python_code
stringlengths 0
1.02M
| repo_name
stringlengths 9
48
| file_path
stringlengths 5
114
|
---|---|---|
from keopscore.formulas.maths.Sqrt import Sqrt
from keopscore.formulas.maths.Scalprod import Scalprod
class Norm2:
def __new__(cls, arg):
return Sqrt(Scalprod(arg, arg))
enable_test = False
| keops-main | keopscore/keopscore/formulas/maths/Norm2.py |
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp
from keopscore.formulas.maths.Log import Log
from keopscore.utils.math_functions import keops_xlogx
class XLogX(VectorizedScalarOp):
"""the x*log(x) vectorized operation"""
string_id = "XLogX"
ScalarOpFun = keops_xlogx
@staticmethod
def Derivative(f):
return Log(f) + 1
# parameters for testing the operation (optional)
test_ranges = [(0, 2)] # range of argument
torch_op = "lambda x:x*torch.log(x)"
| keops-main | keopscore/keopscore/formulas/maths/XLogX.py |
from keopscore.formulas.maths.Inv import Inv
from keopscore.formulas.variables.IntCst import IntCst
class IntInv:
def __new__(cls, arg):
return Inv(IntCst(arg))
enable_test = False
| keops-main | keopscore/keopscore/formulas/maths/IntInv.py |
from keopscore.formulas.Chunkable_Op import Chunkable_Op
from keopscore.formulas.variables.Zero import Zero
from keopscore.utils.code_gen_utils import c_zero_float, VectApply
##########################
###### Sum #####
##########################
class Sum_Impl(Chunkable_Op):
# the summation operation
string_id = "Sum"
dim = 1
def Op(self, out, table, arg):
return out.assign(c_zero_float) + VectApply(self.ScalarOp, out, arg)
def ScalarOp(self, out, arg):
return out.add_assign(arg)
def DiffT(self, v, gradin):
from keopscore.formulas.maths.SumT import SumT
f = self.children[0]
return f.DiffT(v, SumT(gradin, f.dim))
def initacc_chunk(self, acc):
return f"*{acc.id} = 0.0f;\n"
def acc_chunk(self, acc, out):
return f"*{acc.id} += *{out.id};\n"
# N.B. The following separate function should theoretically be implemented
# as a __new__ method of the previous class, but this can generate infinite recursion problems
def Sum(arg):
if isinstance(arg, Zero):
return Zero(1)
else:
return Sum_Impl(arg)
| keops-main | keopscore/keopscore/formulas/maths/Sum.py |
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp
from keopscore.formulas.variables.Zero import Zero
##########################
###### Square #####
##########################
class Square_Impl(VectorizedScalarOp):
"""the square vectorized operation"""
string_id = "Square"
print_spec = "**2", "post", 1
def ScalarOp(self, out, arg):
return out.assign(arg * arg)
@staticmethod
def Derivative(f):
return 2 * f
# N.B. The following separate function should theoretically be implemented
# as a __new__ method of the previous class, but this can generate infinite recursion problems
def Square(arg):
if isinstance(arg, Zero):
return arg
else:
return Square_Impl(arg)
| keops-main | keopscore/keopscore/formulas/maths/Square.py |
from keopscore.formulas.maths.ElemT import ElemT
from keopscore.formulas.maths.Concat import Concat
from keopscore.formulas.variables.IntCst import IntCst
from keopscore.formulas.variables.Var import Var
from keopscore.utils.code_gen_utils import GetInds
# //////////////////////////////////////////////////////////////////////////////////////////////
# //// Standard basis of R^DIM : < (1,0,0,...) , (0,1,0,...) , ... , (0,...,0,1) > ////
# //////////////////////////////////////////////////////////////////////////////////////////////
def StandardBasis(dim):
return tuple(ElemT(IntCst(1), dim, i) for i in range(dim))
# /////////////////////////////////////////////////////////////////////////
# //// Matrix of gradient operator (=transpose of jacobian) ////
# /////////////////////////////////////////////////////////////////////////
class GradMatrix:
def __new__(cls, f, v):
f.Vars(cat=3)
IndsTempVars = GetInds(f.Vars(cat=3))
newind = 1 if len(IndsTempVars) == 0 else 1 + max(IndsTempVars)
gradin = Var(newind, f.dim, 3)
packGrads = tuple(
f.DiffT(v, gradin).replace(gradin, e) for e in StandardBasis(f.dim)
)
res = packGrads[0]
for elem in packGrads[1:]:
res = Concat(res, elem)
return res
enable_test = False
| keops-main | keopscore/keopscore/formulas/maths/GradMatrix.py |
from keopscore.formulas.Chunkable_Op import Chunkable_Op
from keopscore.formulas.maths.Sum import Sum
from keopscore.utils.code_gen_utils import (
c_zero_float,
VectApply,
)
from keopscore.utils.math_functions import keops_fma
from keopscore.utils.misc_utils import KeOps_Error
##########################
##### Scalprod ####
##########################
class Scalprod_Impl(Chunkable_Op):
string_id = "Scalprod"
print_spec = "|", "mid", 3
dim = 1
def __init__(self, fa, fb):
# Output dimension = 1, provided that FA::DIM = FB::DIM
self.dimin = fa.dim
if self.dimin != fb.dim:
KeOps_Error("Dimensions must be the same for Scalprod")
super().__init__(fa, fb)
def Op(self, out, table, arga, argb):
return out.assign(c_zero_float) + VectApply(self.ScalarOp, out, arga, argb)
def ScalarOp(self, out, arga, argb):
return out.assign(keops_fma(arga, argb, out))
def DiffT(self, v, gradin):
fa, fb = self.children
return gradin * (fa.DiffT(v, fb) + fb.DiffT(v, fa))
def initacc_chunk(self, acc):
return f"*{acc.id} = 0.0f;\n"
def acc_chunk(self, acc, out):
return f"*{acc.id} += *{out.id};\n"
def Scalprod(arg0, arg1):
if arg0.dim == 1:
return arg0 * Sum(arg1)
elif arg1.dim == 1:
return Sum(arg0) * arg1
else:
return Scalprod_Impl(arg0, arg1)
| keops-main | keopscore/keopscore/formulas/maths/Scalprod.py |
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp
from keopscore.formulas.variables.Zero import Zero
from keopscore.utils.math_functions import keops_sign
##########################
###### Sign #####
##########################
