange def pair(t): return t if isinstance(t, tuple) else (t, t) class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, transformer, pool = 'cls', channels = 3): super().__init__() image_size_h, image_size_w = pair(image_size) assert image_size_h % patch_size == 0 and image_size_w % patch_size == 0, 'image dimensions must be divisible by the patch size' assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' num_patches = (image_size_h // patch_size) * (image_size_w // patch_size) patch_dim = channels * patch_size ** 2 self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.transformer = transformer self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/efficient.py
import torch from torch import nn import torch.nn.functional as F from einops import repeat from vit_pytorch.vit import Transformer class MAE(nn.Module): def __init__( self, *, encoder, decoder_dim, masking_ratio = 0.75, decoder_depth = 1, decoder_heads = 8, decoder_dim_head = 64 ): super().__init__() assert masking_ratio > 0 and masking_ratio < 1, 'masking ratio must be kept between 0 and 1' self.masking_ratio = masking_ratio # extract some hyperparameters and functions from encoder (vision transformer to be trained) self.encoder = encoder num_patches, encoder_dim = encoder.pos_embedding.shape[-2:] self.to_patch = encoder.to_patch_embedding[0] self.patch_to_emb = nn.Sequential(*encoder.to_patch_embedding[1:]) pixel_values_per_patch = encoder.to_patch_embedding[2].weight.shape[-1] # decoder parameters self.decoder_dim = decoder_dim self.enc_to_dec = nn.Linear(encoder_dim, decoder_dim) if encoder_dim != decoder_dim else nn.Identity() self.mask_token = nn.Parameter(torch.randn(decoder_dim)) self.decoder = Transformer(dim = decoder_dim, depth = decoder_depth, heads = decoder_heads, dim_head = decoder_dim_head, mlp_dim = decoder_dim * 4) self.decoder_pos_emb = nn.Embedding(num_patches, decoder_dim) self.to_pixels = nn.Linear(decoder_dim, pixel_values_per_patch) def forward(self, img): device = img.device # get patches patches = self.to_patch(img) batch, num_patches, *_ = patches.shape # patch to encoder tokens and add positions tokens = self.patch_to_emb(patches) if self.encoder.pool == "cls": tokens += self.encoder.pos_embedding[:, 1:(num_patches + 1)] elif self.encoder.pool == "mean": tokens += self.encoder.pos_embedding.to(device, dtype=tokens.dtype) # calculate of patches needed to be masked, and get random indices, dividing it up for mask vs unmasked num_masked = int(self.masking_ratio * num_patches) rand_indices = torch.rand(batch, num_patches, device = device).argsort(dim = -1) masked_indices, unmasked_indices = rand_indices[:, :num_masked], rand_indices[:, num_masked:] # get the unmasked tokens to be encoded batch_range = torch.arange(batch, device = device)[:, None] tokens = tokens[batch_range, unmasked_indices] # get the patches to be masked for the final reconstruction loss masked_patches = patches[batch_range, masked_indices] # attend with vision transformer encoded_tokens = self.encoder.transformer(tokens) # project encoder to decoder dimensions, if they are not equal - the paper says you can get away with a smaller dimension for decoder decoder_tokens = self.enc_to_dec(encoded_tokens) # reapply decoder position embedding to unmasked tokens unmasked_decoder_tokens = decoder_tokens + self.decoder_pos_emb(unmasked_indices) # repeat mask tokens for number of masked, and add the positions using the masked indices derived above mask_tokens = repeat(self.mask_token, 'd -> b n d', b = batch, n = num_masked) mask_tokens = mask_tokens + self.decoder_pos_emb(masked_indices) # concat the masked tokens to the decoder tokens and attend with decoder decoder_tokens = torch.zeros(batch, num_patches, self.decoder_dim, device=device) decoder_tokens[batch_range, unmasked_indices] = unmasked_decoder_tokens decoder_tokens[batch_range, masked_indices] = mask_tokens decoded_tokens = self.decoder(decoder_tokens) # splice out the mask tokens and project to pixel values mask_tokens = decoded_tokens[batch_range, masked_indices] pred_pixel_values = self.to_pixels(mask_tokens) # calculate reconstruction loss recon_loss = F.mse_loss(pred_pixel_values, masked_patches) return recon_loss
vit-pytorch-main
vit_pytorch/mae.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helper methods def group_dict_by_key(cond, d): return_val = [dict(), dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def group_by_key_prefix_and_remove_prefix(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(lambda x: x.startswith(prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # classes class LayerNorm(nn.Module): # layernorm, but done in the channel dimension #1 def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) def forward(self, x): var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) / (var + self.eps).sqrt() * self.g + self.b class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() self.net = nn.Sequential( LayerNorm(dim), nn.Conv2d(dim, dim * mult, 1), nn.GELU(), nn.Dropout(dropout), nn.Conv2d(dim * mult, dim, 1), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class DepthWiseConv2d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True): super().__init__() self.net = nn.Sequential( nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias), nn.BatchNorm2d(dim_in), nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, proj_kernel, kv_proj_stride, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads padding = proj_kernel // 2 self.heads = heads self.scale = dim_head ** -0.5 self.norm = LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_q = DepthWiseConv2d(dim, inner_dim, proj_kernel, padding = padding, stride = 1, bias = False) self.to_kv = DepthWiseConv2d(dim, inner_dim * 2, proj_kernel, padding = padding, stride = kv_proj_stride, bias = False) self.to_out = nn.Sequential( nn.Conv2d(inner_dim, dim, 1), nn.Dropout(dropout) ) def forward(self, x): shape = x.shape b, n, _, y, h = *shape, self.heads x = self.norm(x) q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = 1)) q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> (b h) (x y) d', h = h), (q, k, v)) dots = einsum('b i d, b j d -> b i j', q, k) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y) return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, proj_kernel, kv_proj_stride, depth, heads, dim_head = 64, mlp_mult = 4, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, proj_kernel = proj_kernel, kv_proj_stride = kv_proj_stride, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_mult, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class CvT(nn.Module): def __init__( self, *, num_classes, s1_emb_dim = 64, s1_emb_kernel = 7, s1_emb_stride = 4, s1_proj_kernel = 3, s1_kv_proj_stride = 2, s1_heads = 1, s1_depth = 1, s1_mlp_mult = 4, s2_emb_dim = 192, s2_emb_kernel = 3, s2_emb_stride = 2, s2_proj_kernel = 3, s2_kv_proj_stride = 2, s2_heads = 3, s2_depth = 2, s2_mlp_mult = 4, s3_emb_dim = 384, s3_emb_kernel = 3, s3_emb_stride = 2, s3_proj_kernel = 3, s3_kv_proj_stride = 2, s3_heads = 6, s3_depth = 10, s3_mlp_mult = 4, dropout = 0. ): super().__init__() kwargs = dict(locals()) dim = 3 layers = [] for prefix in ('s1', 's2', 's3'): config, kwargs = group_by_key_prefix_and_remove_prefix(f'{prefix}_', kwargs) layers.append(nn.Sequential( nn.Conv2d(dim, config['emb_dim'], kernel_size = config['emb_kernel'], padding = (config['emb_kernel'] // 2), stride = config['emb_stride']), LayerNorm(config['emb_dim']), Transformer(dim = config['emb_dim'], proj_kernel = config['proj_kernel'], kv_proj_stride = config['kv_proj_stride'], depth = config['depth'], heads = config['heads'], mlp_mult = config['mlp_mult'], dropout = dropout) )) dim = config['emb_dim'] self.layers = nn.Sequential(*layers) self.to_logits = nn.Sequential( nn.AdaptiveAvgPool2d(1), Rearrange('... () () -> ...'), nn.Linear(dim, num_classes) ) def forward(self, x): latents = self.layers(x) return self.to_logits(latents)
vit-pytorch-main
vit_pytorch/cvt.py
import torch from torch import nn import torch.nn.functional as F from einops import rearrange from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32): y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij") assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb" omega = torch.arange(dim // 4) / (dim // 4 - 1) omega = 1.0 / (temperature ** omega) y = y.flatten()[:, None] * omega[None, :] x = x.flatten()[:, None] * omega[None, :] pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1) return pe.type(dtype) # they use a query-key normalization that is equivalent to rms norm (no mean-centering, learned gamma), from vit 22B paper # in latest tweet, seem to claim more stable training at higher learning rates # unsure if this has taken off within Brain, or it has some hidden drawback class RMSNorm(nn.Module): def __init__(self, heads, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(heads, 1, dim) / self.scale) def forward(self, x): normed = F.normalize(x, dim = -1) return normed * self.scale * self.gamma # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Linear(hidden_dim, dim), ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64): super().__init__() inner_dim = dim_head * heads self.heads = heads self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.q_norm = RMSNorm(heads, dim_head) self.k_norm = RMSNorm(heads, dim_head) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) q = self.q_norm(q) k = self.k_norm(k) dots = torch.matmul(q, k.transpose(-1, -2)) attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim): super().__init__() self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head), FeedForward(dim, mlp_dim) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class SimpleViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.pos_embedding = posemb_sincos_2d( h = image_height // patch_height, w = image_width // patch_width, dim = dim, ) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) self.pool = "mean" self.to_latent = nn.Identity() self.linear_head = nn.LayerNorm(dim) def forward(self, img): device = img.device x = self.to_patch_embedding(img) x += self.pos_embedding.to(device, dtype=x.dtype) x = self.transformer(x) x = x.mean(dim = 1) x = self.to_latent(x) return self.linear_head(x)
vit-pytorch-main
vit_pytorch/simple_vit_with_qk_norm.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helper methods def group_dict_by_key(cond, d): return_val = [dict(), dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def group_by_key_prefix_and_remove_prefix(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(lambda x: x.startswith(prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # classes class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class LayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) def forward(self, x): var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) / (var + self.eps).sqrt() * self.g + self.b class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() self.net = nn.Sequential( LayerNorm(dim), nn.Conv2d(dim, dim * mult, 1), nn.GELU(), nn.Dropout(dropout), nn.Conv2d(dim * mult, dim, 1), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class PatchEmbedding(nn.Module): def __init__(self, *, dim, dim_out, patch_size): super().__init__() self.dim = dim self.dim_out = dim_out self.patch_size = patch_size self.proj = nn.Sequential( LayerNorm(patch_size ** 2 * dim), nn.Conv2d(patch_size ** 2 * dim, dim_out, 1), LayerNorm(dim_out) ) def forward(self, fmap): p = self.patch_size fmap = rearrange(fmap, 'b c (h p1) (w p2) -> b (c p1 p2) h w', p1 = p, p2 = p) return self.proj(fmap) class PEG(nn.Module): def __init__(self, dim, kernel_size = 3): super().__init__() self.proj = Residual(nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1)) def forward(self, x): return self.proj(x) class LocalAttention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., patch_size = 7): super().__init__() inner_dim = dim_head * heads self.patch_size = patch_size self.heads = heads self.scale = dim_head ** -0.5 self.norm = LayerNorm(dim) self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False) self.to_kv = nn.Conv2d(dim, inner_dim * 2, 1, bias = False) self.to_out = nn.Sequential( nn.Conv2d(inner_dim, dim, 1), nn.Dropout(dropout) ) def forward(self, fmap): fmap = self.norm(fmap) shape, p = fmap.shape, self.patch_size b, n, x, y, h = *shape, self.heads x, y = map(lambda t: t // p, (x, y)) fmap = rearrange(fmap, 'b c (x p1) (y p2) -> (b x y) c p1 p2', p1 = p, p2 = p) q, k, v = (self.to_q(fmap), *self.to_kv(fmap).chunk(2, dim = 1)) q, k, v = map(lambda t: rearrange(t, 'b (h d) p1 p2 -> (b h) (p1 p2) d', h = h), (q, k, v)) dots = einsum('b i d, b j d -> b i j', q, k) * self.scale attn = dots.softmax(dim = - 1) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b x y h) (p1 p2) d -> b (h d) (x p1) (y p2)', h = h, x = x, y = y, p1 = p, p2 = p) return self.to_out(out) class GlobalAttention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., k = 7): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = LayerNorm(dim) self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False) self.to_kv = nn.Conv2d(dim, inner_dim * 2, k, stride = k, bias = False) self.dropout = nn.Dropout(dropout) self.to_out = nn.Sequential( nn.Conv2d(inner_dim, dim, 1), nn.Dropout(dropout) ) def forward(self, x): x = self.norm(x) shape = x.shape b, n, _, y, h = *shape, self.heads q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = 1)) q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> (b h) (x y) d', h = h), (q, k, v)) dots = einsum('b i d, b j d -> b i j', q, k) * self.scale attn = dots.softmax(dim = -1) attn = self.dropout(attn) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y) return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads = 8, dim_head = 64, mlp_mult = 4, local_patch_size = 7, global_k = 7, dropout = 0., has_local = True): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Residual(LocalAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout, patch_size = local_patch_size)) if has_local else nn.Identity(), Residual(FeedForward(dim, mlp_mult, dropout = dropout)) if has_local else nn.Identity(), Residual(GlobalAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout, k = global_k)), Residual(FeedForward(dim, mlp_mult, dropout = dropout)) ])) def forward(self, x): for local_attn, ff1, global_attn, ff2 in self.layers: x = local_attn(x) x = ff1(x) x = global_attn(x) x = ff2(x) return x class TwinsSVT(nn.Module): def __init__( self, *, num_classes, s1_emb_dim = 64, s1_patch_size = 4, s1_local_patch_size = 7, s1_global_k = 7, s1_depth = 1, s2_emb_dim = 128, s2_patch_size = 2, s2_local_patch_size = 7, s2_global_k = 7, s2_depth = 1, s3_emb_dim = 256, s3_patch_size = 2, s3_local_patch_size = 7, s3_global_k = 7, s3_depth = 5, s4_emb_dim = 512, s4_patch_size = 2, s4_local_patch_size = 7, s4_global_k = 7, s4_depth = 4, peg_kernel_size = 3, dropout = 0. ): super().__init__() kwargs = dict(locals()) dim = 3 layers = [] for prefix in ('s1', 's2', 's3', 's4'): config, kwargs = group_by_key_prefix_and_remove_prefix(f'{prefix}_', kwargs) is_last = prefix == 's4' dim_next = config['emb_dim'] layers.append(nn.Sequential( PatchEmbedding(dim = dim, dim_out = dim_next, patch_size = config['patch_size']), Transformer(dim = dim_next, depth = 1, local_patch_size = config['local_patch_size'], global_k = config['global_k'], dropout = dropout, has_local = not is_last), PEG(dim = dim_next, kernel_size = peg_kernel_size), Transformer(dim = dim_next, depth = config['depth'], local_patch_size = config['local_patch_size'], global_k = config['global_k'], dropout = dropout, has_local = not is_last) )) dim = dim_next self.layers = nn.Sequential( *layers, nn.AdaptiveAvgPool2d(1), Rearrange('... () () -> ...'), nn.Linear(dim, num_classes) ) def forward(self, x): return self.layers(x)
vit-pytorch-main
vit_pytorch/twins_svt.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def pair(t): return t if isinstance(t, tuple) else (t, t) # CCT Models __all__ = ['cct_2', 'cct_4', 'cct_6', 'cct_7', 'cct_8', 'cct_14', 'cct_16'] def cct_2(*args, **kwargs): return _cct(num_layers=2, num_heads=2, mlp_ratio=1, embedding_dim=128, *args, **kwargs) def cct_4(*args, **kwargs): return _cct(num_layers=4, num_heads=2, mlp_ratio=1, embedding_dim=128, *args, **kwargs) def cct_6(*args, **kwargs): return _cct(num_layers=6, num_heads=4, mlp_ratio=2, embedding_dim=256, *args, **kwargs) def cct_7(*args, **kwargs): return _cct(num_layers=7, num_heads=4, mlp_ratio=2, embedding_dim=256, *args, **kwargs) def cct_8(*args, **kwargs): return _cct(num_layers=8, num_heads=4, mlp_ratio=2, embedding_dim=256, *args, **kwargs) def cct_14(*args, **kwargs): return _cct(num_layers=14, num_heads=6, mlp_ratio=3, embedding_dim=384, *args, **kwargs) def cct_16(*args, **kwargs): return _cct(num_layers=16, num_heads=6, mlp_ratio=3, embedding_dim=384, *args, **kwargs) def _cct(num_layers, num_heads, mlp_ratio, embedding_dim, kernel_size=3, stride=None, padding=None, *args, **kwargs): stride = default(stride, max(1, (kernel_size // 2) - 1)) padding = default(padding, max(1, (kernel_size // 2))) return CCT(num_layers=num_layers, num_heads=num_heads, mlp_ratio=mlp_ratio, embedding_dim=embedding_dim, kernel_size=kernel_size, stride=stride, padding=padding, *args, **kwargs) # positional def sinusoidal_embedding(n_channels, dim): pe = torch.FloatTensor([[p / (10000 ** (2 * (i // 2) / dim)) for i in range(dim)] for p in range(n_channels)]) pe[:, 0::2] = torch.sin(pe[:, 0::2]) pe[:, 1::2] = torch.cos(pe[:, 1::2]) return rearrange(pe, '... -> 1 ...') # modules class Attention(nn.Module): def __init__(self, dim, num_heads=8, attention_dropout=0.1, projection_dropout=0.1): super().__init__() self.heads = num_heads head_dim = dim // self.heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=False) self.attn_drop = nn.Dropout(attention_dropout) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(projection_dropout) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) q = q * self.scale attn = einsum('b h i d, b h j d -> b h i j', q, k) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = einsum('b h i j, b h j d -> b h i d', attn, v) x = rearrange(x, 'b h n d -> b n (h d)') return self.proj_drop(self.proj(x)) class TransformerEncoderLayer(nn.Module): """ Inspired by torch.nn.TransformerEncoderLayer and rwightman's timm package. """ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, attention_dropout=0.1, drop_path_rate=0.1): super().__init__() self.pre_norm = nn.LayerNorm(d_model) self.self_attn = Attention(dim=d_model, num_heads=nhead, attention_dropout=attention_dropout, projection_dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) self.linear2 = nn.Linear(dim_feedforward, d_model) self.dropout2 = nn.Dropout(dropout) self.drop_path = DropPath(drop_path_rate) self.activation = F.gelu def forward(self, src, *args, **kwargs): src = src + self.drop_path(self.self_attn(self.pre_norm(src))) src = self.norm1(src) src2 = self.linear2(self.dropout1(self.activation(self.linear1(src)))) src = src + self.drop_path(self.dropout2(src2)) return src class DropPath(nn.Module): def __init__(self, drop_prob=None): super().__init__() self.drop_prob = float(drop_prob) def forward(self, x): batch, drop_prob, device, dtype = x.shape[0], self.drop_prob, x.device, x.dtype if drop_prob <= 0. or not self.training: return x keep_prob = 1 - self.drop_prob shape = (batch, *((1,) * (x.ndim - 1))) keep_mask = torch.zeros(shape, device = device).float().uniform_(0, 1) < keep_prob output = x.div(keep_prob) * keep_mask.float() return output class Tokenizer(nn.Module): def __init__(self, kernel_size, stride, padding, pooling_kernel_size=3, pooling_stride=2, pooling_padding=1, n_conv_layers=1, n_input_channels=3, n_output_channels=64, in_planes=64, activation=None, max_pool=True, conv_bias=False): super().__init__() n_filter_list = [n_input_channels] + \ [in_planes for _ in range(n_conv_layers - 1)] + \ [n_output_channels] n_filter_list_pairs = zip(n_filter_list[:-1], n_filter_list[1:]) self.conv_layers = nn.Sequential( *[nn.Sequential( nn.Conv2d(chan_in, chan_out, kernel_size=(kernel_size, kernel_size), stride=(stride, stride), padding=(padding, padding), bias=conv_bias), nn.Identity() if not exists(activation) else activation(), nn.MaxPool2d(kernel_size=pooling_kernel_size, stride=pooling_stride, padding=pooling_padding) if max_pool else nn.Identity() ) for chan_in, chan_out in n_filter_list_pairs ]) self.apply(self.init_weight) def sequence_length(self, n_channels=3, height=224, width=224): return self.forward(torch.zeros((1, n_channels, height, width))).shape[1] def forward(self, x): return rearrange(self.conv_layers(x), 'b c h w -> b (h w) c') @staticmethod def init_weight(m): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) class TransformerClassifier(nn.Module): def __init__(self, seq_pool=True, embedding_dim=768, num_layers=12, num_heads=12, mlp_ratio=4.0, num_classes=1000, dropout_rate=0.1, attention_dropout=0.1, stochastic_depth_rate=0.1, positional_embedding='sine', sequence_length=None, *args, **kwargs): super().__init__() assert positional_embedding in {'sine', 'learnable', 'none'} dim_feedforward = int(embedding_dim * mlp_ratio) self.embedding_dim = embedding_dim self.sequence_length = sequence_length self.seq_pool = seq_pool assert exists(sequence_length) or positional_embedding == 'none', \ f"Positional embedding is set to {positional_embedding} and" \ f" the sequence length was not specified." if not seq_pool: sequence_length += 1 self.class_emb = nn.Parameter(torch.zeros(1, 1, self.embedding_dim), requires_grad=True) else: self.attention_pool = nn.Linear(self.embedding_dim, 1) if positional_embedding == 'none': self.positional_emb = None elif positional_embedding == 'learnable': self.positional_emb = nn.Parameter(torch.zeros(1, sequence_length, embedding_dim), requires_grad=True) nn.init.trunc_normal_(self.positional_emb, std=0.2) else: self.positional_emb = nn.Parameter(sinusoidal_embedding(sequence_length, embedding_dim), requires_grad=False) self.dropout = nn.Dropout(p=dropout_rate) dpr = [x.item() for x in torch.linspace(0, stochastic_depth_rate, num_layers)] self.blocks = nn.ModuleList([ TransformerEncoderLayer(d_model=embedding_dim, nhead=num_heads, dim_feedforward=dim_feedforward, dropout=dropout_rate, attention_dropout=attention_dropout, drop_path_rate=layer_dpr) for layer_dpr in dpr]) self.norm = nn.LayerNorm(embedding_dim) self.fc = nn.Linear(embedding_dim, num_classes) self.apply(self.init_weight) def forward(self, x): b = x.shape[0] if not exists(self.positional_emb) and x.size(1) < self.sequence_length: x = F.pad(x, (0, 0, 0, self.n_channels - x.size(1)), mode='constant', value=0) if not self.seq_pool: cls_token = repeat(self.class_emb, '1 1 d -> b 1 d', b = b) x = torch.cat((cls_token, x), dim=1) if exists(self.positional_emb): x += self.positional_emb x = self.dropout(x) for blk in self.blocks: x = blk(x) x = self.norm(x) if self.seq_pool: attn_weights = rearrange(self.attention_pool(x), 'b n 1 -> b n') x = einsum('b n, b n d -> b d', attn_weights.softmax(dim = 1), x) else: x = x[:, 0] return self.fc(x) @staticmethod def init_weight(m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and exists(m.bias): nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) # CCT Main model class CCT(nn.Module): def __init__( self, img_size=224, embedding_dim=768, n_input_channels=3, n_conv_layers=1, kernel_size=7, stride=2, padding=3, pooling_kernel_size=3, pooling_stride=2, pooling_padding=1, *args, **kwargs ): super().__init__() img_height, img_width = pair(img_size) self.tokenizer = Tokenizer(n_input_channels=n_input_channels, n_output_channels=embedding_dim, kernel_size=kernel_size, stride=stride, padding=padding, pooling_kernel_size=pooling_kernel_size, pooling_stride=pooling_stride, pooling_padding=pooling_padding, max_pool=True, activation=nn.ReLU, n_conv_layers=n_conv_layers, conv_bias=False) self.classifier = TransformerClassifier( sequence_length=self.tokenizer.sequence_length(n_channels=n_input_channels, height=img_height, width=img_width), embedding_dim=embedding_dim, seq_pool=True, dropout_rate=0., attention_dropout=0.1, stochastic_depth=0.1, *args, **kwargs) def forward(self, x): x = self.tokenizer(x) return self.classifier(x)
