python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
import torch import torch.nn.functional as F from torch.optim import Adam from einops import rearrange, repeat import sidechainnet as scn from equiformer_pytorch import Equiformer BATCH_SIZE = 1 GRADIENT_ACCUMULATE_EVERY = 16 MAX_SEQ_LEN = 512 DEFAULT_TYPE = torch.float64 torch.set_default_dtype(DEFAULT_TYPE) def cycle(loader, len_thres = MAX_SEQ_LEN): while True: for data in loader: if data.seqs.shape[1] > len_thres: continue yield data transformer = Equiformer( num_tokens = 24, dim = (16, 8, 8, 8), dim_head = (16, 8, 8, 8), heads = (4, 2, 2, 2), depth = 10, reversible = True, attend_self = True, reduce_dim_out = True, num_neighbors = 6, num_degrees = 4, linear_out = True ).cuda() data = scn.load( casp_version = 12, thinning = 30, with_pytorch = 'dataloaders', batch_size = BATCH_SIZE, dynamic_batching = False ) # Add gaussian noise to the coords # Testing the refinement algorithm dl = cycle(data['train']) optim = Adam(transformer.parameters(), lr = 1e-4) for _ in range(10000): for _ in range(GRADIENT_ACCUMULATE_EVERY): batch = next(dl) seqs, coords, masks = batch.seqs, batch.crds, batch.msks seqs = seqs.cuda().argmax(dim = -1) coords = coords.cuda().type(torch.get_default_dtype()) masks = masks.cuda().bool() l = seqs.shape[1] coords = rearrange(coords, 'b (l s) c -> b l s c', s = 14) # Keeping only the backbone coordinates coords = coords[:, :, 0:3, :] coords = rearrange(coords, 'b l s c -> b (l s) c') seq = repeat(seqs, 'b n -> b (n c)', c = 3) masks = repeat(masks, 'b n -> b (n c)', c = 3) noised_coords = coords + torch.randn_like(coords).cuda() _, type1_out = transformer( seq, noised_coords, mask = masks ) denoised_coords = noised_coords + type1_out loss = F.mse_loss(denoised_coords[masks], coords[masks]) (loss / GRADIENT_ACCUMULATE_EVERY).backward() print('loss:', loss.item()) optim.step() optim.zero_grad()
equiformer-pytorch-main
denoise.py
import pytest import torch from equiformer_pytorch.equiformer_pytorch import Equiformer from equiformer_pytorch.irr_repr import rot from equiformer_pytorch.utils import ( torch_default_dtype, cast_tuple, to_order, exists ) # test output shape @pytest.mark.parametrize('dim', [32]) def test_transformer(dim): model = Equiformer( dim = dim, depth = 2, num_degrees = 3, init_out_zero = False ) feats = torch.randn(1, 32, dim) coors = torch.randn(1, 32, 3) mask = torch.ones(1, 32).bool() type0, _ = model(feats, coors, mask) assert type0.shape == (1, 32, dim), 'output must be of the right shape' # test equivariance @pytest.mark.parametrize('dim', [32, (4, 8, 16)]) @pytest.mark.parametrize('dim_in', [32, (32, 32)]) @pytest.mark.parametrize('l2_dist_attention', [True, False]) @pytest.mark.parametrize('reversible', [True, False]) def test_equivariance( dim, dim_in, l2_dist_attention, reversible ): dim_in = cast_tuple(dim_in) model = Equiformer( dim = dim, dim_in = dim_in, input_degrees = len(dim_in), depth = 2, l2_dist_attention = l2_dist_attention, reversible = reversible, num_degrees = 3, reduce_dim_out = True, init_out_zero = False ) feats = {deg: torch.randn(1, 32, dim, to_order(deg)) for deg, dim in enumerate(dim_in)} type0, type1 = feats[0], feats.get(1, None) coors = torch.randn(1, 32, 3) mask = torch.ones(1, 32).bool() R = rot(*torch.randn(3)) maybe_rotated_feats = {0: type0} if exists(type1): maybe_rotated_feats[1] = type1 @ R _, out1 = model(maybe_rotated_feats, coors @ R, mask) out2 = model(feats, coors, mask)[1] @ R assert torch.allclose(out1, out2, atol = 1e-4), 'is not equivariant'
equiformer-pytorch-main
tests/test_equivariance.py
import pytest import torch from equiformer_pytorch.equiformer_pytorch import Equiformer from equiformer_pytorch.irr_repr import rot from equiformer_pytorch.utils import torch_default_dtype # test equivariance with edges @pytest.mark.parametrize('l2_dist_attention', [True, False]) @pytest.mark.parametrize('reversible', [True, False]) def test_edges_equivariance( l2_dist_attention, reversible ): model = Equiformer( num_tokens = 28, dim = 64, num_edge_tokens = 4, edge_dim = 16, depth = 2, input_degrees = 1, num_degrees = 3, l2_dist_attention = l2_dist_attention, reversible = reversible, init_out_zero = False, reduce_dim_out = True ) atoms = torch.randint(0, 28, (2, 32)) bonds = torch.randint(0, 4, (2, 32, 32)) coors = torch.randn(2, 32, 3) mask = torch.ones(2, 32).bool() R = rot(*torch.randn(3)) _, out1 = model(atoms, coors @ R, mask, edges = bonds) out2 = model(atoms, coors, mask, edges = bonds)[1] @ R assert torch.allclose(out1, out2, atol = 1e-4), 'is not equivariant' # test equivariance with adjacency matrix @pytest.mark.parametrize('l2_dist_attention', [True, False]) @pytest.mark.parametrize('reversible', [True, False]) def test_adj_mat_equivariance( l2_dist_attention, reversible ): model = Equiformer( dim = 32, heads = 8, depth = 1, dim_head = 64, num_degrees = 2, valid_radius = 10, l2_dist_attention = l2_dist_attention, reversible = reversible, attend_sparse_neighbors = True, num_neighbors = 0, num_adj_degrees_embed = 2, max_sparse_neighbors = 8, init_out_zero = False, reduce_dim_out = True ) feats = torch.randn(1, 128, 32) coors = torch.randn(1, 128, 3) mask = torch.ones(1, 128).bool() i = torch.arange(128) adj_mat = (i[:, None] <= (i[None, :] + 1)) & (i[:, None] >= (i[None, :] - 1)) R = rot(*torch.randn(3)) _, out1 = model(feats, coors @ R, mask, adj_mat = adj_mat) out2 = model(feats, coors, mask, adj_mat = adj_mat)[1] @ R assert torch.allclose(out1, out2, atol = 1e-4), 'is not equivariant'
equiformer-pytorch-main
tests/test_edges.py
import os from itertools import product from collections import namedtuple import torch from einops import rearrange, repeat, reduce, einsum from equiformer_pytorch.irr_repr import ( irr_repr, rot_to_euler_angles ) from equiformer_pytorch.utils import ( torch_default_dtype, cache_dir, exists, default, to_order, identity, l2norm, slice_for_centering_y_to_x ) # constants CACHE_PATH = default(os.getenv('CACHE_PATH'), os.path.expanduser('~/.cache.equivariant_attention')) CACHE_PATH = CACHE_PATH if not exists(os.environ.get('CLEAR_CACHE')) else None # todo (figure out why this was hard coded in official repo) RANDOM_ANGLES = torch.tensor([ [4.41301023, 5.56684102, 4.59384642], [4.93325116, 6.12697327, 4.14574096], [0.53878964, 4.09050444, 5.36539036], [2.16017393, 3.48835314, 5.55174441], [2.52385107, 0.2908958, 3.90040975] ], dtype = torch.float64) # functions def get_matrix_kernel(A, eps = 1e-10): ''' Compute an orthonormal basis of the kernel (x_1, x_2, ...) A x_i = 0 scalar_product(x_i, x_j) = delta_ij :param A: matrix :return: matrix where each row is a basis vector of the kernel of A ''' A = rearrange(A, '... d -> (...) d') _u, s, v = torch.svd(A) kernel = v.t()[s < eps] return kernel def sylvester_submatrix(order_out, order_in, J, a, b, c): ''' generate Kronecker product matrix for solving the Sylvester equation in subspace J ''' angles = torch.stack((a, b, c), dim = -1) R_tensor = get_R_tensor(order_out, order_in, a, b, c) # [m_out * m_in, m_out * m_in] R_irrep_J = irr_repr(J, angles) # [m, m] R_irrep_J_T = rearrange(R_irrep_J, '... m n -> ... n m') R_tensor_identity = torch.eye(R_tensor.shape[-1]) R_irrep_J_identity = torch.eye(R_irrep_J.shape[-1]) return kron(R_tensor, R_irrep_J_identity) - kron(R_tensor_identity, R_irrep_J_T) # [(m_out * m_in) * m, (m_out * m_in) * m] def kron(a, b): """ A part of the pylabyk library: numpytorch.py at https://github.com/yulkang/pylabyk Kronecker product of matrices a and b with leading batch dimensions. Batch dimensions are broadcast. The number of them mush :type a: torch.Tensor :type b: torch.Tensor :rtype: torch.Tensor """ res = einsum(a, b, '... i j, ... k l -> ... i k j l') return rearrange(res, '... i j k l -> ... (i j) (k l)') def get_R_tensor(order_out, order_in, a, b, c): angles = torch.stack((a, b, c), dim = -1) return kron(irr_repr(order_out, angles), irr_repr(order_in, angles)) @cache_dir(CACHE_PATH) @torch_default_dtype(torch.float64) @torch.no_grad() def basis_transformation_Q_J(J, order_in, order_out, random_angles = RANDOM_ANGLES): """ :param J: order of the spherical harmonics :param order_in: order of the input representation :param order_out: order of the output representation :return: one part of the Q^-1 matrix of the article """ sylvester_submatrices = sylvester_submatrix(order_out, order_in, J, *random_angles.unbind(dim = -1)) null_space = get_matrix_kernel(sylvester_submatrices) assert null_space.size(0) == 1, null_space.size() # unique subspace solution Q_J = null_space[0] # [(m_out * m_in) * m] Q_J = rearrange( Q_J, '(oi m) -> oi m', m = to_order(J) ) return Q_J.float() # [m_out * m_in, m] @cache_dir(CACHE_PATH) @torch_default_dtype(torch.float64) @torch.no_grad() def get_basis(max_degree): """ Return equivariant weight basis (basis) assuming edges are aligned to z-axis """ basis = dict() # Equivariant basis (dict['<d_in><d_out>']) for d_in, d_out in product(range(max_degree+1), range(max_degree+1)): K_Js = [] d_min = min(d_in, d_out) m_in, m_out, m_min = map(to_order, (d_in, d_out, d_min)) slice_in, slice_out = map(lambda t: slice_for_centering_y_to_x(t, m_min), (m_in, m_out)) if d_min == 0: continue for J in range(abs(d_in - d_out), d_in + d_out + 1): # Get spherical harmonic projection matrices Q_J = basis_transformation_Q_J(J, d_in, d_out) # aligning edges (r_ij) with z-axis leads to sparse spherical harmonics (ex. degree 1 [0., 1., 0.]) - thus plucking out only the mo index # https://arxiv.org/abs/2206.14331 # equiformer v2 then normalizes the Y, to remove it altogether mo_index = J K_J = Q_J[..., mo_index] K_J = rearrange(K_J, '... (o i) -> ... o i', o = m_out) K_J = K_J[..., slice_out, slice_in] K_J = reduce(K_J, 'o i -> i', 'sum') # the matrix is a sparse diagonal, but flipped depending on whether J is even or odd K_Js.append(K_J) K_Js = torch.stack(K_Js, dim = -1) basis[f'({d_in},{d_out})'] = K_Js # (mi, mf) return basis # functions for rotating r_ij to z-axis def rot_x_to_y_direction(x, y, eps = 1e-6): ''' Rotates a vector x to the same direction as vector y Taken from https://math.stackexchange.com/a/2672702 This formulation, although not the shortest path, has the benefit of rotation matrix being symmetric; rotating back to x upon two rotations ''' n, dtype, device = x.shape[-1], x.dtype, x.device I = torch.eye(n, device = device, dtype = dtype) if torch.allclose(x, y, atol = 1e-6): return I x, y = x.double(), y.double() x, y = map(l2norm, (x, y)) xy = rearrange(x + y, '... n -> ... n 1') xy_t = rearrange(xy, '... n 1 -> ... 1 n') R = 2 * (xy @ xy_t) / (xy_t @ xy).clamp(min = eps) - I return R.type(dtype) @torch.no_grad() def get_D_to_from_z_axis(r_ij, max_degree): device, dtype = r_ij.device, r_ij.dtype D = dict() # precompute D # 1. compute rotation to [0., 1., 0.] # 2. calculate the ZYZ euler angles from that rotation # 3. calculate the D irreducible representation from 0 ... max_degree (technically 0 not needed) z_axis = r_ij.new_tensor([0., 1., 0.]) R = rot_x_to_y_direction(r_ij, z_axis) angles = rot_to_euler_angles(R) for d in range(max_degree + 1): if d == 0: continue D[d] = irr_repr(d, angles) return D
equiformer-pytorch-main
equiformer_pytorch/basis.py
__version__ = '0.3.10'
equiformer-pytorch-main
equiformer_pytorch/version.py
import torch from torch.nn import Module import torch.nn as nn from torch.autograd.function import Function from torch.utils.checkpoint import get_device_states, set_device_states from beartype import beartype from beartype.typing import List, Tuple from einops import rearrange, reduce from equiformer_pytorch.utils import to_order # helpers def map_values(fn, x): out = {} for (k, v) in x.items(): out[k] = fn(v) return out def dict_chunk(x, chunks, dim): out1 = {} out2 = {} for (k, v) in x.items(): c1, c2 = v.chunk(chunks, dim = dim) out1[k] = c1 out2[k] = c2 return out1, out2 def dict_sum(x, y): out = {} for k in x.keys(): out[k] = x[k] + y[k] return out def dict_subtract(x, y): out = {} for k in x.keys(): out[k] = x[k] - y[k] return out def dict_cat(x, y, dim): out = {} for k, v1 in x.items(): v2 = y[k] out[k] = torch.cat((v1, v2), dim = dim) return out def dict_set_(x, key, value): for k, v in x.items(): setattr(v, key, value) def dict_backwards_(outputs, grad_tensors): for k, v in outputs.items(): torch.autograd.backward(v, grad_tensors[k], retain_graph = True) def dict_del_(x): for k, v in x.items(): del v del x def values(d): return [v for _, v in d.items()] # following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html class Deterministic(Module): def __init__(self, net): super().__init__() self.net = net self.cpu_state = None self.cuda_in_fwd = None self.gpu_devices = None self.gpu_states = None def record_rng(self, *args): self.cpu_state = torch.get_rng_state() if torch.cuda._initialized: self.cuda_in_fwd = True self.gpu_devices, self.gpu_states = get_device_states(*args) def forward(self, *args, record_rng = False, set_rng = False, **kwargs): if record_rng: self.record_rng(*args) if not set_rng: return self.net(*args, **kwargs) rng_devices = [] if self.cuda_in_fwd: rng_devices = self.gpu_devices with torch.random.fork_rng(devices=rng_devices, enabled=True): torch.set_rng_state(self.cpu_state) if self.cuda_in_fwd: set_device_states(self.gpu_devices, self.gpu_states) return self.net(*args, **kwargs) # heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py # once multi-GPU is confirmed working, refactor and send PR back to source class ReversibleBlock(Module): def __init__(self, f, g): super().__init__() self.f = Deterministic(f) self.g = Deterministic(g) def forward(self, x, **kwargs): training = self.training x1, x2 = dict_chunk(x, 2, dim = -1) y1, y2 = None, None with torch.no_grad(): y1 = dict_sum(x1, self.f(x2, record_rng = training, **kwargs)) y2 = dict_sum(x2, self.g(y1, record_rng = training)) return dict_cat(y1, y2, dim = -1) def backward_pass(self, y, dy, **kwargs): y1, y2 = dict_chunk(y, 2, dim = -1) dict_del_(y) dy1, dy2 = dict_chunk(dy, 2, dim = -1) dict_del_(dy) with torch.enable_grad(): dict_set_(y1, 'requires_grad', True) gy1 = self.g(y1, set_rng = True) dict_backwards_(gy1, dy2) with torch.no_grad(): x2 = dict_subtract(y2, gy1) dict_del_(y2) dict_del_(gy1) dx1 = dict_sum(dy1, map_values(lambda t: t.grad, y1)) dict_del_(dy1) dict_set_(y1, 'grad', None) with torch.enable_grad(): dict_set_(x2, 'requires_grad', True) fx2 = self.f(x2, set_rng = True, **kwargs) dict_backwards_(fx2, dx1) with torch.no_grad(): x1 = dict_subtract(y1, fx2) dict_del_(y1) dict_del_(fx2) dx2 = dict_sum(dy2, map_values(lambda t: t.grad, x2)) dict_del_(dy2) dict_set_(x2, 'grad', None) x2 = map_values(lambda t: t.detach(), x2) x = dict_cat(x1, x2, dim = -1) dx = dict_cat(dx1, dx2, dim = -1) return x, dx class _ReversibleFunction(Function): @staticmethod def forward(ctx, x, blocks, kwargs): input_keys = kwargs.pop('input_keys') split_dims = kwargs.pop('split_dims') input_values = x.split(split_dims, dim = -1) x = dict(zip(input_keys, input_values)) ctx.kwargs = kwargs ctx.split_dims = split_dims ctx.input_keys = input_keys x = {k: rearrange(v, '... (d m) -> ... d m', m = to_order(k) * 2) for k, v in x.items()} for block in blocks: x = block(x, **kwargs) ctx.y = map_values(lambda t: t.detach(), x) ctx.blocks = blocks x = map_values(lambda t: rearrange(t, '... d m -> ... (d m)'), x) x = torch.cat(values(x), dim = -1) return x @staticmethod def backward(ctx, dy): y = ctx.y kwargs = ctx.kwargs input_keys = ctx.input_keys split_dims = ctx.split_dims dy = dy.split(split_dims, dim = -1) dy = dict(zip(input_keys, dy)) dy = {k: rearrange(v, '... (d m) -> ... d m', m = to_order(k) * 2) for k, v in dy.items()} for block in ctx.blocks[::-1]: y, dy = block.backward_pass(y, dy, **kwargs) dy = map_values(lambda t: rearrange(t, '... d m -> ... (d m)'), dy) dy = torch.cat(values(dy), dim = -1) return dy, None, None # sequential def residual_fn(x, residual): out = {} for degree, tensor in x.items(): out[degree] = tensor if degree not in residual: continue if not any(t.requires_grad for t in (out[degree], residual[degree])): out[degree] += residual[degree] else: out[degree] = out[degree] + residual[degree] return out class SequentialSequence(Module): @beartype def __init__( self, blocks: List[Tuple[Module, Module]] ): super().__init__() self.blocks = nn.ModuleList([nn.ModuleList([f, g]) for f, g in blocks]) def forward(self, x, **kwargs): for attn, ff in self.blocks: x = residual_fn(attn(x, **kwargs), x) x = residual_fn(ff(x), x) return x # reversible class ReversibleSequence(Module): @beartype def __init__( self, blocks: List[Tuple[Module, Module]] ): super().__init__() self.blocks = nn.ModuleList([ReversibleBlock(f, g) for (f, g) in blocks]) def forward(self, x, **kwargs): blocks = self.blocks # merge into single tensor x = map_values(lambda t: torch.cat((t, t), dim = -1), x) x = map_values(lambda t: rearrange(t, '... d m -> ... (d m)'), x) input_keys = x.keys() split_dims = tuple(map(lambda t: t.shape[-1], x.values())) block_kwargs = {'input_keys': input_keys, 'split_dims': split_dims, **kwargs} x = torch.cat(values(x), dim = -1) # reversible function, tailored for equivariant network x = _ReversibleFunction.apply(x, blocks, block_kwargs) # reconstitute x = dict(zip(input_keys, x.split(split_dims, dim = -1))) x = {k: reduce(v, '... (d r m) -> ... d m', 'mean', r = 2, m = to_order(k)) for k, v in x.items()} return x
equiformer-pytorch-main
equiformer_pytorch/reversible.py
from equiformer_pytorch.equiformer_pytorch import Equiformer
equiformer-pytorch-main
equiformer_pytorch/__init__.py
from math import sqrt from functools import partial from itertools import product from collections import namedtuple from beartype.typing import Optional, Union, Tuple, Dict from beartype import beartype import torch from torch import nn, is_tensor, Tensor import torch.nn.functional as F from opt_einsum import contract as opt_einsum from equiformer_pytorch.basis import ( get_basis, get_D_to_from_z_axis ) from equiformer_pytorch.reversible import ( SequentialSequence, ReversibleSequence ) from equiformer_pytorch.utils import ( exists, default, batched_index_select, masked_mean, to_order, cast_tuple, safe_cat, fast_split, slice_for_centering_y_to_x, pad_for_centering_y_to_x ) from einops import rearrange, repeat, reduce, einsum, pack, unpack from einops.layers.torch import Rearrange # constants Return = namedtuple('Return', ['type0', 'type1']) EdgeInfo = namedtuple('EdgeInfo', ['neighbor_indices', 'neighbor_mask', 'edges']) # helpers def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] # fiber functions @beartype def fiber_product( fiber_in: Tuple[int, ...], fiber_out: Tuple[int, ...] ): fiber_in, fiber_out = tuple(map(lambda t: [(degree, dim) for degree, dim in enumerate(t)], (fiber_in, fiber_out))) return product(fiber_in, fiber_out) @beartype def fiber_and( fiber_in: Tuple[int, ...], fiber_out: Tuple[int, ...] ): fiber_in = [(degree, dim) for degree, dim in enumerate(fiber_in)] fiber_out_degrees = set(range(len(fiber_out))) out = [] for degree, dim in fiber_in: if degree not in fiber_out_degrees: continue dim_out = fiber_out[degree] out.append((degree, dim, dim_out)) return out # helper functions def split_num_into_groups(num, groups): num_per_group = (num + groups - 1) // groups remainder = num % groups if remainder == 0: return (num_per_group,) * groups return (*((num_per_group,) * remainder), *((((num_per_group - 1),) * (groups - remainder)))) def get_tensor_device_and_dtype(features): _, first_tensor = next(iter(features.items())) return first_tensor.device, first_tensor.dtype def residual_fn(x, residual): out = {} for degree, tensor in x.items(): out[degree] = tensor if degree not in residual: continue if not any(t.requires_grad for t in (out[degree], residual[degree])): out[degree] += residual[degree] else: out[degree] = out[degree] + residual[degree] return out def tuple_set_at_index(tup, index, value): l = list(tup) l[index] = value return tuple(l) def feature_shapes(feature): return tuple(v.shape for v in feature.values()) def feature_fiber(feature): return tuple(v.shape[-2] for v in feature.values()) def cdist(a, b, dim = -1, eps = 1e-5): a = a.expand_as(b) a, _ = pack_one(a, '* c') b, ps = pack_one(b, '* c') dist = F.pairwise_distance(a, b, p = 2) dist = unpack_one(dist, ps, '*') return dist # classes class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): y = self.fn(x, **kwargs) if not y.requires_grad and not x.requires_grad: return x.add_(y) return x + y class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.register_buffer("beta", torch.zeros(dim)) def forward(self, x): return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) class Linear(nn.Module): @beartype def __init__( self, fiber_in: Tuple[int, ...], fiber_out: Tuple[int, ...] ): super().__init__() self.weights = nn.ParameterList([]) self.degrees = [] for (degree, dim_in, dim_out) in fiber_and(fiber_in, fiber_out): self.weights.append(nn.Parameter(torch.randn(dim_in, dim_out) / sqrt(dim_in))) self.degrees.append(degree) def init_zero_(self): for weight in self.weights: weight.data.zero_() def forward(self, x): out = {} for degree, weight in zip(self.degrees, self.weights): out[degree] = einsum(x[degree], weight, '... d m, d e -> ... e m') return out class Norm(nn.Module): @beartype def __init__( self, fiber: Tuple[int, ...], eps = 1e-12, ): """ deviates from the paper slightly, will use rmsnorm throughout (no mean centering or bias, even for type0 fatures) this has been proven at scale for a number of models, including T5 and alphacode """ super().__init__() self.eps = eps self.transforms = nn.ParameterList([]) for degree, dim in enumerate(fiber): self.transforms.append(nn.Parameter(torch.ones(dim, 1))) def forward(self, features): output = {} for scale, (degree, t) in zip(self.transforms, features.items()): dim = t.shape[-2] l2normed = t.norm(dim = -1, keepdim = True) rms = l2normed.norm(dim = -2, keepdim = True) * (dim ** -0.5) output[degree] = t / rms.clamp(min = self.eps) * scale return output class Gate(nn.Module): @beartype def __init__( self, fiber: Tuple[int, ...] ): super().__init__() type0_dim = fiber[0] dim_gate = sum(fiber[1:]) assert type0_dim > dim_gate, 'sum of channels from rest of the degrees must be less than the channels in type 0, as they would be used up for gating and subtracted out' self.fiber = fiber self.num_degrees = len(fiber) self.type0_dim_split = [*fiber[1:], type0_dim - dim_gate] def forward(self, x): output = {} type0_tensor = x[0] *gates, type0_tensor = type0_tensor.split(self.type0_dim_split, dim = -2) # silu for type 0 output = {0: F.silu(type0_tensor)} # sigmoid gate the higher types for degree, gate in zip(range(1, self.num_degrees), gates): output[degree] = x[degree] * gate.sigmoid() return output class DTP(nn.Module): """ 'Tensor Product' - in the equivariant sense """ @beartype def __init__( self, fiber_in: Tuple[int, ...], fiber_out: Tuple[int, ...], self_interaction = True, project_xi_xj = True, # whether to project xi and xj and then sum, as in paper project_out = True, # whether to do a project out after the "tensor product" pool = True, edge_dim = 0, radial_hidden_dim = 16 ): super().__init__() self.fiber_in = fiber_in self.fiber_out = fiber_out self.edge_dim = edge_dim self.self_interaction = self_interaction self.pool = pool self.project_xi_xj = project_xi_xj if project_xi_xj: self.to_xi = Linear(fiber_in, fiber_in) self.to_xj = Linear(fiber_in, fiber_in) self.kernel_unary = nn.ModuleDict() # in the depthwise tensor product, each channel of the output only gets contribution from one degree of the input (please email me if i misconstrued this) for degree_out, dim_out in enumerate(self.fiber_out): num_degrees_in = len(self.fiber_in) split_dim_out = split_num_into_groups(dim_out, num_degrees_in) # returns a tuple of ints representing how many channels come from each input degree for degree_in, (dim_in, dim_out_from_degree_in) in enumerate(zip(self.fiber_in, split_dim_out)): degree_min = min(degree_out, degree_in) self.kernel_unary[f'({degree_in},{degree_out})'] = Radial(degree_in, dim_in, degree_out, dim_out_from_degree_in, radial_hidden_dim = radial_hidden_dim, edge_dim = edge_dim) # whether a single token is self-interacting if self_interaction: self.self_interact = Linear(fiber_in, fiber_out) self.project_out = project_out if project_out: self.to_out = Linear(fiber_out, fiber_out) @beartype def forward( self, inp, basis, D, edge_info: EdgeInfo, rel_dist = None, ): neighbor_indices, neighbor_masks, edges = edge_info kernels = {} outputs = {} # neighbors if self.project_xi_xj: source, target = self.to_xi(inp), self.to_xj(inp) else: source, target = inp, inp # go through every permutation of input degree type to output degree type for degree_out, _ in enumerate(self.fiber_out): output = None m_out = to_order(degree_out) for degree_in, _ in enumerate(self.fiber_in): etype = f'({degree_in},{degree_out})' m_in = to_order(degree_in) m_min = min(m_in, m_out) degree_min = min(degree_in, degree_out) # get source and target (neighbor) representations xi, xj = source[degree_in], target[degree_in] x = batched_index_select(xj, neighbor_indices, dim = 1) if self.project_xi_xj: xi = rearrange(xi, 'b i d m -> b i 1 d m') x = x + xi # multiply by D(R) - rotate to z-axis if degree_in > 0: Di = D[degree_in] x = einsum(Di, x, '... mi1 mi2, ... li mi1 -> ... li mi2') # remove some 0s if degree_in != degree_out maybe_input_slice = slice_for_centering_y_to_x(m_in, m_min) maybe_output_pad = pad_for_centering_y_to_x(m_out, m_min) x = x[..., maybe_input_slice] # process input, edges, and basis in chunks along the sequence dimension kernel_fn = self.kernel_unary[etype] edge_features = safe_cat(edges, rel_dist, dim = -1) B = basis.get(etype, None) R = kernel_fn(edge_features) # mo depends only on mi (or other way around), removing yet another dimension if not exists(B): # degree_in or degree_out is 0 output_chunk = einsum(R, x, '... lo li, ... li mi -> ... lo mi') else: y = x.clone() x = repeat(x, '... mi -> ... mi mf r', mf = (B.shape[-1] + 1) // 2, r = 2) # mf + 1, so that mf can be divided in 2 x, x_to_flip = x.unbind(dim = -1) x_flipped = torch.flip(x_to_flip, dims = (-2,)) # flip on the mi axis, as the basis alternates between diagonal and flipped diagonal across mf x = torch.stack((x, x_flipped), dim = -1) x = rearrange(x, '... mf r -> ... (mf r)', r = 2) x = x[..., :-1] output_chunk = opt_einsum('... o i, m f, ... i m f -> ... o m', R, B, x) # in the case that degree_out < degree_in output_chunk = F.pad(output_chunk, (maybe_output_pad, maybe_output_pad), value = 0.) output = safe_cat(output, output_chunk, dim = -2) # multiply by D(R^-1) - rotate back from z-axis if degree_out > 0: Do = D[degree_out] output = einsum(output, Do, '... lo mo1, ... mo2 mo1 -> ... lo mo2') # pool or not along j (neighbors) dimension if self.pool: output = masked_mean(output, neighbor_masks, dim = 2) outputs[degree_out] = output if not self.self_interaction and not self.project_out: return outputs if self.project_out: outputs = self.to_out(outputs) self_interact_out = self.self_interact(inp) if self.pool: return residual_fn(outputs, self_interact_out) self_interact_out = {k: rearrange(v, '... d m -> ... 1 d m') for k, v in self_interact_out.items()} outputs = {degree: torch.cat(tensors, dim = -3) for degree, tensors in enumerate(zip(self_interact_out.values(), outputs.values()))} return outputs class Radial(nn.Module): def __init__( self, degree_in, nc_in, degree_out, nc_out, edge_dim = 0, radial_hidden_dim = 64 ): super().__init__() self.degree_in = degree_in self.degree_out = degree_out self.nc_in = nc_in self.nc_out = nc_out self.d_out = to_order(degree_out) self.edge_dim = edge_dim mid_dim = radial_hidden_dim edge_dim = default(edge_dim, 0) self.rp = nn.Sequential( nn.Linear(edge_dim + 1, mid_dim), nn.SiLU(), LayerNorm(mid_dim), nn.Linear(mid_dim, mid_dim), nn.SiLU(), LayerNorm(mid_dim), nn.Linear(mid_dim, nc_in * nc_out), Rearrange('... (lo li) -> ... lo li', li = nc_in, lo = nc_out) ) def forward(self, feat): return self.rp(feat) # feed forwards class FeedForward(nn.Module): @beartype def __init__( self, fiber: Tuple[int, ...], fiber_out: Optional[Tuple[int, ...]] = None, mult = 4, include_htype_norms = True, init_out_zero = True ): super().__init__() self.fiber = fiber fiber_hidden = tuple(dim * mult for dim in fiber) project_in_fiber = fiber project_in_fiber_hidden = tuple_set_at_index(fiber_hidden, 0, sum(fiber_hidden)) self.include_htype_norms = include_htype_norms if include_htype_norms: project_in_fiber = tuple_set_at_index(project_in_fiber, 0, sum(fiber)) fiber_out = default(fiber_out, fiber) self.prenorm = Norm(fiber) self.project_in = Linear(project_in_fiber, project_in_fiber_hidden) self.gate = Gate(project_in_fiber_hidden) self.project_out = Linear(fiber_hidden, fiber_out) if init_out_zero: self.project_out.init_zero_() def forward(self, features): outputs = self.prenorm(features) if self.include_htype_norms: type0, *htypes = [*outputs.values()] htypes = map(lambda t: t.norm(dim = -1, keepdim = True), htypes) type0 = torch.cat((type0, *htypes), dim = -2) outputs[0] = type0 outputs = self.project_in(outputs) outputs = self.gate(outputs) outputs = self.project_out(outputs) return outputs # global linear attention class LinearAttention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8 ): super().__init__() self.heads = heads dim_inner = dim_head * heads self.to_qkv = nn.Linear(dim, dim_inner * 3) def forward(self, x, mask = None): has_degree_m_dim = x.ndim == 4 if has_degree_m_dim: x = rearrange(x, '... 1 -> ...') q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v)) if exists(mask): mask = rearrange(mask, 'b n -> b 1 n 1') k = k.masked_fill(~mask, -torch.finfo(q.dtype).max) v = v.masked_fill(~mask, 0.) k = k.softmax(dim = -2) q = q.softmax(dim = -1) kv = einsum(k, v, 'b h n d, b h n e -> b h d e') out = einsum(kv, q, 'b h d e, b h n d -> b h n e') out = rearrange(out, 'b h n d -> b n (h d)') if has_degree_m_dim: out = rearrange(out, '... -> ... 1') return out # attention class L2DistAttention(nn.Module): @beartype def __init__( self, fiber: Tuple[int, ...], dim_head: Union[int, Tuple[int, ...]] = 64, heads: Union[int, Tuple[int, ...]] = 8, attend_self = False, edge_dim = None, single_headed_kv = False, radial_hidden_dim = 64, splits = 4, num_linear_attn_heads = 0, init_out_zero = True ): super().__init__() num_degrees = len(fiber) dim_head = cast_tuple(dim_head, num_degrees) assert len(dim_head) == num_degrees heads = cast_tuple(heads, num_degrees) assert len(heads) == num_degrees hidden_fiber = tuple(dim * head for dim, head in zip(dim_head, heads)) self.single_headed_kv = single_headed_kv self.attend_self = attend_self kv_hidden_fiber = hidden_fiber if not single_headed_kv else dim_head kv_hidden_fiber = tuple(dim * 2 for dim in kv_hidden_fiber) self.scale = tuple(dim ** -0.5 for dim in dim_head) self.heads = heads self.prenorm = Norm(fiber) self.to_q = Linear(fiber, hidden_fiber) self.to_kv = DTP(fiber, kv_hidden_fiber, radial_hidden_dim = radial_hidden_dim, edge_dim = edge_dim, pool = False, self_interaction = attend_self) # linear attention heads self.has_linear_attn = num_linear_attn_heads > 0 if self.has_linear_attn: degree_zero_dim = fiber[0] self.linear_attn = LinearAttention(degree_zero_dim, dim_head = dim_head[0], heads = num_linear_attn_heads) hidden_fiber = tuple_set_at_index(hidden_fiber, 0, hidden_fiber[0] + dim_head[0] * num_linear_attn_heads) self.to_out = Linear(hidden_fiber, fiber) if init_out_zero: self.to_out.init_zero_() @beartype def forward( self, features, edge_info: EdgeInfo, rel_dist, basis, D, mask = None ): one_head_kv = self.single_headed_kv device, dtype = get_tensor_device_and_dtype(features) neighbor_indices, neighbor_mask, edges = edge_info if exists(neighbor_mask): neighbor_mask = rearrange(neighbor_mask, 'b i j -> b 1 i j') if self.attend_self: neighbor_mask = F.pad(neighbor_mask, (1, 0), value = True) features = self.prenorm(features) queries = self.to_q(features) keyvalues = self.to_kv( features, edge_info = edge_info, rel_dist = rel_dist, basis = basis, D = D ) kv_einsum_eq = 'b h i j d m' if not one_head_kv else 'b i j d m' outputs = {} for degree, h, scale in zip(features.keys(), self.heads, self.scale): is_degree_zero = degree == 0 q, kv = map(lambda t: t[degree], (queries, keyvalues)) q = rearrange(q, 'b i (h d) m -> b h i d m', h = h) if not one_head_kv: kv = rearrange(kv, f'b i j (h d) m -> b h i j d m', h = h) k, v = kv.chunk(2, dim = -2) if one_head_kv: k = repeat(k, 'b i j d m -> b h i j d m', h = h) q = repeat(q, 'b h i d m -> b h i j d m', j = k.shape[-3]) if is_degree_zero: q, k = map(lambda t: rearrange(t, '... 1 -> ...'), (q, k)) sim = -cdist(q, k) * scale if not is_degree_zero: sim = sim.sum(dim = -1) sim = sim.masked_fill(~neighbor_mask, -torch.finfo(sim.dtype).max) attn = sim.softmax(dim = -1) out = einsum(attn, v, f'b h i j, {kv_einsum_eq} -> b h i d m') outputs[degree] = rearrange(out, 'b h n d m -> b n (h d) m') if self.has_linear_attn: lin_attn_out = self.linear_attn(features[0], mask = mask) outputs[0] = torch.cat((outputs[0], lin_attn_out), dim = -2) return self.to_out(outputs) class MLPAttention(nn.Module): @beartype def __init__( self, fiber: Tuple[int, ...], dim_head: Union[int, Tuple[int, ...]] = 64, heads: Union[int, Tuple[int, ...]] = 8, attend_self = False, edge_dim = None, splits = 4, single_headed_kv = False, attn_leakyrelu_slope = 0.1, attn_hidden_dim_mult = 4, radial_hidden_dim = 16, num_linear_attn_heads = 0, init_out_zero = True, **kwargs ): super().__init__() num_degrees = len(fiber) dim_head = cast_tuple(dim_head, num_degrees) assert len(dim_head) == num_degrees heads = cast_tuple(heads, num_degrees) assert len(heads) == num_degrees hidden_fiber = tuple(dim * head for dim, head in zip(dim_head, heads)) self.single_headed_kv = single_headed_kv value_hidden_fiber = hidden_fiber if not single_headed_kv else dim_head self.attend_self = attend_self self.scale = tuple(dim ** -0.5 for dim in dim_head) self.heads = heads self.prenorm = Norm(fiber) # type 0 needs greater dimension, for # (1) gating the htypes on the values branch # (2) attention logits, with dimension equal to heads amount for starters type0_dim = value_hidden_fiber[0] htype_dims = sum(value_hidden_fiber[1:]) value_gate_fiber = tuple_set_at_index(value_hidden_fiber, 0, type0_dim + htype_dims) attn_hidden_dims = tuple(head * attn_hidden_dim_mult for head in heads) intermediate_fiber = tuple_set_at_index(value_hidden_fiber, 0, sum(attn_hidden_dims) + type0_dim + htype_dims) self.intermediate_type0_split = [*attn_hidden_dims, type0_dim + htype_dims] # main branch tensor product self.to_attn_and_v = DTP(fiber, intermediate_fiber, radial_hidden_dim = radial_hidden_dim, edge_dim = edge_dim, pool = False, self_interaction = attend_self) # non-linear projection of attention branch into the attention logits self.to_attn_logits = nn.ModuleList([ nn.Sequential( nn.LeakyReLU(attn_leakyrelu_slope), nn.Linear(attn_hidden_dim, h, bias = False) ) for attn_hidden_dim, h in zip(attn_hidden_dims, self.heads) ]) # non-linear transform of the value branch # todo - needs a DTP here? self.to_values = nn.Sequential( Gate(value_gate_fiber), Linear(value_hidden_fiber, value_hidden_fiber) ) # linear attention heads self.has_linear_attn = num_linear_attn_heads > 0 if self.has_linear_attn: degree_zero_dim = fiber[0] self.linear_attn = LinearAttention(degree_zero_dim, dim_head = dim_head[0], heads = num_linear_attn_heads) hidden_fiber = tuple_set_at_index(hidden_fiber, 0, hidden_fiber[0] + dim_head[0] * num_linear_attn_heads) # combining heads and projection out self.to_out = Linear(hidden_fiber, fiber) if init_out_zero: self.to_out.init_zero_() @beartype def forward( self, features, edge_info: EdgeInfo, rel_dist, basis, D, mask = None ): one_headed_kv = self.single_headed_kv _, neighbor_mask, _ = edge_info if exists(neighbor_mask): if self.attend_self: neighbor_mask = F.pad(neighbor_mask, (1, 0), value = True) neighbor_mask = rearrange(neighbor_mask, '... -> ... 1') features = self.prenorm(features) intermediate = self.to_attn_and_v( features, edge_info = edge_info, rel_dist = rel_dist, basis = basis, D = D ) *attn_branch_type0, value_branch_type0 = intermediate[0].split(self.intermediate_type0_split, dim = -2) intermediate[0] = value_branch_type0 # process the attention branch attentions = [] for fn, attn_intermediate, scale in zip(self.to_attn_logits, attn_branch_type0, self.scale): attn_intermediate = rearrange(attn_intermediate, '... 1 -> ...') attn_logits = fn(attn_intermediate) attn_logits = attn_logits * scale if exists(neighbor_mask): attn_logits = attn_logits.masked_fill(~neighbor_mask, -torch.finfo(attn_logits.dtype).max) attn = attn_logits.softmax(dim = -2) # (batch, source, target, heads) attentions.append(attn) # process values branch values = self.to_values(intermediate) # aggregate values with attention matrix outputs = {} value_einsum_eq = 'b i j h d m' if not one_headed_kv else 'b i j d m' for degree, (attn, value, h) in enumerate(zip(attentions, values.values(), self.heads)): if not one_headed_kv: value = rearrange(value, 'b i j (h d) m -> b i j h d m', h = h) out = einsum(attn, value, f'b i j h, {value_einsum_eq} -> b i h d m') out = rearrange(out, 'b i h d m -> b i (h d) m') outputs[degree] = out # linear attention if self.has_linear_attn: lin_attn_out = self.linear_attn(features[0], mask = mask) outputs[0] = torch.cat((outputs[0], lin_attn_out), dim = -2) # combine heads out return self.to_out(outputs) # main class class Equiformer(nn.Module): @beartype def __init__( self, *, dim: Union[int, Tuple[int, ...]], dim_in: Optional[Union[int, Tuple[int, ...]]] = None, num_degrees = 2, input_degrees = 1, heads: Union[int, Tuple[int, ...]] = 8, dim_head: Union[int, Tuple[int, ...]] = 24, depth = 2, valid_radius = 1e5, num_neighbors = float('inf'), reduce_dim_out = False, radial_hidden_dim = 64, num_tokens = None, num_positions = None, num_edge_tokens = None, edge_dim = None, attend_self = True, splits = 4, linear_out = True, embedding_grad_frac = 0.5, single_headed_kv = False, # whether to do single headed key/values for dot product attention, to save on memory and compute ff_include_htype_norms = False, # whether for type0 projection to also involve norms of all higher types, in feedforward first projection. this allows for all higher types to be gated by other type norms l2_dist_attention = True, # turn to False to use MLP attention as proposed in paper, but dot product attention with -cdist similarity is still far better, and i haven't even rotated distances (rotary embeddings) into the type 0 features yet reversible = False, # turns on reversible networks, to scale depth without incurring depth times memory cost attend_sparse_neighbors = False, # ability to accept an adjacency matrix num_adj_degrees_embed = None, adj_dim = 0, max_sparse_neighbors = float('inf'), **kwargs ): super().__init__() self.embedding_grad_frac = embedding_grad_frac # trick for more stable training # decide hidden dimensions for all types self.dim = cast_tuple(dim, num_degrees) assert len(self.dim) == num_degrees self.num_degrees = len(self.dim) # decide input dimensions for all types dim_in = default(dim_in, (self.dim[0],)) self.dim_in = cast_tuple(dim_in, input_degrees) assert len(self.dim_in) == input_degrees self.input_degrees = len(self.dim_in) # token embedding type0_feat_dim = self.dim_in[0] self.type0_feat_dim = type0_feat_dim self.token_emb = nn.Embedding(num_tokens, type0_feat_dim) if exists(num_tokens) else None # positional embedding self.num_positions = num_positions self.pos_emb = nn.Embedding(num_positions, type0_feat_dim) if exists(num_positions) else None # init embeddings if exists(self.token_emb): nn.init.normal_(self.token_emb.weight, std = 1e-2) if exists(self.pos_emb): nn.init.normal_(self.pos_emb.weight, std = 1e-2) # edges assert not (exists(num_edge_tokens) and not exists(edge_dim)), 'edge dimension (edge_dim) must be supplied if equiformer is to have edge tokens' self.edge_emb = nn.Embedding(num_edge_tokens, edge_dim) if exists(num_edge_tokens) else None self.has_edges = exists(edge_dim) and edge_dim > 0 # sparse neighbors, derived from adjacency matrix or edges being passed in self.attend_sparse_neighbors = attend_sparse_neighbors self.max_sparse_neighbors = max_sparse_neighbors # adjacent neighbor derivation and embed assert not exists(num_adj_degrees_embed) or num_adj_degrees_embed >= 1, 'number of adjacent degrees to embed must be 1 or greater' self.num_adj_degrees_embed = num_adj_degrees_embed self.adj_emb = nn.Embedding(num_adj_degrees_embed + 1, adj_dim) if exists(num_adj_degrees_embed) and adj_dim > 0 else None edge_dim = (edge_dim if self.has_edges else 0) + (adj_dim if exists(self.adj_emb) else 0) # neighbors hyperparameters self.valid_radius = valid_radius self.num_neighbors = num_neighbors # main network self.tp_in = DTP( self.dim_in, self.dim, edge_dim = edge_dim, radial_hidden_dim = radial_hidden_dim ) # trunk self.layers = [] attention_klass = L2DistAttention if l2_dist_attention else MLPAttention for ind in range(depth): self.layers.append(( attention_klass( self.dim, heads = heads, dim_head = dim_head, attend_self = attend_self, edge_dim = edge_dim, single_headed_kv = single_headed_kv, radial_hidden_dim = radial_hidden_dim, **kwargs ), FeedForward(self.dim, include_htype_norms = ff_include_htype_norms) )) SequenceKlass = ReversibleSequence if reversible else SequentialSequence self.layers = SequenceKlass(self.layers) # out self.norm = Norm(self.dim) proj_out_klass = Linear if linear_out else FeedForward self.ff_out = proj_out_klass(self.dim, (1,) * self.num_degrees) if reduce_dim_out else None # basis is now constant # pytorch does not have BufferDict yet, just improvise a solution with python property self.basis = get_basis(self.num_degrees - 1) @property def basis(self): out = dict() for k in self.basis_keys: out[k] = getattr(self, f'basis:{k}') return out @basis.setter def basis(self, basis): self.basis_keys = basis.keys() for k, v in basis.items(): self.register_buffer(f'basis:{k}', v) @property def device(self): return next(self.parameters()).device @beartype def forward( self, inputs: Union[Tensor, Dict[int, Tensor]], coors: Tensor, mask = None, adj_mat = None, edges = None, return_pooled = False ): _mask, device = mask, self.device # apply token embedding and positional embedding to type-0 features # (if type-0 feats are passed as a tensor they are expected to be of a flattened shape (batch, seq, n_feats) # but if they are passed in a dict (fiber) they are expected to be of a unified shape (batch, seq, n_feats, 1=2*0+1)) if is_tensor(inputs): inputs = {0: inputs} feats = inputs[0] if feats.ndim == 4: feats = rearrange(feats, '... 1 -> ...') if exists(self.token_emb): assert feats.ndim == 2 feats = self.token_emb(feats) if exists(self.pos_emb): seq_len = feats.shape[1] assert seq_len <= self.num_positions, 'feature sequence length must be less than the number of positions given at init' feats = feats + self.pos_emb(torch.arange(seq_len, device = device)) feats = self.embedding_grad_frac * feats + (1 - self.embedding_grad_frac) * feats.detach() assert not (self.has_edges and not exists(edges)), 'edge embedding (num_edge_tokens & edge_dim) must be supplied if one were to train on edge types' b, n, d = feats.shape feats = rearrange(feats, 'b n d -> b n d 1') inputs[0] = feats assert d == self.type0_feat_dim, f'feature dimension {d} must be equal to dimension given at init {self.type0_feat_dim}' assert set(map(int, inputs.keys())) == set(range(self.input_degrees)), f'input must have {self.input_degrees} degree' num_degrees, neighbors, max_sparse_neighbors, valid_radius = self.num_degrees, self.num_neighbors, self.max_sparse_neighbors, self.valid_radius assert self.attend_sparse_neighbors or neighbors > 0, 'you must either attend to sparsely bonded neighbors, or set number of locally attended neighbors to be greater than 0' # cannot have a node attend to itself exclude_self_mask = rearrange(~torch.eye(n, dtype = torch.bool, device = device), 'i j -> 1 i j') remove_self = lambda t: t.masked_select(exclude_self_mask).reshape(b, n, n - 1) get_max_value = lambda t: torch.finfo(t.dtype).max # create N-degrees adjacent matrix from 1st degree connections if exists(adj_mat) and adj_mat.ndim == 2: adj_mat = repeat(adj_mat, 'i j -> b i j', b = b) if exists(self.num_adj_degrees_embed): adj_indices = adj_mat.long() for ind in range(self.num_adj_degrees_embed - 1): degree = ind + 2 next_degree_adj_mat = (adj_mat.float() @ adj_mat.float()) > 0 next_degree_mask = next_degree_adj_mat & ~adj_mat adj_indices = adj_indices.masked_fill(next_degree_mask, degree) adj_mat = next_degree_adj_mat.clone() adj_indices = adj_indices.masked_select(exclude_self_mask) adj_indices = rearrange(adj_indices, '(b i j) -> b i j', b = b, i = n, j = n - 1) # calculate sparsely connected neighbors sparse_neighbor_mask = None num_sparse_neighbors = 0 if self.attend_sparse_neighbors: assert exists(adj_mat), 'adjacency matrix must be passed in (keyword argument adj_mat)' adj_mat = remove_self(adj_mat) adj_mat_values = adj_mat.float() adj_mat_max_neighbors = reduce(adj_mat_values, '... i j -> ... i', 'sum').amax().item() if max_sparse_neighbors < adj_mat_max_neighbors: eps = 1e-2 noise = torch.empty_like(adj_mat_values).uniform_(-eps, eps) adj_mat_values += noise num_sparse_neighbors = int(min(max_sparse_neighbors, adj_mat_max_neighbors)) values, indices = adj_mat_values.topk(num_sparse_neighbors, dim = -1) sparse_neighbor_mask = torch.zeros_like(adj_mat_values).scatter_(-1, indices, values) sparse_neighbor_mask = sparse_neighbor_mask > 0.5 # exclude edge of token to itself indices = repeat(torch.arange(n, device = device), 'j -> b i j', b = b, i = n) rel_pos = rearrange(coors, 'b n d -> b n 1 d') - rearrange(coors, 'b n d -> b 1 n d') indices = indices.masked_select(exclude_self_mask).reshape(b, n, n - 1) rel_pos = rel_pos.masked_select(exclude_self_mask[..., None]).reshape(b, n, n - 1, 3) if exists(mask): mask = rearrange(mask, 'b i -> b i 1') * rearrange(mask, 'b j -> b 1 j') mask = mask.masked_select(exclude_self_mask).reshape(b, n, n - 1) if exists(edges): if exists(self.edge_emb): edges = self.edge_emb(edges) edges = edges.masked_select(exclude_self_mask[..., None]).reshape(b, n, n - 1, -1) rel_dist = rel_pos.norm(dim = -1) # rel_dist gets modified using adjacency or neighbor mask modified_rel_dist = rel_dist.clone() max_value = get_max_value(modified_rel_dist) # for masking out nodes from being considered as neighbors # make sure padding tokens are not considered when ordering by relative distance if exists(mask): modified_rel_dist = modified_rel_dist.masked_fill(~mask, max_value) # use sparse neighbor mask to assign priority of bonded if exists(sparse_neighbor_mask): modified_rel_dist = modified_rel_dist.masked_fill(sparse_neighbor_mask, 0.) # if number of local neighbors by distance is set to 0, then only fetch the sparse neighbors defined by adjacency matrix if neighbors == 0: valid_radius = 0 # get neighbors and neighbor mask, excluding self neighbors = int(min(neighbors, n - 1)) total_neighbors = int(neighbors + num_sparse_neighbors) assert total_neighbors > 0, 'you must be fetching at least 1 neighbor' total_neighbors = int(min(total_neighbors, n - 1)) # make sure total neighbors does not exceed the length of the sequence itself dist_values, nearest_indices = modified_rel_dist.topk(total_neighbors, dim = -1, largest = False) neighbor_mask = dist_values <= valid_radius neighbor_rel_dist = batched_index_select(rel_dist, nearest_indices, dim = 2) neighbor_rel_pos = batched_index_select(rel_pos, nearest_indices, dim = 2) neighbor_indices = batched_index_select(indices, nearest_indices, dim = 2) if exists(mask): neighbor_mask = neighbor_mask & batched_index_select(mask, nearest_indices, dim = 2) if exists(edges): edges = batched_index_select(edges, nearest_indices, dim = 2) # embed relative distances neighbor_rel_dist = rearrange(neighbor_rel_dist, '... -> ... 1') # calculate basis D = get_D_to_from_z_axis(neighbor_rel_pos, num_degrees - 1) # main logic edge_info = EdgeInfo(neighbor_indices, neighbor_mask, edges) x = inputs # project in x = self.tp_in( x, edge_info = edge_info, rel_dist = neighbor_rel_dist, basis = self.basis, D = D ) # transformer layers attn_kwargs = dict( edge_info = edge_info, rel_dist = neighbor_rel_dist, basis = self.basis, D = D, mask = _mask ) x = self.layers(x, **attn_kwargs) # norm x = self.norm(x) # reduce dim if specified if exists(self.ff_out): x = self.ff_out(x) x = {k: rearrange(v, '... 1 c -> ... c') for k, v in x.items()} if return_pooled: mask_fn = (lambda t: masked_mean(t, _mask, dim = 1)) x = {k: mask_fn(v) for k, v in x.items()} # just return type 0 and type 1 features, reduced or not type0, type1 = x[0], x.get(1, None) type0 = rearrange(type0, '... 1 -> ...') # for type 0, just squeeze out the last dimension return Return(type0, type1)
equiformer-pytorch-main
equiformer_pytorch/equiformer_pytorch.py
from pathlib import Path import time import pickle import gzip import torch import torch.nn.functional as F import contextlib from functools import wraps, lru_cache from filelock import FileLock from equiformer_pytorch.version import __version__ from einops import rearrange # helper functions def exists(val): return val is not None def identity(t): return t def default(val, d): return val if exists(val) else d def to_order(degree): return 2 * degree + 1 def l2norm(t): return F.normalize(t, dim = -1) def pad_for_centering_y_to_x(x, y): assert y <= x total_pad = x - y assert (total_pad % 2) == 0 return total_pad // 2 def slice_for_centering_y_to_x(x, y): pad = pad_for_centering_y_to_x(x, y) if pad == 0: return slice(None) return slice(pad, -pad) def safe_cat(arr, el, dim): if not exists(arr): return el return torch.cat((arr, el), dim = dim) def cast_tuple(val, depth = 1): return val if isinstance(val, tuple) else (val,) * depth def batched_index_select(values, indices, dim = 1): value_dims = values.shape[(dim + 1):] values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices)) indices = indices[(..., *((None,) * len(value_dims)))] indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims) value_expand_len = len(indices_shape) - (dim + 1) values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)] value_expand_shape = [-1] * len(values.shape) expand_slice = slice(dim, (dim + value_expand_len)) value_expand_shape[expand_slice] = indices.shape[expand_slice] values = values.expand(*value_expand_shape) dim += value_expand_len return values.gather(dim, indices) def fast_split(arr, splits, dim=0): axis_len = arr.shape[dim] splits = min(axis_len, max(splits, 1)) chunk_size = axis_len // splits remainder = axis_len - chunk_size * splits s = 0 for i in range(splits): adjust, remainder = 1 if remainder > 0 else 0, remainder - 1 yield torch.narrow(arr, dim, s, chunk_size + adjust) s += chunk_size + adjust def masked_mean(tensor, mask, dim = -1): if not exists(mask): return tensor.mean(dim = dim) diff_len = len(tensor.shape) - len(mask.shape) mask = mask[(..., *((None,) * diff_len))] tensor.masked_fill_(~mask, 0.) total_el = mask.sum(dim = dim) mean = tensor.sum(dim = dim) / total_el.clamp(min = 1.) mean.masked_fill_(total_el == 0, 0.) return mean def rand_uniform(size, min_val, max_val): return torch.empty(size).uniform_(min_val, max_val) # default dtype context manager @contextlib.contextmanager def torch_default_dtype(dtype): prev_dtype = torch.get_default_dtype() torch.set_default_dtype(dtype) yield torch.set_default_dtype(prev_dtype) def cast_torch_tensor(fn): @wraps(fn) def inner(t): if not torch.is_tensor(t): t = torch.tensor(t, dtype = torch.get_default_dtype()) return fn(t) return inner # benchmark tool def benchmark(fn): def inner(*args, **kwargs): start = time.time() res = fn(*args, **kwargs) diff = time.time() - start return diff, res return inner # caching functions def cache(cache, key_fn): def cache_inner(fn): @wraps(fn) def inner(*args, **kwargs): key_name = key_fn(*args, **kwargs) if key_name in cache: return cache[key_name] res = fn(*args, **kwargs) cache[key_name] = res return res return inner return cache_inner # cache in directory def cache_dir(dirname, maxsize=128): ''' Cache a function with a directory :param dirname: the directory path :param maxsize: maximum size of the RAM cache (there is no limit for the directory cache) ''' def decorator(func): @lru_cache(maxsize=maxsize) @wraps(func) def wrapper(*args, **kwargs): if not exists(dirname): return func(*args, **kwargs) dirpath = Path(dirname) dirpath.mkdir(parents = True, exist_ok = True) indexfile = dirpath / 'index.pkl' lock = FileLock(str(dirpath / 'mutex')) with lock: index = {} if indexfile.exists(): with open(indexfile, "rb") as file: index = pickle.load(file) key = (args, frozenset(kwargs), func.__defaults__) if key in index: filename = index[key] else: index[key] = filename = f"{len(index)}.pkl.gz" with open(indexfile, "wb") as file: pickle.dump(index, file) filepath = dirpath / filename if filepath.exists(): with lock: with gzip.open(filepath, "rb") as file: result = pickle.load(file) return result print(f"compute {filename}... ", end="", flush = True) result = func(*args, **kwargs) print(f"save {filename}... ", end="", flush = True) with lock: with gzip.open(filepath, "wb") as file: pickle.dump(result, file) print("done") return result return wrapper return decorator
equiformer-pytorch-main
equiformer_pytorch/utils.py
from pathlib import Path from functools import partial import torch import torch.nn.functional as F from torch import sin, cos, atan2, acos from einops import rearrange, pack, unpack from equiformer_pytorch.utils import ( exists, default, cast_torch_tensor, to_order, identity, l2norm ) DATA_PATH = Path(__file__).parents[0] / 'data' path = DATA_PATH / 'J_dense.pt' Jd = torch.load(str(path)) def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def wigner_d_matrix(degree, alpha, beta, gamma, dtype = None, device = None): """Create wigner D matrices for batch of ZYZ Euler angles for degree l.""" batch = alpha.shape[0] J = Jd[degree].type(dtype).to(device) order = to_order(degree) x_a = z_rot_mat(alpha, degree) x_b = z_rot_mat(beta, degree) x_c = z_rot_mat(gamma, degree) res = x_a @ J @ x_b @ J @ x_c return res.view(batch, order, order) def z_rot_mat(angle, l): device, dtype = angle.device, angle.dtype batch = angle.shape[0] arange = partial(torch.arange, device = device) order = to_order(l) m = angle.new_zeros((batch, order, order)) batch_range = arange(batch, dtype = torch.long)[..., None] inds = arange(order, dtype = torch.long)[None, ...] reversed_inds = arange(2 * l, -1, -1, dtype = torch.long)[None, ...] frequencies = arange(l, -l - 1, -1, dtype = dtype)[None] m[batch_range, inds, reversed_inds] = sin(frequencies * angle[..., None]) m[batch_range, inds, inds] = cos(frequencies * angle[..., None]) return m def irr_repr(order, angles): """ irreducible representation of SO3 - accepts multiple angles in tensor """ dtype, device = angles.dtype, angles.device angles, ps = pack_one(angles, '* c') alpha, beta, gamma = angles.unbind(dim = -1) rep = wigner_d_matrix(order, alpha, beta, gamma, dtype = dtype, device = device) return unpack_one(rep, ps, '* o1 o2') @cast_torch_tensor def rot_z(gamma): ''' Rotation around Z axis ''' c = cos(gamma) s = sin(gamma) z = torch.zeros_like(gamma) o = torch.ones_like(gamma) out = torch.stack(( c, -s, z, s, c, z, z, z, o ), dim = -1) return rearrange(out, '... (r1 r2) -> ... r1 r2', r1 = 3) @cast_torch_tensor def rot_y(beta): ''' Rotation around Y axis ''' c = cos(beta) s = sin(beta) z = torch.zeros_like(beta) o = torch.ones_like(beta) out = torch.stack(( c, z, s, z, o, z, -s, z, c ), dim = -1) return rearrange(out, '... (r1 r2) -> ... r1 r2', r1 = 3) def rot(alpha, beta, gamma): ''' ZYZ Euler angles rotation ''' return rot_z(alpha) @ rot_y(beta) @ rot_z(gamma) def rot_to_euler_angles(R): ''' Rotation matrix to ZYZ Euler angles ''' device, dtype = R.device, R.dtype xyz = R @ torch.tensor([0.0, 1.0, 0.0], device = device, dtype = dtype) xyz = l2norm(xyz).clamp(-1., 1.) b = acos(xyz[..., 1]) a = atan2(xyz[..., 0], xyz[..., 2]) R = rot(a, b, torch.zeros_like(a)).transpose(-1, -2) @ R c = atan2(R[..., 0, 2], R[..., 0, 0]) return torch.stack((a, b, c), dim = -1)
equiformer-pytorch-main
equiformer_pytorch/irr_repr.py
from setuptools import setup, find_packages setup( name = 'glom-pytorch', packages = find_packages(), version = '0.0.14', license='MIT', description = 'Glom - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/glom-pytorch', keywords = [ 'artificial intelligence', 'deep learning' ], install_requires=[ 'einops>=0.3', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
glom-pytorch-main
setup.py
from glom_pytorch.glom_pytorch import Glom
glom-pytorch-main
glom_pytorch/__init__.py
from math import sqrt import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat from einops.layers.torch import Rearrange # constants TOKEN_ATTEND_SELF_VALUE = -5e-4 # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d # class class GroupedFeedForward(nn.Module): def __init__(self, *, dim, groups, mult = 4): super().__init__() total_dim = dim * groups # levels * dim self.net = nn.Sequential( Rearrange('b n l d -> b (l d) n'), nn.Conv1d(total_dim, total_dim * mult, 1, groups = groups), nn.GELU(), nn.Conv1d(total_dim * mult, total_dim, 1, groups = groups), Rearrange('b (l d) n -> b n l d', l = groups) ) def forward(self, levels): return self.net(levels) class ConsensusAttention(nn.Module): def __init__(self, num_patches_side, attend_self = True, local_consensus_radius = 0): super().__init__() self.attend_self = attend_self self.local_consensus_radius = local_consensus_radius if self.local_consensus_radius > 0: coors = torch.stack(torch.meshgrid( torch.arange(num_patches_side), torch.arange(num_patches_side) )).float() coors = rearrange(coors, 'c h w -> (h w) c') dist = torch.cdist(coors, coors) mask_non_local = dist > self.local_consensus_radius mask_non_local = rearrange(mask_non_local, 'i j -> () i j') self.register_buffer('non_local_mask', mask_non_local) def forward(self, levels): _, n, _, d, device = *levels.shape, levels.device q, k, v = levels, F.normalize(levels, dim = -1), levels sim = einsum('b i l d, b j l d -> b l i j', q, k) * (d ** -0.5) if not self.attend_self: self_mask = torch.eye(n, device = device, dtype = torch.bool) self_mask = rearrange(self_mask, 'i j -> () () i j') sim.masked_fill_(self_mask, TOKEN_ATTEND_SELF_VALUE) if self.local_consensus_radius > 0: max_neg_value = -torch.finfo(sim.dtype).max sim.masked_fill_(self.non_local_mask, max_neg_value) attn = sim.softmax(dim = -1) out = einsum('b l i j, b j l d -> b i l d', attn, levels) return out # main class class Glom(nn.Module): def __init__( self, *, dim = 512, levels = 6, image_size = 224, patch_size = 14, consensus_self = False, local_consensus_radius = 0 ): super().__init__() # bottom level - incoming image, tokenize and add position num_patches_side = (image_size // patch_size) num_patches = num_patches_side ** 2 self.levels = levels self.image_to_tokens = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.Linear(patch_size ** 2 * 3, dim) ) self.pos_emb = nn.Embedding(num_patches, dim) # initial embeddings for all levels of a column self.init_levels = nn.Parameter(torch.randn(levels, dim)) # bottom-up and top-down self.bottom_up = GroupedFeedForward(dim = dim, groups = levels) self.top_down = GroupedFeedForward(dim = dim, groups = levels - 1) # consensus attention self.attention = ConsensusAttention(num_patches_side, attend_self = consensus_self, local_consensus_radius = local_consensus_radius) def forward(self, img, iters = None, levels = None, return_all = False): b, device = img.shape[0], img.device iters = default(iters, self.levels * 2) # need to have twice the number of levels of iterations in order for information to propagate up and back down. can be overridden tokens = self.image_to_tokens(img) n = tokens.shape[1] pos_embs = self.pos_emb(torch.arange(n, device = device)) pos_embs = rearrange(pos_embs, 'n d -> () n () d') bottom_level = tokens bottom_level = rearrange(bottom_level, 'b n d -> b n () d') if not exists(levels): levels = repeat(self.init_levels, 'l d -> b n l d', b = b, n = n) hiddens = [levels] num_contributions = torch.empty(self.levels, device = device).fill_(4) num_contributions[-1] = 3 # top level does not get a top-down contribution, so have to account for this when doing the weighted mean for _ in range(iters): levels_with_input = torch.cat((bottom_level, levels), dim = -2) # each iteration, attach original input at the most bottom level, to be bottomed-up bottom_up_out = self.bottom_up(levels_with_input[..., :-1, :]) top_down_out = self.top_down(levels_with_input[..., 2:, :] + pos_embs) # positional embeddings given to top-down networks top_down_out = F.pad(top_down_out, (0, 0, 0, 1), value = 0.) consensus = self.attention(levels) levels_sum = torch.stack((levels, bottom_up_out, top_down_out, consensus)).sum(dim = 0) # hinton said to use the weighted mean of (1) bottom up (2) top down (3) previous level value {t - 1} (4) consensus value levels_mean = levels_sum / rearrange(num_contributions, 'l -> () () l ()') levels = levels_mean # set for next iteration hiddens.append(levels) if return_all: return torch.stack(hiddens) # return (time step, batch, num columns, levels, dimension) return levels
glom-pytorch-main
glom_pytorch/glom_pytorch.py
from setuptools import setup, find_packages setup( name = 'holodeck-pytorch', packages = find_packages(exclude=[]), version = '0.0.1', license='MIT', description = 'Holodeck - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/holodeck-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism', 'denoising diffusion', 'temporal scene representations', 'hypernetworks' ], install_requires=[ 'einops>=0.4', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
holodeck-pytorch-main
setup.py
from holodeck_pytorch.holodeck_pytorch import Holodeck
holodeck-pytorch-main
holodeck_pytorch/__init__.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d # attention class Attention(nn.Module): def __init__( self, dim, dim_head = 64, dim_context = None, heads = 8, norm_context = False ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 inner_dim = dim_head * heads dim_context = default(dim_context, dim) self.norm = nn.LayerNorm(dim) self.context_norm = nn.LayerNorm(dim_context) if norm_context else nn.Identity() self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim_context, dim_head * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward( self, x, context = None, mask = None, attn_bias = None ): if exists(context): context = self.context_norm(context) kv_input = default(context, x) x = self.norm(x) q, k, v = self.to_q(x), *self.to_kv(kv_input).chunk(2, dim = -1) q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads) q = q * self.scale sim = einsum('b h i d, b j d -> b h i j', q, k) mask_value = -torch.finfo(sim.dtype).max if exists(attn_bias): sim = sim + attn_bias if exists(mask): mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, mask_value) attn = sim.softmax(dim = -1) out = einsum('b h i j, b j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # main class class Holodeck(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x
holodeck-pytorch-main
holodeck_pytorch/holodeck_pytorch.py
from setuptools import setup, find_packages setup( name = 'triangle-multiplicative-module', packages = find_packages(), version = '0.0.3', license='MIT', description = 'Triangle Multiplicative Module', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/triangle-multiplicative-module', keywords = [ 'artificial intelligence', 'deep learning', 'protein folding' ], install_requires=[ 'einops>=0.3', 'torch>=1.7' ], setup_requires=[ 'pytest-runner', ], tests_require=[ 'pytest' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
triangle-multiplicative-module-main
setup.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d # classes class TriangleMultiplicativeModule(nn.Module): def __init__( self, *, dim, hidden_dim = None, mix = 'ingoing' ): super().__init__() assert mix in {'ingoing', 'outgoing'}, 'mix must be either ingoing or outgoing' hidden_dim = default(hidden_dim, dim) self.norm = nn.LayerNorm(dim) self.left_proj = nn.Linear(dim, hidden_dim) self.right_proj = nn.Linear(dim, hidden_dim) self.left_gate = nn.Linear(dim, hidden_dim) self.right_gate = nn.Linear(dim, hidden_dim) self.out_gate = nn.Linear(dim, hidden_dim) # initialize all gating to be identity for gate in (self.left_gate, self.right_gate, self.out_gate): nn.init.constant_(gate.weight, 0.) nn.init.constant_(gate.bias, 1.) if mix == 'outgoing': self.mix_einsum_eq = '... i k d, ... j k d -> ... i j d' elif mix == 'ingoing': self.mix_einsum_eq = '... k j d, ... k i d -> ... i j d' self.to_out_norm = nn.LayerNorm(hidden_dim) self.to_out = nn.Linear(hidden_dim, dim) def forward(self, x, mask = None): assert x.shape[1] == x.shape[2], 'feature map must be symmetrical' if exists(mask): mask = rearrange(mask, 'b i j -> b i j ()') x = self.norm(x) left = self.left_proj(x) right = self.right_proj(x) if exists(mask): left = left * mask right = right * mask left_gate = self.left_gate(x).sigmoid() right_gate = self.right_gate(x).sigmoid() out_gate = self.out_gate(x).sigmoid() left = left * left_gate right = right * right_gate out = einsum(self.mix_einsum_eq, left, right) out = self.to_out_norm(out) out = out * out_gate return self.to_out(out)