class Sign(VectorizedScalarOp):
"""the sign vectorized operation"""
string_id = "Sign"
ScalarOpFun = keops_sign
def DiffT(self, v, gradin):
return Zero(v.dim)
| keops-main | keopscore/keopscore/formulas/maths/Sign.py |
from keopscore.formulas.Operation import Operation
from keopscore.utils.code_gen_utils import (
c_variable,
c_for_loop,
)
####################################
###### Tensor product #####
####################################
class TensorProd(Operation):
string_id = "TensorProd"
def __init__(self, arg0, arg1):
super().__init__(arg0, arg1)
self.dim = arg0.dim * arg1.dim
def Op(self, out, table, arg0, arg1):
q = c_variable("int")
loop, k = c_for_loop(0, arg0.dim, 1, pragma_unroll=True)
inner_loop, l = c_for_loop(0, arg1.dim, 1, pragma_unroll=True)
return f"""
#if C_CONTIGUOUS // row major
{q.declare_assign(0)}
{loop(inner_loop(out[q].assign(arg0[k] * arg1[l]) + q.add_assign(1)))}
#else // column major
{q.declare_assign(0)}
{loop(inner_loop(out[k + l * arg0.dim].assign(arg0[k] * arg1[l]) + q.add_assign(1)))}
#endif
"""
def DiffT(self, v, gradin):
from keopscore.formulas import MatVecMult, VecMatMult
f, g = self.children
return f.DiffT(v, MatVecMult(gradin, g)) + g.DiffT(v, VecMatMult(f, gradin))
| keops-main | keopscore/keopscore/formulas/maths/TensorProd.py |
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp
from keopscore.utils.math_functions import keops_mod
class Mod(VectorizedScalarOp):
"""the Modulo vectorized operation
Mod(x,n,d) = x - n * Floor((x - d)/n)
"""
string_id = "Mod"
ScalarOpFun = keops_mod
def DiffT(self, v, gradin):
from keopscore.formulas.maths.Floor import Floor
# we fall back to an alternative definition of Mod for defining the gradient
x, n, d = self.children
Mod_alt = x - n * Floor((x - d) / n)
return Mod_alt.DiffT(v, gradin)
# parameters for testing the operation (optional)
nargs = 3 # number of arguments
"""
# N.B. below is alternative definition as a simple alias.
# It is theoretically less efficient when applied to vectors
# because we compose operations so evalauation implies the creation
# of useless temporary vectors.
# If we implement a sort of "fusion" of vectorized scalar operations,
# it should be completely equivalent.
from keopscore.formulas.maths.Floor import Floor
def Mod(x,n,d):
return x - n * Floor((x - d)/n)
"""
| keops-main | keopscore/keopscore/formulas/maths/Mod.py |
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp
from keopscore.utils.math_functions import keops_exp
##########################
###### Exp #####
##########################
class Exp(VectorizedScalarOp):
"""the exponential vectorized operation"""
string_id = "Exp"
ScalarOpFun = keops_exp
@staticmethod
def Derivative(f):
return Exp(f)
| keops-main | keopscore/keopscore/formulas/maths/Exp.py |
from keopscore.formulas.Operation import Operation
from keopscore.utils.code_gen_utils import c_array, VectCopy
from keopscore.utils.misc_utils import KeOps_Error
# //////////////////////////////////////////////////////////////
# //// VECTOR EXTRACTION : Extract<F,START,DIM> ////
# //////////////////////////////////////////////////////////////
class Extract(Operation):
string_id = "Extract"
def __init__(self, arg0, start, dim):
if arg0.dim < start + dim or start < 0:
KeOps_Error("Index out of bound in Extract")
super().__init__(arg0, params=(start, dim))
self.start = start
self.dim = dim
def Op(self, out, table, arg0):
# returns the atomic piece of c++ code to evaluate the function on arg and return
# the result in out
v = c_array(arg0.dtype, out.dim, f"({arg0.id}+{self.start})")
return VectCopy(out, v)
def DiffT(self, v, gradin):
from keopscore.formulas.maths.ExtractT import ExtractT
f = self.children[0]
return f.DiffT(v, ExtractT(gradin, self.start, f.dim))
# parameters for testing the operation (optional)
enable_test = True # enable testing for this operation
nargs = 1 # number of arguments
test_argdims = [10] # dimensions of arguments for testing
test_params = [3, 5] # values of parameters for testing
torch_op = "lambda x,s,d : x[...,s:(s+d)]" # equivalent PyTorch operation
| keops-main | keopscore/keopscore/formulas/maths/Extract.py |
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp
from keopscore.formulas.maths.Cos import Cos
from keopscore.formulas.maths.Sin import Sin
from keopscore.utils.math_functions import keops_sinxdivx
class SinXDivX(VectorizedScalarOp):
"""
the sin(x)/x vectorized operation
"""
string_id = "SinXDivX"
ScalarOpFun = keops_sinxdivx
@staticmethod
def Derivative(f):
return Cos(f) / f - Sin(f) / f**2
| keops-main | keopscore/keopscore/formulas/maths/SinXDivX.py |
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp
from keopscore.utils.math_functions import keops_atan
class Atan(VectorizedScalarOp):
"""the arc-tangent vectorized operation"""
string_id = "Atan"
ScalarOpFun = keops_atan
@staticmethod
def Derivative(f):
return 1 / (1 + f**2)
| keops-main | keopscore/keopscore/formulas/maths/Atan.py |
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp
from keopscore.formulas.maths.Rsqrt import Rsqrt
from keopscore.utils.math_functions import keops_acos
class Acos(VectorizedScalarOp):
"""the arc-cosine vectorized operation"""
string_id = "Acos"
ScalarOpFun = keops_acos
@staticmethod
def Derivative(f):
return -Rsqrt(1 - f**2)
# parameters for testing the operation (optional)
test_ranges = [(-1, 1)] # range of argument
| keops-main | keopscore/keopscore/formulas/maths/Acos.py |
from keopscore.formulas.maths.SqNormDiag import SqNormDiag
from keopscore.formulas.maths.SqNormIso import SqNormIso
from keopscore.formulas.maths.SymSqNorm import SymSqNorm
class WeightedSqNorm:
"""
WeightedSqNorm(A,X) : redirects to SqNormIso, SqNormDiag or SymSqNorm depending on dimension of A.