vit-pytorch-main
vit_pytorch/cct.py
from functools import wraps import torch from torch import nn from vit_pytorch.vit import Attention def find_modules(nn_module, type): return [module for module in nn_module.modules() if isinstance(module, type)] class Recorder(nn.Module): def __init__(self, vit, device = None): super().__init__() self.vit = vit self.data = None self.recordings = [] self.hooks = [] self.hook_registered = False self.ejected = False self.device = device def _hook(self, _, input, output): self.recordings.append(output.clone().detach()) def _register_hook(self): modules = find_modules(self.vit.transformer, Attention) for module in modules: handle = module.attend.register_forward_hook(self._hook) self.hooks.append(handle) self.hook_registered = True def eject(self): self.ejected = True for hook in self.hooks: hook.remove() self.hooks.clear() return self.vit def clear(self): self.recordings.clear() def record(self, attn): recording = attn.clone().detach() self.recordings.append(recording) def forward(self, img): assert not self.ejected, 'recorder has been ejected, cannot be used anymore' self.clear() if not self.hook_registered: self._register_hook() pred = self.vit(img) # move all recordings to one device before stacking target_device = self.device if self.device is not None else img.device recordings = tuple(map(lambda t: t.to(target_device), self.recordings)) attns = torch.stack(recordings, dim = 1) if len(recordings) > 0 else None return pred, attns
vit-pytorch-main
vit_pytorch/recorder.py
from math import ceil import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def cast_tuple(val, l = 3): val = val if isinstance(val, tuple) else (val,) return (*val, *((val[-1],) * max(l - len(val), 0))) def always(val): return lambda *args, **kwargs: val # classes class FeedForward(nn.Module): def __init__(self, dim, mult, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Conv2d(dim, dim * mult, 1), nn.Hardswish(), nn.Dropout(dropout), nn.Conv2d(dim * mult, dim, 1), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, fmap_size, heads = 8, dim_key = 32, dim_value = 64, dropout = 0., dim_out = None, downsample = False): super().__init__() inner_dim_key = dim_key * heads inner_dim_value = dim_value * heads dim_out = default(dim_out, dim) self.heads = heads self.scale = dim_key ** -0.5 self.to_q = nn.Sequential(nn.Conv2d(dim, inner_dim_key, 1, stride = (2 if downsample else 1), bias = False), nn.BatchNorm2d(inner_dim_key)) self.to_k = nn.Sequential(nn.Conv2d(dim, inner_dim_key, 1, bias = False), nn.BatchNorm2d(inner_dim_key)) self.to_v = nn.Sequential(nn.Conv2d(dim, inner_dim_value, 1, bias = False), nn.BatchNorm2d(inner_dim_value)) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) out_batch_norm = nn.BatchNorm2d(dim_out) nn.init.zeros_(out_batch_norm.weight) self.to_out = nn.Sequential( nn.GELU(), nn.Conv2d(inner_dim_value, dim_out, 1), out_batch_norm, nn.Dropout(dropout) ) # positional bias self.pos_bias = nn.Embedding(fmap_size * fmap_size, heads) q_range = torch.arange(0, fmap_size, step = (2 if downsample else 1)) k_range = torch.arange(fmap_size) q_pos = torch.stack(torch.meshgrid(q_range, q_range, indexing = 'ij'), dim = -1) k_pos = torch.stack(torch.meshgrid(k_range, k_range, indexing = 'ij'), dim = -1) q_pos, k_pos = map(lambda t: rearrange(t, 'i j c -> (i j) c'), (q_pos, k_pos)) rel_pos = (q_pos[:, None, ...] - k_pos[None, :, ...]).abs() x_rel, y_rel = rel_pos.unbind(dim = -1) pos_indices = (x_rel * fmap_size) + y_rel self.register_buffer('pos_indices', pos_indices) def apply_pos_bias(self, fmap): bias = self.pos_bias(self.pos_indices) bias = rearrange(bias, 'i j h -> () h i j') return fmap + (bias / self.scale) def forward(self, x): b, n, *_, h = *x.shape, self.heads q = self.to_q(x) y = q.shape[2] qkv = (q, self.to_k(x), self.to_v(x)) q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = h), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale dots = self.apply_pos_bias(dots) attn = self.attend(dots) attn = self.dropout(attn) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', h = h, y = y) return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, fmap_size, depth, heads, dim_key, dim_value, mlp_mult = 2, dropout = 0., dim_out = None, downsample = False): super().__init__() dim_out = default(dim_out, dim) self.layers = nn.ModuleList([]) self.attn_residual = (not downsample) and dim == dim_out for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, fmap_size = fmap_size, heads = heads, dim_key = dim_key, dim_value = dim_value, dropout = dropout, downsample = downsample, dim_out = dim_out), FeedForward(dim_out, mlp_mult, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: attn_res = (x if self.attn_residual else 0) x = attn(x) + attn_res x = ff(x) + x return x class LeViT(nn.Module): def __init__( self, *, image_size, num_classes, dim, depth, heads, mlp_mult, stages = 3, dim_key = 32, dim_value = 64, dropout = 0., num_distill_classes = None ): super().__init__() dims = cast_tuple(dim, stages) depths = cast_tuple(depth, stages) layer_heads = cast_tuple(heads, stages) assert all(map(lambda t: len(t) == stages, (dims, depths, layer_heads))), 'dimensions, depths, and heads must be a tuple that is less than the designated number of stages' self.conv_embedding = nn.Sequential( nn.Conv2d(3, 32, 3, stride = 2, padding = 1), nn.Conv2d(32, 64, 3, stride = 2, padding = 1), nn.Conv2d(64, 128, 3, stride = 2, padding = 1), nn.Conv2d(128, dims[0], 3, stride = 2, padding = 1) ) fmap_size = image_size // (2 ** 4) layers = [] for ind, dim, depth, heads in zip(range(stages), dims, depths, layer_heads): is_last = ind == (stages - 1) layers.append(Transformer(dim, fmap_size, depth, heads, dim_key, dim_value, mlp_mult, dropout)) if not is_last: next_dim = dims[ind + 1] layers.append(Transformer(dim, fmap_size, 1, heads * 2, dim_key, dim_value, dim_out = next_dim, downsample = True)) fmap_size = ceil(fmap_size / 2) self.backbone = nn.Sequential(*layers) self.pool = nn.Sequential( nn.AdaptiveAvgPool2d(1), Rearrange('... () () -> ...') ) self.distill_head = nn.Linear(dim, num_distill_classes) if exists(num_distill_classes) else always(None) self.mlp_head = nn.Linear(dim, num_classes) def forward(self, img): x = self.conv_embedding(img) x = self.backbone(x) x = self.pool(x) out = self.mlp_head(x) distill = self.distill_head(x) if exists(distill): return out, distill return out
vit-pytorch-main
vit_pytorch/levit.py
from math import sqrt import torch import torch.nn.functional as F from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class LSA(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.temperature = nn.Parameter(torch.log(torch.tensor(dim_head ** -0.5))) self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.temperature.exp() mask = torch.eye(dots.shape[-1], device = dots.device, dtype = torch.bool) mask_value = -torch.finfo(dots.dtype).max dots = dots.masked_fill(mask, mask_value) attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ LSA(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class SPT(nn.Module): def __init__(self, *, dim, patch_size, channels = 3): super().__init__() patch_dim = patch_size * patch_size * 5 * channels self.to_patch_tokens = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim) ) def forward(self, x): shifts = ((1, -1, 0, 0), (-1, 1, 0, 0), (0, 0, 1, -1), (0, 0, -1, 1)) shifted_x = list(map(lambda shift: F.pad(x, shift), shifts)) x_with_shifts = torch.cat((x, *shifted_x), dim = 1) return self.to_patch_tokens(x_with_shifts) class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = SPT(dim = dim, patch_size = patch_size, channels = channels) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/vit_for_small_dataset.py
import torch import torch.nn.functional as F from torch import nn from einops import rearrange from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) def posemb_sincos_3d(patches, temperature = 10000, dtype = torch.float32): _, f, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype z, y, x = torch.meshgrid( torch.arange(f, device = device), torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij') fourier_dim = dim // 6 omega = torch.arange(fourier_dim, device = device) / (fourier_dim - 1) omega = 1. / (temperature ** omega) z = z.flatten()[:, None] * omega[None, :] y = y.flatten()[:, None] * omega[None, :] x = x.flatten()[:, None] * omega[None, :] pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos(), z.sin(), z.cos()), dim = 1) pe = F.pad(pe, (0, dim - (fourier_dim * 6))) # pad if feature dimension not cleanly divisible by 6 return pe.type(dtype) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Linear(hidden_dim, dim), ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim): super().__init__() self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head), FeedForward(dim, mlp_dim) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class SimpleViT(nn.Module): def __init__(self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(image_patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' assert frames % frame_patch_size == 0, 'Frames must be divisible by the frame patch size' num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size) patch_dim = channels * patch_height * patch_width * frame_patch_size self.to_patch_embedding = nn.Sequential( Rearrange('b c (f pf) (h p1) (w p2) -> b f h w (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) self.to_latent = nn.Identity() self.linear_head = nn.Linear(dim, num_classes) def forward(self, video): *_, h, w, dtype = *video.shape, video.dtype x = self.to_patch_embedding(video) pe = posemb_sincos_3d(x) x = rearrange(x, 'b ... d -> b (...) d') + pe x = self.transformer(x) x = x.mean(dim = 1) x = self.to_latent(x) return self.linear_head(x)
vit-pytorch-main
vit_pytorch/simple_vit_3d.py
import torch from packaging import version if version.parse(torch.__version__) >= version.parse('2.0.0'): from einops._torch_specific import allow_ops_in_compiled_graph allow_ops_in_compiled_graph() from vit_pytorch.vit import ViT from vit_pytorch.simple_vit import SimpleViT from vit_pytorch.mae import MAE from vit_pytorch.dino import Dino
vit-pytorch-main
vit_pytorch/__init__.py
from collections import namedtuple from packaging import version import torch import torch.nn.functional as F from torch import nn from einops import rearrange from einops.layers.torch import Rearrange # constants Config = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32): _, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij') assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb' omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1) omega = 1. / (temperature ** omega) y = y.flatten()[:, None] * omega[None, :] x = x.flatten()[:, None] * omega[None, :] pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1) return pe.type(dtype) # main class class Attend(nn.Module): def __init__(self, use_flash = False): super().__init__() self.use_flash = use_flash assert not (use_flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = Config(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not use_flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: self.cuda_config = Config(True, False, False) else: self.cuda_config = Config(False, True, True) def flash_attn(self, q, k, v): config = self.cuda_config if q.is_cuda else self.cpu_config # flash attention - https://arxiv.org/abs/2205.14135 with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention(q, k, v) return out def forward(self, q, k, v): n, device, scale = q.shape[-2], q.device, q.shape[-1] ** -0.5 if self.use_flash: return self.flash_attn(q, k, v) # similarity sim = einsum("b h i d, b j d -> b h i j", q, k) * scale # attention attn = sim.softmax(dim=-1) # aggregate values out = einsum("b h i j, b j d -> b h i d", attn, v) return out # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Linear(hidden_dim, dim), ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, use_flash = True): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = Attend(use_flash = use_flash) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) out = self.attend(q, k, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, use_flash): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, use_flash = use_flash), FeedForward(dim, mlp_dim) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class SimpleViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, use_flash = True): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, use_flash) self.to_latent = nn.Identity() self.linear_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): *_, h, w, dtype = *img.shape, img.dtype x = self.to_patch_embedding(img) pe = posemb_sincos_2d(x) x = rearrange(x, 'b ... d -> b (...) d') + pe x = self.transformer(x) x = x.mean(dim = 1) x = self.to_latent(x) return self.linear_head(x)
vit-pytorch-main
vit_pytorch/simple_flash_attn_vit.py
import torch from torch import nn, einsum from einops import rearrange from einops.layers.torch import Rearrange, Reduce import torch.nn.functional as F # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def cast_tuple(val, length = 1): return val if isinstance(val, tuple) else ((val,) * length) def divisible_by(val, d): return (val % d) == 0 # helper classes class Downsample(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.conv = nn.Conv2d(dim_in, dim_out, 3, stride = 2, padding = 1) def forward(self, x): return self.conv(x) class PEG(nn.Module): def __init__(self, dim, kernel_size = 3): super().__init__() self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1) def forward(self, x): return self.proj(x) + x # transformer classes def FeedForward(dim, mult = 4, dropout = 0.): return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, dim * mult, 1), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim, 1) ) class Attention(nn.Module): def __init__( self, dim, heads = 4, dim_head = 32, dropout = 0. ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 inner_dim = dim_head * heads self.norm = nn.LayerNorm(dim) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, rel_pos_bias = None): h = self.heads # prenorm x = self.norm(x) q, k, v = self.to_qkv(x).chunk(3, dim = -1) # split heads q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j', q, k) # add relative positional bias for local tokens if exists(rel_pos_bias): sim = sim + rel_pos_bias attn = sim.softmax(dim = -1) attn = self.dropout(attn) # merge heads out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class R2LTransformer(nn.Module): def __init__( self, dim, *, window_size, depth = 4, heads = 4, dim_head = 32, attn_dropout = 0., ff_dropout = 0., ): super().__init__() self.layers = nn.ModuleList([]) self.window_size = window_size rel_positions = 2 * window_size - 1 self.local_rel_pos_bias = nn.Embedding(rel_positions ** 2, heads) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = attn_dropout), FeedForward(dim, dropout = ff_dropout) ])) def forward(self, local_tokens, region_tokens): device = local_tokens.device lh, lw = local_tokens.shape[-2:] rh, rw = region_tokens.shape[-2:] window_size_h, window_size_w = lh // rh, lw // rw local_tokens = rearrange(local_tokens, 'b c h w -> b (h w) c') region_tokens = rearrange(region_tokens, 'b c h w -> b (h w) c') # calculate local relative positional bias h_range = torch.arange(window_size_h, device = device) w_range = torch.arange(window_size_w, device = device) grid_x, grid_y = torch.meshgrid(h_range, w_range, indexing = 'ij') grid = torch.stack((grid_x, grid_y)) grid = rearrange(grid, 'c h w -> c (h w)') grid = (grid[:, :, None] - grid[:, None, :]) + (self.window_size - 1) bias_indices = (grid * torch.tensor([1, self.window_size * 2 - 1], device = device)[:, None, None]).sum(dim = 0) rel_pos_bias = self.local_rel_pos_bias(bias_indices) rel_pos_bias = rearrange(rel_pos_bias, 'i j h -> () h i j') rel_pos_bias = F.pad(rel_pos_bias, (1, 0, 1, 0), value = 0) # go through r2l transformer layers for attn, ff in self.layers: region_tokens = attn(region_tokens) + region_tokens # concat region tokens to local tokens local_tokens = rearrange(local_tokens, 'b (h w) d -> b h w d', h = lh) local_tokens = rearrange(local_tokens, 'b (h p1) (w p2) d -> (b h w) (p1 p2) d', p1 = window_size_h, p2 = window_size_w) region_tokens = rearrange(region_tokens, 'b n d -> (b n) () d') # do self attention on local tokens, along with its regional token region_and_local_tokens = torch.cat((region_tokens, local_tokens), dim = 1) region_and_local_tokens = attn(region_and_local_tokens, rel_pos_bias = rel_pos_bias) + region_and_local_tokens # feedforward region_and_local_tokens = ff(region_and_local_tokens) + region_and_local_tokens # split back local and regional tokens region_tokens, local_tokens = region_and_local_tokens[:, :1], region_and_local_tokens[:, 1:] local_tokens = rearrange(local_tokens, '(b h w) (p1 p2) d -> b (h p1 w p2) d', h = lh // window_size_h, w = lw // window_size_w, p1 = window_size_h) region_tokens = rearrange(region_tokens, '(b n) () d -> b n d', n = rh * rw) local_tokens = rearrange(local_tokens, 'b (h w) c -> b c h w', h = lh, w = lw) region_tokens = rearrange(region_tokens, 'b (h w) c -> b c h w', h = rh, w = rw) return local_tokens, region_tokens # classes class RegionViT(nn.Module): def __init__( self, *, dim = (64, 128, 256, 512), depth = (2, 2, 8, 2), window_size = 7, num_classes = 1000, tokenize_local_3_conv = False, local_patch_size = 4, use_peg = False, attn_dropout = 0., ff_dropout = 0., channels = 3, ): super().__init__() dim = cast_tuple(dim, 4) depth = cast_tuple(depth, 4) assert len(dim) == 4, 'dim needs to be a single value or a tuple of length 4' assert len(depth) == 4, 'depth needs to be a single value or a tuple of length 4' self.local_patch_size = local_patch_size region_patch_size = local_patch_size * window_size self.region_patch_size = local_patch_size * window_size init_dim, *_, last_dim = dim # local and region encoders if tokenize_local_3_conv: self.local_encoder = nn.Sequential( nn.Conv2d(3, init_dim, 3, 2, 1), nn.LayerNorm(init_dim), nn.GELU(), nn.Conv2d(init_dim, init_dim, 3, 2, 1), nn.LayerNorm(init_dim), nn.GELU(), nn.Conv2d(init_dim, init_dim, 3, 1, 1) ) else: self.local_encoder = nn.Conv2d(3, init_dim, 8, 4, 3) self.region_encoder = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (c p1 p2) h w', p1 = region_patch_size, p2 = region_patch_size), nn.Conv2d((region_patch_size ** 2) * channels, init_dim, 1) ) # layers current_dim = init_dim self.layers = nn.ModuleList([]) for ind, dim, num_layers in zip(range(4), dim, depth): not_first = ind != 0 need_downsample = not_first need_peg = not_first and use_peg self.layers.append(nn.ModuleList([ Downsample(current_dim, dim) if need_downsample else nn.Identity(), PEG(dim) if need_peg else nn.Identity(), R2LTransformer(dim, depth = num_layers, window_size = window_size, attn_dropout = attn_dropout, ff_dropout = ff_dropout) ])) current_dim = dim # final logits self.to_logits = nn.Sequential( Reduce('b c h w -> b c', 'mean'), nn.LayerNorm(last_dim), nn.Linear(last_dim, num_classes) ) def forward(self, x): *_, h, w = x.shape assert divisible_by(h, self.region_patch_size) and divisible_by(w, self.region_patch_size), 'height and width must be divisible by region patch size' assert divisible_by(h, self.local_patch_size) and divisible_by(w, self.local_patch_size), 'height and width must be divisible by local patch size' local_tokens = self.local_encoder(x) region_tokens = self.region_encoder(x) for down, peg, transformer in self.layers: local_tokens, region_tokens = down(local_tokens), down(region_tokens) local_tokens = peg(local_tokens) local_tokens, region_tokens = transformer(local_tokens, region_tokens) return self.to_logits(region_tokens)