triangle-multiplicative-module-main
triangle_multiplicative_module/triangle_multiplicative_module.py
from triangle_multiplicative_module.triangle_multiplicative_module import TriangleMultiplicativeModule
triangle-multiplicative-module-main
triangle_multiplicative_module/__init__.py
from setuptools import setup, find_packages exec(open('naturalspeech2_pytorch/version.py').read()) setup( name = 'naturalspeech2-pytorch', packages = find_packages(exclude=[]), version = __version__, license='MIT', description = 'Natural Speech 2 - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', include_package_data = True, url = 'https://github.com/lucidrains/naturalspeech2-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'latent diffusion', 'speech synthesis' ], install_requires=[ 'accelerate', 'audiolm-pytorch>=0.30.2', 'beartype', 'einops>=0.6.1', 'ema-pytorch', 'indic-num2words', 'inflect', 'local-attention', 'num2words', 'pyworld', 'pydantic<2.0', 'torch>=1.6', 'tqdm', 'vector-quantize-pytorch>=1.4.1' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
naturalspeech2-pytorch-main
setup.py
from typing import Tuple import numpy as np import torch from torch import nn, Tensor from torch.nn import Module import torch.nn.functional as F from einops import rearrange, repeat from beartype import beartype from beartype.typing import Optional def exists(val): return val is not None class AlignerNet(Module): """alignment model https://arxiv.org/pdf/2108.10447.pdf """ def __init__( self, dim_in=80, dim_hidden=512, attn_channels=80, temperature=0.0005, ): super().__init__() self.temperature = temperature self.key_layers = nn.ModuleList([ nn.Conv1d( dim_hidden, dim_hidden * 2, kernel_size=3, padding=1, bias=True, ), nn.ReLU(inplace=True), nn.Conv1d(dim_hidden * 2, attn_channels, kernel_size=1, padding=0, bias=True) ]) self.query_layers = nn.ModuleList([ nn.Conv1d( dim_in, dim_in * 2, kernel_size=3, padding=1, bias=True, ), nn.ReLU(inplace=True), nn.Conv1d(dim_in * 2, dim_in, kernel_size=1, padding=0, bias=True), nn.ReLU(inplace=True), nn.Conv1d(dim_in, attn_channels, kernel_size=1, padding=0, bias=True) ]) @beartype def forward( self, queries: Tensor, keys: Tensor, mask: Optional[Tensor] = None ): key_out = keys for layer in self.key_layers: key_out = layer(key_out) query_out = queries for layer in self.query_layers: query_out = layer(query_out) key_out = rearrange(key_out, 'b c t -> b t c') query_out = rearrange(query_out, 'b c t -> b t c') attn_logp = torch.cdist(query_out, key_out) attn_logp = rearrange(attn_logp, 'b ... -> b 1 ...') if exists(mask): mask = rearrange(mask.bool(), '... c -> ... 1 c') attn_logp.data.masked_fill_(~mask, -torch.finfo(attn_logp.dtype).max) attn = attn_logp.softmax(dim = -1) return attn, attn_logp def pad_tensor(input, pad, value=0): pad = [item for sublist in reversed(pad) for item in sublist] # Flatten the tuple assert len(pad) // 2 == len(input.shape), 'Padding dimensions do not match input dimensions' return F.pad(input, pad, mode='constant', value=value) def maximum_path(value, mask, const=None): device = value.device dtype = value.dtype if not exists(const): const = torch.tensor(float('-inf')).to(device) # Patch for Sphinx complaint value = value * mask b, t_x, t_y = value.shape direction = torch.zeros(value.shape, dtype=torch.int64, device=device) v = torch.zeros((b, t_x), dtype=torch.float32, device=device) x_range = torch.arange(t_x, dtype=torch.float32, device=device).view(1, -1) for j in range(t_y): v0 = pad_tensor(v, ((0, 0), (1, 0)), value = const)[:, :-1] v1 = v max_mask = v1 >= v0 v_max = torch.where(max_mask, v1, v0) direction[:, :, j] = max_mask index_mask = x_range <= j v = torch.where(index_mask.view(1,-1), v_max + value[:, :, j], const) direction = torch.where(mask.bool(), direction, 1) path = torch.zeros(value.shape, dtype=torch.float32, device=device) index = mask[:, :, 0].sum(1).long() - 1 index_range = torch.arange(b, device=device) for j in reversed(range(t_y)): path[index_range, index, j] = 1 index = index + direction[index_range, index, j] - 1 path = path * mask.float() path = path.to(dtype=dtype) return path class ForwardSumLoss(Module): def __init__( self, blank_logprob = -1 ): super().__init__() self.blank_logprob = blank_logprob self.ctc_loss = torch.nn.CTCLoss( blank = 0, # check this value zero_infinity = True ) def forward(self, attn_logprob, key_lens, query_lens): device, blank_logprob = attn_logprob.device, self.blank_logprob max_key_len = attn_logprob.size(-1) # Reorder input to [query_len, batch_size, key_len] attn_logprob = rearrange(attn_logprob, 'b 1 c t -> c b t') # Add blank label attn_logprob = F.pad(attn_logprob, (1, 0, 0, 0, 0, 0), value = blank_logprob) # Convert to log probabilities # Note: Mask out probs beyond key_len attn_logprob.masked_fill_(torch.arange(max_key_len + 1, device=device, dtype=torch.long).view(1, 1, -1) > key_lens.view(1, -1, 1), -1e15) attn_logprob = attn_logprob.log_softmax(dim = -1) # Target sequences target_seqs = torch.arange(1, max_key_len + 1, device=device, dtype=torch.long) target_seqs = repeat(target_seqs, 'n -> b n', b = key_lens.numel()) # Evaluate CTC loss cost = self.ctc_loss(attn_logprob, target_seqs, query_lens, key_lens) return cost class Aligner(Module): def __init__( self, dim_in, dim_hidden, attn_channels=80, temperature=0.0005 ): super().__init__() self.dim_in = dim_in self.dim_hidden = dim_hidden self.attn_channels = attn_channels self.temperature = temperature self.aligner = AlignerNet( dim_in = self.dim_in, dim_hidden = self.dim_hidden, attn_channels = self.attn_channels, temperature = self.temperature ) def forward( self, x, x_mask, y, y_mask ): alignment_soft, alignment_logprob = self.aligner(y, rearrange(x, 'b d t -> b t d'), x_mask) x_mask = rearrange(x_mask, '... i -> ... i 1') y_mask = rearrange(y_mask, '... j -> ... 1 j') attn_mask = x_mask * y_mask attn_mask = rearrange(attn_mask, 'b 1 i j -> b i j') alignment_soft = rearrange(alignment_soft, 'b 1 c t -> b t c') alignment_mask = maximum_path(alignment_soft, attn_mask) alignment_hard = torch.sum(alignment_mask, -1).int() return alignment_hard, alignment_soft, alignment_logprob, alignment_mask if __name__ == '__main__': batch_size = 10 seq_len_y = 200 # length of sequence y seq_len_x = 35 feature_dim = 80 # feature dimension x = torch.randn(batch_size, 512, seq_len_x) y = torch.randn(batch_size, seq_len_y, feature_dim) # Create masks x_mask = torch.ones(batch_size, 1, seq_len_x) y_mask = torch.ones(batch_size, 1, seq_len_y) align = Aligner(dim_in = 80, dim_hidden=512, attn_channels=80) alignment_hard, alignment_soft, alignment_logprob, alignment_mas = align(x, x_mask, y, y_mask)
naturalspeech2-pytorch-main
naturalspeech2_pytorch/aligner.py
__version__ = '0.1.5'
naturalspeech2-pytorch-main
naturalspeech2_pytorch/version.py
import torch from packaging import version if version.parse(torch.__version__) >= version.parse('2.0.0'): from einops._torch_specific import allow_ops_in_compiled_graph allow_ops_in_compiled_graph() from naturalspeech2_pytorch.naturalspeech2_pytorch import ( NaturalSpeech2, Transformer, Wavenet, Model, Trainer, PhonemeEncoder, DurationPitchPredictor, SpeechPromptEncoder, Tokenizer, ESpeak ) from audiolm_pytorch import ( SoundStream, EncodecWrapper )
naturalspeech2-pytorch-main
naturalspeech2_pytorch/__init__.py
from collections import namedtuple from functools import wraps from packaging import version import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange # constants Config = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, dropout = 0., causal = False, use_flash = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.causal = causal self.register_buffer("mask", None, persistent=False) self.use_flash = use_flash assert not (use_flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = Config(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not use_flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = Config(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = Config(False, True, True) def get_mask(self, n, device): if exists(self.mask) and self.mask.shape[-1] >= n: return self.mask[:n, :n] mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1) self.register_buffer("mask", mask, persistent=False) return mask def flash_attn(self, q, k, v, mask = None): _, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda # Recommended for multi-query single-key-value attention by Tri Dao # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) if k.ndim == 3: k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) if v.ndim == 3: v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L if exists(mask): mask = rearrange(mask, 'b j -> b 1 1 j') mask = mask.expand(-1, heads, q_len, -1) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0., is_causal = self.causal ) return out def forward(self, q, k, v, mask = None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device = q.shape[-2], q.device scale = q.shape[-1] ** -0.5 if self.use_flash: return self.flash_attn(q, k, v, mask = mask) kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' # similarity sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale # key padding mask if exists(mask): mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # causal mask if self.causal: causal_mask = self.get_mask(n, device) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v) return out
naturalspeech2-pytorch-main
naturalspeech2_pytorch/attend.py
import math import copy from multiprocessing import cpu_count from pathlib import Path from random import random from functools import partial from collections import namedtuple import numpy as np import torch import torch.nn.functional as F from torch import nn, einsum, Tensor from torch.optim import Adam from torch.utils.data import Dataset, DataLoader import torchaudio import torchaudio.transforms as T from einops import rearrange, reduce, repeat from einops.layers.torch import Rearrange, Reduce from audiolm_pytorch import SoundStream, EncodecWrapper from audiolm_pytorch.data import SoundDataset, get_dataloader from beartype import beartype from beartype.typing import Tuple, Union, Optional, List from beartype.door import is_bearable from naturalspeech2_pytorch.attend import Attend from naturalspeech2_pytorch.aligner import Aligner, ForwardSumLoss from naturalspeech2_pytorch.utils.tokenizer import Tokenizer, ESpeak from naturalspeech2_pytorch.utils.utils import average_over_durations, create_mask from naturalspeech2_pytorch.version import __version__ from accelerate import Accelerator from ema_pytorch import EMA from tqdm.auto import tqdm import pyworld as pw # constants mlist = nn.ModuleList def Sequential(*mods): return nn.Sequential(*filter(exists, mods)) # helpers functions def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def divisible_by(num, den): return (num % den) == 0 def identity(t, *args, **kwargs): return t def has_int_squareroot(num): return (math.sqrt(num) ** 2) == num # tensor helpers def prob_mask_like(shape, prob, device): if prob == 1: return torch.ones(shape, device = device, dtype = torch.bool) elif prob == 0: return torch.zeros(shape, device = device, dtype = torch.bool) else: return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob def generate_mask_from_repeats(repeats): repeats = repeats.int() device = repeats.device lengths = repeats.sum(dim = -1) max_length = lengths.amax().item() cumsum = repeats.cumsum(dim = -1) cumsum_exclusive = F.pad(cumsum, (1, -1), value = 0.) seq = torch.arange(max_length, device = device) seq = repeat(seq, '... j -> ... i j', i = repeats.shape[-1]) cumsum = rearrange(cumsum, '... i -> ... i 1') cumsum_exclusive = rearrange(cumsum_exclusive, '... i -> ... i 1') lengths = rearrange(lengths, 'b -> b 1 1') mask = (seq < cumsum) & (seq >= cumsum_exclusive) & (seq < lengths) return mask # sinusoidal positional embeds class LearnedSinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() assert divisible_by(dim, 2) half_dim = dim // 2 self.weights = nn.Parameter(torch.randn(half_dim)) def forward(self, x): x = rearrange(x, 'b -> b 1') freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1) fouriered = torch.cat((x, fouriered), dim = -1) return fouriered # compute pitch def compute_pitch_pytorch(wav, sample_rate): #https://pytorch.org/audio/main/generated/torchaudio.functional.compute_kaldi_pitch.html#torchaudio.functional.compute_kaldi_pitch pitch_feature = torchaudio.functional.compute_kaldi_pitch(wav, sample_rate) pitch, nfcc = pitch_feature.unbind(dim = -1) return pitch #as mentioned in paper using pyworld def compute_pitch_pyworld(wav, sample_rate, hop_length, pitch_fmax=640.0): is_tensor_input = torch.is_tensor(wav) if is_tensor_input: device = wav.device wav = wav.contiguous().cpu().numpy() if divisible_by(len(wav), hop_length): wav = np.pad(wav, (0, hop_length // 2), mode="reflect") wav = wav.astype(np.double) outs = [] for sample in wav: f0, t = pw.dio( sample, fs = sample_rate, f0_ceil = pitch_fmax, frame_period = 1000 * hop_length / sample_rate, ) f0 = pw.stonemask(sample, f0, t, sample_rate) outs.append(f0) outs = np.stack(outs) if is_tensor_input: outs = torch.from_numpy(outs).to(device) return outs def f0_to_coarse(f0, f0_bin = 256, f0_max = 1100.0, f0_min = 50.0): f0_mel_max = 1127 * torch.log(1 + torch.tensor(f0_max) / 700) f0_mel_min = 1127 * torch.log(1 + torch.tensor(f0_min) / 700) f0_mel = 1127 * (1 + f0 / 700).log() f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 f0_coarse = (f0_mel + 0.5).int() assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) return f0_coarse # peripheral models # audio to mel class AudioToMel(nn.Module): def __init__( self, *, n_mels = 100, sampling_rate = 24000, f_max = 8000, n_fft = 1024, win_length = 640, hop_length = 160, log = True ): super().__init__() self.log = log self.n_mels = n_mels self.n_fft = n_fft self.f_max = f_max self.win_length = win_length self.hop_length = hop_length self.sampling_rate = sampling_rate def forward(self, audio): stft_transform = T.Spectrogram( n_fft = self.n_fft, win_length = self.win_length, hop_length = self.hop_length, window_fn = torch.hann_window ) spectrogram = stft_transform(audio) mel_transform = T.MelScale( n_mels = self.n_mels, sample_rate = self.sampling_rate, n_stft = self.n_fft // 2 + 1, f_max = self.f_max ) mel = mel_transform(spectrogram) if self.log: mel = T.AmplitudeToDB()(mel) return mel # phoneme - pitch - speech prompt - duration predictors class PhonemeEncoder(nn.Module): def __init__( self, *, tokenizer: Optional[Tokenizer] = None, num_tokens = None, dim = 512, dim_hidden = 512, kernel_size = 9, depth = 6, dim_head = 64, heads = 8, conv_dropout = 0.2, attn_dropout = 0., use_flash = False ): super().__init__() self.tokenizer = tokenizer num_tokens = default(num_tokens, tokenizer.vocab_size if exists(tokenizer) else None) self.token_emb = nn.Embedding(num_tokens + 1, dim) if exists(num_tokens) else nn.Identity() self.pad_id = num_tokens same_padding = (kernel_size - 1) // 2 self.conv = nn.Sequential( Rearrange('b n c -> b c n'), CausalConv1d(dim, dim_hidden, kernel_size), nn.SiLU(), nn.Dropout(conv_dropout), Rearrange('b c n -> b n c'), ) self.transformer = Transformer( dim = dim_hidden, depth = depth, dim_head = dim_head, heads = heads, dropout = attn_dropout, use_flash = use_flash ) @beartype def forward( self, x: Union[Tensor, List[str]], mask = None ): if is_bearable(x, List[str]): assert exists(self.tokenizer) x = self.tokenizer.texts_to_tensor_ids(x) is_padding = x < 0 x = x.masked_fill(is_padding, self.pad_id) x = self.token_emb(x) x = self.conv(x) x = self.transformer(x, mask = mask) return x class SpeechPromptEncoder(nn.Module): @beartype def __init__( self, dim_codebook, dims: Tuple[int] = (256, 2048, 2048, 2048, 2048, 512, 512, 512), *, depth = 6, heads = 8, dim_head = 64, dropout = 0.2, kernel_size = 9, padding = 4, use_flash_attn = True ): super().__init__() dims = [dim_codebook, *dims] self.dim, self.dim_out = dims[0], dims[-1] dim_pairs = zip(dims[:-1], dims[1:]) modules = [] for dim_in, dim_out in dim_pairs: modules.extend([ nn.Conv1d(dim_in, dim_out, kernel_size, padding = padding), nn.SiLU() ]) self.conv = nn.Sequential( Rearrange('b n c -> b c n'), *modules, Rearrange('b c n -> b n c') ) self.transformer = Transformer( dim = dims[-1], depth = depth, heads = heads, dim_head = dim_head, dropout = dropout, use_flash = use_flash_attn ) def forward(self, x): assert x.shape[-1] == self.dim x = self.conv(x) x = self.transformer(x) return x # duration and pitch predictor seems to be the same class Block(nn.Module): def __init__( self, dim, dim_out, kernel = 3, groups = 8, dropout = 0. ): super().__init__() self.proj = nn.Conv1d(dim, dim_out, kernel, padding = kernel // 2) self.norm = nn.GroupNorm(groups, dim_out) self.act = nn.SiLU() self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.proj(x) x = self.norm(x) x = self.act(x) x = self.dropout(x) return x class ResnetBlock(nn.Module): def __init__( self, dim, dim_out, kernel, *, dropout = 0., groups = 8, num_convs = 2 ): super().__init__() blocks = [] for ind in range(num_convs): is_first = ind == 0 dim_in = dim if is_first else dim_out block = Block( dim_in, dim_out, kernel, groups = groups, dropout = dropout ) blocks.append(block) self.blocks = nn.Sequential(*blocks) self.res_conv = nn.Conv1d(dim, dim_out, 1) if dim != dim_out else nn.Identity() def forward(self, x): x = rearrange(x, 'b n c -> b c n') h = self.blocks(x) out = h + self.res_conv(x) return rearrange(out, 'b c n -> b n c') def ConvBlock(dim, dim_out, kernel, dropout = 0.): return nn.Sequential( Rearrange('b n c -> b c n'), nn.Conv1d(dim, dim_out, kernel, padding = kernel // 2), nn.SiLU(), nn.Dropout(dropout), Rearrange('b c n -> b n c'), ) class DurationPitchPredictorTrunk(nn.Module): def __init__( self, dim = 512, depth = 10, kernel_size = 3, dim_context = None, heads = 8, dim_head = 64, dropout = 0.2, use_resnet_block = True, num_convs_per_resnet_block = 2, num_convolutions_per_block = 3, use_flash_attn = False, ): super().__init__() self.layers = nn.ModuleList([]) conv_klass = ConvBlock if not use_resnet_block else partial(ResnetBlock, num_convs = num_convs_per_resnet_block) for _ in range(depth): layer = nn.ModuleList([ nn.Sequential(*[ conv_klass(dim, dim, kernel_size) for _ in range(num_convolutions_per_block) ]), RMSNorm(dim), Attention( dim, dim_context = dim_context, heads = heads, dim_head = dim_head, dropout = dropout, use_flash = use_flash_attn, cross_attn_include_queries = True ) ]) self.layers.append(layer) self.to_pred = nn.Sequential( nn.Linear(dim, 1), Rearrange('... 1 -> ...'), nn.ReLU() ) def forward( self, x, encoded_prompts, prompt_mask = None, ): for conv, norm, attn in self.layers: x = conv(x) x = attn(norm(x), encoded_prompts, mask = prompt_mask) + x return self.to_pred(x) class DurationPitchPredictor(nn.Module): def __init__( self, *, dim, num_phoneme_tokens = None, tokenizer: Optional[Tokenizer] = None, dim_encoded_prompts = None, num_convolutions_per_block = 3, use_resnet_block = True, num_convs_per_resnet_block = 2, depth = 10, kernel_size = 3, heads = 8, dim_head = 64, dim_hidden = 512, dropout = 0.2, use_flash_attn = False ): super().__init__() self.tokenizer = tokenizer num_phoneme_tokens = default(num_phoneme_tokens, tokenizer.vocab_size if exists(tokenizer) else None) dim_encoded_prompts = default(dim_encoded_prompts, dim) self.phoneme_token_emb = nn.Embedding(num_phoneme_tokens, dim) if exists(num_phoneme_tokens) else nn.Identity() self.to_pitch_pred = DurationPitchPredictorTrunk( dim = dim_hidden, depth = depth, kernel_size = kernel_size, dim_context = dim_encoded_prompts, heads = heads, dim_head = dim_head, dropout = dropout, use_resnet_block = use_resnet_block, num_convs_per_resnet_block = num_convs_per_resnet_block, num_convolutions_per_block = num_convolutions_per_block, use_flash_attn = use_flash_attn, ) self.to_duration_pred = copy.deepcopy(self.to_pitch_pred) @beartype def forward( self, x: Union[Tensor, List[str]], encoded_prompts, prompt_mask = None ): if is_bearable(x, List[str]): assert exists(self.tokenizer) x = self.tokenizer.texts_to_tensor_ids(x) x = self.phoneme_token_emb(x) duration_pred, pitch_pred = map(lambda fn: fn(x, encoded_prompts = encoded_prompts, prompt_mask = prompt_mask), (self.to_duration_pred, self.to_pitch_pred)) return duration_pred, pitch_pred # use perceiver resampler from flamingo paper - https://arxiv.org/abs/2204.14198 # in lieu of "q-k-v" attention with the m queries becoming key / values on which ddpm network is conditioned on class PerceiverResampler(nn.Module): def __init__( self, *, dim, depth, dim_context = None, num_latents = 64, # m in the paper dim_head = 64, heads = 8, ff_mult = 4, use_flash_attn = False ): super().__init__() dim_context = default(dim_context, dim) self.proj_context = nn.Linear(dim_context, dim) if dim_context != dim else nn.Identity() self.latents = nn.Parameter(torch.randn(num_latents, dim)) nn.init.normal_(self.latents, std = 0.02) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention( dim = dim, dim_head = dim_head, heads = heads, use_flash = use_flash_attn, cross_attn_include_queries = True ), FeedForward(dim = dim, mult = ff_mult) ])) self.norm = RMSNorm(dim) def forward(self, x, mask = None): batch = x.shape[0] x = self.proj_context(x) latents = repeat(self.latents, 'n d -> b n d', b = batch) for attn, ff in self.layers: latents = attn(latents, x, mask = mask) + latents latents = ff(latents) + latents return self.norm(latents) # model, which is wavenet + transformer class CausalConv1d(nn.Conv1d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) kernel_size, = self.kernel_size dilation, = self.dilation stride, = self.stride assert stride == 1 self.causal_padding = dilation * (kernel_size - 1) def forward(self, x): causal_padded_x = F.pad(x, (self.causal_padding, 0), value = 0.) return super().forward(causal_padded_x) class WavenetResBlock(nn.Module): def __init__( self, dim, *, dilation, kernel_size = 3, skip_conv = False, dim_cond_mult = None ): super().__init__() self.cond = exists(dim_cond_mult) self.to_time_cond = None if self.cond: self.to_time_cond = nn.Linear(dim * dim_cond_mult, dim * 2) self.conv = CausalConv1d(dim, dim, kernel_size, dilation = dilation) self.res_conv = CausalConv1d(dim, dim, 1) self.skip_conv = CausalConv1d(dim, dim, 1) if skip_conv else None def forward(self, x, t = None): if self.cond: assert exists(t) t = self.to_time_cond(t) t = rearrange(t, 'b c -> b c 1') t_gamma, t_beta = t.chunk(2, dim = -2) res = self.res_conv(x) x = self.conv(x) if self.cond: x = x * t_gamma + t_beta x = x.tanh() * x.sigmoid() x = x + res skip = None if exists(self.skip_conv): skip = self.skip_conv(x) return x, skip class WavenetStack(nn.Module): def __init__( self, dim, *, layers, kernel_size = 3, has_skip = False, dim_cond_mult = None ): super().__init__() dilations = 2 ** torch.arange(layers) self.has_skip = has_skip self.blocks = mlist([]) for dilation in dilations.tolist(): block = WavenetResBlock( dim = dim, kernel_size = kernel_size, dilation = dilation, skip_conv = has_skip, dim_cond_mult = dim_cond_mult ) self.blocks.append(block) def forward(self, x, t): residuals = [] skips = [] if isinstance(x, Tensor): x = (x,) * len(self.blocks) for block_input, block in zip(x, self.blocks): residual, skip = block(block_input, t) residuals.append(residual) skips.append(skip) if self.has_skip: return torch.stack(skips) return residuals class Wavenet(nn.Module): def __init__( self, dim, *, stacks, layers, init_conv_kernel = 3, dim_cond_mult = None ): super().__init__() self.init_conv = CausalConv1d(dim, dim, init_conv_kernel) self.stacks = mlist([]) for ind in range(stacks): is_last = ind == (stacks - 1) stack = WavenetStack( dim, layers = layers, dim_cond_mult = dim_cond_mult, has_skip = is_last ) self.stacks.append(stack) self.final_conv = CausalConv1d(dim, dim, 1) def forward(self, x, t = None): x = self.init_conv(x) for stack in self.stacks: x = stack(x, t) return self.final_conv(x.sum(dim = 0)) class RMSNorm(nn.Module): def __init__(self, dim, scale = True, dim_cond = None): super().__init__() self.cond = exists(dim_cond) self.to_gamma_beta = nn.Linear(dim_cond, dim * 2) if self.cond else None self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) if scale else None def forward(self, x, cond = None): gamma = default(self.gamma, 1) out = F.normalize(x, dim = -1) * self.scale * gamma if not self.cond: return out assert exists(cond) gamma, beta = self.to_gamma_beta(cond).chunk(2, dim = -1) gamma, beta = map(lambda t: rearrange(t, 'b d -> b 1 d'), (gamma, beta)) return out * gamma + beta class ConditionableTransformer(nn.Module): def __init__( self, dim, *, depth, dim_head = 64, heads = 8, ff_mult = 4, ff_causal_conv = False, dim_cond_mult = None, cross_attn = False, use_flash = False ): super().__init__() self.dim = dim self.layers = mlist([]) cond = exists(dim_cond_mult) maybe_adaptive_norm_kwargs = dict(scale = not cond, dim_cond = dim * dim_cond_mult) if cond else dict() rmsnorm = partial(RMSNorm, **maybe_adaptive_norm_kwargs) for _ in range(depth): self.layers.append(mlist([ rmsnorm(dim), Attention(dim = dim, dim_head = dim_head, heads = heads, use_flash = use_flash), rmsnorm(dim) if cross_attn else None, Attention(dim = dim, dim_head = dim_head, heads = heads, use_flash = use_flash) if cross_attn else None, rmsnorm(dim), FeedForward(dim = dim, mult = ff_mult, causal_conv = ff_causal_conv) ])) self.to_pred = nn.Sequential( RMSNorm(dim), nn.Linear(dim, dim, bias = False) ) def forward( self, x, times = None, context = None ): t = times for attn_norm, attn, cross_attn_norm, cross_attn, ff_norm, ff in self.layers: res = x x = attn_norm(x, cond = t) x = attn(x) + res if exists(cross_attn): assert exists(context) res = x x = cross_attn_norm(x, cond = t) x = cross_attn(x, context = context) + res res = x x = ff_norm(x, cond = t) x = ff(x) + res return self.to_pred(x) class Model(nn.Module): @beartype def __init__( self, dim, *, depth, dim_head = 64, heads = 8, ff_mult = 4, wavenet_layers = 8, wavenet_stacks = 4, dim_cond_mult = 4, use_flash_attn = True, dim_prompt = None, num_latents_m = 32, # number of latents to be perceiver resampled ('q-k-v' with 'm' queries in the paper) resampler_depth = 2, cond_drop_prob = 0., condition_on_prompt= False ): super().__init__() self.dim = dim # time condition dim_time = dim * dim_cond_mult self.to_time_cond = Sequential( LearnedSinusoidalPosEmb(dim), nn.Linear(dim + 1, dim_time), nn.SiLU() ) # prompt condition self.cond_drop_prob = cond_drop_prob # for classifier free guidance self.condition_on_prompt = condition_on_prompt self.to_prompt_cond = None if self.condition_on_prompt: self.null_prompt_cond = nn.Parameter(torch.randn(dim_time)) self.null_prompt_tokens = nn.Parameter(torch.randn(num_latents_m, dim)) nn.init.normal_(self.null_prompt_cond, std = 0.02) nn.init.normal_(self.null_prompt_tokens, std = 0.02) self.to_prompt_cond = Sequential( Reduce('b n d -> b d', 'mean'), nn.Linear(dim_prompt, dim_time), nn.SiLU() ) self.perceiver_resampler = PerceiverResampler( dim = dim, dim_context = dim_prompt, num_latents = num_latents_m, depth = resampler_depth, dim_head = dim_head, heads = heads, use_flash_attn = use_flash_attn ) # conditioning includes time and optionally prompt dim_cond_mult = dim_cond_mult * (2 if condition_on_prompt else 1) # wavenet self.wavenet = Wavenet( dim = dim, stacks = wavenet_stacks, layers = wavenet_layers, dim_cond_mult = dim_cond_mult ) # transformer self.transformer = ConditionableTransformer( dim = dim, depth = depth, dim_head = dim_head, heads = heads, ff_mult = ff_mult, ff_causal_conv = True, dim_cond_mult = dim_cond_mult, use_flash = use_flash_attn, cross_attn = condition_on_prompt ) @property def device(self): return next(self.parameters()).device def forward_with_cond_scale( self, *args, cond_scale = 1., **kwargs ): logits = self.forward(*args, cond_drop_prob = 0., **kwargs) if cond_scale == 1.: return logits null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, x, times, prompt = None, prompt_mask = None, cond= None, cond_drop_prob = None ): b = x.shape[0] cond_drop_prob = default(cond_drop_prob, self.cond_drop_prob) drop_mask = prob_mask_like((b,), cond_drop_prob, self.device) t = self.to_time_cond(times) c = None if exists(self.to_prompt_cond): assert exists(prompt) prompt_cond = self.to_prompt_cond(prompt) prompt_cond = torch.where( rearrange(drop_mask, 'b -> b 1'), self.null_prompt_cond, prompt_cond, ) t = torch.cat((t, prompt_cond), dim = -1) resampled_prompt_tokens = self.perceiver_resampler(prompt, mask = prompt_mask) c = torch.where( rearrange(drop_mask, 'b -> b 1 1'), self.null_prompt_tokens, resampled_prompt_tokens ) x = rearrange(x, 'b n d -> b d n') x = self.wavenet(x, t) x = rearrange(x, 'b d n -> b n d') x = self.transformer(x, t, context = c) return x # feedforward class GEGLU(nn.Module): def forward(self, x): x, gate = x.chunk(2, dim = -1) return F.gelu(gate) * x def FeedForward(dim, mult = 4, causal_conv = False): dim_inner = int(dim * mult * 2 / 3) conv = None if causal_conv: conv = nn.Sequential( Rearrange('b n d -> b d n'), CausalConv1d(dim_inner, dim_inner, 3), Rearrange('b d n -> b n d'), ) return Sequential( nn.Linear(dim, dim_inner * 2), GEGLU(), conv, nn.Linear(dim_inner, dim) ) # attention class Attention(nn.Module): def __init__( self, dim, *, dim_context = None, causal = False, dim_head = 64, heads = 8, dropout = 0., use_flash = False, cross_attn_include_queries = False ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads self.cross_attn_include_queries = cross_attn_include_queries dim_inner = dim_head * heads dim_context = default(dim_context, dim) self.attend = Attend(causal = causal, dropout = dropout, use_flash = use_flash) self.to_q = nn.Linear(dim, dim_inner, bias = False) self.to_kv = nn.Linear(dim_context, dim_inner * 2, bias = False) self.to_out = nn.Linear(dim_inner, dim, bias = False) def forward(self, x, context = None, mask = None): h, has_context = self.heads, exists(context) context = default(context, x) if has_context and self.cross_attn_include_queries: context = torch.cat((x, context), dim = -2) q, k, v = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) out = self.attend(q, k, v, mask = mask) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # transformer encoder class Transformer(nn.Module): def __init__( self, dim, *, depth, causal = False, dim_head = 64, heads = 8, use_flash = False, dropout = 0., ff_mult = 4, final_norm = False ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ RMSNorm(dim), Attention( dim, causal = causal, dim_head = dim_head, heads = heads, dropout = dropout, use_flash = use_flash ), RMSNorm(dim), FeedForward( dim, mult = ff_mult ) ])) self.norm = RMSNorm(dim) if final_norm else nn.Identity() def forward(self, x, mask = None): for attn_norm, attn, ff_norm, ff in self.layers: x = attn(attn_norm(x), mask = mask) + x x = ff(ff_norm(x)) + x return self.norm(x) # tensor helper functions def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def safe_div(numer, denom): return numer / denom.clamp(min = 1e-10) def right_pad_dims_to(x, t): padding_dims = x.ndim - t.ndim if padding_dims <= 0: return t return t.view(*t.shape, *((1,) * padding_dims)) # noise schedules def simple_linear_schedule(t, clip_min = 1e-9): return (1 - t).clamp(min = clip_min) def cosine_schedule(t, start = 0, end = 1, tau = 1, clip_min = 1e-9): power = 2 * tau v_start = math.cos(start * math.pi / 2) ** power v_end = math.cos(end * math.pi / 2) ** power output = math.cos((t * (end - start) + start) * math.pi / 2) ** power output = (v_end - output) / (v_end - v_start) return output.clamp(min = clip_min) def sigmoid_schedule(t, start = -3, end = 3, tau = 1, clamp_min = 1e-9): v_start = torch.tensor(start / tau).sigmoid() v_end = torch.tensor(end / tau).sigmoid() gamma = (-((t * (end - start) + start) / tau).sigmoid() + v_end) / (v_end - v_start) return gamma.clamp_(min = clamp_min, max = 1.) # converting gamma to alpha, sigma or logsnr def gamma_to_alpha_sigma(gamma, scale = 1): return torch.sqrt(gamma) * scale, torch.sqrt(1 - gamma) def gamma_to_log_snr(gamma, scale = 1, eps = 1e-5): return log(gamma * (scale ** 2) / (1 - gamma), eps = eps) # gaussian diffusion class NaturalSpeech2(nn.Module): @beartype def __init__( self, model: Model, codec: Optional[Union[SoundStream, EncodecWrapper]] = None, *, tokenizer: Optional[Tokenizer] = None, target_sample_hz = None, timesteps = 1000, use_ddim = True, noise_schedule = 'sigmoid', objective = 'v', schedule_kwargs: dict = dict(), time_difference = 0., min_snr_loss_weight = True, min_snr_gamma = 5, train_prob_self_cond = 0.9, rvq_cross_entropy_loss_weight = 0., # default this to off until we are sure it is working. not totally sold that this is critical dim_codebook: int = 128, duration_pitch_dim: int = 512, aligner_dim_in: int = 80, aligner_dim_hidden: int = 512, aligner_attn_channels: int = 80, num_phoneme_tokens: int = 150, pitch_emb_dim: int = 256, pitch_emb_pp_hidden_dim: int= 512, calc_pitch_with_pyworld = True, # pyworld or kaldi from torchaudio mel_hop_length = 160, audio_to_mel_kwargs: dict = dict(), scale = 1., # this will be set to < 1. for better convergence when training on higher resolution images duration_loss_weight = 1., pitch_loss_weight = 1., aligner_loss_weight = 1. ): super().__init__() self.conditional = model.condition_on_prompt # model and codec self.model = model self.codec = codec assert exists(codec) or exists(target_sample_hz) self.target_sample_hz = target_sample_hz self.seq_len_multiple_of = None if exists(codec): self.target_sample_hz = codec.target_sample_hz self.seq_len_multiple_of = codec.seq_len_multiple_of # preparation for conditioning if self.conditional: if exists(self.target_sample_hz): audio_to_mel_kwargs.update(sampling_rate = self.target_sample_hz) self.mel_hop_length = mel_hop_length self.audio_to_mel = AudioToMel( n_mels = aligner_dim_in, hop_length = mel_hop_length, **audio_to_mel_kwargs ) self.calc_pitch_with_pyworld = calc_pitch_with_pyworld self.phoneme_enc = PhonemeEncoder(tokenizer=tokenizer, num_tokens=num_phoneme_tokens) self.prompt_enc = SpeechPromptEncoder(dim_codebook=dim_codebook) self.duration_pitch = DurationPitchPredictor(dim=duration_pitch_dim) self.aligner = Aligner(dim_in=aligner_dim_in, dim_hidden=aligner_dim_hidden, attn_channels=aligner_attn_channels) self.pitch_emb = nn.Embedding(pitch_emb_dim, pitch_emb_pp_hidden_dim) self.aligner_loss = ForwardSumLoss() # rest of ddpm assert not exists(codec) or model.dim == codec.codebook_dim, f'transformer model dimension {model.dim} must be equal to codec dimension {codec.codebook_dim}' self.dim = codec.codebook_dim if exists(codec) else model.dim assert objective in {'x0', 'eps', 'v'}, 'objective must be either predict x0 or noise' self.objective = objective if noise_schedule == "linear": self.gamma_schedule = simple_linear_schedule elif noise_schedule == "cosine": self.gamma_schedule = cosine_schedule elif noise_schedule == "sigmoid": self.gamma_schedule = sigmoid_schedule else: raise ValueError(f'invalid noise schedule {noise_schedule}') # the main finding presented in Ting Chen's paper - that higher resolution images requires more noise for better training assert scale <= 1, 'scale must be less than or equal to 1' self.scale = scale # gamma schedules self.gamma_schedule = partial(self.gamma_schedule, **schedule_kwargs) self.timesteps = timesteps self.use_ddim = use_ddim # proposed in the paper, summed to time_next # as a way to fix a deficiency in self-conditioning and lower FID when the number of sampling timesteps is < 400 self.time_difference = time_difference # probability for self conditioning during training self.train_prob_self_cond = train_prob_self_cond # min snr loss weight self.min_snr_loss_weight = min_snr_loss_weight self.min_snr_gamma = min_snr_gamma # weight of the cross entropy loss to residual vq codebooks self.rvq_cross_entropy_loss_weight = rvq_cross_entropy_loss_weight # loss weight for duration and pitch self.duration_loss_weight = duration_loss_weight self.pitch_loss_weight = pitch_loss_weight self.aligner_loss_weight = aligner_loss_weight @property def device(self): return next(self.model.parameters()).device def print(self, s): return self.accelerator.print(s) def get_sampling_timesteps(self, batch, *, device): times = torch.linspace(1., 0., self.timesteps + 1, device = device) times = repeat(times, 't -> b t', b = batch) times = torch.stack((times[:, :-1], times[:, 1:]), dim = 0) times = times.unbind(dim = -1) return times @torch.no_grad() def ddpm_sample(self, shape, prompt = None, time_difference = None, cond_scale = 1., cond = None): batch, device = shape[0], self.device time_difference = default(time_difference, self.time_difference) time_pairs = self.get_sampling_timesteps(batch, device = device) audio = torch.randn(shape, device=device) x_start = None last_latents = None for time, time_next in tqdm(time_pairs, desc = 'sampling loop time step', total = self.timesteps): # add the time delay time_next = (time_next - self.time_difference).clamp(min = 0.) noise_cond = time # get predicted x0 model_output = self.model.forward_with_cond_scale(audio, noise_cond, prompt = prompt, cond_scale = cond_scale, cond = cond) # get log(snr) gamma = self.gamma_schedule(time) gamma_next = self.gamma_schedule(time_next) gamma, gamma_next = map(partial(right_pad_dims_to, audio), (gamma, gamma_next)) # get alpha sigma of time and next time alpha, sigma = gamma_to_alpha_sigma(gamma, self.scale) alpha_next, sigma_next = gamma_to_alpha_sigma(gamma_next, self.scale) # calculate x0 and noise if self.objective == 'x0': x_start = model_output elif self.objective == 'eps': x_start = safe_div(audio - sigma * model_output, alpha) elif self.objective == 'v': x_start = alpha * audio - sigma * model_output # derive posterior mean and variance log_snr, log_snr_next = map(gamma_to_log_snr, (gamma, gamma_next)) c = -expm1(log_snr - log_snr_next) mean = alpha_next * (audio * (1 - c) / alpha + c * x_start) variance = (sigma_next ** 2) * c log_variance = log(variance) # get noise noise = torch.where( rearrange(time_next > 0, 'b -> b 1 1 1'), torch.randn_like(audio), torch.zeros_like(audio) ) audio = mean + (0.5 * log_variance).exp() * noise return audio @torch.no_grad() def ddim_sample(self, shape, prompt = None, time_difference = None, cond_scale = 1., cond = None): batch, device = shape[0], self.device time_difference = default(time_difference, self.time_difference) time_pairs = self.get_sampling_timesteps(batch, device = device) audio = torch.randn(shape, device = device) x_start = None last_latents = None for times, times_next in tqdm(time_pairs, desc = 'sampling loop time step'): # get times and noise levels gamma = self.gamma_schedule(times) gamma_next = self.gamma_schedule(times_next) padded_gamma, padded_gamma_next = map(partial(right_pad_dims_to, audio), (gamma, gamma_next)) alpha, sigma = gamma_to_alpha_sigma(padded_gamma, self.scale) alpha_next, sigma_next = gamma_to_alpha_sigma(padded_gamma_next, self.scale) # add the time delay times_next = (times_next - time_difference).clamp(min = 0.) # predict x0 model_output = self.model.forward_with_cond_scale(audio, times, prompt = prompt, cond_scale = cond_scale, cond = cond) # calculate x0 and noise if self.objective == 'x0': x_start = model_output elif self.objective == 'eps': x_start = safe_div(audio - sigma * model_output, alpha) elif self.objective == 'v': x_start = alpha * audio - sigma * model_output # get predicted noise pred_noise = safe_div(audio - alpha * x_start, sigma) # calculate x next audio = x_start * alpha_next + pred_noise * sigma_next return audio def process_prompt(self, prompt = None): if not exists(prompt): return None assert self.model.condition_on_prompt is_raw_prompt = prompt.ndim == 2 assert not (is_raw_prompt and not exists(self.codec)), 'codec must be passed in if one were to train on raw prompt' if is_raw_prompt: with torch.no_grad(): self.codec.eval() prompt, _, _ = self.codec(prompt, curtail_from_left = True, return_encoded = True) return prompt def expand_encodings(self, phoneme_enc, attn, pitch): expanded_dur = einsum('k l m n, k j m -> k j n', attn, phoneme_enc) pitch_emb = self.pitch_emb(rearrange(f0_to_coarse(pitch), 'b 1 t -> b t')) pitch_emb = rearrange(pitch_emb, 'b t d -> b d t') expanded_pitch = einsum('k l m n, k j m -> k j n', attn, pitch_emb) expanded_encodings = expanded_dur + expanded_pitch return expanded_encodings @torch.no_grad() def sample( self, *, length, prompt = None, batch_size = 1, cond_scale = 1., text = None, text_lens = None, ): sample_fn = self.ddpm_sample if not self.use_ddim else self.ddim_sample prompt_enc = cond = None if self.conditional: assert exists(prompt) and exists(text) prompt = self.process_prompt(prompt) prompt_enc = self.prompt_enc(prompt) phoneme_enc = self.phoneme_enc(text) duration, pitch = self.duration_pitch(phoneme_enc, prompt_enc) pitch = rearrange(pitch, 'b n -> b 1 n') aln_mask = generate_mask_from_repeats(duration).float() cond = self.expand_encodings(rearrange(phoneme_enc, 'b n d -> b d n'), rearrange(aln_mask, 'b n c -> b 1 n c'), pitch) if exists(prompt): batch_size = prompt.shape[0] audio = sample_fn( (batch_size, length, self.dim), prompt = prompt_enc, cond = cond, cond_scale = cond_scale ) if exists(self.codec): audio = self.codec.decode(audio) if audio.ndim == 3: audio = rearrange(audio, 'b 1 n -> b n') return audio def forward( self, audio, text = None, text_lens = None, mel = None, mel_lens = None, codes = None, prompt = None, pitch = None, *args, **kwargs ): batch, is_raw_audio = audio.shape[0], audio.ndim == 2 # compute the prompt encoding and cond prompt_enc = None cond = None duration_pitch_loss = 0. if self.conditional: batch = prompt.shape[0] assert exists(text) text_max_length = text.shape[-1] if not exists(text_lens): text_lens = torch.full((batch,), text_max_length, device = self.device, dtype = torch.long) text_lens.clamp_(max = text_max_length) text_mask = rearrange(create_mask(text_lens, text_max_length), 'b n -> b 1 n') prompt = self.process_prompt(prompt) prompt_enc = self.prompt_enc(prompt) phoneme_enc = self.phoneme_enc(text) # process pitch with kaldi if not exists(pitch): assert exists(audio) and audio.ndim == 2 assert exists(self.target_sample_hz) if self.calc_pitch_with_pyworld: pitch = compute_pitch_pyworld( audio, sample_rate = self.target_sample_hz, hop_length = self.mel_hop_length ) else: pitch = compute_pitch_pytorch(audio, self.target_sample_hz) pitch = rearrange(pitch, 'b n -> b 1 n') # process mel if not exists(mel): assert exists(audio) and audio.ndim == 2 mel = self.audio_to_mel(audio) if exists(pitch): mel = mel[..., :pitch.shape[-1]] mel_max_length = mel.shape[-1] if not exists(mel_lens): mel_lens = torch.full((batch,), mel_max_length, device = self.device, dtype = torch.long) mel_lens.clamp_(max = mel_max_length) mel_mask = rearrange(create_mask(mel_lens, mel_max_length), 'b n -> b 1 n') # alignment aln_hard, aln_soft, aln_log, aln_mas = self.aligner(phoneme_enc, text_mask, mel, mel_mask) duration_pred, pitch_pred = self.duration_pitch(phoneme_enc, prompt_enc) pitch = average_over_durations(pitch, aln_hard) cond = self.expand_encodings(rearrange(phoneme_enc, 'b n d -> b d n'), rearrange(aln_mas, 'b n c -> b 1 n c'), pitch) # pitch and duration loss duration_loss = F.l1_loss(aln_hard, duration_pred) pitch = rearrange(pitch, 'b 1 d -> b d') pitch_loss = F.l1_loss(pitch, pitch_pred) align_loss = self.aligner_loss(aln_log , text_lens, mel_lens) # weigh the losses aux_loss = (duration_loss * self.duration_loss_weight) \ + (pitch_loss * self.pitch_loss_weight) \ + (align_loss * self.aligner_loss_weight) # automatically encode raw audio to residual vq with codec assert not (is_raw_audio and not exists(self.codec)), 'codec must be passed in if one were to train on raw audio' if is_raw_audio: with torch.no_grad(): self.codec.eval() audio, codes, _ = self.codec(audio, return_encoded = True) # shapes and device batch, n, d, device = *audio.shape, self.device assert d == self.dim, f'codec codebook dimension {d} must match model dimensions {self.dim}' # sample random times times = torch.zeros((batch,), device = device).float().uniform_(0, 1.) # noise sample noise = torch.randn_like(audio) gamma = self.gamma_schedule(times) padded_gamma = right_pad_dims_to(audio, gamma) alpha, sigma = gamma_to_alpha_sigma(padded_gamma, self.scale) noised_audio = alpha * audio + sigma * noise # predict and take gradient step pred = self.model(noised_audio, times, prompt = prompt_enc, cond = cond) if self.objective == 'eps': target = noise elif self.objective == 'x0': target = audio elif self.objective == 'v': target = alpha * noise - sigma * audio loss = F.mse_loss(pred, target, reduction = 'none') loss = reduce(loss, 'b ... -> b', 'mean') # min snr loss weight snr = (alpha * alpha) / (sigma * sigma) maybe_clipped_snr = snr.clone() if self.min_snr_loss_weight: maybe_clipped_snr.clamp_(max = self.min_snr_gamma) if self.objective == 'eps': loss_weight = maybe_clipped_snr / snr elif self.objective == 'x0': loss_weight = maybe_clipped_snr elif self.objective == 'v': loss_weight = maybe_clipped_snr / (snr + 1) loss = (loss * loss_weight).mean() # cross entropy loss to codebooks if self.rvq_cross_entropy_loss_weight == 0 or not exists(codes): return loss if self.objective == 'x0': x_start = pred elif self.objective == 'eps': x_start = safe_div(audio - sigma * pred, alpha) elif self.objective == 'v': x_start = alpha * audio - sigma * pred _, ce_loss = self.codec.rq(x_start, codes) return loss + (self.rvq_cross_entropy_loss_weight * ce_loss) + duration_pitch_loss # trainer def cycle(dl): while True: for data in dl: yield data class Trainer(object): def __init__( self, diffusion_model: NaturalSpeech2, *, dataset: Optional[Dataset] = None, folder = None, train_batch_size = 16, gradient_accumulate_every = 1, train_lr = 1e-4, train_num_steps = 100000, ema_update_every = 10, ema_decay = 0.995, adam_betas = (0.9, 0.99), save_and_sample_every = 1000, num_samples = 1, results_folder = './results', amp = False, mixed_precision_type = 'fp16', use_ema = True, split_batches = True, dataloader = None, data_max_length = None, data_max_length_seconds = 2, sample_length = None ): super().__init__() # accelerator self.accelerator = Accelerator( split_batches = split_batches, mixed_precision = mixed_precision_type if amp else 'no' ) # model self.model = diffusion_model assert exists(diffusion_model.codec) self.dim = diffusion_model.dim # training hyperparameters self.batch_size = train_batch_size self.gradient_accumulate_every = gradient_accumulate_every self.train_num_steps = train_num_steps # dataset and dataloader dl = dataloader if not exists(dl): assert exists(dataset) or exists(folder) if exists(dataset): self.ds = dataset elif exists(folder): # create dataset if exists(data_max_length_seconds): assert not exists(data_max_length) data_max_length = int(data_max_length_seconds * diffusion_model.target_sample_hz) else: assert exists(data_max_length) self.ds = SoundDataset( folder, max_length = data_max_length, target_sample_hz = diffusion_model.target_sample_hz, seq_len_multiple_of = diffusion_model.seq_len_multiple_of ) dl = DataLoader( self.ds, batch_size = train_batch_size, shuffle = True, pin_memory = True, num_workers = cpu_count() ) dl = self.accelerator.prepare(dl) self.dl = cycle(dl) # optimizer self.opt = Adam(diffusion_model.parameters(), lr = train_lr, betas = adam_betas) # for logging results in a folder periodically self.use_ema = use_ema self.ema = None if self.accelerator.is_main_process and use_ema: # make sure codec is not part of the EMA # encodec seems to be not deepcopyable, so this is a necessary hack codec = diffusion_model.codec diffusion_model.codec = None self.ema = EMA( diffusion_model, beta = ema_decay, update_every = ema_update_every, ignore_startswith_names = set(['codec.']) ).to(self.device) diffusion_model.codec = codec self.ema.ema_model.codec = codec # sampling hyperparameters self.sample_length = default(sample_length, data_max_length) self.num_samples = num_samples self.save_and_sample_every = save_and_sample_every # results folder self.results_folder = Path(results_folder) self.results_folder.mkdir(exist_ok = True) # step counter state self.step = 0 # prepare model, dataloader, optimizer with accelerator self.model, self.opt = self.accelerator.prepare(self.model, self.opt) def print(self, msg): return self.accelerator.print(msg) @property def unwrapped_model(self): return self.accelerator.unwrap_model(self.model) @property def device(self): return self.accelerator.device def save(self, milestone): if not self.accelerator.is_local_main_process: return data = { 'step': self.step, 'model': self.accelerator.get_state_dict(self.model), 'opt': self.opt.state_dict(), 'ema': self.ema.state_dict(), 'scaler': self.accelerator.scaler.state_dict() if exists(self.accelerator.scaler) else None, 'version': __version__ } torch.save(data, str(self.results_folder / f'model-{milestone}.pt')) def load(self, milestone): accelerator = self.accelerator device = accelerator.device data = torch.load(str(self.results_folder / f'model-{milestone}.pt'), map_location=device) model = self.accelerator.unwrap_model(self.model) model.load_state_dict(data['model']) self.step = data['step'] self.opt.load_state_dict(data['opt']) if self.accelerator.is_main_process: self.ema.load_state_dict(data["ema"]) if 'version' in data: print(f"loading from version {data['version']}") if exists(self.accelerator.scaler) and exists(data['scaler']): self.accelerator.scaler.load_state_dict(data['scaler']) def train(self): accelerator = self.accelerator device = accelerator.device with tqdm(initial = self.step, total = self.train_num_steps, disable = not accelerator.is_main_process) as pbar: while self.step < self.train_num_steps: total_loss = 0. for _ in range(self.gradient_accumulate_every): data = next(self.dl).to(device) with self.accelerator.autocast(): loss = self.model(data) loss = loss / self.gradient_accumulate_every total_loss += loss.item() self.accelerator.backward(loss) accelerator.clip_grad_norm_(self.model.parameters(), 1.0) pbar.set_description(f'loss: {total_loss:.4f}') accelerator.wait_for_everyone() self.opt.step() self.opt.zero_grad() accelerator.wait_for_everyone() self.step += 1 if accelerator.is_main_process: self.ema.update() if divisible_by(self.step, self.save_and_sample_every): milestone = self.step // self.save_and_sample_every models = [(self.unwrapped_model, str(self.step))] if self.use_ema: models.append((self.ema.ema_model, f'{self.step}.ema')) for model, label in models: model.eval() with torch.no_grad(): generated = model.sample( batch_size = self.num_samples, length = self.sample_length ) for ind, t in enumerate(generated): filename = str(self.results_folder / f'sample_{label}.flac') t = rearrange(t, 'n -> 1 n') torchaudio.save(filename, t.cpu().detach(), self.unwrapped_model.target_sample_hz) self.print(f'{self.step}: saving to {str(self.results_folder)}') self.save(milestone) pbar.update(1) self.print('training complete')
naturalspeech2-pytorch-main
naturalspeech2_pytorch/naturalspeech2_pytorch.py
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/__init__.py
import re from pathlib import Path from naturalspeech2_pytorch.utils.expand.abbreviations import AbbreviationExpander from naturalspeech2_pytorch.utils.expand.number_norm import NumberNormalizer from naturalspeech2_pytorch.utils.expand.time_norm import TimeExpander CURRENT_DIR = Path(__file__).resolve().parent class TextProcessor: def __init__(self, lang="en"): self.lang = lang self._whitespace_re = re.compile(r"\s+") # Example usage self.ab_expander = AbbreviationExpander(str(CURRENT_DIR / 'expand/abbreviations.csv')) self.time_expander = TimeExpander() self.num_normalizer = NumberNormalizer() # Add currency conversion rates symbol = '$' conversion_rates ={0.01: "cent", 0.02: "cents", 1: "dollar", 2: "dollars" } self.num_normalizer.add_currency(symbol, conversion_rates) def lowercase(self, text): return text.lower() def collapse_whitespace(self, text): return re.sub(self._whitespace_re, " ", text).strip() def remove_aux_symbols(self, text): text = re.sub(r"[\<\>\(\)\[\]\"]+", "", text) return text def phoneme_cleaners(self, text, language = 'en'): text = self.time_expander.expand_time(text, language=language) text = self.num_normalizer.normalize_numbers(text, language=language) text = self.ab_expander.replace_text_abbreviations(text, language=language) text = self.remove_aux_symbols(text) text = self.collapse_whitespace(text) return text if __name__ == "__main__": # Create an instance for English text_processor_en = TextProcessor(lang="en") # Process English text english_text = "Hello, Mr. Example, this is 9:30 am and my number is 30." processed_english_text = text_processor_en.phoneme_cleaners(english_text, language='en') print(processed_english_text) # Create an instance for Spanish text_processor_es = TextProcessor(lang="es") # Process Spanish text spanish_text = "Hola, Sr. Ejemplo, son las 9:30 am y mi número es el 30." processed_spanish_text = text_processor_es.phoneme_cleaners(spanish_text, language='es') print(processed_spanish_text)
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/cleaner.py
import torch from torch import Tensor from typing import Callable, List, Optional, Tuple from torch.nn.utils.rnn import pad_sequence from naturalspeech2_pytorch.utils.cleaner import TextProcessor from naturalspeech2_pytorch.utils.phonemizers.espeak_wrapper import ESpeak # default phoneme set _vowels = "iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻ" _non_pulmonic_consonants = "ʘɓǀɗǃʄǂɠǁʛ" _pulmonic_consonants = "pbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟ" _suprasegmentals = "'̃ˈˌːˑ. ,-" _other_symbols = "ʍwɥʜʢʡɕʑɺɧʲ" _diacrilics = "ɚ˞ɫ" _phonemes = _vowels + _non_pulmonic_consonants + _pulmonic_consonants + _suprasegmentals + _other_symbols + _diacrilics # default map LANGUAGE_MAP = { 'en-us': 'en', 'fr-fr': 'es', 'hi': 'hi' } # functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # main class class Tokenizer: def __init__( self, vocab = _phonemes, text_cleaner: Optional[Callable] = None, phonemizer: Optional[Callable] = None, default_lang = "en-us", add_blank: bool = False, use_eos_bos = False, pad_id = -1 ): self.text_cleaner = default(text_cleaner, TextProcessor().phoneme_cleaners) self.add_blank = add_blank self.use_eos_bos = use_eos_bos self.pad_id = pad_id self.vocab = vocab self.vocab_size = len(vocab) self.char_to_id = {char: idx for idx, char in enumerate(self.vocab)} self.id_to_char = {idx: char for idx, char in enumerate(self.vocab)} self.phonemizer = phonemizer if not exists(self.phonemizer): self.phonemizer = ESpeak(language = default_lang) self.language = self.phonemizer.language self.not_found_characters = [] @property def espeak_language(self): return LANGUAGE_MAP.get(self.language, None) def encode(self, text: str) -> List[int]: """Encodes a string of text as a sequence of IDs.""" token_ids = [] for char in text: try: idx = self.char_to_id[char] token_ids.append(idx) except KeyError: # discard but store not found characters if char not in self.not_found_characters: self.not_found_characters.append(char) print(text) print(f" [!] Character {repr(char)} not found in the vocabulary. Discarding it.") return token_ids def decode(self, token_ids: List[int]) -> str: """Decodes a sequence of IDs to a string of text.""" text = "" for token_id in token_ids: text += self.id_to_char[token_id] return text def text_to_ids( self, text: str, language: str = None ) -> Tuple[List[int], str, str]: """Converts a string of text to a sequence of token IDs. Args: text(str): The text to convert to token IDs. language(str): The language code of the text. Defaults to None. TODO: - Add support for language-specific processing. 1. Text normalizatin 2. Phonemization (if use_phonemes is True) 3. Add blank char between characters 4. Add BOS and EOS characters 5. Text to token IDs """ language = default(language, self.espeak_language) cleaned_text = None if self.text_cleaner is not None: text = self.text_cleaner(text, language=language) cleaned_text = text phonemized = self.phonemizer.phonemize(text, separator="", language=language) if self.add_blank: phonemized = self.intersperse_blank_char(phonemized, True) if self.use_eos_bos: phonemized = self.pad_with_bos_eos(phonemized) return self.encode(phonemized), cleaned_text, phonemized def texts_to_tensor_ids(self, texts: List[str], language: str = None) -> Tensor: all_ids = [] for text in texts: ids, *_ = self.text_to_ids(text, language = language) all_ids.append(torch.tensor(ids)) return pad_sequence(all_ids, batch_first = True, padding_value = self.pad_id) def ids_to_text(self, id_sequence: List[int]) -> str: """Converts a sequence of token IDs to a string of text.""" return self.decode(id_sequence) def pad_with_bos_eos(self, char_sequence: List[str]): """Pads a sequence with the special BOS and EOS characters.""" return [self.characters.bos] + list(char_sequence) + [self.characters.eos] def intersperse_blank_char(self, char_sequence: List[str], use_blank_char: bool = False): """Intersperses the blank character between characters in a sequence. Use the ```blank``` character if defined else use the ```pad``` character. """ char_to_use = self.characters.blank if use_blank_char else self.characters.pad result = [char_to_use] * (len(char_sequence) * 2 + 1) result[1::2] = char_sequence return result if __name__ == "__main__": txt_cleaner = TextProcessor() tokenizer = Tokenizer(vocab = _phonemes, text_cleaner = txt_cleaner.phoneme_cleaners, phonemizer = ESpeak(language="en-us")) print(tokenizer.text_to_ids("Hello, Mr. Example, this is 9:30 am and my number is 30.", language="en")) tokenizer = Tokenizer(vocab = _phonemes, text_cleaner = txt_cleaner.phoneme_cleaners, phonemizer = ESpeak(language="fr-fr")) print(tokenizer.text_to_ids("Hola, Sr. Ejemplo, son las 9:30 am y mi número es el 30.", language="es")) tokenizer = Tokenizer(vocab = _phonemes, text_cleaner = txt_cleaner.phoneme_cleaners, phonemizer = ESpeak(language="hi")) print(tokenizer.text_to_ids("हैलो, मिस्टर उदाहरण, यह सुबह 9:30 बजे है और मेरा नंबर 30 है।", language="hi"))
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/tokenizer.py
import torch from einops import repeat, rearrange def average_over_durations(values, durs): """ - in: - values: B, 1, T_de - durs: B, T_en - out: - avg: B, 1, T_en """ durs_cums_ends = torch.cumsum(durs, dim=1).long() durs_cums_starts = torch.nn.functional.pad(durs_cums_ends[:, :-1], (1, 0)) values_nonzero_cums = torch.nn.functional.pad(torch.cumsum(values != 0.0, dim=2), (1, 0)) values_cums = torch.nn.functional.pad(torch.cumsum(values, dim=2), (1, 0)) bs, l = durs_cums_ends.size() n_formants = values.size(1) dcs = repeat(durs_cums_starts, 'bs l -> bs n l', n=n_formants) dce = repeat(durs_cums_ends, 'bs l -> bs n l', n=n_formants) values_sums = (torch.gather(values_cums, 2, dce) - torch.gather(values_cums, 2, dcs)).to(values.dtype) values_nelems = (torch.gather(values_nonzero_cums, 2, dce) - torch.gather(values_nonzero_cums, 2, dcs)).to(values.dtype) avg = torch.where(values_nelems == 0.0, values_nelems, values_sums / values_nelems).to(values.dtype) return avg def create_mask(sequence_length, max_len): dtype, device = sequence_length.dtype, sequence_length.device seq_range = torch.arange(max_len, dtype=dtype, device=device) sequence_length = rearrange(sequence_length, 'b -> b 1') seq_range = rearrange(seq_range, 't -> 1 t') return seq_range < sequence_length
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/utils.py
import csv import re class AbbreviationExpander: def __init__(self, abbreviations_file): self.abbreviations = {} self.patterns = {} self.load_abbreviations(abbreviations_file) def load_abbreviations(self, abbreviations_file): with open(abbreviations_file, 'r') as file: reader = csv.DictReader(file) for row in reader: abbreviation = row['abbreviation'] expansion = row['expansion'] language = row['language'].lower() self.abbreviations.setdefault(language, {})[abbreviation] = expansion if language not in self.patterns: self.patterns[language] = re.compile( r"\b(" + "|".join(re.escape(key) for key in self.abbreviations[language].keys()) + r")\b", re.IGNORECASE ) def replace_abbreviations(self, match, language): return self.abbreviations[language][match.group(0).lower()] def replace_text_abbreviations(self, text, language): if language.lower() in self.patterns: return self.patterns[language.lower()].sub( lambda match: self.replace_abbreviations(match, language.lower()), text ) else: return text if __name__ == "__main__": # Example usage expander = AbbreviationExpander('abbreviations.csv') text_en = "Hello, Mr. Example. How are you today? I work at Intl. Corp." replaced_text_en = expander.replace_text_abbreviations(text_en, 'en') print(replaced_text_en) text_fr = "Bonjour, Sr. Example. Comment ça va aujourd'hui? Je travaille chez Intl. Corp." replaced_text_fr = expander.replace_text_abbreviations(text_fr, 'fr') print(replaced_text_fr)
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/expand/abbreviations.py
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/expand/__init__.py
import re import inflect from num2words import num2words from num_to_words import num_to_word class NumberNormalizer: def __init__(self): self._inflect = inflect.engine() self._number_re = re.compile(r"-?[0-9]+") self._currency_re = re.compile(r"([$€£¥₹])([0-9\,\.]*[0-9]+)") self._currencies = {} def add_currency(self, symbol, conversion_rates): self._currencies[symbol] = conversion_rates def normalize_numbers(self, text, language='en'): self._inflect = inflect.engine() self._set_language(language) text = re.sub(self._currency_re, self._expand_currency, text) text = re.sub(self._number_re, lambda match: self._expand_number(match, language), text) return text def _set_language(self, language): if language == 'en': self._inflect = inflect.engine() else: self._inflect = inflect.engine() # Add support for additional languages here def _expand_currency(self, match): unit = match.group(1) currency = self._currencies.get(unit) if currency: value = match.group(2) return self._expand_currency_value(value, currency) return match.group(0) def _expand_currency_value(self, value, inflection): parts = value.replace(",", "").split(".") if len(parts) > 2: return f"{value} {inflection[2]}" # Unexpected format text = [] integer = int(parts[0]) if parts[0] else 0 if integer > 0: integer_unit = inflection.get(integer, inflection[2]) text.append(f"{integer} {integer_unit}") fraction = int(parts[1]) if len(parts) > 1 and parts[1] else 0 if fraction > 0: fraction_unit = inflection.get(fraction / 100, inflection[0.02]) text.append(f"{fraction} {fraction_unit}") if not text: return f"zero {inflection[2]}" return " ".join(text) def _expand_number(self, match, language: str) -> str: num = int(match.group(0)) if 1000 < num < 3000: if num == 2000: return self._number_to_words(num, language) if 2000 < num < 2010: return f"{self._number_to_words(2000, language)} {self._number_to_words(num % 100, language)}" if num % 100 == 0: return f"{self._number_to_words(num // 100, language)} {self._get_word('hundred')}" return self._number_to_words(num, language) return self._number_to_words(num, language) def _number_to_words(self, n: int, language: str) -> str: try: if language == 'en': return self._inflect.number_to_words(n) else: return num2words(n, lang=language) except: try: return num_to_word(n, lang=language) except: raise NotImplementedError("language not implemented") def _get_word(self, word): return word if __name__ == "__main__": # Create an instance of NumberNormalizer normalizer = NumberNormalizer() # Add currency conversion rates symbol = '$' conversion_rates ={ 0.01: "cent", 0.02: "cents", 1: "dollar", 2: "dollars", } normalizer.add_currency(symbol, conversion_rates) # Example 1: English (en) language text_en = "I have $1,000 and 5 apples." normalized_text_en = normalizer.normalize_numbers(text_en, language='en') print(normalized_text_en) # Output: "I have one thousand dollars and five apples." # Example 2: Spanish (es) language text_es = "Tengo $1.000 y 5 manzanas." normalized_text_es = normalizer.normalize_numbers(text_es, language='es') print(normalized_text_es) # Output: "Tengo mil dólares y cinco manzanas."