"""
string_id = "WeightedSqNorm"
def __new__(cls, A, X):
if A.dim == 1:
return SqNormIso(A, X)
elif A.dim == X.dim:
return SqNormDiag(A, X)
else:
return SymSqNorm(A, X)
enable_test = True
nargs = 2 # number of arguments
test_argdims = [5, 5] # dimensions of arguments for testing
| keops-main | keopscore/keopscore/formulas/maths/WeightedSqNorm.py |
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp
from keopscore.utils.math_functions import keops_sin
class Sin(VectorizedScalarOp):
"""the Sine vectorized operation"""
string_id = "Sin"
ScalarOpFun = keops_sin
@staticmethod
def Derivative(f):
from .Cos import Cos
return Cos(f)
| keops-main | keopscore/keopscore/formulas/maths/Sin.py |
from keopscore.formulas.Operation import Operation
from keopscore.formulas.variables.Zero import Zero
from keopscore.utils.code_gen_utils import (
c_zero_float,
c_for_loop,
c_if,
value,
c_variable,
)
from keopscore.utils.misc_utils import KeOps_Error
############################
###### ArgMin #####
############################
class ArgMin(Operation):
string_id = "ArgMin"
def __init__(self, f):
super().__init__(f)
if f.dim < 1:
KeOps_Error("ArgMin operation is only possible when dimension is non zero.")
self.dim = 1
def Op(self, out, table, arg):
tmp = c_variable(out.dtype)
loop, k = c_for_loop(1, arg.dim, 1, pragma_unroll=True)
string = value(out).assign(c_zero_float) + tmp.declare_assign(arg[0])
if out.dtype == "half2":
loop_string = f"""
// we have to work element-wise...
__half2 cond = __hgt2({tmp.id},{arg[k].id}); // cond = (tmp > outF[k]) (element-wise)
__half2 negcond = __float2half2_rn(1.0f)-cond; // negcond = 1-cond
*{out.id} = cond * __float2half2_rn({k.id}) + negcond * *{out.id}; // out = cond * k + (1-cond) * out
{tmp.id} = cond * {arg[k].id} + negcond * {tmp.id}; // tmp = cond * outF[k] + (1-cond) * tmp
"""
string += loop(loop_string)
else:
string += loop(
c_if(arg[k] < tmp, tmp.assign(arg[k]) + value(out).assign(k))
)
return string
def DiffT(self, v, gradin):
return Zero(v.dim)
# parameters for testing the operation (optional)
enable_test = True # enable testing for this operation
nargs = 1 # number of arguments
test_argdims = [5] # dimensions of arguments for testing
torch_op = "lambda x : torch.argmin(x, dim=-1, keepdim=True).type(x.dtype)"
no_torch_grad = True
| keops-main | keopscore/keopscore/formulas/maths/ArgMin.py |
from keopscore.utils.code_gen_utils import VectCopy
from keopscore.formulas.reductions.Min_ArgMin_Reduction_Base import (
Min_ArgMin_Reduction_Base,
)
from keopscore.formulas.reductions.Zero_Reduction import Zero_Reduction
class ArgMin_Reduction(Min_ArgMin_Reduction_Base):
"""Implements the argmin reduction operation : for each i or each j, find the index of the
minimal value of Fij operation is vectorized: if Fij is vector-valued, argmin is computed for each dimension."""
string_id = "ArgMin_Reduction"
def __init__(self, formula, tagIJ):
super().__init__(formula, tagIJ)
self.dim = formula.dim
def FinalizeOutput(self, acc, out, i):
acc_val, acc_ind = acc.split(self.dim, self.dim)
return VectCopy(out, acc_ind)
def DiffT(self, v, gradin):
return Zero_Reduction(v.dim, v.cat % 2)
| keops-main | keopscore/keopscore/formulas/reductions/ArgMin_Reduction.py |
from keopscore.utils.code_gen_utils import VectCopy
from keopscore.formulas.reductions.Max_ArgMax_Reduction_Base import (
Max_ArgMax_Reduction_Base,
)
from keopscore.formulas.reductions.Zero_Reduction import Zero_Reduction
class ArgMax_Reduction(Max_ArgMax_Reduction_Base):
"""Implements the argmax reduction operation : for each i or each j, find the index of the
maximal value of Fij operation is vectorized: if Fij is vector-valued, argmax is computed for each dimension."""
string_id = "ArgMax_Reduction"
def __init__(self, formula, tagIJ):
super().__init__(formula, tagIJ)
self.dim = formula.dim
def FinalizeOutput(self, acc, out, i):
acc_val, acc_ind = acc.split(self.dim, self.dim)
return VectCopy(out, acc_ind)
def DiffT(self, v, gradin):
return Zero_Reduction(v.dim, v.cat % 2)
| keops-main | keopscore/keopscore/formulas/reductions/ArgMax_Reduction.py |
from keopscore.formulas.maths import Concat, Exp, Extract
from keopscore.formulas.reductions.Reduction import Reduction
from keopscore.formulas.reductions.Sum_Reduction import Sum_Reduction
from keopscore.formulas.variables.IntCst import IntCst
from keopscore.utils.code_gen_utils import (
neg_infinity,
c_zero_float,
new_c_varname,
c_variable,
c_for_loop,
)
from keopscore.utils.math_functions import keops_exp
from keopscore.utils.misc_utils import KeOps_Error
class Max_SumShiftExpWeight_Reduction(Reduction):
"""Implements the coupled reduction operation m_i=max_j f_ij, s_i=sum_j exp(f_ij-m_i) g_ij
where f and g are two formulas. f must be scalar-valued.