vit-pytorch-main
vit_pytorch/regionvit.py
import torch from torch import nn def exists(val): return val is not None def identity(t): return t def clone_and_detach(t): return t.clone().detach() def apply_tuple_or_single(fn, val): if isinstance(val, tuple): return tuple(map(fn, val)) return fn(val) class Extractor(nn.Module): def __init__( self, vit, device = None, layer = None, layer_name = 'transformer', layer_save_input = False, return_embeddings_only = False, detach = True ): super().__init__() self.vit = vit self.data = None self.latents = None self.hooks = [] self.hook_registered = False self.ejected = False self.device = device self.layer = layer self.layer_name = layer_name self.layer_save_input = layer_save_input # whether to save input or output of layer self.return_embeddings_only = return_embeddings_only self.detach_fn = clone_and_detach if detach else identity def _hook(self, _, inputs, output): layer_output = inputs if self.layer_save_input else output self.latents = apply_tuple_or_single(self.detach_fn, layer_output) def _register_hook(self): if not exists(self.layer): assert hasattr(self.vit, self.layer_name), 'layer whose output to take as embedding not found in vision transformer' layer = getattr(self.vit, self.layer_name) else: layer = self.layer handle = layer.register_forward_hook(self._hook) self.hooks.append(handle) self.hook_registered = True def eject(self): self.ejected = True for hook in self.hooks: hook.remove() self.hooks.clear() return self.vit def clear(self): del self.latents self.latents = None def forward( self, img, return_embeddings_only = False ): assert not self.ejected, 'extractor has been ejected, cannot be used anymore' self.clear() if not self.hook_registered: self._register_hook() pred = self.vit(img) target_device = self.device if exists(self.device) else img.device latents = apply_tuple_or_single(lambda t: t.to(target_device), self.latents) if return_embeddings_only or self.return_embeddings_only: return latents return pred, latents
vit-pytorch-main
vit_pytorch/extractor.py
from functools import partial import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange, Reduce # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def pair(t): return t if isinstance(t, tuple) else (t, t) def cast_tuple(val, length = 1): return val if isinstance(val, tuple) else ((val,) * length) # helper classes class ChanLayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) def forward(self, x): var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) / (var + self.eps).sqrt() * self.g + self.b class Downsample(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.conv = nn.Conv2d(dim_in, dim_out, 3, stride = 2, padding = 1) def forward(self, x): return self.conv(x) class PEG(nn.Module): def __init__(self, dim, kernel_size = 3): super().__init__() self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1) def forward(self, x): return self.proj(x) + x # feedforward class FeedForward(nn.Module): def __init__(self, dim, expansion_factor = 4, dropout = 0.): super().__init__() inner_dim = dim * expansion_factor self.net = nn.Sequential( ChanLayerNorm(dim), nn.Conv2d(dim, inner_dim, 1), nn.GELU(), nn.Dropout(dropout), nn.Conv2d(inner_dim, dim, 1), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) # attention class ScalableSelfAttention(nn.Module): def __init__( self, dim, heads = 8, dim_key = 32, dim_value = 32, dropout = 0., reduction_factor = 1 ): super().__init__() self.heads = heads self.scale = dim_key ** -0.5 self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.norm = ChanLayerNorm(dim) self.to_q = nn.Conv2d(dim, dim_key * heads, 1, bias = False) self.to_k = nn.Conv2d(dim, dim_key * heads, reduction_factor, stride = reduction_factor, bias = False) self.to_v = nn.Conv2d(dim, dim_value * heads, reduction_factor, stride = reduction_factor, bias = False) self.to_out = nn.Sequential( nn.Conv2d(dim_value * heads, dim, 1), nn.Dropout(dropout) ) def forward(self, x): height, width, heads = *x.shape[-2:], self.heads x = self.norm(x) q, k, v = self.to_q(x), self.to_k(x), self.to_v(x) # split out heads q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v)) # similarity dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale # attention attn = self.attend(dots) attn = self.dropout(attn) # aggregate values out = torch.matmul(attn, v) # merge back heads out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = height, y = width) return self.to_out(out) class InteractiveWindowedSelfAttention(nn.Module): def __init__( self, dim, window_size, heads = 8, dim_key = 32, dim_value = 32, dropout = 0. ): super().__init__() self.heads = heads self.scale = dim_key ** -0.5 self.window_size = window_size self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.norm = ChanLayerNorm(dim) self.local_interactive_module = nn.Conv2d(dim_value * heads, dim_value * heads, 3, padding = 1) self.to_q = nn.Conv2d(dim, dim_key * heads, 1, bias = False) self.to_k = nn.Conv2d(dim, dim_key * heads, 1, bias = False) self.to_v = nn.Conv2d(dim, dim_value * heads, 1, bias = False) self.to_out = nn.Sequential( nn.Conv2d(dim_value * heads, dim, 1), nn.Dropout(dropout) ) def forward(self, x): height, width, heads, wsz = *x.shape[-2:], self.heads, self.window_size x = self.norm(x) wsz_h, wsz_w = default(wsz, height), default(wsz, width) assert (height % wsz_h) == 0 and (width % wsz_w) == 0, f'height ({height}) or width ({width}) of feature map is not divisible by the window size ({wsz_h}, {wsz_w})' q, k, v = self.to_q(x), self.to_k(x), self.to_v(x) # get output of LIM local_out = self.local_interactive_module(v) # divide into window (and split out heads) for efficient self attention q, k, v = map(lambda t: rearrange(t, 'b (h d) (x w1) (y w2) -> (b x y) h (w1 w2) d', h = heads, w1 = wsz_h, w2 = wsz_w), (q, k, v)) # similarity dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale # attention attn = self.attend(dots) attn = self.dropout(attn) # aggregate values out = torch.matmul(attn, v) # reshape the windows back to full feature map (and merge heads) out = rearrange(out, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz_h, y = width // wsz_w, w1 = wsz_h, w2 = wsz_w) # add LIM output out = out + local_out return self.to_out(out) class Transformer(nn.Module): def __init__( self, dim, depth, heads = 8, ff_expansion_factor = 4, dropout = 0., ssa_dim_key = 32, ssa_dim_value = 32, ssa_reduction_factor = 1, iwsa_dim_key = 32, iwsa_dim_value = 32, iwsa_window_size = None, norm_output = True ): super().__init__() self.layers = nn.ModuleList([]) for ind in range(depth): is_first = ind == 0 self.layers.append(nn.ModuleList([ ScalableSelfAttention(dim, heads = heads, dim_key = ssa_dim_key, dim_value = ssa_dim_value, reduction_factor = ssa_reduction_factor, dropout = dropout), FeedForward(dim, expansion_factor = ff_expansion_factor, dropout = dropout), PEG(dim) if is_first else None, FeedForward(dim, expansion_factor = ff_expansion_factor, dropout = dropout), InteractiveWindowedSelfAttention(dim, heads = heads, dim_key = iwsa_dim_key, dim_value = iwsa_dim_value, window_size = iwsa_window_size, dropout = dropout) ])) self.norm = ChanLayerNorm(dim) if norm_output else nn.Identity() def forward(self, x): for ssa, ff1, peg, iwsa, ff2 in self.layers: x = ssa(x) + x x = ff1(x) + x if exists(peg): x = peg(x) x = iwsa(x) + x x = ff2(x) + x return self.norm(x) class ScalableViT(nn.Module): def __init__( self, *, num_classes, dim, depth, heads, reduction_factor, window_size = None, iwsa_dim_key = 32, iwsa_dim_value = 32, ssa_dim_key = 32, ssa_dim_value = 32, ff_expansion_factor = 4, channels = 3, dropout = 0. ): super().__init__() self.to_patches = nn.Conv2d(channels, dim, 7, stride = 4, padding = 3) assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage' num_stages = len(depth) dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages))) hyperparams_per_stage = [ heads, ssa_dim_key, ssa_dim_value, reduction_factor, iwsa_dim_key, iwsa_dim_value, window_size, ] hyperparams_per_stage = list(map(partial(cast_tuple, length = num_stages), hyperparams_per_stage)) assert all(tuple(map(lambda arr: len(arr) == num_stages, hyperparams_per_stage))) self.layers = nn.ModuleList([]) for ind, (layer_dim, layer_depth, layer_heads, layer_ssa_dim_key, layer_ssa_dim_value, layer_ssa_reduction_factor, layer_iwsa_dim_key, layer_iwsa_dim_value, layer_window_size) in enumerate(zip(dims, depth, *hyperparams_per_stage)): is_last = ind == (num_stages - 1) self.layers.append(nn.ModuleList([ Transformer(dim = layer_dim, depth = layer_depth, heads = layer_heads, ff_expansion_factor = ff_expansion_factor, dropout = dropout, ssa_dim_key = layer_ssa_dim_key, ssa_dim_value = layer_ssa_dim_value, ssa_reduction_factor = layer_ssa_reduction_factor, iwsa_dim_key = layer_iwsa_dim_key, iwsa_dim_value = layer_iwsa_dim_value, iwsa_window_size = layer_window_size, norm_output = not is_last), Downsample(layer_dim, layer_dim * 2) if not is_last else None ])) self.mlp_head = nn.Sequential( Reduce('b d h w -> b d', 'mean'), nn.LayerNorm(dims[-1]), nn.Linear(dims[-1], num_classes) ) def forward(self, img): x = self.to_patches(img) for transformer, downsample in self.layers: x = transformer(x) if exists(downsample): x = downsample(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/scalable_vit.py
import torch from torch import nn from einops import rearrange from einops.layers.torch import Rearrange # helpers def posemb_sincos_1d(patches, temperature = 10000, dtype = torch.float32): _, n, dim, device, dtype = *patches.shape, patches.device, patches.dtype n = torch.arange(n, device = device) assert (dim % 2) == 0, 'feature dimension must be multiple of 2 for sincos emb' omega = torch.arange(dim // 2, device = device) / (dim // 2 - 1) omega = 1. / (temperature ** omega) n = n.flatten()[:, None] * omega[None, :] pe = torch.cat((n.sin(), n.cos()), dim = 1) return pe.type(dtype) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Linear(hidden_dim, dim), ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim): super().__init__() self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head), FeedForward(dim, mlp_dim) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class SimpleViT(nn.Module): def __init__(self, *, seq_len, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64): super().__init__() assert seq_len % patch_size == 0 num_patches = seq_len // patch_size patch_dim = channels * patch_size self.to_patch_embedding = nn.Sequential( Rearrange('b c (n p) -> b n (p c)', p = patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) self.to_latent = nn.Identity() self.linear_head = nn.Linear(dim, num_classes) def forward(self, series): *_, n, dtype = *series.shape, series.dtype x = self.to_patch_embedding(series) pe = posemb_sincos_1d(x) x = rearrange(x, 'b ... d -> b (...) d') + pe x = self.transformer(x) x = x.mean(dim = 1) x = self.to_latent(x) return self.linear_head(x) if __name__ == '__main__': v = SimpleViT( seq_len = 256, patch_size = 16, num_classes = 1000, dim = 1024, depth = 6, heads = 8, mlp_dim = 2048 ) time_series = torch.randn(4, 3, 256) logits = v(time_series) # (4, 1000)
vit-pytorch-main
vit_pytorch/simple_vit_1d.py
import torch from torch import nn from einops import rearrange from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32): _, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij') assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb' omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1) omega = 1. / (temperature ** omega) y = y.flatten()[:, None] * omega[None, :] x = x.flatten()[:, None] * omega[None, :] pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1) return pe.type(dtype) # patch dropout class PatchDropout(nn.Module): def __init__(self, prob): super().__init__() assert 0 <= prob < 1. self.prob = prob def forward(self, x): if not self.training or self.prob == 0.: return x b, n, _, device = *x.shape, x.device batch_indices = torch.arange(b, device = device) batch_indices = rearrange(batch_indices, '... -> ... 1') num_patches_keep = max(1, int(n * (1 - self.prob))) patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices return x[batch_indices, patch_indices_keep] # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Linear(hidden_dim, dim), ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim): super().__init__() self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head), FeedForward(dim, mlp_dim) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class SimpleViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, patch_dropout = 0.5): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.patch_dropout = PatchDropout(patch_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) self.to_latent = nn.Identity() self.linear_head = nn.Linear(dim, num_classes) def forward(self, img): *_, h, w, dtype = *img.shape, img.dtype x = self.to_patch_embedding(img) pe = posemb_sincos_2d(x) x = rearrange(x, 'b ... d -> b (...) d') + pe x = self.patch_dropout(x) x = self.transformer(x) x = x.mean(dim = 1) x = self.to_latent(x) return self.linear_head(x)
vit-pytorch-main
vit_pytorch/simple_vit_with_patch_dropout.py
import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Linear(dim, num_classes) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/vit.py
from math import sqrt import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # classes class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class ExcludeCLS(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): cls_token, x = x[:, :1], x[:, 1:] x = self.fn(x, **kwargs) return torch.cat((cls_token, x), dim = 1) # feed forward related classes class DepthWiseConv2d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size, padding, stride = 1, bias = True): super().__init__() self.net = nn.Sequential( nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias), nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias) ) def forward(self, x): return self.net(x) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Conv2d(dim, hidden_dim, 1), nn.Hardswish(), DepthWiseConv2d(hidden_dim, hidden_dim, 3, padding = 1), nn.Hardswish(), nn.Dropout(dropout), nn.Conv2d(hidden_dim, dim, 1), nn.Dropout(dropout) ) def forward(self, x): h = w = int(sqrt(x.shape[-2])) x = rearrange(x, 'b (h w) c -> b c h w', h = h, w = w) x = self.net(x) x = rearrange(x, 'b c h w -> b (h w) c') return x # attention class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x): b, n, _, h = *x.shape, self.heads x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Residual(Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), ExcludeCLS(Residual(FeedForward(dim, mlp_dim, dropout = dropout))) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) x = ff(x) return x # main class class LocalViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) return self.mlp_head(x[:, 0])
vit-pytorch-main
vit_pytorch/local_vit.py
import torch from torch import nn import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def pair(t): return t if isinstance(t, tuple) else (t, t) # controlling freezing of layers def set_module_requires_grad_(module, requires_grad): for param in module.parameters(): param.requires_grad = requires_grad def freeze_all_layers_(module): set_module_requires_grad_(module, False) def unfreeze_all_layers_(module): set_module_requires_grad_(module, True) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, attn_mask = None, memories = None): x = self.norm(x) x_kv = x # input for key / values projection if exists(memories): # add memories to key / values if it is passed in memories = repeat(memories, 'n d -> b n d', b = x.shape[0]) if memories.ndim == 2 else memories x_kv = torch.cat((x_kv, memories), dim = 1) qkv = (self.to_q(x), *self.to_kv(x_kv).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale if exists(attn_mask): dots = dots.masked_fill(~attn_mask, -torch.finfo(dots.dtype).max) attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x, attn_mask = None, memories = None): for ind, (attn, ff) in enumerate(self.layers): layer_memories = memories[ind] if exists(memories) else None x = attn(x, attn_mask = attn_mask, memories = layer_memories) + x x = ff(x) + x return x class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def img_to_tokens(self, img): x = self.to_patch_embedding(img) cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = x.shape[0]) x = torch.cat((cls_tokens, x), dim = 1) x += self.pos_embedding x = self.dropout(x) return x def forward(self, img): x = self.img_to_tokens(img) x = self.transformer(x) cls_tokens = x[:, 0] return self.mlp_head(cls_tokens) # adapter with learnable memories per layer, memory CLS token, and learnable adapter head class Adapter(nn.Module): def __init__( self, *, vit, num_memories_per_layer = 10, num_classes = 2, ): super().__init__() assert isinstance(vit, ViT) # extract some model variables needed dim = vit.cls_token.shape[-1] layers = len(vit.transformer.layers) num_patches = vit.pos_embedding.shape[-2] self.vit = vit # freeze ViT backbone - only memories will be finetuned freeze_all_layers_(vit) # learnable parameters self.memory_cls_token = nn.Parameter(torch.randn(dim)) self.memories_per_layer = nn.Parameter(torch.randn(layers, num_memories_per_layer, dim)) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) # specialized attention mask to preserve the output of the original ViT # it allows the memory CLS token to attend to all other tokens (and the learnable memory layer tokens), but not vice versa attn_mask = torch.ones((num_patches, num_patches), dtype = torch.bool) attn_mask = F.pad(attn_mask, (1, num_memories_per_layer), value = False) # main tokens cannot attend to learnable memories per layer attn_mask = F.pad(attn_mask, (0, 0, 1, 0), value = True) # memory CLS token can attend to everything self.register_buffer('attn_mask', attn_mask) def forward(self, img): b = img.shape[0] tokens = self.vit.img_to_tokens(img) # add task specific memory tokens memory_cls_tokens = repeat(self.memory_cls_token, 'd -> b 1 d', b = b) tokens = torch.cat((memory_cls_tokens, tokens), dim = 1) # pass memories along with image tokens through transformer for attending out = self.vit.transformer(tokens, memories = self.memories_per_layer, attn_mask = self.attn_mask) # extract memory CLS tokens memory_cls_tokens = out[:, 0] # pass through task specific adapter head return self.mlp_head(memory_cls_tokens)
vit-pytorch-main
vit_pytorch/learnable_memory_vit.py
import torch from torch import nn from einops import rearrange, repeat, reduce from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class ViT(nn.Module): def __init__( self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, spatial_depth, temporal_depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0. ): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(image_patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size' num_image_patches = (image_height // patch_height) * (image_width // patch_width) num_frame_patches = (frames // frame_patch_size) patch_dim = channels * patch_height * patch_width * frame_patch_size assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.global_average_pool = pool == 'mean' self.to_patch_embedding = nn.Sequential( Rearrange('b c (f pf) (h p1) (w p2) -> b f (h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_frame_patches, num_image_patches, dim)) self.dropout = nn.Dropout(emb_dropout) self.spatial_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None self.temporal_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None self.spatial_transformer = Transformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout) self.temporal_transformer = Transformer(dim, temporal_depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Linear(dim, num_classes) def forward(self, video): x = self.to_patch_embedding(video) b, f, n, _ = x.shape x = x + self.pos_embedding[:, :f, :n] if exists(self.spatial_cls_token): spatial_cls_tokens = repeat(self.spatial_cls_token, '1 1 d -> b f 1 d', b = b, f = f) x = torch.cat((spatial_cls_tokens, x), dim = 2) x = self.dropout(x) x = rearrange(x, 'b f n d -> (b f) n d') # attend across space x = self.spatial_transformer(x) x = rearrange(x, '(b f) n d -> b f n d', b = b) # excise out the spatial cls tokens or average pool for temporal attention x = x[:, :, 0] if not self.global_average_pool else reduce(x, 'b f n d -> b f d', 'mean') # append temporal CLS tokens if exists(self.temporal_cls_token): temporal_cls_tokens = repeat(self.temporal_cls_token, '1 1 d-> b 1 d', b = b) x = torch.cat((temporal_cls_tokens, x), dim = 1) # attend across time x = self.temporal_transformer(x) # excise out temporal cls token or average pool x = x[:, 0] if not self.global_average_pool else reduce(x, 'b f d -> b d', 'mean') x = self.to_latent(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/vivit.py