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/expand/number_norm.py
import re import inflect from num2words import num2words from num_to_words import num_to_word class TimeExpander: def __init__(self): self._inflect = inflect.engine() self._time_re = self._get_time_regex() def _get_time_regex(self): return re.compile( r"""\b ((0?[0-9])|(1[0-1])|(1[2-9])|(2[0-3])) # hours : ([0-5][0-9]) # minutes \s*(a\\.m\\.|am|pm|p\\.m\\.|a\\.m|p\\.m)? # am/pm \b""", re.IGNORECASE | re.X, ) def _expand_num(self, n: int, language: str) -> str: try: if language == 'en': return self._inflect.number_to_words(n) else: return num2words(n, lang=language) except: try: return num_to_word(n, lang=language) except: raise NotImplementedError("language not implemented") def _expand_time(self, match: "re.Match", language: str) -> str: hour = int(match.group(1)) past_noon = hour >= 12 time = [] if hour > 12: hour -= 12 elif hour == 0: hour = 12 past_noon = True time.append(self._expand_num(hour, language)) minute = int(match.group(6)) if minute > 0: if minute < 10: time.append("oh") time.append(self._expand_num(minute, language)) am_pm = match.group(7) if am_pm is not None: time.extend(list(am_pm.replace(".", ""))) return " ".join(time) def expand_time(self, text: str, language: str) -> str: return re.sub(self._time_re, lambda match: self._expand_time(match, language), text)
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/expand/time_norm.py
""" from https://github.com/coqui-ai/TTS/""" import logging import re import subprocess from typing import Dict, List from packaging.version import Version from naturalspeech2_pytorch.utils.phonemizers.base import BasePhonemizer from naturalspeech2_pytorch.utils.phonemizers.punctuation import Punctuation def is_tool(name): from shutil import which return which(name) is not None # Use a regex pattern to match the espeak version, because it may be # symlinked to espeak-ng, which moves the version bits to another spot. espeak_version_pattern = re.compile(r"text-to-speech:\s(?P<version>\d+\.\d+(\.\d+)?)") def get_espeak_version(): output = subprocess.getoutput("espeak --version") match = espeak_version_pattern.search(output) return match.group("version") def get_espeakng_version(): output = subprocess.getoutput("espeak-ng --version") return output.split()[3] # priority: espeakng > espeak if is_tool("espeak-ng"): _DEF_ESPEAK_LIB = "espeak-ng" _DEF_ESPEAK_VER = get_espeakng_version() elif is_tool("espeak"): _DEF_ESPEAK_LIB = "espeak" _DEF_ESPEAK_VER = get_espeak_version() else: _DEF_ESPEAK_LIB = None _DEF_ESPEAK_VER = None def _espeak_exe(espeak_lib: str, args: List, sync=False) -> List[str]: """Run espeak with the given arguments.""" cmd = [ espeak_lib, "-q", "-b", "1", # UTF8 text encoding ] cmd.extend(args) logging.debug("espeakng: executing %s", repr(cmd)) with subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) as p: res = iter(p.stdout.readline, b"") if not sync: p.stdout.close() if p.stderr: p.stderr.close() if p.stdin: p.stdin.close() return res res2 = [] for line in res: res2.append(line) p.stdout.close() if p.stderr: p.stderr.close() if p.stdin: p.stdin.close() p.wait() return res2 class ESpeak(BasePhonemizer): """ESpeak wrapper calling `espeak` or `espeak-ng` from the command-line the perform G2P Args: language (str): Valid language code for the used backend. backend (str): Name of the backend library to use. `espeak` or `espeak-ng`. If None, set automatically prefering `espeak-ng` over `espeak`. Defaults to None. punctuations (str): Characters to be treated as punctuation. Defaults to Punctuation.default_puncs(). keep_puncs (bool): If True, keep the punctuations after phonemization. Defaults to True. Example: >>> phonemizer = ESpeak("tr") >>> phonemizer.phonemize("Bu Türkçe, bir örnektir.", separator="|") 'b|ʊ t|ˈø|r|k|tʃ|ɛ, b|ɪ|r œ|r|n|ˈɛ|c|t|ɪ|r.' """ _ESPEAK_LIB = _DEF_ESPEAK_LIB _ESPEAK_VER = _DEF_ESPEAK_VER def __init__(self, language: str, backend=None, punctuations=Punctuation.default_puncs(), keep_puncs=True): if self._ESPEAK_LIB is None: raise Exception(" [!] No espeak backend found. Install espeak-ng or espeak to your system.") self.backend = self._ESPEAK_LIB # band-aid for backwards compatibility if language == "en": language = "en-us" if language == "zh-cn": language = "cmn" super().__init__(language, punctuations=punctuations, keep_puncs=keep_puncs) if backend is not None: self.backend = backend @property def backend(self): return self._ESPEAK_LIB @property def backend_version(self): return self._ESPEAK_VER @backend.setter def backend(self, backend): if backend not in ["espeak", "espeak-ng"]: raise Exception("Unknown backend: %s" % backend) self._ESPEAK_LIB = backend self._ESPEAK_VER = get_espeakng_version() if backend == "espeak-ng" else get_espeak_version() def auto_set_espeak_lib(self) -> None: if is_tool("espeak-ng"): self._ESPEAK_LIB = "espeak-ng" self._ESPEAK_VER = get_espeakng_version() elif is_tool("espeak"): self._ESPEAK_LIB = "espeak" self._ESPEAK_VER = get_espeak_version() else: raise Exception("Cannot set backend automatically. espeak-ng or espeak not found") @staticmethod def name(): return "espeak" def phonemize_espeak(self, text: str, separator: str = "|", tie=False) -> str: """Convert input text to phonemes. Args: text (str): Text to be converted to phonemes. tie (bool, optional) : When True use a '͡' character between consecutive characters of a single phoneme. Else separate phoneme with '_'. This option requires espeak>=1.49. Default to False. """ # set arguments args = ["-v", f"{self._language}"] # espeak and espeak-ng parses `ipa` differently if tie: # use '͡' between phonemes if self.backend == "espeak": args.append("--ipa=1") else: args.append("--ipa=3") else: # split with '_' if self.backend == "espeak": if Version(self.backend_version) >= Version("1.48.15"): args.append("--ipa=1") else: args.append("--ipa=3") else: args.append("--ipa=1") if tie: args.append("--tie=%s" % tie) args.append('"' + text + '"') # compute phonemes phonemes = "" for line in _espeak_exe(self._ESPEAK_LIB, args, sync=True): logging.debug("line: %s", repr(line)) ph_decoded = line.decode("utf8").strip() # espeak need to skip first two characters of the retuned text: # version 1.48.03: "_ p_ɹ_ˈaɪ_ɚ t_ə n_oʊ_v_ˈɛ_m_b_ɚ t_w_ˈɛ_n_t_i t_ˈuː\n" # version 1.48.15: " p_ɹ_ˈaɪ_ɚ t_ə n_oʊ_v_ˈɛ_m_b_ɚ t_w_ˈɛ_n_t_i t_ˈuː\n" # espeak-ng need to skip the first character of the retuned text: # "_p_ɹ_ˈaɪ_ɚ t_ə n_oʊ_v_ˈɛ_m_b_ɚ t_w_ˈɛ_n_t_i t_ˈuː\n" # dealing with the conditions descrived above ph_decoded = ph_decoded[:1].replace("_", "") + ph_decoded[1:] # espeak-ng backend can add language flags that need to be removed: # "sɛʁtˈɛ̃ mˈo kɔm (en)fˈʊtbɔːl(fr) ʒenˈɛʁ de- flˈaɡ də- lˈɑ̃ɡ." # phonemize needs to remove the language flags of the returned text: # "sɛʁtˈɛ̃ mˈo kɔm fˈʊtbɔːl ʒenˈɛʁ de- flˈaɡ də- lˈɑ̃ɡ." ph_decoded = re.sub(r"\(.+?\)", "", ph_decoded) phonemes += ph_decoded.strip() return phonemes.replace("_", separator) def _phonemize(self, text, separator=None): return self.phonemize_espeak(text, separator, tie=False) @staticmethod def supported_languages() -> Dict: """Get a dictionary of supported languages. Returns: Dict: Dictionary of language codes. """ if _DEF_ESPEAK_LIB is None: return {} args = ["--voices"] langs = {} count = 0 for line in _espeak_exe(_DEF_ESPEAK_LIB, args, sync=True): line = line.decode("utf8").strip() if count > 0: cols = line.split() lang_code = cols[1] lang_name = cols[3] langs[lang_code] = lang_name logging.debug("line: %s", repr(line)) count += 1 return langs def version(self) -> str: """Get the version of the used backend. Returns: str: Version of the used backend. """ args = ["--version"] for line in _espeak_exe(self.backend, args, sync=True): version = line.decode("utf8").strip().split()[2] logging.debug("line: %s", repr(line)) return version @classmethod def is_available(cls): """Return true if ESpeak is available else false""" return is_tool("espeak") or is_tool("espeak-ng") if __name__ == "__main__": e = ESpeak(language="en-us") print(e.supported_languages()) print(e.version()) print(e.language) print(e.name()) print(e.is_available()) e = ESpeak(language="en-us", keep_puncs=False) print("`" + e.phonemize("hello how are you today?") + "`") e = ESpeak(language="en-us", keep_puncs=True) print("`" + e.phonemize("hello how are you today?") + "`")
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/phonemizers/espeak_wrapper.py
""" from https://github.com/coqui-ai/TTS/""" import collections import re from enum import Enum import six _DEF_PUNCS = ';:,.!?¡¿—…"«»“”' _PUNC_IDX = collections.namedtuple("_punc_index", ["punc", "position"]) class PuncPosition(Enum): """Enum for the punctuations positions""" BEGIN = 0 END = 1 MIDDLE = 2 ALONE = 3 class Punctuation: """Handle punctuations in text. Just strip punctuations from text or strip and restore them later. Args: puncs (str): The punctuations to be processed. Defaults to `_DEF_PUNCS`. Example: >>> punc = Punctuation() >>> punc.strip("This is. example !") 'This is example' >>> text_striped, punc_map = punc.strip_to_restore("This is. example !") >>> ' '.join(text_striped) 'This is example' >>> text_restored = punc.restore(text_striped, punc_map) >>> text_restored[0] 'This is. example !' """ def __init__(self, puncs: str = _DEF_PUNCS): self.puncs = puncs @staticmethod def default_puncs(): """Return default set of punctuations.""" return _DEF_PUNCS @property def puncs(self): return self._puncs @puncs.setter def puncs(self, value): if not isinstance(value, six.string_types): raise ValueError("[!] Punctuations must be of type str.") self._puncs = "".join(list(dict.fromkeys(list(value)))) # remove duplicates without changing the oreder self.puncs_regular_exp = re.compile(rf"(\s*[{re.escape(self._puncs)}]+\s*)+") def strip(self, text): """Remove all the punctuations by replacing with `space`. Args: text (str): The text to be processed. Example:: "This is. example !" -> "This is example " """ return re.sub(self.puncs_regular_exp, " ", text).rstrip().lstrip() def strip_to_restore(self, text): """Remove punctuations from text to restore them later. Args: text (str): The text to be processed. Examples :: "This is. example !" -> [["This is", "example"], [".", "!"]] """ text, puncs = self._strip_to_restore(text) return text, puncs def _strip_to_restore(self, text): """Auxiliary method for Punctuation.preserve()""" matches = list(re.finditer(self.puncs_regular_exp, text)) if not matches: return [text], [] # the text is only punctuations if len(matches) == 1 and matches[0].group() == text: return [], [_PUNC_IDX(text, PuncPosition.ALONE)] # build a punctuation map to be used later to restore punctuations puncs = [] for match in matches: position = PuncPosition.MIDDLE if match == matches[0] and text.startswith(match.group()): position = PuncPosition.BEGIN elif match == matches[-1] and text.endswith(match.group()): position = PuncPosition.END puncs.append(_PUNC_IDX(match.group(), position)) # convert str text to a List[str], each item is separated by a punctuation splitted_text = [] for idx, punc in enumerate(puncs): split = text.split(punc.punc) prefix, suffix = split[0], punc.punc.join(split[1:]) splitted_text.append(prefix) # if the text does not end with a punctuation, add it to the last item if idx == len(puncs) - 1 and len(suffix) > 0: splitted_text.append(suffix) text = suffix return splitted_text, puncs @classmethod def restore(cls, text, puncs): """Restore punctuation in a text. Args: text (str): The text to be processed. puncs (List[str]): The list of punctuations map to be used for restoring. Examples :: ['This is', 'example'], ['.', '!'] -> "This is. example!" """ return cls._restore(text, puncs, 0) @classmethod def _restore(cls, text, puncs, num): # pylint: disable=too-many-return-statements """Auxiliary method for Punctuation.restore()""" if not puncs: return text # nothing have been phonemized, returns the puncs alone if not text: return ["".join(m.punc for m in puncs)] current = puncs[0] if current.position == PuncPosition.BEGIN: return cls._restore([current.punc + text[0]] + text[1:], puncs[1:], num) if current.position == PuncPosition.END: return [text[0] + current.punc] + cls._restore(text[1:], puncs[1:], num + 1) if current.position == PuncPosition.ALONE: return [current.mark] + cls._restore(text, puncs[1:], num + 1) # POSITION == MIDDLE if len(text) == 1: # pragma: nocover # a corner case where the final part of an intermediate # mark (I) has not been phonemized return cls._restore([text[0] + current.punc], puncs[1:], num) return cls._restore([text[0] + current.punc + text[1]] + text[2:], puncs[1:], num) # if __name__ == "__main__": # punc = Punctuation() # text = "This is. This is, example!" # print(punc.strip(text)) # split_text, puncs = punc.strip_to_restore(text) # print(split_text, " ---- ", puncs) # restored_text = punc.restore(split_text, puncs) # print(restored_text)
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/phonemizers/punctuation.py
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/phonemizers/__init__.py
""" from https://github.com/coqui-ai/TTS/""" import abc from typing import List, Tuple from naturalspeech2_pytorch.utils.phonemizers.punctuation import Punctuation class BasePhonemizer(abc.ABC): """Base phonemizer class Phonemization follows the following steps: 1. Preprocessing: - remove empty lines - remove punctuation - keep track of punctuation marks 2. Phonemization: - convert text to phonemes 3. Postprocessing: - join phonemes - restore punctuation marks Args: language (str): Language used by the phonemizer. punctuations (List[str]): List of punctuation marks to be preserved. keep_puncs (bool): Whether to preserve punctuation marks or not. """ def __init__(self, language, punctuations=Punctuation.default_puncs(), keep_puncs=False): # ensure the backend is installed on the system if not self.is_available(): raise RuntimeError("{} not installed on your system".format(self.name())) # pragma: nocover # ensure the backend support the requested language self._language = self._init_language(language) # setup punctuation processing self._keep_puncs = keep_puncs self._punctuator = Punctuation(punctuations) def _init_language(self, language): """Language initialization This method may be overloaded in child classes (see Segments backend) """ if not self.is_supported_language(language): raise RuntimeError(f'language "{language}" is not supported by the ' f"{self.name()} backend") return language @property def language(self): """The language code configured to be used for phonemization""" return self._language @staticmethod @abc.abstractmethod def name(): """The name of the backend""" ... @classmethod @abc.abstractmethod def is_available(cls): """Returns True if the backend is installed, False otherwise""" ... @classmethod @abc.abstractmethod def version(cls): """Return the backend version as a tuple (major, minor, patch)""" ... @staticmethod @abc.abstractmethod def supported_languages(): """Return a dict of language codes -> name supported by the backend""" ... def is_supported_language(self, language): """Returns True if `language` is supported by the backend""" return language in self.supported_languages() @abc.abstractmethod def _phonemize(self, text, separator): """The main phonemization method""" def _phonemize_preprocess(self, text) -> Tuple[List[str], List]: """Preprocess the text before phonemization 1. remove spaces 2. remove punctuation Override this if you need a different behaviour """ text = text.strip() if self._keep_puncs: # a tuple (text, punctuation marks) return self._punctuator.strip_to_restore(text) return [self._punctuator.strip(text)], [] def _phonemize_postprocess(self, phonemized, punctuations) -> str: """Postprocess the raw phonemized output Override this if you need a different behaviour """ if self._keep_puncs: return self._punctuator.restore(phonemized, punctuations)[0] return phonemized[0] def phonemize(self, text: str, separator="|", language: str = None) -> str: # pylint: disable=unused-argument """Returns the `text` phonemized for the given language Args: text (str): Text to be phonemized. separator (str): string separator used between phonemes. Default to '_'. Returns: (str): Phonemized text """ text, punctuations = self._phonemize_preprocess(text) phonemized = [] for t in text: p = self._phonemize(t, separator) phonemized.append(p) phonemized = self._phonemize_postprocess(phonemized, punctuations) return phonemized def print_logs(self, level: int = 0): indent = "\t" * level print(f"{indent}| > phoneme language: {self.language}") print(f"{indent}| > phoneme backend: {self.name()}")
naturalspeech2-pytorch-main
naturalspeech2_pytorch/utils/phonemizers/base.py
from setuptools import setup, find_packages setup( name = 'CoLT5-attention', packages = find_packages(), version = '0.10.15', license='MIT', description = 'Conditionally Routed Attention', long_description_content_type = 'text/markdown', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/CoLT5-attention', keywords = [ 'artificial intelligence', 'attention mechanism', 'dynamic routing' ], install_requires=[ 'einops>=0.6.1', 'local-attention>=1.8.6', 'packaging', 'torch>=1.10' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
CoLT5-attention-main
setup.py
import math from functools import partial from collections import namedtuple import torch import torch.nn.functional as F from torch import Tensor, nn, einsum from typing import Tuple, Optional from local_attention import LocalMHA from einops import rearrange, repeat, pack, unpack from colt5_attention.attend import Attend # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def divisible_by(numer, denom): return (numer % denom) == 0 def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def pad_to_multiple(tensor, multiple, dim=-1, value=0): seq_len = tensor.shape[dim] m = seq_len / multiple if m.is_integer(): return tensor, seq_len remainder = math.ceil(m) * multiple - seq_len pad_offset = (0,) * (-1 - dim) * 2 padded_tensor = F.pad(tensor, (*pad_offset, 0, remainder), value = value) return padded_tensor, seq_len def batched_gather(x, indices): batch_range = create_batch_range(indices, indices.ndim - 1) return x[batch_range, indices] def identity(t): return t def l2norm(t): return F.normalize(t, dim = -1) # tensor helpers def create_batch_range(t, right_pad_dims = 1): b, device = t.shape[0], t.device batch_range = torch.arange(b, device = device) pad_dims = ((1,) * right_pad_dims) return batch_range.reshape(-1, *pad_dims) # rotary positional embeddign # https://arxiv.org/abs/2104.09864 class RotaryEmbedding(nn.Module): def __init__(self, dim, theta = 10000): super().__init__() inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) @property def device(self): return next(self.buffers()).device def forward(self, seq_len): t = torch.arange(seq_len, device = self.device).type_as(self.inv_freq) freqs = torch.einsum('i , j -> i j', t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim = -1) return freqs def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(pos, t): return t * pos.cos() + rotate_half(t) * pos.sin() # normalization class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): normed = F.normalize(x, dim = -1) return normed * self.scale * self.gamma # modules def FeedForward(dim, mult = 4): dim_hidden = int(dim * mult) return nn.Sequential( RMSNorm(dim), nn.Linear(dim, dim_hidden), nn.GELU(), nn.Linear(dim_hidden, dim) ) class SelfAttention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, use_flash = False, prenorm = False ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 dim_hidden = dim_head * heads self.norm = RMSNorm(dim) if prenorm else nn.Identity() self.attend = Attend(use_flash = use_flash) self.to_qkv = nn.Linear(dim, dim_hidden * 3, bias = False) self.to_out = nn.Linear(dim_hidden, dim, bias = False) def forward(self, x): h = self.heads x = self.norm(x) # get queries, keys, values q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # attention out = self.attend(q, k, v) # merge heads out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Attention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, multiply_keys_by_score = False, use_flash = False ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 dim_hidden = dim_head * heads self.multiply_keys_by_score = multiply_keys_by_score self.norm = RMSNorm(dim) self.null_kv = nn.Parameter(torch.randn(2, heads, dim_head)) self.attend = Attend(use_flash = use_flash) self.to_q = nn.Linear(dim, dim_hidden, bias = False) self.to_kv = nn.Linear(dim, dim_hidden * 2, bias = False) self.to_out = nn.Linear(dim_hidden, dim, bias = False) def forward( self, x, context = None, mask = None, normalized_scores_kv = None, normalized_scores_q = None, rotary_emb: Optional[Tuple[Tensor, Tensor]] = None ): """ einops: b - batch h - heads, or number of heads per route r - routing dimension, for routing different sets of key / values - should be more expressive n - sequence dimension d - head dimension i - input model dimension """ batch, h = x.shape[0], self.heads x = self.norm(x) if exists(context): context = self.norm(context) context = default(context, x) # if routing dimension is not there, unsqueeze for 1 routing dimension if context.ndim == 3: context = rearrange(context, 'b n d -> b 1 n d') if exists(normalized_scores_kv) and isinstance(normalized_scores_kv, torch.Tensor): if normalized_scores_kv.ndim == 2: normalized_scores_kv = rearrange(normalized_scores_kv, 'b n -> b 1 n') normalized_scores_kv = rearrange(normalized_scores_kv, 'b r n -> b r 1 n 1') num_kv_routes = context.shape[1] # get queries q = self.to_q(x) q = rearrange(q, 'b n (h d) -> b h n d', h = h) if exists(normalized_scores_q) and isinstance(normalized_scores_q, torch.Tensor): q = q * rearrange(normalized_scores_q, 'b n -> b 1 n 1') # handle key / values, with the routing dimension, dividing the number of heads in between the routes assert divisible_by(h, num_kv_routes), 'number of heads must be divisible by the number of key / value routes' heads_per_route = h // num_kv_routes kv_weight = rearrange(self.to_kv.weight, '(r h d) i -> r h d i', h = heads_per_route, r = num_kv_routes) kv = einsum('r h d i, b r n i -> b r h n d', kv_weight, context) k, v = kv.chunk(2, dim = -1) if exists(normalized_scores_kv): # in paper, not sure how they passed back the signal from heavy attention to normalized scores for key/values. just multiply the values by the normalized kv scores for now v = v * normalized_scores_kv if self.multiply_keys_by_score: k = k * normalized_scores_kv # apply rotary embeddings if needed if exists(rotary_emb): q_rotary_emb, k_rotary_emb = rotary_emb q = apply_rotary_pos_emb(q_rotary_emb, q) if k_rotary_emb.ndim == 4: k_rotary_emb = repeat(k_rotary_emb, 'b 1 n d -> b r 1 n d', r = k.shape[1]) k = apply_rotary_pos_emb(k_rotary_emb, k) # merge routing dimension with heads for key / values k, v = map(lambda t: rearrange(t, 'b r h n d -> b (r h) n d'), (k, v)) # null key values nk, nv = map(lambda t: repeat(t, 'h d -> b h 1 d', b = batch), self.null_kv) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # masking if exists(mask): if mask.ndim == 3: mask = repeat(mask, 'b r j -> b (r h) 1 j', h = heads_per_route) else: mask = rearrange(mask, 'b j -> b 1 1 j') mask = F.pad(mask, (1, 0), value = True) # attention out = self.attend(q, k, v, mask = mask) # merge heads out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # routing related logic from colt5_attention.coor_descent import coor_descent RouterReturn = namedtuple('RouterReturn', ['indices', 'scores', 'routed_tokens', 'routed_mask']) class CoordinateDescentRouter(nn.Module): """ from Wright et al. https://arxiv.org/abs/1502.04759 then adopted by https://arxiv.org/abs/2211.01267 for multi-vector document retrieval by Qian et al finally, used successfully by this paper for routing to heavy branch attention / feedforward """ def __init__( self, dim, straight_through = True, n_iters = 20, # 20 iterations in a new paper, utilizing ε-scaling fetch_k_ratio = 9 / 8, # in the paper, they do a bit slightly higher k (times this ratio) for better learning eps = 0.03, # the epsilon for coordinate descent. in a recent paper, they used 0.03 for text and 1.0 for speech eps_decay = 0.7, eps_init = 4., num_routing_tokens = 1, learned_routing_tokens = False, use_triton = False, cosine_sim_routing = False, cosine_sim_scale = 8, route_block_size = None, triton_checkpoint_segments = None # whether to recompute the coordinate descent in segments, with 4 and 50 iterations, backwards is sped up 3x times at the expense of forwards and some memory for saving initial a and b ): super().__init__() assert fetch_k_ratio >= 1. self.n_iters = n_iters self.fetch_k_ratio = fetch_k_ratio self.coor_descent = coor_descent # epsilon related hparams, for ε-scaling self.eps = eps self.eps_decay = eps_decay self.eps_init = eps_init if use_triton: from colt5_attention.triton_coor_descent import triton_coor_descent triton_checkpoint_segments = default(triton_checkpoint_segments, n_iters // 5) self.coor_descent = partial(triton_coor_descent, checkpoint_segments = triton_checkpoint_segments) self.is_one_routing_token = num_routing_tokens == 1 self.num_routing_tokens = num_routing_tokens self.route_block_size = route_block_size self.routing_token = nn.Parameter(torch.randn(num_routing_tokens, dim)) if not learned_routing_tokens else None self.straight_through = straight_through # whether to use cosine sim for routing self.cosine_sim_routing = cosine_sim_routing self.cosine_sim_scale = cosine_sim_scale def route_back(self, src, routed_tokens, indices): batch_range = create_batch_range(routed_tokens) src[batch_range, indices] = routed_tokens return src def forward( self, x, *, num_tokens, mask = None, random_route = False, routing_tokens = None, keep_one_route_dim = False # if only one route, whether to keepdim ): n, device, eps, eps_init, eps_decay, num_routes, route_block_size = x.shape[-2], x.device, self.eps, self.eps_init, self.eps_decay, self.num_routing_tokens, self.route_block_size # do not route if the sequence length is less than the number of tokens has_route_dim = keep_one_route_dim or not self.is_one_routing_token if n <= num_tokens: b = x.shape[0] r = self.num_routing_tokens if has_route_dim: scores_shape = (b, r, n) x = repeat(x, 'b n d -> b r n d', r = r) if exists(mask): mask = repeat(mask, 'b n -> b r n', r = r) else: scores_shape = (b, n) scores = torch.ones(scores_shape, device = device, dtype = x.dtype) return RouterReturn(None, scores, x, mask) # whether to route even amounts from blocks of the sequence if exists(route_block_size): num_blocks = n // route_block_size prev_seq_mult = num_blocks * route_block_size # just curtail to last multiple of route block size x = x[:, :prev_seq_mult] # group sequence into blocks to route x = rearrange(x, 'b (n w) d -> (b n) w d', w = route_block_size) if exists(mask): mask = mask[:, :prev_seq_mult] mask = rearrange(mask, 'b (n w) -> (b n) w', w = route_block_size) n = route_block_size num_tokens = math.ceil(num_tokens / num_blocks) # s stands for eventual normalized score maybe_l2norm = l2norm if self.cosine_sim_routing else identity if exists(self.routing_token): s = einsum('b n d, r d -> b r n', maybe_l2norm(x), maybe_l2norm(self.routing_token)) else: assert exists(routing_tokens) if routing_tokens.ndim == 2: routing_tokens = rearrange(routing_tokens, 'b d -> b 1 d') s = einsum('b n d, b r d -> b r n', maybe_l2norm(x), maybe_l2norm(routing_tokens)) if self.cosine_sim_routing: s = s * self.cosine_sim_scale # merge routing dimension into batch x = repeat(x, 'b ... -> (b r) ...', r = num_routes) s, ps = pack_one(s, '* n') if exists(mask): mask = repeat(mask, 'b ... -> (b r) ...', r = num_routes) # k, which controls the sparsity of the outputted scores from iterative coordinate descent effective_k = min(num_tokens * self.fetch_k_ratio, n) # coordinate descent scores = self.coor_descent( s, n_iters = self.n_iters, mask = mask, k = effective_k, eps = eps, eps_init = eps_init, eps_decay = eps_decay ) # force random routing, if negative control if random_route: scores = torch.randn_like(scores) scores = scores.masked_fill(~mask, -torch.finfo(scores.dtype).max) # get the topk scores and indices from the sparse matrix selected_scores, selected_indices = scores.topk(num_tokens, dim = -1) if self.straight_through: # this would make sure all normalized scores returned are 1., but still differentiable using straight-through trick selected_scores = selected_scores + (1. - selected_scores).detach() if exists(mask): selected_mask = batched_gather(mask, selected_indices) selected_scores = selected_scores.masked_fill(~selected_mask, 0.) # split out routing dimension again if need be if has_route_dim: selected_scores = unpack_one(selected_scores, ps, '* n') selected_indices = unpack_one(selected_indices, ps, '* n') # undo the windowing, if one were routing uniformly in blocks if exists(route_block_size): selected_scores = rearrange(selected_scores, '(b n) ... w -> b ... (n w)', n = num_blocks) selected_indices = rearrange(selected_indices, '(b n) ... w -> b ... n w', n = num_blocks) indices_offset = torch.arange(num_blocks, device = device) * route_block_size selected_indices = selected_indices + rearrange(indices_offset, 'n -> n 1') selected_indices = rearrange(selected_indices, 'b ... n w -> b ... (n w)') # auto-gather the routed tokens and mask (if not None) routed_tokens = batched_gather(x, selected_indices) routed_mask = None if exists(mask): routed_mask = batched_gather(mask, selected_indices) # return indices, scores, routed tokens and mask return RouterReturn(selected_indices, selected_scores, routed_tokens, routed_mask) # main classes class ConditionalRoutedFeedForward(nn.Module): def __init__( self, dim, *, num_heavy_tokens, light_ff_mult = 0.5, heavy_ff_mult = 4, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_kwargs: dict = {}, use_triton = False ): super().__init__() self.num_heavy_tokens = num_heavy_tokens if use_triton: router_kwargs = {**router_kwargs, 'use_triton': True} self.router = CoordinateDescentRouter( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.light_ff = FeedForward(dim, light_ff_mult) self.heavy_ff = FeedForward(dim, heavy_ff_mult) def forward( self, x, mask = None, num_heavy_tokens = None ): device, num_heavy_tokens = x.device, default(num_heavy_tokens, self.num_heavy_tokens) # light feedforward sees all the tokens (hidden dimension is only 1/2 of model dimensions) light_out = self.light_ff(x) # route tokens appropriately for heavy branch indices, normalized_scores, routed_tokens, _ = self.router(x, num_tokens = num_heavy_tokens, mask = mask) # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_ff(routed_tokens) * rearrange(normalized_scores, '... -> ... 1') # scatter back the output of the heavy feedforward branch if exists(indices): heavy_out = torch.zeros_like(x) heavy_out = self.router.route_back(heavy_out, routed_tokens_out, indices) else: heavy_out = routed_tokens_out # sum light and heavy branches return light_out + heavy_out class ConditionalRoutedAttention(nn.Module): def __init__( self, dim, *, num_heavy_tokens_q, num_heavy_tokens_kv, num_routed_kv = 1, light_dim_head = 64, light_heads = 8, light_window_size = 128, # each token would see ~ 64 tokens either way to left or right heavy_dim_head = 64, heavy_heads = 8, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_kwargs: dict = {}, multiply_keys_by_score = False, multiply_queries_by_score = False, use_triton = False, use_null_q_tokens = True, use_flash_attn = False, rotary_emb = False ): super().__init__() if use_triton: router_kwargs = {**router_kwargs, 'use_triton': True} self.num_heavy_tokens_q = num_heavy_tokens_q self.num_heavy_tokens_kv = num_heavy_tokens_kv self.multiply_queries_by_score = multiply_queries_by_score self.light_attn = LocalMHA( dim = dim, dim_head = light_dim_head, heads = light_heads, window_size = light_window_size // 2, prenorm = True, causal = False, use_rotary_pos_emb = False, look_backward = 1, look_forward = 1 ) self.null_q_token = None if use_null_q_tokens: self.null_q_token = nn.Parameter(torch.randn(dim)) # for the query tokens not selected by the router, give it a learned output embed self.q_router = CoordinateDescentRouter( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.kv_router = CoordinateDescentRouter( dim = dim, num_routing_tokens = num_routed_kv, straight_through = router_straight_through, **router_kwargs ) self.heavy_attn = Attention( dim = dim, dim_head = heavy_dim_head, heads = heavy_heads, multiply_keys_by_score = multiply_keys_by_score, use_flash = use_flash_attn ) # rotary embedding self.rotary_emb = RotaryEmbedding(heavy_dim_head) if rotary_emb else None def forward( self, x, *, num_heavy_tokens_q = None, num_heavy_tokens_kv = None, mask = None ): batch, seq, device = *x.shape[:2], x.device num_heavy_tokens_q = default(num_heavy_tokens_q, self.num_heavy_tokens_q) num_heavy_tokens_kv = default(num_heavy_tokens_kv, self.num_heavy_tokens_kv) # light local attention sees all tokens in a limited context light_out = self.light_attn(x, mask = mask) # route tokens appropriately for heavy branch indices_q, normalized_scores_q, routed_tokens_q, _ = self.q_router(x, num_tokens = num_heavy_tokens_q, mask = mask) indices_kv, normalized_scores_kv, routed_tokens_kv, routed_tokens_kv_mask = self.kv_router(x, num_tokens = num_heavy_tokens_kv, mask = mask) # get rotary embeddings if specified rotary_emb = None if exists(self.rotary_emb): seq_rotary_emb = self.rotary_emb(seq) q_rotary_emb = rearrange(seq_rotary_emb[indices_q], 'b n d -> b 1 n d') if exists(indices_q) else seq_rotary_emb k_rotary_emb = rearrange(seq_rotary_emb[indices_kv], '... n d -> ... 1 n d') if exists(indices_kv) else seq_rotary_emb rotary_emb = (q_rotary_emb, k_rotary_emb) # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_attn( routed_tokens_q, mask = routed_tokens_kv_mask, context = routed_tokens_kv, rotary_emb = rotary_emb, normalized_scores_kv = normalized_scores_kv, normalized_scores_q = normalized_scores_q if self.multiply_queries_by_score else None ) routed_tokens_out = routed_tokens_out * rearrange(normalized_scores_q, '... -> ... 1') # scatter back the output of the heavy branch if exists(indices_q): if exists(self.null_q_token): heavy_out = rearrange(self.null_q_token, 'd -> 1 1 d') heavy_out = heavy_out.expand_as(x).clone() else: heavy_out = torch.zeros_like(x) heavy_out = self.q_router.route_back(heavy_out, routed_tokens_out, indices_q) else: heavy_out = routed_tokens_out # sum light and heavy branches return light_out + heavy_out # conditionally routed image feature map attention class ConditionalRoutedImageAttention(nn.Module): def __init__( self, dim, *, num_heavy_tokens_q, num_heavy_tokens_kv, num_routed_kv = 1, light_dim_head = 64, light_heads = 8, light_window_size = 128, # each token would see ~ 64 tokens either way to left or right heavy_dim_head = 64, heavy_heads = 8, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_kwargs: dict = {}, multiply_keys_by_score = False, multiply_queries_by_score = False, use_triton = False, use_null_q_tokens = True, use_flash_attn = False, channel_first = False ): super().__init__() self.channel_first = channel_first if use_triton: router_kwargs = {**router_kwargs, 'use_triton': True} self.num_heavy_tokens_q = num_heavy_tokens_q self.num_heavy_tokens_kv = num_heavy_tokens_kv self.multiply_queries_by_score = multiply_queries_by_score self.light_window_size = light_window_size self.light_attn = SelfAttention( dim = dim, dim_head = light_dim_head, heads = light_heads, prenorm = True ) self.null_q_token = None if use_null_q_tokens: self.null_q_token = nn.Parameter(torch.randn(dim)) # for the query tokens not selected by the router, give it a learned output embed self.q_router = CoordinateDescentRouter( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.kv_router = CoordinateDescentRouter( dim = dim, num_routing_tokens = num_routed_kv, straight_through = router_straight_through, **router_kwargs ) self.heavy_attn = Attention( dim = dim, dim_head = heavy_dim_head, heads = heavy_heads, multiply_keys_by_score = multiply_keys_by_score, use_flash = use_flash_attn ) def forward( self, x, *, num_heavy_tokens_q = None, num_heavy_tokens_kv = None, mask = None ): assert x.ndim == 4 batch, device, channel_first, w = x.shape[0], x.device, self.channel_first, self.light_window_size if channel_first: x = rearrange(x, 'b d ... -> b ... d') num_heavy_tokens_q = default(num_heavy_tokens_q, self.num_heavy_tokens_q) num_heavy_tokens_kv = default(num_heavy_tokens_kv, self.num_heavy_tokens_kv) # light local attention sees all tokens in a limited context light_input = rearrange(x, 'b (h p1) (w p2) d -> b h w (p1 p2) d', p1 = w, p2 = w) x, ps = pack_one(light_input, '* n d') light_out = self.light_attn(x) light_out = unpack_one(light_out, ps, '* n d') light_out = rearrange(light_out, 'b h w (p1 p2) d -> b (h p1) (w p2) d', p1 = w, p2 = w) # route tokens appropriately for heavy branch indices_q, normalized_scores_q, routed_tokens_q, _ = self.q_router(x, num_tokens = num_heavy_tokens_q, mask = mask) indices_kv, normalized_scores_kv, routed_tokens_kv, routed_tokens_kv_mask = self.kv_router(x, num_tokens = num_heavy_tokens_kv, mask = mask) # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_attn( routed_tokens_q, mask = routed_tokens_kv_mask, context = routed_tokens_kv, normalized_scores_kv = normalized_scores_kv, normalized_scores_q = normalized_scores_q if self.multiply_queries_by_score else None ) routed_tokens_out = routed_tokens_out * rearrange(normalized_scores_q, '... -> ... 1') # scatter back the output of the heavy branch if exists(self.null_q_token): heavy_out = rearrange(self.null_q_token, 'd -> 1 1 d') heavy_out = heavy_out.expand_as(x).clone() else: heavy_out = torch.zeros_like(x) heavy_out = self.q_router.route_back(heavy_out, routed_tokens_out, indices_q) heavy_out = unpack_one(heavy_out, ps, '* n d') heavy_out = rearrange(heavy_out, 'b h w (p1 p2) d -> b (h p1) (w p2) d', p1 = w, p2 = w) # sum light and heavy branches out = light_out + heavy_out if channel_first: out = rearrange(out, 'b ... d -> b d ...') return out # improvised conditionally routed autoregressive attention class ConditionalRoutedAutoregressiveAttention(nn.Module): def __init__( self, dim, *, num_heavy_tokens_q, num_heavy_tokens_kv, num_routed_kv = 1, light_dim_head = 64, light_heads = 8, light_window_size = 128, # each token would see ~ 64 tokens either way to left or right heavy_window_size = None, heavy_dim_head = 64, heavy_heads = 8, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_kwargs: dict = {}, multiply_keys_by_score = False, multiply_queries_by_score = False, use_triton = False, use_null_q_tokens = True, use_flash_attn = False, rotary_emb = False ): super().__init__() if use_triton: router_kwargs = {**router_kwargs, 'use_triton': True} self.num_heavy_tokens_q = num_heavy_tokens_q self.num_heavy_tokens_kv = num_heavy_tokens_kv self.multiply_queries_by_score = multiply_queries_by_score self.heavy_window_size = default(heavy_window_size, light_window_size) self.light_attn = LocalMHA( dim = dim, dim_head = light_dim_head, heads = light_heads, window_size = light_window_size, prenorm = True, causal = True, exact_windowsize = False, use_rotary_pos_emb = False ) self.null_q_token = None if use_null_q_tokens: self.null_q_token = nn.Parameter(torch.randn(dim)) # for the query tokens not selected by the router, give it a learned output embed self.q_router = CoordinateDescentRouter( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.kv_router = CoordinateDescentRouter( dim = dim, num_routing_tokens = num_routed_kv, straight_through = router_straight_through, **router_kwargs ) self.heavy_attn = Attention( dim = dim, dim_head = heavy_dim_head, heads = heavy_heads, multiply_keys_by_score = multiply_keys_by_score, use_flash = use_flash_attn ) # rotary embedding self.rotary_emb = RotaryEmbedding(heavy_dim_head) if rotary_emb else None def forward( self, x, *, num_heavy_tokens_q = None, num_heavy_tokens_kv = None, random_route = False ): batch, seq, device = *x.shape[:2], x.device num_heavy_tokens_q = default(num_heavy_tokens_q, self.num_heavy_tokens_q) num_heavy_tokens_kv = default(num_heavy_tokens_kv, self.num_heavy_tokens_kv) # light local attention sees all tokens in a limited context light_out = self.light_attn(x) # pad sequence to multiple of the heavy window size # routing will take place within each heavy window block size window_size = self.heavy_window_size x, seq_len = pad_to_multiple(x, window_size, dim = -2) padded_seq_len = x.shape[-2] # construct mask, and make sure not to attend to padding q_mask = torch.ones((batch, seq_len), dtype = torch.bool, device = device) q_mask = F.pad(q_mask, (0, padded_seq_len - seq_len), value = False) # handy function merge_to_batch = lambda t: rearrange(t, 'b n ... -> (b n) ...') # block the sequence and mask into windows for the queries q = rearrange(x, 'b (n w) d -> b n w d', w = window_size) q_mask = rearrange(q_mask, 'b (n w) -> b n w', w = window_size) q, q_mask = map(merge_to_batch, (q[:, 1:], q_mask[:, 1:])) # each block of queries attend to sequences that are causally masked out appropriately windows = padded_seq_len // window_size kv = repeat(x, 'b n d -> b m n d', m = windows) kv_mask = torch.ones((windows, windows), dtype = torch.bool, device = device).tril(-1) kv_mask = repeat(kv_mask, 'm n -> b m (n w)', b = batch, w = window_size) kv, kv_mask = map(merge_to_batch, (kv[:, 1:], kv_mask[:, 1:])) # route tokens appropriately for heavy branch, if need be should_route_q = q.shape[-2] > num_heavy_tokens_q should_route_kv = kv.shape[-2] > num_heavy_tokens_kv indices_q, normalized_scores_q, routed_tokens_q, _ = self.q_router(q, num_tokens = num_heavy_tokens_q, mask = q_mask, random_route = random_route) indices_kv, normalized_scores_kv, routed_tokens_kv, routed_tokens_kv_mask = self.kv_router(kv, num_tokens = num_heavy_tokens_kv, mask = kv_mask, random_route = random_route) # get rotary embeddings if specified rotary_emb = None if exists(self.rotary_emb): seq_rotary_emb = self.rotary_emb(padded_seq_len) windowed_rotary_emb = rearrange(seq_rotary_emb, '(n w) d -> n w d', w = window_size) windowed_rotary_emb = windowed_rotary_emb[1:] windowed_rotary_emb = repeat(windowed_rotary_emb, 'n w d -> (b n) w d', b = batch) if exists(indices_q): rotary_indices_q = repeat(indices_q, '... -> ... d', d = windowed_rotary_emb.shape[-1]) q_rotary_emb = windowed_rotary_emb.gather(1, rotary_indices_q) else: q_rotary_emb = windowed_rotary_emb q_rotary_emb = rearrange(q_rotary_emb, 'b n d -> b 1 n d') k_rotary_emb = rearrange(seq_rotary_emb[indices_kv], '... n d -> ... 1 n d') if exists(indices_kv) else seq_rotary_emb rotary_emb = (q_rotary_emb, k_rotary_emb) # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_attn( routed_tokens_q, mask = routed_tokens_kv_mask, context = routed_tokens_kv, rotary_emb = rotary_emb, normalized_scores_kv = normalized_scores_kv, normalized_scores_q = normalized_scores_q if self.multiply_queries_by_score else None ) if exists(indices_q): routed_tokens_out = routed_tokens_out * rearrange(normalized_scores_q, '... -> ... 1') # scatter back the output of the heavy branch if exists(self.null_q_token): heavy_out = rearrange(self.null_q_token, 'd -> 1 1 d') heavy_out = heavy_out.expand_as(q).clone() else: heavy_out = torch.zeros_like(q) heavy_out = self.q_router.route_back(heavy_out, routed_tokens_out, indices_q) else: heavy_out = routed_tokens_out # un-window and slice out original sequence heavy_out = rearrange(heavy_out, '(b n) w d -> b (n w) d', b = batch) heavy_out = heavy_out[:, :(seq_len - window_size)] heavy_out = F.pad(heavy_out, (0, 0, window_size, 0), value = 0.) # sum light and heavy branches return light_out + heavy_out # adapting the conditional routed self attention to cross attention class ConditionalRoutedCrossAttention(nn.Module): def __init__( self, dim, *, num_tokens_q, num_tokens_kv, num_sets_kv = 1, # setting this greater than 1 would route multiple sets of key / values, each of size num_tokens_kv, using this many routing tokens dim_head = 64, heads = 8, router_straight_through = True, # would make sure all normalized scores are 1., still differentiable router_kwargs: dict = {}, kv_routing_tokens = 1, multiply_keys_by_score = False, use_triton = False, use_null_q_tokens = True, use_flash_attn = False, route_block_size = None ): super().__init__() if use_triton: router_kwargs = {**router_kwargs, 'use_triton': True} self.num_tokens_q = num_tokens_q self.num_tokens_kv = num_tokens_kv self.null_q_token = None if use_null_q_tokens: self.null_q_token = nn.Parameter(torch.randn(dim)) # for the query tokens not selected by the router, give it a learned output embed self.q_router = CoordinateDescentRouter( dim = dim, straight_through = router_straight_through, **router_kwargs ) self.kv_router = CoordinateDescentRouter( dim = dim, straight_through = router_straight_through, num_routing_tokens = kv_routing_tokens, route_block_size = route_block_size, **router_kwargs ) self.heavy_attn = Attention( dim = dim, dim_head = dim_head, heads = heads, multiply_keys_by_score = multiply_keys_by_score, use_flash = use_flash_attn ) def forward( self, x, context, *, num_tokens_q = None, num_tokens_kv = None, mask = None, context_mask = None ): batch, device = x.shape[0], x.device # route the queries query_length = x.shape[-2] num_tokens_q = default(num_tokens_q, self.num_tokens_q) indices_q, normalized_scores_q, routed_tokens_q, _ = self.q_router(x, num_tokens = num_tokens_q, mask = mask) # route the long contexts key_value_length = context.shape[-2] num_tokens_kv = default(num_tokens_kv, self.num_tokens_kv) routed_tokens_kv = context routed_tokens_kv_mask = context_mask normalized_scores_kv = None should_route_kv = key_value_length > num_tokens_kv if should_route_kv: indices_kv, normalized_scores_kv, routed_tokens_kv, routed_tokens_kv_mask = self.kv_router(context, num_tokens = num_tokens_kv, mask = context_mask) # do the heavier branch with only routed tokens routed_tokens_out = self.heavy_attn( routed_tokens_q, mask = routed_tokens_kv_mask, context = routed_tokens_kv, normalized_scores_kv = normalized_scores_kv ) if should_route_queries: routed_tokens_out = routed_tokens_out * rearrange(normalized_scores_q, '... -> ... 1') # early return if queries did not undergo routing if not should_route_queries: return routed_tokens_out # otherwise, scatter back the query outputs if exists(self.null_q_token): out = rearrange(self.null_q_token, 'd -> 1 1 d') out = out.expand_as(x).clone() else: out = torch.zeros_like(x) if exists(indices_q): out = self.q_router.route_back(out, routed_tokens_out, indices_q) return out # block class ConditionalRoutedTransformerBlock(nn.Module): def __init__( self, dim, *, num_heavy_attn_tokens_q, num_heavy_attn_tokens_kv, num_routed_kv = 1, num_heavy_ff_tokens, light_dim_head = 64, light_heads = 8, light_window_size = 128, heavy_dim_head = 64, heavy_heads = 8, light_ff_mult = 0.5, heavy_ff_mult = 4, router_straight_through = True, router_kwargs: dict = {}, multiply_keys_by_score = False, multiply_queries_by_score = False, use_triton = False, use_null_q_tokens = True, use_flash_attn = False ): super().__init__() self.conditional_ff = ConditionalRoutedFeedForward( dim, num_heavy_tokens = num_heavy_ff_tokens, light_ff_mult = light_ff_mult, heavy_ff_mult = heavy_ff_mult, router_straight_through = router_straight_through, router_kwargs = router_kwargs, use_triton = use_triton ) self.conditional_attn = ConditionalRoutedAttention( dim, light_dim_head = light_dim_head, light_heads = light_heads, light_window_size = light_window_size, heavy_dim_head = heavy_dim_head, heavy_heads = heavy_heads, num_heavy_tokens_q = num_heavy_attn_tokens_q, num_heavy_tokens_kv = num_heavy_attn_tokens_kv, num_routed_kv = num_routed_kv, router_straight_through = router_straight_through, router_kwargs = router_kwargs, multiply_keys_by_score = multiply_keys_by_score, multiply_queries_by_score = multiply_queries_by_score, use_triton = use_triton, use_null_q_tokens = use_null_q_tokens, use_flash_attn = use_flash_attn ) def forward( self, x, mask = None, num_heavy_attn_tokens_q = None, num_heavy_attn_tokens_kv = None, num_heavy_ff_tokens = None ): x = self.conditional_attn(x, mask = mask, num_heavy_tokens_q = num_heavy_attn_tokens_q, num_heavy_tokens_kv = num_heavy_attn_tokens_kv) + x x = self.conditional_ff(x, mask = mask, num_heavy_tokens = num_heavy_ff_tokens) + x return x
CoLT5-attention-main
colt5_attention/transformer_block.py
from math import log import torch from torch import Tensor from torch import autograd import torch.nn.functional as F from colt5_attention.coor_descent import coor_descent from einops import pack, unpack, repeat try: import triton import triton.language as tl except ImportError as e: print('triton is not installed, please install by running `pip install triton -U --pre`') exit() # make sure it is latest triton from packaging import version assert version.parse(triton.__version__) >= version.parse('2.0') # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def calc_num_warps(block_size): num_warps = 4 if block_size >= 2048: num_warps = 8 if block_size >= 4096: num_warps = 16 return num_warps def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def num_to_groups(num, groups): assert 0 < groups <= num floor = num // groups remainder = num % groups out = [] for ind in range(groups): out.append(floor + int(ind < remainder)) assert sum(out) == num return out # forwards @triton.jit def coor_descent_kernel_forward( a_ptr, b_ptr, input_ptr, mask_ptr, k_ptr, a_iter_stride, b_row_stride, b_iter_stride, input_row_stride, mask_row_stride, n_iters, current_eps, eps_decay, eps, n_cols, BLOCK_SIZE: tl.constexpr ): row_idx = tl.program_id(0) col_offsets = tl.arange(0, BLOCK_SIZE) col_mask = col_offsets < n_cols # load mask as ints (for some reason as boolean breaks triton) mask_start_ptr = mask_ptr + row_idx * mask_row_stride mask_ptrs = mask_start_ptr + col_offsets mask_ints = tl.load(mask_ptrs, mask = col_mask, other = 0) mask = mask_ints == 1 # load a and b a_ptr = a_ptr + row_idx a = tl.load(a_ptr) b_start_ptr = b_ptr + row_idx * b_row_stride b_ptrs = b_start_ptr + col_offsets b = tl.load(b_ptrs, mask = col_mask, other = 0) # load the scores s row_start_ptr = input_ptr + row_idx * input_row_stride input_ptrs = row_start_ptr + col_offsets s = tl.load(input_ptrs, mask = mask, other = -float('inf')) # load k - controls the sparsity of output k_ptr = k_ptr + row_idx k = tl.load(k_ptr) # initialize some constants logk = tl.log(k) for _ in range(n_iters): a = (s + b) / current_eps a = tl.where(mask, a, -float('inf')) # stable log sum exp a_max = tl.max(a, axis = 0) a_minus_max = tl.where(mask, a - a_max, -float('inf')) exp = tl.exp(a_minus_max) sum_exp = tl.sum(exp, axis = 0) log_sum_exp = tl.log(sum_exp) + a_max a = current_eps * (logk - log_sum_exp) # update b b = s + a b = tl.where(b >= 0., -b, 0.) # decay epsilon, from epsilon-scaling current_eps *= eps_decay if current_eps < eps: current_eps = eps # store a and b for next round next_a_ptrs = a_ptr + a_iter_stride next_b_ptrs = b_ptrs + b_iter_stride tl.store(next_a_ptrs, a) tl.store(next_b_ptrs, b, mask = col_mask) # backwards @triton.jit def coor_descent_kernel_backward( dk_ptr, input_ptr, a_ptr, b_ptr, mask_ptr, ds_ptr, db_ptr, k_ptr, input_row_stride, b_row_stride, mask_row_stride, ds_row_stride, db_row_stride, n_iters, eps_init, eps_decay, eps, n_cols, BLOCK_SIZE: tl.constexpr ): row_idx = tl.program_id(0) col_offsets = tl.arange(0, BLOCK_SIZE) # load and generate mask col_mask = col_offsets < n_cols # load mask as ints (for some reason as boolean breaks triton) mask_start_ptr = mask_ptr + row_idx * mask_row_stride mask_ptrs = mask_start_ptr + col_offsets mask_ints = tl.load(mask_ptrs, mask = col_mask, other = 0) mask = mask_ints == 1 # load a and b a_ptr = a_ptr + row_idx init_a = tl.load(a_ptr) b_start_ptr = b_ptr + row_idx * b_row_stride b_ptrs = b_start_ptr + col_offsets init_b = tl.load(b_ptrs, mask = mask, other = 0) # load input row_start_ptr = input_ptr + row_idx * input_row_stride input_ptrs = row_start_ptr + col_offsets s = tl.load(input_ptrs, mask = mask, other = -float('inf')) # load k - controls the sparsity of output k_ptr = k_ptr + row_idx k = tl.load(k_ptr) logk = tl.log(k) # load initial ds ds_row_start_ptr = ds_ptr + row_idx * ds_row_stride ds_ptrs = ds_row_start_ptr + col_offsets ds = tl.load(ds_ptrs, mask = mask, other = 0.) # load initial db db_row_start_ptr = db_ptr + row_idx * db_row_stride db_ptrs = db_row_start_ptr + col_offsets db = tl.load(db_ptrs, mask = mask, other = 0.) # load initial dk dk_ptr = dk_ptr + row_idx dk = tl.load(dk_ptr) # temp variables last_da = tl.sum(ds, axis = 0) # backwards for ind in range(n_iters): a = init_a b = init_b sa = s * 0 softmax = s * 0 # calculate epsilon current_eps = eps_init / eps_decay # recompute for _ in range(n_iters - ind): # update epsilon current_eps *= eps_decay if current_eps < eps: current_eps = eps # updating a sb = (s + b) / current_eps sb = tl.where(mask, sb, -float('inf')) # stable log sum exp sb_max = tl.max(sb, axis = 0) sb_minus_max = tl.where(mask, sb - sb_max, -float('inf')) exp = tl.exp(sb_minus_max) sum_exp = tl.sum(exp, axis = 0) softmax = exp / sum_exp log_sum_exp = tl.log(sum_exp) + sb_max a = current_eps * (logk - log_sum_exp) # update b sa = s + a b = tl.where(sa > 0., -sa, 0.) # go backwards dsa = db * tl.where(sa > 0, -1., 0.) ds += dsa da = tl.sum(dsa, axis = 0) + last_da dk += da * current_eps dsb = da * -softmax ds += dsb db = dsb last_da = 0. # store dk tl.store(dk_ptr, dk) # store ds tl.store(ds_ptrs, ds, mask = col_mask) # store db tl.store(db_ptrs, db, mask = col_mask) # function forwards and backwards class _coor_descent(autograd.Function): @classmethod def forward( self, ctx, x, n_iters, k, eps, eps_init, eps_decay, mask, checkpoint_segments ): assert n_iters > 0 assert x.is_cuda, 'triton coordinate descent must be on cuda' batch, requires_grad, device, dtype = x.shape[0], x.requires_grad, x.device, x.dtype if not exists(mask): mask = torch.ones_like(x, dtype = torch.bool, device = x.device) x, shape = pack_one(x, '* n') mask, _ = pack_one(mask, '* n') x = x.masked_fill(~mask, -torch.finfo(x.dtype).max) mask_ints = mask.int() epsilons = [] eps_init = default(eps_init, eps) current_eps = float(max(eps_init, eps)) n_rows, n_cols = x.shape if isinstance(k, (int, float)): k = torch.full((n_rows,), k) assert k.numel() == n_rows k = k.to(x) BLOCK_SIZE = triton.next_power_of_2(n_cols) assert BLOCK_SIZE <= 131072, 'the maximum block size allowed is 131072 for triton cuda kernel - set the `route_block_size` for the CoordinateDescentRouter to be this value or less in order to uniformly route to get around this limitation' num_warps = calc_num_warps(BLOCK_SIZE) checkpointed_a = torch.empty((checkpoint_segments + 1, n_rows), device = device, dtype = dtype) checkpointed_b = torch.empty((checkpoint_segments + 1, n_rows, n_cols), device = device, dtype = dtype) checkpointed_a[0] = torch.zeros_like(k) checkpointed_b[0] = -x for ind, segment_iters in enumerate(num_to_groups(n_iters, checkpoint_segments)): is_last = ind == (checkpoint_segments - 1) epsilons.append(current_eps) coor_descent_kernel_forward[(n_rows,)]( checkpointed_a[ind], checkpointed_b[ind], x, mask_ints, k, checkpointed_a.stride(0), n_cols, checkpointed_b.stride(0), x.stride(0), mask_ints.stride(0), segment_iters, current_eps, eps_decay, eps, n_cols, num_warps = num_warps, BLOCK_SIZE = BLOCK_SIZE, ) current_eps *= (eps_decay ** segment_iters) current_eps = max(current_eps, eps) last_a, last_b = map(lambda t: t[-1], (checkpointed_a, checkpointed_b)) y = torch.exp((last_a[..., None] + last_b + x) / current_eps) epsilons.append(current_eps) if requires_grad: checkpointed_a = checkpointed_a[:-1] checkpointed_b = checkpointed_b[:-1] ctx.args = (n_iters, checkpoint_segments, epsilons, eps_decay, eps) ctx.save_for_backward(x, y, k, mask, checkpointed_a, checkpointed_b) y = unpack_one(y, shape, '* n') return y @classmethod def backward( self, ctx, grad_probs ): assert grad_probs.is_cuda batch = grad_probs.shape[0] n_iters, checkpoint_segments, epsilons, eps_decay, eps = ctx.args x, y, k, mask, checkpointed_a, checkpointed_b = ctx.saved_tensors grad_probs, shape = pack_one(grad_probs, '* n') if exists(mask): grad_probs = grad_probs.masked_fill(~mask, 0.) n_rows, n_cols = grad_probs.shape BLOCK_SIZE = triton.next_power_of_2(n_cols) num_warps = calc_num_warps(BLOCK_SIZE) *epsilons, last_eps = epsilons ds = grad_probs * y / last_eps db = ds.clone() dk = torch.zeros_like(k) mask_int = mask.int() items = zip( reversed(checkpointed_a.unbind(dim = 0)), reversed(checkpointed_b.unbind(dim = 0)), reversed(num_to_groups(n_iters, checkpoint_segments)), reversed(epsilons) ) for init_a, init_b, segment_iters, eps_init, in items: coor_descent_kernel_backward[(n_rows,)]( dk, x, init_a, init_b, mask_int, ds, db, k, x.stride(0), init_b.stride(0), mask_int.stride(0), ds.stride(0), db.stride(0), segment_iters, eps_init, eps_decay, eps, n_cols, num_warps = num_warps, BLOCK_SIZE = BLOCK_SIZE ) ds += -db ds = unpack_one(ds, shape, '* n') if not k.requires_grad: dk = None else: dk /= k return ds, None, dk, None, None, None, None, None def triton_coor_descent( s, *, n_iters, k, eps = 1e-1, eps_init = None, eps_decay = 1., mask = None, checkpoint_segments = 1 ): if not s.is_cuda: return coor_descent(s, n_iters = n_iters, k = k, eps = eps, eps_init = eps_init, eps_decay = eps_decay, mask = mask) return _coor_descent.apply(s, n_iters, k, eps, eps_init, eps_decay, mask, checkpoint_segments)
CoLT5-attention-main
colt5_attention/triton_coor_descent.py
from colt5_attention.transformer_block import ( ConditionalRoutedFeedForward, ConditionalRoutedAttention, ConditionalRoutedImageAttention, ConditionalRoutedAutoregressiveAttention, ConditionalRoutedCrossAttention, ConditionalRoutedTransformerBlock, CoordinateDescentRouter ) from colt5_attention.coor_descent import coor_descent from colt5_attention.topk import topk from colt5_attention.vit import ConditionalRoutedViT
CoLT5-attention-main
colt5_attention/__init__.py
from collections import namedtuple from functools import wraps from packaging import version import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange # constants Config = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, dropout = 0., causal = False, use_flash = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.causal = causal self.register_buffer("mask", None, persistent=False) self.use_flash = use_flash assert not (use_flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = Config(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not use_flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = Config(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = Config(False, True, True) def get_mask(self, n, device): if exists(self.mask) and self.mask.shape[-1] >= n: return self.mask[:n, :n] mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1) self.register_buffer("mask", mask, persistent=False) return mask def flash_attn(self, q, k, v, mask = None): _, heads, q_len, _, k_len, is_cuda = *q.shape, k.shape[-2], q.is_cuda # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L if exists(mask) and mask.ndim != 4: mask = rearrange(mask, 'b j -> b 1 1 j') mask = mask.expand(-1, heads, q_len, -1) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0., is_causal = self.causal ) return out def forward(self, q, k, v, mask = None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device = q.shape[-2], q.device scale = q.shape[-1] ** -0.5 if self.use_flash: return self.flash_attn(q, k, v, mask = mask) # similarity sim = einsum("b h i d, b h j d -> b h i j", q, k) * scale # key padding mask if exists(mask): if mask.ndim != 4: mask = rearrange(mask, 'b j -> b 1 1 j') sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # causal mask if self.causal: causal_mask = self.get_mask(n, device) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum("b h i j, b h j d -> b h i d", attn, v) return out
CoLT5-attention-main
colt5_attention/attend.py
import torch import torch.nn.functional as F from einops import rearrange def exists(val): return val is not None def default(val, d): return val if exists(val) else d def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def coor_descent( s, *, n_iters, k, eps = 1e-1, eps_init = None, eps_decay = 1., mask = None ): """ coordinate descent - https://arxiv.org/abs/1502.04759, utilized in https://arxiv.org/abs/2303.09752 ε-scaling - https://arxiv.org/abs/1610.06519, utilized in https://arxiv.org/abs/2304.04947 in a follow up paper applying coordinate descent routing to efficient fine tuning they were able to cut n_iters from 50 -> 20 by setting eps_init = 4 and eps_decay = 0.7 eps was dependent on the task, and ranged from 0.02 to 1 """ assert n_iters > 0 mask_value = -torch.finfo(s.dtype).max if not isinstance(k, torch.Tensor): k = torch.Tensor([k]).to(s) else: k = rearrange(k, '... -> ... 1') logk = log(k) if exists(mask): s = s.masked_fill(~mask, mask_value) a = 0 b = -s current_eps = max(default(eps_init, eps), eps) for _ in range(n_iters): sb = ((s + b) / current_eps) if exists(mask): sb = sb.masked_fill(~mask, mask_value) a = current_eps * (logk - sb.logsumexp(dim = -1, keepdim = True)) b = -F.relu(s + a) current_eps = max(current_eps * eps_decay, eps) scores = ((s + a + b) / current_eps).exp() if exists(mask): scores = scores.masked_fill(~mask, 0.) return scores
CoLT5-attention-main
colt5_attention/coor_descent.py
import torch from torch import nn from einops import rearrange, pack, unpack from einops.layers.torch import Rearrange, Reduce from colt5_attention.transformer_block import ( ConditionalRoutedImageAttention, ConditionalRoutedFeedForward ) # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32): _, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij') assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb' omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1) omega = 1. / (temperature ** omega) y = y.flatten()[:, None] * omega[None, :] x = x.flatten()[:, None] * omega[None, :] pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1) pe = pe.type(dtype) return rearrange(pe, '(h w) d -> h w d', h = h, w = w) # classes class Transformer(nn.Module): def __init__( self, dim, depth, attn_num_heavy_tokens_q, attn_num_heavy_tokens_kv, attn_light_dim_head, attn_light_heads, attn_light_window_size, attn_heavy_dim_head, attn_heavy_heads, ff_num_heavy_tokens, ff_light_mult, ff_heavy_mult, router_straight_through = True, router_kwargs: dict = {}, router_use_triton = False, flash_attn = True, attn_num_routed_kv = 1 ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): ff = ConditionalRoutedFeedForward( dim, num_heavy_tokens = ff_num_heavy_tokens, light_ff_mult = ff_light_mult, heavy_ff_mult = ff_heavy_mult, router_straight_through = router_straight_through, router_kwargs = router_kwargs, use_triton = router_use_triton ) attn = ConditionalRoutedImageAttention( dim, num_heavy_tokens_q = attn_num_heavy_tokens_q, num_heavy_tokens_kv = attn_num_heavy_tokens_kv, num_routed_kv = attn_num_routed_kv, light_dim_head = attn_light_dim_head, light_heads = attn_light_heads, light_window_size = attn_light_window_size, heavy_dim_head = attn_heavy_dim_head, heavy_heads = attn_heavy_heads, router_straight_through = router_straight_through, router_kwargs = router_kwargs, use_triton = router_use_triton, use_flash_attn = flash_attn, channel_first = False, use_null_q_tokens = True ) self.layers.append(nn.ModuleList([attn, ff])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x, ps = pack([x], 'b * d') x = ff(x) + x x, = unpack(x, ps, 'b * d') return x class ConditionalRoutedViT(nn.Module): def __init__( self, *, image_size, patch_size, num_classes, dim, depth, attn_num_heavy_tokens_q, attn_num_heavy_tokens_kv, attn_heavy_dim_head, attn_heavy_heads, attn_light_dim_head, attn_light_heads, attn_light_window_size, ff_num_heavy_tokens, ff_heavy_mult, ff_light_mult, channels = 3, router_straight_through = True, router_kwargs: dict = {}, router_use_triton = False, flash_attn = True, attn_num_routed_kv = 1, default_coor_descent_eps = 1. ): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) # not sure what the correct epsilon is for images, but for a recent paper, they used 1. for speech, 0.02 for text # images are probably closer to speech than to text router_kwargs = {'eps': default_coor_descent_eps, **router_kwargs} self.transformer = Transformer( dim, depth, attn_num_heavy_tokens_q, attn_num_heavy_tokens_kv, attn_light_dim_head, attn_light_heads, attn_light_window_size, attn_heavy_dim_head, attn_heavy_heads, ff_num_heavy_tokens, ff_light_mult, ff_heavy_mult, router_straight_through, router_kwargs, router_use_triton, flash_attn, attn_num_routed_kv ) self.linear_head = nn.Sequential( Reduce('b h w c -> b c', 'mean'), nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): *_, h, w, dtype = *img.shape, img.dtype x = self.to_patch_embedding(img) x = x + posemb_sincos_2d(x) x = self.transformer(x) return self.linear_head(x)
CoLT5-attention-main
colt5_attention/vit.py
import torch from collections import namedtuple from colt5_attention.coor_descent import coor_descent TopkReturn = namedtuple('TopkReturn', ['values', 'indices', 'coor_descent_values', 'gates']) def topk( x, k, coor_descent_k_ratio = 9 / 8, n_iters = 20, eps = 1e-1, eps_init = None, eps_decay = 1., mask = None, fused = False, non_differentiable = False ): """ differentiable top-k on last dimension """ if non_differentiable: values, indices = torch.topk(x, k = k, dim = -1) return TopkReturn(values, indices, None, None) assert coor_descent_k_ratio >= 1. assert k > 0 # whether to used fused kernel or not fn = coor_descent if fused and x.is_cuda: from colt5_attention.triton_coor_descent import triton_coor_descent fn = triton_coor_descent # do coordinate descent for gradients coor_descent_out = fn( x, k = min(k * coor_descent_k_ratio, x.shape[-1]), # fetch a bit more for better learning, as in CoLT5 paper (they fetched 9 / 8 times more) mask = mask, n_iters = n_iters, eps = eps, eps_init = eps_init, eps_decay = eps_decay ) # do straight through gates = coor_descent_out + (1 - coor_descent_out).detach() x = x * gates # hard topk values, indices = torch.topk(x, k, dim = -1) # return something that looks like a usual topk, but now differentiable coor_descent_values = coor_descent_out.gather(-1, indices) gates = gates.gather(-1, indices) return TopkReturn(values, indices, coor_descent_values, gates)