This reduction is the base for numerically stable computation of log-sum-exp and softmax type reductions."""
string_id = "Max_SumShiftExpWeight_Reduction"
def __init__(self, formulaF, tagIJ, formulaG=IntCst(1)):
if formulaF.dim != 1:
KeOps_Error(
"Max_SumShiftExpWeight_Reduction requires first formula of dimension 1."
)
super().__init__(Concat(formulaF, formulaG), tagIJ)
self.formulaF = formulaF
self.formulaG = formulaG
self.dim = formulaF.dim + formulaG.dim # dimension of final output of reduction
self.dimred = self.dim # dimension of inner reduction variables
def InitializeReduction(self, acc):
"""Returns C++ code to be used at initialization phase of the reduction.
We fill empty cells with the neutral element of the reduction operation,
(-inf,0) = e^{-inf} * 0 = 0"""
m, s = acc.split(1, self.formulaG.dim)
return m.assign(neg_infinity(acc.dtype)) + s.assign(c_zero_float)
def ReducePair(self, acc, xi):
"""Returns C++ code that implements the update phase of the reduction.
(m,s) + (m',s'), i.e. exp(m)*s + exp(m')*s'"""
if xi.dtype == "half2":
KeOps_Error("Not implemented.")
tmpexp = c_variable(acc.dtype, new_c_varname("tmpexp"))
loop, k = c_for_loop(1, self.dimred, 1, pragma_unroll=True)
return f"""
{tmpexp.declare()}
if ({acc.id}[0] > {xi.id}[0]) {{ // = exp(m) * (s + s'*exp(m'-m)) if m > m'
{tmpexp.assign(keops_exp(xi[0]-acc[0]))}
{loop(acc[k].add_assign(xi[k]*tmpexp))}
}} else {{ // = exp(m') * (s' + exp(m-m')*s) if m <= m'
{tmpexp.assign(keops_exp(acc[0]-xi[0]))}
{loop(acc[k].assign(xi[k]+tmpexp*acc[k]))}
{acc[0].assign(xi[0])}
}}
"""
def ReducePairShort(self, acc, xi, ind):
return self.ReducePair(acc, xi)
def KahanScheme(self, acc, xi, tmp):
if xi.dtype == "half2":
KeOps_Error("Not implemented.")
tmpexp = c_variable(acc.dtype, new_c_varname("tmpexp"))
loop, k = c_for_loop(1, self.dimred, 1, pragma_unroll=True)
a = c_variable(acc.dtype, new_c_varname("a"))
b = c_variable(acc.dtype, new_c_varname("b"))
u = c_variable(acc.dtype, new_c_varname("u"))
return f"""
{tmpexp.declare()}
if ({acc.id}[0] > {xi.id}[0]) // = exp(m) * (s + s'*exp(m'-m)) if m > m'
{{
{tmpexp.assign(keops_exp(xi[0]-acc[0]))}
{loop( a.declare_assign(xi[k]*tmpexp-tmp[k-1]) + b.declare_assign(acc[k]+a) + tmp[k-1].assign((b-acc[k])-a) + acc[k].assign(b))}
}}
else // = exp(m') * (s' + exp(m-m')*s) if m <= m'
{{
{tmpexp.assign(keops_exp(acc[0]-xi[0]))}
{loop( u.declare_assign(tmpexp*acc[k]) + a.declare_assign(xi[k]-tmpexp*tmp[k-1]) + b.declare_assign(u+a) + tmp[k-1].assign((b-u)-a) + acc[k].assign(b))}
{acc[0].assign(xi[0])}
}}
"""
def DiffT(self, v, gradin, MS):
"""
// Beware: the formula that we use for the gradient is *only* valid
// if the output [M,S] = Max_SumShiftExp(F,G) has been flattened through a
// L = M + log(S) (Log-Sum-Exp) or a weighted Soft-Max
// operation (as done by the Python bindings), and if
// GRADIN = [Grad(L), Grad(L)/S ]
// has been backpropagated from L.
"""
from keopscore.formulas.autodiff import Grad
M = Extract(MS, 0, self.formulaF.dim)
S = Extract(gradin, self.formulaF.dim, self.formulaG.dim)
return Grad(
Sum_Reduction(Exp(self.formulaF - M) * self.formulaG, self.tagI), v, S
)
Max_SumShiftExp_Reduction = Max_SumShiftExpWeight_Reduction
| keops-main | keopscore/keopscore/formulas/reductions/Max_SumShiftExpWeight_Reduction.py |
from keopscore.formulas.reductions.KMin_ArgKMin_Reduction import KMin_ArgKMin_Reduction
from keopscore.utils.code_gen_utils import (
infinity,
cast_to,
c_zero_float,
c_for_loop,
c_variable,
new_c_varname,
c_if,
)
class KMin_Reduction(KMin_ArgKMin_Reduction):
"""Implements the k-min reduction operation : for each i or each j, find the
k minimal values of Fij operation is vectorized: if Fij is vector-valued, arg-k-min
is computed for each dimension."""