import torch from torch import nn from einops import rearrange from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32): y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij") assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb" omega = torch.arange(dim // 4) / (dim // 4 - 1) omega = 1.0 / (temperature ** omega) y = y.flatten()[:, None] * omega[None, :] x = x.flatten()[:, None] * omega[None, :] pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1) return pe.type(dtype) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Linear(hidden_dim, dim), ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim): super().__init__() self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head), FeedForward(dim, mlp_dim) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class SimpleViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.pos_embedding = posemb_sincos_2d( h = image_height // patch_height, w = image_width // patch_width, dim = dim, ) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) self.pool = "mean" self.to_latent = nn.Identity() self.linear_head = nn.Linear(dim, num_classes) def forward(self, img): device = img.device x = self.to_patch_embedding(img) x += self.pos_embedding.to(device, dtype=x.dtype) x = self.transformer(x) x = x.mean(dim = 1) x = self.to_latent(x) return self.linear_head(x)
vit-pytorch-main
vit_pytorch/simple_vit.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def pair(t): return t if isinstance(t, tuple) else (t, t) # CCT Models __all__ = ['cct_2', 'cct_4', 'cct_6', 'cct_7', 'cct_8', 'cct_14', 'cct_16'] def cct_2(*args, **kwargs): return _cct(num_layers=2, num_heads=2, mlp_ratio=1, embedding_dim=128, *args, **kwargs) def cct_4(*args, **kwargs): return _cct(num_layers=4, num_heads=2, mlp_ratio=1, embedding_dim=128, *args, **kwargs) def cct_6(*args, **kwargs): return _cct(num_layers=6, num_heads=4, mlp_ratio=2, embedding_dim=256, *args, **kwargs) def cct_7(*args, **kwargs): return _cct(num_layers=7, num_heads=4, mlp_ratio=2, embedding_dim=256, *args, **kwargs) def cct_8(*args, **kwargs): return _cct(num_layers=8, num_heads=4, mlp_ratio=2, embedding_dim=256, *args, **kwargs) def cct_14(*args, **kwargs): return _cct(num_layers=14, num_heads=6, mlp_ratio=3, embedding_dim=384, *args, **kwargs) def cct_16(*args, **kwargs): return _cct(num_layers=16, num_heads=6, mlp_ratio=3, embedding_dim=384, *args, **kwargs) def _cct(num_layers, num_heads, mlp_ratio, embedding_dim, kernel_size=3, stride=None, padding=None, *args, **kwargs): stride = default(stride, max(1, (kernel_size // 2) - 1)) padding = default(padding, max(1, (kernel_size // 2))) return CCT(num_layers=num_layers, num_heads=num_heads, mlp_ratio=mlp_ratio, embedding_dim=embedding_dim, kernel_size=kernel_size, stride=stride, padding=padding, *args, **kwargs) # positional def sinusoidal_embedding(n_channels, dim): pe = torch.FloatTensor([[p / (10000 ** (2 * (i // 2) / dim)) for i in range(dim)] for p in range(n_channels)]) pe[:, 0::2] = torch.sin(pe[:, 0::2]) pe[:, 1::2] = torch.cos(pe[:, 1::2]) return rearrange(pe, '... -> 1 ...') # modules class Attention(nn.Module): def __init__(self, dim, num_heads=8, attention_dropout=0.1, projection_dropout=0.1): super().__init__() self.heads = num_heads head_dim = dim // self.heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=False) self.attn_drop = nn.Dropout(attention_dropout) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(projection_dropout) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) q = q * self.scale attn = einsum('b h i d, b h j d -> b h i j', q, k) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = einsum('b h i j, b h j d -> b h i d', attn, v) x = rearrange(x, 'b h n d -> b n (h d)') return self.proj_drop(self.proj(x)) class TransformerEncoderLayer(nn.Module): """ Inspired by torch.nn.TransformerEncoderLayer and rwightman's timm package. """ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, attention_dropout=0.1, drop_path_rate=0.1): super().__init__() self.pre_norm = nn.LayerNorm(d_model) self.self_attn = Attention(dim=d_model, num_heads=nhead, attention_dropout=attention_dropout, projection_dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) self.linear2 = nn.Linear(dim_feedforward, d_model) self.dropout2 = nn.Dropout(dropout) self.drop_path = DropPath(drop_path_rate) self.activation = F.gelu def forward(self, src, *args, **kwargs): src = src + self.drop_path(self.self_attn(self.pre_norm(src))) src = self.norm1(src) src2 = self.linear2(self.dropout1(self.activation(self.linear1(src)))) src = src + self.drop_path(self.dropout2(src2)) return src class DropPath(nn.Module): def __init__(self, drop_prob=None): super().__init__() self.drop_prob = float(drop_prob) def forward(self, x): batch, drop_prob, device, dtype = x.shape[0], self.drop_prob, x.device, x.dtype if drop_prob <= 0. or not self.training: return x keep_prob = 1 - self.drop_prob shape = (batch, *((1,) * (x.ndim - 1))) keep_mask = torch.zeros(shape, device = device).float().uniform_(0, 1) < keep_prob output = x.div(keep_prob) * keep_mask.float() return output class Tokenizer(nn.Module): def __init__( self, frame_kernel_size, kernel_size, stride, padding, frame_stride=1, frame_pooling_stride=1, frame_pooling_kernel_size=1, pooling_kernel_size=3, pooling_stride=2, pooling_padding=1, n_conv_layers=1, n_input_channels=3, n_output_channels=64, in_planes=64, activation=None, max_pool=True, conv_bias=False ): super().__init__() n_filter_list = [n_input_channels] + \ [in_planes for _ in range(n_conv_layers - 1)] + \ [n_output_channels] n_filter_list_pairs = zip(n_filter_list[:-1], n_filter_list[1:]) self.conv_layers = nn.Sequential( *[nn.Sequential( nn.Conv3d(chan_in, chan_out, kernel_size=(frame_kernel_size, kernel_size, kernel_size), stride=(frame_stride, stride, stride), padding=(frame_kernel_size // 2, padding, padding), bias=conv_bias), nn.Identity() if not exists(activation) else activation(), nn.MaxPool3d(kernel_size=(frame_pooling_kernel_size, pooling_kernel_size, pooling_kernel_size), stride=(frame_pooling_stride, pooling_stride, pooling_stride), padding=(frame_pooling_kernel_size // 2, pooling_padding, pooling_padding)) if max_pool else nn.Identity() ) for chan_in, chan_out in n_filter_list_pairs ]) self.apply(self.init_weight) def sequence_length(self, n_channels=3, frames=8, height=224, width=224): return self.forward(torch.zeros((1, n_channels, frames, height, width))).shape[1] def forward(self, x): x = self.conv_layers(x) return rearrange(x, 'b c f h w -> b (f h w) c') @staticmethod def init_weight(m): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight) class TransformerClassifier(nn.Module): def __init__( self, seq_pool=True, embedding_dim=768, num_layers=12, num_heads=12, mlp_ratio=4.0, num_classes=1000, dropout_rate=0.1, attention_dropout=0.1, stochastic_depth_rate=0.1, positional_embedding='sine', sequence_length=None, *args, **kwargs ): super().__init__() assert positional_embedding in {'sine', 'learnable', 'none'} dim_feedforward = int(embedding_dim * mlp_ratio) self.embedding_dim = embedding_dim self.sequence_length = sequence_length self.seq_pool = seq_pool assert exists(sequence_length) or positional_embedding == 'none', \ f"Positional embedding is set to {positional_embedding} and" \ f" the sequence length was not specified." if not seq_pool: sequence_length += 1 self.class_emb = nn.Parameter(torch.zeros(1, 1, self.embedding_dim)) else: self.attention_pool = nn.Linear(self.embedding_dim, 1) if positional_embedding == 'none': self.positional_emb = None elif positional_embedding == 'learnable': self.positional_emb = nn.Parameter(torch.zeros(1, sequence_length, embedding_dim)) nn.init.trunc_normal_(self.positional_emb, std = 0.2) else: self.register_buffer('positional_emb', sinusoidal_embedding(sequence_length, embedding_dim)) self.dropout = nn.Dropout(p=dropout_rate) dpr = [x.item() for x in torch.linspace(0, stochastic_depth_rate, num_layers)] self.blocks = nn.ModuleList([ TransformerEncoderLayer(d_model=embedding_dim, nhead=num_heads, dim_feedforward=dim_feedforward, dropout=dropout_rate, attention_dropout=attention_dropout, drop_path_rate=layer_dpr) for layer_dpr in dpr]) self.norm = nn.LayerNorm(embedding_dim) self.fc = nn.Linear(embedding_dim, num_classes) self.apply(self.init_weight) @staticmethod def init_weight(m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and exists(m.bias): nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self, x): b = x.shape[0] if not exists(self.positional_emb) and x.size(1) < self.sequence_length: x = F.pad(x, (0, 0, 0, self.n_channels - x.size(1)), mode='constant', value=0) if not self.seq_pool: cls_token = repeat(self.class_emb, '1 1 d -> b 1 d', b = b) x = torch.cat((cls_token, x), dim=1) if exists(self.positional_emb): x += self.positional_emb x = self.dropout(x) for blk in self.blocks: x = blk(x) x = self.norm(x) if self.seq_pool: attn_weights = rearrange(self.attention_pool(x), 'b n 1 -> b n') x = einsum('b n, b n d -> b d', attn_weights.softmax(dim = 1), x) else: x = x[:, 0] return self.fc(x) # CCT Main model class CCT(nn.Module): def __init__( self, img_size=224, num_frames=8, embedding_dim=768, n_input_channels=3, n_conv_layers=1, frame_stride=1, frame_kernel_size=3, frame_pooling_kernel_size=1, frame_pooling_stride=1, kernel_size=7, stride=2, padding=3, pooling_kernel_size=3, pooling_stride=2, pooling_padding=1, *args, **kwargs ): super().__init__() img_height, img_width = pair(img_size) self.tokenizer = Tokenizer( n_input_channels=n_input_channels, n_output_channels=embedding_dim, frame_stride=frame_stride, frame_kernel_size=frame_kernel_size, frame_pooling_stride=frame_pooling_stride, frame_pooling_kernel_size=frame_pooling_kernel_size, kernel_size=kernel_size, stride=stride, padding=padding, pooling_kernel_size=pooling_kernel_size, pooling_stride=pooling_stride, pooling_padding=pooling_padding, max_pool=True, activation=nn.ReLU, n_conv_layers=n_conv_layers, conv_bias=False ) self.classifier = TransformerClassifier( sequence_length=self.tokenizer.sequence_length( n_channels=n_input_channels, frames=num_frames, height=img_height, width=img_width ), embedding_dim=embedding_dim, seq_pool=True, dropout_rate=0., attention_dropout=0.1, stochastic_depth=0.1, *args, **kwargs ) def forward(self, x): x = self.tokenizer(x) return self.classifier(x)
vit-pytorch-main
vit_pytorch/cct_3d.py
from functools import partial import torch from torch import nn, einsum from einops import rearrange, repeat from einops.layers.torch import Rearrange, Reduce # helpers def cast_tuple(val, length = 1): return val if isinstance(val, tuple) else ((val,) * length) # helper classes class ChanLayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1)) def forward(self, x): var = torch.var(x, dim = 1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) / (var + self.eps).sqrt() * self.g + self.b class OverlappingPatchEmbed(nn.Module): def __init__(self, dim_in, dim_out, stride = 2): super().__init__() kernel_size = stride * 2 - 1 padding = kernel_size // 2 self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding) def forward(self, x): return self.conv(x) class PEG(nn.Module): def __init__(self, dim, kernel_size = 3): super().__init__() self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1) def forward(self, x): return self.proj(x) + x # feedforward class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() inner_dim = int(dim * mult) self.net = nn.Sequential( ChanLayerNorm(dim), nn.Conv2d(dim, inner_dim, 1), nn.GELU(), nn.Dropout(dropout), nn.Conv2d(inner_dim, dim, 1), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) # attention class DSSA(nn.Module): def __init__( self, dim, heads = 8, dim_head = 32, dropout = 0., window_size = 7 ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 self.window_size = window_size inner_dim = dim_head * heads self.norm = ChanLayerNorm(dim) self.attend = nn.Sequential( nn.Softmax(dim = -1), nn.Dropout(dropout) ) self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False) # window tokens self.window_tokens = nn.Parameter(torch.randn(dim)) # prenorm and non-linearity for window tokens # then projection to queries and keys for window tokens self.window_tokens_to_qk = nn.Sequential( nn.LayerNorm(dim_head), nn.GELU(), Rearrange('b h n c -> b (h c) n'), nn.Conv1d(inner_dim, inner_dim * 2, 1), Rearrange('b (h c) n -> b h n c', h = heads), ) # window attention self.window_attend = nn.Sequential( nn.Softmax(dim = -1), nn.Dropout(dropout) ) self.to_out = nn.Sequential( nn.Conv2d(inner_dim, dim, 1), nn.Dropout(dropout) ) def forward(self, x): """ einstein notation b - batch c - channels w1 - window size (height) w2 - also window size (width) i - sequence dimension (source) j - sequence dimension (target dimension to be reduced) h - heads x - height of feature map divided by window size y - width of feature map divided by window size """ batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}' num_windows = (height // wsz) * (width // wsz) x = self.norm(x) # fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz) # add windowing tokens w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0]) x = torch.cat((w, x), dim = -1) # project for queries, keys, value q, k, v = self.to_qkv(x).chunk(3, dim = 1) # split out heads q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v)) # scale q = q * self.scale # similarity dots = einsum('b h i d, b h j d -> b h i j', q, k) # attention attn = self.attend(dots) # aggregate values out = torch.matmul(attn, v) # split out windowed tokens window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:] # early return if there is only 1 window if num_windows == 1: fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) return self.to_out(fmap) # carry out the pointwise attention, the main novelty in the paper window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz) windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz) # windowed queries and keys (preceded by prenorm activation) w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1) # scale w_q = w_q * self.scale # similarities w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k) w_attn = self.window_attend(w_dots) # aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before) aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps) # fold back the windows and then combine heads for aggregation fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz) return self.to_out(fmap) class Transformer(nn.Module): def __init__( self, dim, depth, dim_head = 32, heads = 8, ff_mult = 4, dropout = 0., norm_output = True ): super().__init__() self.layers = nn.ModuleList([]) for ind in range(depth): self.layers.append(nn.ModuleList([ DSSA(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mult = ff_mult, dropout = dropout), ])) self.norm = ChanLayerNorm(dim) if norm_output else nn.Identity() def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class SepViT(nn.Module): def __init__( self, *, num_classes, dim, depth, heads, window_size = 7, dim_head = 32, ff_mult = 4, channels = 3, dropout = 0. ): super().__init__() assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage' num_stages = len(depth) dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages))) dims = (channels, *dims) dim_pairs = tuple(zip(dims[:-1], dims[1:])) strides = (4, *((2,) * (num_stages - 1))) hyperparams_per_stage = [heads, window_size] hyperparams_per_stage = list(map(partial(cast_tuple, length = num_stages), hyperparams_per_stage)) assert all(tuple(map(lambda arr: len(arr) == num_stages, hyperparams_per_stage))) self.layers = nn.ModuleList([]) for ind, ((layer_dim_in, layer_dim), layer_depth, layer_stride, layer_heads, layer_window_size) in enumerate(zip(dim_pairs, depth, strides, *hyperparams_per_stage)): is_last = ind == (num_stages - 1) self.layers.append(nn.ModuleList([ OverlappingPatchEmbed(layer_dim_in, layer_dim, stride = layer_stride), PEG(layer_dim), Transformer(dim = layer_dim, depth = layer_depth, heads = layer_heads, ff_mult = ff_mult, dropout = dropout, norm_output = not is_last), ])) self.mlp_head = nn.Sequential( Reduce('b d h w -> b d', 'mean'), nn.LayerNorm(dims[-1]), nn.Linear(dims[-1], num_classes) ) def forward(self, x): for ope, peg, transformer in self.layers: x = ope(x) x = peg(x) x = transformer(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/sep_vit.py
import torch import torch.nn.functional as F from torch import nn from vit_pytorch.vit import ViT from vit_pytorch.t2t import T2TViT from vit_pytorch.efficient import ViT as EfficientViT from einops import rearrange, repeat # helpers def exists(val): return val is not None # classes class DistillMixin: def forward(self, img, distill_token = None): distilling = exists(distill_token) x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim = 1) x += self.pos_embedding[:, :(n + 1)] if distilling: distill_tokens = repeat(distill_token, '() n d -> b n d', b = b) x = torch.cat((x, distill_tokens), dim = 1) x = self._attend(x) if distilling: x, distill_tokens = x[:, :-1], x[:, -1] x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) out = self.mlp_head(x) if distilling: return out, distill_tokens return out class DistillableViT(DistillMixin, ViT): def __init__(self, *args, **kwargs): super(DistillableViT, self).__init__(*args, **kwargs) self.args = args self.kwargs = kwargs self.dim = kwargs['dim'] self.num_classes = kwargs['num_classes'] def to_vit(self): v = ViT(*self.args, **self.kwargs) v.load_state_dict(self.state_dict()) return v def _attend(self, x): x = self.dropout(x) x = self.transformer(x) return x class DistillableT2TViT(DistillMixin, T2TViT): def __init__(self, *args, **kwargs): super(DistillableT2TViT, self).__init__(*args, **kwargs) self.args = args self.kwargs = kwargs self.dim = kwargs['dim'] self.num_classes = kwargs['num_classes'] def to_vit(self): v = T2TViT(*self.args, **self.kwargs) v.load_state_dict(self.state_dict()) return v def _attend(self, x): x = self.dropout(x) x = self.transformer(x) return x class DistillableEfficientViT(DistillMixin, EfficientViT): def __init__(self, *args, **kwargs): super(DistillableEfficientViT, self).__init__(*args, **kwargs) self.args = args self.kwargs = kwargs self.dim = kwargs['dim'] self.num_classes = kwargs['num_classes'] def to_vit(self): v = EfficientViT(*self.args, **self.kwargs) v.load_state_dict(self.state_dict()) return v def _attend(self, x): return self.transformer(x) # knowledge distillation wrapper class DistillWrapper(nn.Module): def __init__( self, *, teacher, student, temperature = 1., alpha = 0.5, hard = False ): super().__init__() assert (isinstance(student, (DistillableViT, DistillableT2TViT, DistillableEfficientViT))) , 'student must be a vision transformer' self.teacher = teacher self.student = student dim = student.dim num_classes = student.num_classes self.temperature = temperature self.alpha = alpha self.hard = hard self.distillation_token = nn.Parameter(torch.randn(1, 1, dim)) self.distill_mlp = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img, labels, temperature = None, alpha = None, **kwargs): b, *_ = img.shape alpha = alpha if exists(alpha) else self.alpha T = temperature if exists(temperature) else self.temperature with torch.no_grad(): teacher_logits = self.teacher(img) student_logits, distill_tokens = self.student(img, distill_token = self.distillation_token, **kwargs) distill_logits = self.distill_mlp(distill_tokens) loss = F.cross_entropy(student_logits, labels) if not self.hard: distill_loss = F.kl_div( F.log_softmax(distill_logits / T, dim = -1), F.softmax(teacher_logits / T, dim = -1).detach(), reduction = 'batchmean') distill_loss *= T ** 2 else: teacher_labels = teacher_logits.argmax(dim = -1) distill_loss = F.cross_entropy(distill_logits, teacher_labels) return loss * (1 - alpha) + distill_loss * alpha
vit-pytorch-main
vit_pytorch/distill.py
import math import torch from torch import nn import torch.nn.functional as F from einops import rearrange, repeat, reduce # helpers def exists(val): return val is not None def prob_mask_like(t, prob): batch, seq_length, _ = t.shape return torch.zeros((batch, seq_length)).float().uniform_(0, 1) < prob def get_mask_subset_with_prob(patched_input, prob): batch, seq_len, _, device = *patched_input.shape, patched_input.device max_masked = math.ceil(prob * seq_len) rand = torch.rand((batch, seq_len), device=device) _, sampled_indices = rand.topk(max_masked, dim=-1) new_mask = torch.zeros((batch, seq_len), device=device) new_mask.scatter_(1, sampled_indices, 1) return new_mask.bool() # mpp loss class MPPLoss(nn.Module): def __init__( self, patch_size, channels, output_channel_bits, max_pixel_val, mean, std ): super().__init__() self.patch_size = patch_size self.channels = channels self.output_channel_bits = output_channel_bits self.max_pixel_val = max_pixel_val self.mean = torch.tensor(mean).view(-1, 1, 1) if mean else None self.std = torch.tensor(std).view(-1, 1, 1) if std else None def forward(self, predicted_patches, target, mask): p, c, mpv, bits, device = self.patch_size, self.channels, self.max_pixel_val, self.output_channel_bits, target.device bin_size = mpv / (2 ** bits) # un-normalize input if exists(self.mean) and exists(self.std): target = target * self.std + self.mean # reshape target to patches target = target.clamp(max = mpv) # clamp just in case avg_target = reduce(target, 'b c (h p1) (w p2) -> b (h w) c', 'mean', p1 = p, p2 = p).contiguous() channel_bins = torch.arange(bin_size, mpv, bin_size, device = device) discretized_target = torch.bucketize(avg_target, channel_bins) bin_mask = (2 ** bits) ** torch.arange(0, c, device = device).long() bin_mask = rearrange(bin_mask, 'c -> () () c') target_label = torch.sum(bin_mask * discretized_target, dim = -1) loss = F.cross_entropy(predicted_patches[mask], target_label[mask]) return loss # main class class MPP(nn.Module): def __init__( self, transformer, patch_size, dim, output_channel_bits=3, channels=3, max_pixel_val=1.0, mask_prob=0.15, replace_prob=0.5, random_patch_prob=0.5, mean=None, std=None ): super().__init__() self.transformer = transformer self.loss = MPPLoss(patch_size, channels, output_channel_bits, max_pixel_val, mean, std) # extract patching function self.patch_to_emb = nn.Sequential(transformer.to_patch_embedding[1:]) # output transformation self.to_bits = nn.Linear(dim, 2**(output_channel_bits * channels)) # vit related dimensions self.patch_size = patch_size # mpp related probabilities self.mask_prob = mask_prob self.replace_prob = replace_prob self.random_patch_prob = random_patch_prob # token ids self.mask_token = nn.Parameter(torch.randn(1, 1, channels * patch_size ** 2)) def forward(self, input, **kwargs): transformer = self.transformer # clone original image for loss img = input.clone().detach() # reshape raw image to patches p = self.patch_size input = rearrange(input, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p) mask = get_mask_subset_with_prob(input, self.mask_prob) # mask input with mask patches with probability of `replace_prob` (keep patches the same with probability 1 - replace_prob) masked_input = input.clone().detach() # if random token probability > 0 for mpp if self.random_patch_prob > 0: random_patch_sampling_prob = self.random_patch_prob / ( 1 - self.replace_prob) random_patch_prob = prob_mask_like(input, random_patch_sampling_prob).to(mask.device) bool_random_patch_prob = mask * (random_patch_prob == True) random_patches = torch.randint(0, input.shape[1], (input.shape[0], input.shape[1]), device=input.device) randomized_input = masked_input[ torch.arange(masked_input.shape[0]).unsqueeze(-1), random_patches] masked_input[bool_random_patch_prob] = randomized_input[ bool_random_patch_prob] # [mask] input replace_prob = prob_mask_like(input, self.replace_prob).to(mask.device) bool_mask_replace = (mask * replace_prob) == True masked_input[bool_mask_replace] = self.mask_token # linear embedding of patches masked_input = self.patch_to_emb(masked_input) # add cls token to input sequence b, n, _ = masked_input.shape cls_tokens = repeat(transformer.cls_token, '() n d -> b n d', b=b) masked_input = torch.cat((cls_tokens, masked_input), dim=1) # add positional embeddings to input masked_input += transformer.pos_embedding[:, :(n + 1)] masked_input = transformer.dropout(masked_input) # get generator output and get mpp loss masked_input = transformer.transformer(masked_input, **kwargs) cls_logits = self.to_bits(masked_input) logits = cls_logits[:, 1:, :] mpp_loss = self.loss(logits, img, mask) return mpp_loss