CoLT5-attention-main
colt5_attention/topk.py
from setuptools import setup, find_packages setup( name = 'FLASH-pytorch', packages = find_packages(exclude=[]), version = '0.1.8', license='MIT', description = 'FLASH - Transformer Quality in Linear Time - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/FLASH-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism' ], install_requires=[ 'einops>=0.4', 'rotary-embedding-torch>=0.1.5', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
FLASH-pytorch-main
setup.py
from flash_pytorch import FLASHTransformer from flash_pytorch.autoregressive_wrapper import AutoregressiveWrapper import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 1024 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = FLASHTransformer( num_tokens = 256, dim = 512, depth = 8, causal = True, group_size = 256, shift_tokens = True, laplace_attn_fn = True ) model = AutoregressiveWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)) loss.backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader)) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp[None, ...], GENERATE_LENGTH) output_str = decode_tokens(sample[0]) print(output_str)
FLASH-pytorch-main
train.py
import math import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange from rotary_embedding_torch import RotaryEmbedding # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def padding_to_multiple_of(n, mult): remainder = n % mult if remainder == 0: return 0 return mult - remainder # scalenorm class ScaleNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(1)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) * self.scale return x / norm.clamp(min = self.eps) * self.g # absolute positional encodings class ScaledSinuEmbedding(nn.Module): def __init__(self, dim): super().__init__() self.scale = nn.Parameter(torch.ones(1,)) inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) def forward(self, x): n, device = x.shape[1], x.device t = torch.arange(n, device = device).type_as(self.inv_freq) sinu = einsum('i , j -> i j', t, self.inv_freq) emb = torch.cat((sinu.sin(), sinu.cos()), dim = -1) return emb * self.scale # T5 relative positional bias class T5RelativePositionBias(nn.Module): def __init__( self, scale, causal = False, num_buckets = 32, max_distance = 128 ): super().__init__() self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, 1) @staticmethod def _relative_position_bucket( relative_position, causal = True, num_buckets = 32, max_distance = 128 ): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, x): i, j, device = *x.shape[-2:], x.device q_pos = torch.arange(i, dtype = torch.long, device = device) k_pos = torch.arange(j, dtype = torch.long, device = device) rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j 1 -> i j') return bias * self.scale # class class OffsetScale(nn.Module): def __init__(self, dim, heads = 1): super().__init__() self.gamma = nn.Parameter(torch.ones(heads, dim)) self.beta = nn.Parameter(torch.zeros(heads, dim)) nn.init.normal_(self.gamma, std = 0.02) def forward(self, x): out = einsum('... d, h d -> ... h d', x, self.gamma) + self.beta return out.unbind(dim = -2) # activation functions class ReLUSquared(nn.Module): def forward(self, x): return F.relu(x) ** 2 class LaplacianAttnFn(nn.Module): """ https://arxiv.org/abs/2209.10655 claims this is more stable than Relu squared """ def forward(self, x): mu = math.sqrt(0.5) std = math.sqrt((4 * math.pi) ** -1) return (1 + torch.special.erf((x - mu) / (std * math.sqrt(2)))) * 0.5 # gated attention unit class GAU(nn.Module): def __init__( self, *, dim, query_key_dim = 128, expansion_factor = 2., add_residual = True, causal = False, dropout = 0., laplace_attn_fn = False, rel_pos_bias = False, norm_klass = nn.LayerNorm ): super().__init__() hidden_dim = int(expansion_factor * dim) self.norm = norm_klass(dim) self.causal = causal self.dropout = nn.Dropout(dropout) self.attn_fn = ReLUSquared() if not laplace_attn_fn else LaplacianAttnFn() self.rel_pos_bias = T5RelativePositionBias(scale = dim ** 0.5, causal = causal) self.to_hidden = nn.Sequential( nn.Linear(dim, hidden_dim * 2), nn.SiLU() ) self.to_qk = nn.Sequential( nn.Linear(dim, query_key_dim), nn.SiLU() ) self.offsetscale = OffsetScale(query_key_dim, heads = 2) self.to_out = nn.Sequential( nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) self.add_residual = add_residual def forward( self, x, rel_pos_bias = None, mask = None ): seq_len, device = x.shape[-2], x.device normed_x = self.norm(x) v, gate = self.to_hidden(normed_x).chunk(2, dim = -1) qk = self.to_qk(normed_x) q, k = self.offsetscale(qk) sim = einsum('b i d, b j d -> b i j', q, k) if exists(self.rel_pos_bias): sim = sim + self.rel_pos_bias(sim) if exists(rel_pos_bias): sim = sim + rel_pos_bias attn = self.attn_fn(sim / seq_len) attn = self.dropout(attn) if exists(mask): mask = rearrange(mask, 'b j -> b 1 j') attn = attn.masked_fill(~mask, 0.) if self.causal: causal_mask = torch.ones((seq_len, seq_len), dtype = torch.bool, device = device).triu(1) attn = attn.masked_fill(causal_mask, 0.) out = einsum('b i j, b j d -> b i d', attn, v) out = out * gate out = self.to_out(out) if self.add_residual: out = out + x return out # FLASH class FLASH(nn.Module): def __init__( self, *, dim, group_size = 256, query_key_dim = 128, expansion_factor = 2., causal = False, dropout = 0., rotary_pos_emb = None, norm_klass = nn.LayerNorm, shift_tokens = False, laplace_attn_fn = False, reduce_group_non_causal_attn = True ): super().__init__() hidden_dim = int(dim * expansion_factor) self.group_size = group_size self.causal = causal self.shift_tokens = shift_tokens self.attn_fn = ReLUSquared() if not laplace_attn_fn else LaplacianAttnFn() # positional embeddings self.rotary_pos_emb = rotary_pos_emb self.rel_pos_bias = T5RelativePositionBias(query_key_dim ** 0.5, causal = causal) # norm self.norm = norm_klass(dim) self.dropout = nn.Dropout(dropout) # whether to reduce groups in non causal linear attention self.reduce_group_non_causal_attn = reduce_group_non_causal_attn # projections self.to_hidden = nn.Sequential( nn.Linear(dim, hidden_dim * 2), nn.SiLU() ) self.to_qk = nn.Sequential( nn.Linear(dim, query_key_dim), nn.SiLU() ) self.qk_offset_scale = OffsetScale(query_key_dim, heads = 4) self.to_out = nn.Linear(hidden_dim, dim) def forward( self, x, *, mask = None ): """ b - batch n - sequence length (within groups) g - group dimension d - feature dimension (keys) e - feature dimension (values) i - sequence dimension (source) j - sequence dimension (target) """ b, n, device, g = x.shape[0], x.shape[-2], x.device, self.group_size # prenorm normed_x = self.norm(x) # do token shift - a great, costless trick from an independent AI researcher in Shenzhen if self.shift_tokens: x_shift, x_pass = normed_x.chunk(2, dim = -1) x_shift = F.pad(x_shift, (0, 0, 1, -1), value = 0.) normed_x = torch.cat((x_shift, x_pass), dim = -1) # initial projections v, gate = self.to_hidden(normed_x).chunk(2, dim = -1) qk = self.to_qk(normed_x) # offset and scale quad_q, lin_q, quad_k, lin_k = self.qk_offset_scale(qk) # mask out linear attention keys if exists(mask): lin_mask = rearrange(mask, '... -> ... 1') lin_k = lin_k.masked_fill(~lin_mask, 0.) # rotate queries and keys if exists(self.rotary_pos_emb): quad_q, lin_q, quad_k, lin_k = map(self.rotary_pos_emb.rotate_queries_or_keys, (quad_q, lin_q, quad_k, lin_k)) # padding for groups padding = padding_to_multiple_of(n, g) if padding > 0: quad_q, quad_k, lin_q, lin_k, v = map(lambda t: F.pad(t, (0, 0, 0, padding), value = 0.), (quad_q, quad_k, lin_q, lin_k, v)) mask = default(mask, torch.ones((b, n), device = device, dtype = torch.bool)) mask = F.pad(mask, (0, padding), value = False) # group along sequence quad_q, quad_k, lin_q, lin_k, v = map(lambda t: rearrange(t, 'b (n g) d -> b n g d', g = self.group_size), (quad_q, quad_k, lin_q, lin_k, v)) if exists(mask): mask = rearrange(mask, 'b (g j) -> b g 1 j', j = g) # calculate quadratic attention output sim = einsum('... i d, ... j d -> ... i j', quad_q, quad_k) / g sim = sim + self.rel_pos_bias(sim) attn = self.attn_fn(sim) attn = self.dropout(attn) if exists(mask): attn = attn.masked_fill(~mask, 0.) if self.causal: causal_mask = torch.ones((g, g), dtype = torch.bool, device = device).triu(1) attn = attn.masked_fill(causal_mask, 0.) quad_out = einsum('... i j, ... j d -> ... i d', attn, v) # calculate linear attention output if self.causal: lin_kv = einsum('b g n d, b g n e -> b g d e', lin_k, v) / g # exclusive cumulative sum along group dimension lin_kv = lin_kv.cumsum(dim = 1) lin_kv = F.pad(lin_kv, (0, 0, 0, 0, 1, -1), value = 0.) lin_out = einsum('b g d e, b g n d -> b g n e', lin_kv, lin_q) else: context_einsum_eq = 'b d e' if self.reduce_group_non_causal_attn else 'b g d e' lin_kv = einsum(f'b g n d, b g n e -> {context_einsum_eq}', lin_k, v) / n lin_out = einsum(f'b g n d, {context_einsum_eq} -> b g n e', lin_q, lin_kv) # fold back groups into full sequence, and excise out padding quad_attn_out, lin_attn_out = map(lambda t: rearrange(t, 'b g n d -> b (g n) d')[:, :n], (quad_out, lin_out)) # gate out = gate * (quad_attn_out + lin_attn_out) # projection out and residual return self.to_out(out) + x # FLASH Transformer class FLASHTransformer(nn.Module): def __init__( self, *, dim, num_tokens, depth, group_size = 256, query_key_dim = 128, expansion_factor = 2., causal = False, attn_dropout = 0., norm_type = 'scalenorm', shift_tokens = True, laplace_attn_fn = False, reduce_group_non_causal_attn = True ): super().__init__() assert norm_type in ('scalenorm', 'layernorm'), 'norm_type must be one of scalenorm or layernorm' if norm_type == 'scalenorm': norm_klass = ScaleNorm elif norm_type == 'layernorm': norm_klass = nn.LayerNorm self.token_emb = nn.Embedding(num_tokens, dim) self.abs_pos_emb = ScaledSinuEmbedding(dim) self.group_size = group_size rotary_pos_emb = RotaryEmbedding(dim = min(32, query_key_dim)) # max rotary embedding dimensions of 32, partial Rotary embeddings, from Wang et al - GPT-J self.layers = nn.ModuleList([FLASH(dim = dim, group_size = group_size, query_key_dim = query_key_dim, expansion_factor = expansion_factor, causal = causal, dropout = attn_dropout, rotary_pos_emb = rotary_pos_emb, norm_klass = norm_klass, shift_tokens = shift_tokens, reduce_group_non_causal_attn = reduce_group_non_causal_attn, laplace_attn_fn = laplace_attn_fn) for _ in range(depth)]) self.to_logits = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_tokens) ) def forward( self, x, *, mask = None ): x = self.token_emb(x) x = self.abs_pos_emb(x) + x for flash in self.layers: x = flash(x, mask = mask) return self.to_logits(x)
FLASH-pytorch-main
flash_pytorch/flash_pytorch.py
import torch from torch import nn import torch.nn.functional as F from einops import rearrange # helper function def exists(val): return val is not None def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner # top k filtering def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs class AutoregressiveWrapper(nn.Module): def __init__(self, net, pad_value = 0): super().__init__() self.pad_value = pad_value self.net = net @torch.no_grad() @eval_decorator def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_thres = 0.9, **kwargs): b, t, device = *start_tokens.shape, start_tokens.device out = start_tokens for _ in range(seq_len): logits = self.net(out, **kwargs)[:, -1, :] filtered_logits = top_k(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) if exists(eos_token): is_eos_token = (out == eos_token) if is_eos_token.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.pad_value) break out = out[:, t:] return out def forward(self, x, **kwargs): x_inp, x_labels = x[:, :-1], x[:, 1:] logits = self.net(x_inp, **kwargs) return F.cross_entropy(rearrange(logits, 'b c n -> b n c'), x_labels)
FLASH-pytorch-main
flash_pytorch/autoregressive_wrapper.py
from flash_pytorch.flash_pytorch import GAU, FLASH, FLASHTransformer
FLASH-pytorch-main
flash_pytorch/__init__.py
from setuptools import setup, find_packages setup( name = 'En-transformer', packages = find_packages(), version = '1.2.0', license='MIT', description = 'E(n)-Equivariant Transformer', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/En-transformer', keywords = [ 'artificial intelligence', 'deep learning', 'equivariance', 'transformer' ], install_requires=[ 'einops>=0.3', 'torch>=1.7' ], setup_requires=[ 'pytest-runner', ], tests_require=[ 'pytest' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
En-transformer-main
setup.py
import torch import torch.nn.functional as F from torch import nn from torch.optim import Adam from einops import rearrange, repeat import sidechainnet as scn from en_transformer.en_transformer import EnTransformer torch.set_default_dtype(torch.float64) BATCH_SIZE = 1 GRADIENT_ACCUMULATE_EVERY = 16 def cycle(loader, len_thres = 200): while True: for data in loader: if data.seqs.shape[1] > len_thres: continue yield data transformer = EnTransformer( num_tokens = 21, dim = 32, dim_head = 64, heads = 4, depth = 4, rel_pos_emb = True, # there is inherent order in the sequence (backbone atoms of amino acid chain) neighbors = 16 ) data = scn.load( casp_version = 12, thinning = 30, with_pytorch = 'dataloaders', batch_size = BATCH_SIZE, dynamic_batching = False ) dl = cycle(data['train']) optim = Adam(transformer.parameters(), lr=1e-3) transformer = transformer.cuda() for _ in range(10000): for _ in range(GRADIENT_ACCUMULATE_EVERY): batch = next(dl) seqs, coords, masks = batch.seqs, batch.crds, batch.msks seqs = seqs.cuda().argmax(dim = -1) coords = coords.cuda().type(torch.float64) masks = masks.cuda().bool() l = seqs.shape[1] coords = rearrange(coords, 'b (l s) c -> b l s c', s = 14) # keeping only the backbone coordinates coords = coords[:, :, 0:3, :] coords = rearrange(coords, 'b l s c -> b (l s) c') seq = repeat(seqs, 'b n -> b (n c)', c = 3) masks = repeat(masks, 'b n -> b (n c)', c = 3) noised_coords = coords + torch.randn_like(coords) feats, denoised_coords = transformer(seq, noised_coords, mask = masks) loss = F.mse_loss(denoised_coords[masks], coords[masks]) (loss / GRADIENT_ACCUMULATE_EVERY).backward() print('loss:', loss.item()) optim.step() optim.zero_grad()
En-transformer-main
denoise.py
import torch import torch.nn.functional as F from torch import nn, einsum from torch.utils.checkpoint import checkpoint_sequential from einops import rearrange, repeat, reduce from einops.layers.torch import Rearrange # helper functions def exists(val): return val is not None def max_neg_value(t): return -torch.finfo(t.dtype).max def default(val, d): return val if exists(val) else d def l2norm(t): return F.normalize(t, dim = -1) def small_init_(t: nn.Linear): nn.init.normal_(t.weight, std = 0.02) nn.init.zeros_(t.bias) def batched_index_select(values, indices, dim = 1): value_dims = values.shape[(dim + 1):] values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices)) indices = indices[(..., *((None,) * len(value_dims)))] indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims) value_expand_len = len(indices_shape) - (dim + 1) values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)] value_expand_shape = [-1] * len(values.shape) expand_slice = slice(dim, (dim + value_expand_len)) value_expand_shape[expand_slice] = indices.shape[expand_slice] values = values.expand(*value_expand_shape) dim += value_expand_len return values.gather(dim, indices) # dynamic positional bias class DynamicPositionBias(nn.Module): def __init__( self, dim, *, heads, depth, dim_head, input_dim = 1, norm = True ): super().__init__() assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1' self.mlp = nn.ModuleList([]) self.mlp.append(nn.Sequential( nn.Linear(input_dim, dim), nn.LayerNorm(dim) if norm else nn.Identity(), nn.SiLU() )) for _ in range(depth - 1): self.mlp.append(nn.Sequential( nn.Linear(dim, dim), nn.LayerNorm(dim) if norm else nn.Identity(), nn.SiLU() )) self.heads = heads self.qk_pos_head = nn.Linear(dim, heads) self.value_pos_head = nn.Linear(dim, dim_head * heads) def forward(self, pos): for layer in self.mlp: pos = layer(pos) qk_pos = self.qk_pos_head(pos) value_pos = self.value_pos_head(pos) qk_pos = rearrange(qk_pos, 'b 1 i j h -> b h i j') value_pos = rearrange(value_pos, 'b 1 i j (h d) -> b h i j d', h = self.heads) return qk_pos, value_pos # classes # this follows the same strategy for normalization as done in SE3 Transformers # https://github.com/lucidrains/se3-transformer-pytorch/blob/main/se3_transformer_pytorch/se3_transformer_pytorch.py#L95 class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.register_buffer('beta', torch.zeros(dim)) def forward(self, x): return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) class CoorsNorm(nn.Module): def __init__(self, eps = 1e-8, scale_init = 1.): super().__init__() self.eps = eps scale = torch.zeros(1).fill_(scale_init) self.scale = nn.Parameter(scale) def forward(self, coors): norm = coors.norm(dim = -1, keepdim = True) normed_coors = coors / norm.clamp(min = self.eps) return normed_coors * self.scale class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, feats, coors, **kwargs): feats_out, coors_delta = self.fn(feats, coors, **kwargs) return feats + feats_out, coors + coors_delta class GEGLU(nn.Module): def forward(self, x): x, gates = x.chunk(2, dim = -1) return x * F.gelu(gates) class FeedForward(nn.Module): def __init__( self, *, dim, mult = 4, dropout = 0. ): super().__init__() inner_dim = int(dim * mult * 2 / 3) self.net = nn.Sequential( LayerNorm(dim), nn.Linear(dim, inner_dim * 2, bias = False), GEGLU(), LayerNorm(inner_dim), nn.Dropout(dropout), nn.Linear(inner_dim, dim, bias = False) ) def forward(self, feats, coors): return self.net(feats), 0 class LinearAttention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8 ): super().__init__() self.heads = heads self.dim_hidden = dim_head * heads self.to_qkv = nn.Linear(dim, self.dim_hidden * 3) def forward(self, x, mask = None): has_degree_m_dim = x.ndim == 4 if has_degree_m_dim: x = rearrange(x, '... 1 -> ...') q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), (q, k, v)) if exists(mask): mask = rearrange(mask, 'b n -> b 1 n 1') k = k.masked_fill(~mask, -torch.finfo(q.dtype).max) v = v.masked_fill(~mask, 0.) k = k.softmax(dim = -2) q = q.softmax(dim = -1) kv = einsum('b h n d, b h n e -> b h d e', k, v) out = einsum('b h d e, b h n d -> b h n e', kv, q) out = rearrange(out, 'b h n d -> b n (h d)') if has_degree_m_dim: out = rearrange(out, '... -> ... 1') return out class EquivariantAttention(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 4, edge_dim = 0, coors_hidden_dim = 16, neighbors = 0, only_sparse_neighbors = False, valid_neighbor_radius = float('inf'), init_eps = 1e-3, rel_pos_emb = None, edge_mlp_mult = 2, norm_rel_coors = True, norm_coors_scale_init = 1., use_cross_product = False, talking_heads = False, dropout = 0., num_global_linear_attn_heads = 0 ): super().__init__() self.scale = dim_head ** -0.5 self.norm = LayerNorm(dim) self.neighbors = neighbors self.only_sparse_neighbors = only_sparse_neighbors self.valid_neighbor_radius = valid_neighbor_radius attn_inner_dim = heads * dim_head self.heads = heads self.has_linear_attn = num_global_linear_attn_heads > 0 self.linear_attn = LinearAttention(dim = dim, dim_head = dim_head, heads = num_global_linear_attn_heads) self.to_qkv = nn.Linear(dim, attn_inner_dim * 3, bias = False) self.to_out = nn.Linear(attn_inner_dim + self.linear_attn.dim_hidden, dim) self.talking_heads = nn.Conv2d(heads, heads, 1, bias = False) if talking_heads else None self.edge_mlp = None has_edges = edge_dim > 0 if has_edges: edge_input_dim = heads + edge_dim edge_hidden = edge_input_dim * edge_mlp_mult self.edge_mlp = nn.Sequential( nn.Linear(edge_input_dim, edge_hidden, bias = False), nn.GELU(), nn.Linear(edge_hidden, heads, bias = False) ) self.coors_mlp = nn.Sequential( nn.GELU(), nn.Linear(heads, heads, bias = False) ) else: self.coors_mlp = nn.Sequential( nn.Linear(heads, coors_hidden_dim, bias = False), nn.GELU(), nn.Linear(coors_hidden_dim, heads, bias = False) ) self.coors_gate = nn.Linear(heads, heads) small_init_(self.coors_gate) self.use_cross_product = use_cross_product if use_cross_product: self.cross_coors_mlp = nn.Sequential( nn.Linear(heads, coors_hidden_dim, bias = False), nn.GELU(), nn.Linear(coors_hidden_dim, heads * 2, bias = False) ) self.cross_coors_gate_i = nn.Linear(heads, heads) self.cross_coors_gate_j = nn.Linear(heads, heads) small_init_(self.cross_coors_gate_i) small_init_(self.cross_coors_gate_j) self.norm_rel_coors = CoorsNorm(scale_init = norm_coors_scale_init) if norm_rel_coors else nn.Identity() num_coors_combine_heads = (2 if use_cross_product else 1) * heads self.coors_combine = nn.Parameter(torch.randn(num_coors_combine_heads)) # positional embedding # for both along the sequence (if specified by rel_pos_emb) and the relative distance between each residue / atom self.rel_pos_emb = rel_pos_emb self.dynamic_pos_bias_mlp = DynamicPositionBias( dim = dim // 2, heads = heads, dim_head = dim_head, depth = 3, input_dim = (2 if rel_pos_emb else 1) ) # dropouts self.node_dropout = nn.Dropout(dropout) self.coor_dropout = nn.Dropout(dropout) # init self.init_eps = init_eps self.apply(self.init_) def init_(self, module): if type(module) in {nn.Linear}: nn.init.normal_(module.weight, std = self.init_eps) def forward( self, feats, coors, edges = None, mask = None, adj_mat = None ): b, n, d, h, num_nn, only_sparse_neighbors, valid_neighbor_radius, device = *feats.shape, self.heads, self.neighbors, self.only_sparse_neighbors, self.valid_neighbor_radius, feats.device _mask = mask feats = self.norm(feats) assert not (only_sparse_neighbors and not exists(adj_mat)), 'adjacency matrix must be passed in if only_sparse_neighbors is turned on' if exists(mask): num_nodes = mask.sum(dim = -1) rel_coors = rearrange(coors, 'b i d -> b i 1 d') - rearrange(coors, 'b j d -> b 1 j d') rel_dist = rel_coors.norm(p = 2, dim = -1) # calculate neighborhood indices nbhd_indices = None nbhd_masks = None nbhd_ranking = rel_dist.clone() if exists(adj_mat): if len(adj_mat.shape) == 2: adj_mat = repeat(adj_mat, 'i j -> b i j', b = b) self_mask = torch.eye(n, device = device).bool() self_mask = rearrange(self_mask, 'i j -> 1 i j') adj_mat.masked_fill_(self_mask, False) max_adj_neighbors = adj_mat.long().sum(dim = -1).max().item() + 1 num_nn = max_adj_neighbors if only_sparse_neighbors else (num_nn + max_adj_neighbors) valid_neighbor_radius = 0 if only_sparse_neighbors else valid_neighbor_radius nbhd_ranking = nbhd_ranking.masked_fill(self_mask, -1.) nbhd_ranking = nbhd_ranking.masked_fill(adj_mat, 0.) if 0 < num_nn < n: # make sure padding does not end up becoming neighbors if exists(mask): ranking_mask = mask[:, :, None] * mask[:, None, :] nbhd_ranking = nbhd_ranking.masked_fill(~ranking_mask, 1e5) nbhd_values, nbhd_indices = nbhd_ranking.topk(num_nn, dim = -1, largest = False) nbhd_masks = nbhd_values <= valid_neighbor_radius # derive queries keys and values q, k, v = self.to_qkv(feats).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # calculate nearest neighbors i = j = n if exists(nbhd_indices): i, j = nbhd_indices.shape[-2:] nbhd_indices_with_heads = repeat(nbhd_indices, 'b n d -> b h n d', h = h) k = batched_index_select(k, nbhd_indices_with_heads, dim = 2) v = batched_index_select(v, nbhd_indices_with_heads, dim = 2) rel_dist = batched_index_select(rel_dist, nbhd_indices, dim = 2) rel_coors = batched_index_select(rel_coors, nbhd_indices, dim = 2) else: k = repeat(k, 'b h j d -> b h n j d', n = n) v = repeat(v, 'b h j d -> b h n j d', n = n) # prepare mask if exists(mask): q_mask = rearrange(mask, 'b i -> b 1 i 1') k_mask = repeat(mask, 'b j -> b i j', i = n) if exists(nbhd_indices): k_mask = batched_index_select(k_mask, nbhd_indices, dim = 2) k_mask = rearrange(k_mask, 'b i j -> b 1 i j') mask = q_mask * k_mask if exists(nbhd_masks): mask &= rearrange(nbhd_masks, 'b i j -> b 1 i j') # generate and apply rotary embeddings rel_dist = -(rel_dist ** 2) rel_dist = rearrange(rel_dist, 'b i j -> b 1 i j 1') if self.rel_pos_emb: seq = torch.arange(n, device = device, dtype = q.dtype) seq_target_pos = nbhd_indices if exists(nbhd_indices) else rearrange(seq, 'j -> 1 1 j') seq_rel_dist = rearrange(seq, 'i -> 1 i 1') - seq_target_pos seq_rel_dist = repeat(seq_rel_dist, 'b i j -> b 1 i j 1', b = b) rel_dist = torch.cat((rel_dist, seq_rel_dist), dim = -1) qk_pos, value_pos = self.dynamic_pos_bias_mlp(rel_dist) # calculate inner product for queries and keys q = repeat(q, 'b h i d -> b h i j d', j = k.shape[-2]) # l2 distance # -cdist(q, k).pow(2) qk = -((q - k) ** 2).sum(dim = -1) qk = qk * self.scale # add relative positions to qk as well as values qk = qk + qk_pos v = v + value_pos # add edge information and pass through edges MLP if needed if exists(edges): if exists(nbhd_indices): edges = batched_index_select(edges, nbhd_indices, dim = 2) qk = rearrange(qk, 'b h i j -> b i j h') qk = torch.cat((qk, edges), dim = -1) qk = self.edge_mlp(qk) qk = rearrange(qk, 'b i j h -> b h i j') # coordinate MLP and calculate coordinate updates coors_mlp_input = rearrange(qk, 'b h i j -> b i j h') coor_weights = self.coors_mlp(coors_mlp_input) if exists(mask): mask_value = max_neg_value(coor_weights) coor_mask = repeat(mask, 'b 1 i j -> b i j 1') coor_weights.masked_fill_(~coor_mask, mask_value) coor_attn = coor_weights.softmax(dim = -2) coor_attn = self.coor_dropout(coor_attn) rel_coors_sign = self.coors_gate(coors_mlp_input) rel_coors_sign = rearrange(rel_coors_sign, 'b i j h -> b i j 1 h') if self.use_cross_product: rel_coors_i = repeat(rel_coors, 'b n i c -> b n (i j) c', j = j) rel_coors_j = repeat(rel_coors, 'b n j c -> b n (i j) c', i = j) cross_coors = torch.cross(rel_coors_i, rel_coors_j, dim = -1) cross_coors = self.norm_rel_coors(cross_coors) cross_coors = repeat(cross_coors, 'b i j c -> b i j c h', h = h) cross_coors_sign_i = self.cross_coors_gate_i(coors_mlp_input) cross_coors_sign_j = self.cross_coors_gate_j(coors_mlp_input) cross_coors_sign = rearrange(cross_coors_sign_i, 'b n i h -> b n i 1 h') * rearrange(cross_coors_sign_j, 'b n j h -> b n 1 j h') cross_coors_sign = rearrange(cross_coors_sign, 'b n i j h -> b n (i j) 1 h') cross_coors = cross_coors * cross_coors_sign rel_coors = self.norm_rel_coors(rel_coors) rel_coors = repeat(rel_coors, 'b i j c -> b i j c h', h = h) rel_coors = rel_coors * rel_coors_sign # cross product if self.use_cross_product: cross_weights = self.cross_coors_mlp(coors_mlp_input) cross_weights = rearrange(cross_weights, 'b i j (h n) -> b i j h n', n = 2) cross_weights_i, cross_weights_j = cross_weights.unbind(dim = -1) cross_weights = rearrange(cross_weights_i, 'b n i h -> b n i 1 h') + rearrange(cross_weights_j, 'b n j h -> b n 1 j h') if exists(mask): cross_mask = (coor_mask[:, :, :, None, :] & coor_mask[:, :, None, :, :]) cross_weights = cross_weights.masked_fill(~cross_mask, mask_value) cross_weights = rearrange(cross_weights, 'b n i j h -> b n (i j) h') cross_attn = cross_weights.softmax(dim = -2) # aggregate and combine heads for coordinate updates rel_out = einsum('b i j h, b i j c h -> b i c h', coor_attn, rel_coors) if self.use_cross_product: cross_out = einsum('b i j h, b i j c h -> b i c h', cross_attn, cross_coors) rel_out = torch.cat((rel_out, cross_out), dim = -1) coors_out = einsum('b n c h, h -> b n c', rel_out, self.coors_combine) # derive attention sim = qk.clone() if exists(mask): mask_value = max_neg_value(sim) sim.masked_fill_(~mask, mask_value) attn = sim.softmax(dim = -1) attn = self.node_dropout(attn) if exists(self.talking_heads): attn = self.talking_heads(attn) # weighted sum of values and combine heads out = einsum('b h i j, b h i j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') # linear attention if self.has_linear_attn: lin_out = self.linear_attn(feats, mask = _mask) out = torch.cat((out, lin_out), dim = -1) # combine heads, both local + global linear attention (if designated) out = self.to_out(out) return out, coors_out # transformer class Block(nn.Module): def __init__(self, attn, ff): super().__init__() self.attn = attn self.ff = ff def forward(self, inp, coor_changes = None): feats, coors, mask, edges, adj_mat = inp feats, coors = self.attn(feats, coors, edges = edges, mask = mask, adj_mat = adj_mat) feats, coors = self.ff(feats, coors) return (feats, coors, mask, edges, adj_mat) class EnTransformer(nn.Module): def __init__( self, *, dim, depth, num_tokens = None, rel_pos_emb = False, dim_head = 64, heads = 8, num_edge_tokens = None, edge_dim = 0, coors_hidden_dim = 16, neighbors = 0, only_sparse_neighbors = False, num_adj_degrees = None, adj_dim = 0, valid_neighbor_radius = float('inf'), init_eps = 1e-3, norm_rel_coors = True, norm_coors_scale_init = 1., use_cross_product = False, talking_heads = False, checkpoint = False, attn_dropout = 0., ff_dropout = 0., num_global_linear_attn_heads = 0 ): super().__init__() assert dim_head >= 32, 'your dimension per head should be greater than 32 for rotary embeddings to work well' assert not (exists(num_adj_degrees) and num_adj_degrees < 1), 'make sure adjacent degrees is greater than 1' if only_sparse_neighbors: num_adj_degrees = default(num_adj_degrees, 1) self.token_emb = nn.Embedding(num_tokens, dim) if exists(num_tokens) else None self.edge_emb = nn.Embedding(num_edge_tokens, edge_dim) if exists(num_edge_tokens) else None self.num_adj_degrees = num_adj_degrees self.adj_emb = nn.Embedding(num_adj_degrees + 1, adj_dim) if exists(num_adj_degrees) and adj_dim > 0 else None adj_dim = adj_dim if exists(num_adj_degrees) else 0 self.checkpoint = checkpoint self.layers = nn.ModuleList([]) for ind in range(depth): self.layers.append(Block( Residual(EquivariantAttention( dim = dim, dim_head = dim_head, heads = heads, coors_hidden_dim = coors_hidden_dim, edge_dim = (edge_dim + adj_dim), neighbors = neighbors, only_sparse_neighbors = only_sparse_neighbors, valid_neighbor_radius = valid_neighbor_radius, init_eps = init_eps, rel_pos_emb = rel_pos_emb, norm_rel_coors = norm_rel_coors, norm_coors_scale_init = norm_coors_scale_init, use_cross_product = use_cross_product, talking_heads = talking_heads, dropout = attn_dropout, num_global_linear_attn_heads = num_global_linear_attn_heads )), Residual(FeedForward( dim = dim, dropout = ff_dropout )) )) def forward( self, feats, coors, edges = None, mask = None, adj_mat = None, return_coor_changes = False, **kwargs ): b = feats.shape[0] if exists(self.token_emb): feats = self.token_emb(feats) if exists(self.edge_emb): assert exists(edges), 'edges must be passed in as (batch x seq x seq) indicating edge type' edges = self.edge_emb(edges) assert not (exists(adj_mat) and (not exists(self.num_adj_degrees) or self.num_adj_degrees == 0)), 'num_adj_degrees must be greater than 0 if you are passing in an adjacency matrix' if exists(self.num_adj_degrees): assert exists(adj_mat), 'adjacency matrix must be passed in (keyword argument adj_mat)' if len(adj_mat.shape) == 2: adj_mat = repeat(adj_mat.clone(), 'i j -> b i j', b = b) adj_indices = adj_mat.clone().long() for ind in range(self.num_adj_degrees - 1): degree = ind + 2 next_degree_adj_mat = (adj_mat.float() @ adj_mat.float()) > 0 next_degree_mask = (next_degree_adj_mat.float() - adj_mat.float()).bool() adj_indices.masked_fill_(next_degree_mask, degree) adj_mat = next_degree_adj_mat.clone() if exists(self.adj_emb): adj_emb = self.adj_emb(adj_indices) edges = torch.cat((edges, adj_emb), dim = -1) if exists(edges) else adj_emb assert not (return_coor_changes and self.training), 'you must be eval mode in order to return coordinates' # go through layers coor_changes = [coors] inp = (feats, coors, mask, edges, adj_mat) # if in training mode and checkpointing is designated, use checkpointing across blocks to save memory if self.training and self.checkpoint: inp = checkpoint_sequential(self.layers, len(self.layers), inp) else: # iterate through blocks for layer in self.layers: inp = layer(inp) coor_changes.append(inp[1]) # append coordinates for visualization # return feats, coors, *_ = inp if return_coor_changes: return feats, coors, coor_changes return feats, coors
En-transformer-main
en_transformer/en_transformer.py
from en_transformer.en_transformer import EquivariantAttention, EnTransformer
En-transformer-main
en_transformer/__init__.py
import torch from torch import sin, cos, atan2, acos def rot_z(gamma): return torch.tensor([ [cos(gamma), -sin(gamma), 0], [sin(gamma), cos(gamma), 0], [0, 0, 1] ], dtype = gamma.dtype) def rot_y(beta): return torch.tensor([ [cos(beta), 0, sin(beta)], [0, 1, 0], [-sin(beta), 0, cos(beta)] ], dtype = beta.dtype) def rot(alpha, beta, gamma): return rot_z(alpha) @ rot_y(beta) @ rot_z(gamma)
En-transformer-main
en_transformer/utils.py
import torch from en_transformer.utils import rot from en_transformer import EnTransformer torch.set_default_dtype(torch.float64) def test_readme(): model = EnTransformer( dim = 512, depth = 1, dim_head = 64, heads = 8, edge_dim = 4, neighbors = 6 ) feats = torch.randn(1, 32, 512) coors = torch.randn(1, 32, 3) edges = torch.randn(1, 32, 1024, 4) mask = torch.ones(1, 32).bool() feats, coors = model(feats, coors, edges, mask = mask) assert True, 'it runs' def test_equivariance(): model = EnTransformer( dim = 512, depth = 1, edge_dim = 4, rel_pos_emb = True ) R = rot(*torch.rand(3)) T = torch.randn(1, 1, 3) feats = torch.randn(1, 16, 512) coors = torch.randn(1, 16, 3) edges = torch.randn(1, 16, 16, 4) feats1, coors1 = model(feats, coors @ R + T, edges) feats2, coors2 = model(feats, coors, edges) assert torch.allclose(feats1, feats2, atol = 1e-6), 'type 0 features are invariant' assert torch.allclose(coors1, (coors2 @ R + T), atol = 1e-6), 'type 1 features are equivariant' def test_equivariance_with_cross_product(): model = EnTransformer( dim = 512, depth = 1, edge_dim = 4, rel_pos_emb = True, use_cross_product = True ) R = rot(*torch.rand(3)) T = torch.randn(1, 1, 3) feats = torch.randn(1, 16, 512) coors = torch.randn(1, 16, 3) edges = torch.randn(1, 16, 16, 4) feats1, coors1 = model(feats, coors @ R + T, edges) feats2, coors2 = model(feats, coors, edges) assert torch.allclose(feats1, feats2, atol = 1e-6), 'type 0 features are invariant' assert torch.allclose(coors1, (coors2 @ R + T), atol = 1e-6), 'type 1 features are equivariant' def test_equivariance_with_nearest_neighbors(): model = EnTransformer( dim = 512, depth = 1, edge_dim = 4, neighbors = 5 ) R = rot(*torch.rand(3)) T = torch.randn(1, 1, 3) feats = torch.randn(1, 16, 512) coors = torch.randn(1, 16, 3) edges = torch.randn(1, 16, 16, 4) feats1, coors1 = model(feats, coors @ R + T, edges) feats2, coors2 = model(feats, coors, edges) assert torch.allclose(feats1, feats2, atol = 1e-6), 'type 0 features are invariant' assert torch.allclose(coors1, (coors2 @ R + T), atol = 1e-6), 'type 1 features are equivariant' def test_equivariance_with_sparse_neighbors(): model = EnTransformer( dim = 512, depth = 1, heads = 4, dim_head = 32, neighbors = 0, only_sparse_neighbors = True ) R = rot(*torch.rand(3)) T = torch.randn(1, 1, 3) feats = torch.randn(1, 16, 512) coors = torch.randn(1, 16, 3) i = torch.arange(feats.shape[1]) adj_mat = (i[:, None] <= (i[None, :] + 1)) & (i[:, None] >= (i[None, :] - 1)) feats1, coors1 = model(feats, coors @ R + T, adj_mat = adj_mat) feats2, coors2 = model(feats, coors, adj_mat = adj_mat) assert torch.allclose(feats1, feats2, atol = 1e-6), 'type 0 features are invariant' assert torch.allclose(coors1, (coors2 @ R + T), atol = 1e-6), 'type 1 features are equivariant' def test_depth(): model = EnTransformer( dim = 8, depth = 12, edge_dim = 4, neighbors = 16 ) feats = torch.randn(1, 128, 8) coors = torch.randn(1, 128, 3) edges = torch.randn(1, 128, 128, 4) feats, coors = model(feats, coors, edges) assert not torch.any(torch.isnan(feats)), 'no NaN in features' assert not torch.any(torch.isnan(coors)), 'no NaN in coordinates'
En-transformer-main
tests/test_equivariance.py
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from opt_einsum import contract as einsum import copy import dgl from util import base_indices, RTs_by_torsion, xyzs_in_base_frame, rigid_from_3_points def init_lecun_normal(module, scale=1.0): def truncated_normal(uniform, mu=0.0, sigma=1.0, a=-2, b=2): normal = torch.distributions.normal.Normal(0, 1) alpha = (a - mu) / sigma beta = (b - mu) / sigma alpha_normal_cdf = normal.cdf(torch.tensor(alpha)) p = alpha_normal_cdf + (normal.cdf(torch.tensor(beta)) - alpha_normal_cdf) * uniform v = torch.clamp(2 * p - 1, -1 + 1e-8, 1 - 1e-8) x = mu + sigma * np.sqrt(2) * torch.erfinv(v) x = torch.clamp(x, a, b) return x def sample_truncated_normal(shape, scale=1.0): stddev = np.sqrt(scale/shape[-1])/.87962566103423978 # shape[-1] = fan_in return stddev * truncated_normal(torch.rand(shape)) module.weight = torch.nn.Parameter( (sample_truncated_normal(module.weight.shape)) ) return module def init_lecun_normal_param(weight, scale=1.0): def truncated_normal(uniform, mu=0.0, sigma=1.0, a=-2, b=2): normal = torch.distributions.normal.Normal(0, 1) alpha = (a - mu) / sigma beta = (b - mu) / sigma alpha_normal_cdf = normal.cdf(torch.tensor(alpha)) p = alpha_normal_cdf + (normal.cdf(torch.tensor(beta)) - alpha_normal_cdf) * uniform v = torch.clamp(2 * p - 1, -1 + 1e-8, 1 - 1e-8) x = mu + sigma * np.sqrt(2) * torch.erfinv(v) x = torch.clamp(x, a, b) return x def sample_truncated_normal(shape, scale=1.0): stddev = np.sqrt(scale/shape[-1])/.87962566103423978 # shape[-1] = fan_in return stddev * truncated_normal(torch.rand(shape)) weight = torch.nn.Parameter( (sample_truncated_normal(weight.shape)) ) return weight # for gradient checkpointing def create_custom_forward(module, **kwargs): def custom_forward(*inputs): return module(*inputs, **kwargs) return custom_forward def get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) class Dropout(nn.Module): # Dropout entire row or column def __init__(self, broadcast_dim=None, p_drop=0.15): super(Dropout, self).__init__() # give ones with probability of 1-p_drop / zeros with p_drop self.sampler = torch.distributions.bernoulli.Bernoulli(torch.tensor([1-p_drop])) self.broadcast_dim=broadcast_dim self.p_drop=p_drop def forward(self, x): if not self.training: # no drophead during evaluation mode return x shape = list(x.shape) if not self.broadcast_dim == None: shape[self.broadcast_dim] = 1 mask = self.sampler.sample(shape).to(x.device).view(shape) x = mask * x / (1.0 - self.p_drop) return x def rbf(D): # Distance radial basis function D_min, D_max, D_count = 0., 20., 36 D_mu = torch.linspace(D_min, D_max, D_count).to(D.device) D_mu = D_mu[None,:] D_sigma = (D_max - D_min) / D_count D_expand = torch.unsqueeze(D, -1) RBF = torch.exp(-((D_expand - D_mu) / D_sigma)**2) return RBF def get_seqsep(idx): ''' Input: - idx: residue indices of given sequence (B,L) Output: - seqsep: sequence separation feature with sign (B, L, L, 1) Sergey found that having sign in seqsep features helps a little ''' seqsep = idx[:,None,:] - idx[:,:,None] sign = torch.sign(seqsep) neigh = torch.abs(seqsep) neigh[neigh > 1] = 0.0 # if bonded -- 1.0 / else 0.0 neigh = sign * neigh return neigh.unsqueeze(-1) def make_full_graph(xyz, pair, idx, top_k=64, kmin=9): ''' Input: - xyz: current backbone cooordinates (B, L, 3, 3) - pair: pair features from Trunk (B, L, L, E) - idx: residue index from ground truth pdb Output: - G: defined graph ''' B, L = xyz.shape[:2] device = xyz.device # seq sep sep = idx[:,None,:] - idx[:,:,None] b,i,j = torch.where(sep.abs() > 0) src = b*L+i tgt = b*L+j G = dgl.graph((src, tgt), num_nodes=B*L).to(device) G.edata['rel_pos'] = (xyz[b,j,:] - xyz[b,i,:]).detach() # no gradient through basis function return G, pair[b,i,j][...,None] def make_topk_graph(xyz, pair, idx, top_k=64, kmin=32, eps=1e-6): ''' Input: - xyz: current backbone cooordinates (B, L, 3, 3) - pair: pair features from Trunk (B, L, L, E) - idx: residue index from ground truth pdb Output: - G: defined graph ''' B, L = xyz.shape[:2] device = xyz.device # distance map from current CA coordinates D = torch.cdist(xyz, xyz) + torch.eye(L, device=device).unsqueeze(0)*999.9 # (B, L, L) # seq sep sep = idx[:,None,:] - idx[:,:,None] sep = sep.abs() + torch.eye(L, device=device).unsqueeze(0)*999.9 D = D + sep*eps # get top_k neighbors D_neigh, E_idx = torch.topk(D, min(top_k, L), largest=False) # shape of E_idx: (B, L, top_k) topk_matrix = torch.zeros((B, L, L), device=device) topk_matrix.scatter_(2, E_idx, 1.0) # put an edge if any of the 3 conditions are met: # 1) |i-j| <= kmin (connect sequentially adjacent residues) # 2) top_k neighbors cond = torch.logical_or(topk_matrix > 0.0, sep < kmin) b,i,j = torch.where(cond) src = b*L+i tgt = b*L+j G = dgl.graph((src, tgt), num_nodes=B*L).to(device) G.edata['rel_pos'] = (xyz[b,j,:] - xyz[b,i,:]).detach() # no gradient through basis function return G, pair[b,i,j][...,None] def make_rotX(angs, eps=1e-6): B,L = angs.shape[:2] NORM = torch.linalg.norm(angs, dim=-1) + eps RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1) RTs[:,:,1,1] = angs[:,:,0]/NORM RTs[:,:,1,2] = -angs[:,:,1]/NORM RTs[:,:,2,1] = angs[:,:,1]/NORM RTs[:,:,2,2] = angs[:,:,0]/NORM return RTs # rotate about the z axis def make_rotZ(angs, eps=1e-6): B,L = angs.shape[:2] NORM = torch.linalg.norm(angs, dim=-1) + eps RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1) RTs[:,:,0,0] = angs[:,:,0]/NORM RTs[:,:,0,1] = -angs[:,:,1]/NORM RTs[:,:,1,0] = angs[:,:,1]/NORM RTs[:,:,1,1] = angs[:,:,0]/NORM return RTs # rotate about an arbitrary axis def make_rot_axis(angs, u, eps=1e-6): B,L = angs.shape[:2] NORM = torch.linalg.norm(angs, dim=-1) + eps RTs = torch.eye(4, device=angs.device).repeat(B,L,1,1) ct = angs[:,:,0]/NORM st = angs[:,:,1]/NORM u0 = u[:,:,0] u1 = u[:,:,1] u2 = u[:,:,2] RTs[:,:,0,0] = ct+u0*u0*(1-ct) RTs[:,:,0,1] = u0*u1*(1-ct)-u2*st RTs[:,:,0,2] = u0*u2*(1-ct)+u1*st RTs[:,:,1,0] = u0*u1*(1-ct)+u2*st RTs[:,:,1,1] = ct+u1*u1*(1-ct) RTs[:,:,1,2] = u1*u2*(1-ct)-u0*st RTs[:,:,2,0] = u0*u2*(1-ct)-u1*st RTs[:,:,2,1] = u1*u2*(1-ct)+u0*st RTs[:,:,2,2] = ct+u2*u2*(1-ct) return RTs class ComputeAllAtomCoords(nn.Module): def __init__(self): super(ComputeAllAtomCoords, self).__init__() self.base_indices = nn.Parameter(base_indices, requires_grad=False) self.RTs_in_base_frame = nn.Parameter(RTs_by_torsion, requires_grad=False) self.xyzs_in_base_frame = nn.Parameter(xyzs_in_base_frame, requires_grad=False) def forward(self, seq, xyz, alphas, non_ideal=False, use_H=True): B,L = xyz.shape[:2] Rs, Ts = rigid_from_3_points(xyz[...,0,:],xyz[...,1,:],xyz[...,2,:], non_ideal=non_ideal) RTF0 = torch.eye(4).repeat(B,L,1,1).to(device=Rs.device) # bb RTF0[:,:,:3,:3] = Rs RTF0[:,:,:3,3] = Ts # omega RTF1 = torch.einsum( 'brij,brjk,brkl->bril', RTF0, self.RTs_in_base_frame[seq,0,:], make_rotX(alphas[:,:,0,:])) # phi RTF2 = torch.einsum( 'brij,brjk,brkl->bril', RTF0, self.RTs_in_base_frame[seq,1,:], make_rotX(alphas[:,:,1,:])) # psi RTF3 = torch.einsum( 'brij,brjk,brkl->bril', RTF0, self.RTs_in_base_frame[seq,2,:], make_rotX(alphas[:,:,2,:])) # CB bend basexyzs = self.xyzs_in_base_frame[seq] NCr = 0.5*(basexyzs[:,:,2,:3]+basexyzs[:,:,0,:3]) CAr = (basexyzs[:,:,1,:3]) CBr = (basexyzs[:,:,4,:3]) CBrotaxis1 = (CBr-CAr).cross(NCr-CAr) CBrotaxis1 /= torch.linalg.norm(CBrotaxis1, dim=-1, keepdim=True)+1e-8 # CB twist NCp = basexyzs[:,:,2,:3] - basexyzs[:,:,0,:3] NCpp = NCp - torch.sum(NCp*NCr, dim=-1, keepdim=True)/ torch.sum(NCr*NCr, dim=-1, keepdim=True) * NCr CBrotaxis2 = (CBr-CAr).cross(NCpp) CBrotaxis2 /= torch.linalg.norm(CBrotaxis2, dim=-1, keepdim=True)+1e-8 CBrot1 = make_rot_axis(alphas[:,:,7,:], CBrotaxis1 ) CBrot2 = make_rot_axis(alphas[:,:,8,:], CBrotaxis2 ) RTF8 = torch.einsum( 'brij,brjk,brkl->bril', RTF0, CBrot1,CBrot2) # chi1 + CG bend RTF4 = torch.einsum( 'brij,brjk,brkl,brlm->brim', RTF8, self.RTs_in_base_frame[seq,3,:], make_rotX(alphas[:,:,3,:]), make_rotZ(alphas[:,:,9,:])) # chi2 RTF5 = torch.einsum( 'brij,brjk,brkl->bril', RTF4, self.RTs_in_base_frame[seq,4,:],make_rotX(alphas[:,:,4,:])) # chi3 RTF6 = torch.einsum( 'brij,brjk,brkl->bril', RTF5,self.RTs_in_base_frame[seq,5,:],make_rotX(alphas[:,:,5,:])) # chi4 RTF7 = torch.einsum( 'brij,brjk,brkl->bril', RTF6,self.RTs_in_base_frame[seq,6,:],make_rotX(alphas[:,:,6,:])) RTframes = torch.stack(( RTF0,RTF1,RTF2,RTF3,RTF4,RTF5,RTF6,RTF7,RTF8 ),dim=2) xyzs = torch.einsum( 'brtij,brtj->brti', RTframes.gather(2,self.base_indices[seq][...,None,None].repeat(1,1,1,4,4)), basexyzs ) if use_H: return RTframes, xyzs[...,:3] else: return RTframes, xyzs[...,:14,:3]
RFdiffusion-main
util_module.py
import torch import torch.nn as nn from Embeddings import MSA_emb, Extra_emb, Templ_emb, Recycling, Timestep_emb from Track_module import IterativeSimulator from AuxiliaryPredictor import DistanceNetwork, MaskedTokenNetwork, ExpResolvedNetwork, LDDTNetwork from util import INIT_CRDS from opt_einsum import contract as einsum from icecream import ic class RoseTTAFoldModule(nn.Module): def __init__(self, n_extra_block, n_main_block, n_ref_block, d_msa, d_msa_full, d_pair, d_templ, n_head_msa, n_head_pair, n_head_templ, d_hidden, d_hidden_templ, p_drop, d_t1d, d_t2d, d_time_emb, # total dims for input timestep emb d_time_emb_proj, # size of projected timestep emb T, # total timesteps (used in timestep emb use_motif_timestep, # Whether to have a distinct emb for motif freeze_track_motif, # Whether to freeze updates to motif in track SE3_param_full={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}, SE3_param_topk={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}, input_seq_onehot=False, # For continuous vs. discrete sequence ): super(RoseTTAFoldModule, self).__init__() self.freeze_track_motif = freeze_track_motif # Input Embeddings d_state = SE3_param_topk['l0_out_features'] self.latent_emb = MSA_emb(d_msa=d_msa, d_pair=d_pair, d_state=d_state, p_drop=p_drop, input_seq_onehot=input_seq_onehot) # Allowed to take onehotseq self.full_emb = Extra_emb(d_msa=d_msa_full, d_init=25, p_drop=p_drop, input_seq_onehot=input_seq_onehot) # Allowed to take onehotseq self.templ_emb = Templ_emb(d_pair=d_pair, d_templ=d_templ, d_state=d_state, n_head=n_head_templ, d_hidden=d_hidden_templ, p_drop=0.25, d_t1d=d_t1d, d_t2d=d_t2d) # timestep embedder if d_time_emb: print('NOTE: Using sinusoidal timestep embeddings of dim ',d_time_emb, ' projected to dim ',d_time_emb_proj) assert d_t1d >= 22 + d_time_emb_proj, 'timestep projection size doesn\'t fit into RF t1d projection layers' self.timestep_embedder = Timestep_emb(input_size=d_time_emb, output_size=d_time_emb_proj, T=T, use_motif_timestep=use_motif_timestep) # Update inputs with outputs from previous round self.recycle = Recycling(d_msa=d_msa, d_pair=d_pair, d_state=d_state) # self.simulator = IterativeSimulator(n_extra_block=n_extra_block, n_main_block=n_main_block, n_ref_block=n_ref_block, d_msa=d_msa, d_msa_full=d_msa_full, d_pair=d_pair, d_hidden=d_hidden, n_head_msa=n_head_msa, n_head_pair=n_head_pair, SE3_param_full=SE3_param_full, SE3_param_topk=SE3_param_topk, p_drop=p_drop) ## self.c6d_pred = DistanceNetwork(d_pair, p_drop=p_drop) self.aa_pred = MaskedTokenNetwork(d_msa, p_drop=p_drop) self.lddt_pred = LDDTNetwork(d_state) self.exp_pred = ExpResolvedNetwork(d_msa, d_state) def forward(self, msa_latent, msa_full, seq, xyz, idx, t, t1d=None, t2d=None, xyz_t=None, alpha_t=None, msa_prev=None, pair_prev=None, state_prev=None, return_raw=False, return_full=False, return_infer=False, use_checkpoint=False, motif_mask=None, i_cycle=None, n_cycle=None): B, N, L = msa_latent.shape[:3] # Get embeddings msa_latent, pair, state = self.latent_emb(msa_latent, seq, idx) msa_full = self.full_emb(msa_full, seq, idx) # Do recycling if msa_prev == None: msa_prev = torch.zeros_like(msa_latent[:,0]) pair_prev = torch.zeros_like(pair) state_prev = torch.zeros_like(state) msa_recycle, pair_recycle, state_recycle = self.recycle(seq, msa_prev, pair_prev, xyz, state_prev) msa_latent[:,0] = msa_latent[:,0] + msa_recycle.reshape(B,L,-1) pair = pair + pair_recycle state = state + state_recycle # Get timestep embedding (if using) if hasattr(self, 'timestep_embedder'): assert t is not None time_emb = self.timestep_embedder(L,t,motif_mask) n_tmpl = t1d.shape[1] t1d = torch.cat([t1d, time_emb[None,None,...].repeat(1,n_tmpl,1,1)], dim=-1) # add template embedding pair, state = self.templ_emb(t1d, t2d, alpha_t, xyz_t, pair, state, use_checkpoint=use_checkpoint) # Predict coordinates from given inputs is_frozen_residue = motif_mask if self.freeze_track_motif else torch.zeros_like(motif_mask).bool() msa, pair, R, T, alpha_s, state = self.simulator(seq, msa_latent, msa_full, pair, xyz[:,:,:3], state, idx, use_checkpoint=use_checkpoint, motif_mask=is_frozen_residue) if return_raw: # get last structure xyz = einsum('bnij,bnaj->bnai', R[-1], xyz[:,:,:3]-xyz[:,:,1].unsqueeze(-2)) + T[-1].unsqueeze(-2) return msa[:,0], pair, xyz, state, alpha_s[-1] # predict masked amino acids logits_aa = self.aa_pred(msa) # Predict LDDT lddt = self.lddt_pred(state) if return_infer: # get last structure xyz = einsum('bnij,bnaj->bnai', R[-1], xyz[:,:,:3]-xyz[:,:,1].unsqueeze(-2)) + T[-1].unsqueeze(-2) # get scalar plddt nbin = lddt.shape[1] bin_step = 1.0 / nbin lddt_bins = torch.linspace(bin_step, 1.0, nbin, dtype=lddt.dtype, device=lddt.device) pred_lddt = nn.Softmax(dim=1)(lddt) pred_lddt = torch.sum(lddt_bins[None,:,None]*pred_lddt, dim=1) return msa[:,0], pair, xyz, state, alpha_s[-1], logits_aa.permute(0,2,1), pred_lddt # # predict distogram & orientograms logits = self.c6d_pred(pair) # predict experimentally resolved or not logits_exp = self.exp_pred(msa[:,0], state) # get all intermediate bb structures xyz = einsum('rbnij,bnaj->rbnai', R, xyz[:,:,:3]-xyz[:,:,1].unsqueeze(-2)) + T.unsqueeze(-2) return logits, logits_aa, logits_exp, xyz, alpha_s, lddt
RFdiffusion-main
RoseTTAFoldModel.py
# script for diffusion protocols import torch import pickle import numpy as np import os import logging from typing import List from scipy.spatial.transform import Rotation as scipy_R from util import rigid_from_3_points from util import torsion_indices as TOR_INDICES from util import torsion_can_flip as TOR_CAN_FLIP from util import reference_angles as REF_ANGLES from util_module import ComputeAllAtomCoords from diff_util import th_min_angle, th_interpolate_angles from chemical import INIT_CRDS import igso3 import time torch.set_printoptions(sci_mode=False) def get_beta_schedule(T, b0, bT, schedule_type, schedule_params={}, inference=False): """ Given a noise schedule type, create the beta schedule """ assert schedule_type in ["linear"] # Adjust b0 and bT if T is not 200 # This is a good approximation, with the beta correction below, unless T is very small assert T >= 15, "With discrete time and T < 15, the schedule is badly approximated" b0 *= 200 / T bT *= 200 / T # linear noise schedule if schedule_type == "linear": schedule = torch.linspace(b0, bT, T) else: raise NotImplementedError(f"Schedule of type {schedule_type} not implemented.") # get alphabar_t for convenience alpha_schedule = 1 - schedule alphabar_t_schedule = torch.cumprod(alpha_schedule, dim=0) if inference: print( f"With this beta schedule ({schedule_type} schedule, beta_0 = {round(b0, 3)}, beta_T = {round(bT,3)}), alpha_bar_T = {alphabar_t_schedule[-1]}" ) return schedule, alpha_schedule, alphabar_t_schedule class EuclideanDiffuser: # class for diffusing points in 3D def __init__( self, T, b_0, b_T, schedule_type="linear", schedule_kwargs={}, ): self.T = T # make noise/beta schedule ( self.beta_schedule, self.alpha_schedule, self.alphabar_schedule, ) = get_beta_schedule(T, b_0, b_T, schedule_type, **schedule_kwargs) def diffuse_translations(self, xyz, diffusion_mask=None, var_scale=1): return self.apply_kernel_recursive(xyz, diffusion_mask, var_scale) def apply_kernel(self, x, t, diffusion_mask=None, var_scale=1): """ Applies a noising kernel to the points in x Parameters: x (torch.tensor, required): (N,3,3) set of backbone coordinates t (int, required): Which timestep noise_scale (float, required): scale for noise """ t_idx = t - 1 # bring from 1-indexed to 0-indexed assert len(x.shape) == 3 L, _, _ = x.shape # c-alpha crds ca_xyz = x[:, 1, :] b_t = self.beta_schedule[t_idx] # get the noise at timestep t mean = torch.sqrt(1 - b_t) * ca_xyz var = torch.ones(L, 3) * (b_t) * var_scale sampled_crds = torch.normal(mean, torch.sqrt(var)) delta = sampled_crds - ca_xyz if not diffusion_mask is None: delta[diffusion_mask, ...] = 0 out_crds = x + delta[:, None, :] return out_crds, delta def apply_kernel_recursive(self, xyz, diffusion_mask=None, var_scale=1): """ Repeatedly apply self.apply_kernel T times and return all crds """ bb_stack = [] T_stack = [] cur_xyz = torch.clone(xyz) for t in range(1, self.T + 1): cur_xyz, cur_T = self.apply_kernel( cur_xyz, t, var_scale=var_scale, diffusion_mask=diffusion_mask ) bb_stack.append(cur_xyz) T_stack.append(cur_T) return torch.stack(bb_stack).transpose(0, 1), torch.stack(T_stack).transpose( 0, 1 ) def write_pkl(save_path: str, pkl_data): """Serialize data into a pickle file.""" with open(save_path, "wb") as handle: pickle.dump(pkl_data, handle, protocol=pickle.HIGHEST_PROTOCOL) def read_pkl(read_path: str, verbose=False): """Read data from a pickle file.""" with open(read_path, "rb") as handle: try: return pickle.load(handle) except Exception as e: if verbose: print(f"Failed to read {read_path}") raise (e) class IGSO3: """ Class for taking in a set of backbone crds and performing IGSO3 diffusion on all of them. Unlike the diffusion on translations, much of this class is written for a scaling between an initial time t=0 and final time t=1. """ def __init__( self, *, T, min_sigma, max_sigma, min_b, max_b, cache_dir, num_omega=1000, schedule="linear", L=2000, ): """ Args: T: total number of time steps min_sigma: smallest allowed scale parameter, should be at least 0.01 to maintain numerical stability. Recommended value is 0.05. max_sigma: for exponential schedule, the largest scale parameter. Ignored for recommeded linear schedule min_b: lower value of beta in Ho schedule analogue max_b: upper value of beta in Ho schedule analogue num_omega: discretization level in the angles across [0, pi] schedule: currently only linear and exponential are supported. The exponential schedule may be noising too slowly. L: truncation level """ self._log = logging.getLogger(__name__) self.T = T self.schedule = schedule self.cache_dir = cache_dir self.min_sigma = min_sigma self.max_sigma = max_sigma if self.schedule == "linear": self.min_b = min_b self.max_b = max_b self.max_sigma = self.sigma(1.0) self.num_omega = num_omega self.num_sigma = 500 # Calculate igso3 values. self.L = L # truncation level self.igso3_vals = self._calc_igso3_vals(L=L) self.step_size = 1 / self.T def _calc_igso3_vals(self, L=2000): """_calc_igso3_vals computes numerical approximations to the relevant analytically intractable functionals of the igso3 distribution. The calculated values are cached, or loaded from cache if they already exist. Args: L: truncation level for power series expansion of the pdf. """ replace_period = lambda x: str(x).replace(".", "_") if self.schedule == "linear": cache_fname = os.path.join( self.cache_dir, f"T_{self.T}_omega_{self.num_omega}_min_sigma_{replace_period(self.min_sigma)}" + f"_min_b_{replace_period(self.min_b)}_max_b_{replace_period(self.max_b)}_schedule_{self.schedule}.pkl", ) elif self.schedule == "exponential": cache_fname = os.path.join( self.cache_dir, f"T_{self.T}_omega_{self.num_omega}_min_sigma_{replace_period(self.min_sigma)}" f"_max_sigma_{replace_period(self.max_sigma)}_schedule_{self.schedule}", ) else: raise ValueError(f"Unrecognize schedule {self.schedule}") if not os.path.isdir(self.cache_dir): os.makedirs(self.cache_dir) if os.path.exists(cache_fname): self._log.info("Using cached IGSO3.") igso3_vals = read_pkl(cache_fname) else: self._log.info("Calculating IGSO3.") igso3_vals = igso3.calculate_igso3( num_sigma=self.num_sigma, min_sigma=self.min_sigma, max_sigma=self.max_sigma, num_omega=self.num_omega, L=L, ) write_pkl(cache_fname, igso3_vals) return igso3_vals @property def discrete_sigma(self): return self.igso3_vals["discrete_sigma"] def sigma_idx(self, sigma: np.ndarray): """ Calculates the index for discretized sigma during IGSO(3) initialization.""" return np.digitize(sigma, self.discrete_sigma) - 1 def t_to_idx(self, t: np.ndarray): """ Helper function to go from discrete time index t to corresponding sigma_idx. Args: t: time index (integer between 1 and 200) """ continuous_t = t / self.T return self.sigma_idx(self.sigma(continuous_t)) def sigma(self, t: torch.tensor): """ Extract \sigma(t) corresponding to chosen sigma schedule. Args: t: torch tensor with time between 0 and 1 """ if not type(t) == torch.Tensor: t = torch.tensor(t) if torch.any(t < 0) or torch.any(t > 1): raise ValueError(f"Invalid t={t}") if self.schedule == "exponential": sigma = t * np.log10(self.max_sigma) + (1 - t) * np.log10(self.min_sigma) return 10**sigma elif self.schedule == "linear": # Variance exploding analogue of Ho schedule # add self.min_sigma for stability return ( self.min_sigma + t * self.min_b + (1 / 2) * (t**2) * (self.max_b - self.min_b) ) else: raise ValueError(f"Unrecognize schedule {self.schedule}") def g(self, t): """ g returns the drift coefficient at time t since sigma(t)^2 := \int_0^t g(s)^2 ds, for arbitrary sigma(t) we invert this relationship to compute g(t) = sqrt(d/dt sigma(t)^2). Args: t: scalar time between 0 and 1 Returns: drift cooeficient as a scalar. """ t = torch.tensor(t, requires_grad=True) sigma_sqr = self.sigma(t) ** 2 grads = torch.autograd.grad(sigma_sqr.sum(), t)[0] return torch.sqrt(grads) def sample(self, ts, n_samples=1): """ sample uses the inverse cdf to sample an angle of rotation from IGSO(3) Args: ts: array of integer time steps to sample from. n_samples: number of samples to draw. Returns: sampled angles of rotation. [len(ts), N] """ assert sum(ts == 0) == 0, "assumes one-indexed, not zero indexed" all_samples = [] for t in ts: sigma_idx = self.t_to_idx(t) sample_i = np.interp( np.random.rand(n_samples), self.igso3_vals["cdf"][sigma_idx], self.igso3_vals["discrete_omega"], ) # [N, 1] all_samples.append(sample_i) return np.stack(all_samples, axis=0) def sample_vec(self, ts, n_samples=1): """sample_vec generates a rotation vector(s) from IGSO(3) at time steps ts. Return: Sampled vector of shape [len(ts), N, 3] """ x = np.random.randn(len(ts), n_samples, 3) x /= np.linalg.norm(x, axis=-1, keepdims=True) return x * self.sample(ts, n_samples=n_samples)[..., None] def score_norm(self, t, omega): """ score_norm computes the score norm based on the time step and angle Args: t: integer time step omega: angles (scalar or shape [N]) Return: score_norm with same shape as omega """ sigma_idx = self.t_to_idx(t) score_norm_t = np.interp( omega, self.igso3_vals["discrete_omega"], self.igso3_vals["score_norm"][sigma_idx], ) return score_norm_t def score_vec(self, ts, vec): """score_vec computes the score of the IGSO(3) density as a rotation vector. This score vector is in the direction of the sampled vector, and has magnitude given by score_norms. In particular, Rt @ hat(score_vec(ts, vec)) is what is referred to as the score approximation in Algorithm 1 Args: ts: times of shape [T] vec: where to compute the score of shape [T, N, 3] Returns: score vectors of shape [T, N, 3] """ omega = np.linalg.norm(vec, axis=-1) all_score_norm = [] for i, t in enumerate(ts): omega_t = omega[i] t_idx = t - 1 sigma_idx = self.t_to_idx(t) score_norm_t = np.interp( omega_t, self.igso3_vals["discrete_omega"], self.igso3_vals["score_norm"][sigma_idx], )[:, None] all_score_norm.append(score_norm_t) score_norm = np.stack(all_score_norm, axis=0) return score_norm * vec / omega[..., None] def exp_score_norm(self, ts): """exp_score_norm returns the expected value of norm of the score for IGSO(3) with time parameter ts of shape [T]. """ sigma_idcs = [self.t_to_idx(t) for t in ts] return self.igso3_vals["exp_score_norms"][sigma_idcs] def diffuse_frames(self, xyz, t_list, diffusion_mask=None): """diffuse_frames samples from the IGSO(3) distribution to noise frames Parameters: xyz (np.array or torch.tensor, required): (L,3,3) set of backbone coordinates mask (np.array or torch.tensor, required): (L,) set of bools. True/1 is NOT diffused, False/0 IS diffused Returns: np.array : N/CA/C coordinates for each residue (T,L,3,3), where T is num timesteps """ if torch.is_tensor(xyz): xyz = xyz.numpy() t = np.arange(self.T) + 1 # 1-indexed!! num_res = len(xyz) N = torch.from_numpy(xyz[None, :, 0, :]) Ca = torch.from_numpy(xyz[None, :, 1, :]) # [1, num_res, 3, 3] C = torch.from_numpy(xyz[None, :, 2, :]) # scipy rotation object for true coordinates R_true, Ca = rigid_from_3_points(N, Ca, C) R_true = R_true[0] Ca = Ca[0] # Sample rotations and scores from IGSO3 sampled_rots = self.sample_vec(t, n_samples=num_res) # [T, N, 3] if diffusion_mask is not None: non_diffusion_mask = 1 - diffusion_mask[None, :, None] sampled_rots = sampled_rots * non_diffusion_mask # Apply sampled rot. R_sampled = ( scipy_R.from_rotvec(sampled_rots.reshape(-1, 3)) .as_matrix() .reshape(self.T, num_res, 3, 3) ) R_perturbed = np.einsum("tnij,njk->tnik", R_sampled, R_true) perturbed_crds = ( np.einsum( "tnij,naj->tnai", R_sampled, xyz[:, :3, :] - Ca[:, None, ...].numpy() ) + Ca[None, :, None].numpy() ) if t_list != None: idx = [i - 1 for i in t_list] perturbed_crds = perturbed_crds[idx] R_perturbed = R_perturbed[idx] return ( perturbed_crds.transpose(1, 0, 2, 3), # [L, T, 3, 3] R_perturbed.transpose(1, 0, 2, 3), ) def reverse_sample_vectorized( self, R_t, R_0, t, noise_level, mask=None, return_perturb=False ): """reverse_sample uses an approximation to the IGSO3 score to sample a rotation at the previous time step. Roughly - this update follows the reverse time SDE for Reimannian manifolds proposed by de Bortoli et al. Theorem 1 [1]. But with an approximation to the score based on the prediction of R0. Unlike in reference [1], this diffusion on SO(3) relies on geometric variance schedule. Specifically we follow [2] (appendix C) and assume sigma_t = sigma_min * (sigma_max / sigma_min)^{t/T}, for time step t. When we view this as a discretization of the SDE from time 0 to 1 with step size (1/T). Following Eq. 5 and Eq. 6, this maps on to the forward time SDEs dx = g(t) dBt [FORWARD] and dx = g(t)^2 score(xt, t)dt + g(t) B't, [REVERSE] where g(t) = sigma_t * sqrt(2 * log(sigma_max/ sigma_min)), and Bt and B't are Brownian motions. The formula for g(t) obtains from equation 9 of [2], from which this sampling function may be generalized to alternative noising schedules. Args: R_t: noisy rotation of shape [N, 3, 3] R_0: prediction of un-noised rotation t: integer time step noise_level: scaling on the noise added when obtaining sample (preliminary performance seems empirically better with noise level=0.5) mask: whether the residue is to be updated. A value of 1 means the rotation is not updated from r_t. A value of 0 means the rotation is updated. Return: sampled rotation matrix for time t-1 of shape [3, 3] Reference: [1] De Bortoli, V., Mathieu, E., Hutchinson, M., Thornton, J., Teh, Y. W., & Doucet, A. (2022). Riemannian score-based generative modeling. arXiv preprint arXiv:2202.02763. [2] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456. """ # compute rotation vector corresponding to prediction of how r_t goes to r_0 R_0, R_t = torch.tensor(R_0), torch.tensor(R_t) R_0t = torch.einsum("...ij,...kj->...ik", R_t, R_0) R_0t_rotvec = torch.tensor( scipy_R.from_matrix(R_0t.cpu().numpy()).as_rotvec() ).to(R_0.device) # Approximate the score based on the prediction of R0. # R_t @ hat(Score_approx) is the score approximation in the Lie algebra # SO(3) (i.e. the output of Algorithm 1) Omega = torch.linalg.norm(R_0t_rotvec, axis=-1).numpy() Score_approx = R_0t_rotvec * (self.score_norm(t, Omega) / Omega)[:, None] # Compute scaling for score and sampled noise (following Eq 6 of [2]) continuous_t = t / self.T rot_g = self.g(continuous_t).to(Score_approx.device) # Sample and scale noise to add to the rotation perturbation in the # SO(3) tangent space. Since IG-SO(3) is the Brownian motion on SO(3) # (up to a deceleration of time by a factor of two), for small enough # time-steps, this is equivalent to perturbing r_t with IG-SO(3) noise. # See e.g. Algorithm 1 of De Bortoli et al. Z = np.random.normal(size=(R_0.shape[0], 3)) Z = torch.from_numpy(Z).to(Score_approx.device) Z *= noise_level Delta_r = (rot_g**2) * self.step_size * Score_approx # Sample perturbation from discretized SDE (following eq. 6 of [2]), # This approximate sampling from IGSO3(* ; Delta_r, rot_g^2 * # self.step_size) with tangent Gaussian. Perturb_tangent = Delta_r + rot_g * np.sqrt(self.step_size) * Z if mask is not None: Perturb_tangent *= (1 - mask.long())[:, None, None] Perturb = igso3.Exp(Perturb_tangent) if return_perturb: return Perturb Interp_rot = torch.einsum("...ij,...jk->...ik", Perturb, R_t) return Interp_rot class Diffuser: # wrapper for yielding diffused coordinates def __init__( self, T, b_0, b_T, min_sigma, max_sigma, min_b, max_b, schedule_type, so3_schedule_type, so3_type, crd_scale, schedule_kwargs={}, var_scale=1.0, cache_dir=".", partial_T=None, truncation_level=2000, ): """ Parameters: T (int, required): Number of steps in the schedule b_0 (float, required): Starting variance for Euclidean schedule b_T (float, required): Ending variance for Euclidean schedule """ self.T = T self.b_0 = b_0 self.b_T = b_T self.min_sigma = min_sigma self.max_sigma = max_sigma self.crd_scale = crd_scale self.var_scale = var_scale self.cache_dir = cache_dir # get backbone frame diffuser self.so3_diffuser = IGSO3( T=self.T, min_sigma=self.min_sigma, max_sigma=self.max_sigma, schedule=so3_schedule_type, min_b=min_b, max_b=max_b, cache_dir=self.cache_dir, L=truncation_level, ) # get backbone translation diffuser self.eucl_diffuser = EuclideanDiffuser( self.T, b_0, b_T, schedule_type=schedule_type, **schedule_kwargs ) print("Successful diffuser __init__") def diffuse_pose( self, xyz, seq, atom_mask, include_motif_sidechains=True, diffusion_mask=None, t_list=None, ): """ Given full atom xyz, sequence and atom mask, diffuse the protein frame translations and rotations Parameters: xyz (L,14/27,3) set of coordinates seq (L,) integer sequence atom_mask: mask describing presence/absence of an atom in pdb diffusion_mask (torch.tensor, optional): Tensor of bools, True means NOT diffused at this residue, False means diffused t_list (list, optional): If present, only return the diffused coordinates at timesteps t within the list """ if diffusion_mask is None: diffusion_mask = torch.zeros(len(xyz.squeeze())).to(dtype=bool) get_allatom = ComputeAllAtomCoords().to(device=xyz.device) L = len(xyz) # bring to origin and scale # check if any BB atoms are nan before centering nan_mask = ~torch.isnan(xyz.squeeze()[:, :3]).any(dim=-1).any(dim=-1) assert torch.sum(~nan_mask) == 0 # Centre unmasked structure at origin, as in training (to prevent information leak) if torch.sum(diffusion_mask) != 0: self.motif_com = xyz[diffusion_mask, 1, :].mean( dim=0 ) # This is needed for one of the potentials xyz = xyz - self.motif_com elif torch.sum(diffusion_mask) == 0: xyz = xyz - xyz[:, 1, :].mean(dim=0) xyz_true = torch.clone(xyz) xyz = xyz * self.crd_scale # 1 get translations tick = time.time() diffused_T, deltas = self.eucl_diffuser.diffuse_translations( xyz[:, :3, :].clone(), diffusion_mask=diffusion_mask ) # print('Time to diffuse coordinates: ',time.time()-tick) diffused_T /= self.crd_scale deltas /= self.crd_scale # 2 get frames tick = time.time() diffused_frame_crds, diffused_frames = self.so3_diffuser.diffuse_frames( xyz[:, :3, :].clone(), diffusion_mask=diffusion_mask.numpy(), t_list=None ) diffused_frame_crds /= self.crd_scale # print('Time to diffuse frames: ',time.time()-tick) ##### Now combine all the diffused quantities to make full atom diffused poses tick = time.time() cum_delta = deltas.cumsum(dim=1) # The coordinates of the translated AND rotated frames diffused_BB = ( torch.from_numpy(diffused_frame_crds) + cum_delta[:, :, None, :] ).transpose( 0, 1 ) # [n,L,3,3] # diffused_BB = torch.from_numpy(diffused_frame_crds).transpose(0,1) # diffused_BB is [t_steps,L,3,3] t_steps, L = diffused_BB.shape[:2] diffused_fa = torch.zeros(t_steps, L, 27, 3) diffused_fa[:, :, :3, :] = diffused_BB # Add in sidechains from motif if include_motif_sidechains: diffused_fa[:, diffusion_mask, :14, :] = xyz_true[None, diffusion_mask, :14] if t_list is None: fa_stack = diffused_fa else: t_idx_list = [t - 1 for t in t_list] fa_stack = diffused_fa[t_idx_list] return fa_stack, xyz_true
RFdiffusion-main