string_id = "KMin_Reduction"
def __init__(self, formula, K, tagIJ):
super().__init__(formula, K, tagIJ)
self.dim = K * formula.dim
def FinalizeOutput(self, acc, out, i):
fdim, K = self.formula.dim, self.K
outer_loop, k = c_for_loop(0, fdim, 1)
inner_loop, l = c_for_loop(k, k + (2 * fdim * K), 2 * fdim)
p = c_variable("int", new_c_varname("p"))
return outer_loop(
p.declare_assign(k) + inner_loop(out[p].assign(acc[l]) + p.add_assign(fdim))
)
| keops-main | keopscore/keopscore/formulas/reductions/KMin_Reduction.py |
from keopscore.utils.code_gen_utils import VectApply, VectCopy
from keopscore.utils.Tree import Tree
class Reduction(Tree):
"""Base class for all KeOps final reductions over a formula"""
def __init__(self, formula, tagI):
"""- formula is an object of type Operation, it is the formula on which we apply a reduction
- tagI : 0 or 1, specifies wether we do the reduction over "i"-indexed or "j"-indexed variables."""
# We initialize several constants, most of them infered from the formula
self.formula = formula
self.children = [formula]
self.params = (tagI,)
self.tagI = tagI
self.tagJ = 1 - tagI
self.cat = tagI
self.Vars_ = formula.Vars_
def ReducePair(self, acc, xi):
"""Returns C++ code that implements the update phase of the reduction.
by default it consists in a vectorized version of the ReducePairScalar operation."""
return VectApply(self.ReducePairScalar, acc, xi)
def ReducePairShort(self, acc, xi, ind):
# N.B next lines are useless here, but to be used in other reductions :
# if xi.dtype == "half2":
# half2_val = c_variable("half2_ind")
# string = half2_val.declare_assign(f"__floats2half2_rn(2*{ind()},2*{ind()}+1)")
return self.ReducePair(acc, xi)
def FinalizeOutput(self, acc, out, i):
"""Returns C++ code that implements the final output of the reduction.
For most reducitons it is a simple copy of the temporary variable
updated during the reduction, with possibly a cast if the accumulator was of
different data type."""
return VectCopy(out, acc)
| keops-main | keopscore/keopscore/formulas/reductions/Reduction.py |
from keopscore.utils.code_gen_utils import (
neg_infinity,
c_zero_float,
VectApply,
c_if,
)
from keopscore.formulas.reductions.Reduction import Reduction
from keopscore.utils.misc_utils import KeOps_Error
class Max_ArgMax_Reduction_Base(Reduction):
"""max+argmax reduction : base class"""
def __init__(self, formula, tagIJ):
super().__init__(formula, tagIJ)
# We work with a (values,indices) vector
self.dimred = 2 * formula.dim # dimension of inner reduction variables
def InitializeReduction(self, acc):
# Returns C++ code to be used at initialization phase of the reduction.
dim = self.formula.dim
acc_max, acc_argmax = acc.split(dim, dim)
return acc_max.assign(neg_infinity(acc.dtype)) + acc_argmax.assign(c_zero_float)
def ReducePairScalar(self, acc_val, acc_ind, xi, ind):
# Subroutine of ReducePairShort and ReducePair methods.
if xi.dtype == "half2":
KeOps_Error("not implemented")
return c_if(xi > acc_val, acc_val.assign(xi) + acc_ind.assign(ind))
def ReducePair(self, acc, xi):
# Returns C++ code that implements the update phase of the reduction.
dim = self.formula.dim
acc_val, acc_ind = acc.split(dim, dim)
xi_val, xi_ind = xi.split(dim, dim)
return VectApply(self.ReducePairScalar, acc_val, xi_val, xi_ind)
def ReducePairShort(self, acc, xi, ind):
if xi.dtype == "half2":
KeOps_Error("not implemented")
half2_val = c_variable("half2_ind")
string = half2_val.declare_assign(
f"__floats2half2_rn(2*{ind()},2*{ind()}+1)"
)
dim = self.formula.dim
acc_val, acc_ind = acc.split(dim, dim)
return VectApply(self.ReducePairScalar, acc_val, acc_ind, xi, ind)
| keops-main | keopscore/keopscore/formulas/reductions/Max_ArgMax_Reduction_Base.py |
from keopscore.utils.code_gen_utils import (
infinity,
c_zero_float,
VectApply,
c_if,
)
from keopscore.formulas.reductions.Reduction import Reduction
from keopscore.utils.misc_utils import KeOps_Error
class Min_ArgMin_Reduction_Base(Reduction):
"""min+argmin reduction : base class"""
def __init__(self, formula, tagIJ):
super().__init__(formula, tagIJ)
# We work with a (values,indices) vector
self.dimred = 2 * formula.dim # dimension of inner reduction variables
def InitializeReduction(self, acc):
# Returns C++ code to be used at initialization phase of the reduction.
dim = self.formula.dim
acc_min, acc_argmin = acc.split(dim, dim)
return acc_min.assign(infinity(acc.dtype)) + acc_argmin.assign(c_zero_float)
def ReducePairScalar(self, acc_val, acc_ind, xi, ind):
# Subroutine of ReducePairShort and ReducePair methods.
if xi.dtype == "half2":
KeOps_Error("not implemented")
return c_if(xi < acc_val, acc_val.assign(xi) + acc_ind.assign(ind))
def ReducePair(self, acc, xi):
# Returns C++ code that implements the update phase of the reduction.
dim = self.formula.dim
acc_val, acc_ind = acc.split(dim, dim)
xi_val, xi_ind = xi.split(dim, dim)
return VectApply(self.ReducePairScalar, acc_val, xi_val, xi_ind)
def ReducePairShort(self, acc, xi, ind):
if xi.dtype == "half2":
KeOps_Error("not implemented")
half2_val = c_variable("half2_ind")
string = half2_val.declare_assign(
f"__floats2half2_rn(2*{ind()},2*{ind()}+1)"
)
dim = self.formula.dim
acc_val, acc_ind = acc.split(dim, dim)
return VectApply(self.ReducePairScalar, acc_val, acc_ind, xi, ind)
| keops-main | keopscore/keopscore/formulas/reductions/Min_ArgMin_Reduction_Base.py |
from keopscore.utils.code_gen_utils import VectCopy
from keopscore.formulas.reductions.Max_ArgMax_Reduction_Base import (
Max_ArgMax_Reduction_Base,
)
class Max_ArgMax_Reduction(Max_ArgMax_Reduction_Base):
"""Implements the max+argmax reduction operation : for each i or each j, find the maximal value of Fij and its index
operation is vectorized: if Fij is vector-valued, max+argmax is computed for each dimension."""