vit-pytorch-main
vit_pytorch/mpp.py
import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class PatchDropout(nn.Module): def __init__(self, prob): super().__init__() assert 0 <= prob < 1. self.prob = prob def forward(self, x): if not self.training or self.prob == 0.: return x b, n, _, device = *x.shape, x.device batch_indices = torch.arange(b, device = device) batch_indices = rearrange(batch_indices, '... -> ... 1') num_patches_keep = max(1, int(n * (1 - self.prob))) patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices return x[batch_indices, patch_indices_keep] class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., patch_dropout = 0.25): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.Linear(patch_dim, dim), ) self.pos_embedding = nn.Parameter(torch.randn(num_patches, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.patch_dropout = PatchDropout(patch_dropout) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape x += self.pos_embedding x = self.patch_dropout(x) cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b) x = torch.cat((cls_tokens, x), dim=1) x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/vit_with_patch_dropout.py
import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class Parallel(nn.Module): def __init__(self, *fns): super().__init__() self.fns = nn.ModuleList(fns) def forward(self, x): return sum([fn(x) for fn in self.fns]) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, num_parallel_branches = 2, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) attn_block = lambda: Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout) ff_block = lambda: FeedForward(dim, mlp_dim, dropout = dropout) for _ in range(depth): self.layers.append(nn.ModuleList([ Parallel(*[attn_block() for _ in range(num_parallel_branches)]), Parallel(*[ff_block() for _ in range(num_parallel_branches)]), ])) def forward(self, x): for attns, ffs in self.layers: x = attns(x) + x x = ffs(x) + x return x class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', num_parallel_branches = 2, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.Linear(patch_dim, dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, num_parallel_branches, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/parallel_vit.py
import torch import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence from torch import nn, einsum from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def pair(t): return t if isinstance(t, tuple) else (t, t) # adaptive token sampling functions and classes def log(t, eps = 1e-6): return torch.log(t + eps) def sample_gumbel(shape, device, dtype, eps = 1e-6): u = torch.empty(shape, device = device, dtype = dtype).uniform_(0, 1) return -log(-log(u, eps), eps) def batched_index_select(values, indices, dim = 1): value_dims = values.shape[(dim + 1):] values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices)) indices = indices[(..., *((None,) * len(value_dims)))] indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims) value_expand_len = len(indices_shape) - (dim + 1) values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)] value_expand_shape = [-1] * len(values.shape) expand_slice = slice(dim, (dim + value_expand_len)) value_expand_shape[expand_slice] = indices.shape[expand_slice] values = values.expand(*value_expand_shape) dim += value_expand_len return values.gather(dim, indices) class AdaptiveTokenSampling(nn.Module): def __init__(self, output_num_tokens, eps = 1e-6): super().__init__() self.eps = eps self.output_num_tokens = output_num_tokens def forward(self, attn, value, mask): heads, output_num_tokens, eps, device, dtype = attn.shape[1], self.output_num_tokens, self.eps, attn.device, attn.dtype # first get the attention values for CLS token to all other tokens cls_attn = attn[..., 0, 1:] # calculate the norms of the values, for weighting the scores, as described in the paper value_norms = value[..., 1:, :].norm(dim = -1) # weigh the attention scores by the norm of the values, sum across all heads cls_attn = einsum('b h n, b h n -> b n', cls_attn, value_norms) # normalize to 1 normed_cls_attn = cls_attn / (cls_attn.sum(dim = -1, keepdim = True) + eps) # instead of using inverse transform sampling, going to invert the softmax and use gumbel-max sampling instead pseudo_logits = log(normed_cls_attn) # mask out pseudo logits for gumbel-max sampling mask_without_cls = mask[:, 1:] mask_value = -torch.finfo(attn.dtype).max / 2 pseudo_logits = pseudo_logits.masked_fill(~mask_without_cls, mask_value) # expand k times, k being the adaptive sampling number pseudo_logits = repeat(pseudo_logits, 'b n -> b k n', k = output_num_tokens) pseudo_logits = pseudo_logits + sample_gumbel(pseudo_logits.shape, device = device, dtype = dtype) # gumble-max and add one to reserve 0 for padding / mask sampled_token_ids = pseudo_logits.argmax(dim = -1) + 1 # calculate unique using torch.unique and then pad the sequence from the right unique_sampled_token_ids_list = [torch.unique(t, sorted = True) for t in torch.unbind(sampled_token_ids)] unique_sampled_token_ids = pad_sequence(unique_sampled_token_ids_list, batch_first = True) # calculate the new mask, based on the padding new_mask = unique_sampled_token_ids != 0 # CLS token never gets masked out (gets a value of True) new_mask = F.pad(new_mask, (1, 0), value = True) # prepend a 0 token id to keep the CLS attention scores unique_sampled_token_ids = F.pad(unique_sampled_token_ids, (1, 0), value = 0) expanded_unique_sampled_token_ids = repeat(unique_sampled_token_ids, 'b n -> b h n', h = heads) # gather the new attention scores new_attn = batched_index_select(attn, expanded_unique_sampled_token_ids, dim = 2) # return the sampled attention scores, new mask (denoting padding), as well as the sampled token indices (for the residual) return new_attn, new_mask, unique_sampled_token_ids # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., output_num_tokens = None): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.output_num_tokens = output_num_tokens self.ats = AdaptiveTokenSampling(output_num_tokens) if exists(output_num_tokens) else None self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, *, mask): num_tokens = x.shape[1] x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale if exists(mask): dots_mask = rearrange(mask, 'b i -> b 1 i 1') * rearrange(mask, 'b j -> b 1 1 j') mask_value = -torch.finfo(dots.dtype).max dots = dots.masked_fill(~dots_mask, mask_value) attn = self.attend(dots) attn = self.dropout(attn) sampled_token_ids = None # if adaptive token sampling is enabled # and number of tokens is greater than the number of output tokens if exists(self.output_num_tokens) and (num_tokens - 1) > self.output_num_tokens: attn, mask, sampled_token_ids = self.ats(attn, v, mask = mask) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out), mask, sampled_token_ids class Transformer(nn.Module): def __init__(self, dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() assert len(max_tokens_per_depth) == depth, 'max_tokens_per_depth must be a tuple of length that is equal to the depth of the transformer' assert sorted(max_tokens_per_depth, reverse = True) == list(max_tokens_per_depth), 'max_tokens_per_depth must be in decreasing order' assert min(max_tokens_per_depth) > 0, 'max_tokens_per_depth must have at least 1 token at any layer' self.layers = nn.ModuleList([]) for _, output_num_tokens in zip(range(depth), max_tokens_per_depth): self.layers.append(nn.ModuleList([ Attention(dim, output_num_tokens = output_num_tokens, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): b, n, device = *x.shape[:2], x.device # use mask to keep track of the paddings when sampling tokens # as the duplicates (when sampling) are just removed, as mentioned in the paper mask = torch.ones((b, n), device = device, dtype = torch.bool) token_ids = torch.arange(n, device = device) token_ids = repeat(token_ids, 'n -> b n', b = b) for attn, ff in self.layers: attn_out, mask, sampled_token_ids = attn(x, mask = mask) # when token sampling, one needs to then gather the residual tokens with the sampled token ids if exists(sampled_token_ids): x = batched_index_select(x, sampled_token_ids, dim = 1) token_ids = batched_index_select(token_ids, sampled_token_ids, dim = 1) x = x + attn_out x = ff(x) + x return x, token_ids class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, max_tokens_per_depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img, return_sampled_token_ids = False): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x, token_ids = self.transformer(x) logits = self.mlp_head(x[:, 0]) if return_sampled_token_ids: # remove CLS token and decrement by 1 to make -1 the padding token_ids = token_ids[:, 1:] - 1 return logits, token_ids return logits
vit-pytorch-main
vit_pytorch/ats_vit.py
import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange, Reduce # helpers def exists(val): return val is not None def default(val ,d): return val if exists(val) else d def pair(t): return t if isinstance(t, tuple) else (t, t) # patch merger class class PatchMerger(nn.Module): def __init__(self, dim, num_tokens_out): super().__init__() self.scale = dim ** -0.5 self.norm = nn.LayerNorm(dim) self.queries = nn.Parameter(torch.randn(num_tokens_out, dim)) def forward(self, x): x = self.norm(x) sim = torch.matmul(self.queries, x.transpose(-1, -2)) * self.scale attn = sim.softmax(dim = -1) return torch.matmul(attn, x) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., patch_merge_layer = None, patch_merge_num_tokens = 8): super().__init__() self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) self.patch_merge_layer_index = default(patch_merge_layer, depth // 2) - 1 # default to mid-way through transformer, as shown in paper self.patch_merger = PatchMerger(dim = dim, num_tokens_out = patch_merge_num_tokens) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for index, (attn, ff) in enumerate(self.layers): x = attn(x) + x x = ff(x) + x if index == self.patch_merge_layer_index: x = self.patch_merger(x) return self.norm(x) class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, patch_merge_layer = None, patch_merge_num_tokens = 8, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, patch_merge_layer, patch_merge_num_tokens) self.mlp_head = nn.Sequential( Reduce('b n d -> b d', 'mean'), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape x += self.pos_embedding[:, :n] x = self.dropout(x) x = self.transformer(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/vit_with_patch_merger.py
import math import torch from torch import nn from vit_pytorch.vit import Transformer from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def conv_output_size(image_size, kernel_size, stride, padding): return int(((image_size - kernel_size + (2 * padding)) / stride) + 1) # classes class RearrangeImage(nn.Module): def forward(self, x): return rearrange(x, 'b (h w) c -> b c h w', h = int(math.sqrt(x.shape[1]))) # main class class T2TViT(nn.Module): def __init__(self, *, image_size, num_classes, dim, depth = None, heads = None, mlp_dim = None, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., transformer = None, t2t_layers = ((7, 4), (3, 2), (3, 2))): super().__init__() assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' layers = [] layer_dim = channels output_image_size = image_size for i, (kernel_size, stride) in enumerate(t2t_layers): layer_dim *= kernel_size ** 2 is_first = i == 0 is_last = i == (len(t2t_layers) - 1) output_image_size = conv_output_size(output_image_size, kernel_size, stride, stride // 2) layers.extend([ RearrangeImage() if not is_first else nn.Identity(), nn.Unfold(kernel_size = kernel_size, stride = stride, padding = stride // 2), Rearrange('b c n -> b n c'), Transformer(dim = layer_dim, heads = 1, depth = 1, dim_head = layer_dim, mlp_dim = layer_dim, dropout = dropout) if not is_last else nn.Identity(), ]) layers.append(nn.Linear(layer_dim, dim)) self.to_patch_embedding = nn.Sequential(*layers) self.pos_embedding = nn.Parameter(torch.randn(1, output_image_size ** 2 + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) if not exists(transformer): assert all([exists(depth), exists(heads), exists(mlp_dim)]), 'depth, heads, and mlp_dim must be supplied' self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) else: self.transformer = transformer self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :n+1] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/t2t.py
import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class ViT(nn.Module): def __init__(self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(image_patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size' num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size) patch_dim = channels * patch_height * patch_width * frame_patch_size assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = nn.Sequential( Rearrange('b c (f pf) (h p1) (w p2) -> b (f h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, video): x = self.to_patch_embedding(video) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/vit_3d.py
from functools import partial from typing import List, Union import torch import torch.nn.functional as F from torch import nn, Tensor from torch.nn.utils.rnn import pad_sequence as orig_pad_sequence from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def always(val): return lambda *args: val def pair(t): return t if isinstance(t, tuple) else (t, t) def divisible_by(numer, denom): return (numer % denom) == 0 # auto grouping images def group_images_by_max_seq_len( images: List[Tensor], patch_size: int, calc_token_dropout = None, max_seq_len = 2048 ) -> List[List[Tensor]]: calc_token_dropout = default(calc_token_dropout, always(0.)) groups = [] group = [] seq_len = 0 if isinstance(calc_token_dropout, (float, int)): calc_token_dropout = always(calc_token_dropout) for image in images: assert isinstance(image, Tensor) image_dims = image.shape[-2:] ph, pw = map(lambda t: t // patch_size, image_dims) image_seq_len = (ph * pw) image_seq_len = int(image_seq_len * (1 - calc_token_dropout(*image_dims))) assert image_seq_len <= max_seq_len, f'image with dimensions {image_dims} exceeds maximum sequence length' if (seq_len + image_seq_len) > max_seq_len: groups.append(group) group = [] seq_len = 0 group.append(image) seq_len += image_seq_len if len(group) > 0: groups.append(group) return groups # normalization # they use layernorm without bias, something that pytorch does not offer class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.register_buffer('beta', torch.zeros(dim)) def forward(self, x): return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) # they use a query-key normalization that is equivalent to rms norm (no mean-centering, learned gamma), from vit 22B paper class RMSNorm(nn.Module): def __init__(self, heads, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(heads, 1, dim)) def forward(self, x): normed = F.normalize(x, dim = -1) return normed * self.scale * self.gamma # feedforward def FeedForward(dim, hidden_dim, dropout = 0.): return nn.Sequential( LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.norm = LayerNorm(dim) self.q_norm = RMSNorm(heads, dim_head) self.k_norm = RMSNorm(heads, dim_head) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim, bias = False), nn.Dropout(dropout) ) def forward( self, x, context = None, mask = None, attn_mask = None ): x = self.norm(x) kv_input = default(context, x) qkv = (self.to_q(x), *self.to_kv(kv_input).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) q = self.q_norm(q) k = self.k_norm(k) dots = torch.matmul(q, k.transpose(-1, -2)) if exists(mask): mask = rearrange(mask, 'b j -> b 1 1 j') dots = dots.masked_fill(~mask, -torch.finfo(dots.dtype).max) if exists(attn_mask): dots = dots.masked_fill(~attn_mask, -torch.finfo(dots.dtype).max) attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) self.norm = LayerNorm(dim) def forward( self, x, mask = None, attn_mask = None ): for attn, ff in self.layers: x = attn(x, mask = mask, attn_mask = attn_mask) + x x = ff(x) + x return self.norm(x) class NaViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., token_dropout_prob = None): super().__init__() image_height, image_width = pair(image_size) # what percent of tokens to dropout # if int or float given, then assume constant dropout prob # otherwise accept a callback that in turn calculates dropout prob from height and width self.calc_token_dropout = None if callable(token_dropout_prob): self.calc_token_dropout = token_dropout_prob elif isinstance(token_dropout_prob, (float, int)): assert 0. < token_dropout_prob < 1. token_dropout_prob = float(token_dropout_prob) self.calc_token_dropout = lambda height, width: token_dropout_prob # calculate patching related stuff assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.' patch_height_dim, patch_width_dim = (image_height // patch_size), (image_width // patch_size) patch_dim = channels * (patch_size ** 2) self.channels = channels self.patch_size = patch_size self.to_patch_embedding = nn.Sequential( LayerNorm(patch_dim), nn.Linear(patch_dim, dim), LayerNorm(dim), ) self.pos_embed_height = nn.Parameter(torch.randn(patch_height_dim, dim)) self.pos_embed_width = nn.Parameter(torch.randn(patch_width_dim, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) # final attention pooling queries self.attn_pool_queries = nn.Parameter(torch.randn(dim)) self.attn_pool = Attention(dim = dim, dim_head = dim_head, heads = heads) # output to logits self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( LayerNorm(dim), nn.Linear(dim, num_classes, bias = False) ) @property def device(self): return next(self.parameters()).device def forward( self, batched_images: Union[List[Tensor], List[List[Tensor]]], # assume different resolution images already grouped correctly group_images = False, group_max_seq_len = 2048 ): p, c, device, has_token_dropout = self.patch_size, self.channels, self.device, exists(self.calc_token_dropout) arange = partial(torch.arange, device = device) pad_sequence = partial(orig_pad_sequence, batch_first = True) # auto pack if specified if group_images: batched_images = group_images_by_max_seq_len( batched_images, patch_size = self.patch_size, calc_token_dropout = self.calc_token_dropout, max_seq_len = group_max_seq_len ) # process images into variable lengthed sequences with attention mask num_images = [] batched_sequences = [] batched_positions = [] batched_image_ids = [] for images in batched_images: num_images.append(len(images)) sequences = [] positions = [] image_ids = torch.empty((0,), device = device, dtype = torch.long) for image_id, image in enumerate(images): assert image.ndim ==3 and image.shape[0] == c image_dims = image.shape[-2:] assert all([divisible_by(dim, p) for dim in image_dims]), f'height and width {image_dims} of images must be divisible by patch size {p}' ph, pw = map(lambda dim: dim // p, image_dims) pos = torch.stack(torch.meshgrid(( arange(ph), arange(pw) ), indexing = 'ij'), dim = -1) pos = rearrange(pos, 'h w c -> (h w) c') seq = rearrange(image, 'c (h p1) (w p2) -> (h w) (c p1 p2)', p1 = p, p2 = p) seq_len = seq.shape[-2] if has_token_dropout: token_dropout = self.calc_token_dropout(*image_dims) num_keep = max(1, int(seq_len * (1 - token_dropout))) keep_indices = torch.randn((seq_len,), device = device).topk(num_keep, dim = -1).indices seq = seq[keep_indices] pos = pos[keep_indices] image_ids = F.pad(image_ids, (0, seq.shape[-2]), value = image_id) sequences.append(seq) positions.append(pos) batched_image_ids.append(image_ids) batched_sequences.append(torch.cat(sequences, dim = 0)) batched_positions.append(torch.cat(positions, dim = 0)) # derive key padding mask lengths = torch.tensor([seq.shape[-2] for seq in batched_sequences], device = device, dtype = torch.long) max_length = arange(lengths.amax().item()) key_pad_mask = rearrange(lengths, 'b -> b 1') <= rearrange(max_length, 'n -> 1 n') # derive attention mask, and combine with key padding mask from above batched_image_ids = pad_sequence(batched_image_ids) attn_mask = rearrange(batched_image_ids, 'b i -> b 1 i 1') == rearrange(batched_image_ids, 'b j -> b 1 1 j') attn_mask = attn_mask & rearrange(key_pad_mask, 'b j -> b 1 1 j') # combine patched images as well as the patched width / height positions for 2d positional embedding patches = pad_sequence(batched_sequences) patch_positions = pad_sequence(batched_positions) # need to know how many images for final attention pooling num_images = torch.tensor(num_images, device = device, dtype = torch.long) # to patches x = self.to_patch_embedding(patches) # factorized 2d absolute positional embedding h_indices, w_indices = patch_positions.unbind(dim = -1) h_pos = self.pos_embed_height[h_indices] w_pos = self.pos_embed_width[w_indices] x = x + h_pos + w_pos # embed dropout x = self.dropout(x) # attention x = self.transformer(x, attn_mask = attn_mask) # do attention pooling at the end max_queries = num_images.amax().item() queries = repeat(self.attn_pool_queries, 'd -> b n d', n = max_queries, b = x.shape[0]) # attention pool mask image_id_arange = arange(max_queries) attn_pool_mask = rearrange(image_id_arange, 'i -> i 1') == rearrange(batched_image_ids, 'b j -> b 1 j') attn_pool_mask = attn_pool_mask & rearrange(key_pad_mask, 'b j -> b 1 j') attn_pool_mask = rearrange(attn_pool_mask, 'b i j -> b 1 i j') # attention pool x = self.attn_pool(queries, context = x, attn_mask = attn_pool_mask) + queries x = rearrange(x, 'b n d -> (b n) d') # each batch element may not have same amount of images is_images = image_id_arange < rearrange(num_images, 'b -> b 1') is_images = rearrange(is_images, 'b n -> (b n)') x = x[is_images] # project out to logits x = self.to_latent(x) return self.mlp_head(x)