diffusion.py
import torch import torch.nn as nn import torch.nn.functional as F from opt_einsum import contract as einsum import torch.utils.checkpoint as checkpoint from util import cross_product_matrix from util_module import * from Attention_module import * from SE3_network import SE3TransformerWrapper # Components for three-track blocks # 1. MSA -> MSA update (biased attention. bias from pair & structure) # 2. Pair -> Pair update (biased attention. bias from structure) # 3. MSA -> Pair update (extract coevolution signal) # 4. Str -> Str update (node from MSA, edge from Pair) # Update MSA with biased self-attention. bias from Pair & Str class MSAPairStr2MSA(nn.Module): def __init__(self, d_msa=256, d_pair=128, n_head=8, d_state=16, d_hidden=32, p_drop=0.15, use_global_attn=False): super(MSAPairStr2MSA, self).__init__() self.norm_pair = nn.LayerNorm(d_pair) self.proj_pair = nn.Linear(d_pair+36, d_pair) self.norm_state = nn.LayerNorm(d_state) self.proj_state = nn.Linear(d_state, d_msa) self.drop_row = Dropout(broadcast_dim=1, p_drop=p_drop) self.row_attn = MSARowAttentionWithBias(d_msa=d_msa, d_pair=d_pair, n_head=n_head, d_hidden=d_hidden) if use_global_attn: self.col_attn = MSAColGlobalAttention(d_msa=d_msa, n_head=n_head, d_hidden=d_hidden) else: self.col_attn = MSAColAttention(d_msa=d_msa, n_head=n_head, d_hidden=d_hidden) self.ff = FeedForwardLayer(d_msa, 4, p_drop=p_drop) # Do proper initialization self.reset_parameter() def reset_parameter(self): # initialize weights to normal distrib self.proj_pair = init_lecun_normal(self.proj_pair) self.proj_state = init_lecun_normal(self.proj_state) # initialize bias to zeros nn.init.zeros_(self.proj_pair.bias) nn.init.zeros_(self.proj_state.bias) def forward(self, msa, pair, rbf_feat, state): ''' Inputs: - msa: MSA feature (B, N, L, d_msa) - pair: Pair feature (B, L, L, d_pair) - rbf_feat: Ca-Ca distance feature calculated from xyz coordinates (B, L, L, 36) - xyz: xyz coordinates (B, L, n_atom, 3) - state: updated node features after SE(3)-Transformer layer (B, L, d_state) Output: - msa: Updated MSA feature (B, N, L, d_msa) ''' B, N, L = msa.shape[:3] # prepare input bias feature by combining pair & coordinate info pair = self.norm_pair(pair) pair = torch.cat((pair, rbf_feat), dim=-1) pair = self.proj_pair(pair) # (B, L, L, d_pair) # # update query sequence feature (first sequence in the MSA) with feedbacks (state) from SE3 state = self.norm_state(state) state = self.proj_state(state).reshape(B, 1, L, -1) msa = msa.index_add(1, torch.tensor([0,], device=state.device), state) # # Apply row/column attention to msa & transform msa = msa + self.drop_row(self.row_attn(msa, pair)) msa = msa + self.col_attn(msa) msa = msa + self.ff(msa) return msa class PairStr2Pair(nn.Module): def __init__(self, d_pair=128, n_head=4, d_hidden=32, d_rbf=36, p_drop=0.15): super(PairStr2Pair, self).__init__() self.emb_rbf = nn.Linear(d_rbf, d_hidden) self.proj_rbf = nn.Linear(d_hidden, d_pair) self.drop_row = Dropout(broadcast_dim=1, p_drop=p_drop) self.drop_col = Dropout(broadcast_dim=2, p_drop=p_drop) self.row_attn = BiasedAxialAttention(d_pair, d_pair, n_head, d_hidden, p_drop=p_drop, is_row=True) self.col_attn = BiasedAxialAttention(d_pair, d_pair, n_head, d_hidden, p_drop=p_drop, is_row=False) self.ff = FeedForwardLayer(d_pair, 2) self.reset_parameter() def reset_parameter(self): nn.init.kaiming_normal_(self.emb_rbf.weight, nonlinearity='relu') nn.init.zeros_(self.emb_rbf.bias) self.proj_rbf = init_lecun_normal(self.proj_rbf) nn.init.zeros_(self.proj_rbf.bias) def forward(self, pair, rbf_feat): B, L = pair.shape[:2] rbf_feat = self.proj_rbf(F.relu_(self.emb_rbf(rbf_feat))) pair = pair + self.drop_row(self.row_attn(pair, rbf_feat)) pair = pair + self.drop_col(self.col_attn(pair, rbf_feat)) pair = pair + self.ff(pair) return pair class MSA2Pair(nn.Module): def __init__(self, d_msa=256, d_pair=128, d_hidden=32, p_drop=0.15): super(MSA2Pair, self).__init__() self.norm = nn.LayerNorm(d_msa) self.proj_left = nn.Linear(d_msa, d_hidden) self.proj_right = nn.Linear(d_msa, d_hidden) self.proj_out = nn.Linear(d_hidden*d_hidden, d_pair) self.reset_parameter() def reset_parameter(self): # normal initialization self.proj_left = init_lecun_normal(self.proj_left) self.proj_right = init_lecun_normal(self.proj_right) nn.init.zeros_(self.proj_left.bias) nn.init.zeros_(self.proj_right.bias) # zero initialize output nn.init.zeros_(self.proj_out.weight) nn.init.zeros_(self.proj_out.bias) def forward(self, msa, pair): B, N, L = msa.shape[:3] msa = self.norm(msa) left = self.proj_left(msa) right = self.proj_right(msa) right = right / float(N) out = einsum('bsli,bsmj->blmij', left, right).reshape(B, L, L, -1) out = self.proj_out(out) pair = pair + out return pair class SCPred(nn.Module): def __init__(self, d_msa=256, d_state=32, d_hidden=128, p_drop=0.15): super(SCPred, self).__init__() self.norm_s0 = nn.LayerNorm(d_msa) self.norm_si = nn.LayerNorm(d_state) self.linear_s0 = nn.Linear(d_msa, d_hidden) self.linear_si = nn.Linear(d_state, d_hidden) # ResNet layers self.linear_1 = nn.Linear(d_hidden, d_hidden) self.linear_2 = nn.Linear(d_hidden, d_hidden) self.linear_3 = nn.Linear(d_hidden, d_hidden) self.linear_4 = nn.Linear(d_hidden, d_hidden) # Final outputs self.linear_out = nn.Linear(d_hidden, 20) self.reset_parameter() def reset_parameter(self): # normal initialization self.linear_s0 = init_lecun_normal(self.linear_s0) self.linear_si = init_lecun_normal(self.linear_si) self.linear_out = init_lecun_normal(self.linear_out) nn.init.zeros_(self.linear_s0.bias) nn.init.zeros_(self.linear_si.bias) nn.init.zeros_(self.linear_out.bias) # right before relu activation: He initializer (kaiming normal) nn.init.kaiming_normal_(self.linear_1.weight, nonlinearity='relu') nn.init.zeros_(self.linear_1.bias) nn.init.kaiming_normal_(self.linear_3.weight, nonlinearity='relu') nn.init.zeros_(self.linear_3.bias) # right before residual connection: zero initialize nn.init.zeros_(self.linear_2.weight) nn.init.zeros_(self.linear_2.bias) nn.init.zeros_(self.linear_4.weight) nn.init.zeros_(self.linear_4.bias) def forward(self, seq, state): ''' Predict side-chain torsion angles along with backbone torsions Inputs: - seq: hidden embeddings corresponding to query sequence (B, L, d_msa) - state: state feature (output l0 feature) from previous SE3 layer (B, L, d_state) Outputs: - si: predicted torsion angles (phi, psi, omega, chi1~4 with cos/sin, Cb bend, Cb twist, CG) (B, L, 10, 2) ''' B, L = seq.shape[:2] seq = self.norm_s0(seq) state = self.norm_si(state) si = self.linear_s0(seq) + self.linear_si(state) si = si + self.linear_2(F.relu_(self.linear_1(F.relu_(si)))) si = si + self.linear_4(F.relu_(self.linear_3(F.relu_(si)))) si = self.linear_out(F.relu_(si)) return si.view(B, L, 10, 2) class Str2Str(nn.Module): def __init__(self, d_msa=256, d_pair=128, d_state=16, SE3_param={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}, p_drop=0.1): super(Str2Str, self).__init__() # initial node & pair feature process self.norm_msa = nn.LayerNorm(d_msa) self.norm_pair = nn.LayerNorm(d_pair) self.norm_state = nn.LayerNorm(d_state) self.embed_x = nn.Linear(d_msa+d_state, SE3_param['l0_in_features']) self.embed_e1 = nn.Linear(d_pair, SE3_param['num_edge_features']) self.embed_e2 = nn.Linear(SE3_param['num_edge_features']+36+1, SE3_param['num_edge_features']) self.norm_node = nn.LayerNorm(SE3_param['l0_in_features']) self.norm_edge1 = nn.LayerNorm(SE3_param['num_edge_features']) self.norm_edge2 = nn.LayerNorm(SE3_param['num_edge_features']) self.se3 = SE3TransformerWrapper(**SE3_param) self.sc_predictor = SCPred(d_msa=d_msa, d_state=SE3_param['l0_out_features'], p_drop=p_drop) self.reset_parameter() def reset_parameter(self): # initialize weights to normal distribution self.embed_x = init_lecun_normal(self.embed_x) self.embed_e1 = init_lecun_normal(self.embed_e1) self.embed_e2 = init_lecun_normal(self.embed_e2) # initialize bias to zeros nn.init.zeros_(self.embed_x.bias) nn.init.zeros_(self.embed_e1.bias) nn.init.zeros_(self.embed_e2.bias) @torch.cuda.amp.autocast(enabled=False) def forward(self, msa, pair, R_in, T_in, xyz, state, idx, motif_mask, top_k=64, eps=1e-5): B, N, L = msa.shape[:3] if motif_mask is None: motif_mask = torch.zeros(L).bool() # process msa & pair features node = self.norm_msa(msa[:,0]) pair = self.norm_pair(pair) state = self.norm_state(state) node = torch.cat((node, state), dim=-1) node = self.norm_node(self.embed_x(node)) pair = self.norm_edge1(self.embed_e1(pair)) neighbor = get_seqsep(idx) rbf_feat = rbf(torch.cdist(xyz[:,:,1], xyz[:,:,1])) pair = torch.cat((pair, rbf_feat, neighbor), dim=-1) pair = self.norm_edge2(self.embed_e2(pair)) # define graph if top_k != 0: G, edge_feats = make_topk_graph(xyz[:,:,1,:], pair, idx, top_k=top_k) else: G, edge_feats = make_full_graph(xyz[:,:,1,:], pair, idx, top_k=top_k) l1_feats = xyz - xyz[:,:,1,:].unsqueeze(2) l1_feats = l1_feats.reshape(B*L, -1, 3) # apply SE(3) Transformer & update coordinates shift = self.se3(G, node.reshape(B*L, -1, 1), l1_feats, edge_feats) state = shift['0'].reshape(B, L, -1) # (B, L, C) offset = shift['1'].reshape(B, L, 2, 3) offset[:,motif_mask,...] = 0 # NOTE: motif mask is all zeros if not freeezing the motif delTi = offset[:,:,0,:] / 10.0 # translation R = offset[:,:,1,:] / 100.0 # rotation Qnorm = torch.sqrt( 1 + torch.sum(R*R, dim=-1) ) qA, qB, qC, qD = 1/Qnorm, R[:,:,0]/Qnorm, R[:,:,1]/Qnorm, R[:,:,2]/Qnorm delRi = torch.zeros((B,L,3,3), device=xyz.device) delRi[:,:,0,0] = qA*qA+qB*qB-qC*qC-qD*qD delRi[:,:,0,1] = 2*qB*qC - 2*qA*qD delRi[:,:,0,2] = 2*qB*qD + 2*qA*qC delRi[:,:,1,0] = 2*qB*qC + 2*qA*qD delRi[:,:,1,1] = qA*qA-qB*qB+qC*qC-qD*qD delRi[:,:,1,2] = 2*qC*qD - 2*qA*qB delRi[:,:,2,0] = 2*qB*qD - 2*qA*qC delRi[:,:,2,1] = 2*qC*qD + 2*qA*qB delRi[:,:,2,2] = qA*qA-qB*qB-qC*qC+qD*qD Ri = einsum('bnij,bnjk->bnik', delRi, R_in) Ti = delTi + T_in #einsum('bnij,bnj->bni', delRi, T_in) + delTi alpha = self.sc_predictor(msa[:,0], state) return Ri, Ti, state, alpha class IterBlock(nn.Module): def __init__(self, d_msa=256, d_pair=128, n_head_msa=8, n_head_pair=4, use_global_attn=False, d_hidden=32, d_hidden_msa=None, p_drop=0.15, SE3_param={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}): super(IterBlock, self).__init__() if d_hidden_msa == None: d_hidden_msa = d_hidden self.msa2msa = MSAPairStr2MSA(d_msa=d_msa, d_pair=d_pair, n_head=n_head_msa, d_state=SE3_param['l0_out_features'], use_global_attn=use_global_attn, d_hidden=d_hidden_msa, p_drop=p_drop) self.msa2pair = MSA2Pair(d_msa=d_msa, d_pair=d_pair, d_hidden=d_hidden//2, p_drop=p_drop) #d_hidden=d_hidden, p_drop=p_drop) self.pair2pair = PairStr2Pair(d_pair=d_pair, n_head=n_head_pair, d_hidden=d_hidden, p_drop=p_drop) self.str2str = Str2Str(d_msa=d_msa, d_pair=d_pair, d_state=SE3_param['l0_out_features'], SE3_param=SE3_param, p_drop=p_drop) def forward(self, msa, pair, R_in, T_in, xyz, state, idx, motif_mask, use_checkpoint=False): rbf_feat = rbf(torch.cdist(xyz[:,:,1,:], xyz[:,:,1,:])) if use_checkpoint: msa = checkpoint.checkpoint(create_custom_forward(self.msa2msa), msa, pair, rbf_feat, state) pair = checkpoint.checkpoint(create_custom_forward(self.msa2pair), msa, pair) pair = checkpoint.checkpoint(create_custom_forward(self.pair2pair), pair, rbf_feat) R, T, state, alpha = checkpoint.checkpoint(create_custom_forward(self.str2str, top_k=0), msa, pair, R_in, T_in, xyz, state, idx, motif_mask) else: msa = self.msa2msa(msa, pair, rbf_feat, state) pair = self.msa2pair(msa, pair) pair = self.pair2pair(pair, rbf_feat) R, T, state, alpha = self.str2str(msa, pair, R_in, T_in, xyz, state, idx, motif_mask=motif_mask, top_k=0) return msa, pair, R, T, state, alpha class IterativeSimulator(nn.Module): def __init__(self, n_extra_block=4, n_main_block=12, n_ref_block=4, d_msa=256, d_msa_full=64, d_pair=128, d_hidden=32, n_head_msa=8, n_head_pair=4, SE3_param_full={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}, SE3_param_topk={'l0_in_features':32, 'l0_out_features':16, 'num_edge_features':32}, p_drop=0.15): super(IterativeSimulator, self).__init__() self.n_extra_block = n_extra_block self.n_main_block = n_main_block self.n_ref_block = n_ref_block self.proj_state = nn.Linear(SE3_param_topk['l0_out_features'], SE3_param_full['l0_out_features']) # Update with extra sequences if n_extra_block > 0: self.extra_block = nn.ModuleList([IterBlock(d_msa=d_msa_full, d_pair=d_pair, n_head_msa=n_head_msa, n_head_pair=n_head_pair, d_hidden_msa=8, d_hidden=d_hidden, p_drop=p_drop, use_global_attn=True, SE3_param=SE3_param_full) for i in range(n_extra_block)]) # Update with seed sequences if n_main_block > 0: self.main_block = nn.ModuleList([IterBlock(d_msa=d_msa, d_pair=d_pair, n_head_msa=n_head_msa, n_head_pair=n_head_pair, d_hidden=d_hidden, p_drop=p_drop, use_global_attn=False, SE3_param=SE3_param_full) for i in range(n_main_block)]) self.proj_state2 = nn.Linear(SE3_param_full['l0_out_features'], SE3_param_topk['l0_out_features']) # Final SE(3) refinement if n_ref_block > 0: self.str_refiner = Str2Str(d_msa=d_msa, d_pair=d_pair, d_state=SE3_param_topk['l0_out_features'], SE3_param=SE3_param_topk, p_drop=p_drop) self.reset_parameter() def reset_parameter(self): self.proj_state = init_lecun_normal(self.proj_state) nn.init.zeros_(self.proj_state.bias) self.proj_state2 = init_lecun_normal(self.proj_state2) nn.init.zeros_(self.proj_state2.bias) def forward(self, seq, msa, msa_full, pair, xyz_in, state, idx, use_checkpoint=False, motif_mask=None): """ input: seq: query sequence (B, L) msa: seed MSA embeddings (B, N, L, d_msa) msa_full: extra MSA embeddings (B, N, L, d_msa_full) pair: initial residue pair embeddings (B, L, L, d_pair) xyz_in: initial BB coordinates (B, L, n_atom, 3) state: initial state features containing mixture of query seq, sidechain, accuracy info (B, L, d_state) idx: residue index motif_mask: bool tensor, True if motif position that is frozen, else False(L,) """ B, L = pair.shape[:2] if motif_mask is None: motif_mask = torch.zeros(L).bool() R_in = torch.eye(3, device=xyz_in.device).reshape(1,1,3,3).expand(B, L, -1, -1) T_in = xyz_in[:,:,1].clone() xyz_in = xyz_in - T_in.unsqueeze(-2) state = self.proj_state(state) R_s = list() T_s = list() alpha_s = list() for i_m in range(self.n_extra_block): R_in = R_in.detach() # detach rotation (for stability) T_in = T_in.detach() # Get current BB structure xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2) msa_full, pair, R_in, T_in, state, alpha = self.extra_block[i_m](msa_full, pair, R_in, T_in, xyz, state, idx, motif_mask=motif_mask, use_checkpoint=use_checkpoint) R_s.append(R_in) T_s.append(T_in) alpha_s.append(alpha) for i_m in range(self.n_main_block): R_in = R_in.detach() T_in = T_in.detach() # Get current BB structure xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2) msa, pair, R_in, T_in, state, alpha = self.main_block[i_m](msa, pair, R_in, T_in, xyz, state, idx, motif_mask=motif_mask, use_checkpoint=use_checkpoint) R_s.append(R_in) T_s.append(T_in) alpha_s.append(alpha) state = self.proj_state2(state) for i_m in range(self.n_ref_block): R_in = R_in.detach() T_in = T_in.detach() xyz = einsum('bnij,bnaj->bnai', R_in, xyz_in) + T_in.unsqueeze(-2) R_in, T_in, state, alpha = self.str_refiner(msa, pair, R_in, T_in, xyz, state, idx, top_k=64, motif_mask=motif_mask) R_s.append(R_in) T_s.append(T_in) alpha_s.append(alpha) R_s = torch.stack(R_s, dim=0) T_s = torch.stack(T_s, dim=0) alpha_s = torch.stack(alpha_s, dim=0) return msa, pair, R_s, T_s, alpha_s, state
RFdiffusion-main
Track_module.py
import numpy as np import torch from chemical import INIT_CRDS PARAMS = { "DMIN" : 2.0, "DMAX" : 20.0, "DBINS" : 36, "ABINS" : 36, } # ============================================================ def get_pair_dist(a, b): """calculate pair distances between two sets of points Parameters ---------- a,b : pytorch tensors of shape [batch,nres,3] store Cartesian coordinates of two sets of atoms Returns ------- dist : pytorch tensor of shape [batch,nres,nres] stores paitwise distances between atoms in a and b """ dist = torch.cdist(a, b, p=2) return dist # ============================================================ def get_ang(a, b, c): """calculate planar angles for all consecutive triples (a[i],b[i],c[i]) from Cartesian coordinates of three sets of atoms a,b,c Parameters ---------- a,b,c : pytorch tensors of shape [batch,nres,3] store Cartesian coordinates of three sets of atoms Returns ------- ang : pytorch tensor of shape [batch,nres] stores resulting planar angles """ v = a - b w = c - b v /= torch.norm(v, dim=-1, keepdim=True) w /= torch.norm(w, dim=-1, keepdim=True) vw = torch.sum(v*w, dim=-1) return torch.acos(vw) # ============================================================ def get_dih(a, b, c, d): """calculate dihedral angles for all consecutive quadruples (a[i],b[i],c[i],d[i]) given Cartesian coordinates of four sets of atoms a,b,c,d Parameters ---------- a,b,c,d : pytorch tensors of shape [batch,nres,3] store Cartesian coordinates of four sets of atoms Returns ------- dih : pytorch tensor of shape [batch,nres] stores resulting dihedrals """ b0 = a - b b1 = c - b b2 = d - c b1 /= torch.norm(b1, dim=-1, keepdim=True) v = b0 - torch.sum(b0*b1, dim=-1, keepdim=True)*b1 w = b2 - torch.sum(b2*b1, dim=-1, keepdim=True)*b1 x = torch.sum(v*w, dim=-1) y = torch.sum(torch.cross(b1,v,dim=-1)*w, dim=-1) return torch.atan2(y, x) def get_Cb(xyz): '''recreate Cb given N,Ca,C''' N = xyz[...,0,:] Ca = xyz[...,1,:] C = xyz[...,2,:] b = Ca - N c = C - Ca a = torch.cross(b, c, dim=-1) return -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca # ============================================================ def xyz_to_c6d(xyz, params=PARAMS): """convert cartesian coordinates into 2d distance and orientation maps Parameters ---------- xyz : pytorch tensor of shape [batch,nres,3,3] stores Cartesian coordinates of backbone N,Ca,C atoms Returns ------- c6d : pytorch tensor of shape [batch,nres,nres,4] stores stacked dist,omega,theta,phi 2D maps """ batch = xyz.shape[0] nres = xyz.shape[1] # three anchor atoms N = xyz[:,:,0] Ca = xyz[:,:,1] C = xyz[:,:,2] Cb = get_Cb(xyz) # 6d coordinates order: (dist,omega,theta,phi) c6d = torch.zeros([batch,nres,nres,4],dtype=xyz.dtype,device=xyz.device) dist = get_pair_dist(Cb,Cb) dist[torch.isnan(dist)] = 999.9 c6d[...,0] = dist + 999.9*torch.eye(nres,device=xyz.device)[None,...] b,i,j = torch.where(c6d[...,0]<params['DMAX']) c6d[b,i,j,torch.full_like(b,1)] = get_dih(Ca[b,i], Cb[b,i], Cb[b,j], Ca[b,j]) c6d[b,i,j,torch.full_like(b,2)] = get_dih(N[b,i], Ca[b,i], Cb[b,i], Cb[b,j]) c6d[b,i,j,torch.full_like(b,3)] = get_ang(Ca[b,i], Cb[b,i], Cb[b,j]) # fix long-range distances c6d[...,0][c6d[...,0]>=params['DMAX']] = 999.9 mask = torch.zeros((batch, nres,nres), dtype=xyz.dtype, device=xyz.device) mask[b,i,j] = 1.0 return c6d, mask def xyz_to_t2d(xyz_t, params=PARAMS): """convert template cartesian coordinates into 2d distance and orientation maps Parameters ---------- xyz_t : pytorch tensor of shape [batch,templ,nres,3,3] stores Cartesian coordinates of template backbone N,Ca,C atoms Returns ------- t2d : pytorch tensor of shape [batch,nres,nres,37+6+3] stores stacked dist,omega,theta,phi 2D maps """ B, T, L = xyz_t.shape[:3] c6d, mask = xyz_to_c6d(xyz_t[:,:,:,:3].view(B*T,L,3,3), params=params) c6d = c6d.view(B, T, L, L, 4) mask = mask.view(B, T, L, L, 1) # # dist to one-hot encoded dist = dist_to_onehot(c6d[...,0], params) orien = torch.cat((torch.sin(c6d[...,1:]), torch.cos(c6d[...,1:])), dim=-1)*mask # (B, T, L, L, 6) # mask = ~torch.isnan(c6d[:,:,:,:,0]) # (B, T, L, L) t2d = torch.cat((dist, orien, mask.unsqueeze(-1)), dim=-1) t2d[torch.isnan(t2d)] = 0.0 return t2d def xyz_to_chi1(xyz_t): '''convert template cartesian coordinates into chi1 angles Parameters ---------- xyz_t: pytorch tensor of shape [batch, templ, nres, 14, 3] stores Cartesian coordinates of template atoms. For missing atoms, it should be NaN Returns ------- chi1 : pytorch tensor of shape [batch, templ, nres, 2] stores cos and sin chi1 angle ''' B, T, L = xyz_t.shape[:3] xyz_t = xyz_t.reshape(B*T, L, 14, 3) # chi1 angle: N, CA, CB, CG chi1 = get_dih(xyz_t[:,:,0], xyz_t[:,:,1], xyz_t[:,:,4], xyz_t[:,:,5]) # (B*T, L) cos_chi1 = torch.cos(chi1) sin_chi1 = torch.sin(chi1) mask_chi1 = ~torch.isnan(chi1) chi1 = torch.stack((cos_chi1, sin_chi1, mask_chi1), dim=-1) # (B*T, L, 3) chi1[torch.isnan(chi1)] = 0.0 chi1 = chi1.reshape(B, T, L, 3) return chi1 def xyz_to_bbtor(xyz, params=PARAMS): batch = xyz.shape[0] nres = xyz.shape[1] # three anchor atoms N = xyz[:,:,0] Ca = xyz[:,:,1] C = xyz[:,:,2] # recreate Cb given N,Ca,C next_N = torch.roll(N, -1, dims=1) prev_C = torch.roll(C, 1, dims=1) phi = get_dih(prev_C, N, Ca, C) psi = get_dih(N, Ca, C, next_N) # phi[:,0] = 0.0 psi[:,-1] = 0.0 # astep = 2.0*np.pi / params['ABINS'] phi_bin = torch.round((phi+np.pi-astep/2)/astep) psi_bin = torch.round((psi+np.pi-astep/2)/astep) return torch.stack([phi_bin, psi_bin], axis=-1).long() # ============================================================ def dist_to_onehot(dist, params=PARAMS): dist[torch.isnan(dist)] = 999.9 dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=dist.dtype,device=dist.device) db = torch.bucketize(dist.contiguous(),dbins).long() dist = torch.nn.functional.one_hot(db, num_classes=params['DBINS']+1).float() return dist def c6d_to_bins(c6d,params=PARAMS): """bin 2d distance and orientation maps """ dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] astep = 2.0*np.pi / params['ABINS'] dbins = torch.linspace(params['DMIN']+dstep, params['DMAX'], params['DBINS'],dtype=c6d.dtype,device=c6d.device) ab360 = torch.linspace(-np.pi+astep, np.pi, params['ABINS'],dtype=c6d.dtype,device=c6d.device) ab180 = torch.linspace(astep, np.pi, params['ABINS']//2,dtype=c6d.dtype,device=c6d.device) db = torch.bucketize(c6d[...,0].contiguous(),dbins) ob = torch.bucketize(c6d[...,1].contiguous(),ab360) tb = torch.bucketize(c6d[...,2].contiguous(),ab360) pb = torch.bucketize(c6d[...,3].contiguous(),ab180) ob[db==params['DBINS']] = params['ABINS'] tb[db==params['DBINS']] = params['ABINS'] pb[db==params['DBINS']] = params['ABINS']//2 return torch.stack([db,ob,tb,pb],axis=-1).to(torch.uint8) # ============================================================ def dist_to_bins(dist,params=PARAMS): """bin 2d distance maps """ dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] db = torch.round((dist-params['DMIN']-dstep/2)/dstep) db[db<0] = 0 db[db>params['DBINS']] = params['DBINS'] return db.long() # ============================================================ def c6d_to_bins2(c6d, same_chain, negative=False, params=PARAMS): """bin 2d distance and orientation maps """ dstep = (params['DMAX'] - params['DMIN']) / params['DBINS'] astep = 2.0*np.pi / params['ABINS'] db = torch.round((c6d[...,0]-params['DMIN']-dstep/2)/dstep) ob = torch.round((c6d[...,1]+np.pi-astep/2)/astep) tb = torch.round((c6d[...,2]+np.pi-astep/2)/astep) pb = torch.round((c6d[...,3]-astep/2)/astep) # put all d<dmin into one bin db[db<0] = 0 # synchronize no-contact bins db[db>params['DBINS']] = params['DBINS'] ob[db==params['DBINS']] = params['ABINS'] tb[db==params['DBINS']] = params['ABINS'] pb[db==params['DBINS']] = params['ABINS']//2 if negative: db = torch.where(same_chain.bool(), db.long(), params['DBINS']) ob = torch.where(same_chain.bool(), ob.long(), params['ABINS']) tb = torch.where(same_chain.bool(), tb.long(), params['ABINS']) pb = torch.where(same_chain.bool(), pb.long(), params['ABINS']//2) return torch.stack([db,ob,tb,pb],axis=-1).long() def get_init_xyz(xyz_t): # input: xyz_t (B, T, L, 14, 3) # ouput: xyz (B, T, L, 14, 3) B, T, L = xyz_t.shape[:3] init = INIT_CRDS.to(xyz_t.device).reshape(1,1,1,27,3).repeat(B,T,L,1,1) if torch.isnan(xyz_t).all(): return init mask = torch.isnan(xyz_t[:,:,:,:3]).any(dim=-1).any(dim=-1) # (B, T, L) # center_CA = ((~mask[:,:,:,None]) * torch.nan_to_num(xyz_t[:,:,:,1,:])).sum(dim=2) / ((~mask[:,:,:,None]).sum(dim=2)+1e-4) # (B, T, 3) xyz_t = xyz_t - center_CA.view(B,T,1,1,3) # idx_s = list() for i_b in range(B): for i_T in range(T): if mask[i_b, i_T].all(): continue exist_in_templ = torch.where(~mask[i_b, i_T])[0] # (L_sub) seqmap = (torch.arange(L, device=xyz_t.device)[:,None] - exist_in_templ[None,:]).abs() # (L, L_sub) seqmap = torch.argmin(seqmap, dim=-1) # (L) idx = torch.gather(exist_in_templ, -1, seqmap) # (L) offset_CA = torch.gather(xyz_t[i_b, i_T, :, 1, :], 0, idx.reshape(L,1).expand(-1,3)) init[i_b,i_T] += offset_CA.reshape(L,1,3) # xyz = torch.where(mask.view(B, T, L, 1, 1), init, xyz_t) return xyz
RFdiffusion-main
kinematics.py
import torch import torch.nn as nn #from equivariant_attention.modules import get_basis_and_r, GSE3Res, GNormBias #from equivariant_attention.modules import GConvSE3, GNormSE3 #from equivariant_attention.fibers import Fiber from util_module import init_lecun_normal_param from se3_transformer.model import SE3Transformer from se3_transformer.model.fiber import Fiber class SE3TransformerWrapper(nn.Module): """SE(3) equivariant GCN with attention""" def __init__(self, num_layers=2, num_channels=32, num_degrees=3, n_heads=4, div=4, l0_in_features=32, l0_out_features=32, l1_in_features=3, l1_out_features=2, num_edge_features=32): super().__init__() # Build the network self.l1_in = l1_in_features # fiber_edge = Fiber({0: num_edge_features}) if l1_out_features > 0: if l1_in_features > 0: fiber_in = Fiber({0: l0_in_features, 1: l1_in_features}) fiber_hidden = Fiber.create(num_degrees, num_channels) fiber_out = Fiber({0: l0_out_features, 1: l1_out_features}) else: fiber_in = Fiber({0: l0_in_features}) fiber_hidden = Fiber.create(num_degrees, num_channels) fiber_out = Fiber({0: l0_out_features, 1: l1_out_features}) else: if l1_in_features > 0: fiber_in = Fiber({0: l0_in_features, 1: l1_in_features}) fiber_hidden = Fiber.create(num_degrees, num_channels) fiber_out = Fiber({0: l0_out_features}) else: fiber_in = Fiber({0: l0_in_features}) fiber_hidden = Fiber.create(num_degrees, num_channels) fiber_out = Fiber({0: l0_out_features}) self.se3 = SE3Transformer(num_layers=num_layers, fiber_in=fiber_in, fiber_hidden=fiber_hidden, fiber_out = fiber_out, num_heads=n_heads, channels_div=div, fiber_edge=fiber_edge, use_layer_norm=True) #use_layer_norm=False) self.reset_parameter() def reset_parameter(self): # make sure linear layer before ReLu are initialized with kaiming_normal_ for n, p in self.se3.named_parameters(): if "bias" in n: nn.init.zeros_(p) elif len(p.shape) == 1: continue else: if "radial_func" not in n: p = init_lecun_normal_param(p) else: if "net.6" in n: nn.init.zeros_(p) else: nn.init.kaiming_normal_(p, nonlinearity='relu') # make last layers to be zero-initialized #self.se3.graph_modules[-1].to_kernel_self['0'] = init_lecun_normal_param(self.se3.graph_modules[-1].to_kernel_self['0']) #self.se3.graph_modules[-1].to_kernel_self['1'] = init_lecun_normal_param(self.se3.graph_modules[-1].to_kernel_self['1']) nn.init.zeros_(self.se3.graph_modules[-1].to_kernel_self['0']) nn.init.zeros_(self.se3.graph_modules[-1].to_kernel_self['1']) def forward(self, G, type_0_features, type_1_features=None, edge_features=None): if self.l1_in > 0: node_features = {'0': type_0_features, '1': type_1_features} else: node_features = {'0': type_0_features} edge_features = {'0': edge_features} return self.se3(G, node_features, edge_features)
RFdiffusion-main
SE3_network.py
import sys import numpy as np import torch import scipy.sparse from chemical import * from scoring import * def generate_Cbeta(N, Ca, C): # recreate Cb given N,Ca,C b = Ca - N c = C - Ca a = torch.cross(b, c, dim=-1) # Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca # fd: below matches sidechain generator (=Rosetta params) Cb = -0.57910144 * a + 0.5689693 * b - 0.5441217 * c + Ca return Cb def th_ang_v(ab, bc, eps: float = 1e-8): def th_norm(x, eps: float = 1e-8): return x.square().sum(-1, keepdim=True).add(eps).sqrt() def th_N(x, alpha: float = 0): return x / th_norm(x).add(alpha) ab, bc = th_N(ab), th_N(bc) cos_angle = torch.clamp((ab * bc).sum(-1), -1, 1) sin_angle = torch.sqrt(1 - cos_angle.square() + eps) dih = torch.stack((cos_angle, sin_angle), -1) return dih def th_dih_v(ab, bc, cd): def th_cross(a, b): a, b = torch.broadcast_tensors(a, b) return torch.cross(a, b, dim=-1) def th_norm(x, eps: float = 1e-8): return x.square().sum(-1, keepdim=True).add(eps).sqrt() def th_N(x, alpha: float = 0): return x / th_norm(x).add(alpha) ab, bc, cd = th_N(ab), th_N(bc), th_N(cd) n1 = th_N(th_cross(ab, bc)) n2 = th_N(th_cross(bc, cd)) sin_angle = (th_cross(n1, bc) * n2).sum(-1) cos_angle = (n1 * n2).sum(-1) dih = torch.stack((cos_angle, sin_angle), -1) return dih def th_dih(a, b, c, d): return th_dih_v(a - b, b - c, c - d) # More complicated version splits error in CA-N and CA-C (giving more accurate CB position) # It returns the rigid transformation from local frame to global frame def rigid_from_3_points(N, Ca, C, non_ideal=False, eps=1e-8): # N, Ca, C - [B,L, 3] # R - [B,L, 3, 3], det(R)=1, inv(R) = R.T, R is a rotation matrix B, L = N.shape[:2] v1 = C - Ca v2 = N - Ca e1 = v1 / (torch.norm(v1, dim=-1, keepdim=True) + eps) u2 = v2 - (torch.einsum("bli, bli -> bl", e1, v2)[..., None] * e1) e2 = u2 / (torch.norm(u2, dim=-1, keepdim=True) + eps) e3 = torch.cross(e1, e2, dim=-1) R = torch.cat( [e1[..., None], e2[..., None], e3[..., None]], axis=-1 ) # [B,L,3,3] - rotation matrix if non_ideal: v2 = v2 / (torch.norm(v2, dim=-1, keepdim=True) + eps) cosref = torch.sum(e1 * v2, dim=-1) # cosine of current N-CA-C bond angle costgt = cos_ideal_NCAC.item() cos2del = torch.clamp( cosref * costgt + torch.sqrt((1 - cosref * cosref) * (1 - costgt * costgt) + eps), min=-1.0, max=1.0, ) cosdel = torch.sqrt(0.5 * (1 + cos2del) + eps) sindel = torch.sign(costgt - cosref) * torch.sqrt(1 - 0.5 * (1 + cos2del) + eps) Rp = torch.eye(3, device=N.device).repeat(B, L, 1, 1) Rp[:, :, 0, 0] = cosdel Rp[:, :, 0, 1] = -sindel Rp[:, :, 1, 0] = sindel Rp[:, :, 1, 1] = cosdel R = torch.einsum("blij,bljk->blik", R, Rp) return R, Ca def get_tor_mask(seq, torsion_indices, mask_in=None): B, L = seq.shape[:2] tors_mask = torch.ones((B, L, 10), dtype=torch.bool, device=seq.device) tors_mask[..., 3:7] = torsion_indices[seq, :, -1] > 0 tors_mask[:, 0, 1] = False tors_mask[:, -1, 0] = False # mask for additional angles tors_mask[:, :, 7] = seq != aa2num["GLY"] tors_mask[:, :, 8] = seq != aa2num["GLY"] tors_mask[:, :, 9] = torch.logical_and(seq != aa2num["GLY"], seq != aa2num["ALA"]) tors_mask[:, :, 9] = torch.logical_and(tors_mask[:, :, 9], seq != aa2num["UNK"]) tors_mask[:, :, 9] = torch.logical_and(tors_mask[:, :, 9], seq != aa2num["MAS"]) if mask_in != None: # mask for missing atoms # chis ti0 = torch.gather(mask_in, 2, torsion_indices[seq, :, 0]) ti1 = torch.gather(mask_in, 2, torsion_indices[seq, :, 1]) ti2 = torch.gather(mask_in, 2, torsion_indices[seq, :, 2]) ti3 = torch.gather(mask_in, 2, torsion_indices[seq, :, 3]) is_valid = torch.stack((ti0, ti1, ti2, ti3), dim=-2).all(dim=-1) tors_mask[..., 3:7] = torch.logical_and(tors_mask[..., 3:7], is_valid) tors_mask[:, :, 7] = torch.logical_and( tors_mask[:, :, 7], mask_in[:, :, 4] ) # CB exist? tors_mask[:, :, 8] = torch.logical_and( tors_mask[:, :, 8], mask_in[:, :, 4] ) # CB exist? tors_mask[:, :, 9] = torch.logical_and( tors_mask[:, :, 9], mask_in[:, :, 5] ) # XG exist? return tors_mask def get_torsions( xyz_in, seq, torsion_indices, torsion_can_flip, ref_angles, mask_in=None ): B, L = xyz_in.shape[:2] tors_mask = get_tor_mask(seq, torsion_indices, mask_in) # torsions to restrain to 0 or 180degree tors_planar = torch.zeros((B, L, 10), dtype=torch.bool, device=xyz_in.device) tors_planar[:, :, 5] = seq == aa2num["TYR"] # TYR chi 3 should be planar # idealize given xyz coordinates before computing torsion angles xyz = xyz_in.clone() Rs, Ts = rigid_from_3_points(xyz[..., 0, :], xyz[..., 1, :], xyz[..., 2, :]) Nideal = torch.tensor([-0.5272, 1.3593, 0.000], device=xyz_in.device) Cideal = torch.tensor([1.5233, 0.000, 0.000], device=xyz_in.device) xyz[..., 0, :] = torch.einsum("brij,j->bri", Rs, Nideal) + Ts xyz[..., 2, :] = torch.einsum("brij,j->bri", Rs, Cideal) + Ts torsions = torch.zeros((B, L, 10, 2), device=xyz.device) # avoid undefined angles for H generation torsions[:, 0, 1, 0] = 1.0 torsions[:, -1, 0, 0] = 1.0 # omega torsions[:, :-1, 0, :] = th_dih( xyz[:, :-1, 1, :], xyz[:, :-1, 2, :], xyz[:, 1:, 0, :], xyz[:, 1:, 1, :] ) # phi torsions[:, 1:, 1, :] = th_dih( xyz[:, :-1, 2, :], xyz[:, 1:, 0, :], xyz[:, 1:, 1, :], xyz[:, 1:, 2, :] ) # psi torsions[:, :, 2, :] = -1 * th_dih( xyz[:, :, 0, :], xyz[:, :, 1, :], xyz[:, :, 2, :], xyz[:, :, 3, :] ) # chis ti0 = torch.gather(xyz, 2, torsion_indices[seq, :, 0, None].repeat(1, 1, 1, 3)) ti1 = torch.gather(xyz, 2, torsion_indices[seq, :, 1, None].repeat(1, 1, 1, 3)) ti2 = torch.gather(xyz, 2, torsion_indices[seq, :, 2, None].repeat(1, 1, 1, 3)) ti3 = torch.gather(xyz, 2, torsion_indices[seq, :, 3, None].repeat(1, 1, 1, 3)) torsions[:, :, 3:7, :] = th_dih(ti0, ti1, ti2, ti3) # CB bend NC = 0.5 * (xyz[:, :, 0, :3] + xyz[:, :, 2, :3]) CA = xyz[:, :, 1, :3] CB = xyz[:, :, 4, :3] t = th_ang_v(CB - CA, NC - CA) t0 = ref_angles[seq][..., 0, :] torsions[:, :, 7, :] = torch.stack( (torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]), dim=-1, ) # CB twist NCCA = NC - CA NCp = xyz[:, :, 2, :3] - xyz[:, :, 0, :3] NCpp = ( NCp - torch.sum(NCp * NCCA, dim=-1, keepdim=True) / torch.sum(NCCA * NCCA, dim=-1, keepdim=True) * NCCA ) t = th_ang_v(CB - CA, NCpp) t0 = ref_angles[seq][..., 1, :] torsions[:, :, 8, :] = torch.stack( (torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]), dim=-1, ) # CG bend CG = xyz[:, :, 5, :3] t = th_ang_v(CG - CB, CA - CB) t0 = ref_angles[seq][..., 2, :] torsions[:, :, 9, :] = torch.stack( (torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]), dim=-1, ) mask0 = torch.isnan(torsions[..., 0]).nonzero() mask1 = torch.isnan(torsions[..., 1]).nonzero() torsions[mask0[:, 0], mask0[:, 1], mask0[:, 2], 0] = 1.0 torsions[mask1[:, 0], mask1[:, 1], mask1[:, 2], 1] = 0.0 # alt chis torsions_alt = torsions.clone() torsions_alt[torsion_can_flip[seq, :]] *= -1 return torsions, torsions_alt, tors_mask, tors_planar def get_tips(xyz, seq): B, L = xyz.shape[:2] xyz_tips = torch.gather( xyz, 2, tip_indices.to(xyz.device)[seq][:, :, None, None].expand(-1, -1, -1, 3) ).reshape(B, L, 3) mask = ~(torch.isnan(xyz_tips[:, :, 0])) if torch.isnan(xyz_tips).any(): # replace NaN tip atom with virtual Cb atom # three anchor atoms N = xyz[:, :, 0] Ca = xyz[:, :, 1] C = xyz[:, :, 2] # recreate Cb given N,Ca,C b = Ca - N c = C - Ca a = torch.cross(b, c, dim=-1) Cb = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + Ca xyz_tips = torch.where(torch.isnan(xyz_tips), Cb, xyz_tips) return xyz_tips, mask # process ideal frames def make_frame(X, Y): Xn = X / torch.linalg.norm(X) Y = Y - torch.dot(Y, Xn) * Xn Yn = Y / torch.linalg.norm(Y) Z = torch.cross(Xn, Yn) Zn = Z / torch.linalg.norm(Z) return torch.stack((Xn, Yn, Zn), dim=-1) def cross_product_matrix(u): B, L = u.shape[:2] matrix = torch.zeros((B, L, 3, 3), device=u.device) matrix[:, :, 0, 1] = -u[..., 2] matrix[:, :, 0, 2] = u[..., 1] matrix[:, :, 1, 0] = u[..., 2] matrix[:, :, 1, 2] = -u[..., 0] matrix[:, :, 2, 0] = -u[..., 1] matrix[:, :, 2, 1] = u[..., 0] return matrix # writepdb def writepdb( filename, atoms, seq, binderlen=None, idx_pdb=None, bfacts=None, chain_idx=None ): f = open(filename, "w") ctr = 1 scpu = seq.cpu().squeeze() atomscpu = atoms.cpu().squeeze() if bfacts is None: bfacts = torch.zeros(atomscpu.shape[0]) if idx_pdb is None: idx_pdb = 1 + torch.arange(atomscpu.shape[0]) Bfacts = torch.clamp(bfacts.cpu(), 0, 1) for i, s in enumerate(scpu): if chain_idx is None: if binderlen is not None: if i < binderlen: chain = "A" else: chain = "B" elif binderlen is None: chain = "A" else: chain = chain_idx[i] if len(atomscpu.shape) == 2: f.write( "%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % ( "ATOM", ctr, " CA ", num2aa[s], chain, idx_pdb[i], atomscpu[i, 0], atomscpu[i, 1], atomscpu[i, 2], 1.0, Bfacts[i], ) ) ctr += 1 elif atomscpu.shape[1] == 3: for j, atm_j in enumerate([" N ", " CA ", " C "]): f.write( "%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % ( "ATOM", ctr, atm_j, num2aa[s], chain, idx_pdb[i], atomscpu[i, j, 0], atomscpu[i, j, 1], atomscpu[i, j, 2], 1.0, Bfacts[i], ) ) ctr += 1 elif atomscpu.shape[1] == 4: for j, atm_j in enumerate([" N ", " CA ", " C ", " O "]): f.write( "%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % ( "ATOM", ctr, atm_j, num2aa[s], chain, idx_pdb[i], atomscpu[i, j, 0], atomscpu[i, j, 1], atomscpu[i, j, 2], 1.0, Bfacts[i], ) ) ctr += 1 else: natoms = atomscpu.shape[1] if natoms != 14 and natoms != 27: print("bad size!", atoms.shape) assert False atms = aa2long[s] # his prot hack if ( s == 8 and torch.linalg.norm(atomscpu[i, 9, :] - atomscpu[i, 5, :]) < 1.7 ): atms = ( " N ", " CA ", " C ", " O ", " CB ", " CG ", " NE2", " CD2", " CE1", " ND1", None, None, None, None, " H ", " HA ", "1HB ", "2HB ", " HD2", " HE1", " HD1", None, None, None, None, None, None, ) # his_d for j, atm_j in enumerate(atms): if ( j < natoms and atm_j is not None ): # and not torch.isnan(atomscpu[i,j,:]).any()): f.write( "%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % ( "ATOM", ctr, atm_j, num2aa[s], chain, idx_pdb[i], atomscpu[i, j, 0], atomscpu[i, j, 1], atomscpu[i, j, 2], 1.0, Bfacts[i], ) ) ctr += 1 # resolve tip atom indices tip_indices = torch.full((22,), 0) for i in range(22): tip_atm = aa2tip[i] atm_long = aa2long[i] tip_indices[i] = atm_long.index(tip_atm) # resolve torsion indices torsion_indices = torch.full((22, 4, 4), 0) torsion_can_flip = torch.full((22, 10), False, dtype=torch.bool) for i in range(22): i_l, i_a = aa2long[i], aa2longalt[i] for j in range(4): if torsions[i][j] is None: continue for k in range(4): a = torsions[i][j][k] torsion_indices[i, j, k] = i_l.index(a) if i_l.index(a) != i_a.index(a): torsion_can_flip[i, 3 + j] = True ##bb tors never flip # HIS is a special case torsion_can_flip[8, 4] = False # build the mapping from atoms in the full rep (Nx27) to the "alternate" rep allatom_mask = torch.zeros((22, 27), dtype=torch.bool) long2alt = torch.zeros((22, 27), dtype=torch.long) for i in range(22): i_l, i_lalt = aa2long[i], aa2longalt[i] for j, a in enumerate(i_l): if a is None: long2alt[i, j] = j else: long2alt[i, j] = i_lalt.index(a) allatom_mask[i, j] = True # bond graph traversal num_bonds = torch.zeros((22, 27, 27), dtype=torch.long) for i in range(22): num_bonds_i = np.zeros((27, 27)) for bnamei, bnamej in aabonds[i]: bi, bj = aa2long[i].index(bnamei), aa2long[i].index(bnamej) num_bonds_i[bi, bj] = 1 num_bonds_i = scipy.sparse.csgraph.shortest_path(num_bonds_i, directed=False) num_bonds_i[num_bonds_i >= 4] = 4 num_bonds[i, ...] = torch.tensor(num_bonds_i) # LJ/LK scoring parameters ljlk_parameters = torch.zeros((22, 27, 5), dtype=torch.float) lj_correction_parameters = torch.zeros( (22, 27, 4), dtype=bool ) # donor/acceptor/hpol/disulf for i in range(22): for j, a in enumerate(aa2type[i]): if a is not None: ljlk_parameters[i, j, :] = torch.tensor(type2ljlk[a]) lj_correction_parameters[i, j, 0] = (type2hb[a] == HbAtom.DO) + ( type2hb[a] == HbAtom.DA ) lj_correction_parameters[i, j, 1] = (type2hb[a] == HbAtom.AC) + ( type2hb[a] == HbAtom.DA ) lj_correction_parameters[i, j, 2] = type2hb[a] == HbAtom.HP lj_correction_parameters[i, j, 3] = a == "SH1" or a == "HS" # hbond scoring parameters def donorHs(D, bonds, atoms): dHs = [] for i, j in bonds: if i == D: idx_j = atoms.index(j) if idx_j >= 14: # if atom j is a hydrogen dHs.append(idx_j) if j == D: idx_i = atoms.index(i) if idx_i >= 14: # if atom j is a hydrogen dHs.append(idx_i) assert len(dHs) > 0 return dHs def acceptorBB0(A, hyb, bonds, atoms): if hyb == HbHybType.SP2: for i, j in bonds: if i == A: B = atoms.index(j) if B < 14: break if j == A: B = atoms.index(i) if B < 14: break for i, j in bonds: if i == atoms[B]: B0 = atoms.index(j) if B0 < 14: break if j == atoms[B]: B0 = atoms.index(i) if B0 < 14: break elif hyb == HbHybType.SP3 or hyb == HbHybType.RING: for i, j in bonds: if i == A: B = atoms.index(j) if B < 14: break if j == A: B = atoms.index(i) if B < 14: break for i, j in bonds: if i == A and j != atoms[B]: B0 = atoms.index(j) break if j == A and i != atoms[B]: B0 = atoms.index(i) break return B, B0 hbtypes = torch.full( (22, 27, 3), -1, dtype=torch.long ) # (donortype, acceptortype, acchybtype) hbbaseatoms = torch.full( (22, 27, 2), -1, dtype=torch.long ) # (B,B0) for acc; (D,-1) for don hbpolys = torch.zeros( (HbDonType.NTYPES, HbAccType.NTYPES, 3, 15) ) # weight,xmin,xmax,ymin,ymax,c9,...,c0 for i in range(22): for j, a in enumerate(aa2type[i]): if a in type2dontype: j_hs = donorHs(aa2long[i][j], aabonds[i], aa2long[i]) for j_h in j_hs: hbtypes[i, j_h, 0] = type2dontype[a] hbbaseatoms[i, j_h, 0] = j if a in type2acctype: j_b, j_b0 = acceptorBB0( aa2long[i][j], type2hybtype[a], aabonds[i], aa2long[i] ) hbtypes[i, j, 1] = type2acctype[a] hbtypes[i, j, 2] = type2hybtype[a] hbbaseatoms[i, j, 0] = j_b hbbaseatoms[i, j, 1] = j_b0 for i in range(HbDonType.NTYPES): for j in range(HbAccType.NTYPES): weight = dontype2wt[i] * acctype2wt[j] pdist, pbah, pahd = hbtypepair2poly[(i, j)] xrange, yrange, coeffs = hbpolytype2coeffs[pdist] hbpolys[i, j, 0, 0] = weight hbpolys[i, j, 0, 1:3] = torch.tensor(xrange) hbpolys[i, j, 0, 3:5] = torch.tensor(yrange) hbpolys[i, j, 0, 5:] = torch.tensor(coeffs) xrange, yrange, coeffs = hbpolytype2coeffs[pahd] hbpolys[i, j, 1, 0] = weight hbpolys[i, j, 1, 1:3] = torch.tensor(xrange) hbpolys[i, j, 1, 3:5] = torch.tensor(yrange) hbpolys[i, j, 1, 5:] = torch.tensor(coeffs) xrange, yrange, coeffs = hbpolytype2coeffs[pbah] hbpolys[i, j, 2, 0] = weight hbpolys[i, j, 2, 1:3] = torch.tensor(xrange) hbpolys[i, j, 2, 3:5] = torch.tensor(yrange) hbpolys[i, j, 2, 5:] = torch.tensor(coeffs) # kinematic parameters base_indices = torch.full((22, 27), 0, dtype=torch.long) xyzs_in_base_frame = torch.ones((22, 27, 4)) RTs_by_torsion = torch.eye(4).repeat(22, 7, 1, 1) reference_angles = torch.ones((22, 3, 2)) for i in range(22): i_l = aa2long[i] for name, base, coords in ideal_coords[i]: idx = i_l.index(name) base_indices[i, idx] = base xyzs_in_base_frame[i, idx, :3] = torch.tensor(coords) # omega frame RTs_by_torsion[i, 0, :3, :3] = torch.eye(3) RTs_by_torsion[i, 0, :3, 3] = torch.zeros(3) # phi frame RTs_by_torsion[i, 1, :3, :3] = make_frame( xyzs_in_base_frame[i, 0, :3] - xyzs_in_base_frame[i, 1, :3], torch.tensor([1.0, 0.0, 0.0]), ) RTs_by_torsion[i, 1, :3, 3] = xyzs_in_base_frame[i, 0, :3] # psi frame RTs_by_torsion[i, 2, :3, :3] = make_frame( xyzs_in_base_frame[i, 2, :3] - xyzs_in_base_frame[i, 1, :3], xyzs_in_base_frame[i, 1, :3] - xyzs_in_base_frame[i, 0, :3], ) RTs_by_torsion[i, 2, :3, 3] = xyzs_in_base_frame[i, 2, :3] # chi1 frame if torsions[i][0] is not None: a0, a1, a2 = torsion_indices[i, 0, 0:3] RTs_by_torsion[i, 3, :3, :3] = make_frame( xyzs_in_base_frame[i, a2, :3] - xyzs_in_base_frame[i, a1, :3], xyzs_in_base_frame[i, a0, :3] - xyzs_in_base_frame[i, a1, :3], ) RTs_by_torsion[i, 3, :3, 3] = xyzs_in_base_frame[i, a2, :3] # chi2~4 frame for j in range(1, 4): if torsions[i][j] is not None: a2 = torsion_indices[i, j, 2] if (i == 18 and j == 2) or ( i == 8 and j == 2 ): # TYR CZ-OH & HIS CE1-HE1 a special case a0, a1 = torsion_indices[i, j, 0:2] RTs_by_torsion[i, 3 + j, :3, :3] = make_frame( xyzs_in_base_frame[i, a2, :3] - xyzs_in_base_frame[i, a1, :3], xyzs_in_base_frame[i, a0, :3] - xyzs_in_base_frame[i, a1, :3], ) else: RTs_by_torsion[i, 3 + j, :3, :3] = make_frame( xyzs_in_base_frame[i, a2, :3], torch.tensor([-1.0, 0.0, 0.0]), ) RTs_by_torsion[i, 3 + j, :3, 3] = xyzs_in_base_frame[i, a2, :3] # CB/CG angles NCr = 0.5 * (xyzs_in_base_frame[i, 0, :3] + xyzs_in_base_frame[i, 2, :3]) CAr = xyzs_in_base_frame[i, 1, :3] CBr = xyzs_in_base_frame[i, 4, :3] CGr = xyzs_in_base_frame[i, 5, :3] reference_angles[i, 0, :] = th_ang_v(CBr - CAr, NCr - CAr) NCp = xyzs_in_base_frame[i, 2, :3] - xyzs_in_base_frame[i, 0, :3] NCpp = NCp - torch.dot(NCp, NCr) / torch.dot(NCr, NCr) * NCr reference_angles[i, 1, :] = th_ang_v(CBr - CAr, NCpp) reference_angles[i, 2, :] = th_ang_v(CGr, torch.tensor([-1.0, 0.0, 0.0])) N_BACKBONE_ATOMS = 3 N_HEAVY = 14 def writepdb_multi( filename, atoms_stack, bfacts, seq_stack, backbone_only=False, chain_ids=None, use_hydrogens=True, ): """ Function for writing multiple structural states of the same sequence into a single pdb file. """ f = open(filename, "w") if seq_stack.ndim != 2: T = atoms_stack.shape[0] seq_stack = torch.tile(seq_stack, (T, 1)) seq_stack = seq_stack.cpu() for atoms, scpu in zip(atoms_stack, seq_stack): ctr = 1 atomscpu = atoms.cpu() Bfacts = torch.clamp(bfacts.cpu(), 0, 1) for i, s in enumerate(scpu): atms = aa2long[s] for j, atm_j in enumerate(atms): if backbone_only and j >= N_BACKBONE_ATOMS: break if not use_hydrogens and j >= N_HEAVY: break if (atm_j is None) or (torch.all(torch.isnan(atomscpu[i, j]))): continue chain_id = "A" if chain_ids is not None: chain_id = chain_ids[i] f.write( "%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % ( "ATOM", ctr, atm_j, num2aa[s], chain_id, i + 1, atomscpu[i, j, 0], atomscpu[i, j, 1], atomscpu[i, j, 2], 1.0, Bfacts[i], ) ) ctr += 1 f.write("ENDMDL\n")
RFdiffusion-main
util.py
## ## lk and lk term #(LJ_RADIUS LJ_WDEPTH LK_DGFREE LK_LAMBDA LK_VOLUME) type2ljlk = { "CNH2":(1.968297,0.094638,3.077030,3.5000,13.500000), "COO":(1.916661,0.141799,-3.332648,3.5000,14.653000), "CH0":(2.011760,0.062642,1.409284,3.5000,8.998000), "CH1":(2.011760,0.062642,-3.538387,3.5000,10.686000), "CH2":(2.011760,0.062642,-1.854658,3.5000,18.331000), "CH3":(2.011760,0.062642,7.292929,3.5000,25.855000), "aroC":(2.016441,0.068775,1.797950,3.5000,16.704000), "Ntrp":(1.802452,0.161725,-8.413116,3.5000,9.522100), "Nhis":(1.802452,0.161725,-9.739606,3.5000,9.317700), "NtrR":(1.802452,0.161725,-5.158080,3.5000,9.779200), "NH2O":(1.802452,0.161725,-8.101638,3.5000,15.689000), "Nlys":(1.802452,0.161725,-20.864641,3.5000,16.514000), "Narg":(1.802452,0.161725,-8.968351,3.5000,15.717000), "Npro":(1.802452,0.161725,-0.984585,3.5000,3.718100), "OH":(1.542743,0.161947,-8.133520,3.5000,10.722000), "OHY":(1.542743,0.161947,-8.133520,3.5000,10.722000), "ONH2":(1.548662,0.182924,-6.591644,3.5000,10.102000), "OOC":(1.492871,0.099873,-9.239832,3.5000,9.995600), "S":(1.975967,0.455970,-1.707229,3.5000,17.640000), "SH1":(1.975967,0.455970,3.291643,3.5000,23.240000), "Nbb":(1.802452,0.161725,-9.969494,3.5000,15.992000), "CAbb":(2.011760,0.062642,2.533791,3.5000,12.137000), "CObb":(1.916661,0.141799,3.104248,3.5000,13.221000), "OCbb":(1.540580,0.142417,-8.006829,3.5000,12.196000), "HNbb":(0.901681,0.005000,0.0000,3.5000,0.0000), "Hapo":(1.421272,0.021808,0.0000,3.5000,0.0000), "Haro":(1.374914,0.015909,0.0000,3.5000,0.0000), "Hpol":(0.901681,0.005000,0.0000,3.5000,0.0000), "HS":(0.363887,0.050836,0.0000,3.5000,0.0000), } # hbond donor/acceptors class HbAtom: NO = 0 DO = 1 # donor AC = 2 # acceptor DA = 3 # donor & acceptor HP = 4 # polar H type2hb = { "CNH2":HbAtom.NO, "COO":HbAtom.NO, "CH0":HbAtom.NO, "CH1":HbAtom.NO, "CH2":HbAtom.NO, "CH3":HbAtom.NO, "aroC":HbAtom.NO, "Ntrp":HbAtom.DO, "Nhis":HbAtom.AC, "NtrR":HbAtom.DO, "NH2O":HbAtom.DO, "Nlys":HbAtom.DO, "Narg":HbAtom.DO, "Npro":HbAtom.NO, "OH":HbAtom.DA, "OHY":HbAtom.DA, "ONH2":HbAtom.AC, "OOC":HbAtom.AC, "S":HbAtom.NO, "SH1":HbAtom.NO, "Nbb":HbAtom.DO, "CAbb":HbAtom.NO, "CObb":HbAtom.NO, "OCbb":HbAtom.AC, "HNbb":HbAtom.HP, "Hapo":HbAtom.NO, "Haro":HbAtom.NO, "Hpol":HbAtom.HP, "HS":HbAtom.HP, # HP in rosetta(?) } ## ## hbond term class HbDonType: PBA = 0 IND = 1 IME = 2 GDE = 3 CXA = 4 AMO = 5 HXL = 6 AHX = 7 NTYPES = 8 class HbAccType: PBA = 0 CXA = 1 CXL = 2 HXL = 3 AHX = 4 IME = 5 NTYPES = 6 class HbHybType: SP2 = 0 SP3 = 1 RING = 2 NTYPES = 3 type2dontype = { "Nbb": HbDonType.PBA, "Ntrp": HbDonType.IND, "NtrR": HbDonType.GDE, "Narg": HbDonType.GDE, "NH2O": HbDonType.CXA, "Nlys": HbDonType.AMO, "OH": HbDonType.HXL, "OHY": HbDonType.AHX, } type2acctype = { "OCbb": HbAccType.PBA, "ONH2": HbAccType.CXA, "OOC": HbAccType.CXL, "OH": HbAccType.HXL, "OHY": HbAccType.AHX, "Nhis": HbAccType.IME, } type2hybtype = { "OCbb": HbHybType.SP2, "ONH2": HbHybType.SP2, "OOC": HbHybType.SP2, "OHY": HbHybType.SP3, "OH": HbHybType.SP3, "Nhis": HbHybType.RING, } dontype2wt = { HbDonType.PBA: 1.45, HbDonType.IND: 1.15, HbDonType.IME: 1.42, HbDonType.GDE: 1.11, HbDonType.CXA: 1.29, HbDonType.AMO: 1.17, HbDonType.HXL: 0.99, HbDonType.AHX: 1.00, } acctype2wt = { HbAccType.PBA: 1.19, HbAccType.CXA: 1.21, HbAccType.CXL: 1.10, HbAccType.HXL: 1.15, HbAccType.AHX: 1.15, HbAccType.IME: 1.17, } class HbPolyType: ahdist_aASN_dARG = 0 ahdist_aASN_dASN = 1 ahdist_aASN_dGLY = 2 ahdist_aASN_dHIS = 3 ahdist_aASN_dLYS = 4 ahdist_aASN_dSER = 5 ahdist_aASN_dTRP = 6 ahdist_aASN_dTYR = 7 ahdist_aASP_dARG = 8 ahdist_aASP_dASN = 9 ahdist_aASP_dGLY = 10 ahdist_aASP_dHIS = 11 ahdist_aASP_dLYS = 12 ahdist_aASP_dSER = 13 ahdist_aASP_dTRP = 14 ahdist_aASP_dTYR = 15 ahdist_aGLY_dARG = 16 ahdist_aGLY_dASN = 17 ahdist_aGLY_dGLY = 18 ahdist_aGLY_dHIS = 19 ahdist_aGLY_dLYS = 20 ahdist_aGLY_dSER = 21 ahdist_aGLY_dTRP = 22 ahdist_aGLY_dTYR = 23 ahdist_aHIS_dARG = 24 ahdist_aHIS_dASN = 25 ahdist_aHIS_dGLY = 26 ahdist_aHIS_dHIS = 27 ahdist_aHIS_dLYS = 28 ahdist_aHIS_dSER = 29 ahdist_aHIS_dTRP = 30 ahdist_aHIS_dTYR = 31 ahdist_aSER_dARG = 32 ahdist_aSER_dASN = 33 ahdist_aSER_dGLY = 34 ahdist_aSER_dHIS = 35 ahdist_aSER_dLYS = 36 ahdist_aSER_dSER = 37 ahdist_aSER_dTRP = 38 ahdist_aSER_dTYR = 39 ahdist_aTYR_dARG = 40 ahdist_aTYR_dASN = 41 ahdist_aTYR_dGLY = 42 ahdist_aTYR_dHIS = 43 ahdist_aTYR_dLYS = 44 ahdist_aTYR_dSER = 45 ahdist_aTYR_dTRP = 46 ahdist_aTYR_dTYR = 47 cosBAH_off = 48 cosBAH_7 = 49 cosBAH_6i = 50 AHD_1h = 51 AHD_1i = 52 AHD_1j = 53 AHD_1k = 54 # map donor:acceptor pairs to polynomials hbtypepair2poly = { (HbDonType.PBA,HbAccType.PBA): (HbPolyType.ahdist_aGLY_dGLY,HbPolyType.cosBAH_off,HbPolyType.AHD_1j), (HbDonType.CXA,HbAccType.PBA): (HbPolyType.ahdist_aGLY_dASN,HbPolyType.cosBAH_off,HbPolyType.AHD_1j), (HbDonType.IME,HbAccType.PBA): (HbPolyType.ahdist_aGLY_dHIS,HbPolyType.cosBAH_off,HbPolyType.AHD_1j), (HbDonType.IND,HbAccType.PBA): (HbPolyType.ahdist_aGLY_dTRP,HbPolyType.cosBAH_off,HbPolyType.AHD_1j), (HbDonType.AMO,HbAccType.PBA): (HbPolyType.ahdist_aGLY_dLYS,HbPolyType.cosBAH_off,HbPolyType.AHD_1h), (HbDonType.GDE,HbAccType.PBA): (HbPolyType.ahdist_aGLY_dARG,HbPolyType.cosBAH_off,HbPolyType.AHD_1j), (HbDonType.AHX,HbAccType.PBA): (HbPolyType.ahdist_aGLY_dTYR,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.HXL,HbAccType.PBA): (HbPolyType.ahdist_aGLY_dSER,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.PBA,HbAccType.CXA): (HbPolyType.ahdist_aASN_dGLY,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.CXA,HbAccType.CXA): (HbPolyType.ahdist_aASN_dASN,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.IME,HbAccType.CXA): (HbPolyType.ahdist_aASN_dHIS,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.IND,HbAccType.CXA): (HbPolyType.ahdist_aASN_dTRP,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.AMO,HbAccType.CXA): (HbPolyType.ahdist_aASN_dLYS,HbPolyType.cosBAH_off,HbPolyType.AHD_1h), (HbDonType.GDE,HbAccType.CXA): (HbPolyType.ahdist_aASN_dARG,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.AHX,HbAccType.CXA): (HbPolyType.ahdist_aASN_dTYR,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.HXL,HbAccType.CXA): (HbPolyType.ahdist_aASN_dSER,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.PBA,HbAccType.CXL): (HbPolyType.ahdist_aASP_dGLY,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.CXA,HbAccType.CXL): (HbPolyType.ahdist_aASP_dASN,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.IME,HbAccType.CXL): (HbPolyType.ahdist_aASP_dHIS,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.IND,HbAccType.CXL): (HbPolyType.ahdist_aASP_dTRP,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.AMO,HbAccType.CXL): (HbPolyType.ahdist_aASP_dLYS,HbPolyType.cosBAH_off,HbPolyType.AHD_1h), (HbDonType.GDE,HbAccType.CXL): (HbPolyType.ahdist_aASP_dARG,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.AHX,HbAccType.CXL): (HbPolyType.ahdist_aASP_dTYR,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.HXL,HbAccType.CXL): (HbPolyType.ahdist_aASP_dSER,HbPolyType.cosBAH_off,HbPolyType.AHD_1k), (HbDonType.PBA,HbAccType.IME): (HbPolyType.ahdist_aHIS_dGLY,HbPolyType.cosBAH_7,HbPolyType.AHD_1i), (HbDonType.CXA,HbAccType.IME): (HbPolyType.ahdist_aHIS_dASN,HbPolyType.cosBAH_7,HbPolyType.AHD_1i), (HbDonType.IME,HbAccType.IME): (HbPolyType.ahdist_aHIS_dHIS,HbPolyType.cosBAH_7,HbPolyType.AHD_1h), (HbDonType.IND,HbAccType.IME): (HbPolyType.ahdist_aHIS_dTRP,HbPolyType.cosBAH_7,HbPolyType.AHD_1h), (HbDonType.AMO,HbAccType.IME): (HbPolyType.ahdist_aHIS_dLYS,HbPolyType.cosBAH_7,HbPolyType.AHD_1i), (HbDonType.GDE,HbAccType.IME): (HbPolyType.ahdist_aHIS_dARG,HbPolyType.cosBAH_7,HbPolyType.AHD_1h), (HbDonType.AHX,HbAccType.IME): (HbPolyType.ahdist_aHIS_dTYR,HbPolyType.cosBAH_7,HbPolyType.AHD_1i), (HbDonType.HXL,HbAccType.IME): (HbPolyType.ahdist_aHIS_dSER,HbPolyType.cosBAH_7,HbPolyType.AHD_1i), (HbDonType.PBA,HbAccType.AHX): (HbPolyType.ahdist_aTYR_dGLY,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.CXA,HbAccType.AHX): (HbPolyType.ahdist_aTYR_dASN,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.IME,HbAccType.AHX): (HbPolyType.ahdist_aTYR_dHIS,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.IND,HbAccType.AHX): (HbPolyType.ahdist_aTYR_dTRP,HbPolyType.cosBAH_6i,HbPolyType.AHD_1h), (HbDonType.AMO,HbAccType.AHX): (HbPolyType.ahdist_aTYR_dLYS,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.GDE,HbAccType.AHX): (HbPolyType.ahdist_aTYR_dARG,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.AHX,HbAccType.AHX): (HbPolyType.ahdist_aTYR_dTYR,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.HXL,HbAccType.AHX): (HbPolyType.ahdist_aTYR_dSER,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.PBA,HbAccType.HXL): (HbPolyType.ahdist_aSER_dGLY,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.CXA,HbAccType.HXL): (HbPolyType.ahdist_aSER_dASN,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.IME,HbAccType.HXL): (HbPolyType.ahdist_aSER_dHIS,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.IND,HbAccType.HXL): (HbPolyType.ahdist_aSER_dTRP,HbPolyType.cosBAH_6i,HbPolyType.AHD_1h), (HbDonType.AMO,HbAccType.HXL): (HbPolyType.ahdist_aSER_dLYS,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.GDE,HbAccType.HXL): (HbPolyType.ahdist_aSER_dARG,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.AHX,HbAccType.HXL): (HbPolyType.ahdist_aSER_dTYR,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), (HbDonType.HXL,HbAccType.HXL): (HbPolyType.ahdist_aSER_dSER,HbPolyType.cosBAH_6i,HbPolyType.AHD_1i), } # polynomials are triplets, (x_min, x_max), (y[x<x_min],y[x>x_max]), (c_9,...,c_0) hbpolytype2coeffs = { # Parameters imported from rosetta sp2_elec_params @v2017.48-dev59886 HbPolyType.ahdist_aASN_dARG: ((0.7019094761929999, 2.86820307153,),(1.1, 1.1,),( 0.58376113, -9.29345473, 64.86270904, -260.3946711, 661.43138077, -1098.01378958, 1183.58371466, -790.82929582, 291.33125475, -43.01629727,)), HbPolyType.ahdist_aASN_dASN: ((0.625841094801, 2.75107708444,),(1.1, 1.1,),( -1.31243015, 18.6745072, -112.63858313, 373.32878091, -734.99145504, 861.38324861, -556.21026097, 143.5626977, 20.03238394, -11.52167705,)), HbPolyType.ahdist_aASN_dGLY: ((0.7477341047139999, 2.6796350782799996,),(1.1, 1.1,),( -1.61294554, 23.3150793, -144.11313069, 496.13575, -1037.83809166, 1348.76826073, -1065.14368678, 473.89008925, -100.41142701, 7.44453515,)), HbPolyType.ahdist_aASN_dHIS: ((0.344789524346, 2.8303582266000005,),(1.1, 1.1,),( -0.2657122, 4.1073775, -26.9099632, 97.10486507, -209.96002602, 277.33057268, -218.74766996, 97.42852213, -24.07382402, 3.73962807,)), HbPolyType.ahdist_aASN_dLYS: ((0.542905671869, 2.45259389314,),(1.1, 1.1,),( 1.38531754, -18.48733797, 106.14444613, -344.70585054, 698.91577956, -917.0879402, 775.32787908, -403.09588787, 113.65054778, -11.66516403,)), HbPolyType.ahdist_aASN_dSER: ((1.0812774602500002, 2.6832123582599996,),(1.1, 1.1,),( -3.51524353, 47.54032873, -254.40168577, 617.84606386, -255.49935027, -2361.56230539, 6426.85797934, -7760.4403891, 4694.08106855, -1149.83549068,)), HbPolyType.ahdist_aASN_dTRP: ((0.6689984999999999, 3.0704254,),(1.1, 1.1,),( -0.5284840422, 8.3510150838, -56.4100479414, 212.4884326254, -488.3178610608, 703.7762350506, -628.9936994633999, 331.4294356146, -93.265817571, 11.9691623698,)), HbPolyType.ahdist_aASN_dTYR: ((1.08950268805, 2.6887046709400004,),(1.1, 1.1,),( -4.4488705, 63.27696281, -371.44187037, 1121.71921621, -1638.11394306, 142.99988401, 3436.65879147, -5496.07011787, 3709.30505237, -962.79669688,)), HbPolyType.ahdist_aASP_dARG: ((0.8100404642229999, 2.9851230124799994,),(1.1, 1.1,),( -0.66430344, 10.41343145, -70.12656205, 265.12578414, -617.05849171, 911.39378582, -847.25013928, 472.09090981, -141.71513167, 18.57721132,)), HbPolyType.ahdist_aASP_dASN: ((1.05401125073, 3.11129675908,),(1.1, 1.1,),( 0.02090728, -0.24144928, -0.19578075, 16.80904547, -117.70216251, 407.18551288, -809.95195924, 939.83137947, -593.94527692, 159.57610528,)), HbPolyType.ahdist_aASP_dGLY: ((0.886260952629, 2.66843608743,),(1.1, 1.1,),( -7.00699267, 107.33021779, -713.45752385, 2694.43092298, -6353.05100287, 9667.94098394, -9461.9261027, 5721.0086877, -1933.97818198, 279.47763789,)), HbPolyType.ahdist_aASP_dHIS: ((1.03597611139, 2.78208509117,),(1.1, 1.1,),( -1.34823406, 17.08925926, -78.75087193, 106.32795459, 400.18459698, -2041.04320193, 4033.83557387, -4239.60530204, 2324.00877252, -519.38410941,)), HbPolyType.ahdist_aASP_dLYS: ((0.97789485082, 2.50496946108,),(1.1, 1.1,),( -0.41300315, 6.59243438, -44.44525308, 163.11796012, -351.2307798, 443.2463146, -297.84582856, 62.38600547, 33.77496227, -14.11652182,)), HbPolyType.ahdist_aASP_dSER: ((0.542905671869, 2.45259389314,),(1.1, 1.1,),( 1.38531754, -18.48733797, 106.14444613, -344.70585054, 698.91577956, -917.0879402, 775.32787908, -403.09588787, 113.65054778, -11.66516403,)), HbPolyType.ahdist_aASP_dTRP: ((0.419155746414, 3.0486938610500003,),(1.1, 1.1,),( -0.24563471, 3.85598551, -25.75176874, 95.36525025, -214.13175785, 299.76133553, -259.0691378, 132.06975835, -37.15612683, 5.60445773,)), HbPolyType.ahdist_aASP_dTYR: ((1.01057521468, 2.7207545786900003,),(1.1, 1.1,),( -0.15808672, -10.21398871, 178.80080949, -1238.0583801, 4736.25248274, -11071.96777725, 16239.07550047, -14593.21092621, 7335.66765017, -1575.08145078,)), HbPolyType.ahdist_aGLY_dARG: ((0.499016667857, 2.9377031027599996,),(1.1, 1.1,),( -0.15923533, 2.5526639, -17.38788803, 65.71046957, -151.13491186, 218.78048387, -199.15882919, 110.56568974, -35.95143745, 6.47580213,)), HbPolyType.ahdist_aGLY_dASN: ((0.7194388032060001, 2.9303772333599998,),(1.1, 1.1,),( -1.40718342, 23.65929694, -172.97144348, 720.64417348, -1882.85420815, 3194.87197776, -3515.52467458, 2415.75238278, -941.47705161, 159.84784277,)), HbPolyType.ahdist_aGLY_dGLY: ((1.38403812683, 2.9981039433,),(1.1, 1.1,),( -0.5307601, 6.47949946, -22.39522814, -55.14303544, 708.30945242, -2619.49318162, 5227.8805795, -6043.31211632, 3806.04676175, -1007.66024144,)), HbPolyType.ahdist_aGLY_dHIS: ((0.47406840932899996, 2.9234200830400003,),(1.1, 1.1,),( -0.12881679, 1.933838, -12.03134888, 39.92691227, -75.41519959, 78.87968016, -37.82769801, -0.13178679, 4.50193019, 0.45408359,)), HbPolyType.ahdist_aGLY_dLYS: ((0.545347533475, 2.42624380351,),(1.1, 1.1,),( -0.22921901, 2.07015714, -6.2947417, 0.66645697, 45.21805416, -130.26668981, 176.32401031, -126.68226346, 43.96744431, -4.40105281,)), HbPolyType.ahdist_aGLY_dSER: ((1.2803349239700001, 2.2465996077400003,),(1.1, 1.1,),( 6.72508613, -86.98495585, 454.18518444, -1119.89141452, 715.624663, 3172.36852982, -9455.49113097, 11797.38766934, -7363.28302948, 1885.50119665,)), HbPolyType.ahdist_aGLY_dTRP: ((0.686512740494, 3.02901351815,),(1.1, 1.1,),( -0.1051487, 1.41597708, -7.42149173, 17.31830704, -6.98293652, -54.76605063, 130.95272289, -132.77575305, 62.75460448, -9.89110842,)), HbPolyType.ahdist_aGLY_dTYR: ((1.28894687639, 2.26335316892,),(1.1, 1.1,),( 13.84536925, -169.40579865, 893.79467505, -2670.60617561, 5016.46234701, -6293.79378818, 5585.1049063, -3683.50722701, 1709.48661405, -399.5712153,)), HbPolyType.ahdist_aHIS_dARG: ((0.8967400957230001, 2.96809434226,),(1.1, 1.1,),( 0.43460495, -10.52727665, 103.16979807, -551.42887412, 1793.25378923, -3701.08304991, 4861.05155388, -3922.4285529, 1763.82137881, -335.43441944,)), HbPolyType.ahdist_aHIS_dASN: ((0.887120931718, 2.59166903153,),(1.1, 1.1,),( -3.50289894, 54.42813924, -368.14395507, 1418.90186454, -3425.60485859, 5360.92334837, -5428.54462336, 3424.68800187, -1221.49631986, 189.27122436,)), HbPolyType.ahdist_aHIS_dGLY: ((1.01629363411, 2.58523052904,),(1.1, 1.1,),( -1.68095217, 21.31894078, -107.72203494, 251.81021758, -134.07465831, -707.64527046, 1894.6282743, -2156.85951846, 1216.83585872, -275.48078944,)), HbPolyType.ahdist_aHIS_dHIS: ((0.9773010778919999, 2.72533796329,),(1.1, 1.1,),( -2.33350626, 35.66072412, -233.98966111, 859.13714961, -1925.30958567, 2685.35293578, -2257.48067507, 1021.49796136, -169.36082523, -12.1348055,)), HbPolyType.ahdist_aHIS_dLYS: ((0.7080936539849999, 2.47191718632,),(1.1, 1.1,),( -1.88479369, 28.38084382, -185.74039957, 690.81875917, -1605.11404391, 2414.83545623, -2355.9723201, 1442.24496229, -506.45880637, 79.47512505,)), HbPolyType.ahdist_aHIS_dSER: ((0.90846809159, 2.5477956147,),(1.1, 1.1,),( -0.92004641, 15.91841533, -117.83979251, 488.22211296, -1244.13047376, 2017.43704053, -2076.04468019, 1302.42621488, -451.29138643, 67.15812575,)), HbPolyType.ahdist_aHIS_dTRP: ((0.991999676806, 2.81296584506,),(1.1, 1.1,),( -1.29358587, 19.97152857, -131.89796017, 485.29199356, -1084.0466445, 1497.3352889, -1234.58042682, 535.8048197, -75.58951691, -9.91148332,)), HbPolyType.ahdist_aHIS_dTYR: ((0.882661836357, 2.5469016429900004,),(1.1, 1.1,),( -6.94700143, 109.07997256, -747.64035726, 2929.83959536, -7220.15788571, 11583.34170519, -12078.443492, 7881.85479715, -2918.19482068, 468.23988622,)), HbPolyType.ahdist_aSER_dARG: ((1.0204658147399999, 2.8899566041900004,),(1.1, 1.1,),( 0.33887327, -7.54511361, 70.87316645, -371.88263665, 1206.67454443, -2516.82084076, 3379.45432693, -2819.73384601, 1325.33307517, -265.54533008,)), HbPolyType.ahdist_aSER_dASN: ((1.01393052233, 3.0024434159299997,),(1.1, 1.1,),( 0.37012361, -7.46486204, 64.85775924, -318.6047209, 974.66322243, -1924.37334018, 2451.63840629, -1943.1915675, 867.07870559, -163.83771761,)), HbPolyType.ahdist_aSER_dGLY: ((1.3856562156299999, 2.74160605537,),(1.1, 1.1,),( -1.32847415, 22.67528654, -172.53450064, 770.79034865, -2233.48829652, 4354.38807288, -5697.35144236, 4803.38686157, -2361.48028857, 518.28202382,)), HbPolyType.ahdist_aSER_dHIS: ((0.550992321207, 2.68549261999,),(1.1, 1.1,),( -1.98041793, 29.59668639, -190.36751773, 688.43324385, -1534.68894765, 2175.66568976, -1952.07622113, 1066.28943929, -324.23381388, 43.41006168,)), HbPolyType.ahdist_aSER_dLYS: ((0.8603189393170001, 2.77729502744,),(1.1, 1.1,),( 0.90884741, -17.24690746, 141.78469099, -661.85989315, 1929.7674992, -3636.43392779, 4419.00727923, -3332.43482061, 1410.78913266, -253.53829424,)), HbPolyType.ahdist_aSER_dSER: ((1.10866545921, 2.61727781204,),(1.1, 1.1,),( -0.38264308, 4.41779675, -10.7016645, -81.91314845, 668.91174735, -2187.50684758, 3983.56103269, -4213.32320546, 2418.41531442, -580.28918569,)), HbPolyType.ahdist_aSER_dTRP: ((1.4092077245899999, 2.8066121197099996,),(1.1, 1.1,),( 0.73762477, -11.70741276, 73.05154232, -205.00144794, 89.58794368, 1082.94541375, -3343.98293188, 4601.70815729, -3178.53568678, 896.59487831,)), HbPolyType.ahdist_aSER_dTYR: ((1.10773547919, 2.60403567341,),(1.1, 1.1,),( -1.13249925, 14.66643161, -69.01708791, 93.96846742, 380.56063898, -1984.56675689, 4074.08891127, -4492.76927139, 2613.13168054, -627.71933508,)), HbPolyType.ahdist_aTYR_dARG: ((1.05581400627, 2.85499888099,),(1.1, 1.1,),( -0.30396592, 5.30288548, -39.75788579, 167.5416547, -435.15958911, 716.52357586, -735.95195083, 439.76284677, -130.00400085, 13.23827556,)), HbPolyType.ahdist_aTYR_dASN: ((1.0994919065200002, 2.8400869077900004,),(1.1, 1.1,),( 0.33548259, -3.5890451, 8.97769025, 48.1492734, -400.5983616, 1269.89613211, -2238.03101675, 2298.33009115, -1290.42961162, 308.43185147,)), HbPolyType.ahdist_aTYR_dGLY: ((1.36546155066, 2.7303075916400004,),(1.1, 1.1,),( -1.55312915, 18.62092487, -70.91365499, -41.83066505, 1248.88835245, -4719.81948329, 9186.09528168, -10266.11434548, 6266.21959533, -1622.19652457,)), HbPolyType.ahdist_aTYR_dHIS: ((0.5955982461899999, 2.6643551317500003,),(1.1, 1.1,),( -0.47442788, 7.16629863, -46.71287553, 171.46128947, -388.17484011, 558.45202337, -506.35587481, 276.46237273, -83.52554392, 12.05709329,)), HbPolyType.ahdist_aTYR_dLYS: ((0.7978598238760001, 2.7620933782,),(1.1, 1.1,),( -0.20201464, 1.69684984, 0.27677515, -55.05786347, 286.29918332, -725.92372531, 1054.771746, -889.33602341, 401.11342256, -73.02221189,)), HbPolyType.ahdist_aTYR_dSER: ((0.7083554962559999, 2.7032011990599996,),(1.1, 1.1,),( -0.70764192, 11.67978065, -82.80447482, 329.83401367, -810.58976486, 1269.57613941, -1261.04047117, 761.72890446, -254.37526011, 37.24301861,)), HbPolyType.ahdist_aTYR_dTRP: ((1.10934023051, 2.8819112108,),(1.1, 1.1,),( -11.58453967, 204.88308091, -1589.77384548, 7100.84791905, -20113.61354433, 37457.83646055, -45850.02969172, 35559.8805122, -15854.78726237, 3098.04931146,)), HbPolyType.ahdist_aTYR_dTYR: ((1.1105954899400001, 2.60081798685,),(1.1, 1.1,),( -1.63120628, 19.48493187, -81.0332905, 56.80517706, 687.42717782, -2842.77799908, 5385.52231471, -5656.74159307, 3178.83470588, -744.70042777,)), HbPolyType.AHD_1h: ((1.76555274367, 3.1416,),(1.1, 1.1,),( 0.62725838, -9.98558225, 59.39060071, -120.82930213, -333.26536028, 2603.13082592, -6895.51207142, 9651.25238056, -7127.13394872, 2194.77244026,)), HbPolyType.AHD_1i: ((1.59914724347, 3.1416,),(1.1, 1.1,),( -0.18888801, 3.48241679, -25.65508662, 89.57085435, -95.91708218, -367.93452341, 1589.6904702, -2662.3582135, 2184.40194483, -723.28383545,)), HbPolyType.AHD_1j: ((1.1435646388, 3.1416,),(1.1, 1.1,),( 0.47683259, -9.54524724, 83.62557693, -420.55867774, 1337.19354878, -2786.26265686, 3803.178227, -3278.62879901, 1619.04116204, -347.50157909,)), HbPolyType.AHD_1k: ((1.15651981164, 3.1416,),(1.1, 1.1,),( -0.10757999, 2.0276542, -16.51949978, 75.83866839, -214.18025678, 380.55117567, -415.47847283, 255.66998474, -69.94662165, 3.21313428,)), HbPolyType.cosBAH_off: ((-1234.0, 1.1,),(1.1, 1.1,),( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,)), HbPolyType.cosBAH_6i: ((-0.23538144897100002, 1.1,),(1.1, 1.1,),( -0.822093, -3.75364636, 46.88852157, -129.5440564, 146.69151428, -67.60598792, 2.91683129, 9.26673173, -3.84488178, 0.05706659,)), HbPolyType.cosBAH_7: ((-0.019373850666900002, 1.1,),(1.1, 1.1,),( 0.0, -27.942923450028, 136.039920253368, -268.06959056747, 275.400462507919, -153.502076215949, 39.741591385461, 0.693861510121, -3.885952320499, 1.024765090788892)), }
RFdiffusion-main