string_id = "Max_ArgMax_Reduction"
def __init__(self, formula, tagIJ):
super().__init__(formula, tagIJ)
self.dim = 2 * formula.dim
def FinalizeOutput(self, acc, out, i):
return VectCopy(out, acc)
| keops-main | keopscore/keopscore/formulas/reductions/Max_ArgMax_Reduction.py |
from keopscore.formulas.reductions.KMin_ArgKMin_Reduction import KMin_ArgKMin_Reduction
from keopscore.formulas.reductions.Zero_Reduction import Zero_Reduction
from keopscore.utils.code_gen_utils import (
c_for_loop,
new_c_varname,
c_variable,
)
class ArgKMin_Reduction(KMin_ArgKMin_Reduction):
"""Implements the arg-k-min reduction operation : for each i or each j, find the indices of the
k minimal values of Fij operation is vectorized: if Fij is vector-valued, arg-k-min is computed
for each dimension."""
string_id = "ArgKMin_Reduction"
def __init__(self, formula, K, tagIJ):
super().__init__(formula, K, tagIJ)
self.dim = K * formula.dim
def FinalizeOutput(self, acc, out, i):
fdim = self.formula.dim
p = c_variable("int", new_c_varname("p"))
loop, k = c_for_loop(0, fdim, 1, pragma_unroll=True)
body = p.declare_assign(k)
inner_loop, l = c_for_loop(
k, k + 2 * self.K * fdim, 2 * fdim, pragma_unroll=True
)
body += inner_loop(out[p].assign(acc[l + fdim]) + p.add_assign(fdim))
return loop(body)
outer_body
def DiffT(self, v, gradin):
return Zero_Reduction(v.dim, v.cat % 2)
| keops-main | keopscore/keopscore/formulas/reductions/ArgKMin_Reduction.py |
from keopscore.utils.code_gen_utils import (
c_array,
c_zero_float,
c_if,
c_variable,
)
class Sum_Scheme:
def __init__(self, red_formula, dtype, dimred=None):
self.red_formula = red_formula
if dimred is None:
self.dimred = red_formula.dimred
else:
self.dimred = dimred
def declare_temporary_accumulator(self):
return self.tmp_acc.declare()
def initialize_temporary_accumulator_first_init(self):
return ""
def initialize_temporary_accumulator_block_init(self):
return ""
def periodic_accumulate_temporary(self, acc, j):
return ""
def final_operation(self, acc):
return ""
class direct_sum(Sum_Scheme):
def declare_temporary_accumulator(self):
return ""
def initialize_temporary_accumulator(self):
return ""
def accumulate_result(self, acc, fout, j, hack=False):
return self.red_formula.ReducePairShort(acc, fout, j)
class block_sum(Sum_Scheme):
def __init__(self, red_formula, dtype, dimred=None):
super().__init__(red_formula, dtype, dimred)
self.tmp_acc = c_array(dtype, self.dimred, "tmp")
def initialize_temporary_accumulator(self):
return (
"int period_accumulate = ny<10 ? 100 : sqrt(ny);\n"
+ self.red_formula.InitializeReduction(self.tmp_acc)
)
def initialize_temporary_accumulator_block_init(self):
return self.red_formula.InitializeReduction(self.tmp_acc)
def accumulate_result(self, acc, fout, j, hack=False):
tmp_acc = acc if hack else self.tmp_acc
return self.red_formula.ReducePairShort(tmp_acc, fout, j)
def periodic_accumulate_temporary(self, acc, j):
condition = c_variable("bool", f"!(({j.id}+1)%period_accumulate)")
return c_if(
condition,
self.red_formula.ReducePair(acc, self.tmp_acc)
+ self.red_formula.InitializeReduction(self.tmp_acc),
)
def final_operation(self, acc):
return self.red_formula.ReducePair(acc, self.tmp_acc)
class kahan_scheme(Sum_Scheme):
def __init__(self, red_formula, dtype, dimred=None):
super().__init__(red_formula, dtype, dimred)
self.tmp_acc = c_array(dtype, red_formula.dim_kahan, "tmp")
def initialize_temporary_accumulator(self):
return self.tmp_acc.assign(c_zero_float)
def initialize_temporary_accumulator_first_init(self):
return self.initialize_temporary_accumulator()
def accumulate_result(self, acc, fout, j, hack=False):
return self.red_formula.KahanScheme(acc, fout, self.tmp_acc)
| keops-main | keopscore/keopscore/formulas/reductions/sum_schemes.py |
from .ArgKMin_Reduction import ArgKMin_Reduction
from .ArgMax_Reduction import ArgMax_Reduction
from .ArgMin_Reduction import ArgMin_Reduction
from .KMin_ArgKMin_Reduction import KMin_ArgKMin_Reduction
from .KMin_Reduction import KMin_Reduction
from .Max_ArgMax_Reduction import Max_ArgMax_Reduction
from .Max_Reduction import Max_Reduction
from .Max_SumShiftExpWeight_Reduction import (
Max_SumShiftExpWeight_Reduction,
Max_SumShiftExp_Reduction,
)
from .Min_ArgMin_Reduction import Min_ArgMin_Reduction
from .Min_Reduction import Min_Reduction
from .Sum_Reduction import Sum_Reduction
from .Zero_Reduction import Zero_Reduction
from .sum_schemes import *
| keops-main | keopscore/keopscore/formulas/reductions/__init__.py |
from keopscore.formulas.variables import Zero
from keopscore.formulas.reductions.Reduction import Reduction
class Zero_Reduction(Reduction):
"""Implements the zero reduction operation (fills output with zeros).