vit-pytorch-main
vit_pytorch/na_vit.py
import copy import random from functools import wraps, partial import torch from torch import nn import torch.nn.functional as F from torchvision import transforms as T # helper functions def exists(val): return val is not None def default(val, default): return val if exists(val) else default def singleton(cache_key): def inner_fn(fn): @wraps(fn) def wrapper(self, *args, **kwargs): instance = getattr(self, cache_key) if instance is not None: return instance instance = fn(self, *args, **kwargs) setattr(self, cache_key, instance) return instance return wrapper return inner_fn def get_module_device(module): return next(module.parameters()).device def set_requires_grad(model, val): for p in model.parameters(): p.requires_grad = val # loss function # (algorithm 1 in the paper) def loss_fn( teacher_logits, student_logits, teacher_temp, student_temp, centers, eps = 1e-20 ): teacher_logits = teacher_logits.detach() student_probs = (student_logits / student_temp).softmax(dim = -1) teacher_probs = ((teacher_logits - centers) / teacher_temp).softmax(dim = -1) return - (teacher_probs * torch.log(student_probs + eps)).sum(dim = -1).mean() # augmentation utils class RandomApply(nn.Module): def __init__(self, fn, p): super().__init__() self.fn = fn self.p = p def forward(self, x): if random.random() > self.p: return x return self.fn(x) # exponential moving average class EMA(): def __init__(self, beta): super().__init__() self.beta = beta def update_average(self, old, new): if old is None: return new return old * self.beta + (1 - self.beta) * new def update_moving_average(ema_updater, ma_model, current_model): for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()): old_weight, up_weight = ma_params.data, current_params.data ma_params.data = ema_updater.update_average(old_weight, up_weight) # MLP class for projector and predictor class L2Norm(nn.Module): def forward(self, x, eps = 1e-6): norm = x.norm(dim = 1, keepdim = True).clamp(min = eps) return x / norm class MLP(nn.Module): def __init__(self, dim, dim_out, num_layers, hidden_size = 256): super().__init__() layers = [] dims = (dim, *((hidden_size,) * (num_layers - 1))) for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])): is_last = ind == (len(dims) - 1) layers.extend([ nn.Linear(layer_dim_in, layer_dim_out), nn.GELU() if not is_last else nn.Identity() ]) self.net = nn.Sequential( *layers, L2Norm(), nn.Linear(hidden_size, dim_out) ) def forward(self, x): return self.net(x) # a wrapper class for the base neural network # will manage the interception of the hidden layer output # and pipe it into the projecter and predictor nets class NetWrapper(nn.Module): def __init__(self, net, output_dim, projection_hidden_size, projection_num_layers, layer = -2): super().__init__() self.net = net self.layer = layer self.projector = None self.projection_hidden_size = projection_hidden_size self.projection_num_layers = projection_num_layers self.output_dim = output_dim self.hidden = {} self.hook_registered = False def _find_layer(self): if type(self.layer) == str: modules = dict([*self.net.named_modules()]) return modules.get(self.layer, None) elif type(self.layer) == int: children = [*self.net.children()] return children[self.layer] return None def _hook(self, _, input, output): device = input[0].device self.hidden[device] = output.flatten(1) def _register_hook(self): layer = self._find_layer() assert layer is not None, f'hidden layer ({self.layer}) not found' handle = layer.register_forward_hook(self._hook) self.hook_registered = True @singleton('projector') def _get_projector(self, hidden): _, dim = hidden.shape projector = MLP(dim, self.output_dim, self.projection_num_layers, self.projection_hidden_size) return projector.to(hidden) def get_embedding(self, x): if self.layer == -1: return self.net(x) if not self.hook_registered: self._register_hook() self.hidden.clear() _ = self.net(x) hidden = self.hidden[x.device] self.hidden.clear() assert hidden is not None, f'hidden layer {self.layer} never emitted an output' return hidden def forward(self, x, return_projection = True): embed = self.get_embedding(x) if not return_projection: return embed projector = self._get_projector(embed) return projector(embed), embed # main class class Dino(nn.Module): def __init__( self, net, image_size, hidden_layer = -2, projection_hidden_size = 256, num_classes_K = 65336, projection_layers = 4, student_temp = 0.9, teacher_temp = 0.04, local_upper_crop_scale = 0.4, global_lower_crop_scale = 0.5, moving_average_decay = 0.9, center_moving_average_decay = 0.9, augment_fn = None, augment_fn2 = None ): super().__init__() self.net = net # default BYOL augmentation DEFAULT_AUG = torch.nn.Sequential( RandomApply( T.ColorJitter(0.8, 0.8, 0.8, 0.2), p = 0.3 ), T.RandomGrayscale(p=0.2), T.RandomHorizontalFlip(), RandomApply( T.GaussianBlur((3, 3), (1.0, 2.0)), p = 0.2 ), T.Normalize( mean=torch.tensor([0.485, 0.456, 0.406]), std=torch.tensor([0.229, 0.224, 0.225])), ) self.augment1 = default(augment_fn, DEFAULT_AUG) self.augment2 = default(augment_fn2, DEFAULT_AUG) # local and global crops self.local_crop = T.RandomResizedCrop((image_size, image_size), scale = (0.05, local_upper_crop_scale)) self.global_crop = T.RandomResizedCrop((image_size, image_size), scale = (global_lower_crop_scale, 1.)) self.student_encoder = NetWrapper(net, num_classes_K, projection_hidden_size, projection_layers, layer = hidden_layer) self.teacher_encoder = None self.teacher_ema_updater = EMA(moving_average_decay) self.register_buffer('teacher_centers', torch.zeros(1, num_classes_K)) self.register_buffer('last_teacher_centers', torch.zeros(1, num_classes_K)) self.teacher_centering_ema_updater = EMA(center_moving_average_decay) self.student_temp = student_temp self.teacher_temp = teacher_temp # get device of network and make wrapper same device device = get_module_device(net) self.to(device) # send a mock image tensor to instantiate singleton parameters self.forward(torch.randn(2, 3, image_size, image_size, device=device)) @singleton('teacher_encoder') def _get_teacher_encoder(self): teacher_encoder = copy.deepcopy(self.student_encoder) set_requires_grad(teacher_encoder, False) return teacher_encoder def reset_moving_average(self): del self.teacher_encoder self.teacher_encoder = None def update_moving_average(self): assert self.teacher_encoder is not None, 'target encoder has not been created yet' update_moving_average(self.teacher_ema_updater, self.teacher_encoder, self.student_encoder) new_teacher_centers = self.teacher_centering_ema_updater.update_average(self.teacher_centers, self.last_teacher_centers) self.teacher_centers.copy_(new_teacher_centers) def forward( self, x, return_embedding = False, return_projection = True, student_temp = None, teacher_temp = None ): if return_embedding: return self.student_encoder(x, return_projection = return_projection) image_one, image_two = self.augment1(x), self.augment2(x) local_image_one, local_image_two = self.local_crop(image_one), self.local_crop(image_two) global_image_one, global_image_two = self.global_crop(image_one), self.global_crop(image_two) student_proj_one, _ = self.student_encoder(local_image_one) student_proj_two, _ = self.student_encoder(local_image_two) with torch.no_grad(): teacher_encoder = self._get_teacher_encoder() teacher_proj_one, _ = teacher_encoder(global_image_one) teacher_proj_two, _ = teacher_encoder(global_image_two) loss_fn_ = partial( loss_fn, student_temp = default(student_temp, self.student_temp), teacher_temp = default(teacher_temp, self.teacher_temp), centers = self.teacher_centers ) teacher_logits_avg = torch.cat((teacher_proj_one, teacher_proj_two)).mean(dim = 0) self.last_teacher_centers.copy_(teacher_logits_avg) loss = (loss_fn_(teacher_proj_one, student_proj_two) + loss_fn_(teacher_proj_two, student_proj_one)) / 2 return loss
vit-pytorch-main
vit_pytorch/dino.py
import torch from torch import nn from einops import rearrange, repeat, pack, unpack from einops.layers.torch import Rearrange # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Layernorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class ViT(nn.Module): def __init__(self, *, seq_len, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() assert (seq_len % patch_size) == 0 num_patches = seq_len // patch_size patch_dim = channels * patch_size self.to_patch_embedding = nn.Sequential( Rearrange('b c (n p) -> b n (p c)', p = patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, series): x = self.to_patch_embedding(series) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, 'd -> b d', b = b) x, ps = pack([cls_tokens, x], 'b * d') x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) cls_tokens, _ = unpack(x, ps, 'b * d') return self.mlp_head(cls_tokens) if __name__ == '__main__': v = ViT( seq_len = 256, patch_size = 16, num_classes = 1000, dim = 1024, depth = 6, heads = 8, mlp_dim = 2048, dropout = 0.1, emb_dropout = 0.1 ) time_series = torch.randn(4, 3, 256) logits = v(time_series) # (4, 1000)
vit-pytorch-main
vit_pytorch/vit_1d.py
from math import sqrt import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def cast_tuple(val, num): return val if isinstance(val, tuple) else (val,) * num def conv_output_size(image_size, kernel_size, stride, padding = 0): return int(((image_size - kernel_size + (2 * padding)) / stride) + 1) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): b, n, _, h = *x.shape, self.heads x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x # depthwise convolution, for pooling class DepthWiseConv2d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True): super().__init__() self.net = nn.Sequential( nn.Conv2d(dim_in, dim_out, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias), nn.Conv2d(dim_out, dim_out, kernel_size = 1, bias = bias) ) def forward(self, x): return self.net(x) # pooling layer class Pool(nn.Module): def __init__(self, dim): super().__init__() self.downsample = DepthWiseConv2d(dim, dim * 2, kernel_size = 3, stride = 2, padding = 1) self.cls_ff = nn.Linear(dim, dim * 2) def forward(self, x): cls_token, tokens = x[:, :1], x[:, 1:] cls_token = self.cls_ff(cls_token) tokens = rearrange(tokens, 'b (h w) c -> b c h w', h = int(sqrt(tokens.shape[1]))) tokens = self.downsample(tokens) tokens = rearrange(tokens, 'b c h w -> b (h w) c') return torch.cat((cls_token, tokens), dim = 1) # main class class PiT(nn.Module): def __init__( self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, dim_head = 64, dropout = 0., emb_dropout = 0., channels = 3 ): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' assert isinstance(depth, tuple), 'depth must be a tuple of integers, specifying the number of blocks before each downsizing' heads = cast_tuple(heads, len(depth)) patch_dim = channels * patch_size ** 2 self.to_patch_embedding = nn.Sequential( nn.Unfold(kernel_size = patch_size, stride = patch_size // 2), Rearrange('b c n -> b n c'), nn.Linear(patch_dim, dim) ) output_size = conv_output_size(image_size, patch_size, patch_size // 2) num_patches = output_size ** 2 self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) layers = [] for ind, (layer_depth, layer_heads) in enumerate(zip(depth, heads)): not_last = ind < (len(depth) - 1) layers.append(Transformer(dim, layer_depth, layer_heads, dim_head, mlp_dim, dropout)) if not_last: layers.append(Pool(dim)) dim *= 2 self.layers = nn.Sequential(*layers) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :n+1] x = self.dropout(x) x = self.layers(x) return self.mlp_head(x[:, 0])
vit-pytorch-main
vit_pytorch/pit.py
from math import sqrt, pi, log import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # rotary embeddings def rotate_every_two(x): x = rearrange(x, '... (d j) -> ... d j', j = 2) x1, x2 = x.unbind(dim = -1) x = torch.stack((-x2, x1), dim = -1) return rearrange(x, '... d j -> ... (d j)') class AxialRotaryEmbedding(nn.Module): def __init__(self, dim, max_freq = 10): super().__init__() self.dim = dim scales = torch.linspace(1., max_freq / 2, self.dim // 4) self.register_buffer('scales', scales) def forward(self, x): device, dtype, n = x.device, x.dtype, int(sqrt(x.shape[-2])) seq = torch.linspace(-1., 1., steps = n, device = device) seq = seq.unsqueeze(-1) scales = self.scales[(*((None,) * (len(seq.shape) - 1)), Ellipsis)] scales = scales.to(x) seq = seq * scales * pi x_sinu = repeat(seq, 'i d -> i j d', j = n) y_sinu = repeat(seq, 'j d -> i j d', i = n) sin = torch.cat((x_sinu.sin(), y_sinu.sin()), dim = -1) cos = torch.cat((x_sinu.cos(), y_sinu.cos()), dim = -1) sin, cos = map(lambda t: rearrange(t, 'i j d -> (i j) d'), (sin, cos)) sin, cos = map(lambda t: repeat(t, 'n d -> () n (d j)', j = 2), (sin, cos)) return sin, cos class DepthWiseConv2d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size, padding, stride = 1, bias = True): super().__init__() self.net = nn.Sequential( nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias), nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias) ) def forward(self, x): return self.net(x) # helper classes class SpatialConv(nn.Module): def __init__(self, dim_in, dim_out, kernel, bias = False): super().__init__() self.conv = DepthWiseConv2d(dim_in, dim_out, kernel, padding = kernel // 2, bias = False) self.cls_proj = nn.Linear(dim_in, dim_out) if dim_in != dim_out else nn.Identity() def forward(self, x, fmap_dims): cls_token, x = x[:, :1], x[:, 1:] x = rearrange(x, 'b (h w) d -> b d h w', **fmap_dims) x = self.conv(x) x = rearrange(x, 'b d h w -> b (h w) d') cls_token = self.cls_proj(cls_token) return torch.cat((cls_token, x), dim = 1) class GEGLU(nn.Module): def forward(self, x): x, gates = x.chunk(2, dim = -1) return F.gelu(gates) * x class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0., use_glu = True): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim * 2 if use_glu else hidden_dim), GEGLU() if use_glu else nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., use_rotary = True, use_ds_conv = True, conv_query_kernel = 5): super().__init__() inner_dim = dim_head * heads self.use_rotary = use_rotary self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.use_ds_conv = use_ds_conv self.to_q = SpatialConv(dim, inner_dim, conv_query_kernel, bias = False) if use_ds_conv else nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, pos_emb, fmap_dims): b, n, _, h = *x.shape, self.heads to_q_kwargs = {'fmap_dims': fmap_dims} if self.use_ds_conv else {} x = self.norm(x) q = self.to_q(x, **to_q_kwargs) qkv = (q, *self.to_kv(x).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), qkv) if self.use_rotary: # apply 2d rotary embeddings to queries and keys, excluding CLS tokens sin, cos = pos_emb dim_rotary = sin.shape[-1] (q_cls, q), (k_cls, k) = map(lambda t: (t[:, :1], t[:, 1:]), (q, k)) # handle the case where rotary dimension < head dimension (q, q_pass), (k, k_pass) = map(lambda t: (t[..., :dim_rotary], t[..., dim_rotary:]), (q, k)) q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k)) q, k = map(lambda t: torch.cat(t, dim = -1), ((q, q_pass), (k, k_pass))) # concat back the CLS tokens q = torch.cat((q_cls, q), dim = 1) k = torch.cat((k_cls, k), dim = 1) dots = einsum('b i d, b j d -> b i j', q, k) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) n d -> b n (h d)', h = h) return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, image_size, dropout = 0., use_rotary = True, use_ds_conv = True, use_glu = True): super().__init__() self.layers = nn.ModuleList([]) self.pos_emb = AxialRotaryEmbedding(dim_head, max_freq = image_size) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, use_rotary = use_rotary, use_ds_conv = use_ds_conv), FeedForward(dim, mlp_dim, dropout = dropout, use_glu = use_glu) ])) def forward(self, x, fmap_dims): pos_emb = self.pos_emb(x[:, 1:]) for attn, ff in self.layers: x = attn(x, pos_emb = pos_emb, fmap_dims = fmap_dims) + x x = ff(x) + x return x # Rotary Vision Transformer class RvT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., use_rotary = True, use_ds_conv = True, use_glu = True): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 self.patch_size = patch_size self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.Linear(patch_dim, dim), ) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, image_size, dropout, use_rotary, use_ds_conv, use_glu) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): b, _, h, w, p = *img.shape, self.patch_size x = self.to_patch_embedding(img) n = x.shape[1] cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) fmap_dims = {'h': h // p, 'w': w // p} x = self.transformer(x, fmap_dims = fmap_dims) return self.mlp_head(x[:, 0])
vit-pytorch-main
vit_pytorch/rvt.py
from random import randrange import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def dropout_layers(layers, dropout): if dropout == 0: return layers num_layers = len(layers) to_drop = torch.zeros(num_layers).uniform_(0., 1.) < dropout # make sure at least one layer makes it if all(to_drop): rand_index = randrange(num_layers) to_drop[rand_index] = False layers = [layer for (layer, drop) in zip(layers, to_drop) if not drop] return layers # classes class LayerScale(nn.Module): def __init__(self, dim, fn, depth): super().__init__() if depth <= 18: # epsilon detailed in section 2 of paper init_eps = 0.1 elif depth > 18 and depth <= 24: init_eps = 1e-5 else: init_eps = 1e-6 scale = torch.zeros(1, 1, dim).fill_(init_eps) self.scale = nn.Parameter(scale) self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) * self.scale class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.mix_heads_pre_attn = nn.Parameter(torch.randn(heads, heads)) self.mix_heads_post_attn = nn.Parameter(torch.randn(heads, heads)) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, context = None): b, n, _, h = *x.shape, self.heads x = self.norm(x) context = x if not exists(context) else torch.cat((x, context), dim = 1) qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale dots = einsum('b h i j, h g -> b g i j', dots, self.mix_heads_pre_attn) # talking heads, pre-softmax attn = self.attend(dots) attn = self.dropout(attn) attn = einsum('b h i j, h g -> b g i j', attn, self.mix_heads_post_attn) # talking heads, post-softmax out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., layer_dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) self.layer_dropout = layer_dropout for ind in range(depth): self.layers.append(nn.ModuleList([ LayerScale(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = ind + 1), LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = ind + 1) ])) def forward(self, x, context = None): layers = dropout_layers(self.layers, dropout = self.layer_dropout) for attn, ff in layers: x = attn(x, context = context) + x x = ff(x) + x return x class CaiT(nn.Module): def __init__( self, *, image_size, patch_size, num_classes, dim, depth, cls_depth, heads, mlp_dim, dim_head = 64, dropout = 0., emb_dropout = 0., layer_dropout = 0. ): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_size // patch_size) ** 2 patch_dim = 3 * patch_size ** 2 self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.patch_transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, layer_dropout) self.cls_transformer = Transformer(dim, cls_depth, heads, dim_head, mlp_dim, dropout, layer_dropout) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape x += self.pos_embedding[:, :n] x = self.dropout(x) x = self.patch_transformer(x) cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = self.cls_transformer(cls_tokens, context = x) return self.mlp_head(x[:, 0])
vit-pytorch-main