scoring.py
import torch import numpy as np import random from chemical import INIT_CRDS from icecream import ic def th_min_angle(start, end, radians=False): """ Finds the angle you would add to <start> in order to get to <end> on the shortest path. """ a,b,c = (np.pi, 2*np.pi, 3*np.pi) if radians else (180, 360, 540) shortest_angle = ((((end - start) % b) + c) % b) - a return shortest_angle def th_interpolate_angles(start, end, T, n_diffuse,mindiff=None, radians=True): """ """ # find the minimum angle to add to get from start to end angle_diffs = th_min_angle(start, end, radians=radians) if mindiff is not None: assert torch.sum(mindiff.flatten()-angle_diffs) == 0. if n_diffuse is None: # default is to diffuse for max steps n_diffuse = torch.full((len(angle_diffs)), T) interps = [] for i,diff in enumerate(angle_diffs): N = int(n_diffuse[i]) actual_interp = torch.linspace(start[i], start[i]+diff, N) whole_interp = torch.full((T,), float(start[i]+diff)) temp=torch.clone(whole_interp) whole_interp[:N] = actual_interp interps.append(whole_interp) return torch.stack(interps, dim=0) def th_interpolate_angle_single(start, end, step, T, mindiff=None, radians=True): """ """ # find the minimum angle to add to get from start to end angle_diffs = th_min_angle(start, end, radians=radians) if mindiff is not None: assert torch.sum(mindiff.flatten()-angle_diffs) == 0. # linearly interpolate between x = [0, T-1], y = [start, start + diff] x_range = T-1 interps = step / x_range * angle_diffs + start return interps def get_aa_schedule(T, L, nsteps=100): """ Returns the steps t when each amino acid should be decoded, as well as how many steps that amino acids chi angles will be diffused Parameters: T (int, required): Total number of steps we are decoding the sequence over L (int, required): Length of protein sequence nsteps (int, optional): Number of steps over the course of which to decode the amino acids Returns: three items decode_times (list): List of times t when the positions in <decode_order> should be decoded decode_order (list): List of lists, each element containing which positions are going to be decoded at the corresponding time in <decode_times> idx2diffusion_steps (np.array): Array mapping the index of the residue to how many diffusion steps it will require """ # nsteps can't be more than T or more than length of protein if (nsteps > T) or (nsteps > L): nsteps = min([T,L]) decode_order = [[a] for a in range(L)] random.shuffle(decode_order) while len(decode_order) > nsteps: # pop an element and then add those positions randomly to some other step tmp_seqpos = decode_order.pop() decode_order[random.randint(0,len(decode_order)-1)] += tmp_seqpos random.shuffle(decode_order) decode_times = np.arange(nsteps)+1 # now given decode times, calculate number of diffusion steps each position gets aa_masks = np.full((200,L), False) idx2diffusion_steps = np.full((L,),float(np.nan)) for i,t in enumerate(decode_times): decode_pos = decode_order[i] # positions to be decoded at this step for j,pos in enumerate(decode_pos): # calculate number of diffusion steps this residue gets idx2diffusion_steps[pos] = int(t) aa_masks[t,pos] = True aa_masks = np.cumsum(aa_masks, axis=0) return decode_times, decode_order, idx2diffusion_steps, ~(aa_masks.astype(bool)) #################### ### for SecStruc ### #################### def ss_to_tensor(ss_dict): """ Function to convert ss files to indexed tensors 0 = Helix 1 = Strand 2 = Loop 3 = Mask/unknown 4 = idx for pdb """ ss_conv = {'H':0,'E':1,'L':2} ss_int = np.array([int(ss_conv[i]) for i in ss_dict['ss']]) return ss_int def mask_ss(ss, min_mask = 0, max_mask = 0.75): """ Function to take ss array, find the junctions, and randomly mask these until a random proportion (up to 75%) is masked Input: numpy array of ss (H=0,E=1,L=2,mask=3) output: tensor with some proportion of junctions masked """ mask_prop = random.uniform(min_mask, max_mask) transitions = np.where(ss[:-1] - ss[1:] != 0)[0] #gets last index of each block of ss counter = 0 #TODO think about masking whole ss elements while len(ss[ss == 3])/len(ss) < mask_prop and counter < 100: #very hacky - do better try: width = random.randint(1,9) start = random.choice(transitions) offset = random.randint(-8,1) ss[start+offset:start+offset+width] = 3 counter += 1 except: counter += 1 ss = torch.tensor(ss) mask = torch.where(ss == 3, True, False) ss = torch.nn.functional.one_hot(ss, num_classes=4) return ss, mask def construct_block_adj_matrix( sstruct, xyz, nan_mask, cutoff=6, include_loops=False ): ''' Given a sstruct specification and backbone coordinates, build a block adjacency matrix. Input: sstruct (torch.FloatTensor): (L) length tensor with numeric encoding of sstruct at each position xyz (torch.FloatTensor): (L,3,3) tensor of Cartesian coordinates of backbone N,Ca,C atoms cutoff (float): The Cb distance cutoff under which residue pairs are considered adjacent By eye, Nate thinks 6A is a good Cb distance cutoff Output: block_adj (torch.FloatTensor): (L,L) boolean matrix where adjacent secondary structure contacts are 1 ''' # Remove nans at this stage, as ss doesn't consider nans xyz_nonan = xyz[nan_mask] L = xyz_nonan.shape[0] assert L == sstruct.shape[0] # three anchor atoms N = xyz_nonan[:,0] Ca = xyz_nonan[:,1] C = xyz_nonan[:,2] # recreate Cb given N,Ca,C Cb = generate_Cbeta(N,Ca,C) dist = get_pair_dist(Cb,Cb) # [L,L] dist[torch.isnan(dist)] = 999.9 assert torch.sum(torch.isnan(dist)) == 0 dist += 999.9*torch.eye(L,device=xyz.device) # Now we have dist matrix and sstruct specification, turn this into a block adjacency matrix # First: Construct a list of segments and the index at which they begin and end in_segment = True segments = [] begin = -1 end = -1 # need to expand ss out to size L for i in range(sstruct.shape[0]): # Starting edge case if i == 0: begin = 0 continue if not sstruct[i] == sstruct[i-1]: end = i segments.append( (sstruct[i-1], begin, end) ) begin = i # Ending edge case: last segment is length one if not end == sstruct.shape[0]: segments.append( (sstruct[-1], begin, sstruct.shape[0]) ) # Second: Using segments and dgram, determine adjacent blocks block_adj = torch.zeros_like(dist) for i in range(len(segments)): curr_segment = segments[i] if curr_segment[0] == 2 and not include_loops: continue begin_i = curr_segment[1] end_i = curr_segment[2] for j in range(i+1, len(segments)): j_segment = segments[j] if j_segment[0] == 2 and not include_loops: continue begin_j = j_segment[1] end_j = j_segment[2] if torch.any( dist[begin_i:end_i, begin_j:end_j] < cutoff ): # Matrix is symmetic block_adj[begin_i:end_i, begin_j:end_j] = torch.ones(end_i - begin_i, end_j - begin_j) block_adj[begin_j:end_j, begin_i:end_i] = torch.ones(end_j - begin_j, end_i - begin_i) return block_adj def get_pair_dist(a, b): """calculate pair distances between two sets of points Parameters ---------- a,b : pytorch tensors of shape [batch,nres,3] store Cartesian coordinates of two sets of atoms Returns ------- dist : pytorch tensor of shape [batch,nres,nres] stores paitwise distances between atoms in a and b """ dist = torch.cdist(a, b, p=2) return dist
RFdiffusion-main
diff_util.py
import torch import torch.nn as nn import torch.nn.functional as F import math from opt_einsum import contract as einsum from util_module import init_lecun_normal class FeedForwardLayer(nn.Module): def __init__(self, d_model, r_ff, p_drop=0.1): super(FeedForwardLayer, self).__init__() self.norm = nn.LayerNorm(d_model) self.linear1 = nn.Linear(d_model, d_model*r_ff) self.dropout = nn.Dropout(p_drop) self.linear2 = nn.Linear(d_model*r_ff, d_model) self.reset_parameter() def reset_parameter(self): # initialize linear layer right before ReLu: He initializer (kaiming normal) nn.init.kaiming_normal_(self.linear1.weight, nonlinearity='relu') nn.init.zeros_(self.linear1.bias) # initialize linear layer right before residual connection: zero initialize nn.init.zeros_(self.linear2.weight) nn.init.zeros_(self.linear2.bias) def forward(self, src): src = self.norm(src) src = self.linear2(self.dropout(F.relu_(self.linear1(src)))) return src class Attention(nn.Module): # calculate multi-head attention def __init__(self, d_query, d_key, n_head, d_hidden, d_out, p_drop=0.1): super(Attention, self).__init__() self.h = n_head self.dim = d_hidden # self.to_q = nn.Linear(d_query, n_head*d_hidden, bias=False) self.to_k = nn.Linear(d_key, n_head*d_hidden, bias=False) self.to_v = nn.Linear(d_key, n_head*d_hidden, bias=False) # self.to_out = nn.Linear(n_head*d_hidden, d_out) self.scaling = 1/math.sqrt(d_hidden) # # initialize all parameters properly self.reset_parameter() def reset_parameter(self): # query/key/value projection: Glorot uniform / Xavier uniform nn.init.xavier_uniform_(self.to_q.weight) nn.init.xavier_uniform_(self.to_k.weight) nn.init.xavier_uniform_(self.to_v.weight) # to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining nn.init.zeros_(self.to_out.weight) nn.init.zeros_(self.to_out.bias) def forward(self, query, key, value): B, Q = query.shape[:2] B, K = key.shape[:2] # query = self.to_q(query).reshape(B, Q, self.h, self.dim) key = self.to_k(key).reshape(B, K, self.h, self.dim) value = self.to_v(value).reshape(B, K, self.h, self.dim) # query = query * self.scaling attn = einsum('bqhd,bkhd->bhqk', query, key) attn = F.softmax(attn, dim=-1) # out = einsum('bhqk,bkhd->bqhd', attn, value) out = out.reshape(B, Q, self.h*self.dim) # out = self.to_out(out) return out class AttentionWithBias(nn.Module): def __init__(self, d_in=256, d_bias=128, n_head=8, d_hidden=32): super(AttentionWithBias, self).__init__() self.norm_in = nn.LayerNorm(d_in) self.norm_bias = nn.LayerNorm(d_bias) # self.to_q = nn.Linear(d_in, n_head*d_hidden, bias=False) self.to_k = nn.Linear(d_in, n_head*d_hidden, bias=False) self.to_v = nn.Linear(d_in, n_head*d_hidden, bias=False) self.to_b = nn.Linear(d_bias, n_head, bias=False) self.to_g = nn.Linear(d_in, n_head*d_hidden) self.to_out = nn.Linear(n_head*d_hidden, d_in) self.scaling = 1/math.sqrt(d_hidden) self.h = n_head self.dim = d_hidden self.reset_parameter() def reset_parameter(self): # query/key/value projection: Glorot uniform / Xavier uniform nn.init.xavier_uniform_(self.to_q.weight) nn.init.xavier_uniform_(self.to_k.weight) nn.init.xavier_uniform_(self.to_v.weight) # bias: normal distribution self.to_b = init_lecun_normal(self.to_b) # gating: zero weights, one biases (mostly open gate at the begining) nn.init.zeros_(self.to_g.weight) nn.init.ones_(self.to_g.bias) # to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining nn.init.zeros_(self.to_out.weight) nn.init.zeros_(self.to_out.bias) def forward(self, x, bias): B, L = x.shape[:2] # x = self.norm_in(x) bias = self.norm_bias(bias) # query = self.to_q(x).reshape(B, L, self.h, self.dim) key = self.to_k(x).reshape(B, L, self.h, self.dim) value = self.to_v(x).reshape(B, L, self.h, self.dim) bias = self.to_b(bias) # (B, L, L, h) gate = torch.sigmoid(self.to_g(x)) # key = key * self.scaling attn = einsum('bqhd,bkhd->bqkh', query, key) attn = attn + bias attn = F.softmax(attn, dim=-2) # out = einsum('bqkh,bkhd->bqhd', attn, value).reshape(B, L, -1) out = gate * out # out = self.to_out(out) return out # MSA Attention (row/column) from AlphaFold architecture class SequenceWeight(nn.Module): def __init__(self, d_msa, n_head, d_hidden, p_drop=0.1): super(SequenceWeight, self).__init__() self.h = n_head self.dim = d_hidden self.scale = 1.0 / math.sqrt(self.dim) self.to_query = nn.Linear(d_msa, n_head*d_hidden) self.to_key = nn.Linear(d_msa, n_head*d_hidden) self.dropout = nn.Dropout(p_drop) self.reset_parameter() def reset_parameter(self): # query/key/value projection: Glorot uniform / Xavier uniform nn.init.xavier_uniform_(self.to_query.weight) nn.init.xavier_uniform_(self.to_key.weight) def forward(self, msa): B, N, L = msa.shape[:3] tar_seq = msa[:,0] q = self.to_query(tar_seq).view(B, 1, L, self.h, self.dim) k = self.to_key(msa).view(B, N, L, self.h, self.dim) q = q * self.scale attn = einsum('bqihd,bkihd->bkihq', q, k) attn = F.softmax(attn, dim=1) return self.dropout(attn) class MSARowAttentionWithBias(nn.Module): def __init__(self, d_msa=256, d_pair=128, n_head=8, d_hidden=32): super(MSARowAttentionWithBias, self).__init__() self.norm_msa = nn.LayerNorm(d_msa) self.norm_pair = nn.LayerNorm(d_pair) # self.seq_weight = SequenceWeight(d_msa, n_head, d_hidden, p_drop=0.1) self.to_q = nn.Linear(d_msa, n_head*d_hidden, bias=False) self.to_k = nn.Linear(d_msa, n_head*d_hidden, bias=False) self.to_v = nn.Linear(d_msa, n_head*d_hidden, bias=False) self.to_b = nn.Linear(d_pair, n_head, bias=False) self.to_g = nn.Linear(d_msa, n_head*d_hidden) self.to_out = nn.Linear(n_head*d_hidden, d_msa) self.scaling = 1/math.sqrt(d_hidden) self.h = n_head self.dim = d_hidden self.reset_parameter() def reset_parameter(self): # query/key/value projection: Glorot uniform / Xavier uniform nn.init.xavier_uniform_(self.to_q.weight) nn.init.xavier_uniform_(self.to_k.weight) nn.init.xavier_uniform_(self.to_v.weight) # bias: normal distribution self.to_b = init_lecun_normal(self.to_b) # gating: zero weights, one biases (mostly open gate at the begining) nn.init.zeros_(self.to_g.weight) nn.init.ones_(self.to_g.bias) # to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining nn.init.zeros_(self.to_out.weight) nn.init.zeros_(self.to_out.bias) def forward(self, msa, pair): # TODO: make this as tied-attention B, N, L = msa.shape[:3] # msa = self.norm_msa(msa) pair = self.norm_pair(pair) # seq_weight = self.seq_weight(msa) # (B, N, L, h, 1) query = self.to_q(msa).reshape(B, N, L, self.h, self.dim) key = self.to_k(msa).reshape(B, N, L, self.h, self.dim) value = self.to_v(msa).reshape(B, N, L, self.h, self.dim) bias = self.to_b(pair) # (B, L, L, h) gate = torch.sigmoid(self.to_g(msa)) # query = query * seq_weight.expand(-1, -1, -1, -1, self.dim) key = key * self.scaling attn = einsum('bsqhd,bskhd->bqkh', query, key) attn = attn + bias attn = F.softmax(attn, dim=-2) # out = einsum('bqkh,bskhd->bsqhd', attn, value).reshape(B, N, L, -1) out = gate * out # out = self.to_out(out) return out class MSAColAttention(nn.Module): def __init__(self, d_msa=256, n_head=8, d_hidden=32): super(MSAColAttention, self).__init__() self.norm_msa = nn.LayerNorm(d_msa) # self.to_q = nn.Linear(d_msa, n_head*d_hidden, bias=False) self.to_k = nn.Linear(d_msa, n_head*d_hidden, bias=False) self.to_v = nn.Linear(d_msa, n_head*d_hidden, bias=False) self.to_g = nn.Linear(d_msa, n_head*d_hidden) self.to_out = nn.Linear(n_head*d_hidden, d_msa) self.scaling = 1/math.sqrt(d_hidden) self.h = n_head self.dim = d_hidden self.reset_parameter() def reset_parameter(self): # query/key/value projection: Glorot uniform / Xavier uniform nn.init.xavier_uniform_(self.to_q.weight) nn.init.xavier_uniform_(self.to_k.weight) nn.init.xavier_uniform_(self.to_v.weight) # gating: zero weights, one biases (mostly open gate at the begining) nn.init.zeros_(self.to_g.weight) nn.init.ones_(self.to_g.bias) # to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining nn.init.zeros_(self.to_out.weight) nn.init.zeros_(self.to_out.bias) def forward(self, msa): B, N, L = msa.shape[:3] # msa = self.norm_msa(msa) # query = self.to_q(msa).reshape(B, N, L, self.h, self.dim) key = self.to_k(msa).reshape(B, N, L, self.h, self.dim) value = self.to_v(msa).reshape(B, N, L, self.h, self.dim) gate = torch.sigmoid(self.to_g(msa)) # query = query * self.scaling attn = einsum('bqihd,bkihd->bihqk', query, key) attn = F.softmax(attn, dim=-1) # out = einsum('bihqk,bkihd->bqihd', attn, value).reshape(B, N, L, -1) out = gate * out # out = self.to_out(out) return out class MSAColGlobalAttention(nn.Module): def __init__(self, d_msa=64, n_head=8, d_hidden=8): super(MSAColGlobalAttention, self).__init__() self.norm_msa = nn.LayerNorm(d_msa) # self.to_q = nn.Linear(d_msa, n_head*d_hidden, bias=False) self.to_k = nn.Linear(d_msa, d_hidden, bias=False) self.to_v = nn.Linear(d_msa, d_hidden, bias=False) self.to_g = nn.Linear(d_msa, n_head*d_hidden) self.to_out = nn.Linear(n_head*d_hidden, d_msa) self.scaling = 1/math.sqrt(d_hidden) self.h = n_head self.dim = d_hidden self.reset_parameter() def reset_parameter(self): # query/key/value projection: Glorot uniform / Xavier uniform nn.init.xavier_uniform_(self.to_q.weight) nn.init.xavier_uniform_(self.to_k.weight) nn.init.xavier_uniform_(self.to_v.weight) # gating: zero weights, one biases (mostly open gate at the begining) nn.init.zeros_(self.to_g.weight) nn.init.ones_(self.to_g.bias) # to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining nn.init.zeros_(self.to_out.weight) nn.init.zeros_(self.to_out.bias) def forward(self, msa): B, N, L = msa.shape[:3] # msa = self.norm_msa(msa) # query = self.to_q(msa).reshape(B, N, L, self.h, self.dim) query = query.mean(dim=1) # (B, L, h, dim) key = self.to_k(msa) # (B, N, L, dim) value = self.to_v(msa) # (B, N, L, dim) gate = torch.sigmoid(self.to_g(msa)) # (B, N, L, h*dim) # query = query * self.scaling attn = einsum('bihd,bkid->bihk', query, key) # (B, L, h, N) attn = F.softmax(attn, dim=-1) # out = einsum('bihk,bkid->bihd', attn, value).reshape(B, 1, L, -1) # (B, 1, L, h*dim) out = gate * out # (B, N, L, h*dim) # out = self.to_out(out) return out # Instead of triangle attention, use Tied axail attention with bias from coordinates..? class BiasedAxialAttention(nn.Module): def __init__(self, d_pair, d_bias, n_head, d_hidden, p_drop=0.1, is_row=True): super(BiasedAxialAttention, self).__init__() # self.is_row = is_row self.norm_pair = nn.LayerNorm(d_pair) self.norm_bias = nn.LayerNorm(d_bias) self.to_q = nn.Linear(d_pair, n_head*d_hidden, bias=False) self.to_k = nn.Linear(d_pair, n_head*d_hidden, bias=False) self.to_v = nn.Linear(d_pair, n_head*d_hidden, bias=False) self.to_b = nn.Linear(d_bias, n_head, bias=False) self.to_g = nn.Linear(d_pair, n_head*d_hidden) self.to_out = nn.Linear(n_head*d_hidden, d_pair) self.scaling = 1/math.sqrt(d_hidden) self.h = n_head self.dim = d_hidden # initialize all parameters properly self.reset_parameter() def reset_parameter(self): # query/key/value projection: Glorot uniform / Xavier uniform nn.init.xavier_uniform_(self.to_q.weight) nn.init.xavier_uniform_(self.to_k.weight) nn.init.xavier_uniform_(self.to_v.weight) # bias: normal distribution self.to_b = init_lecun_normal(self.to_b) # gating: zero weights, one biases (mostly open gate at the begining) nn.init.zeros_(self.to_g.weight) nn.init.ones_(self.to_g.bias) # to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining nn.init.zeros_(self.to_out.weight) nn.init.zeros_(self.to_out.bias) def forward(self, pair, bias): # pair: (B, L, L, d_pair) B, L = pair.shape[:2] if self.is_row: pair = pair.permute(0,2,1,3) bias = bias.permute(0,2,1,3) pair = self.norm_pair(pair) bias = self.norm_bias(bias) query = self.to_q(pair).reshape(B, L, L, self.h, self.dim) key = self.to_k(pair).reshape(B, L, L, self.h, self.dim) value = self.to_v(pair).reshape(B, L, L, self.h, self.dim) bias = self.to_b(bias) # (B, L, L, h) gate = torch.sigmoid(self.to_g(pair)) # (B, L, L, h*dim) query = query * self.scaling key = key / math.sqrt(L) # normalize for tied attention attn = einsum('bnihk,bnjhk->bijh', query, key) # tied attention attn = attn + bias # apply bias attn = F.softmax(attn, dim=-2) # (B, L, L, h) out = einsum('bijh,bkjhd->bikhd', attn, value).reshape(B, L, L, -1) out = gate * out out = self.to_out(out) if self.is_row: out = out.permute(0,2,1,3) return out
RFdiffusion-main
Attention_module.py
import torch import numpy as np num2aa=[ 'ALA','ARG','ASN','ASP','CYS', 'GLN','GLU','GLY','HIS','ILE', 'LEU','LYS','MET','PHE','PRO', 'SER','THR','TRP','TYR','VAL', 'UNK','MAS', ] # Mapping 3 letter AA to 1 letter AA (e.g. ALA to A) one_letter = ["A", "R", "N", "D", "C", \ "Q", "E", "G", "H", "I", \ "L", "K", "M", "F", "P", \ "S", "T", "W", "Y", "V", "?", "-"] aa2num= {x:i for i,x in enumerate(num2aa)} aa_321 = {a:b for a,b in zip(num2aa,one_letter)} aa_123 = {val:key for key,val in aa_321.items()} # create single letter code string from parsed integer sequence def seq2chars(seq): out = ''.join([aa_321[num2aa[a]] for a in seq]) return out # full sc atom representation (Nx14) aa2long=[ (" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # ala (" N "," CA "," C "," O "," CB "," CG "," CD "," NE "," CZ "," NH1"," NH2", None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD "," HE ","1HH1","2HH1","1HH2","2HH2"), # arg (" N "," CA "," C "," O "," CB "," CG "," OD1"," ND2", None, None, None, None, None, None," H "," HA ","1HB ","2HB ","1HD2","2HD2", None, None, None, None, None, None, None), # asn (" N "," CA "," C "," O "," CB "," CG "," OD1"," OD2", None, None, None, None, None, None," H "," HA ","1HB ","2HB ", None, None, None, None, None, None, None, None, None), # asp (" N "," CA "," C "," O "," CB "," SG ", None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB "," HG ", None, None, None, None, None, None, None, None), # cys (" N "," CA "," C "," O "," CB "," CG "," CD "," OE1"," NE2", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HE2","2HE2", None, None, None, None, None), # gln (" N "," CA "," C "," O "," CB "," CG "," CD "," OE1"," OE2", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ", None, None, None, None, None, None, None), # glu (" N "," CA "," C "," O ", None, None, None, None, None, None, None, None, None, None," H ","1HA ","2HA ", None, None, None, None, None, None, None, None, None, None), # gly (" N "," CA "," C "," O "," CB "," CG "," ND1"," CD2"," CE1"," NE2", None, None, None, None," H "," HA ","1HB ","2HB "," HD2"," HE1"," HE2", None, None, None, None, None, None), # his (" N "," CA "," C "," O "," CB "," CG1"," CG2"," CD1", None, None, None, None, None, None," H "," HA "," HB ","1HG2","2HG2","3HG2","1HG1","2HG1","1HD1","2HD1","3HD1", None, None), # ile (" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2", None, None, None, None, None, None," H "," HA ","1HB ","2HB "," HG ","1HD1","2HD1","3HD1","1HD2","2HD2","3HD2", None, None), # leu (" N "," CA "," C "," O "," CB "," CG "," CD "," CE "," NZ ", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ","1HE ","2HE ","1HZ ","2HZ ","3HZ "), # lys (" N "," CA "," C "," O "," CB "," CG "," SD "," CE ", None, None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HE ","2HE ","3HE ", None, None, None, None), # met (" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," CE1"," CE2"," CZ ", None, None, None," H "," HA ","1HB ","2HB "," HD1"," HD2"," HE1"," HE2"," HZ ", None, None, None, None), # phe (" N "," CA "," C "," O "," CB "," CG "," CD ", None, None, None, None, None, None, None," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ", None, None, None, None, None, None), # pro (" N "," CA "," C "," O "," CB "," OG ", None, None, None, None, None, None, None, None," H "," HG "," HA ","1HB ","2HB ", None, None, None, None, None, None, None, None), # ser (" N "," CA "," C "," O "," CB "," OG1"," CG2", None, None, None, None, None, None, None," H "," HG1"," HA "," HB ","1HG2","2HG2","3HG2", None, None, None, None, None, None), # thr (" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," NE1"," CE2"," CE3"," CZ2"," CZ3"," CH2"," H "," HA ","1HB ","2HB "," HD1"," HE1"," HZ2"," HH2"," HZ3"," HE3", None, None, None), # trp (" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," CE1"," CE2"," CZ "," OH ", None, None," H "," HA ","1HB ","2HB "," HD1"," HE1"," HE2"," HD2"," HH ", None, None, None, None), # tyr (" N "," CA "," C "," O "," CB "," CG1"," CG2", None, None, None, None, None, None, None," H "," HA "," HB ","1HG1","2HG1","3HG1","1HG2","2HG2","3HG2", None, None, None, None), # val (" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # unk (" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # mask ] # build the "alternate" sc mapping aa2longalt=[ (" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # ala (" N "," CA "," C "," O "," CB "," CG "," CD "," NE "," CZ "," NH1"," NH2", None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD "," HE ","1HH1","2HH1","1HH2","2HH2"), # arg (" N "," CA "," C "," O "," CB "," CG "," OD1"," ND2", None, None, None, None, None, None," H "," HA ","1HB ","2HB ","1HD2","2HD2", None, None, None, None, None, None, None), # asn (" N "," CA "," C "," O "," CB "," CG "," OD2"," OD1", None, None, None, None, None, None," H "," HA ","1HB ","2HB ", None, None, None, None, None, None, None, None, None), # asp (" N "," CA "," C "," O "," CB "," SG ", None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB "," HG ", None, None, None, None, None, None, None, None), # cys (" N "," CA "," C "," O "," CB "," CG "," CD "," OE1"," NE2", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HE2","2HE2", None, None, None, None, None), # gln (" N "," CA "," C "," O "," CB "," CG "," CD "," OE2"," OE1", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ", None, None, None, None, None, None, None), # glu (" N "," CA "," C "," O ", None, None, None, None, None, None, None, None, None, None," H ","1HA ","2HA ", None, None, None, None, None, None, None, None, None, None), # gly (" N "," CA "," C "," O "," CB "," CG "," NE2"," CD2"," CE1"," ND1", None, None, None, None," H "," HA ","1HB ","2HB "," HD2"," HE1"," HE2", None, None, None, None, None, None), # his (" N "," CA "," C "," O "," CB "," CG1"," CG2"," CD1", None, None, None, None, None, None," H "," HA "," HB ","1HG2","2HG2","3HG2","1HG1","2HG1","1HD1","2HD1","3HD1", None, None), # ile (" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2", None, None, None, None, None, None," H "," HA ","1HB ","2HB "," HG ","1HD1","2HD1","3HD1","1HD2","2HD2","3HD2", None, None), # leu (" N "," CA "," C "," O "," CB "," CG "," CD "," CE "," NZ ", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ","1HE ","2HE ","1HZ ","2HZ ","3HZ "), # lys (" N "," CA "," C "," O "," CB "," CG "," SD "," CE ", None, None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HE ","2HE ","3HE ", None, None, None, None), # met (" N "," CA "," C "," O "," CB "," CG "," CD2"," CD1"," CE2"," CE1"," CZ ", None, None, None," H "," HD2"," HE2"," HZ "," HE1"," HD1"," HA ","1HB ","2HB ", None, None, None, None), # phe (" N "," CA "," C "," O "," CB "," CG "," CD ", None, None, None, None, None, None, None," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ", None, None, None, None, None, None), # pro (" N "," CA "," C "," O "," CB "," OG ", None, None, None, None, None, None, None, None," H "," HG "," HA ","1HB ","2HB ", None, None, None, None, None, None, None, None), # ser (" N "," CA "," C "," O "," CB "," OG1"," CG2", None, None, None, None, None, None, None," H "," HG1"," HA "," HB ","1HG2","2HG2","3HG2", None, None, None, None, None, None), # thr (" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," NE1"," CE2"," CE3"," CZ2"," CZ3"," CH2"," H "," HA ","1HB ","2HB "," HD1"," HE1"," HZ2"," HH2"," HZ3"," HE3", None, None, None), # trp (" N "," CA "," C "," O "," CB "," CG "," CD2"," CD1"," CE2"," CE1"," CZ "," OH ", None, None," H "," HA ","1HB ","2HB "," HD2"," HE2"," HE1"," HD1"," HH ", None, None, None, None), # tyr (" N "," CA "," C "," O "," CB "," CG1"," CG2", None, None, None, None, None, None, None," H "," HA "," HB ","1HG1","2HG1","3HG1","1HG2","2HG2","3HG2", None, None, None, None), # val (" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # unk (" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # mask ] aabonds=[ ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB ","1HB "),(" CB ","2HB "),(" CB ","3HB ")) , # ala ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," CD "),(" CG ","1HG "),(" CG ","2HG "),(" CD "," NE "),(" CD ","1HD "),(" CD ","2HD "),(" NE "," CZ "),(" NE "," HE "),(" CZ "," NH1"),(" CZ "," NH2"),(" NH1","1HH1"),(" NH1","2HH1"),(" NH2","1HH2"),(" NH2","2HH2")) , # arg ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," OD1"),(" CG "," ND2"),(" ND2","1HD2"),(" ND2","2HD2")) , # asn ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," OD1"),(" CG "," OD2")) , # asp ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," SG "),(" CB ","1HB "),(" CB ","2HB "),(" SG "," HG ")) , # cys ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," CD "),(" CG ","1HG "),(" CG ","2HG "),(" CD "," OE1"),(" CD "," NE2"),(" NE2","1HE2"),(" NE2","2HE2")) , # gln ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," CD "),(" CG ","1HG "),(" CG ","2HG "),(" CD "," OE1"),(" CD "," OE2")) , # glu ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA ","1HA "),(" CA ","2HA "),(" C "," O ")) , # gly ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," ND1"),(" CG "," CD2"),(" ND1"," CE1"),(" CD2"," NE2"),(" CD2"," HD2"),(" CE1"," NE2"),(" CE1"," HE1"),(" NE2"," HE2")) , # his ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG1"),(" CB "," CG2"),(" CB "," HB "),(" CG1"," CD1"),(" CG1","1HG1"),(" CG1","2HG1"),(" CG2","1HG2"),(" CG2","2HG2"),(" CG2","3HG2"),(" CD1","1HD1"),(" CD1","2HD1"),(" CD1","3HD1")) , # ile ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," CD1"),(" CG "," CD2"),(" CG "," HG "),(" CD1","1HD1"),(" CD1","2HD1"),(" CD1","3HD1"),(" CD2","1HD2"),(" CD2","2HD2"),(" CD2","3HD2")) , # leu ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," CD "),(" CG ","1HG "),(" CG ","2HG "),(" CD "," CE "),(" CD ","1HD "),(" CD ","2HD "),(" CE "," NZ "),(" CE ","1HE "),(" CE ","2HE "),(" NZ ","1HZ "),(" NZ ","2HZ "),(" NZ ","3HZ ")) , # lys ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," SD "),(" CG ","1HG "),(" CG ","2HG "),(" SD "," CE "),(" CE ","1HE "),(" CE ","2HE "),(" CE ","3HE ")) , # met ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," CD1"),(" CG "," CD2"),(" CD1"," CE1"),(" CD1"," HD1"),(" CD2"," CE2"),(" CD2"," HD2"),(" CE1"," CZ "),(" CE1"," HE1"),(" CE2"," CZ "),(" CE2"," HE2"),(" CZ "," HZ ")) , # phe ((" N "," CA "),(" N "," CD "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," CD "),(" CG ","1HG "),(" CG ","2HG "),(" CD ","1HD "),(" CD ","2HD ")) , # pro ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," OG "),(" CB ","1HB "),(" CB ","2HB "),(" OG "," HG ")) , # ser ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," OG1"),(" CB "," CG2"),(" CB "," HB "),(" OG1"," HG1"),(" CG2","1HG2"),(" CG2","2HG2"),(" CG2","3HG2")) , # thr ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," CD1"),(" CG "," CD2"),(" CD1"," NE1"),(" CD1"," HD1"),(" CD2"," CE2"),(" CD2"," CE3"),(" NE1"," CE2"),(" NE1"," HE1"),(" CE2"," CZ2"),(" CE3"," CZ3"),(" CE3"," HE3"),(" CZ2"," CH2"),(" CZ2"," HZ2"),(" CZ3"," CH2"),(" CZ3"," HZ3"),(" CH2"," HH2")) , # trp ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG "),(" CB ","1HB "),(" CB ","2HB "),(" CG "," CD1"),(" CG "," CD2"),(" CD1"," CE1"),(" CD1"," HD1"),(" CD2"," CE2"),(" CD2"," HD2"),(" CE1"," CZ "),(" CE1"," HE1"),(" CE2"," CZ "),(" CE2"," HE2"),(" CZ "," OH "),(" OH "," HH ")) , # tyr ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB "," CG1"),(" CB "," CG2"),(" CB "," HB "),(" CG1","1HG1"),(" CG1","2HG1"),(" CG1","3HG1"),(" CG2","1HG2"),(" CG2","2HG2"),(" CG2","3HG2")), # val ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB ","1HB "),(" CB ","2HB "),(" CB ","3HB ")) , # unk ((" N "," CA "),(" N "," H "),(" CA "," C "),(" CA "," CB "),(" CA "," HA "),(" C "," O "),(" CB ","1HB "),(" CB ","2HB "),(" CB ","3HB ")) , # mask ] aa2type = [ ("Nbb", "CAbb","CObb","OCbb","CH3", None, None, None, None, None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo", None, None, None, None, None, None, None, None), # ala ("Nbb", "CAbb","CObb","OCbb","CH2", "CH2", "CH2", "NtrR","aroC","Narg","Narg", None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hpol","Hpol","Hpol","Hpol","Hpol"), # arg ("Nbb", "CAbb","CObb","OCbb","CH2", "CNH2","ONH2","NH2O", None, None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hpol","Hpol", None, None, None, None, None, None, None), # asn ("Nbb", "CAbb","CObb","OCbb","CH2", "COO", "OOC", "OOC", None, None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo", None, None, None, None, None, None, None, None, None), # asp ("Nbb", "CAbb","CObb","OCbb","CH2", "SH1", None, None, None, None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","HS", None, None, None, None, None, None, None, None), # cys ("Nbb", "CAbb","CObb","OCbb","CH2", "CH2", "CNH2","ONH2","NH2O", None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo","Hapo","Hpol","Hpol", None, None, None, None, None), # gln ("Nbb", "CAbb","CObb","OCbb","CH2", "CH2", "COO", "OOC", "OOC", None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo","Hapo", None, None, None, None, None, None, None), # glu ("Nbb", "CAbb","CObb","OCbb", None, None, None, None, None, None, None, None, None, None,"HNbb","Hapo","Hapo", None, None, None, None, None, None, None, None, None, None), # gly ("Nbb", "CAbb","CObb","OCbb","CH2", "CH0", "Nhis","aroC","aroC","Ntrp", None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hpol","Hapo","Hapo", None, None, None, None, None, None), # his ("Nbb", "CAbb","CObb","OCbb","CH1", "CH2", "CH3", "CH3", None, None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo", None, None), # ile ("Nbb", "CAbb","CObb","OCbb","CH2", "CH1", "CH3", "CH3", None, None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo", None, None), # leu ("Nbb", "CAbb","CObb","OCbb","CH2", "CH2", "CH2", "CH2", "Nlys", None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hpol","Hpol","Hpol"), # lys ("Nbb", "CAbb","CObb","OCbb","CH2", "CH2", "S", "CH3", None, None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo", None, None, None, None), # met ("Nbb", "CAbb","CObb","OCbb","CH2", "CH0", "aroC","aroC","aroC","aroC","aroC", None, None, None,"HNbb","Hapo","Hapo","Hapo","Haro","Haro","Haro","Haro","Haro", None, None, None, None), # phe ("Npro","CAbb","CObb","OCbb","CH2", "CH2", "CH2", None, None, None, None, None, None, None,"Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo", None, None, None, None, None, None), # pro ("Nbb", "CAbb","CObb","OCbb","CH2", "OH", None, None, None, None, None, None, None, None,"HNbb","Hpol","Hapo","Hapo","Hapo", None, None, None, None, None, None, None, None), # ser ("Nbb", "CAbb","CObb","OCbb","CH1", "OH", "CH3", None, None, None, None, None, None, None,"HNbb","Hpol","Hapo","Hapo","Hapo","Hapo","Hapo", None, None, None, None, None, None), # thr ("Nbb", "CAbb","CObb","OCbb","CH2", "CH0", "aroC","CH0", "Ntrp","CH0", "aroC","aroC","aroC","aroC","HNbb","Haro","Hapo","Hapo","Hapo","Hpol","Haro","Haro","Haro","Haro", None, None, None), # trp ("Nbb", "CAbb","CObb","OCbb","CH2", "CH0", "aroC","aroC","aroC","aroC","CH0", "OHY", None, None,"HNbb","Haro","Haro","Haro","Haro","Hapo","Hapo","Hapo","Hpol", None, None, None, None), # tyr ("Nbb", "CAbb","CObb","OCbb","CH1", "CH3", "CH3", None, None, None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo","Hapo", None, None, None, None), # val ("Nbb", "CAbb","CObb","OCbb","CH3", None, None, None, None, None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo", None, None, None, None, None, None, None, None), # unk ("Nbb", "CAbb","CObb","OCbb","CH3", None, None, None, None, None, None, None, None, None,"HNbb","Hapo","Hapo","Hapo","Hapo", None, None, None, None, None, None, None, None), # mask ] # tip atom aa2tip = [ " CB ", # ala " CZ ", # arg " ND2", # asn " CG ", # asp " SG ", # cys " NE2", # gln " CD ", # glu " CA ", # gly " NE2", # his " CD1", # ile " CG ", # leu " NZ ", # lys " SD ", # met " CZ ", # phe " CG ", # pro " OG ", # ser " OG1", # thr " CH2", # trp " OH ", # tyr " CB ", # val " CB ", # unknown (gap etc) " CB " # masked ] torsions=[ [ None, None, None, None ], # ala [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," CD "], [" CB "," CG "," CD "," NE "], [" CG "," CD "," NE "," CZ "] ], # arg [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," OD1"], None, None ], # asn [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," OD1"], None, None ], # asp [ [" N "," CA "," CB "," SG "], [" CA "," CB "," SG "," HG "], None, None ], # cys [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," CD "], [" CB "," CG "," CD "," OE1"], None ], # gln [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," CD "], [" CB "," CG "," CD "," OE1"], None ], # glu [ None, None, None, None ], # gly [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," ND1"], [" CD2"," CE1"," HE1"," NE2"], None ], # his (protonation handled as a pseudo-torsion) [ [" N "," CA "," CB "," CG1"], [" CA "," CB "," CG1"," CD1"], None, None ], # ile [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," CD1"], None, None ], # leu [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," CD "], [" CB "," CG "," CD "," CE "], [" CG "," CD "," CE "," NZ "] ], # lys [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," SD "], [" CB "," CG "," SD "," CE "], None ], # met [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," CD1"], None, None ], # phe [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," CD "], [" CB "," CG "," CD ","1HD "], None ], # pro [ [" N "," CA "," CB "," OG "], [" CA "," CB "," OG "," HG "], None, None ], # ser [ [" N "," CA "," CB "," OG1"], [" CA "," CB "," OG1"," HG1"], None, None ], # thr [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," CD1"], None, None ], # trp [ [" N "," CA "," CB "," CG "], [" CA "," CB "," CG "," CD1"], [" CE1"," CZ "," OH "," HH "], None ], # tyr [ [" N "," CA "," CB "," CG1"], None, None, None ], # val [ None, None, None, None ], # unk [ None, None, None, None ], # mask ] # ideal N, CA, C initial coordinates init_N = torch.tensor([-0.5272, 1.3593, 0.000]).float() init_CA = torch.zeros_like(init_N) init_C = torch.tensor([1.5233, 0.000, 0.000]).float() INIT_CRDS = torch.full((27, 3), np.nan) INIT_CRDS[:3] = torch.stack((init_N, init_CA, init_C), dim=0) # (3,3) norm_N = init_N / (torch.norm(init_N, dim=-1, keepdim=True) + 1e-5) norm_C = init_C / (torch.norm(init_C, dim=-1, keepdim=True) + 1e-5) cos_ideal_NCAC = torch.sum(norm_N*norm_C, dim=-1) # cosine of ideal N-CA-C bond angle #fd Rosetta ideal coords #fd - uses same "frame-building" as AF2 ideal_coords = [ [ # 0 ala [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3341, -0.4928, 0.9132)], [' CB ', 8, (-0.5289,-0.7734,-1.1991)], ['1HB ', 8, (-0.1265, -1.7863, -1.1851)], ['2HB ', 8, (-1.6173, -0.8147, -1.1541)], ['3HB ', 8, (-0.2229, -0.2744, -2.1172)], ], [ # 1 arg [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3467, -0.5055, 0.9018)], [' CB ', 8, (-0.5042,-0.7698,-1.2118)], ['1HB ', 4, ( 0.3635, -0.5318, 0.8781)], ['2HB ', 4, ( 0.3639, -0.5323, -0.8789)], [' CG ', 4, (0.6396,1.3794, 0.000)], ['1HG ', 5, (0.3639, -0.5139, 0.8900)], ['2HG ', 5, (0.3641, -0.5140, -0.8903)], [' CD ', 5, (0.5492,1.3801, 0.000)], ['1HD ', 6, (0.3637, -0.5135, 0.8895)], ['2HD ', 6, (0.3636, -0.5134, -0.8893)], [' NE ', 6, (0.5423,1.3491, 0.000)], [' NH1', 7, (0.2012,2.2965, 0.000)], [' NH2', 7, (2.0824,1.0030, 0.000)], [' CZ ', 7, (0.7650,1.1090, 0.000)], [' HE ', 7, (0.4701,-0.8955, 0.000)], ['1HH1', 7, (-0.8059,2.3776, 0.000)], ['1HH2', 7, (2.5160,0.0898, 0.000)], ['2HH1', 7, (0.7745,3.1277, 0.000)], ['2HH2', 7, (2.6554,1.8336, 0.000)], ], [ # 2 asn [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3233, -0.4967, 0.9162)], [' CB ', 8, (-0.5341,-0.7799,-1.1874)], ['1HB ', 4, ( 0.3641, -0.5327, 0.8795)], ['2HB ', 4, ( 0.3639, -0.5323, -0.8789)], [' CG ', 4, (0.5778,1.3881, 0.000)], [' ND2', 5, (0.5839,-1.1711, 0.000)], [' OD1', 5, (0.6331,1.0620, 0.000)], ['1HD2', 5, (1.5825, -1.2322, 0.000)], ['2HD2', 5, (0.0323, -2.0046, 0.000)], ], [ # 3 asp [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3233, -0.4967, 0.9162)], [' CB ', 8, (-0.5162,-0.7757,-1.2144)], ['1HB ', 4, ( 0.3639, -0.5324, 0.8791)], ['2HB ', 4, ( 0.3640, -0.5325, -0.8792)], [' CG ', 4, (0.5926,1.4028, 0.000)], [' OD1', 5, (0.5746,1.0629, 0.000)], [' OD2', 5, (0.5738,-1.0627, 0.000)], ], [ # 4 cys [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3481, -0.5059, 0.9006)], [' CB ', 8, (-0.5046,-0.7727,-1.2189)], ['1HB ', 4, ( 0.3639, -0.5324, 0.8791)], ['2HB ', 4, ( 0.3638, -0.5322, -0.8787)], [' SG ', 4, (0.7386,1.6511, 0.000)], [' HG ', 5, (0.1387,1.3221, 0.000)], ], [ # 5 gln [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3363, -0.5013, 0.9074)], [' CB ', 8, (-0.5226,-0.7776,-1.2109)], ['1HB ', 4, ( 0.3638, -0.5323, 0.8789)], ['2HB ', 4, ( 0.3638, -0.5322, -0.8788)], [' CG ', 4, (0.6225,1.3857, 0.000)], ['1HG ', 5, ( 0.3531, -0.5156, 0.8931)], ['2HG ', 5, ( 0.3531, -0.5156, -0.8931)], [' CD ', 5, (0.5788,1.4021, 0.000)], [' NE2', 6, (0.5908,-1.1895, 0.000)], [' OE1', 6, (0.6347,1.0584, 0.000)], ['1HE2', 6, (1.5825, -1.2525, 0.000)], ['2HE2', 6, (0.0380, -2.0229, 0.000)], ], [ # 6 glu [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3363, -0.5013, 0.9074)], [' CB ', 8, (-0.5197,-0.7737,-1.2137)], ['1HB ', 4, ( 0.3638, -0.5323, 0.8789)], ['2HB ', 4, ( 0.3638, -0.5322, -0.8788)], [' CG ', 4, (0.6287,1.3862, 0.000)], ['1HG ', 5, ( 0.3531, -0.5156, 0.8931)], ['2HG ', 5, ( 0.3531, -0.5156, -0.8931)], [' CD ', 5, (0.5850,1.3849, 0.000)], [' OE1', 6, (0.5752,1.0618, 0.000)], [' OE2', 6, (0.5741,-1.0635, 0.000)], ], [ # 7 gly [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], ['1HA ', 0, ( -0.3676, -0.5329, 0.8771)], ['2HA ', 0, ( -0.3674, -0.5325, -0.8765)], ], [ # 8 his [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3299, -0.5180, 0.9001)], [' CB ', 8, (-0.5163,-0.7809,-1.2129)], ['1HB ', 4, ( 0.3640, -0.5325, 0.8793)], ['2HB ', 4, ( 0.3637, -0.5321, -0.8786)], [' CG ', 4, (0.6016,1.3710, 0.000)], [' CD2', 5, (0.8918,-1.0184, 0.000)], [' CE1', 5, (2.0299,0.8564, 0.000)], [' HE1', 5, (2.8542, 1.5693, 0.000)], [' HD2', 5, ( 0.6584, -2.0835, 0.000) ], [' ND1', 6, (-1.8631, -1.0722, 0.000)], [' NE2', 6, (-1.8625, 1.0707, 0.000)], [' HE2', 6, (-1.5439, 2.0292, 0.000)], ], [ # 9 ile [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3405, -0.5028, 0.9044)], [' CB ', 8, (-0.5140,-0.7885,-1.2184)], [' HB ', 4, (0.3637, -0.4714, 0.9125)], [' CG1', 4, (0.5339,1.4348,0.000)], [' CG2', 4, (0.5319,-0.7693,-1.1994)], ['1HG2', 4, (1.6215, -0.7588, -1.1842)], ['2HG2', 4, (0.1785, -1.7986, -1.1569)], ['3HG2', 4, (0.1773, -0.3016, -2.1180)], [' CD1', 5, (0.6106,1.3829, 0.000)], ['1HG1', 5, (0.3637, -0.5338, 0.8774)], ['2HG1', 5, (0.3640, -0.5322, -0.8793)], ['1HD1', 5, (1.6978, 1.3006, 0.000)], ['2HD1', 5, (0.2873, 1.9236, -0.8902)], ['3HD1', 5, (0.2888, 1.9224, 0.8896)], ], [ # 10 leu [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.525, -0.000, -0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3435, -0.5040, 0.9027)], [' CB ', 8, (-0.5175,-0.7692,-1.2220)], ['1HB ', 4, ( 0.3473, -0.5346, 0.8827)], ['2HB ', 4, ( 0.3476, -0.5351, -0.8836)], [' CG ', 4, (0.6652,1.3823, 0.000)], [' CD1', 5, (0.5083,1.4353, 0.000)], [' CD2', 5, (0.5079,-0.7600,1.2163)], [' HG ', 5, (0.3640, -0.4825, -0.9075)], ['1HD1', 5, (1.5984, 1.4353, 0.000)], ['2HD1', 5, (0.1462, 1.9496, -0.8903)], ['3HD1', 5, (0.1459, 1.9494, 0.8895)], ['1HD2', 5, (1.5983, -0.7606, 1.2158)], ['2HD2', 5, (0.1456, -0.2774, 2.1243)], ['3HD2', 5, (0.1444, -1.7871, 1.1815)], ], [ # 11 lys [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3335, -0.5005, 0.9097)], ['1HB ', 4, ( 0.3640, -0.5324, 0.8791)], ['2HB ', 4, ( 0.3639, -0.5324, -0.8790)], [' CB ', 8, (-0.5259,-0.7785,-1.2069)], ['1HG ', 5, (0.3641, -0.5229, 0.8852)], ['2HG ', 5, (0.3637, -0.5227, -0.8841)], [' CG ', 4, (0.6291,1.3869, 0.000)], [' CD ', 5, (0.5526,1.4174, 0.000)], ['1HD ', 6, (0.3641, -0.5239, 0.8848)], ['2HD ', 6, (0.3638, -0.5219, -0.8850)], [' CE ', 6, (0.5544,1.4170, 0.000)], [' NZ ', 7, (0.5566,1.3801, 0.000)], ['1HE ', 7, (0.4199, -0.4638, 0.9482)], ['2HE ', 7, (0.4202, -0.4631, -0.8172)], ['1HZ ', 7, (1.6223, 1.3980, 0.0658)], ['2HZ ', 7, (0.2970, 1.9326, -0.7584)], ['3HZ ', 7, (0.2981, 1.9319, 0.8909)], ], [ # 12 met [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3303, -0.4990, 0.9108)], ['1HB ', 4, ( 0.3635, -0.5318, 0.8781)], ['2HB ', 4, ( 0.3641, -0.5326, -0.8795)], [' CB ', 8, (-0.5331,-0.7727,-1.2048)], ['1HG ', 5, (0.3637, -0.5256, 0.8823)], ['2HG ', 5, (0.3638, -0.5249, -0.8831)], [' CG ', 4, (0.6298,1.3858,0.000)], [' SD ', 5, (0.6953,1.6645,0.000)], [' CE ', 6, (0.3383,1.7581,0.000)], ['1HE ', 6, (1.7054, 2.0532, -0.0063)], ['2HE ', 6, (0.1906, 2.3099, -0.9072)], ['3HE ', 6, (0.1917, 2.3792, 0.8720)], ], [ # 13 phe [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3303, -0.4990, 0.9108)], ['1HB ', 4, ( 0.3635, -0.5318, 0.8781)], ['2HB ', 4, ( 0.3641, -0.5326, -0.8795)], [' CB ', 8, (-0.5150,-0.7729,-1.2156)], [' CG ', 4, (0.6060,1.3746, 0.000)], [' CD1', 5, (0.7078,1.1928, 0.000)], [' CD2', 5, (0.7084,-1.1920, 0.000)], [' CE1', 5, (2.0900,1.1940, 0.000)], [' CE2', 5, (2.0897,-1.1939, 0.000)], [' CZ ', 5, (2.7809, 0.000, 0.000)], [' HD1', 5, (0.1613, 2.1362, 0.000)], [' HD2', 5, (0.1621, -2.1360, 0.000)], [' HE1', 5, (2.6335, 2.1384, 0.000)], [' HE2', 5, (2.6344, -2.1378, 0.000)], [' HZ ', 5, (3.8700, 0.000, 0.000)], ], [ # 14 pro [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' HA ', 0, (-0.3868, -0.5380, 0.8781)], ['1HB ', 4, ( 0.3762, -0.5355, 0.8842)], ['2HB ', 4, ( 0.3762, -0.5355, -0.8842)], [' CB ', 8, (-0.5649,-0.5888,-1.2966)], [' CG ', 4, (0.3657,1.4451,0.0000)], [' CD ', 5, (0.3744,1.4582, 0.0)], ['1HG ', 5, (0.3798, -0.5348, 0.8830)], ['2HG ', 5, (0.3798, -0.5348, -0.8830)], ['1HD ', 6, (0.3798, -0.5348, 0.8830)], ['2HD ', 6, (0.3798, -0.5348, -0.8830)], ], [ # 15 ser [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3425, -0.5041, 0.9048)], ['1HB ', 4, ( 0.3637, -0.5321, 0.8786)], ['2HB ', 4, ( 0.3636, -0.5319, -0.8782)], [' CB ', 8, (-0.5146,-0.7595,-1.2073)], [' OG ', 4, (0.5021,1.3081, 0.000)], [' HG ', 5, (0.2647, 0.9230, 0.000)], ], [ # 16 thr [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3364, -0.5015, 0.9078)], [' HB ', 4, ( 0.3638, -0.5006, 0.8971)], ['1HG2', 4, ( 1.6231, -0.7142, -1.2097)], ['2HG2', 4, ( 0.1792, -1.7546, -1.2237)], ['3HG2', 4, ( 0.1808, -0.2222, -2.1269)], [' CB ', 8, (-0.5172,-0.7952,-1.2130)], [' CG2', 4, (0.5334,-0.7239,-1.2267)], [' OG1', 4, (0.4804,1.3506,0.000)], [' HG1', 5, (0.3194, 0.9056, 0.000)], ], [ # 17 trp [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3436, -0.5042, 0.9031)], ['1HB ', 4, ( 0.3639, -0.5323, 0.8790)], ['2HB ', 4, ( 0.3638, -0.5322, -0.8787)], [' CB ', 8, (-0.5136,-0.7712,-1.2173)], [' CG ', 4, (0.5984,1.3741, 0.000)], [' CD1', 5, (0.8151,1.0921, 0.000)], [' CD2', 5, (0.8753,-1.1538, 0.000)], [' CE2', 5, (2.1865,-0.6707, 0.000)], [' CE3', 5, (0.6541,-2.5366, 0.000)], [' NE1', 5, (2.1309,0.7003, 0.000)], [' CH2', 5, (3.0315,-2.8930, 0.000)], [' CZ2', 5, (3.2813,-1.5205, 0.000)], [' CZ3', 5, (1.7521,-3.3888, 0.000)], [' HD1', 5, (0.4722, 2.1252, 0.000)], [' HE1', 5, ( 2.9291, 1.3191, 0.000)], [' HE3', 5, (-0.3597, -2.9356, 0.000)], [' HZ2', 5, (4.3053, -1.1462, 0.000)], [' HZ3', 5, ( 1.5712, -4.4640, 0.000)], [' HH2', 5, ( 3.8700, -3.5898, 0.000)], ], [ # 18 tyr [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3305, -0.4992, 0.9112)], ['1HB ', 4, ( 0.3642, -0.5327, 0.8797)], ['2HB ', 4, ( 0.3637, -0.5321, -0.8785)], [' CB ', 8, (-0.5305,-0.7799,-1.2051)], [' CG ', 4, (0.6104,1.3840, 0.000)], [' CD1', 5, (0.6936,1.2013, 0.000)], [' CD2', 5, (0.6934,-1.2011, 0.000)], [' CE1', 5, (2.0751,1.2013, 0.000)], [' CE2', 5, (2.0748,-1.2011, 0.000)], [' OH ', 5, (4.1408, 0.000, 0.000)], [' CZ ', 5, (2.7648, 0.000, 0.000)], [' HD1', 5, (0.1485, 2.1455, 0.000)], [' HD2', 5, (0.1484, -2.1451, 0.000)], [' HE1', 5, (2.6200, 2.1450, 0.000)], [' HE2', 5, (2.6199, -2.1453, 0.000)], [' HH ', 6, (0.3190, 0.9057, 0.000)], ], [ # 19 val [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3497, -0.5068, 0.9002)], [' CB ', 8, (-0.5105,-0.7712,-1.2317)], [' CG1', 4, (0.5326,1.4252, 0.000)], [' CG2', 4, (0.5177,-0.7693,1.2057)], [' HB ', 4, (0.3541, -0.4754, -0.9148)], ['1HG1', 4, (1.6228, 1.4063, 0.000)], ['2HG1', 4, (0.1790, 1.9457, -0.8898)], ['3HG1', 4, (0.1798, 1.9453, 0.8903)], ['1HG2', 4, (1.6073, -0.7659, 1.1989)], ['2HG2', 4, (0.1586, -0.2971, 2.1203)], ['3HG2', 4, (0.1582, -1.7976, 1.1631)], ], [ # 20 unk [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3341, -0.4928, 0.9132)], [' CB ', 8, (-0.5289,-0.7734,-1.1991)], ['1HB ', 8, (-0.1265, -1.7863, -1.1851)], ['2HB ', 8, (-1.6173, -0.8147, -1.1541)], ['3HB ', 8, (-0.2229, -0.2744, -2.1172)], ], [ # 21 mask [' N ', 0, (-0.5272, 1.3593, 0.000)], [' CA ', 0, (0.000, 0.000, 0.000)], [' C ', 0, (1.5233, 0.000, 0.000)], [' O ', 3, (0.6303, 1.0574, 0.000)], [' H ', 2, (0.4920,-0.8821, 0.0000)], [' HA ', 0, (-0.3341, -0.4928, 0.9132)], [' CB ', 8, (-0.5289,-0.7734,-1.1991)], ['1HB ', 8, (-0.1265, -1.7863, -1.1851)], ['2HB ', 8, (-1.6173, -0.8147, -1.1541)], ['3HB ', 8, (-0.2229, -0.2744, -2.1172)], ], ]
RFdiffusion-main
chemical.py
import torch import torch.nn as nn import torch.nn.functional as F from opt_einsum import contract as einsum import torch.utils.checkpoint as checkpoint from util import get_tips from util_module import Dropout, create_custom_forward, rbf, init_lecun_normal from Attention_module import Attention, FeedForwardLayer, AttentionWithBias from Track_module import PairStr2Pair from icecream import ic import math # Module contains classes and functions to generate initial embeddings def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000): # Code from https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = math.log(max_positions) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb) emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = F.pad(emb, (0, 1), mode='constant') assert emb.shape == (timesteps.shape[0], embedding_dim) return emb class Timestep_emb(nn.Module): def __init__( self, input_size, output_size, T, use_motif_timestep=True ): super(Timestep_emb, self).__init__() self.input_size = input_size self.output_size = output_size self.T = T # get source for timestep embeddings at all t AND zero (for the motif) self.source_embeddings = get_timestep_embedding(torch.arange(self.T+1), self.input_size) self.source_embeddings.requires_grad = False # Layers to use for projection self.node_embedder = nn.Sequential( nn.Linear(input_size, output_size, bias=False), nn.ReLU(), nn.Linear(output_size, output_size, bias=True), nn.LayerNorm(output_size), ) def get_init_emb(self, t, L, motif_mask): """ Calculates and stacks a timestep embedding to project Parameters: t (int, required): Current timestep L (int, required): Length of protein motif_mask (torch.tensor, required): Boolean mask where True denotes a fixed motif position """ assert t > 0, 't should be 1-indexed and cant have t=0' t_emb = torch.clone(self.source_embeddings[t.squeeze()]).to(motif_mask.device) zero_emb = torch.clone(self.source_embeddings[0]).to(motif_mask.device) # timestep embedding for all residues timestep_embedding = torch.stack([t_emb]*L) # slice in motif zero timestep features timestep_embedding[motif_mask] = zero_emb return timestep_embedding def forward(self, L, t, motif_mask): """ Constructs and projects a timestep embedding """ emb_in = self.get_init_emb(t,L,motif_mask) emb_out = self.node_embedder(emb_in) return emb_out class PositionalEncoding2D(nn.Module): # Add relative positional encoding to pair features def __init__(self, d_model, minpos=-32, maxpos=32, p_drop=0.1): super(PositionalEncoding2D, self).__init__() self.minpos = minpos self.maxpos = maxpos self.nbin = abs(minpos)+maxpos+1 self.emb = nn.Embedding(self.nbin, d_model) self.drop = nn.Dropout(p_drop) def forward(self, x, idx): bins = torch.arange(self.minpos, self.maxpos, device=x.device) seqsep = idx[:,None,:] - idx[:,:,None] # (B, L, L) # ib = torch.bucketize(seqsep, bins).long() # (B, L, L) emb = self.emb(ib) #(B, L, L, d_model) x = x + emb # add relative positional encoding return self.drop(x) class MSA_emb(nn.Module): # Get initial seed MSA embedding def __init__(self, d_msa=256, d_pair=128, d_state=32, d_init=22+22+2+2, minpos=-32, maxpos=32, p_drop=0.1, input_seq_onehot=False): super(MSA_emb, self).__init__() self.emb = nn.Linear(d_init, d_msa) # embedding for general MSA self.emb_q = nn.Embedding(22, d_msa) # embedding for query sequence -- used for MSA embedding self.emb_left = nn.Embedding(22, d_pair) # embedding for query sequence -- used for pair embedding self.emb_right = nn.Embedding(22, d_pair) # embedding for query sequence -- used for pair embedding self.emb_state = nn.Embedding(22, d_state) self.drop = nn.Dropout(p_drop) self.pos = PositionalEncoding2D(d_pair, minpos=minpos, maxpos=maxpos, p_drop=p_drop) self.input_seq_onehot=input_seq_onehot self.reset_parameter() def reset_parameter(self): self.emb = init_lecun_normal(self.emb) self.emb_q = init_lecun_normal(self.emb_q) self.emb_left = init_lecun_normal(self.emb_left) self.emb_right = init_lecun_normal(self.emb_right) self.emb_state = init_lecun_normal(self.emb_state) nn.init.zeros_(self.emb.bias) def forward(self, msa, seq, idx): # Inputs: # - msa: Input MSA (B, N, L, d_init) # - seq: Input Sequence (B, L) # - idx: Residue index # Outputs: # - msa: Initial MSA embedding (B, N, L, d_msa) # - pair: Initial Pair embedding (B, L, L, d_pair) N = msa.shape[1] # number of sequenes in MSA # msa embedding msa = self.emb(msa) # (B, N, L, d_model) # MSA embedding # Sergey's one hot trick tmp = (seq @ self.emb_q.weight).unsqueeze(1) # (B, 1, L, d_model) -- query embedding msa = msa + tmp.expand(-1, N, -1, -1) # adding query embedding to MSA msa = self.drop(msa) # pair embedding # Sergey's one hot trick left = (seq @ self.emb_left.weight)[:,None] # (B, 1, L, d_pair) right = (seq @ self.emb_right.weight)[:,:,None] # (B, L, 1, d_pair) pair = left + right # (B, L, L, d_pair) pair = self.pos(pair, idx) # add relative position # state embedding # Sergey's one hot trick state = self.drop(seq @ self.emb_state.weight) return msa, pair, state class Extra_emb(nn.Module): # Get initial seed MSA embedding def __init__(self, d_msa=256, d_init=22+1+2, p_drop=0.1, input_seq_onehot=False): super(Extra_emb, self).__init__() self.emb = nn.Linear(d_init, d_msa) # embedding for general MSA self.emb_q = nn.Embedding(22, d_msa) # embedding for query sequence self.drop = nn.Dropout(p_drop) self.input_seq_onehot=input_seq_onehot self.reset_parameter() def reset_parameter(self): self.emb = init_lecun_normal(self.emb) nn.init.zeros_(self.emb.bias) def forward(self, msa, seq, idx): # Inputs: # - msa: Input MSA (B, N, L, d_init) # - seq: Input Sequence (B, L) # - idx: Residue index # Outputs: # - msa: Initial MSA embedding (B, N, L, d_msa) N = msa.shape[1] # number of sequenes in MSA msa = self.emb(msa) # (B, N, L, d_model) # MSA embedding # Sergey's one hot trick seq = (seq @ self.emb_q.weight).unsqueeze(1) # (B, 1, L, d_model) -- query embedding """ #TODO delete this once verified if self.input_seq_onehot: # Sergey's one hot trick seq = (seq @ self.emb_q.weight).unsqueeze(1) # (B, 1, L, d_model) -- query embedding else: seq = self.emb_q(seq).unsqueeze(1) # (B, 1, L, d_model) -- query embedding """ msa = msa + seq.expand(-1, N, -1, -1) # adding query embedding to MSA return self.drop(msa) class TemplatePairStack(nn.Module): # process template pairwise features # use structure-biased attention def __init__(self, n_block=2, d_templ=64, n_head=4, d_hidden=16, p_drop=0.25): super(TemplatePairStack, self).__init__() self.n_block = n_block proc_s = [PairStr2Pair(d_pair=d_templ, n_head=n_head, d_hidden=d_hidden, p_drop=p_drop) for i in range(n_block)] self.block = nn.ModuleList(proc_s) self.norm = nn.LayerNorm(d_templ) def forward(self, templ, rbf_feat, use_checkpoint=False): B, T, L = templ.shape[:3] templ = templ.reshape(B*T, L, L, -1) for i_block in range(self.n_block): if use_checkpoint: templ = checkpoint.checkpoint(create_custom_forward(self.block[i_block]), templ, rbf_feat) else: templ = self.block[i_block](templ, rbf_feat) return self.norm(templ).reshape(B, T, L, L, -1) class TemplateTorsionStack(nn.Module): def __init__(self, n_block=2, d_templ=64, n_head=4, d_hidden=16, p_drop=0.15): super(TemplateTorsionStack, self).__init__() self.n_block=n_block self.proj_pair = nn.Linear(d_templ+36, d_templ) proc_s = [AttentionWithBias(d_in=d_templ, d_bias=d_templ, n_head=n_head, d_hidden=d_hidden) for i in range(n_block)] self.row_attn = nn.ModuleList(proc_s) proc_s = [FeedForwardLayer(d_templ, 4, p_drop=p_drop) for i in range(n_block)] self.ff = nn.ModuleList(proc_s) self.norm = nn.LayerNorm(d_templ) def reset_parameter(self): self.proj_pair = init_lecun_normal(self.proj_pair) nn.init.zeros_(self.proj_pair.bias) def forward(self, tors, pair, rbf_feat, use_checkpoint=False): B, T, L = tors.shape[:3] tors = tors.reshape(B*T, L, -1) pair = pair.reshape(B*T, L, L, -1) pair = torch.cat((pair, rbf_feat), dim=-1) pair = self.proj_pair(pair) for i_block in range(self.n_block): if use_checkpoint: tors = tors + checkpoint.checkpoint(create_custom_forward(self.row_attn[i_block]), tors, pair) else: tors = tors + self.row_attn[i_block](tors, pair) tors = tors + self.ff[i_block](tors) return self.norm(tors).reshape(B, T, L, -1) class Templ_emb(nn.Module): # Get template embedding # Features are # t2d: # - 37 distogram bins + 6 orientations (43) # - Mask (missing/unaligned) (1) # t1d: # - tiled AA sequence (20 standard aa + gap) # - confidence (1) # - contacting or note (1). NB this is added for diffusion model. Used only in complex training examples - 1 signifies that a residue in the non-diffused chain\ # i.e. the context, is in contact with the diffused chain. # #Added extra t1d dimension for contacting or not def __init__(self, d_t1d=21+1+1, d_t2d=43+1, d_tor=30, d_pair=128, d_state=32, n_block=2, d_templ=64, n_head=4, d_hidden=16, p_drop=0.25): super(Templ_emb, self).__init__() # process 2D features self.emb = nn.Linear(d_t1d*2+d_t2d, d_templ) self.templ_stack = TemplatePairStack(n_block=n_block, d_templ=d_templ, n_head=n_head, d_hidden=d_hidden, p_drop=p_drop) self.attn = Attention(d_pair, d_templ, n_head, d_hidden, d_pair, p_drop=p_drop) # process torsion angles self.emb_t1d = nn.Linear(d_t1d+d_tor, d_templ) self.proj_t1d = nn.Linear(d_templ, d_templ) #self.tor_stack = TemplateTorsionStack(n_block=n_block, d_templ=d_templ, n_head=n_head, # d_hidden=d_hidden, p_drop=p_drop) self.attn_tor = Attention(d_state, d_templ, n_head, d_hidden, d_state, p_drop=p_drop) self.reset_parameter() def reset_parameter(self): self.emb = init_lecun_normal(self.emb) nn.init.zeros_(self.emb.bias) nn.init.kaiming_normal_(self.emb_t1d.weight, nonlinearity='relu') nn.init.zeros_(self.emb_t1d.bias) self.proj_t1d = init_lecun_normal(self.proj_t1d) nn.init.zeros_(self.proj_t1d.bias) def forward(self, t1d, t2d, alpha_t, xyz_t, pair, state, use_checkpoint=False): # Input # - t1d: 1D template info (B, T, L, 23) # - t2d: 2D template info (B, T, L, L, 44) B, T, L, _ = t1d.shape # Prepare 2D template features left = t1d.unsqueeze(3).expand(-1,-1,-1,L,-1) right = t1d.unsqueeze(2).expand(-1,-1,L,-1,-1) # templ = torch.cat((t2d, left, right), -1) # (B, T, L, L, 90) templ = self.emb(templ) # Template templures (B, T, L, L, d_templ) # process each template features xyz_t = xyz_t.reshape(B*T, L, -1, 3) rbf_feat = rbf(torch.cdist(xyz_t[:,:,1], xyz_t[:,:,1])) templ = self.templ_stack(templ, rbf_feat, use_checkpoint=use_checkpoint) # (B, T, L,L, d_templ) # Prepare 1D template torsion angle features t1d = torch.cat((t1d, alpha_t), dim=-1) # (B, T, L, 23+30) # process each template features t1d = self.proj_t1d(F.relu_(self.emb_t1d(t1d))) # mixing query state features to template state features state = state.reshape(B*L, 1, -1) t1d = t1d.permute(0,2,1,3).reshape(B*L, T, -1) if use_checkpoint: out = checkpoint.checkpoint(create_custom_forward(self.attn_tor), state, t1d, t1d) out = out.reshape(B, L, -1) else: out = self.attn_tor(state, t1d, t1d).reshape(B, L, -1) state = state.reshape(B, L, -1) state = state + out # mixing query pair features to template information (Template pointwise attention) pair = pair.reshape(B*L*L, 1, -1) templ = templ.permute(0, 2, 3, 1, 4).reshape(B*L*L, T, -1) if use_checkpoint: out = checkpoint.checkpoint(create_custom_forward(self.attn), pair, templ, templ) out = out.reshape(B, L, L, -1) else: out = self.attn(pair, templ, templ).reshape(B, L, L, -1) # pair = pair.reshape(B, L, L, -1) pair = pair + out return pair, state class Recycling(nn.Module): def __init__(self, d_msa=256, d_pair=128, d_state=32): super(Recycling, self).__init__() self.proj_dist = nn.Linear(36+d_state*2, d_pair) self.norm_state = nn.LayerNorm(d_state) self.norm_pair = nn.LayerNorm(d_pair) self.norm_msa = nn.LayerNorm(d_msa) self.reset_parameter() def reset_parameter(self): self.proj_dist = init_lecun_normal(self.proj_dist) nn.init.zeros_(self.proj_dist.bias) def forward(self, seq, msa, pair, xyz, state): B, L = pair.shape[:2] state = self.norm_state(state) # left = state.unsqueeze(2).expand(-1,-1,L,-1) right = state.unsqueeze(1).expand(-1,L,-1,-1) # three anchor atoms N = xyz[:,:,0] Ca = xyz[:,:,1] C = xyz[:,:,2] # recreate Cb given N,Ca,C b = Ca - N c = C - Ca a = torch.cross(b, c, dim=-1) Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca dist = rbf(torch.cdist(Cb, Cb)) dist = torch.cat((dist, left, right), dim=-1) dist = self.proj_dist(dist) pair = dist + self.norm_pair(pair) msa = self.norm_msa(msa) return msa, pair, state
RFdiffusion-main
Embeddings.py