N.B. The actual code for filling zeros is not here ; when a Zero_reduction is detected,
the map_reduce scheme is redirected to CpuAssignZero or GpuAssignZero"""
string_id = "Zero_Reduction"
def __init__(self, dim, tagIJ):
super().__init__(Zero(dim), tagIJ)
self.dim = dim
def DiffT(self, v, gradin, f0=None):
return Zero_Reduction(v.dim, v.cat % 2)
| keops-main | keopscore/keopscore/formulas/reductions/Zero_Reduction.py |
from keopscore.utils.code_gen_utils import VectCopy
from keopscore.formulas.reductions.Min_ArgMin_Reduction_Base import (
Min_ArgMin_Reduction_Base,
)
class Min_ArgMin_Reduction(Min_ArgMin_Reduction_Base):
"""Implements the min+argmin reduction operation : for each i or each j, find the minimal value of Fij
and its index operation is vectorized: if Fij is vector-valued, min+argmain is computed for each dimension."""
string_id = "Min_ArgMin_Reduction"
def __init__(self, formula, tagIJ):
super().__init__(formula, tagIJ)
self.dim = 2 * formula.dim
def FinalizeOutput(self, acc, out, i):
return VectCopy(out, acc)
| keops-main | keopscore/keopscore/formulas/reductions/Min_ArgMin_Reduction.py |
from keopscore.utils.code_gen_utils import (
c_zero_float,
c_for_loop,
c_variable,
new_c_varname,
)
from keopscore.formulas.reductions.Reduction import Reduction
class Sum_Reduction(Reduction):
"""Sum reduction class"""
string_id = "Sum_Reduction"
def __init__(self, formula, tagIJ):
super().__init__(formula, tagIJ)
self.dim = formula.dim # dimension of final output of reduction
self.dimred = self.dim # dimension of inner reduction variables
self.dim_kahan = self.dim
def InitializeReduction(self, tmp):
# Returns C++ code to be used at initialization phase of the reduction.
# Here it consists in setting the output array to zero.
return tmp.assign(c_zero_float)
def ReducePairScalar(self, tmp, xi):
# Subroutine of ReducePairShort and ReducePair methods.
# Returns C++ code that implements the "+=" accumulation operation of the sum reduction
return tmp.add_assign(xi)
def KahanScheme(self, acc, xi, tmp):
loop, k = c_for_loop(0, self.dim, 1, pragma_unroll=True)
a = c_variable(acc.dtype, new_c_varname("a"))
b = c_variable(acc.dtype, new_c_varname("b"))
return loop(
a.declare_assign(xi[k] - tmp[k])
+ b.declare_assign(acc[k] + a)
+ tmp[k].assign((b - acc[k]) - a)
+ acc[k].assign(b)
)
def DiffT(self, v, gradin, f0=None):
from keopscore.formulas.autodiff import Grad
return Sum_Reduction(Grad(self.formula, v, gradin), v.cat % 2)
| keops-main | keopscore/keopscore/formulas/reductions/Sum_Reduction.py |
from keopscore.utils.code_gen_utils import infinity, c_if
from keopscore.formulas.reductions.Reduction import Reduction
from keopscore.utils.misc_utils import KeOps_Error
class Min_Reduction(Reduction):
"""Implements the min reduction operation : for each i or each j, find the minimal value of Fij
operation is vectorized: if Fij is vector-valued, min is computed for each dimension."""
string_id = "Min_Reduction"
def __init__(self, formula, tagIJ):
super().__init__(formula, tagIJ)
self.dim = formula.dim # dimension of final output of reduction
self.dimred = self.dim # dimension of inner reduction variables
def InitializeReduction(self, acc):
# Returns C++ code to be used at initialization phase of the reduction.
# Here it consists in setting the output array to -infinity.
return acc.assign(infinity(acc.dtype))
def ReducePairScalar(self, acc, xi):
# Subroutine of ReducePairShort and ReducePair methods.
if xi.dtype == "half2":
KeOps_Error("not implemented")
return c_if(xi < acc, acc.assign(xi))
| keops-main | keopscore/keopscore/formulas/reductions/Min_Reduction.py |
from keopscore.utils.code_gen_utils import neg_infinity, c_if
from keopscore.formulas.reductions.Reduction import Reduction
from keopscore.utils.misc_utils import KeOps_Error
class Max_Reduction(Reduction):
"""Implements the max reduction operation : for each i or each j, find the
maximal value of Fij operation is vectorized: if Fij is vector-valued, max is computed for each dimension."""
string_id = "Max_Reduction"
def __init__(self, formula, tagIJ):
super().__init__(formula, tagIJ)
self.dim = formula.dim # dimension of final output of reduction
self.dimred = self.dim # dimension of inner reduction variables
def InitializeReduction(self, acc):
# Returns C++ code to be used at initialization phase of the reduction.
# Here it consists in setting the output array to -infinity.
return acc.assign(neg_infinity(acc.dtype))
def ReducePairScalar(self, acc, xi):
# Subroutine of ReducePairShort and ReducePair methods.
if xi.dtype == "half2":
KeOps_Error("not implemented")
return c_if(xi > acc, acc.assign(xi))
| keops-main | keopscore/keopscore/formulas/reductions/Max_Reduction.py |
from keopscore.utils.code_gen_utils import (
infinity,
cast_to,
c_zero_float,
c_for_loop,
c_variable,
new_c_varname,
c_if,
c_array,
use_pragma_unroll,
)
from keopscore.formulas.reductions.Reduction import Reduction
from keopscore.utils.misc_utils import KeOps_Error
class KMin_ArgKMin_Reduction(Reduction):
"""Implements the k-min-arg-k-min reduction operation : for each i or each j, find the
values and indices of the k minimal values of Fij operation is vectorized: if Fij is vector-valued,
arg-k-min is computed for each dimension."""