vit_pytorch/cait.py
import copy import random from functools import wraps, partial import torch from torch import nn, einsum import torch.nn.functional as F from torchvision import transforms as T from einops import rearrange, reduce, repeat # helper functions def exists(val): return val is not None def default(val, default): return val if exists(val) else default def singleton(cache_key): def inner_fn(fn): @wraps(fn) def wrapper(self, *args, **kwargs): instance = getattr(self, cache_key) if instance is not None: return instance instance = fn(self, *args, **kwargs) setattr(self, cache_key, instance) return instance return wrapper return inner_fn def get_module_device(module): return next(module.parameters()).device def set_requires_grad(model, val): for p in model.parameters(): p.requires_grad = val # tensor related helpers def log(t, eps = 1e-20): return torch.log(t + eps) # loss function # (algorithm 1 in the paper) def view_loss_fn( teacher_logits, student_logits, teacher_temp, student_temp, centers, eps = 1e-20 ): teacher_logits = teacher_logits.detach() student_probs = (student_logits / student_temp).softmax(dim = -1) teacher_probs = ((teacher_logits - centers) / teacher_temp).softmax(dim = -1) return - (teacher_probs * log(student_probs, eps)).sum(dim = -1).mean() def region_loss_fn( teacher_logits, student_logits, teacher_latent, student_latent, teacher_temp, student_temp, centers, eps = 1e-20 ): teacher_logits = teacher_logits.detach() student_probs = (student_logits / student_temp).softmax(dim = -1) teacher_probs = ((teacher_logits - centers) / teacher_temp).softmax(dim = -1) sim_matrix = einsum('b i d, b j d -> b i j', student_latent, teacher_latent) sim_indices = sim_matrix.max(dim = -1).indices sim_indices = repeat(sim_indices, 'b n -> b n k', k = teacher_probs.shape[-1]) max_sim_teacher_probs = teacher_probs.gather(1, sim_indices) return - (max_sim_teacher_probs * log(student_probs, eps)).sum(dim = -1).mean() # augmentation utils class RandomApply(nn.Module): def __init__(self, fn, p): super().__init__() self.fn = fn self.p = p def forward(self, x): if random.random() > self.p: return x return self.fn(x) # exponential moving average class EMA(): def __init__(self, beta): super().__init__() self.beta = beta def update_average(self, old, new): if old is None: return new return old * self.beta + (1 - self.beta) * new def update_moving_average(ema_updater, ma_model, current_model): for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()): old_weight, up_weight = ma_params.data, current_params.data ma_params.data = ema_updater.update_average(old_weight, up_weight) # MLP class for projector and predictor class L2Norm(nn.Module): def forward(self, x, eps = 1e-6): return F.normalize(x, dim = 1, eps = eps) class MLP(nn.Module): def __init__(self, dim, dim_out, num_layers, hidden_size = 256): super().__init__() layers = [] dims = (dim, *((hidden_size,) * (num_layers - 1))) for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])): is_last = ind == (len(dims) - 1) layers.extend([ nn.Linear(layer_dim_in, layer_dim_out), nn.GELU() if not is_last else nn.Identity() ]) self.net = nn.Sequential( *layers, L2Norm(), nn.Linear(hidden_size, dim_out) ) def forward(self, x): return self.net(x) # a wrapper class for the base neural network # will manage the interception of the hidden layer output # and pipe it into the projecter and predictor nets class NetWrapper(nn.Module): def __init__(self, net, output_dim, projection_hidden_size, projection_num_layers, layer = -2): super().__init__() self.net = net self.layer = layer self.view_projector = None self.region_projector = None self.projection_hidden_size = projection_hidden_size self.projection_num_layers = projection_num_layers self.output_dim = output_dim self.hidden = {} self.hook_registered = False def _find_layer(self): if type(self.layer) == str: modules = dict([*self.net.named_modules()]) return modules.get(self.layer, None) elif type(self.layer) == int: children = [*self.net.children()] return children[self.layer] return None def _hook(self, _, input, output): device = input[0].device self.hidden[device] = output def _register_hook(self): layer = self._find_layer() assert layer is not None, f'hidden layer ({self.layer}) not found' handle = layer.register_forward_hook(self._hook) self.hook_registered = True @singleton('view_projector') def _get_view_projector(self, hidden): dim = hidden.shape[1] projector = MLP(dim, self.output_dim, self.projection_num_layers, self.projection_hidden_size) return projector.to(hidden) @singleton('region_projector') def _get_region_projector(self, hidden): dim = hidden.shape[1] projector = MLP(dim, self.output_dim, self.projection_num_layers, self.projection_hidden_size) return projector.to(hidden) def get_embedding(self, x): if self.layer == -1: return self.net(x) if not self.hook_registered: self._register_hook() self.hidden.clear() _ = self.net(x) hidden = self.hidden[x.device] self.hidden.clear() assert hidden is not None, f'hidden layer {self.layer} never emitted an output' return hidden def forward(self, x, return_projection = True): region_latents = self.get_embedding(x) global_latent = reduce(region_latents, 'b c h w -> b c', 'mean') if not return_projection: return global_latent, region_latents view_projector = self._get_view_projector(global_latent) region_projector = self._get_region_projector(region_latents) region_latents = rearrange(region_latents, 'b c h w -> b (h w) c') return view_projector(global_latent), region_projector(region_latents), region_latents # main class class EsViTTrainer(nn.Module): def __init__( self, net, image_size, hidden_layer = -2, projection_hidden_size = 256, num_classes_K = 65336, projection_layers = 4, student_temp = 0.9, teacher_temp = 0.04, local_upper_crop_scale = 0.4, global_lower_crop_scale = 0.5, moving_average_decay = 0.9, center_moving_average_decay = 0.9, augment_fn = None, augment_fn2 = None ): super().__init__() self.net = net # default BYOL augmentation DEFAULT_AUG = torch.nn.Sequential( RandomApply( T.ColorJitter(0.8, 0.8, 0.8, 0.2), p = 0.3 ), T.RandomGrayscale(p=0.2), T.RandomHorizontalFlip(), RandomApply( T.GaussianBlur((3, 3), (1.0, 2.0)), p = 0.2 ), T.Normalize( mean=torch.tensor([0.485, 0.456, 0.406]), std=torch.tensor([0.229, 0.224, 0.225])), ) self.augment1 = default(augment_fn, DEFAULT_AUG) self.augment2 = default(augment_fn2, DEFAULT_AUG) # local and global crops self.local_crop = T.RandomResizedCrop((image_size, image_size), scale = (0.05, local_upper_crop_scale)) self.global_crop = T.RandomResizedCrop((image_size, image_size), scale = (global_lower_crop_scale, 1.)) self.student_encoder = NetWrapper(net, num_classes_K, projection_hidden_size, projection_layers, layer = hidden_layer) self.teacher_encoder = None self.teacher_ema_updater = EMA(moving_average_decay) self.register_buffer('teacher_view_centers', torch.zeros(1, num_classes_K)) self.register_buffer('last_teacher_view_centers', torch.zeros(1, num_classes_K)) self.register_buffer('teacher_region_centers', torch.zeros(1, num_classes_K)) self.register_buffer('last_teacher_region_centers', torch.zeros(1, num_classes_K)) self.teacher_centering_ema_updater = EMA(center_moving_average_decay) self.student_temp = student_temp self.teacher_temp = teacher_temp # get device of network and make wrapper same device device = get_module_device(net) self.to(device) # send a mock image tensor to instantiate singleton parameters self.forward(torch.randn(2, 3, image_size, image_size, device=device)) @singleton('teacher_encoder') def _get_teacher_encoder(self): teacher_encoder = copy.deepcopy(self.student_encoder) set_requires_grad(teacher_encoder, False) return teacher_encoder def reset_moving_average(self): del self.teacher_encoder self.teacher_encoder = None def update_moving_average(self): assert self.teacher_encoder is not None, 'target encoder has not been created yet' update_moving_average(self.teacher_ema_updater, self.teacher_encoder, self.student_encoder) new_teacher_view_centers = self.teacher_centering_ema_updater.update_average(self.teacher_view_centers, self.last_teacher_view_centers) self.teacher_view_centers.copy_(new_teacher_view_centers) new_teacher_region_centers = self.teacher_centering_ema_updater.update_average(self.teacher_region_centers, self.last_teacher_region_centers) self.teacher_region_centers.copy_(new_teacher_region_centers) def forward( self, x, return_embedding = False, return_projection = True, student_temp = None, teacher_temp = None ): if return_embedding: return self.student_encoder(x, return_projection = return_projection) image_one, image_two = self.augment1(x), self.augment2(x) local_image_one, local_image_two = self.local_crop(image_one), self.local_crop(image_two) global_image_one, global_image_two = self.global_crop(image_one), self.global_crop(image_two) student_view_proj_one, student_region_proj_one, student_latent_one = self.student_encoder(local_image_one) student_view_proj_two, student_region_proj_two, student_latent_two = self.student_encoder(local_image_two) with torch.no_grad(): teacher_encoder = self._get_teacher_encoder() teacher_view_proj_one, teacher_region_proj_one, teacher_latent_one = teacher_encoder(global_image_one) teacher_view_proj_two, teacher_region_proj_two, teacher_latent_two = teacher_encoder(global_image_two) view_loss_fn_ = partial( view_loss_fn, student_temp = default(student_temp, self.student_temp), teacher_temp = default(teacher_temp, self.teacher_temp), centers = self.teacher_view_centers ) region_loss_fn_ = partial( region_loss_fn, student_temp = default(student_temp, self.student_temp), teacher_temp = default(teacher_temp, self.teacher_temp), centers = self.teacher_region_centers ) # calculate view-level loss teacher_view_logits_avg = torch.cat((teacher_view_proj_one, teacher_view_proj_two)).mean(dim = 0) self.last_teacher_view_centers.copy_(teacher_view_logits_avg) teacher_region_logits_avg = torch.cat((teacher_region_proj_one, teacher_region_proj_two)).mean(dim = (0, 1)) self.last_teacher_region_centers.copy_(teacher_region_logits_avg) view_loss = (view_loss_fn_(teacher_view_proj_one, student_view_proj_two) \ + view_loss_fn_(teacher_view_proj_two, student_view_proj_one)) / 2 # calculate region-level loss region_loss = (region_loss_fn_(teacher_region_proj_one, student_region_proj_two, teacher_latent_one, student_latent_two) \ + region_loss_fn_(teacher_region_proj_two, student_region_proj_one, teacher_latent_two, student_latent_one)) / 2 return (view_loss + region_loss) / 2
vit-pytorch-main
vit_pytorch/es_vit.py
import torch from torch import nn import torch.nn.functional as F from einops import repeat class SimMIM(nn.Module): def __init__( self, *, encoder, masking_ratio = 0.5 ): super().__init__() assert masking_ratio > 0 and masking_ratio < 1, 'masking ratio must be kept between 0 and 1' self.masking_ratio = masking_ratio # extract some hyperparameters and functions from encoder (vision transformer to be trained) self.encoder = encoder num_patches, encoder_dim = encoder.pos_embedding.shape[-2:] self.to_patch = encoder.to_patch_embedding[0] self.patch_to_emb = nn.Sequential(*encoder.to_patch_embedding[1:]) pixel_values_per_patch = encoder.to_patch_embedding[2].weight.shape[-1] # simple linear head self.mask_token = nn.Parameter(torch.randn(encoder_dim)) self.to_pixels = nn.Linear(encoder_dim, pixel_values_per_patch) def forward(self, img): device = img.device # get patches patches = self.to_patch(img) batch, num_patches, *_ = patches.shape # for indexing purposes batch_range = torch.arange(batch, device = device)[:, None] # get positions pos_emb = self.encoder.pos_embedding[:, 1:(num_patches + 1)] # patch to encoder tokens and add positions tokens = self.patch_to_emb(patches) tokens = tokens + pos_emb # prepare mask tokens mask_tokens = repeat(self.mask_token, 'd -> b n d', b = batch, n = num_patches) mask_tokens = mask_tokens + pos_emb # calculate of patches needed to be masked, and get positions (indices) to be masked num_masked = int(self.masking_ratio * num_patches) masked_indices = torch.rand(batch, num_patches, device = device).topk(k = num_masked, dim = -1).indices masked_bool_mask = torch.zeros((batch, num_patches), device = device).scatter_(-1, masked_indices, 1).bool() # mask tokens tokens = torch.where(masked_bool_mask[..., None], mask_tokens, tokens) # attend with vision transformer encoded = self.encoder.transformer(tokens) # get the masked tokens encoded_mask_tokens = encoded[batch_range, masked_indices] # small linear projection for predicted pixel values pred_pixel_values = self.to_pixels(encoded_mask_tokens) # get the masked patches for the final reconstruction loss masked_patches = patches[batch_range, masked_indices] # calculate reconstruction loss recon_loss = F.l1_loss(pred_pixel_values, masked_patches) / num_masked return recon_loss
vit-pytorch-main
vit_pytorch/simmim.py
from setuptools import setup, find_packages setup( name = 'aoa_pytorch', packages = find_packages(exclude=['examples']), version = '0.0.2', license='MIT', description = 'Attention on Attention - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/SAoA-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'visual question answering' ], install_requires=[ 'torch>=1.6', 'einops>=0.3' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
AoA-pytorch-main
setup.py
from aoa_pytorch.aoa_pytorch import AttentionOnAttention AoA = AttentionOnAttention
AoA-pytorch-main
aoa_pytorch/__init__.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange def exists(val): return val is not None def default(val, d): return val if exists(val) else d class AttentionOnAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, dropout = 0., aoa_dropout = 0. ): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.dropout = nn.Dropout(dropout) self.aoa = nn.Sequential( nn.Linear(2 * inner_dim, 2 * dim), nn.GLU(), nn.Dropout(aoa_dropout) ) def forward(self, x, context = None): h = self.heads q_ = self.to_q(x) context = default(context, x) kv = self.to_kv(context).chunk(2, dim = -1) # split heads q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q_, *kv)) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale # attention attn = dots.softmax(dim = -1) attn = self.dropout(attn) # weighted average of values attn_out = einsum('b h i j, b h j d -> b h i d', attn, v) # concat heads out = rearrange(attn_out, 'b h n d -> b n (h d)', h = h) # attention on attention out = self.aoa(torch.cat((out, q_), dim = -1)) return out
AoA-pytorch-main
aoa_pytorch/aoa_pytorch.py
from setuptools import setup, find_packages setup( name = 'RIN-pytorch', packages = find_packages(exclude=[]), version = '0.7.9', license='MIT', description = 'RIN - Recurrent Interface Network - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/RIN-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'attention mechanism', 'denoising diffusion', 'image and video generation' ], install_requires=[ 'accelerate', 'beartype', 'ema-pytorch', 'einops>=0.6', 'pillow', 'torch>=1.12.0', 'torchvision', 'tqdm' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
recurrent-interface-network-pytorch-main
setup.py
from rin_pytorch.rin_pytorch import GaussianDiffusion, RIN, Trainer
recurrent-interface-network-pytorch-main
rin_pytorch/__init__.py
from functools import wraps from packaging import version from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, reduce # constants FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, dropout = 0., flash = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = FlashAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = FlashAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = FlashAttentionConfig(False, True, True) def flash_attn(self, q, k, v, mask = None): _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L if exists(mask): mask = mask.expand(-1, heads, q_len, -1) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0. ) return out def forward(self, q, k, v, mask = None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ q_len, k_len, device = q.shape[-2], k.shape[-2], q.device scale = q.shape[-1] ** -0.5 if exists(mask) and mask.ndim != 4: mask = rearrange(mask, 'b j -> b 1 1 j') if self.flash: return self.flash_attn(q, k, v, mask = mask) # similarity sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale # key padding mask if exists(mask): sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, b h j d -> b h i d", attn, v) return out
recurrent-interface-network-pytorch-main
rin_pytorch/attend.py
import math from pathlib import Path from random import random from functools import partial from multiprocessing import cpu_count import torch from torch import nn, einsum from torch.special import expm1 import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch.optim import Adam from torchvision import transforms as T, utils from beartype import beartype from einops import rearrange, reduce, repeat from einops.layers.torch import Rearrange from rin_pytorch.attend import Attend from PIL import Image from tqdm.auto import tqdm from ema_pytorch import EMA from accelerate import Accelerator, DistributedDataParallelKwargs # helpers functions def exists(x): return x is not None def identity(x): return x def default(val, d): if exists(val): return val return d() if callable(d) else d def divisible_by(numer, denom): return (numer % denom) == 0 def safe_div(numer, denom, eps = 1e-10): return numer / denom.clamp(min = eps) def cycle(dl): while True: for data in dl: yield data def has_int_squareroot(num): num_sqrt = math.sqrt(num) return int(num_sqrt) == num_sqrt def num_to_groups(num, divisor): groups = num // divisor remainder = num % divisor arr = [divisor] * groups if remainder > 0: arr.append(remainder) return arr def convert_image_to(img_type, image): if image.mode != img_type: return image.convert(img_type) return image def Sequential(*mods): return nn.Sequential(*filter(exists, mods)) # use layernorm without bias, more stable class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.register_buffer("beta", torch.zeros(dim)) def forward(self, x): return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) class MultiHeadedRMSNorm(nn.Module): def __init__(self, dim, heads = 1): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(heads, 1, dim)) def forward(self, x): return F.normalize(x, dim = -1) * self.scale * self.gamma # positional embeds class LearnedSinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() assert (dim % 2) == 0 half_dim = dim // 2 self.weights = nn.Parameter(torch.randn(half_dim)) def forward(self, x): x = rearrange(x, 'b -> b 1') freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1) fouriered = torch.cat((x, fouriered), dim = -1) return fouriered class LinearAttention(nn.Module): def __init__( self, dim, heads = 4, dim_head = 32, norm = False, qk_norm = False, time_cond_dim = None ): super().__init__() hidden_dim = dim_head * heads self.scale = dim_head ** -0.5 self.heads = heads self.time_cond = None if exists(time_cond_dim): self.time_cond = nn.Sequential( nn.SiLU(), nn.Linear(time_cond_dim, dim * 2), Rearrange('b d -> b 1 d') ) nn.init.zeros_(self.time_cond[-2].weight) nn.init.zeros_(self.time_cond[-2].bias) self.norm = LayerNorm(dim) if norm else nn.Identity() self.to_qkv = nn.Linear(dim, hidden_dim * 3, bias = False) self.qk_norm = qk_norm if qk_norm: self.q_norm = MultiHeadedRMSNorm(dim_head, heads) self.k_norm = MultiHeadedRMSNorm(dim_head, heads) self.to_out = nn.Sequential( nn.Linear(hidden_dim, dim, bias = False), LayerNorm(dim) ) def forward( self, x, time = None ): h = self.heads x = self.norm(x) if exists(self.time_cond): assert exists(time) scale, shift = self.time_cond(time).chunk(2, dim = -1) x = (x * (scale + 1)) + shift qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) if self.qk_norm: q = self.q_norm(q) k = self.k_norm(k) q = q.softmax(dim = -1) k = k.softmax(dim = -2) q = q * self.scale context = torch.einsum('b h n d, b h n e -> b h d e', k, v) out = torch.einsum('b h d e, b h n d -> b h n e', context, q) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Attention(nn.Module): def __init__( self, dim, dim_context = None, heads = 4, dim_head = 32, norm = False, norm_context = False, time_cond_dim = None, flash = False, qk_norm = False ): super().__init__() hidden_dim = dim_head * heads dim_context = default(dim_context, dim) self.time_cond = None if exists(time_cond_dim): self.time_cond = nn.Sequential( nn.SiLU(), nn.Linear(time_cond_dim, dim * 2), Rearrange('b d -> b 1 d') ) nn.init.zeros_(self.time_cond[-2].weight) nn.init.zeros_(self.time_cond[-2].bias) self.scale = dim_head ** -0.5 self.heads = heads self.norm = LayerNorm(dim) if norm else nn.Identity() self.norm_context = LayerNorm(dim_context) if norm_context else nn.Identity() self.to_q = nn.Linear(dim, hidden_dim, bias = False) self.to_kv = nn.Linear(dim_context, hidden_dim * 2, bias = False) self.to_out = nn.Linear(hidden_dim, dim, bias = False) self.qk_norm = qk_norm if qk_norm: self.q_norm = MultiHeadedRMSNorm(dim_head, heads) self.k_norm = MultiHeadedRMSNorm(dim_head, heads) self.attend = Attend(flash = flash) def forward( self, x, context = None, time = None ): h = self.heads if exists(context): context = self.norm_context(context) x = self.norm(x) context = default(context, x) if exists(self.time_cond): assert exists(time) scale, shift = self.time_cond(time).chunk(2, dim = -1) x = (x * (scale + 1)) + shift qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) if self.qk_norm: q = self.q_norm(q) k = self.k_norm(k) out = self.attend(q, k, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class PEG(nn.Module): def __init__( self, dim ): super().