#!/usr/bin/env python """ Inference script. To run with base.yaml as the config, > python run_inference.py To specify a different config, > python run_inference.py --config-name symmetry where symmetry can be the filename of any other config (without .yaml extension) See https://hydra.cc/docs/advanced/hydra-command-line-flags/ for more options. """ import re import os, time, pickle import torch from omegaconf import DictConfig, OmegaConf import hydra import logging from util import writepdb_multi, writepdb from inference import utils as iu from icecream import ic from hydra.core.hydra_config import HydraConfig import numpy as np import random import glob def make_deterministic(seed=0): torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) @hydra.main(version_base=None, config_path="config/inference", config_name="base") def main(conf: HydraConfig) -> None: log = logging.getLogger(__name__) if conf.inference.deterministic: make_deterministic() # Initialize sampler and target/contig. sampler = iu.sampler_selector(conf) # Loop over number of designs to sample. design_startnum = sampler.inf_conf.design_startnum if sampler.inf_conf.design_startnum == -1: existing = glob.glob(sampler.inf_conf.output_prefix + "*.pdb") indices = [-1] for e in existing: print(e) m = re.match(".*_(\d+)\.pdb$", e) print(m) if not m: continue m = m.groups()[0] indices.append(int(m)) design_startnum = max(indices) + 1 for i_des in range(design_startnum, design_startnum + sampler.inf_conf.num_designs): if conf.inference.deterministic: make_deterministic(i_des) start_time = time.time() out_prefix = f"{sampler.inf_conf.output_prefix}_{i_des}" log.info(f"Making design {out_prefix}") if sampler.inf_conf.cautious and os.path.exists(out_prefix + ".pdb"): log.info( f"(cautious mode) Skipping this design because {out_prefix}.pdb already exists." ) continue x_init, seq_init = sampler.sample_init() denoised_xyz_stack = [] px0_xyz_stack = [] seq_stack = [] plddt_stack = [] x_t = torch.clone(x_init) seq_t = torch.clone(seq_init) # Loop over number of reverse diffusion time steps. for t in range(int(sampler.t_step_input), sampler.inf_conf.final_step - 1, -1): px0, x_t, seq_t, plddt = sampler.sample_step( t=t, x_t=x_t, seq_init=seq_t, final_step=sampler.inf_conf.final_step ) px0_xyz_stack.append(px0) denoised_xyz_stack.append(x_t) seq_stack.append(seq_t) plddt_stack.append(plddt[0]) # remove singleton leading dimension # Flip order for better visualization in pymol denoised_xyz_stack = torch.stack(denoised_xyz_stack) denoised_xyz_stack = torch.flip( denoised_xyz_stack, [ 0, ], ) px0_xyz_stack = torch.stack(px0_xyz_stack) px0_xyz_stack = torch.flip( px0_xyz_stack, [ 0, ], ) # For logging -- don't flip plddt_stack = torch.stack(plddt_stack) # Save outputs os.makedirs(os.path.dirname(out_prefix), exist_ok=True) final_seq = seq_stack[-1] # Output glycines, except for motif region final_seq = torch.where( torch.argmax(seq_init, dim=-1) == 21, 7, torch.argmax(seq_init, dim=-1) ) # 7 is glycine bfacts = torch.ones_like(final_seq.squeeze()) # make bfact=0 for diffused coordinates bfacts[torch.where(torch.argmax(seq_init, dim=-1) == 21, True, False)] = 0 # pX0 last step out = f"{out_prefix}.pdb" # Now don't output sidechains writepdb( out, denoised_xyz_stack[0, :, :4], final_seq, sampler.binderlen, chain_idx=sampler.chain_idx, bfacts=bfacts, ) # run metadata trb = dict( config=OmegaConf.to_container(sampler._conf, resolve=True), plddt=plddt_stack.cpu().numpy(), device=torch.cuda.get_device_name(torch.cuda.current_device()) if torch.cuda.is_available() else "CPU", time=time.time() - start_time, ) if hasattr(sampler, "contig_map"): for key, value in sampler.contig_map.get_mappings().items(): trb[key] = value with open(f"{out_prefix}.trb", "wb") as f_out: pickle.dump(trb, f_out) if sampler.inf_conf.write_trajectory: # trajectory pdbs traj_prefix = ( os.path.dirname(out_prefix) + "/traj/" + os.path.basename(out_prefix) ) os.makedirs(os.path.dirname(traj_prefix), exist_ok=True) out = f"{traj_prefix}_Xt-1_traj.pdb" writepdb_multi( out, denoised_xyz_stack, bfacts, final_seq.squeeze(), use_hydrogens=False, backbone_only=False, chain_ids=sampler.chain_idx, ) out = f"{traj_prefix}_pX0_traj.pdb" writepdb_multi( out, px0_xyz_stack, bfacts, final_seq.squeeze(), use_hydrogens=False, backbone_only=False, chain_ids=sampler.chain_idx, ) log.info(f"Finished design in {(time.time()-start_time)/60:.2f} minutes") if __name__ == "__main__": main()
RFdiffusion-main
run_inference.py
"""SO(3) diffusion methods.""" import numpy as np import os from functools import cached_property import torch from scipy.spatial.transform import Rotation import scipy.linalg ### First define geometric operations on the SO3 manifold # hat map from vector space R^3 to Lie algebra so(3) def hat(v): hat_v = torch.zeros([v.shape[0], 3, 3]) hat_v[:, 0, 1], hat_v[:, 0, 2], hat_v[:, 1, 2] = -v[:, 2], v[:, 1], -v[:, 0] return hat_v + -hat_v.transpose(2, 1) # Logarithmic map from SO(3) to R^3 (i.e. rotation vector) def Log(R): return torch.tensor(Rotation.from_matrix(R.numpy()).as_rotvec()) # logarithmic map from SO(3) to so(3), this is the matrix logarithm def log(R): return hat(Log(R)) # Exponential map from vector space of so(3) to SO(3), this is the matrix # exponential combined with the "hat" map def Exp(A): return torch.tensor(Rotation.from_rotvec(A.numpy()).as_matrix()) # Angle of rotation SO(3) to R^+ def Omega(R): return np.linalg.norm(log(R), axis=[-2, -1])/np.sqrt(2.) L_default = 2000 def f_igso3(omega, t, L=L_default): """Truncated sum of IGSO(3) distribution. This function approximates the power series in equation 5 of "DENOISING DIFFUSION PROBABILISTIC MODELS ON SO(3) FOR ROTATIONAL ALIGNMENT" Leach et al. 2022 This expression diverges from the expression in Leach in that here, sigma = sqrt(2) * eps, if eps_leach were the scale parameter of the IGSO(3). With this reparameterization, IGSO(3) agrees with the Brownian motion on SO(3) with t=sigma^2 when defined for the canonical inner product on SO3, <u, v>_SO3 = Trace(u v^T)/2 Args: omega: i.e. the angle of rotation associated with rotation matrix t: variance parameter of IGSO(3), maps onto time in Brownian motion L: Truncation level """ ls = torch.arange(L)[None] # of shape [1, L] return ((2*ls + 1) * torch.exp(-ls*(ls+1)*t/2) * torch.sin(omega[:, None]*(ls+1/2)) / torch.sin(omega[:, None]/2)).sum(dim=-1) def d_logf_d_omega(omega, t, L=L_default): omega = torch.tensor(omega, requires_grad=True) log_f = torch.log(f_igso3(omega, t, L)) return torch.autograd.grad(log_f.sum(), omega)[0].numpy() # IGSO3 density with respect to the volume form on SO(3) def igso3_density(Rt, t, L=L_default): return f_igso3(torch.tensor(Omega(Rt)), t, L).numpy() def igso3_density_angle(omega, t, L=L_default): return f_igso3(torch.tensor(omega), t, L).numpy()*(1-np.cos(omega))/np.pi # grad_R log IGSO3(R; I_3, t) def igso3_score(R, t, L=L_default): omega = Omega(R) unit_vector = np.einsum('Nij,Njk->Nik', R, log(R))/omega[:, None, None] return unit_vector * d_logf_d_omega(omega, t, L)[:, None, None] def calculate_igso3(*, num_sigma, num_omega, min_sigma, max_sigma, L=L_default): """calculate_igso3 pre-computes numerical approximations to the IGSO3 cdfs and score norms and expected squared score norms. Args: num_sigma: number of different sigmas for which to compute igso3 quantities. num_omega: number of point in the discretization in the angle of rotation. min_sigma, max_sigma: the upper and lower ranges for the angle of rotation on which to consider the IGSO3 distribution. This cannot be too low or it will create numerical instability. """ # Discretize omegas for calculating CDFs. Skip omega=0. discrete_omega = np.linspace(0, np.pi, num_omega+1)[1:] # Exponential noise schedule. This choice is closely tied to the # scalings used when simulating the reverse time SDE. For each step n, # discrete_sigma[n] = min_eps^(1-n/num_eps) * max_eps^(n/num_eps) discrete_sigma = 10 ** np.linspace(np.log10(min_sigma), np.log10(max_sigma), num_sigma + 1)[1:] # Compute the pdf and cdf values for the marginal distribution of the angle # of rotation (which is needed for sampling) pdf_vals = np.asarray( [igso3_density_angle(discrete_omega, sigma**2) for sigma in discrete_sigma]) cdf_vals = np.asarray( [pdf.cumsum() / num_omega * np.pi for pdf in pdf_vals]) # Compute the norms of the scores. This are used to scale the rotation axis when # computing the score as a vector. score_norm = np.asarray( [d_logf_d_omega(discrete_omega, sigma**2) for sigma in discrete_sigma]) # Compute the standard deviation of the score norm for each sigma exp_score_norms = np.sqrt( np.sum( score_norm**2 * pdf_vals, axis=1) / np.sum( pdf_vals, axis=1)) return { 'cdf': cdf_vals, 'score_norm': score_norm, 'exp_score_norms': exp_score_norms, 'discrete_omega': discrete_omega, 'discrete_sigma': discrete_sigma, }
RFdiffusion-main
igso3.py
import torch import torch.nn as nn class DistanceNetwork(nn.Module): def __init__(self, n_feat, p_drop=0.1): super(DistanceNetwork, self).__init__() # self.proj_symm = nn.Linear(n_feat, 37*2) self.proj_asymm = nn.Linear(n_feat, 37+19) self.reset_parameter() def reset_parameter(self): # initialize linear layer for final logit prediction nn.init.zeros_(self.proj_symm.weight) nn.init.zeros_(self.proj_asymm.weight) nn.init.zeros_(self.proj_symm.bias) nn.init.zeros_(self.proj_asymm.bias) def forward(self, x): # input: pair info (B, L, L, C) # predict theta, phi (non-symmetric) logits_asymm = self.proj_asymm(x) logits_theta = logits_asymm[:,:,:,:37].permute(0,3,1,2) logits_phi = logits_asymm[:,:,:,37:].permute(0,3,1,2) # predict dist, omega logits_symm = self.proj_symm(x) logits_symm = logits_symm + logits_symm.permute(0,2,1,3) logits_dist = logits_symm[:,:,:,:37].permute(0,3,1,2) logits_omega = logits_symm[:,:,:,37:].permute(0,3,1,2) return logits_dist, logits_omega, logits_theta, logits_phi class MaskedTokenNetwork(nn.Module): def __init__(self, n_feat, p_drop=0.1): super(MaskedTokenNetwork, self).__init__() self.proj = nn.Linear(n_feat, 21) self.reset_parameter() def reset_parameter(self): nn.init.zeros_(self.proj.weight) nn.init.zeros_(self.proj.bias) def forward(self, x): B, N, L = x.shape[:3] logits = self.proj(x).permute(0,3,1,2).reshape(B, -1, N*L) return logits class LDDTNetwork(nn.Module): def __init__(self, n_feat, n_bin_lddt=50): super(LDDTNetwork, self).__init__() self.proj = nn.Linear(n_feat, n_bin_lddt) self.reset_parameter() def reset_parameter(self): nn.init.zeros_(self.proj.weight) nn.init.zeros_(self.proj.bias) def forward(self, x): logits = self.proj(x) # (B, L, 50) return logits.permute(0,2,1) class ExpResolvedNetwork(nn.Module): def __init__(self, d_msa, d_state, p_drop=0.1): super(ExpResolvedNetwork, self).__init__() self.norm_msa = nn.LayerNorm(d_msa) self.norm_state = nn.LayerNorm(d_state) self.proj = nn.Linear(d_msa+d_state, 1) self.reset_parameter() def reset_parameter(self): nn.init.zeros_(self.proj.weight) nn.init.zeros_(self.proj.bias) def forward(self, seq, state): B, L = seq.shape[:2] seq = self.norm_msa(seq) state = self.norm_state(state) feat = torch.cat((seq, state), dim=-1) logits = self.proj(feat) return logits.reshape(B, L)
RFdiffusion-main
AuxiliaryPredictor.py
import traceback import os from inspect import signature import pickle import datetime def pickle_function_call_wrapper(func, output_dir='pickled_inputs'): i = 0 os.makedirs(output_dir) # pickle.dump({'args': args, 'kwargs': kwargs}, fh) def wrapper(*args, **kwargs): """ Wrap the original function call to print the arguments before calling the intended function """ nonlocal i i += 1 func_sig = signature(func) # Create the argument binding so we can determine what # parameters are given what values argument_binding = func_sig.bind(*args, **kwargs) argument_map = argument_binding.arguments # Perform the print so that it shows the function name # and arguments as a dictionary path = os.path.join(output_dir, f'{i:05d}.pkl') print(f"logging {func.__name__} arguments: {[k for k in argument_map]} to {path}") argument_map['stack'] = traceback.format_stack() for k, v in argument_map.items(): if hasattr(v, 'detach'): argument_map[k] = v.cpu().detach() with open(path, 'wb') as fh: pickle.dump(argument_map, fh) return func(*args, **kwargs) return wrapper def wrap_it(wrapper, instance, method, **kwargs): class_method = getattr(instance, method) wrapped_method = wrapper(class_method, **kwargs) setattr(instance, method, wrapped_method) def pickle_function_call(instance, method, subdir): output_dir = os.path.join(os.getcwd(), 'pickled_inputs', subdir, datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")) wrap_it(pickle_function_call_wrapper, instance, method, output_dir=output_dir) return output_dir # For testing if __name__=='__main__': import glob class Dog: def __init__(self, name): self.name = name def bark(self, arg, kwarg=None): print(f'{self.name}:{arg}:{kwarg}') dog = Dog('fido') dog.bark('ruff') output_dir = pickle_function_call(dog, 'bark', 'debugging') dog.bark('ruff', kwarg='wooof') for p in glob.glob(os.path.join(output_dir, '*')): print(p) with open(p, 'rb') as fh: print(pickle.load(fh))
RFdiffusion-main
model_input_logger.py
import sys import numpy as np import random from icecream import ic class ContigMap: """ Class for doing mapping. Inherited from Inpainting. To update at some point. Supports multichain or multiple crops from a single receptor chain. Also supports indexing jump (+200) or not, based on contig input. Default chain outputs are inpainted chains as A (and B, C etc if multiple chains), and all fragments of receptor chain on the next one (generally B) Output chains can be specified. Sequence must be the same number of elements as in contig string """ def __init__( self, parsed_pdb, contigs=None, inpaint_seq=None, inpaint_str=None, length=None, ref_idx=None, hal_idx=None, idx_rf=None, inpaint_seq_tensor=None, inpaint_str_tensor=None, topo=False, provide_seq=None, ): # sanity checks if contigs is None and ref_idx is None: sys.exit("Must either specify a contig string or precise mapping") if idx_rf is not None or hal_idx is not None or ref_idx is not None: if idx_rf is None or hal_idx is None or ref_idx is None: sys.exit( "If you're specifying specific contig mappings, the reference and output positions must be specified, AND the indexing for RoseTTAFold (idx_rf)" ) self.chain_order = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" if length is not None: if "-" not in length: self.length = [int(length), int(length) + 1] else: self.length = [int(length.split("-")[0]), int(length.split("-")[1]) + 1] else: self.length = None self.ref_idx = ref_idx self.hal_idx = hal_idx self.idx_rf = idx_rf self.inpaint_seq = ( "/".join(inpaint_seq).split("/") if inpaint_seq is not None else None ) self.inpaint_str = ( "/".join(inpaint_str).split("/") if inpaint_str is not None else None ) self.inpaint_seq_tensor = inpaint_seq_tensor self.inpaint_str_tensor = inpaint_str_tensor self.parsed_pdb = parsed_pdb self.topo = topo if ref_idx is None: # using default contig generation, which outputs in rosetta-like format self.contigs = contigs ( self.sampled_mask, self.contig_length, self.n_inpaint_chains, ) = self.get_sampled_mask() self.receptor_chain = self.chain_order[self.n_inpaint_chains] ( self.receptor, self.receptor_hal, self.receptor_rf, self.inpaint, self.inpaint_hal, self.inpaint_rf, ) = self.expand_sampled_mask() self.ref = self.inpaint + self.receptor self.hal = self.inpaint_hal + self.receptor_hal self.rf = self.inpaint_rf + self.receptor_rf else: # specifying precise mappings self.ref = ref_idx self.hal = hal_idx self.rf = rf_idx self.mask_1d = [False if i == ("_", "_") else True for i in self.ref] # take care of sequence and structure masking if self.inpaint_seq_tensor is None: if self.inpaint_seq is not None: self.inpaint_seq = self.get_inpaint_seq_str(self.inpaint_seq) else: self.inpaint_seq = np.array( [True if i != ("_", "_") else False for i in self.ref] ) else: self.inpaint_seq = self.inpaint_seq_tensor if self.inpaint_str_tensor is None: if self.inpaint_str is not None: self.inpaint_str = self.get_inpaint_seq_str(self.inpaint_str) else: self.inpaint_str = np.array( [True if i != ("_", "_") else False for i in self.ref] ) else: self.inpaint_str = self.inpaint_str_tensor # get 0-indexed input/output (for trb file) ( self.ref_idx0, self.hal_idx0, self.ref_idx0_inpaint, self.hal_idx0_inpaint, self.ref_idx0_receptor, self.hal_idx0_receptor, ) = self.get_idx0() self.con_ref_pdb_idx = [i for i in self.ref if i != ("_", "_")] # Handle provide seq. This is zero-indexed, and used only for partial diffusion if provide_seq is not None: for i in provide_seq[0].split(","): if "-" in i: self.inpaint_seq[ int(i.split("-")[0]) : int(i.split("-")[1]) + 1 ] = True else: self.inpaint_seq[int(i)] = True def get_sampled_mask(self): """ Function to get a sampled mask from a contig. """ length_compatible = False count = 0 while length_compatible is False: inpaint_chains = 0 contig_list = self.contigs[0].strip().split() sampled_mask = [] sampled_mask_length = 0 # allow receptor chain to be last in contig string if all([i[0].isalpha() for i in contig_list[-1].split("/")]): contig_list[-1] = f"{contig_list[-1]}/0" for con in contig_list: if ( all([i[0].isalpha() for i in con.split("/")[:-1]]) and con.split("/")[-1] == "0" ) or self.topo is True: # receptor chain sampled_mask.append(con) else: inpaint_chains += 1 # chain to be inpainted. These are the only chains that count towards the length of the contig subcons = con.split("/") subcon_out = [] for subcon in subcons: if subcon[0].isalpha(): subcon_out.append(subcon) if "-" in subcon: sampled_mask_length += ( int(subcon.split("-")[1]) - int(subcon.split("-")[0][1:]) + 1 ) else: sampled_mask_length += 1 else: if "-" in subcon: length_inpaint = random.randint( int(subcon.split("-")[0]), int(subcon.split("-")[1]) ) subcon_out.append(f"{length_inpaint}-{length_inpaint}") sampled_mask_length += length_inpaint elif subcon == "0": subcon_out.append("0") else: length_inpaint = int(subcon) subcon_out.append(f"{length_inpaint}-{length_inpaint}") sampled_mask_length += int(subcon) sampled_mask.append("/".join(subcon_out)) # check length is compatible if self.length is not None: if ( sampled_mask_length >= self.length[0] and sampled_mask_length < self.length[1] ): length_compatible = True else: length_compatible = True count += 1 if count == 100000: # contig string incompatible with this length sys.exit("Contig string incompatible with --length range") return sampled_mask, sampled_mask_length, inpaint_chains def expand_sampled_mask(self): chain_order = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" receptor = [] inpaint = [] receptor_hal = [] inpaint_hal = [] receptor_idx = 1 inpaint_idx = 1 inpaint_chain_idx = -1 receptor_chain_break = [] inpaint_chain_break = [] for con in self.sampled_mask: if ( all([i[0].isalpha() for i in con.split("/")[:-1]]) and con.split("/")[-1] == "0" ) or self.topo is True: # receptor chain subcons = con.split("/")[:-1] assert all( [i[0] == subcons[0][0] for i in subcons] ), "If specifying fragmented receptor in a single block of the contig string, they MUST derive from the same chain" assert all( int(subcons[i].split("-")[0][1:]) < int(subcons[i + 1].split("-")[0][1:]) for i in range(len(subcons) - 1) ), "If specifying multiple fragments from the same chain, pdb indices must be in ascending order!" for idx, subcon in enumerate(subcons): ref_to_add = [ (subcon[0], i) for i in np.arange( int(subcon.split("-")[0][1:]), int(subcon.split("-")[1]) + 1 ) ] receptor.extend(ref_to_add) receptor_hal.extend( [ (self.receptor_chain, i) for i in np.arange( receptor_idx, receptor_idx + len(ref_to_add) ) ] ) receptor_idx += len(ref_to_add) if idx != len(subcons) - 1: idx_jump = ( int(subcons[idx + 1].split("-")[0][1:]) - int(subcon.split("-")[1]) - 1 ) receptor_chain_break.append( (receptor_idx - 1, idx_jump) ) # actual chain break in pdb chain else: receptor_chain_break.append( (receptor_idx - 1, 200) ) # 200 aa chain break else: inpaint_chain_idx += 1 for subcon in con.split("/"): if subcon[0].isalpha(): ref_to_add = [ (subcon[0], i) for i in np.arange( int(subcon.split("-")[0][1:]), int(subcon.split("-")[1]) + 1, ) ] inpaint.extend(ref_to_add) inpaint_hal.extend( [ (chain_order[inpaint_chain_idx], i) for i in np.arange( inpaint_idx, inpaint_idx + len(ref_to_add) ) ] ) inpaint_idx += len(ref_to_add) else: inpaint.extend([("_", "_")] * int(subcon.split("-")[0])) inpaint_hal.extend( [ (chain_order[inpaint_chain_idx], i) for i in np.arange( inpaint_idx, inpaint_idx + int(subcon.split("-")[0]) ) ] ) inpaint_idx += int(subcon.split("-")[0]) inpaint_chain_break.append((inpaint_idx - 1, 200)) if self.topo is True or inpaint_hal == []: receptor_hal = [(i[0], i[1]) for i in receptor_hal] else: receptor_hal = [ (i[0], i[1] + inpaint_hal[-1][1]) for i in receptor_hal ] # rosetta-like numbering # get rf indexes, with chain breaks inpaint_rf = np.arange(0, len(inpaint)) receptor_rf = np.arange(len(inpaint) + 200, len(inpaint) + len(receptor) + 200) for ch_break in inpaint_chain_break[:-1]: receptor_rf[:] += 200 inpaint_rf[ch_break[0] :] += ch_break[1] for ch_break in receptor_chain_break[:-1]: receptor_rf[ch_break[0] :] += ch_break[1] return ( receptor, receptor_hal, receptor_rf.tolist(), inpaint, inpaint_hal, inpaint_rf.tolist(), ) def get_inpaint_seq_str(self, inpaint_s): """ function to generate inpaint_str or inpaint_seq masks specific to this contig """ s_mask = np.copy(self.mask_1d) inpaint_s_list = [] for i in inpaint_s: if "-" in i: inpaint_s_list.extend( [ (i[0], p) for p in range( int(i.split("-")[0][1:]), int(i.split("-")[1]) + 1 ) ] ) else: inpaint_s_list.append((i[0], int(i[1:]))) for res in inpaint_s_list: if res in self.ref: s_mask[self.ref.index(res)] = False # mask this residue return np.array(s_mask) def get_idx0(self): ref_idx0 = [] hal_idx0 = [] ref_idx0_inpaint = [] hal_idx0_inpaint = [] ref_idx0_receptor = [] hal_idx0_receptor = [] for idx, val in enumerate(self.ref): if val != ("_", "_"): assert val in self.parsed_pdb["pdb_idx"], f"{val} is not in pdb file!" hal_idx0.append(idx) ref_idx0.append(self.parsed_pdb["pdb_idx"].index(val)) for idx, val in enumerate(self.inpaint): if val != ("_", "_"): hal_idx0_inpaint.append(idx) ref_idx0_inpaint.append(self.parsed_pdb["pdb_idx"].index(val)) for idx, val in enumerate(self.receptor): if val != ("_", "_"): hal_idx0_receptor.append(idx) ref_idx0_receptor.append(self.parsed_pdb["pdb_idx"].index(val)) return ( ref_idx0, hal_idx0, ref_idx0_inpaint, hal_idx0_inpaint, ref_idx0_receptor, hal_idx0_receptor, ) def get_mappings(self): mappings = {} mappings["con_ref_pdb_idx"] = [i for i in self.inpaint if i != ("_", "_")] mappings["con_hal_pdb_idx"] = [ self.inpaint_hal[i] for i in range(len(self.inpaint_hal)) if self.inpaint[i] != ("_", "_") ] mappings["con_ref_idx0"] = np.array(self.ref_idx0_inpaint) mappings["con_hal_idx0"] = np.array(self.hal_idx0_inpaint) if self.inpaint != self.ref: mappings["complex_con_ref_pdb_idx"] = [ i for i in self.ref if i != ("_", "_") ] mappings["complex_con_hal_pdb_idx"] = [ self.hal[i] for i in range(len(self.hal)) if self.ref[i] != ("_", "_") ] mappings["receptor_con_ref_pdb_idx"] = [ i for i in self.receptor if i != ("_", "_") ] mappings["receptor_con_hal_pdb_idx"] = [ self.receptor_hal[i] for i in range(len(self.receptor_hal)) if self.receptor[i] != ("_", "_") ] mappings["complex_con_ref_idx0"] = np.array(self.ref_idx0) mappings["complex_con_hal_idx0"] = np.array(self.hal_idx0) mappings["receptor_con_ref_idx0"] = np.array(self.ref_idx0_receptor) mappings["receptor_con_hal_idx0"] = np.array(self.hal_idx0_receptor) mappings["inpaint_str"] = self.inpaint_str mappings["inpaint_seq"] = self.inpaint_seq mappings["sampled_mask"] = self.sampled_mask mappings["mask_1d"] = self.mask_1d return mappings
RFdiffusion-main
contigs.py
import numpy as np import scipy import scipy.spatial # calculate dihedral angles defined by 4 sets of points def get_dihedrals(a, b, c, d): b0 = -1.0*(b - a) b1 = c - b b2 = d - c b1 /= np.linalg.norm(b1, axis=-1)[:,None] v = b0 - np.sum(b0*b1, axis=-1)[:,None]*b1 w = b2 - np.sum(b2*b1, axis=-1)[:,None]*b1 x = np.sum(v*w, axis=-1) y = np.sum(np.cross(b1, v)*w, axis=-1) return np.arctan2(y, x) # calculate planar angles defined by 3 sets of points def get_angles(a, b, c): v = a - b v /= np.linalg.norm(v, axis=-1)[:,None] w = c - b w /= np.linalg.norm(w, axis=-1)[:,None] x = np.sum(v*w, axis=1) #return np.arccos(x) return np.arccos(np.clip(x, -1.0, 1.0)) # get 6d coordinates from x,y,z coords of N,Ca,C atoms def get_coords6d(xyz, dmax): nres = xyz.shape[1] # three anchor atoms N = xyz[0] Ca = xyz[1] C = xyz[2] # recreate Cb given N,Ca,C b = Ca - N c = C - Ca a = np.cross(b, c) Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca # fast neighbors search to collect all # Cb-Cb pairs within dmax kdCb = scipy.spatial.cKDTree(Cb) indices = kdCb.query_ball_tree(kdCb, dmax) # indices of contacting residues idx = np.array([[i,j] for i in range(len(indices)) for j in indices[i] if i != j]).T idx0 = idx[0] idx1 = idx[1] # Cb-Cb distance matrix dist6d = np.full((nres, nres),999.9, dtype=np.float32) dist6d[idx0,idx1] = np.linalg.norm(Cb[idx1]-Cb[idx0], axis=-1) # matrix of Ca-Cb-Cb-Ca dihedrals omega6d = np.zeros((nres, nres), dtype=np.float32) omega6d[idx0,idx1] = get_dihedrals(Ca[idx0], Cb[idx0], Cb[idx1], Ca[idx1]) # matrix of polar coord theta theta6d = np.zeros((nres, nres), dtype=np.float32) theta6d[idx0,idx1] = get_dihedrals(N[idx0], Ca[idx0], Cb[idx0], Cb[idx1]) # matrix of polar coord phi phi6d = np.zeros((nres, nres), dtype=np.float32) phi6d[idx0,idx1] = get_angles(Ca[idx0], Cb[idx0], Cb[idx1]) mask = np.zeros((nres, nres), dtype=np.float32) mask[idx0, idx1] = 1.0 return dist6d, omega6d, theta6d, phi6d, mask
RFdiffusion-main
coords6d.py
import torch import numpy as np from util import generate_Cbeta class Potential: ''' Interface class that defines the functions a potential must implement ''' def compute(self, xyz): ''' Given the current structure of the model prediction, return the current potential as a PyTorch tensor with a single entry Args: xyz (torch.tensor, size: [L,27,3]: The current coordinates of the sample Returns: potential (torch.tensor, size: [1]): A potential whose value will be MAXIMIZED by taking a step along it's gradient ''' raise NotImplementedError('Potential compute function was not overwritten') class monomer_ROG(Potential): ''' Radius of Gyration potential for encouraging monomer compactness Written by DJ and refactored into a class by NRB ''' def __init__(self, weight=1, min_dist=15): self.weight = weight self.min_dist = min_dist def compute(self, xyz): Ca = xyz[:,1] # [L,3] centroid = torch.mean(Ca, dim=0, keepdim=True) # [1,3] dgram = torch.cdist(Ca[None,...].contiguous(), centroid[None,...].contiguous(), p=2) # [1,L,1,3] dgram = torch.maximum(self.min_dist * torch.ones_like(dgram.squeeze(0)), dgram.squeeze(0)) # [L,1,3] rad_of_gyration = torch.sqrt( torch.sum(torch.square(dgram)) / Ca.shape[0] ) # [1] return -1 * self.weight * rad_of_gyration class binder_ROG(Potential): ''' Radius of Gyration potential for encouraging binder compactness Author: NRB ''' def __init__(self, binderlen, weight=1, min_dist=15): self.binderlen = binderlen self.min_dist = min_dist self.weight = weight def compute(self, xyz): # Only look at binder residues Ca = xyz[:self.binderlen,1] # [Lb,3] centroid = torch.mean(Ca, dim=0, keepdim=True) # [1,3] # cdist needs a batch dimension - NRB dgram = torch.cdist(Ca[None,...].contiguous(), centroid[None,...].contiguous(), p=2) # [1,Lb,1,3] dgram = torch.maximum(self.min_dist * torch.ones_like(dgram.squeeze(0)), dgram.squeeze(0)) # [Lb,1,3] rad_of_gyration = torch.sqrt( torch.sum(torch.square(dgram)) / Ca.shape[0] ) # [1] return -1 * self.weight * rad_of_gyration class dimer_ROG(Potential): ''' Radius of Gyration potential for encouraging compactness of both monomers when designing dimers Author: PV ''' def __init__(self, binderlen, weight=1, min_dist=15): self.binderlen = binderlen self.min_dist = min_dist self.weight = weight def compute(self, xyz): # Only look at monomer 1 residues Ca_m1 = xyz[:self.binderlen,1] # [Lb,3] # Only look at monomer 2 residues Ca_m2 = xyz[self.binderlen:,1] # [Lb,3] centroid_m1 = torch.mean(Ca_m1, dim=0, keepdim=True) # [1,3] centroid_m2 = torch.mean(Ca_m1, dim=0, keepdim=True) # [1,3] # cdist needs a batch dimension - NRB #This calculates RoG for Monomer 1 dgram_m1 = torch.cdist(Ca_m1[None,...].contiguous(), centroid_m1[None,...].contiguous(), p=2) # [1,Lb,1,3] dgram_m1 = torch.maximum(self.min_dist * torch.ones_like(dgram_m1.squeeze(0)), dgram_m1.squeeze(0)) # [Lb,1,3] rad_of_gyration_m1 = torch.sqrt( torch.sum(torch.square(dgram_m1)) / Ca_m1.shape[0] ) # [1] # cdist needs a batch dimension - NRB #This calculates RoG for Monomer 2 dgram_m2 = torch.cdist(Ca_m2[None,...].contiguous(), centroid_m2[None,...].contiguous(), p=2) # [1,Lb,1,3] dgram_m2 = torch.maximum(self.min_dist * torch.ones_like(dgram_m2.squeeze(0)), dgram_m2.squeeze(0)) # [Lb,1,3] rad_of_gyration_m2 = torch.sqrt( torch.sum(torch.square(dgram_m2)) / Ca_m2.shape[0] ) # [1] #Potential value is the average of both radii of gyration (is avg. the best way to do this?) return -1 * self.weight * (rad_of_gyration_m1 + rad_of_gyration_m2)/2 class binder_ncontacts(Potential): ''' Differentiable way to maximise number of contacts within a protein Motivation is given here: https://www.plumed.org/doc-v2.7/user-doc/html/_c_o_o_r_d_i_n_a_t_i_o_n.html ''' def __init__(self, binderlen, weight=1, r_0=8, d_0=4): self.binderlen = binderlen self.r_0 = r_0 self.weight = weight self.d_0 = d_0 def compute(self, xyz): # Only look at binder Ca residues Ca = xyz[:self.binderlen,1] # [Lb,3] #cdist needs a batch dimension - NRB dgram = torch.cdist(Ca[None,...].contiguous(), Ca[None,...].contiguous(), p=2) # [1,Lb,Lb] divide_by_r_0 = (dgram - self.d_0) / self.r_0 numerator = torch.pow(divide_by_r_0,6) denominator = torch.pow(divide_by_r_0,12) binder_ncontacts = (1 - numerator) / (1 - denominator) print("BINDER CONTACTS:", binder_ncontacts.sum()) #Potential value is the average of both radii of gyration (is avg. the best way to do this?) return self.weight * binder_ncontacts.sum() class dimer_ncontacts(Potential): ''' Differentiable way to maximise number of contacts for two individual monomers in a dimer Motivation is given here: https://www.plumed.org/doc-v2.7/user-doc/html/_c_o_o_r_d_i_n_a_t_i_o_n.html Author: PV ''' def __init__(self, binderlen, weight=1, r_0=8, d_0=4): self.binderlen = binderlen self.r_0 = r_0 self.weight = weight self.d_0 = d_0 def compute(self, xyz): # Only look at binder Ca residues Ca = xyz[:self.binderlen,1] # [Lb,3] #cdist needs a batch dimension - NRB dgram = torch.cdist(Ca[None,...].contiguous(), Ca[None,...].contiguous(), p=2) # [1,Lb,Lb] divide_by_r_0 = (dgram - self.d_0) / self.r_0 numerator = torch.pow(divide_by_r_0,6) denominator = torch.pow(divide_by_r_0,12) binder_ncontacts = (1 - numerator) / (1 - denominator) #Potential is the sum of values in the tensor binder_ncontacts = binder_ncontacts.sum() # Only look at target Ca residues Ca = xyz[self.binderlen:,1] # [Lb,3] dgram = torch.cdist(Ca[None,...].contiguous(), Ca[None,...].contiguous(), p=2) # [1,Lb,Lb] divide_by_r_0 = (dgram - self.d_0) / self.r_0 numerator = torch.pow(divide_by_r_0,6) denominator = torch.pow(divide_by_r_0,12) target_ncontacts = (1 - numerator) / (1 - denominator) #Potential is the sum of values in the tensor target_ncontacts = target_ncontacts.sum() print("DIMER NCONTACTS:", (binder_ncontacts+target_ncontacts)/2) #Returns average of n contacts withiin monomer 1 and monomer 2 return self.weight * (binder_ncontacts+target_ncontacts)/2 class interface_ncontacts(Potential): ''' Differentiable way to maximise number of contacts between binder and target Motivation is given here: https://www.plumed.org/doc-v2.7/user-doc/html/_c_o_o_r_d_i_n_a_t_i_o_n.html Author: PV ''' def __init__(self, binderlen, weight=1, r_0=8, d_0=6): self.binderlen = binderlen self.r_0 = r_0 self.weight = weight self.d_0 = d_0 def compute(self, xyz): # Extract binder Ca residues Ca_b = xyz[:self.binderlen,1] # [Lb,3] # Extract target Ca residues Ca_t = xyz[self.binderlen:,1] # [Lt,3] #cdist needs a batch dimension - NRB dgram = torch.cdist(Ca_b[None,...].contiguous(), Ca_t[None,...].contiguous(), p=2) # [1,Lb,Lt] divide_by_r_0 = (dgram - self.d_0) / self.r_0 numerator = torch.pow(divide_by_r_0,6) denominator = torch.pow(divide_by_r_0,12) interface_ncontacts = (1 - numerator) / (1 - denominator) #Potential is the sum of values in the tensor interface_ncontacts = interface_ncontacts.sum() print("INTERFACE CONTACTS:", interface_ncontacts.sum()) return self.weight * interface_ncontacts class monomer_contacts(Potential): ''' Differentiable way to maximise number of contacts within a protein Motivation is given here: https://www.plumed.org/doc-v2.7/user-doc/html/_c_o_o_r_d_i_n_a_t_i_o_n.html Author: PV NOTE: This function sometimes produces NaN's -- added check in reverse diffusion for nan grads ''' def __init__(self, weight=1, r_0=8, d_0=2, eps=1e-6): self.r_0 = r_0 self.weight = weight self.d_0 = d_0 self.eps = eps def compute(self, xyz): Ca = xyz[:,1] # [L,3] #cdist needs a batch dimension - NRB dgram = torch.cdist(Ca[None,...].contiguous(), Ca[None,...].contiguous(), p=2) # [1,Lb,Lb] divide_by_r_0 = (dgram - self.d_0) / self.r_0 numerator = torch.pow(divide_by_r_0,6) denominator = torch.pow(divide_by_r_0,12) ncontacts = (1 - numerator) / ((1 - denominator)) #Potential value is the average of both radii of gyration (is avg. the best way to do this?) return self.weight * ncontacts.sum() def make_contact_matrix(nchain, contact_string=None): """ Calculate a matrix of inter/intra chain contact indicators Parameters: nchain (int, required): How many chains are in this design contact_str (str, optional): String denoting how to define contacts, comma delimited between pairs of chains '!' denotes repulsive, '&' denotes attractive """ alphabet = [a for a in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'] letter2num = {a:i for i,a in enumerate(alphabet)} contacts = np.zeros((nchain,nchain)) written = np.zeros((nchain,nchain)) contact_list = contact_string.split(',') for c in contact_list: if not len(c) == 3: raise SyntaxError('Invalid contact(s) specification') i,j = letter2num[c[0]],letter2num[c[2]] symbol = c[1] # denote contacting/repulsive assert symbol in ['!','&'] if symbol == '!': contacts[i,j] = -1 contacts[j,i] = -1 else: contacts[i,j] = 1 contacts[j,i] = 1 return contacts class olig_contacts(Potential): """ Applies PV's num contacts potential within/between chains in symmetric oligomers Author: DJ """ def __init__(self, contact_matrix, weight_intra=1, weight_inter=1, r_0=8, d_0=2): """ Parameters: chain_lengths (list, required): List of chain lengths, length is (Nchains) contact_matrix (torch.tensor/np.array, required): square matrix of shape (Nchains,Nchains) whose (i,j) enry represents attractive (1), repulsive (-1), or non-existent (0) contact potentials between chains in the complex weight (int/float, optional): Scaling/weighting factor """ self.contact_matrix = contact_matrix self.weight_intra = weight_intra self.weight_inter = weight_inter self.r_0 = r_0 self.d_0 = d_0 # check contact matrix only contains valid entries assert all([i in [-1,0,1] for i in contact_matrix.flatten()]), 'Contact matrix must contain only 0, 1, or -1 in entries' # assert the matrix is square and symmetric shape = contact_matrix.shape assert len(shape) == 2 assert shape[0] == shape[1] for i in range(shape[0]): for j in range(shape[1]): assert contact_matrix[i,j] == contact_matrix[j,i] self.nchain=shape[0] # self._compute_chain_indices() # def _compute_chain_indices(self): # # make list of shape [i,N] for indices of each chain in total length # indices = [] # start = 0 # for l in self.chain_lengths: # indices.append(torch.arange(start,start+l)) # start += l # self.indices = indices def _get_idx(self,i,L): """ Returns the zero-indexed indices of the residues in chain i """ assert L%self.nchain == 0 Lchain = L//self.nchain return i*Lchain + torch.arange(Lchain) def compute(self, xyz): """ Iterate through the contact matrix, compute contact potentials between chains that need it, and negate contacts for any """ L = xyz.shape[0] all_contacts = 0 start = 0 for i in range(self.nchain): for j in range(self.nchain): # only compute for upper triangle, disregard zeros in contact matrix if (i <= j) and (self.contact_matrix[i,j] != 0): # get the indices for these two chains idx_i = self._get_idx(i,L) idx_j = self._get_idx(j,L) Ca_i = xyz[idx_i,1] # slice out crds for this chain Ca_j = xyz[idx_j,1] # slice out crds for that chain dgram = torch.cdist(Ca_i[None,...].contiguous(), Ca_j[None,...].contiguous(), p=2) # [1,Lb,Lb] divide_by_r_0 = (dgram - self.d_0) / self.r_0 numerator = torch.pow(divide_by_r_0,6) denominator = torch.pow(divide_by_r_0,12) ncontacts = (1 - numerator) / (1 - denominator) # weight, don't double count intra scalar = (i==j)*self.weight_intra/2 + (i!=j)*self.weight_inter # contacts attr/repuls relative weights all_contacts += ncontacts.sum() * self.contact_matrix[i,j] * scalar return all_contacts class olig_intra_contacts(Potential): """ Applies PV's num contacts potential for each chain individually in an oligomer design Author: DJ """ def __init__(self, chain_lengths, weight=1): """ Parameters: chain_lengths (list, required): Ordered list of chain lengths weight (int/float, optional): Scaling/weighting factor """ self.chain_lengths = chain_lengths self.weight = weight def compute(self, xyz): """ Computes intra-chain num contacts potential """ assert sum(self.chain_lengths) == xyz.shape[0], 'given chain lengths do not match total protein length' all_contacts = 0 start = 0 for Lc in self.chain_lengths: Ca = xyz[start:start+Lc] # slice out crds for this chain dgram = torch.cdist(Ca[None,...].contiguous(), Ca[None,...].contiguous(), p=2) # [1,Lb,Lb] divide_by_r_0 = (dgram - self.d_0) / self.r_0 numerator = torch.pow(divide_by_r_0,6) denominator = torch.pow(divide_by_r_0,12) ncontacts = (1 - numerator) / (1 - denominator) # add contacts for this chain to all contacts all_contacts += ncontacts.sum() # increment the start to be at the next chain start += Lc return self.weight * all_contacts def get_damped_lj(r_min, r_lin,p1=6,p2=12): y_at_r_lin = lj(r_lin, r_min, p1, p2) ydot_at_r_lin = lj_grad(r_lin, r_min,p1,p2) def inner(dgram): return (dgram < r_lin) * (ydot_at_r_lin * (dgram - r_lin) + y_at_r_lin) + (dgram >= r_lin) * lj(dgram, r_min, p1, p2) return inner def lj(dgram, r_min,p1=6, p2=12): return 4 * ((r_min / (2**(1/p1) * dgram))**p2 - (r_min / (2**(1/p1) * dgram))**p1) def lj_grad(dgram, r_min,p1=6,p2=12): return -p2 * r_min**p1*(r_min**p1-dgram**p1) / (dgram**(p2+1)) def mask_expand(mask, n=1): mask_out = mask.clone() assert mask.ndim == 1 for i in torch.where(mask)[0]: for j in range(i-n, i+n+1): if j >= 0 and j < len(mask): mask_out[j] = True return mask_out def contact_energy(dgram, d_0, r_0): divide_by_r_0 = (dgram - d_0) / r_0 numerator = torch.pow(divide_by_r_0,6) denominator = torch.pow(divide_by_r_0,12) ncontacts = (1 - numerator) / ((1 - denominator)).float() return - ncontacts def poly_repulse(dgram, r, slope, p=1): a = slope / (p * r**(p-1)) return (dgram < r) * a * torch.abs(r - dgram)**p * slope #def only_top_n(dgram class substrate_contacts(Potential): ''' Implicitly models a ligand with an attractive-repulsive potential. ''' def __init__(self, weight=1, r_0=8, d_0=2, s=1, eps=1e-6, rep_r_0=5, rep_s=2, rep_r_min=1): self.r_0 = r_0 self.weight = weight self.d_0 = d_0 self.eps = eps # motif frame coordinates # NOTE: these probably need to be set after sample_init() call, because the motif sequence position in design must be known self.motif_frame = None # [4,3] xyz coordinates from 4 atoms of input motif self.motif_mapping = None # list of tuples giving positions of above atoms in design [(resi, atom_idx)] self.motif_substrate_atoms = None # xyz coordinates of substrate from input motif r_min = 2 self.energies = [] self.energies.append(lambda dgram: s * contact_energy(torch.min(dgram, dim=-1)[0], d_0, r_0)) if rep_r_min: self.energies.append(lambda dgram: poly_repulse(torch.min(dgram, dim=-1)[0], rep_r_0, rep_s, p=1.5)) else: self.energies.append(lambda dgram: poly_repulse(dgram, rep_r_0, rep_s, p=1.5)) def compute(self, xyz): # First, get random set of atoms # This operates on self.xyz_motif, which is assigned to this class in the model runner (for horrible plumbing reasons) self._grab_motif_residues(self.xyz_motif) # for checking affine transformation is corect first_distance = torch.sqrt(torch.sqrt(torch.sum(torch.square(self.motif_substrate_atoms[0] - self.motif_frame[0]), dim=-1))) # grab the coordinates of the corresponding atoms in the new frame using mapping res = torch.tensor([k[0] for k in self.motif_mapping]) atoms = torch.tensor([k[1] for k in self.motif_mapping]) new_frame = xyz[self.diffusion_mask][res,atoms,:] # calculate affine transformation matrix and translation vector b/w new frame and motif frame A, t = self._recover_affine(self.motif_frame, new_frame) # apply affine transformation to substrate atoms substrate_atoms = torch.mm(A, self.motif_substrate_atoms.transpose(0,1)).transpose(0,1) + t second_distance = torch.sqrt(torch.sqrt(torch.sum(torch.square(new_frame[0] - substrate_atoms[0]), dim=-1))) assert abs(first_distance - second_distance) < 0.01, "Alignment seems to be bad" diffusion_mask = mask_expand(self.diffusion_mask, 1) Ca = xyz[~diffusion_mask, 1] #cdist needs a batch dimension - NRB dgram = torch.cdist(Ca[None,...].contiguous(), substrate_atoms.float()[None], p=2)[0] # [Lb,Lb] all_energies = [] for i, energy_fn in enumerate(self.energies): energy = energy_fn(dgram) all_energies.append(energy.sum()) return - self.weight * sum(all_energies) #Potential value is the average of both radii of gyration (is avg. the best way to do this?) return self.weight * ncontacts.sum() def _recover_affine(self,frame1, frame2): """ Uses Simplex Affine Matrix (SAM) formula to recover affine transform between two sets of 4 xyz coordinates See: https://www.researchgate.net/publication/332410209_Beginner%27s_guide_to_mapping_simplexes_affinely Args: frame1 - 4 coordinates from starting frame [4,3] frame2 - 4 coordinates from ending frame [4,3] Outputs: A - affine transformation matrix from frame1->frame2 t - affine translation vector from frame1->frame2 """ l = len(frame1) # construct SAM denominator matrix B = torch.vstack([frame1.T, torch.ones(l)]) D = 1.0 / torch.linalg.det(B) # SAM denominator M = torch.zeros((3,4), dtype=torch.float64) for i, R in enumerate(frame2.T): for j in range(l): num = torch.vstack([R, B]) # make SAM numerator matrix num = torch.cat((num[:j+1],num[j+2:])) # make numerator matrix # calculate SAM entry M[i][j] = (-1)**j * D * torch.linalg.det(num) A, t = torch.hsplit(M, [l-1]) t = t.transpose(0,1) return A, t def _grab_motif_residues(self, xyz) -> None: """ Grabs 4 atoms in the motif. Currently random subset of Ca atoms if the motif is >= 4 residues, or else 4 random atoms from a single residue """ idx = torch.arange(self.diffusion_mask.shape[0]) idx = idx[self.diffusion_mask].float() if torch.sum(self.diffusion_mask) >= 4: rand_idx = torch.multinomial(idx, 4).long() # get Ca atoms self.motif_frame = xyz[rand_idx, 1] self.motif_mapping = [(i,1) for i in rand_idx] else: rand_idx = torch.multinomial(idx, 1).long() self.motif_frame = xyz[rand_idx[0],:4] self.motif_mapping = [(rand_idx, i) for i in range(4)] class binder_distance_ReLU(Potential): ''' Given the current coordinates of the diffusion trajectory, calculate a potential that is the distance between each residue and the closest target residue. This potential is meant to encourage the binder to interact with a certain subset of residues on the target that define the binding site. Author: NRB ''' def __init__(self, binderlen, hotspot_res, weight=1, min_dist=15, use_Cb=False): self.binderlen = binderlen self.hotspot_res = [res + binderlen for res in hotspot_res] self.weight = weight self.min_dist = min_dist self.use_Cb = use_Cb def compute(self, xyz): binder = xyz[:self.binderlen,:,:] # (Lb,27,3) target = xyz[self.hotspot_res,:,:] # (N,27,3) if self.use_Cb: N = binder[:,0] Ca = binder[:,1] C = binder[:,2] Cb = generate_Cbeta(N,Ca,C) # (Lb,3) N_t = target[:,0] Ca_t = target[:,1] C_t = target[:,2] Cb_t = generate_Cbeta(N_t,Ca_t,C_t) # (N,3) dgram = torch.cdist(Cb[None,...], Cb_t[None,...], p=2) # (1,Lb,N) else: # Use Ca dist for potential Ca = binder[:,1] # (Lb,3) Ca_t = target[:,1] # (N,3) dgram = torch.cdist(Ca[None,...], Ca_t[None,...], p=2) # (1,Lb,N) closest_dist = torch.min(dgram.squeeze(0), dim=1)[0] # (Lb) # Cap the distance at a minimum value min_distance = self.min_dist * torch.ones_like(closest_dist) # (Lb) potential = torch.maximum(min_distance, closest_dist) # (Lb) # torch.Tensor.backward() requires the potential to be a single value potential = torch.sum(potential, dim=-1) return -1 * self.weight * potential class binder_any_ReLU(Potential): ''' Given the current coordinates of the diffusion trajectory, calculate a potential that is the minimum distance between ANY residue and the closest target residue. In contrast to binder_distance_ReLU this potential will only penalize a pose if all of the binder residues are outside of a certain distance from the target residues. Author: NRB ''' def __init__(self, binderlen, hotspot_res, weight=1, min_dist=15, use_Cb=False): self.binderlen = binderlen self.hotspot_res = [res + binderlen for res in hotspot_res] self.weight = weight self.min_dist = min_dist self.use_Cb = use_Cb def compute(self, xyz): binder = xyz[:self.binderlen,:,:] # (Lb,27,3) target = xyz[self.hotspot_res,:,:] # (N,27,3) if use_Cb: N = binder[:,0] Ca = binder[:,1] C = binder[:,2] Cb = generate_Cbeta(N,Ca,C) # (Lb,3) N_t = target[:,0] Ca_t = target[:,1] C_t = target[:,2] Cb_t = generate_Cbeta(N_t,Ca_t,C_t) # (N,3) dgram = torch.cdist(Cb[None,...], Cb_t[None,...], p=2) # (1,Lb,N) else: # Use Ca dist for potential Ca = binder[:,1] # (Lb,3) Ca_t = target[:,1] # (N,3) dgram = torch.cdist(Ca[None,...], Ca_t[None,...], p=2) # (1,Lb,N) closest_dist = torch.min(dgram.squeeze(0)) # (1) potential = torch.maximum(min_dist, closest_dist) # (1) return -1 * self.weight * potential # Dictionary of types of potentials indexed by name of potential. Used by PotentialManager. # If you implement a new potential you must add it to this dictionary for it to be used by # the PotentialManager implemented_potentials = { 'monomer_ROG': monomer_ROG, 'binder_ROG': binder_ROG, 'binder_distance_ReLU': binder_distance_ReLU, 'binder_any_ReLU': binder_any_ReLU, 'dimer_ROG': dimer_ROG, 'binder_ncontacts': binder_ncontacts, 'dimer_ncontacts': dimer_ncontacts, 'interface_ncontacts': interface_ncontacts, 'monomer_contacts': monomer_contacts, 'olig_intra_contacts': olig_intra_contacts, 'olig_contacts': olig_contacts, 'substrate_contacts': substrate_contacts} require_binderlen = { 'binder_ROG', 'binder_distance_ReLU', 'binder_any_ReLU', 'dimer_ROG', 'binder_ncontacts', 'dimer_ncontacts', 'interface_ncontacts'} require_hotspot_res = { 'binder_distance_ReLU', 'binder_any_ReLU' }
RFdiffusion-main
potentials/potentials.py
import torch from icecream import ic import potentials.potentials as potentials import numpy as np def make_contact_matrix(nchain, intra_all=False, inter_all=False, contact_string=None): """ Calculate a matrix of inter/intra chain contact indicators Parameters: nchain (int, required): How many chains are in this design contact_str (str, optional): String denoting how to define contacts, comma delimited between pairs of chains '!' denotes repulsive, '&' denotes attractive """ alphabet = [a for a in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'] letter2num = {a:i for i,a in enumerate(alphabet)} contacts = np.zeros((nchain,nchain)) written = np.zeros((nchain,nchain)) # intra_all - everything on the diagonal has contact potential if intra_all: contacts[np.arange(nchain),np.arange(nchain)] = 1 # inter all - everything off the diagonal has contact potential if inter_all: mask2d = np.full_like(contacts,False) for i in range(len(contacts)): for j in range(len(contacts)): if i!=j: mask2d[i,j] = True contacts[mask2d.astype(bool)] = 1 # custom contacts/repulsions from user if contact_string != None: contact_list = contact_string.split(',') for c in contact_list: assert len(c) == 3 i,j = letter2num[c[0]],letter2num[c[2]] symbol = c[1] assert symbol in ['!','&'] if symbol == '!': contacts[i,j] = -1 contacts[j,i] = -1 else: contacts[i,j] = 1 contacts[j,i] = 1 return contacts def calc_nchains(symbol, components=1): """ Calculates number of chains for given symmetry """ S = symbol.lower() if S.startswith('c'): return int(S[1:])*components elif S.startswith('d'): return 2*int(S[1:])*components elif S.startswith('o'): raise NotImplementedError() elif S.startswith('t'): return 12*components else: raise RuntimeError('Unknown symmetry symbol ',S) class PotentialManager: ''' Class to define a set of potentials from the given config object and to apply all of the specified potentials during each cycle of the inference loop. Author: NRB ''' def __init__(self, potentials_config, ppi_config, diffuser_config, inference_config, hotspot_0idx, binderlen, ): self.potentials_config = potentials_config self.ppi_config = ppi_config self.inference_config = inference_config self.guide_scale = potentials_config.guide_scale self.guide_decay = potentials_config.guide_decay if potentials_config.guiding_potentials is None: setting_list = [] else: setting_list = [self.parse_potential_string(potstr) for potstr in potentials_config.guiding_potentials] # PPI potentials require knowledge about the binderlen which may be detected at runtime # This is a mechanism to still allow this info to be used in potentials - NRB if binderlen > 0: binderlen_update = { 'binderlen': binderlen } hotspot_res_update = { 'hotspot_res': hotspot_0idx } for setting in setting_list: if setting['type'] in potentials.require_binderlen: setting.update(binderlen_update) if setting['type'] in potentials.require_hotspot_res: setting.update(hotspot_res_update) self.potentials_to_apply = self.initialize_all_potentials(setting_list) self.T = diffuser_config.T def is_empty(self): ''' Check whether this instance of PotentialManager actually contains any potentials ''' return len(self.potentials_to_apply) == 0 def parse_potential_string(self, potstr): ''' Parse a single entry in the list of potentials to be run to a dictionary of settings for that potential. An example of how this parsing is done: 'setting1:val1,setting2:val2,setting3:val3' -> {setting1:val1,setting2:val2,setting3:val3} ''' setting_dict = {entry.split(':')[0]:entry.split(':')[1] for entry in potstr.split(',')} for key in setting_dict: if not key == 'type': setting_dict[key] = float(setting_dict[key]) return setting_dict def initialize_all_potentials(self, setting_list): ''' Given a list of potential dictionaries where each dictionary defines the configurations for a single potential, initialize all potentials and add to the list of potentials to be applies ''' to_apply = [] for potential_dict in setting_list: assert(potential_dict['type'] in potentials.implemented_potentials), f'potential with name: {potential_dict["type"]} is not one of the implemented potentials: {potentials.implemented_potentials.keys()}' kwargs = {k: potential_dict[k] for k in potential_dict.keys() - {'type'}} # symmetric oligomer contact potential args if self.inference_config.symmetry: num_chains = calc_nchains(symbol=self.inference_config.symmetry, components=1) # hard code 1 for now contact_kwargs={'nchain':num_chains, 'intra_all':self.potentials_config.olig_intra_all, 'inter_all':self.potentials_config.olig_inter_all, 'contact_string':self.potentials_config.olig_custom_contact } contact_matrix = make_contact_matrix(**contact_kwargs) kwargs.update({'contact_matrix':contact_matrix}) to_apply.append( potentials.implemented_potentials[potential_dict['type']](**kwargs) ) return to_apply def compute_all_potentials(self, xyz): ''' This is the money call. Take the current sequence and structure information and get the sum of all of the potentials that are being used ''' potential_list = [potential.compute(xyz) for potential in self.potentials_to_apply] potential_stack = torch.stack(potential_list, dim=0) return torch.sum(potential_stack, dim=0) def get_guide_scale(self, t): ''' Given a timestep and a decay type, get the appropriate scale factor to use for applying guiding potentials Inputs: t (int, required): The current timestep Output: scale (int): The scale factor to use for applying guiding potentials ''' implemented_decay_types = { 'constant': lambda t: self.guide_scale, # Linear interpolation with y2: 0, y1: guide_scale, x2: 0, x1: T, x: t 'linear' : lambda t: t/self.T * self.guide_scale, 'quadratic' : lambda t: t**2/self.T**2 * self.guide_scale, 'cubic' : lambda t: t**3/self.T**3 } if self.guide_decay not in implemented_decay_types: sys.exit(f'decay_type must be one of {implemented_decay_types.keys()}. Received decay_type={self.guide_decay}. Exiting.') return implemented_decay_types[self.guide_decay](t)
RFdiffusion-main
potentials/manager.py
from setuptools import setup, find_packages setup( name='se3-transformer', packages=find_packages(), include_package_data=True, version='1.0.0', description='PyTorch + DGL implementation of SE(3)-Transformers', author='Alexandre Milesi', author_email='[email protected]', )
RFdiffusion-main
env/SE3Transformer/setup.py
RFdiffusion-main
env/SE3Transformer/se3_transformer/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT from typing import Tuple import dgl import pathlib import torch from dgl.data import QM9EdgeDataset from dgl import DGLGraph from torch import Tensor from torch.utils.data import random_split, DataLoader, Dataset from tqdm import tqdm from se3_transformer.data_loading.data_module import DataModule from se3_transformer.model.basis import get_basis from se3_transformer.runtime.utils import get_local_rank, str2bool, using_tensor_cores def _get_relative_pos(qm9_graph: DGLGraph) -> Tensor: x = qm9_graph.ndata['pos'] src, dst = qm9_graph.edges() rel_pos = x[dst] - x[src] return rel_pos def _get_split_sizes(full_dataset: Dataset) -> Tuple[int, int, int]: len_full = len(full_dataset) len_train = 100_000 len_test = int(0.1 * len_full) len_val = len_full - len_train - len_test return len_train, len_val, len_test class QM9DataModule(DataModule): """ Datamodule wrapping https://docs.dgl.ai/en/latest/api/python/dgl.data.html#qm9edge-dataset Training set is 100k molecules. Test set is 10% of the dataset. Validation set is the rest. This includes all the molecules from QM9 except the ones that are uncharacterized. """ NODE_FEATURE_DIM = 6 EDGE_FEATURE_DIM = 4 def __init__(self, data_dir: pathlib.Path, task: str = 'homo', batch_size: int = 240, num_workers: int = 8, num_degrees: int = 4, amp: bool = False, precompute_bases: bool = False, **kwargs): self.data_dir = data_dir # This needs to be before __init__ so that prepare_data has access to it super().__init__(batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate) self.amp = amp self.task = task self.batch_size = batch_size self.num_degrees = num_degrees qm9_kwargs = dict(label_keys=[self.task], verbose=False, raw_dir=str(data_dir)) if precompute_bases: bases_kwargs = dict(max_degree=num_degrees - 1, use_pad_trick=using_tensor_cores(amp), amp=amp) full_dataset = CachedBasesQM9EdgeDataset(bases_kwargs=bases_kwargs, batch_size=batch_size, num_workers=num_workers, **qm9_kwargs) else: full_dataset = QM9EdgeDataset(**qm9_kwargs) self.ds_train, self.ds_val, self.ds_test = random_split(full_dataset, _get_split_sizes(full_dataset), generator=torch.Generator().manual_seed(0)) train_targets = full_dataset.targets[self.ds_train.indices, full_dataset.label_keys[0]] self.targets_mean = train_targets.mean() self.targets_std = train_targets.std() def prepare_data(self): # Download the QM9 preprocessed data QM9EdgeDataset(verbose=True, raw_dir=str(self.data_dir)) def _collate(self, samples): graphs, y, *bases = map(list, zip(*samples)) batched_graph = dgl.batch(graphs) edge_feats = {'0': batched_graph.edata['edge_attr'][..., None]} batched_graph.edata['rel_pos'] = _get_relative_pos(batched_graph) # get node features node_feats = {'0': batched_graph.ndata['attr'][:, :6, None]} targets = (torch.cat(y) - self.targets_mean) / self.targets_std if bases: # collate bases all_bases = { key: torch.cat([b[key] for b in bases[0]], dim=0) for key in bases[0][0].keys() } return batched_graph, node_feats, edge_feats, all_bases, targets else: return batched_graph, node_feats, edge_feats, targets @staticmethod def add_argparse_args(parent_parser): parser = parent_parser.add_argument_group("QM9 dataset") parser.add_argument('--task', type=str, default='homo', const='homo', nargs='?', choices=['mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'U0', 'U', 'H', 'G', 'Cv', 'U0_atom', 'U_atom', 'H_atom', 'G_atom', 'A', 'B', 'C'], help='Regression task to train on') parser.add_argument('--precompute_bases', type=str2bool, nargs='?', const=True, default=False, help='Precompute bases at the beginning of the script during dataset initialization,' ' instead of computing them at the beginning of each forward pass.') return parent_parser def __repr__(self): return f'QM9({self.task})' class CachedBasesQM9EdgeDataset(QM9EdgeDataset): """ Dataset extending the QM9 dataset from DGL with precomputed (cached in RAM) pairwise bases """ def __init__(self, bases_kwargs: dict, batch_size: int, num_workers: int, *args, **kwargs): """ :param bases_kwargs: Arguments to feed the bases computation function :param batch_size: Batch size to use when iterating over the dataset for computing bases """ self.bases_kwargs = bases_kwargs self.batch_size = batch_size self.bases = None self.num_workers = num_workers super().__init__(*args, **kwargs) def load(self): super().load() # Iterate through the dataset and compute bases (pairwise only) # Potential improvement: use multi-GPU and gather dataloader = DataLoader(self, shuffle=False, batch_size=self.batch_size, num_workers=self.num_workers, collate_fn=lambda samples: dgl.batch([sample[0] for sample in samples])) bases = [] for i, graph in tqdm(enumerate(dataloader), total=len(dataloader), desc='Precomputing QM9 bases', disable=get_local_rank() != 0): rel_pos = _get_relative_pos(graph) # Compute the bases with the GPU but convert the result to CPU to store in RAM bases.append({k: v.cpu() for k, v in get_basis(rel_pos.cuda(), **self.bases_kwargs).items()}) self.bases = bases # Assign at the end so that __getitem__ isn't confused def __getitem__(self, idx: int): graph, label = super().__getitem__(idx) if self.bases: bases_idx = idx // self.batch_size bases_cumsum_idx = self.ne_cumsum[idx] - self.ne_cumsum[bases_idx * self.batch_size] bases_cumsum_next_idx = self.ne_cumsum[idx + 1] - self.ne_cumsum[bases_idx * self.batch_size] return graph, label, {key: basis[bases_cumsum_idx:bases_cumsum_next_idx] for key, basis in self.bases[bases_idx].items()} else: return graph, label
RFdiffusion-main
env/SE3Transformer/se3_transformer/data_loading/qm9.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import torch.distributed as dist from abc import ABC from torch.utils.data import DataLoader, DistributedSampler, Dataset from se3_transformer.runtime.utils import get_local_rank def _get_dataloader(dataset: Dataset, shuffle: bool, **kwargs) -> DataLoader: # Classic or distributed dataloader depending on the context sampler = DistributedSampler(dataset, shuffle=shuffle) if dist.is_initialized() else None return DataLoader(dataset, shuffle=(shuffle and sampler is None), sampler=sampler, **kwargs) class DataModule(ABC): """ Abstract DataModule. Children must define self.ds_{train | val | test}. """ def __init__(self, **dataloader_kwargs): super().__init__() if get_local_rank() == 0: self.prepare_data() # Wait until rank zero has prepared the data (download, preprocessing, ...) if dist.is_initialized(): dist.barrier(device_ids=[get_local_rank()]) self.dataloader_kwargs = {'pin_memory': True, 'persistent_workers': True, **dataloader_kwargs} self.ds_train, self.ds_val, self.ds_test = None, None, None def prepare_data(self): """ Method called only once per node. Put here any downloading or preprocessing """ pass def train_dataloader(self) -> DataLoader: return _get_dataloader(self.ds_train, shuffle=True, **self.dataloader_kwargs) def val_dataloader(self) -> DataLoader: return _get_dataloader(self.ds_val, shuffle=False, **self.dataloader_kwargs) def test_dataloader(self) -> DataLoader: return _get_dataloader(self.ds_test, shuffle=False, **self.dataloader_kwargs)
RFdiffusion-main
env/SE3Transformer/se3_transformer/data_loading/data_module.py
from .qm9 import QM9DataModule
RFdiffusion-main
env/SE3Transformer/se3_transformer/data_loading/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT from abc import ABC, abstractmethod import torch import torch.distributed as dist from torch import Tensor class Metric(ABC): """ Metric class with synchronization capabilities similar to TorchMetrics """ def __init__(self): self.states = {} def add_state(self, name: str, default: Tensor): assert name not in self.states self.states[name] = default.clone() setattr(self, name, default) def synchronize(self): if dist.is_initialized(): for state in self.states: dist.all_reduce(getattr(self, state), op=dist.ReduceOp.SUM, group=dist.group.WORLD) def __call__(self, *args, **kwargs): self.update(*args, **kwargs) def reset(self): for name, default in self.states.items(): setattr(self, name, default.clone()) def compute(self): self.synchronize() value = self._compute().item() self.reset() return value @abstractmethod def _compute(self): pass @abstractmethod def update(self, preds: Tensor, targets: Tensor): pass class MeanAbsoluteError(Metric): def __init__(self): super().__init__() self.add_state('error', torch.tensor(0, dtype=torch.float32, device='cuda')) self.add_state('total', torch.tensor(0, dtype=torch.int32, device='cuda')) def update(self, preds: Tensor, targets: Tensor): preds = preds.detach() n = preds.shape[0] error = torch.abs(preds.view(n, -1) - targets.view(n, -1)).sum() self.total += n self.error += error def _compute(self): return self.error / self.total
RFdiffusion-main
env/SE3Transformer/se3_transformer/runtime/metrics.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import collections import itertools import math import os import pathlib import re import pynvml class Device: # assumes nvml returns list of 64 bit ints _nvml_affinity_elements = math.ceil(os.cpu_count() / 64) def __init__(self, device_idx): super().__init__() self.handle = pynvml.nvmlDeviceGetHandleByIndex(device_idx) def get_name(self): return pynvml.nvmlDeviceGetName(self.handle) def get_uuid(self): return pynvml.nvmlDeviceGetUUID(self.handle) def get_cpu_affinity(self): affinity_string = "" for j in pynvml.nvmlDeviceGetCpuAffinity(self.handle, Device._nvml_affinity_elements): # assume nvml returns list of 64 bit ints affinity_string = "{:064b}".format(j) + affinity_string affinity_list = [int(x) for x in affinity_string] affinity_list.reverse() # so core 0 is in 0th element of list ret = [i for i, e in enumerate(affinity_list) if e != 0] return ret def get_thread_siblings_list(): """ Returns a list of 2-element integer tuples representing pairs of hyperthreading cores. """ path = "/sys/devices/system/cpu/cpu*/topology/thread_siblings_list" thread_siblings_list = [] pattern = re.compile(r"(\d+)\D(\d+)") for fname in pathlib.Path(path[0]).glob(path[1:]): with open(fname) as f: content = f.read().strip() res = pattern.findall(content) if res: pair = tuple(map(int, res[0])) thread_siblings_list.append(pair) return thread_siblings_list def check_socket_affinities(socket_affinities): # sets of cores should be either identical or disjoint for i, j in itertools.product(socket_affinities, socket_affinities): if not set(i) == set(j) and not set(i).isdisjoint(set(j)): raise RuntimeError(f"Sets of cores should be either identical or disjoint, " f"but got {i} and {j}.") def get_socket_affinities(nproc_per_node, exclude_unavailable_cores=True): devices = [Device(i) for i in range(nproc_per_node)] socket_affinities = [dev.get_cpu_affinity() for dev in devices] if exclude_unavailable_cores: available_cores = os.sched_getaffinity(0) socket_affinities = [list(set(affinity) & available_cores) for affinity in socket_affinities] check_socket_affinities(socket_affinities) return socket_affinities def set_socket_affinity(gpu_id): """ The process is assigned with all available logical CPU cores from the CPU socket connected to the GPU with a given id. Args: gpu_id: index of a GPU """ dev = Device(gpu_id) affinity = dev.get_cpu_affinity() os.sched_setaffinity(0, affinity) def set_single_affinity(gpu_id): """ The process is assigned with the first available logical CPU core from the list of all CPU cores from the CPU socket connected to the GPU with a given id. Args: gpu_id: index of a GPU """ dev = Device(gpu_id) affinity = dev.get_cpu_affinity() # exclude unavailable cores available_cores = os.sched_getaffinity(0) affinity = list(set(affinity) & available_cores) os.sched_setaffinity(0, affinity[:1]) def set_single_unique_affinity(gpu_id, nproc_per_node): """ The process is assigned with a single unique available physical CPU core from the list of all CPU cores from the CPU socket connected to the GPU with a given id. Args: gpu_id: index of a GPU """ socket_affinities = get_socket_affinities(nproc_per_node) siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) affinities = [] assigned = [] for socket_affinity in socket_affinities: for core in socket_affinity: if core not in assigned: affinities.append([core]) assigned.append(core) break os.sched_setaffinity(0, affinities[gpu_id]) def set_socket_unique_affinity(gpu_id, nproc_per_node, mode, balanced=True): """ The process is assigned with an unique subset of available physical CPU cores from the CPU socket connected to a GPU with a given id. Assignment automatically includes hyperthreading siblings (if siblings are available). Args: gpu_id: index of a GPU nproc_per_node: total number of processes per node mode: mode balanced: assign an equal number of physical cores to each process """ socket_affinities = get_socket_affinities(nproc_per_node) siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove hyperthreading siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) socket_affinities_to_device_ids = collections.defaultdict(list) for idx, socket_affinity in enumerate(socket_affinities): socket_affinities_to_device_ids[tuple(socket_affinity)].append(idx) # compute minimal number of physical cores per GPU across all GPUs and # sockets, code assigns this number of cores per GPU if balanced == True min_physical_cores_per_gpu = min( [len(cores) // len(gpus) for cores, gpus in socket_affinities_to_device_ids.items()] ) for socket_affinity, device_ids in socket_affinities_to_device_ids.items(): devices_per_group = len(device_ids) if balanced: cores_per_device = min_physical_cores_per_gpu socket_affinity = socket_affinity[: devices_per_group * min_physical_cores_per_gpu] else: cores_per_device = len(socket_affinity) // devices_per_group for group_id, device_id in enumerate(device_ids): if device_id == gpu_id: # In theory there should be no difference in performance between # 'interleaved' and 'continuous' pattern on Intel-based DGX-1, # but 'continuous' should be better for DGX A100 because on AMD # Rome 4 consecutive cores are sharing L3 cache. # TODO: code doesn't attempt to automatically detect layout of # L3 cache, also external environment may already exclude some # cores, this code makes no attempt to detect it and to align # mapping to multiples of 4. if mode == "interleaved": affinity = list(socket_affinity[group_id::devices_per_group]) elif mode == "continuous": affinity = list(socket_affinity[group_id * cores_per_device: (group_id + 1) * cores_per_device]) else: raise RuntimeError("Unknown set_socket_unique_affinity mode") # unconditionally reintroduce hyperthreading siblings, this step # may result in a different numbers of logical cores assigned to # each GPU even if balanced == True (if hyperthreading siblings # aren't available for a subset of cores due to some external # constraints, siblings are re-added unconditionally, in the # worst case unavailable logical core will be ignored by # os.sched_setaffinity(). affinity += [siblings_dict[aff] for aff in affinity if aff in siblings_dict] os.sched_setaffinity(0, affinity) def set_affinity(gpu_id, nproc_per_node, mode="socket_unique_continuous", balanced=True): """ The process is assigned with a proper CPU affinity which matches hardware architecture on a given platform. Usually it improves and stabilizes performance of deep learning training workloads. This function assumes that the workload is running in multi-process single-device mode (there are multiple training processes and each process is running on a single GPU), which is typical for multi-GPU training workloads using `torch.nn.parallel.DistributedDataParallel`. Available affinity modes: * 'socket' - the process is assigned with all available logical CPU cores from the CPU socket connected to the GPU with a given id. * 'single' - the process is assigned with the first available logical CPU core from the list of all CPU cores from the CPU socket connected to the GPU with a given id (multiple GPUs could be assigned with the same CPU core). * 'single_unique' - the process is assigned with a single unique available physical CPU core from the list of all CPU cores from the CPU socket connected to the GPU with a given id. * 'socket_unique_interleaved' - the process is assigned with an unique subset of available physical CPU cores from the CPU socket connected to a GPU with a given id, hyperthreading siblings are included automatically, cores are assigned with interleaved indexing pattern * 'socket_unique_continuous' - (the default) the process is assigned with an unique subset of available physical CPU cores from the CPU socket connected to a GPU with a given id, hyperthreading siblings are included automatically, cores are assigned with continuous indexing pattern 'socket_unique_continuous' is the recommended mode for deep learning training workloads on NVIDIA DGX machines. Args: gpu_id: integer index of a GPU nproc_per_node: number of processes per node mode: affinity mode balanced: assign an equal number of physical cores to each process, affects only 'socket_unique_interleaved' and 'socket_unique_continuous' affinity modes Returns a set of logical CPU cores on which the process is eligible to run. Example: import argparse import os import gpu_affinity import torch def main(): parser = argparse.ArgumentParser() parser.add_argument( '--local_rank', type=int, default=os.getenv('LOCAL_RANK', 0), ) args = parser.parse_args() nproc_per_node = torch.cuda.device_count() affinity = gpu_affinity.set_affinity(args.local_rank, nproc_per_node) print(f'{args.local_rank}: core affinity: {affinity}') if __name__ == "__main__": main() Launch the example with: python -m torch.distributed.launch --nproc_per_node <#GPUs> example.py WARNING: On DGX A100 only a half of CPU cores have direct access to GPUs. This function restricts execution only to the CPU cores directly connected to GPUs, so on DGX A100 it will limit the code to half of CPU cores and half of CPU memory bandwidth (which may be fine for many DL models). """ pynvml.nvmlInit() if mode == "socket": set_socket_affinity(gpu_id) elif mode == "single": set_single_affinity(gpu_id) elif mode == "single_unique": set_single_unique_affinity(gpu_id, nproc_per_node) elif mode == "socket_unique_interleaved": set_socket_unique_affinity(gpu_id, nproc_per_node, "interleaved", balanced) elif mode == "socket_unique_continuous": set_socket_unique_affinity(gpu_id, nproc_per_node, "continuous", balanced) else: raise RuntimeError("Unknown affinity mode") affinity = os.sched_getaffinity(0) return affinity