__init__() self.ds_conv = nn.Conv2d(dim, dim, 3, padding = 1, groups = dim) def forward(self, x): b, n, d = x.shape hw = int(math.sqrt(n)) x = rearrange(x, 'b (h w) d -> b d h w', h = hw) x = self.ds_conv(x) x = rearrange(x, 'b d h w -> b (h w) d') return x class FeedForward(nn.Module): def __init__(self, dim, mult = 4, time_cond_dim = None): super().__init__() self.norm = LayerNorm(dim) self.time_cond = None if exists(time_cond_dim): self.time_cond = nn.Sequential( nn.SiLU(), nn.Linear(time_cond_dim, dim * 2), Rearrange('b d -> b 1 d') ) nn.init.zeros_(self.time_cond[-2].weight) nn.init.zeros_(self.time_cond[-2].bias) inner_dim = int(dim * mult) self.net = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU(), nn.Linear(inner_dim, dim) ) def forward(self, x, time = None): x = self.norm(x) if exists(self.time_cond): assert exists(time) scale, shift = self.time_cond(time).chunk(2, dim = -1) x = (x * (scale + 1)) + shift return self.net(x) # model class RINBlock(nn.Module): def __init__( self, dim, latent_self_attn_depth, dim_latent = None, final_norm = True, patches_self_attn = True, **attn_kwargs ): super().__init__() dim_latent = default(dim_latent, dim) self.latents_attend_to_patches = Attention(dim_latent, dim_context = dim, norm = True, norm_context = True, **attn_kwargs) self.latents_cross_attn_ff = FeedForward(dim_latent) self.latent_self_attns = nn.ModuleList([]) for _ in range(latent_self_attn_depth): self.latent_self_attns.append(nn.ModuleList([ Attention(dim_latent, norm = True, **attn_kwargs), FeedForward(dim_latent) ])) self.latent_final_norm = LayerNorm(dim_latent) if final_norm else nn.Identity() self.patches_peg = PEG(dim) self.patches_self_attn = patches_self_attn if patches_self_attn: self.patches_self_attn = LinearAttention(dim, norm = True, **attn_kwargs) self.patches_self_attn_ff = FeedForward(dim) self.patches_attend_to_latents = Attention(dim, dim_context = dim_latent, norm = True, norm_context = True, **attn_kwargs) self.patches_cross_attn_ff = FeedForward(dim) def forward(self, patches, latents, t): patches = self.patches_peg(patches) + patches # latents extract or cluster information from the patches latents = self.latents_attend_to_patches(latents, patches, time = t) + latents latents = self.latents_cross_attn_ff(latents, time = t) + latents # latent self attention for attn, ff in self.latent_self_attns: latents = attn(latents, time = t) + latents latents = ff(latents, time = t) + latents if self.patches_self_attn: # additional patches self attention with linear attention patches = self.patches_self_attn(patches, time = t) + patches patches = self.patches_self_attn_ff(patches) + patches # patches attend to the latents patches = self.patches_attend_to_latents(patches, latents, time = t) + patches patches = self.patches_cross_attn_ff(patches, time = t) + patches latents = self.latent_final_norm(latents) return patches, latents class RIN(nn.Module): def __init__( self, dim, image_size, patch_size = 16, channels = 3, depth = 6, # number of RIN blocks latent_self_attn_depth = 2, # how many self attentions for the latent per each round of cross attending from pixel space to latents and back dim_latent = None, # will default to image dim (dim) num_latents = 256, # they still had to use a fair amount of latents for good results (256), in line with the Perceiver line of papers from Deepmind learned_sinusoidal_dim = 16, latent_token_time_cond = False, # whether to use 1 latent token as time conditioning, or do it the adaptive layernorm way (which is highly effective as shown by some other papers "Paella" - Dominic Rampas et al.) dual_patchnorm = True, patches_self_attn = True, # the self attention in this repository is not strictly with the design proposed in the paper. offer way to remove it, in case it is the source of instability **attn_kwargs ): super().__init__() assert divisible_by(image_size, patch_size) dim_latent = default(dim_latent, dim) self.image_size = image_size self.channels = channels # times 2 due to self-conditioning patch_height_width = image_size // patch_size num_patches = patch_height_width ** 2 pixel_patch_dim = channels * (patch_size ** 2) # time conditioning sinu_pos_emb = LearnedSinusoidalPosEmb(learned_sinusoidal_dim) time_dim = dim * 4 fourier_dim = learned_sinusoidal_dim + 1 self.latent_token_time_cond = latent_token_time_cond time_output_dim = dim_latent if latent_token_time_cond else time_dim self.time_mlp = nn.Sequential( sinu_pos_emb, nn.Linear(fourier_dim, time_dim), nn.GELU(), nn.Linear(time_dim, time_output_dim) ) # pixels to patch and back self.to_patches = Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (c p1 p2)', p1 = patch_size, p2 = patch_size), nn.LayerNorm(pixel_patch_dim * 2) if dual_patchnorm else None, nn.Linear(pixel_patch_dim * 2, dim), nn.LayerNorm(dim) if dual_patchnorm else None, ) # axial positional embeddings, parameterized by an MLP pos_emb_dim = dim // 2 self.axial_pos_emb_height_mlp = nn.Sequential( Rearrange('... -> ... 1'), nn.Linear(1, pos_emb_dim), nn.SiLU(), nn.Linear(pos_emb_dim, pos_emb_dim), nn.SiLU(), nn.Linear(pos_emb_dim, dim) ) self.axial_pos_emb_width_mlp = nn.Sequential( Rearrange('... -> ... 1'), nn.Linear(1, pos_emb_dim), nn.SiLU(), nn.Linear(pos_emb_dim, pos_emb_dim), nn.SiLU(), nn.Linear(pos_emb_dim, dim) ) # nn.Parameter(torch.randn(2, patch_height_width, dim) * 0.02) self.to_pixels = nn.Sequential( LayerNorm(dim), nn.Linear(dim, pixel_patch_dim), Rearrange('b (h w) (c p1 p2) -> b c (h p1) (w p2)', p1 = patch_size, p2 = patch_size, h = patch_height_width) ) self.latents = nn.Parameter(torch.randn(num_latents, dim_latent)) nn.init.normal_(self.latents, std = 0.02) self.init_self_cond_latents = nn.Sequential( FeedForward(dim_latent), LayerNorm(dim_latent) ) nn.init.zeros_(self.init_self_cond_latents[-1].gamma) # the main RIN body parameters - another attention is all you need moment if not latent_token_time_cond: attn_kwargs = {**attn_kwargs, 'time_cond_dim': time_dim} self.blocks = nn.ModuleList([RINBlock(dim, dim_latent = dim_latent, latent_self_attn_depth = latent_self_attn_depth, patches_self_attn = patches_self_attn, **attn_kwargs) for _ in range(depth)]) @property def device(self): return next(self.parameters()).device def forward( self, x, time, x_self_cond = None, latent_self_cond = None, return_latents = False ): batch = x.shape[0] x_self_cond = default(x_self_cond, lambda: torch.zeros_like(x)) x = torch.cat((x_self_cond, x), dim = 1) # prepare time conditioning t = self.time_mlp(time) # prepare latents latents = repeat(self.latents, 'n d -> b n d', b = batch) # the warm starting of latents as in the paper if exists(latent_self_cond): latents = latents + self.init_self_cond_latents(latent_self_cond) # whether the time conditioning is to be treated as one latent token or for projecting into scale and shift for adaptive layernorm if self.latent_token_time_cond: t = rearrange(t, 'b d -> b 1 d') latents = torch.cat((latents, t), dim = -2) # to patches patches = self.to_patches(x) height_range = width_range = torch.linspace(0., 1., steps = int(math.sqrt(patches.shape[-2])), device = self.device) pos_emb_h, pos_emb_w = self.axial_pos_emb_height_mlp(height_range), self.axial_pos_emb_width_mlp(width_range) pos_emb = rearrange(pos_emb_h, 'i d -> i 1 d') + rearrange(pos_emb_w, 'j d -> 1 j d') patches = patches + rearrange(pos_emb, 'i j d -> (i j) d') # the recurrent interface network body for block in self.blocks: patches, latents = block(patches, latents, t) # to pixels pixels = self.to_pixels(patches) if not return_latents: return pixels # remove time conditioning token, if that is the settings if self.latent_token_time_cond: latents = latents[:, :-1] return pixels, latents # normalize and unnormalize image def normalize_img(x): return x * 2 - 1 def unnormalize_img(x): return (x + 1) * 0.5 # normalize variance of noised image, if scale is not 1 def normalize_img_variance(x, eps = 1e-5): std = reduce(x, 'b c h w -> b 1 1 1', partial(torch.std, unbiased = False)) return x / std.clamp(min = eps) # helper functions def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def right_pad_dims_to(x, t): padding_dims = x.ndim - t.ndim if padding_dims <= 0: return t return t.view(*t.shape, *((1,) * padding_dims)) # noise schedules def simple_linear_schedule(t, clip_min = 1e-9): return (1 - t).clamp(min = clip_min) def cosine_schedule(t, start = 0, end = 1, tau = 1, clip_min = 1e-9): power = 2 * tau v_start = math.cos(start * math.pi / 2) ** power v_end = math.cos(end * math.pi / 2) ** power output = math.cos((t * (end - start) + start) * math.pi / 2) ** power output = (v_end - output) / (v_end - v_start) return output.clamp(min = clip_min) def sigmoid_schedule(t, start = -3, end = 3, tau = 1, clamp_min = 1e-9): v_start = torch.tensor(start / tau).sigmoid() v_end = torch.tensor(end / tau).sigmoid() gamma = (-((t * (end - start) + start) / tau).sigmoid() + v_end) / (v_end - v_start) return gamma.clamp_(min = clamp_min, max = 1.) # converting gamma to alpha, sigma or logsnr def gamma_to_alpha_sigma(gamma, scale = 1): return torch.sqrt(gamma) * scale, torch.sqrt(1 - gamma) def gamma_to_log_snr(gamma, scale = 1, eps = 1e-5): return log(gamma * (scale ** 2) / (1 - gamma), eps = eps) # gaussian diffusion @beartype class GaussianDiffusion(nn.Module): def __init__( self, model: RIN, *, timesteps = 1000, use_ddim = True, noise_schedule = 'sigmoid', objective = 'v', schedule_kwargs: dict = dict(), time_difference = 0., min_snr_loss_weight = True, min_snr_gamma = 5, train_prob_self_cond = 0.9, scale = 1. # this will be set to < 1. for better convergence when training on higher resolution images ): super().__init__() self.model = model self.channels = self.model.channels assert objective in {'x0', 'eps', 'v'}, 'objective must be either predict x0 or noise' self.objective = objective self.image_size = model.image_size if noise_schedule == "linear": self.gamma_schedule = simple_linear_schedule elif noise_schedule == "cosine": self.gamma_schedule = cosine_schedule elif noise_schedule == "sigmoid": self.gamma_schedule = sigmoid_schedule else: raise ValueError(f'invalid noise schedule {noise_schedule}') # the main finding presented in Ting Chen's paper - that higher resolution images requires more noise for better training assert scale <= 1, 'scale must be less than or equal to 1' self.scale = scale self.maybe_normalize_img_variance = normalize_img_variance if scale < 1 else identity # gamma schedules self.gamma_schedule = partial(self.gamma_schedule, **schedule_kwargs) self.timesteps = timesteps self.use_ddim = use_ddim # proposed in the paper, summed to time_next # as a way to fix a deficiency in self-conditioning and lower FID when the number of sampling timesteps is < 400 self.time_difference = time_difference # probability for self conditioning during training self.train_prob_self_cond = train_prob_self_cond # min snr loss weight self.min_snr_loss_weight = min_snr_loss_weight self.min_snr_gamma = min_snr_gamma @property def device(self): return next(self.model.parameters()).device def get_sampling_timesteps(self, batch, *, device): times = torch.linspace(1., 0., self.timesteps + 1, device = device) times = repeat(times, 't -> b t', b = batch) times = torch.stack((times[:, :-1], times[:, 1:]), dim = 0) times = times.unbind(dim = -1) return times @torch.no_grad() def ddpm_sample(self, shape, time_difference = None): batch, device = shape[0], self.device time_difference = default(time_difference, self.time_difference) time_pairs = self.get_sampling_timesteps(batch, device = device) img = torch.randn(shape, device=device) x_start = None last_latents = None for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step', total = self.timesteps): # add the time delay time_next = (time_next - self.time_difference).clamp(min = 0.) noise_cond = time # get predicted x0 maybe_normalized_img = self.maybe_normalize_img_variance(img) model_output, last_latents = self.model(maybe_normalized_img, noise_cond, x_start, last_latents, return_latents = True) # get log(snr) gamma = self.gamma_schedule(time) gamma_next = self.gamma_schedule(time_next) gamma, gamma_next = map(partial(right_pad_dims_to, img), (gamma, gamma_next)) # get alpha sigma of time and next time alpha, sigma = gamma_to_alpha_sigma(gamma, self.scale) alpha_next, sigma_next = gamma_to_alpha_sigma(gamma_next, self.scale) # calculate x0 and noise if self.objective == 'x0': x_start = model_output elif self.objective == 'eps': x_start = safe_div(img - sigma * model_output, alpha) elif self.objective == 'v': x_start = alpha * img - sigma * model_output # clip x0 x_start.clamp_(-1., 1.) # derive posterior mean and variance log_snr, log_snr_next = map(gamma_to_log_snr, (gamma, gamma_next)) c = -expm1(log_snr - log_snr_next) mean = alpha_next * (img * (1 - c) / alpha + c * x_start) variance = (sigma_next ** 2) * c log_variance = log(variance) # get noise noise = torch.where( rearrange(time_next > 0, 'b -> b 1 1 1'), torch.randn_like(img), torch.zeros_like(img) ) img = mean + (0.5 * log_variance).exp() * noise return unnormalize_img(img) @torch.no_grad() def ddim_sample(self, shape, time_difference = None): batch, device = shape[0], self.device time_difference = default(time_difference, self.time_difference) time_pairs = self.get_sampling_timesteps(batch, device = device) img = torch.randn(shape, device = device) x_start = None last_latents = None for times, times_next in tqdm(time_pairs, desc = 'sampling loop time step'): # get times and noise levels gamma = self.gamma_schedule(times) gamma_next = self.gamma_schedule(times_next) padded_gamma, padded_gamma_next = map(partial(right_pad_dims_to, img), (gamma, gamma_next)) alpha, sigma = gamma_to_alpha_sigma(padded_gamma, self.scale) alpha_next, sigma_next = gamma_to_alpha_sigma(padded_gamma_next, self.scale) # add the time delay times_next = (times_next - time_difference).clamp(min = 0.) # predict x0 maybe_normalized_img = self.maybe_normalize_img_variance(img) model_output, last_latents = self.model(maybe_normalized_img, times, x_start, last_latents, return_latents = True) # calculate x0 and noise if self.objective == 'x0': x_start = model_output elif self.objective == 'eps': x_start = safe_div(img - sigma * model_output, alpha) elif self.objective == 'v': x_start = alpha * img - sigma * model_output # clip x0 x_start.clamp_(-1., 1.) # get predicted noise pred_noise = safe_div(img - alpha * x_start, sigma) # calculate x next img = x_start * alpha_next + pred_noise * sigma_next return unnormalize_img(img) @torch.no_grad() def sample(self, batch_size = 16): image_size, channels = self.image_size, self.channels sample_fn = self.ddpm_sample if not self.use_ddim else self.ddim_sample return sample_fn((batch_size, channels, image_size, image_size)) def forward(self, img, *args, **kwargs): batch, c, h, w, device, img_size, = *img.shape, img.device, self.image_size assert h == img_size and w == img_size, f'height and width of image must be {img_size}' # sample random times times = torch.zeros((batch,), device = device).float().uniform_(0, 1.) # convert image to bit representation img = normalize_img(img) # noise sample noise = torch.randn_like(img) gamma = self.gamma_schedule(times) padded_gamma = right_pad_dims_to(img, gamma) alpha, sigma = gamma_to_alpha_sigma(padded_gamma, self.scale) noised_img = alpha * img + sigma * noise noised_img = self.maybe_normalize_img_variance(noised_img) # in the paper, they had to use a really high probability of latent self conditioning, up to 90% of the time # slight drawback self_cond = self_latents = None if random() < self.train_prob_self_cond: with torch.no_grad(): model_output, self_latents = self.model(noised_img, times, return_latents = True) self_latents = self_latents.detach() if self.objective == 'x0': self_cond = model_output elif self.objective == 'eps': self_cond = safe_div(noised_img - sigma * model_output, alpha) elif self.objective == 'v': self_cond = alpha * noised_img - sigma * model_output self_cond.clamp_(-1., 1.) self_cond = self_cond.detach() # predict and take gradient step pred = self.model(noised_img, times, self_cond, self_latents) if self.objective == 'eps': target = noise elif self.objective == 'x0': target = img elif self.objective == 'v': target = alpha * noise - sigma * img loss = F.mse_loss(pred, target, reduction = 'none') loss = reduce(loss, 'b ... -> b', 'mean') # min snr loss weight snr = (alpha * alpha) / (sigma * sigma) maybe_clipped_snr = snr.clone() if self.min_snr_loss_weight: maybe_clipped_snr.clamp_(max = self.min_snr_gamma) if self.objective == 'eps': loss_weight = maybe_clipped_snr / snr elif self.objective == 'x0': loss_weight = maybe_clipped_snr elif self.objective == 'v': loss_weight = maybe_clipped_snr / (snr + 1) return (loss * loss_weight).mean() # dataset classes class Dataset(Dataset): def __init__( self, folder, image_size, exts = ['jpg', 'jpeg', 'png', 'tiff'], augment_horizontal_flip = False, convert_image_to = None ): super().__init__() self.folder = folder self.image_size = image_size self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')] maybe_convert_fn = partial(convert_image_to, convert_image_to) if exists(convert_image_to) else nn.Identity() self.transform = T.Compose([ T.Lambda(maybe_convert_fn), T.Resize(image_size), T.RandomHorizontalFlip() if augment_horizontal_flip else nn.Identity(), T.CenterCrop(image_size), T.ToTensor() ]) def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] img = Image.open(path) return self.transform(img) # trainer class @beartype class Trainer(object): def __init__( self, diffusion_model: GaussianDiffusion, folder, *, train_batch_size = 16, gradient_accumulate_every = 1, augment_horizontal_flip = True, train_lr = 1e-4, train_num_steps = 100000, max_grad_norm = 1., ema_update_every = 10, ema_decay = 0.995, betas = (0.9, 0.99), save_and_sample_every = 1000, num_samples = 25, results_folder = './results', amp = False, mixed_precision_type = 'fp16', split_batches = True, convert_image_to = None ): super().__init__() self.accelerator = Accelerator( split_batches = split_batches, mixed_precision = mixed_precision_type if amp else 'no', kwargs_handlers = [DistributedDataParallelKwargs(find_unused_parameters=True)] ) self.model = diffusion_model assert has_int_squareroot(num_samples), 'number of samples must have an integer square root' self.num_samples = num_samples self.save_and_sample_every = save_and_sample_every self.batch_size = train_batch_size self.gradient_accumulate_every = gradient_accumulate_every self.max_grad_norm = max_grad_norm self.train_num_steps = train_num_steps self.image_size = diffusion_model.image_size # dataset and dataloader self.ds = Dataset(folder, self.image_size, augment_horizontal_flip = augment_horizontal_flip, convert_image_to = convert_image_to) dl = DataLoader(self.ds, batch_size = train_batch_size, shuffle = True, pin_memory = True, num_workers = cpu_count()) dl = self.accelerator.prepare(dl) self.dl = cycle(dl) # optimizer self.opt = Adam(diffusion_model.parameters(), lr = train_lr, betas = betas) # for logging results in a folder periodically self.results_folder = Path(results_folder) if self.accelerator.is_local_main_process: self.results_folder.mkdir(exist_ok = True) if self.accelerator.is_main_process: self.ema = EMA(diffusion_model, beta = ema_decay, update_every = ema_update_every) # step counter state self.step = 0 # prepare model, dataloader, optimizer with accelerator self.model, self.opt = self.accelerator.prepare(self.model, self.opt) def save(self, milestone): if not self.accelerator.is_local_main_process: return data = { 'step': self.step + 1, 'model': self.accelerator.get_state_dict(self.model), 'opt': self.opt.state_dict(), 'ema': self.ema.state_dict(), 'scaler': self.accelerator.scaler.state_dict() if exists(self.accelerator.scaler) else None } torch.save(data, str(self.results_folder / f'model-{milestone}.pt')) def load(self, milestone): data = torch.load(str(self.results_folder / f'model-{milestone}.pt')) model = self.accelerator.unwrap_model(self.model) model.load_state_dict(data['model']) self.step = data['step'] self.opt.load_state_dict(data['opt']) if self.accelerator.is_main_process: self.ema.load_state_dict(data['ema']) if exists(self.accelerator.scaler) and exists(data['scaler']): self.accelerator.scaler.load_state_dict(data['scaler']) def train(self): accelerator = self.accelerator device = accelerator.device with tqdm(initial = self.step, total = self.train_num_steps, disable = not accelerator.is_main_process) as pbar: while self.step < self.train_num_steps: total_loss = 0. for _ in range(self.gradient_accumulate_every): data = next(self.dl).to(device) with accelerator.autocast(): loss = self.model(data) loss = loss / self.gradient_accumulate_every total_loss += loss.item() accelerator.backward(loss) pbar.set_description(f'loss: {total_loss:.4f}') accelerator.wait_for_everyone() accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) self.opt.step() self.opt.zero_grad() accelerator.wait_for_everyone() # save milestone on every local main process, sample only on global main process if accelerator.is_local_main_process: milestone = self.step // self.save_and_sample_every save_and_sample = self.step != 0 and self.step % self.save_and_sample_every == 0 if accelerator.is_main_process: self.ema.to(device) self.ema.update() if save_and_sample: self.ema.ema_model.eval() with torch.no_grad(): batches = num_to_groups(self.num_samples, self.batch_size) all_images_list = list(map(lambda n: self.ema.ema_model.sample(batch_size=n), batches)) all_images = torch.cat(all_images_list, dim = 0) utils.save_image(all_images, str(self.results_folder / f'sample-{milestone}.png'), nrow = int(math.sqrt(self.num_samples))) if save_and_sample: self.save(milestone) self.step += 1 pbar.update(1) accelerator.print('training complete')
recurrent-interface-network-pytorch-main
rin_pytorch/rin_pytorch.py