RFdiffusion-main
env/SE3Transformer/se3_transformer/runtime/gpu_affinity.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import pathlib from abc import ABC, abstractmethod from enum import Enum from typing import Dict, Any, Callable, Optional import dllogger import torch.distributed as dist import wandb from dllogger import Verbosity from se3_transformer.runtime.utils import rank_zero_only class Logger(ABC): @rank_zero_only @abstractmethod def log_hyperparams(self, params): pass @rank_zero_only @abstractmethod def log_metrics(self, metrics, step=None): pass @staticmethod def _sanitize_params(params): def _sanitize(val): if isinstance(val, Callable): try: _val = val() if isinstance(_val, Callable): return val.__name__ return _val except Exception: return getattr(val, "__name__", None) elif isinstance(val, pathlib.Path) or isinstance(val, Enum): return str(val) return val return {key: _sanitize(val) for key, val in params.items()} class LoggerCollection(Logger): def __init__(self, loggers): super().__init__() self.loggers = loggers def __getitem__(self, index): return [logger for logger in self.loggers][index] @rank_zero_only def log_metrics(self, metrics, step=None): for logger in self.loggers: logger.log_metrics(metrics, step) @rank_zero_only def log_hyperparams(self, params): for logger in self.loggers: logger.log_hyperparams(params) class DLLogger(Logger): def __init__(self, save_dir: pathlib.Path, filename: str): super().__init__() if not dist.is_initialized() or dist.get_rank() == 0: save_dir.mkdir(parents=True, exist_ok=True) dllogger.init( backends=[dllogger.JSONStreamBackend(Verbosity.DEFAULT, str(save_dir / filename))]) @rank_zero_only def log_hyperparams(self, params): params = self._sanitize_params(params) dllogger.log(step="PARAMETER", data=params) @rank_zero_only def log_metrics(self, metrics, step=None): if step is None: step = tuple() dllogger.log(step=step, data=metrics) class WandbLogger(Logger): def __init__( self, name: str, save_dir: pathlib.Path, id: Optional[str] = None, project: Optional[str] = None ): super().__init__() if not dist.is_initialized() or dist.get_rank() == 0: save_dir.mkdir(parents=True, exist_ok=True) self.experiment = wandb.init(name=name, project=project, id=id, dir=str(save_dir), resume='allow', anonymous='must') @rank_zero_only def log_hyperparams(self, params: Dict[str, Any]) -> None: params = self._sanitize_params(params) self.experiment.config.update(params, allow_val_change=True) @rank_zero_only def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: if step is not None: self.experiment.log({**metrics, 'epoch': step}) else: self.experiment.log(metrics)
RFdiffusion-main
env/SE3Transformer/se3_transformer/runtime/loggers.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import argparse import pathlib from se3_transformer.data_loading import QM9DataModule from se3_transformer.model import SE3TransformerPooled from se3_transformer.runtime.utils import str2bool PARSER = argparse.ArgumentParser(description='SE(3)-Transformer') paths = PARSER.add_argument_group('Paths') paths.add_argument('--data_dir', type=pathlib.Path, default=pathlib.Path('./data'), help='Directory where the data is located or should be downloaded') paths.add_argument('--log_dir', type=pathlib.Path, default=pathlib.Path('/results'), help='Directory where the results logs should be saved') paths.add_argument('--dllogger_name', type=str, default='dllogger_results.json', help='Name for the resulting DLLogger JSON file') paths.add_argument('--save_ckpt_path', type=pathlib.Path, default=None, help='File where the checkpoint should be saved') paths.add_argument('--load_ckpt_path', type=pathlib.Path, default=None, help='File of the checkpoint to be loaded') optimizer = PARSER.add_argument_group('Optimizer') optimizer.add_argument('--optimizer', choices=['adam', 'sgd', 'lamb'], default='adam') optimizer.add_argument('--learning_rate', '--lr', dest='learning_rate', type=float, default=0.002) optimizer.add_argument('--min_learning_rate', '--min_lr', dest='min_learning_rate', type=float, default=None) optimizer.add_argument('--momentum', type=float, default=0.9) optimizer.add_argument('--weight_decay', type=float, default=0.1) PARSER.add_argument('--epochs', type=int, default=100, help='Number of training epochs') PARSER.add_argument('--batch_size', type=int, default=240, help='Batch size') PARSER.add_argument('--seed', type=int, default=None, help='Set a seed globally') PARSER.add_argument('--num_workers', type=int, default=8, help='Number of dataloading workers') PARSER.add_argument('--amp', type=str2bool, nargs='?', const=True, default=False, help='Use Automatic Mixed Precision') PARSER.add_argument('--gradient_clip', type=float, default=None, help='Clipping of the gradient norms') PARSER.add_argument('--accumulate_grad_batches', type=int, default=1, help='Gradient accumulation') PARSER.add_argument('--ckpt_interval', type=int, default=-1, help='Save a checkpoint every N epochs') PARSER.add_argument('--eval_interval', dest='eval_interval', type=int, default=1, help='Do an evaluation round every N epochs') PARSER.add_argument('--silent', type=str2bool, nargs='?', const=True, default=False, help='Minimize stdout output') PARSER.add_argument('--benchmark', type=str2bool, nargs='?', const=True, default=False, help='Benchmark mode') QM9DataModule.add_argparse_args(PARSER) SE3TransformerPooled.add_argparse_args(PARSER)
RFdiffusion-main
env/SE3Transformer/se3_transformer/runtime/arguments.py
RFdiffusion-main
env/SE3Transformer/se3_transformer/runtime/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import argparse import ctypes import logging import os import random from functools import wraps from typing import Union, List, Dict import numpy as np import torch import torch.distributed as dist from torch import Tensor def aggregate_residual(feats1, feats2, method: str): """ Add or concatenate two fiber features together. If degrees don't match, will use the ones of feats2. """ if method in ['add', 'sum']: return {k: (v + feats1[k]) if k in feats1 else v for k, v in feats2.items()} elif method in ['cat', 'concat']: return {k: torch.cat([v, feats1[k]], dim=1) if k in feats1 else v for k, v in feats2.items()} else: raise ValueError('Method must be add/sum or cat/concat') def degree_to_dim(degree: int) -> int: return 2 * degree + 1 def unfuse_features(features: Tensor, degrees: List[int]) -> Dict[str, Tensor]: return dict(zip(map(str, degrees), features.split([degree_to_dim(deg) for deg in degrees], dim=-1))) def str2bool(v: Union[bool, str]) -> bool: if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def to_cuda(x): """ Try to convert a Tensor, a collection of Tensors or a DGLGraph to CUDA """ if isinstance(x, Tensor): return x.cuda(non_blocking=True) elif isinstance(x, tuple): return (to_cuda(v) for v in x) elif isinstance(x, list): return [to_cuda(v) for v in x] elif isinstance(x, dict): return {k: to_cuda(v) for k, v in x.items()} else: # DGLGraph or other objects return x.to(device=torch.cuda.current_device()) def get_local_rank() -> int: return int(os.environ.get('LOCAL_RANK', 0)) def init_distributed() -> bool: world_size = int(os.environ.get('WORLD_SIZE', 1)) distributed = world_size > 1 if distributed: backend = 'nccl' if torch.cuda.is_available() else 'gloo' dist.init_process_group(backend=backend, init_method='env://') if backend == 'nccl': torch.cuda.set_device(get_local_rank()) else: logging.warning('Running on CPU only!') assert torch.distributed.is_initialized() return distributed def increase_l2_fetch_granularity(): # maximum fetch granularity of L2: 128 bytes _libcudart = ctypes.CDLL('libcudart.so') # set device limit on the current device # cudaLimitMaxL2FetchGranularity = 0x05 pValue = ctypes.cast((ctypes.c_int * 1)(), ctypes.POINTER(ctypes.c_int)) _libcudart.cudaDeviceSetLimit(ctypes.c_int(0x05), ctypes.c_int(128)) _libcudart.cudaDeviceGetLimit(pValue, ctypes.c_int(0x05)) assert pValue.contents.value == 128 def seed_everything(seed): seed = int(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def rank_zero_only(fn): @wraps(fn) def wrapped_fn(*args, **kwargs): if not dist.is_initialized() or dist.get_rank() == 0: return fn(*args, **kwargs) return wrapped_fn def using_tensor_cores(amp: bool) -> bool: major_cc, minor_cc = torch.cuda.get_device_capability() return (amp and major_cc >= 7) or major_cc >= 8
RFdiffusion-main
env/SE3Transformer/se3_transformer/runtime/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import logging import time from abc import ABC, abstractmethod from typing import Optional import numpy as np import torch from se3_transformer.runtime.loggers import Logger from se3_transformer.runtime.metrics import MeanAbsoluteError class BaseCallback(ABC): def on_fit_start(self, optimizer, args): pass def on_fit_end(self): pass def on_epoch_end(self): pass def on_batch_start(self): pass def on_validation_step(self, input, target, pred): pass def on_validation_end(self, epoch=None): pass def on_checkpoint_load(self, checkpoint): pass def on_checkpoint_save(self, checkpoint): pass class LRSchedulerCallback(BaseCallback): def __init__(self, logger: Optional[Logger] = None): self.logger = logger self.scheduler = None @abstractmethod def get_scheduler(self, optimizer, args): pass def on_fit_start(self, optimizer, args): self.scheduler = self.get_scheduler(optimizer, args) def on_checkpoint_load(self, checkpoint): self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) def on_checkpoint_save(self, checkpoint): checkpoint['scheduler_state_dict'] = self.scheduler.state_dict() def on_epoch_end(self): if self.logger is not None: self.logger.log_metrics({'learning rate': self.scheduler.get_last_lr()[0]}, step=self.scheduler.last_epoch) self.scheduler.step() class QM9MetricCallback(BaseCallback): """ Logs the rescaled mean absolute error for QM9 regression tasks """ def __init__(self, logger, targets_std, prefix=''): self.mae = MeanAbsoluteError() self.logger = logger self.targets_std = targets_std self.prefix = prefix self.best_mae = float('inf') def on_validation_step(self, input, target, pred): self.mae(pred.detach(), target.detach()) def on_validation_end(self, epoch=None): mae = self.mae.compute() * self.targets_std logging.info(f'{self.prefix} MAE: {mae}') self.logger.log_metrics({f'{self.prefix} MAE': mae}, epoch) self.best_mae = min(self.best_mae, mae) def on_fit_end(self): if self.best_mae != float('inf'): self.logger.log_metrics({f'{self.prefix} best MAE': self.best_mae}) class QM9LRSchedulerCallback(LRSchedulerCallback): def __init__(self, logger, epochs): super().__init__(logger) self.epochs = epochs def get_scheduler(self, optimizer, args): min_lr = args.min_learning_rate if args.min_learning_rate else args.learning_rate / 10.0 return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, self.epochs, eta_min=min_lr) class PerformanceCallback(BaseCallback): def __init__(self, logger, batch_size: int, warmup_epochs: int = 1, mode: str = 'train'): self.batch_size = batch_size self.warmup_epochs = warmup_epochs self.epoch = 0 self.timestamps = [] self.mode = mode self.logger = logger def on_batch_start(self): if self.epoch >= self.warmup_epochs: self.timestamps.append(time.time() * 1000.0) def _log_perf(self): stats = self.process_performance_stats() for k, v in stats.items(): logging.info(f'performance {k}: {v}') self.logger.log_metrics(stats) def on_epoch_end(self): self.epoch += 1 def on_fit_end(self): if self.epoch > self.warmup_epochs: self._log_perf() self.timestamps = [] def process_performance_stats(self): timestamps = np.asarray(self.timestamps) deltas = np.diff(timestamps) throughput = (self.batch_size / deltas).mean() stats = { f"throughput_{self.mode}": throughput, f"latency_{self.mode}_mean": deltas.mean(), f"total_time_{self.mode}": timestamps[-1] - timestamps[0], } for level in [90, 95, 99]: stats.update({f"latency_{self.mode}_{level}": np.percentile(deltas, level)}) return stats
RFdiffusion-main
env/SE3Transformer/se3_transformer/runtime/callbacks.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT from typing import List import torch import torch.nn as nn from torch.nn.parallel import DistributedDataParallel from torch.utils.data import DataLoader from tqdm import tqdm from se3_transformer.runtime import gpu_affinity from se3_transformer.runtime.arguments import PARSER from se3_transformer.runtime.callbacks import BaseCallback from se3_transformer.runtime.loggers import DLLogger from se3_transformer.runtime.utils import to_cuda, get_local_rank @torch.inference_mode() def evaluate(model: nn.Module, dataloader: DataLoader, callbacks: List[BaseCallback], args): model.eval() for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), unit='batch', desc=f'Evaluation', leave=False, disable=(args.silent or get_local_rank() != 0)): *input, target = to_cuda(batch) for callback in callbacks: callback.on_batch_start() with torch.cuda.amp.autocast(enabled=args.amp): pred = model(*input) for callback in callbacks: callback.on_validation_step(input, target, pred) if __name__ == '__main__': from se3_transformer.runtime.callbacks import QM9MetricCallback, PerformanceCallback from se3_transformer.runtime.utils import init_distributed, seed_everything from se3_transformer.model import SE3TransformerPooled, Fiber from se3_transformer.data_loading import QM9DataModule import torch.distributed as dist import logging import sys is_distributed = init_distributed() local_rank = get_local_rank() args = PARSER.parse_args() logging.getLogger().setLevel(logging.CRITICAL if local_rank != 0 or args.silent else logging.INFO) logging.info('====== SE(3)-Transformer ======') logging.info('| Inference on the test set |') logging.info('===============================') if not args.benchmark and args.load_ckpt_path is None: logging.error('No load_ckpt_path provided, you need to provide a saved model to evaluate') sys.exit(1) if args.benchmark: logging.info('Running benchmark mode with one warmup pass') if args.seed is not None: seed_everything(args.seed) major_cc, minor_cc = torch.cuda.get_device_capability() logger = DLLogger(args.log_dir, filename=args.dllogger_name) datamodule = QM9DataModule(**vars(args)) model = SE3TransformerPooled( fiber_in=Fiber({0: datamodule.NODE_FEATURE_DIM}), fiber_out=Fiber({0: args.num_degrees * args.num_channels}), fiber_edge=Fiber({0: datamodule.EDGE_FEATURE_DIM}), output_dim=1, tensor_cores=(args.amp and major_cc >= 7) or major_cc >= 8, # use Tensor Cores more effectively **vars(args) ) callbacks = [QM9MetricCallback(logger, targets_std=datamodule.targets_std, prefix='test')] model.to(device=torch.cuda.current_device()) if args.load_ckpt_path is not None: checkpoint = torch.load(str(args.load_ckpt_path), map_location={'cuda:0': f'cuda:{local_rank}'}) model.load_state_dict(checkpoint['state_dict']) if is_distributed: nproc_per_node = torch.cuda.device_count() affinity = gpu_affinity.set_affinity(local_rank, nproc_per_node) model = DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank) test_dataloader = datamodule.test_dataloader() if not args.benchmark else datamodule.train_dataloader() evaluate(model, test_dataloader, callbacks, args) for callback in callbacks: callback.on_validation_end() if args.benchmark: world_size = dist.get_world_size() if dist.is_initialized() else 1 callbacks = [PerformanceCallback(logger, args.batch_size * world_size, warmup_epochs=1, mode='inference')] for _ in range(6): evaluate(model, test_dataloader, callbacks, args) callbacks[0].on_epoch_end() callbacks[0].on_fit_end()
RFdiffusion-main
env/SE3Transformer/se3_transformer/runtime/inference.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import logging import pathlib from typing import List import numpy as np import torch import torch.distributed as dist import torch.nn as nn from apex.optimizers import FusedAdam, FusedLAMB from torch.nn.modules.loss import _Loss from torch.nn.parallel import DistributedDataParallel from torch.optim import Optimizer from torch.utils.data import DataLoader, DistributedSampler from tqdm import tqdm from se3_transformer.data_loading import QM9DataModule from se3_transformer.model import SE3TransformerPooled from se3_transformer.model.fiber import Fiber from se3_transformer.runtime import gpu_affinity from se3_transformer.runtime.arguments import PARSER from se3_transformer.runtime.callbacks import QM9MetricCallback, QM9LRSchedulerCallback, BaseCallback, \ PerformanceCallback from se3_transformer.runtime.inference import evaluate from se3_transformer.runtime.loggers import LoggerCollection, DLLogger, WandbLogger, Logger from se3_transformer.runtime.utils import to_cuda, get_local_rank, init_distributed, seed_everything, \ using_tensor_cores, increase_l2_fetch_granularity def save_state(model: nn.Module, optimizer: Optimizer, epoch: int, path: pathlib.Path, callbacks: List[BaseCallback]): """ Saves model, optimizer and epoch states to path (only once per node) """ if get_local_rank() == 0: state_dict = model.module.state_dict() if isinstance(model, DistributedDataParallel) else model.state_dict() checkpoint = { 'state_dict': state_dict, 'optimizer_state_dict': optimizer.state_dict(), 'epoch': epoch } for callback in callbacks: callback.on_checkpoint_save(checkpoint) torch.save(checkpoint, str(path)) logging.info(f'Saved checkpoint to {str(path)}') def load_state(model: nn.Module, optimizer: Optimizer, path: pathlib.Path, callbacks: List[BaseCallback]): """ Loads model, optimizer and epoch states from path """ checkpoint = torch.load(str(path), map_location={'cuda:0': f'cuda:{get_local_rank()}'}) if isinstance(model, DistributedDataParallel): model.module.load_state_dict(checkpoint['state_dict']) else: model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) for callback in callbacks: callback.on_checkpoint_load(checkpoint) logging.info(f'Loaded checkpoint from {str(path)}') return checkpoint['epoch'] def train_epoch(model, train_dataloader, loss_fn, epoch_idx, grad_scaler, optimizer, local_rank, callbacks, args): losses = [] for i, batch in tqdm(enumerate(train_dataloader), total=len(train_dataloader), unit='batch', desc=f'Epoch {epoch_idx}', disable=(args.silent or local_rank != 0)): *inputs, target = to_cuda(batch) for callback in callbacks: callback.on_batch_start() with torch.cuda.amp.autocast(enabled=args.amp): pred = model(*inputs) loss = loss_fn(pred, target) / args.accumulate_grad_batches grad_scaler.scale(loss).backward() # gradient accumulation if (i + 1) % args.accumulate_grad_batches == 0 or (i + 1) == len(train_dataloader): if args.gradient_clip: grad_scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), args.gradient_clip) grad_scaler.step(optimizer) grad_scaler.update() optimizer.zero_grad() losses.append(loss.item()) return np.mean(losses) def train(model: nn.Module, loss_fn: _Loss, train_dataloader: DataLoader, val_dataloader: DataLoader, callbacks: List[BaseCallback], logger: Logger, args): device = torch.cuda.current_device() model.to(device=device) local_rank = get_local_rank() world_size = dist.get_world_size() if dist.is_initialized() else 1 if dist.is_initialized(): model = DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank) model.train() grad_scaler = torch.cuda.amp.GradScaler(enabled=args.amp) if args.optimizer == 'adam': optimizer = FusedAdam(model.parameters(), lr=args.learning_rate, betas=(args.momentum, 0.999), weight_decay=args.weight_decay) elif args.optimizer == 'lamb': optimizer = FusedLAMB(model.parameters(), lr=args.learning_rate, betas=(args.momentum, 0.999), weight_decay=args.weight_decay) else: optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) epoch_start = load_state(model, optimizer, args.load_ckpt_path, callbacks) if args.load_ckpt_path else 0 for callback in callbacks: callback.on_fit_start(optimizer, args) for epoch_idx in range(epoch_start, args.epochs): if isinstance(train_dataloader.sampler, DistributedSampler): train_dataloader.sampler.set_epoch(epoch_idx) loss = train_epoch(model, train_dataloader, loss_fn, epoch_idx, grad_scaler, optimizer, local_rank, callbacks, args) if dist.is_initialized(): loss = torch.tensor(loss, dtype=torch.float, device=device) torch.distributed.all_reduce(loss) loss = (loss / world_size).item() logging.info(f'Train loss: {loss}') logger.log_metrics({'train loss': loss}, epoch_idx) for callback in callbacks: callback.on_epoch_end() if not args.benchmark and args.save_ckpt_path is not None and args.ckpt_interval > 0 \ and (epoch_idx + 1) % args.ckpt_interval == 0: save_state(model, optimizer, epoch_idx, args.save_ckpt_path, callbacks) if not args.benchmark and args.eval_interval > 0 and (epoch_idx + 1) % args.eval_interval == 0: evaluate(model, val_dataloader, callbacks, args) model.train() for callback in callbacks: callback.on_validation_end(epoch_idx) if args.save_ckpt_path is not None and not args.benchmark: save_state(model, optimizer, args.epochs, args.save_ckpt_path, callbacks) for callback in callbacks: callback.on_fit_end() def print_parameters_count(model): num_params_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad) logging.info(f'Number of trainable parameters: {num_params_trainable}') if __name__ == '__main__': is_distributed = init_distributed() local_rank = get_local_rank() args = PARSER.parse_args() logging.getLogger().setLevel(logging.CRITICAL if local_rank != 0 or args.silent else logging.INFO) logging.info('====== SE(3)-Transformer ======') logging.info('| Training procedure |') logging.info('===============================') if args.seed is not None: logging.info(f'Using seed {args.seed}') seed_everything(args.seed) logger = LoggerCollection([ DLLogger(save_dir=args.log_dir, filename=args.dllogger_name), WandbLogger(name=f'QM9({args.task})', save_dir=args.log_dir, project='se3-transformer') ]) datamodule = QM9DataModule(**vars(args)) model = SE3TransformerPooled( fiber_in=Fiber({0: datamodule.NODE_FEATURE_DIM}), fiber_out=Fiber({0: args.num_degrees * args.num_channels}), fiber_edge=Fiber({0: datamodule.EDGE_FEATURE_DIM}), output_dim=1, tensor_cores=using_tensor_cores(args.amp), # use Tensor Cores more effectively **vars(args) ) loss_fn = nn.L1Loss() if args.benchmark: logging.info('Running benchmark mode') world_size = dist.get_world_size() if dist.is_initialized() else 1 callbacks = [PerformanceCallback(logger, args.batch_size * world_size)] else: callbacks = [QM9MetricCallback(logger, targets_std=datamodule.targets_std, prefix='validation'), QM9LRSchedulerCallback(logger, epochs=args.epochs)] if is_distributed: gpu_affinity.set_affinity(gpu_id=get_local_rank(), nproc_per_node=torch.cuda.device_count()) print_parameters_count(model) logger.log_hyperparams(vars(args)) increase_l2_fetch_granularity() train(model, loss_fn, datamodule.train_dataloader(), datamodule.val_dataloader(), callbacks, logger, args) logging.info('Training finished successfully')
RFdiffusion-main
env/SE3Transformer/se3_transformer/runtime/training.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT from functools import lru_cache from typing import Dict, List import e3nn.o3 as o3 import torch import torch.nn.functional as F from torch import Tensor from torch.cuda.nvtx import range as nvtx_range from se3_transformer.runtime.utils import degree_to_dim @lru_cache(maxsize=None) def get_clebsch_gordon(J: int, d_in: int, d_out: int, device) -> Tensor: """ Get the (cached) Q^{d_out,d_in}_J matrices from equation (8) """ return o3.wigner_3j(J, d_in, d_out, dtype=torch.float64, device=device).permute(2, 1, 0) @lru_cache(maxsize=None) def get_all_clebsch_gordon(max_degree: int, device) -> List[List[Tensor]]: all_cb = [] for d_in in range(max_degree + 1): for d_out in range(max_degree + 1): K_Js = [] for J in range(abs(d_in - d_out), d_in + d_out + 1): K_Js.append(get_clebsch_gordon(J, d_in, d_out, device)) all_cb.append(K_Js) return all_cb def get_spherical_harmonics(relative_pos: Tensor, max_degree: int) -> List[Tensor]: all_degrees = list(range(2 * max_degree + 1)) with nvtx_range('spherical harmonics'): sh = o3.spherical_harmonics(all_degrees, relative_pos, normalize=True) return torch.split(sh, [degree_to_dim(d) for d in all_degrees], dim=1) @torch.jit.script def get_basis_script(max_degree: int, use_pad_trick: bool, spherical_harmonics: List[Tensor], clebsch_gordon: List[List[Tensor]], amp: bool) -> Dict[str, Tensor]: """ Compute pairwise bases matrices for degrees up to max_degree :param max_degree: Maximum input or output degree :param use_pad_trick: Pad some of the odd dimensions for a better use of Tensor Cores :param spherical_harmonics: List of computed spherical harmonics :param clebsch_gordon: List of computed CB-coefficients :param amp: When true, return bases in FP16 precision """ basis = {} idx = 0 # Double for loop instead of product() because of JIT script for d_in in range(max_degree + 1): for d_out in range(max_degree + 1): key = f'{d_in},{d_out}' K_Js = [] for freq_idx, J in enumerate(range(abs(d_in - d_out), d_in + d_out + 1)): Q_J = clebsch_gordon[idx][freq_idx] K_Js.append(torch.einsum('n f, k l f -> n l k', spherical_harmonics[J].float(), Q_J.float())) basis[key] = torch.stack(K_Js, 2) # Stack on second dim so order is n l f k if amp: basis[key] = basis[key].half() if use_pad_trick: basis[key] = F.pad(basis[key], (0, 1)) # Pad the k dimension, that can be sliced later idx += 1 return basis @torch.jit.script def update_basis_with_fused(basis: Dict[str, Tensor], max_degree: int, use_pad_trick: bool, fully_fused: bool) -> Dict[str, Tensor]: """ Update the basis dict with partially and optionally fully fused bases """ num_edges = basis['0,0'].shape[0] device = basis['0,0'].device dtype = basis['0,0'].dtype sum_dim = sum([degree_to_dim(d) for d in range(max_degree + 1)]) # Fused per output degree for d_out in range(max_degree + 1): sum_freq = sum([degree_to_dim(min(d, d_out)) for d in range(max_degree + 1)]) basis_fused = torch.zeros(num_edges, sum_dim, sum_freq, degree_to_dim(d_out) + int(use_pad_trick), device=device, dtype=dtype) acc_d, acc_f = 0, 0 for d_in in range(max_degree + 1): basis_fused[:, acc_d:acc_d + degree_to_dim(d_in), acc_f:acc_f + degree_to_dim(min(d_out, d_in)), :degree_to_dim(d_out)] = basis[f'{d_in},{d_out}'][:, :, :, :degree_to_dim(d_out)] acc_d += degree_to_dim(d_in) acc_f += degree_to_dim(min(d_out, d_in)) basis[f'out{d_out}_fused'] = basis_fused # Fused per input degree for d_in in range(max_degree + 1): sum_freq = sum([degree_to_dim(min(d, d_in)) for d in range(max_degree + 1)]) basis_fused = torch.zeros(num_edges, degree_to_dim(d_in), sum_freq, sum_dim, device=device, dtype=dtype) acc_d, acc_f = 0, 0 for d_out in range(max_degree + 1): basis_fused[:, :, acc_f:acc_f + degree_to_dim(min(d_out, d_in)), acc_d:acc_d + degree_to_dim(d_out)] \ = basis[f'{d_in},{d_out}'][:, :, :, :degree_to_dim(d_out)] acc_d += degree_to_dim(d_out) acc_f += degree_to_dim(min(d_out, d_in)) basis[f'in{d_in}_fused'] = basis_fused if fully_fused: # Fully fused # Double sum this way because of JIT script sum_freq = sum([ sum([degree_to_dim(min(d_in, d_out)) for d_in in range(max_degree + 1)]) for d_out in range(max_degree + 1) ]) basis_fused = torch.zeros(num_edges, sum_dim, sum_freq, sum_dim, device=device, dtype=dtype) acc_d, acc_f = 0, 0 for d_out in range(max_degree + 1): b = basis[f'out{d_out}_fused'] basis_fused[:, :, acc_f:acc_f + b.shape[2], acc_d:acc_d + degree_to_dim(d_out)] = b[:, :, :, :degree_to_dim(d_out)] acc_f += b.shape[2] acc_d += degree_to_dim(d_out) basis['fully_fused'] = basis_fused del basis['0,0'] # We know that the basis for l = k = 0 is filled with a constant return basis def get_basis(relative_pos: Tensor, max_degree: int = 4, compute_gradients: bool = False, use_pad_trick: bool = False, amp: bool = False) -> Dict[str, Tensor]: with nvtx_range('spherical harmonics'): spherical_harmonics = get_spherical_harmonics(relative_pos, max_degree) with nvtx_range('CB coefficients'): clebsch_gordon = get_all_clebsch_gordon(max_degree, relative_pos.device) with torch.autograd.set_grad_enabled(compute_gradients): with nvtx_range('bases'): basis = get_basis_script(max_degree=max_degree, use_pad_trick=use_pad_trick, spherical_harmonics=spherical_harmonics, clebsch_gordon=clebsch_gordon, amp=amp) return basis
RFdiffusion-main
env/SE3Transformer/se3_transformer/model/basis.py
from .transformer import SE3Transformer, SE3TransformerPooled from .fiber import Fiber
RFdiffusion-main
env/SE3Transformer/se3_transformer/model/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import logging from typing import Optional, Literal, Dict import torch import torch.nn as nn from dgl import DGLGraph from torch import Tensor from se3_transformer.model.basis import get_basis, update_basis_with_fused from se3_transformer.model.layers.attention import AttentionBlockSE3 from se3_transformer.model.layers.convolution import ConvSE3, ConvSE3FuseLevel from se3_transformer.model.layers.norm import NormSE3 from se3_transformer.model.layers.pooling import GPooling from se3_transformer.runtime.utils import str2bool from se3_transformer.model.fiber import Fiber class Sequential(nn.Sequential): """ Sequential module with arbitrary forward args and kwargs. Used to pass graph, basis and edge features. """ def forward(self, input, *args, **kwargs): for module in self: input = module(input, *args, **kwargs) return input def get_populated_edge_features(relative_pos: Tensor, edge_features: Optional[Dict[str, Tensor]] = None): """ Add relative positions to existing edge features """ edge_features = edge_features.copy() if edge_features else {} r = relative_pos.norm(dim=-1, keepdim=True) if '0' in edge_features: edge_features['0'] = torch.cat([edge_features['0'], r[..., None]], dim=1) else: edge_features['0'] = r[..., None] return edge_features class SE3Transformer(nn.Module): def __init__(self, num_layers: int, fiber_in: Fiber, fiber_hidden: Fiber, fiber_out: Fiber, num_heads: int, channels_div: int, fiber_edge: Fiber = Fiber({}), return_type: Optional[int] = None, pooling: Optional[Literal['avg', 'max']] = None, norm: bool = True, use_layer_norm: bool = True, tensor_cores: bool = False, low_memory: bool = False, **kwargs): """ :param num_layers: Number of attention layers :param fiber_in: Input fiber description :param fiber_hidden: Hidden fiber description :param fiber_out: Output fiber description :param fiber_edge: Input edge fiber description :param num_heads: Number of attention heads :param channels_div: Channels division before feeding to attention layer :param return_type: Return only features of this type :param pooling: 'avg' or 'max' graph pooling before MLP layers :param norm: Apply a normalization layer after each attention block :param use_layer_norm: Apply layer normalization between MLP layers :param tensor_cores: True if using Tensor Cores (affects the use of fully fused convs, and padded bases) :param low_memory: If True, will use slower ops that use less memory """ super().__init__() self.num_layers = num_layers self.fiber_edge = fiber_edge self.num_heads = num_heads self.channels_div = channels_div self.return_type = return_type self.pooling = pooling self.max_degree = max(*fiber_in.degrees, *fiber_hidden.degrees, *fiber_out.degrees) self.tensor_cores = tensor_cores self.low_memory = low_memory if low_memory and not tensor_cores: logging.warning('Low memory mode will have no effect with no Tensor Cores') # Fully fused convolutions when using Tensor Cores (and not low memory mode) fuse_level = ConvSE3FuseLevel.FULL if tensor_cores and not low_memory else ConvSE3FuseLevel.PARTIAL graph_modules = [] for i in range(num_layers): graph_modules.append(AttentionBlockSE3(fiber_in=fiber_in, fiber_out=fiber_hidden, fiber_edge=fiber_edge, num_heads=num_heads, channels_div=channels_div, use_layer_norm=use_layer_norm, max_degree=self.max_degree, fuse_level=fuse_level)) if norm: graph_modules.append(NormSE3(fiber_hidden)) fiber_in = fiber_hidden graph_modules.append(ConvSE3(fiber_in=fiber_in, fiber_out=fiber_out, fiber_edge=fiber_edge, self_interaction=True, use_layer_norm=use_layer_norm, max_degree=self.max_degree)) self.graph_modules = Sequential(*graph_modules) if pooling is not None: assert return_type is not None, 'return_type must be specified when pooling' self.pooling_module = GPooling(pool=pooling, feat_type=return_type) def forward(self, graph: DGLGraph, node_feats: Dict[str, Tensor], edge_feats: Optional[Dict[str, Tensor]] = None, basis: Optional[Dict[str, Tensor]] = None): # Compute bases in case they weren't precomputed as part of the data loading basis = basis or get_basis(graph.edata['rel_pos'], max_degree=self.max_degree, compute_gradients=False, use_pad_trick=self.tensor_cores and not self.low_memory, amp=torch.is_autocast_enabled()) # Add fused bases (per output degree, per input degree, and fully fused) to the dict basis = update_basis_with_fused(basis, self.max_degree, use_pad_trick=self.tensor_cores and not self.low_memory, fully_fused=self.tensor_cores and not self.low_memory) edge_feats = get_populated_edge_features(graph.edata['rel_pos'], edge_feats) node_feats = self.graph_modules(node_feats, edge_feats, graph=graph, basis=basis) if self.pooling is not None: return self.pooling_module(node_feats, graph=graph) if self.return_type is not None: return node_feats[str(self.return_type)] return node_feats @staticmethod def add_argparse_args(parser): parser.add_argument('--num_layers', type=int, default=7, help='Number of stacked Transformer layers') parser.add_argument('--num_heads', type=int, default=8, help='Number of heads in self-attention') parser.add_argument('--channels_div', type=int, default=2, help='Channels division before feeding to attention layer') parser.add_argument('--pooling', type=str, default=None, const=None, nargs='?', choices=['max', 'avg'], help='Type of graph pooling') parser.add_argument('--norm', type=str2bool, nargs='?', const=True, default=False, help='Apply a normalization layer after each attention block') parser.add_argument('--use_layer_norm', type=str2bool, nargs='?', const=True, default=False, help='Apply layer normalization between MLP layers') parser.add_argument('--low_memory', type=str2bool, nargs='?', const=True, default=False, help='If true, will use fused ops that are slower but that use less memory ' '(expect 25 percent less memory). ' 'Only has an effect if AMP is enabled on Volta GPUs, or if running on Ampere GPUs') return parser class SE3TransformerPooled(nn.Module): def __init__(self, fiber_in: Fiber, fiber_out: Fiber, fiber_edge: Fiber, num_degrees: int, num_channels: int, output_dim: int, **kwargs): super().__init__() kwargs['pooling'] = kwargs['pooling'] or 'max' self.transformer = SE3Transformer( fiber_in=fiber_in, fiber_hidden=Fiber.create(num_degrees, num_channels), fiber_out=fiber_out, fiber_edge=fiber_edge, return_type=0, **kwargs ) n_out_features = fiber_out.num_features self.mlp = nn.Sequential( nn.Linear(n_out_features, n_out_features), nn.ReLU(), nn.Linear(n_out_features, output_dim) ) def forward(self, graph, node_feats, edge_feats, basis=None): feats = self.transformer(graph, node_feats, edge_feats, basis).squeeze(-1) y = self.mlp(feats).squeeze(-1) return y @staticmethod def add_argparse_args(parent_parser): parser = parent_parser.add_argument_group("Model architecture") SE3Transformer.add_argparse_args(parser) parser.add_argument('--num_degrees', help='Number of degrees to use. Hidden features will have types [0, ..., num_degrees - 1]', type=int, default=4) parser.add_argument('--num_channels', help='Number of channels for the hidden features', type=int, default=32) return parent_parser
RFdiffusion-main
env/SE3Transformer/se3_transformer/model/transformer.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT from collections import namedtuple from itertools import product from typing import Dict import torch from torch import Tensor from se3_transformer.runtime.utils import degree_to_dim FiberEl = namedtuple('FiberEl', ['degree', 'channels']) class Fiber(dict): """ Describes the structure of some set of features. Features are split into types (0, 1, 2, 3, ...). A feature of type k has a dimension of 2k+1. Type-0 features: invariant scalars Type-1 features: equivariant 3D vectors Type-2 features: equivariant symmetric traceless matrices ... As inputs to a SE3 layer, there can be many features of the same types, and many features of different types. The 'multiplicity' or 'number of channels' is the number of features of a given type. This class puts together all the degrees and their multiplicities in order to describe the inputs, outputs or hidden features of SE3 layers. """ def __init__(self, structure): if isinstance(structure, dict): structure = [FiberEl(int(d), int(m)) for d, m in sorted(structure.items(), key=lambda x: x[1])] elif not isinstance(structure[0], FiberEl): structure = list(map(lambda t: FiberEl(*t), sorted(structure, key=lambda x: x[1]))) self.structure = structure super().__init__({d: m for d, m in self.structure}) @property def degrees(self): return sorted([t.degree for t in self.structure]) @property def channels(self): return [self[d] for d in self.degrees] @property def num_features(self): """ Size of the resulting tensor if all features were concatenated together """ return sum(t.channels * degree_to_dim(t.degree) for t in self.structure) @staticmethod def create(num_degrees: int, num_channels: int): """ Create a Fiber with degrees 0..num_degrees-1, all with the same multiplicity """ return Fiber([(degree, num_channels) for degree in range(num_degrees)]) @staticmethod def from_features(feats: Dict[str, Tensor]): """ Infer the Fiber structure from a feature dict """ structure = {} for k, v in feats.items(): degree = int(k) assert len(v.shape) == 3, 'Feature shape should be (N, C, 2D+1)' assert v.shape[-1] == degree_to_dim(degree) structure[degree] = v.shape[-2] return Fiber(structure) def __getitem__(self, degree: int): """ fiber[degree] returns the multiplicity for this degree """ return dict(self.structure).get(degree, 0) def __iter__(self): """ Iterate over namedtuples (degree, channels) """ return iter(self.structure) def __mul__(self, other): """ If other in an int, multiplies all the multiplicities by other. If other is a fiber, returns the cartesian product. """ if isinstance(other, Fiber): return product(self.structure, other.structure) elif isinstance(other, int): return Fiber({t.degree: t.channels * other for t in self.structure}) def __add__(self, other): """ If other in an int, add other to all the multiplicities. If other is a fiber, add the multiplicities of the fibers together. """ if isinstance(other, Fiber): return Fiber({t.degree: t.channels + other[t.degree] for t in self.structure}) elif isinstance(other, int): return Fiber({t.degree: t.channels + other for t in self.structure}) def __repr__(self): return str(self.structure) @staticmethod def combine_max(f1, f2): """ Combine two fiber by taking the maximum multiplicity for each degree in both fibers """ new_dict = dict(f1.structure) for k, m in f2.structure: new_dict[k] = max(new_dict.get(k, 0), m) return Fiber(list(new_dict.items())) @staticmethod def combine_selectively(f1, f2): """ Combine two fiber by taking the sum of multiplicities for each degree in the first fiber """ # only use orders which occur in fiber f1 new_dict = dict(f1.structure) for k in f1.degrees: if k in f2.degrees: new_dict[k] += f2[k] return Fiber(list(new_dict.items())) def to_attention_heads(self, tensors: Dict[str, Tensor], num_heads: int): # dict(N, num_channels, 2d+1) -> (N, num_heads, -1) fibers = [tensors[str(degree)].reshape(*tensors[str(degree)].shape[:-2], num_heads, -1) for degree in self.degrees] fibers = torch.cat(fibers, -1) return fibers
RFdiffusion-main
env/SE3Transformer/se3_transformer/model/fiber.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import dgl import numpy as np import torch import torch.nn as nn from dgl import DGLGraph from dgl.ops import edge_softmax from torch import Tensor from typing import Dict, Optional, Union from se3_transformer.model.fiber import Fiber from se3_transformer.model.layers.convolution import ConvSE3, ConvSE3FuseLevel from se3_transformer.model.layers.linear import LinearSE3 from se3_transformer.runtime.utils import degree_to_dim, aggregate_residual, unfuse_features from torch.cuda.nvtx import range as nvtx_range class AttentionSE3(nn.Module): """ Multi-headed sparse graph self-attention (SE(3)-equivariant) """ def __init__( self, num_heads: int, key_fiber: Fiber, value_fiber: Fiber ): """ :param num_heads: Number of attention heads :param key_fiber: Fiber for the keys (and also for the queries) :param value_fiber: Fiber for the values """ super().__init__() self.num_heads = num_heads self.key_fiber = key_fiber self.value_fiber = value_fiber def forward( self, value: Union[Tensor, Dict[str, Tensor]], # edge features (may be fused) key: Union[Tensor, Dict[str, Tensor]], # edge features (may be fused) query: Dict[str, Tensor], # node features graph: DGLGraph ): with nvtx_range('AttentionSE3'): with nvtx_range('reshape keys and queries'): if isinstance(key, Tensor): # case where features of all types are fused key = key.reshape(key.shape[0], self.num_heads, -1) # need to reshape queries that way to keep the same layout as keys out = torch.cat([query[str(d)] for d in self.key_fiber.degrees], dim=-1) query = out.reshape(list(query.values())[0].shape[0], self.num_heads, -1) else: # features are not fused, need to fuse and reshape them key = self.key_fiber.to_attention_heads(key, self.num_heads) query = self.key_fiber.to_attention_heads(query, self.num_heads) with nvtx_range('attention dot product + softmax'): # Compute attention weights (softmax of inner product between key and query) edge_weights = dgl.ops.e_dot_v(graph, key, query).squeeze(-1) edge_weights /= np.sqrt(self.key_fiber.num_features) edge_weights = edge_softmax(graph, edge_weights) edge_weights = edge_weights[..., None, None] with nvtx_range('weighted sum'): if isinstance(value, Tensor): # features of all types are fused v = value.view(value.shape[0], self.num_heads, -1, value.shape[-1]) weights = edge_weights * v feat_out = dgl.ops.copy_e_sum(graph, weights) feat_out = feat_out.view(feat_out.shape[0], -1, feat_out.shape[-1]) # merge heads out = unfuse_features(feat_out, self.value_fiber.degrees) else: out = {} for degree, channels in self.value_fiber: v = value[str(degree)].view(-1, self.num_heads, channels // self.num_heads, degree_to_dim(degree)) weights = edge_weights * v res = dgl.ops.copy_e_sum(graph, weights) out[str(degree)] = res.view(-1, channels, degree_to_dim(degree)) # merge heads return out class AttentionBlockSE3(nn.Module): """ Multi-headed sparse graph self-attention block with skip connection, linear projection (SE(3)-equivariant) """ def __init__( self, fiber_in: Fiber, fiber_out: Fiber, fiber_edge: Optional[Fiber] = None, num_heads: int = 4, channels_div: int = 2, use_layer_norm: bool = False, max_degree: bool = 4, fuse_level: ConvSE3FuseLevel = ConvSE3FuseLevel.FULL, **kwargs ): """ :param fiber_in: Fiber describing the input features :param fiber_out: Fiber describing the output features :param fiber_edge: Fiber describing the edge features (node distances excluded) :param num_heads: Number of attention heads :param channels_div: Divide the channels by this integer for computing values :param use_layer_norm: Apply layer normalization between MLP layers :param max_degree: Maximum degree used in the bases computation :param fuse_level: Maximum fuse level to use in TFN convolutions """ super().__init__() if fiber_edge is None: fiber_edge = Fiber({}) self.fiber_in = fiber_in # value_fiber has same structure as fiber_out but #channels divided by 'channels_div' value_fiber = Fiber([(degree, channels // channels_div) for degree, channels in fiber_out]) # key_query_fiber has the same structure as fiber_out, but only degrees which are in in_fiber # (queries are merely projected, hence degrees have to match input) key_query_fiber = Fiber([(fe.degree, fe.channels) for fe in value_fiber if fe.degree in fiber_in.degrees]) self.to_key_value = ConvSE3(fiber_in, value_fiber + key_query_fiber, pool=False, fiber_edge=fiber_edge, use_layer_norm=use_layer_norm, max_degree=max_degree, fuse_level=fuse_level, allow_fused_output=True) self.to_query = LinearSE3(fiber_in, key_query_fiber) self.attention = AttentionSE3(num_heads, key_query_fiber, value_fiber) self.project = LinearSE3(value_fiber + fiber_in, fiber_out) def forward( self, node_features: Dict[str, Tensor], edge_features: Dict[str, Tensor], graph: DGLGraph, basis: Dict[str, Tensor] ): with nvtx_range('AttentionBlockSE3'): with nvtx_range('keys / values'): fused_key_value = self.to_key_value(node_features, edge_features, graph, basis) key, value = self._get_key_value_from_fused(fused_key_value) with nvtx_range('queries'): query = self.to_query(node_features) z = self.attention(value, key, query, graph) z_concat = aggregate_residual(node_features, z, 'cat') return self.project(z_concat) def _get_key_value_from_fused(self, fused_key_value): # Extract keys and queries features from fused features if isinstance(fused_key_value, Tensor): # Previous layer was a fully fused convolution value, key = torch.chunk(fused_key_value, chunks=2, dim=-2) else: key, value = {}, {} for degree, feat in fused_key_value.items(): if int(degree) in self.fiber_in.degrees: value[degree], key[degree] = torch.chunk(feat, chunks=2, dim=-2) else: value[degree] = feat return key, value
RFdiffusion-main
env/SE3Transformer/se3_transformer/model/layers/attention.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT from enum import Enum from itertools import product from typing import Dict import dgl import numpy as np import torch import torch.nn as nn from dgl import DGLGraph from torch import Tensor from torch.cuda.nvtx import range as nvtx_range from se3_transformer.model.fiber import Fiber from se3_transformer.runtime.utils import degree_to_dim, unfuse_features class ConvSE3FuseLevel(Enum): """ Enum to select a maximum level of fusing optimizations that will be applied when certain conditions are met. If a desired level L is picked and the level L cannot be applied to a level, other fused ops < L are considered. A higher level means faster training, but also more memory usage. If you are tight on memory and want to feed large inputs to the network, choose a low value. If you want to train fast, choose a high value. Recommended value is FULL with AMP. Fully fused TFN convolutions requirements: - all input channels are the same - all output channels are the same - input degrees span the range [0, ..., max_degree] - output degrees span the range [0, ..., max_degree] Partially fused TFN convolutions requirements: * For fusing by output degree: - all input channels are the same - input degrees span the range [0, ..., max_degree] * For fusing by input degree: - all output channels are the same - output degrees span the range [0, ..., max_degree] Original TFN pairwise convolutions: no requirements """ FULL = 2 PARTIAL = 1 NONE = 0 class RadialProfile(nn.Module): """ Radial profile function. Outputs weights used to weigh basis matrices in order to get convolution kernels. In TFN notation: $R^{l,k}$ In SE(3)-Transformer notation: $\phi^{l,k}$ Note: In the original papers, this function only depends on relative node distances ||x||. Here, we allow this function to also take as input additional invariant edge features. This does not break equivariance and adds expressive power to the model. Diagram: invariant edge features (node distances included) ───> MLP layer (shared across edges) ───> radial weights """ def __init__( self, num_freq: int, channels_in: int, channels_out: int, edge_dim: int = 1, mid_dim: int = 32, use_layer_norm: bool = False ): """ :param num_freq: Number of frequencies :param channels_in: Number of input channels :param channels_out: Number of output channels :param edge_dim: Number of invariant edge features (input to the radial function) :param mid_dim: Size of the hidden MLP layers :param use_layer_norm: Apply layer normalization between MLP layers """ super().__init__() modules = [ nn.Linear(edge_dim, mid_dim), nn.LayerNorm(mid_dim) if use_layer_norm else None, nn.ReLU(), nn.Linear(mid_dim, mid_dim), nn.LayerNorm(mid_dim) if use_layer_norm else None, nn.ReLU(), nn.Linear(mid_dim, num_freq * channels_in * channels_out, bias=False) ] self.net = nn.Sequential(*[m for m in modules if m is not None]) def forward(self, features: Tensor) -> Tensor: return self.net(features) class VersatileConvSE3(nn.Module): """ Building block for TFN convolutions. This single module can be used for fully fused convolutions, partially fused convolutions, or pairwise convolutions. """ def __init__(self, freq_sum: int, channels_in: int, channels_out: int, edge_dim: int, use_layer_norm: bool, fuse_level: ConvSE3FuseLevel): super().__init__() self.freq_sum = freq_sum self.channels_out = channels_out self.channels_in = channels_in self.fuse_level = fuse_level self.radial_func = RadialProfile(num_freq=freq_sum, channels_in=channels_in, channels_out=channels_out, edge_dim=edge_dim, use_layer_norm=use_layer_norm) def forward(self, features: Tensor, invariant_edge_feats: Tensor, basis: Tensor): with nvtx_range(f'VersatileConvSE3'): num_edges = features.shape[0] in_dim = features.shape[2] with nvtx_range(f'RadialProfile'): radial_weights = self.radial_func(invariant_edge_feats) \ .view(-1, self.channels_out, self.channels_in * self.freq_sum) if basis is not None: # This block performs the einsum n i l, n o i f, n l f k -> n o k out_dim = basis.shape[-1] if self.fuse_level != ConvSE3FuseLevel.FULL: out_dim += out_dim % 2 - 1 # Account for padded basis basis_view = basis.view(num_edges, in_dim, -1) tmp = (features @ basis_view).view(num_edges, -1, basis.shape[-1]) return (radial_weights @ tmp)[:, :, :out_dim] else: # k = l = 0 non-fused case return radial_weights @ features class ConvSE3(nn.Module): """ SE(3)-equivariant graph convolution (Tensor Field Network convolution). This convolution can map an arbitrary input Fiber to an arbitrary output Fiber, while preserving equivariance. Features of different degrees interact together to produce output features. Note 1: The option is given to not pool the output. This means that the convolution sum over neighbors will not be done, and the returned features will be edge features instead of node features. Note 2: Unlike the original paper and implementation, this convolution can handle edge feature of degree greater than 0. Input edge features are concatenated with input source node features before the kernel is applied. """ def __init__( self, fiber_in: Fiber, fiber_out: Fiber, fiber_edge: Fiber, pool: bool = True, use_layer_norm: bool = False, self_interaction: bool = False, max_degree: int = 4, fuse_level: ConvSE3FuseLevel = ConvSE3FuseLevel.FULL, allow_fused_output: bool = False ): """ :param fiber_in: Fiber describing the input features :param fiber_out: Fiber describing the output features :param fiber_edge: Fiber describing the edge features (node distances excluded) :param pool: If True, compute final node features by averaging incoming edge features :param use_layer_norm: Apply layer normalization between MLP layers :param self_interaction: Apply self-interaction of nodes :param max_degree: Maximum degree used in the bases computation :param fuse_level: Maximum fuse level to use in TFN convolutions :param allow_fused_output: Allow the module to output a fused representation of features """ super().__init__() self.pool = pool self.fiber_in = fiber_in self.fiber_out = fiber_out self.self_interaction = self_interaction self.max_degree = max_degree self.allow_fused_output = allow_fused_output # channels_in: account for the concatenation of edge features channels_in_set = set([f.channels + fiber_edge[f.degree] * (f.degree > 0) for f in self.fiber_in]) channels_out_set = set([f.channels for f in self.fiber_out]) unique_channels_in = (len(channels_in_set) == 1) unique_channels_out = (len(channels_out_set) == 1) degrees_up_to_max = list(range(max_degree + 1)) common_args = dict(edge_dim=fiber_edge[0] + 1, use_layer_norm=use_layer_norm) if fuse_level.value >= ConvSE3FuseLevel.FULL.value and \ unique_channels_in and fiber_in.degrees == degrees_up_to_max and \ unique_channels_out and fiber_out.degrees == degrees_up_to_max: # Single fused convolution self.used_fuse_level = ConvSE3FuseLevel.FULL sum_freq = sum([ degree_to_dim(min(d_in, d_out)) for d_in, d_out in product(degrees_up_to_max, degrees_up_to_max) ]) self.conv = VersatileConvSE3(sum_freq, list(channels_in_set)[0], list(channels_out_set)[0], fuse_level=self.used_fuse_level, **common_args) elif fuse_level.value >= ConvSE3FuseLevel.PARTIAL.value and \ unique_channels_in and fiber_in.degrees == degrees_up_to_max: # Convolutions fused per output degree self.used_fuse_level = ConvSE3FuseLevel.PARTIAL self.conv_out = nn.ModuleDict() for d_out, c_out in fiber_out: sum_freq = sum([degree_to_dim(min(d_out, d)) for d in fiber_in.degrees]) self.conv_out[str(d_out)] = VersatileConvSE3(sum_freq, list(channels_in_set)[0], c_out, fuse_level=self.used_fuse_level, **common_args) elif fuse_level.value >= ConvSE3FuseLevel.PARTIAL.value and \ unique_channels_out and fiber_out.degrees == degrees_up_to_max: # Convolutions fused per input degree self.used_fuse_level = ConvSE3FuseLevel.PARTIAL self.conv_in = nn.ModuleDict() for d_in, c_in in fiber_in: sum_freq = sum([degree_to_dim(min(d_in, d)) for d in fiber_out.degrees]) self.conv_in[str(d_in)] = VersatileConvSE3(sum_freq, c_in, list(channels_out_set)[0], fuse_level=ConvSE3FuseLevel.FULL, **common_args) #fuse_level=self.used_fuse_level, **common_args) else: # Use pairwise TFN convolutions self.used_fuse_level = ConvSE3FuseLevel.NONE self.conv = nn.ModuleDict() for (degree_in, channels_in), (degree_out, channels_out) in (self.fiber_in * self.fiber_out): dict_key = f'{degree_in},{degree_out}' channels_in_new = channels_in + fiber_edge[degree_in] * (degree_in > 0) sum_freq = degree_to_dim(min(degree_in, degree_out)) self.conv[dict_key] = VersatileConvSE3(sum_freq, channels_in_new, channels_out, fuse_level=self.used_fuse_level, **common_args) if self_interaction: self.to_kernel_self = nn.ParameterDict() for degree_out, channels_out in fiber_out: if fiber_in[degree_out]: self.to_kernel_self[str(degree_out)] = nn.Parameter( torch.randn(channels_out, fiber_in[degree_out]) / np.sqrt(fiber_in[degree_out])) def forward( self, node_feats: Dict[str, Tensor], edge_feats: Dict[str, Tensor], graph: DGLGraph, basis: Dict[str, Tensor] ): with nvtx_range(f'ConvSE3'): invariant_edge_feats = edge_feats['0'].squeeze(-1) src, dst = graph.edges() out = {} in_features = [] # Fetch all input features from edge and node features for degree_in in self.fiber_in.degrees: src_node_features = node_feats[str(degree_in)][src] if degree_in > 0 and str(degree_in) in edge_feats: # Handle edge features of any type by concatenating them to node features src_node_features = torch.cat([src_node_features, edge_feats[str(degree_in)]], dim=1) in_features.append(src_node_features) if self.used_fuse_level == ConvSE3FuseLevel.FULL: in_features_fused = torch.cat(in_features, dim=-1) out = self.conv(in_features_fused, invariant_edge_feats, basis['fully_fused']) if not self.allow_fused_output or self.self_interaction or self.pool: out = unfuse_features(out, self.fiber_out.degrees) elif self.used_fuse_level == ConvSE3FuseLevel.PARTIAL and hasattr(self, 'conv_out'): in_features_fused = torch.cat(in_features, dim=-1) for degree_out in self.fiber_out.degrees: out[str(degree_out)] = self.conv_out[str(degree_out)](in_features_fused, invariant_edge_feats, basis[f'out{degree_out}_fused']) elif self.used_fuse_level == ConvSE3FuseLevel.PARTIAL and hasattr(self, 'conv_in'): out = 0 for degree_in, feature in zip(self.fiber_in.degrees, in_features): out += self.conv_in[str(degree_in)](feature, invariant_edge_feats, basis[f'in{degree_in}_fused']) if not self.allow_fused_output or self.self_interaction or self.pool: out = unfuse_features(out, self.fiber_out.degrees) else: # Fallback to pairwise TFN convolutions for degree_out in self.fiber_out.degrees: out_feature = 0 for degree_in, feature in zip(self.fiber_in.degrees, in_features): dict_key = f'{degree_in},{degree_out}' out_feature = out_feature + self.conv[dict_key](feature, invariant_edge_feats, basis.get(dict_key, None)) out[str(degree_out)] = out_feature for degree_out in self.fiber_out.degrees: if self.self_interaction and str(degree_out) in self.to_kernel_self: with nvtx_range(f'self interaction'): dst_features = node_feats[str(degree_out)][dst] kernel_self = self.to_kernel_self[str(degree_out)] out[str(degree_out)] += kernel_self @ dst_features if self.pool: with nvtx_range(f'pooling'): if isinstance(out, dict): out[str(degree_out)] = dgl.ops.copy_e_sum(graph, out[str(degree_out)]) else: out = dgl.ops.copy_e_sum(graph, out) return out
RFdiffusion-main
env/SE3Transformer/se3_transformer/model/layers/convolution.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT from typing import Dict import numpy as np import torch import torch.nn as nn from torch import Tensor from se3_transformer.model.fiber import Fiber class LinearSE3(nn.Module): """ Graph Linear SE(3)-equivariant layer, equivalent to a 1x1 convolution. Maps a fiber to a fiber with the same degrees (channels may be different). No interaction between degrees, but interaction between channels. type-0 features (C_0 channels) ────> Linear(bias=False) ────> type-0 features (C'_0 channels) type-1 features (C_1 channels) ────> Linear(bias=False) ────> type-1 features (C'_1 channels) : type-k features (C_k channels) ────> Linear(bias=False) ────> type-k features (C'_k channels) """ def __init__(self, fiber_in: Fiber, fiber_out: Fiber): super().__init__() self.weights = nn.ParameterDict({ str(degree_out): nn.Parameter( torch.randn(channels_out, fiber_in[degree_out]) / np.sqrt(fiber_in[degree_out])) for degree_out, channels_out in fiber_out }) def forward(self, features: Dict[str, Tensor], *args, **kwargs) -> Dict[str, Tensor]: return { degree: self.weights[degree] @ features[degree] for degree, weight in self.weights.items() }
RFdiffusion-main
env/SE3Transformer/se3_transformer/model/layers/linear.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT from typing import Dict import torch import torch.nn as nn from torch import Tensor from torch.cuda.nvtx import range as nvtx_range from se3_transformer.model.fiber import Fiber class NormSE3(nn.Module): """ Norm-based SE(3)-equivariant nonlinearity. ┌──> feature_norm ──> LayerNorm() ──> ReLU() ──┐ feature_in ──┤ * ──> feature_out └──> feature_phase ────────────────────────────┘ """ NORM_CLAMP = 2 ** -24 # Minimum positive subnormal for FP16 def __init__(self, fiber: Fiber, nonlinearity: nn.Module = nn.ReLU()): super().__init__() self.fiber = fiber self.nonlinearity = nonlinearity if len(set(fiber.channels)) == 1: # Fuse all the layer normalizations into a group normalization self.group_norm = nn.GroupNorm(num_groups=len(fiber.degrees), num_channels=sum(fiber.channels)) else: # Use multiple layer normalizations self.layer_norms = nn.ModuleDict({ str(degree): nn.LayerNorm(channels) for degree, channels in fiber }) def forward(self, features: Dict[str, Tensor], *args, **kwargs) -> Dict[str, Tensor]: with nvtx_range('NormSE3'): output = {} if hasattr(self, 'group_norm'): # Compute per-degree norms of features norms = [features[str(d)].norm(dim=-1, keepdim=True).clamp(min=self.NORM_CLAMP) for d in self.fiber.degrees] fused_norms = torch.cat(norms, dim=-2) # Transform the norms only new_norms = self.nonlinearity(self.group_norm(fused_norms.squeeze(-1))).unsqueeze(-1) new_norms = torch.chunk(new_norms, chunks=len(self.fiber.degrees), dim=-2) # Scale features to the new norms for norm, new_norm, d in zip(norms, new_norms, self.fiber.degrees): output[str(d)] = features[str(d)] / norm * new_norm else: for degree, feat in features.items(): norm = feat.norm(dim=-1, keepdim=True).clamp(min=self.NORM_CLAMP) new_norm = self.nonlinearity(self.layer_norms[degree](norm.squeeze(-1)).unsqueeze(-1)) output[degree] = new_norm * feat / norm return output
RFdiffusion-main
env/SE3Transformer/se3_transformer/model/layers/norm.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT from typing import Dict, Literal import torch.nn as nn from dgl import DGLGraph from dgl.nn.pytorch import AvgPooling, MaxPooling from torch import Tensor class GPooling(nn.Module): """ Graph max/average pooling on a given feature type. The average can be taken for any feature type, and equivariance will be maintained. The maximum can only be taken for invariant features (type 0). If you want max-pooling for type > 0 features, look into Vector Neurons. """ def __init__(self, feat_type: int = 0, pool: Literal['max', 'avg'] = 'max'): """ :param feat_type: Feature type to pool :param pool: Type of pooling: max or avg """ super().__init__() assert pool in ['max', 'avg'], f'Unknown pooling: {pool}' assert feat_type == 0 or pool == 'avg', 'Max pooling on type > 0 features will break equivariance' self.feat_type = feat_type self.pool = MaxPooling() if pool == 'max' else AvgPooling() def forward(self, features: Dict[str, Tensor], graph: DGLGraph, **kwargs) -> Tensor: pooled = self.pool(graph, features[str(self.feat_type)]) return pooled.squeeze(dim=-1)
RFdiffusion-main
env/SE3Transformer/se3_transformer/model/layers/pooling.py
from .linear import LinearSE3 from .norm import NormSE3 from .pooling import GPooling from .convolution import ConvSE3 from .attention import AttentionBlockSE3
RFdiffusion-main
env/SE3Transformer/se3_transformer/model/layers/__init__.py