string_id = "KMin_ArgKMin_Reduction"
def __init__(self, formula, K, tagIJ):
super().__init__(formula, tagIJ)
self.K = K
# dim is dimension of output of reduction ; for a arg-k-min reduction it is equal to the dimension of output of formula
self.dim = 2 * K * formula.dim
# We work with a (values,indices) vector
self.dimred = self.dim # dimension of inner reduction variables
def InitializeReduction(self, acc):
# Returns C++ code to be used at initialization phase of the reduction.
if acc.dtype == "half2":
KeOps_Error("not implemented")
fdim, K = self.formula.dim, self.K
outer_loop, k = c_for_loop(0, fdim, 1, pragma_unroll=True)
inner_loop, l = c_for_loop(k, k + (2 * K * fdim), 2 * fdim, pragma_unroll=True)
return outer_loop(
inner_loop(
acc[l].assign(infinity(acc.dtype)) + acc[l + fdim].assign(c_zero_float)
)
)
def ReducePair(self, acc, xi):
# Returns C++ code that implements the update phase of the reduction.
dtype = xi.dtype
fdim = self.formula.dim
out = c_array(dtype, self.dimred, new_c_varname("out"))
outer_loop, k = c_for_loop(0, fdim, 1)
p = c_variable("int", new_c_varname("p"))
q = c_variable("int", new_c_varname("q"))
inner_loop, l = c_for_loop(k, self.dimred, 2 * fdim)
inner_body = c_if(
xi[p] < acc[q],
out[l].assign(xi[p])
+ out[l + fdim].assign(xi[p + fdim])
+ p.add_assign(2 * fdim),
out[l].assign(acc[q])
+ out[l + fdim].assign(acc[q + fdim])
+ q.add_assign(2 * fdim),
)
outer_body = p.declare_assign(k) + q.declare_assign(k) + inner_loop(inner_body)
final_loop, k = c_for_loop(0, self.dimred, 1)
return (
out.declare() + outer_loop(outer_body) + final_loop(acc[k].assign(out[k]))
)
def ReducePairShort(self, acc, xi, ind):
fdim, K = self.formula.dim, self.K
dtype = xi.dtype
xik = c_variable(dtype, new_c_varname("xik"))
l = c_variable("int", new_c_varname("l"))
k = c_variable("int", new_c_varname("k"))
tmpl = c_variable(dtype, new_c_varname("tmpl"))
indtmpl = c_variable("int", new_c_varname("indtmpl"))
return f"""
{{
{xik.declare()}
{l.declare()}
{use_pragma_unroll()}
for(int {k.id}=0; {k.id}<{fdim}; {k.id}++) {{
{xik.assign(xi[k])}
{use_pragma_unroll()}
for({l.id}={(k+(K-1)*2*fdim).id}; {l.id}>={k.id} && {(xik<acc[l]).id}; {l.id}-={2*fdim}) {{
{tmpl.declare_assign(acc[l])}
{indtmpl.declare_assign(acc[l+fdim])}
{acc[l].assign(xik)}
{acc[l+fdim].assign(ind)}
if({l.id}<{(k+(2*fdim*(K-1))).id}) {{
{acc[l+2*fdim].assign(tmpl)}
{acc[l+2*fdim+fdim].assign(indtmpl)}
}}
}}
}}
}}
"""
| keops-main | keopscore/keopscore/formulas/reductions/KMin_ArgKMin_Reduction.py |
"""
PyTorch, on the GPU
===========================
"""
####################################
# Blabla
#
import torch
import numpy as np
from time import time
nits = 100
Ns, D = [10000, 100000, 1000000], 3
def KP(x, y, b):
D_xx = (x * x).sum(-1).unsqueeze(1) # (N,1)
D_xy = torch.matmul(x, y.permute(1, 0)) # (N,D) @ (D,M) = (N,M)
D_yy = (y * y).sum(-1).unsqueeze(0) # (1,M)
D_xy = D_xx - 2 * D_xy + D_yy
K_xy = (-D_xy).exp()
return K_xy @ b
for N in Ns:
# Generate the data
x = torch.randn(N, D).cuda()
y = torch.randn(N, D).cuda()
p = torch.randn(N, 1).cuda()
# First run to warm-up the device...
p = KP(x, y, p)
# Actual timings:
start = time()
for _ in range(nits):
p = KP(x, y, p)
torch.cuda.synchronize()
end = time()
print("Timing with {} points: {} x {:.4f}s".format(N, nits, (end - start) / nits))
| keops-main | benchmarks/PyTorch_GPU.py |
"""
PyTorch, on a TPU
============================
"""
################################################################
# This code should be run on a Google Colab session, with TPU acceleration.
#
import os
assert os.environ[
"COLAB_TPU_ADDR"
], "Make sure to select TPU from Edit > Notebook settings > Hardware accelerator"
###################################################
#
DIST_BUCKET = "gs://tpu-pytorch/wheels"
TORCH_WHEEL = "torch-1.15-cp36-cp36m-linux_x86_64.whl"
TORCH_XLA_WHEEL = "torch_xla-1.15-cp36-cp36m-linux_x86_64.whl"
TORCHVISION_WHEEL = "torchvision-0.3.0-cp36-cp36m-linux_x86_64.whl"
# Install Colab TPU compat PyTorch/TPU wheels and dependencies
"""
!pip uninstall -y torch torchvision
!gsutil cp "$DIST_BUCKET/$TORCH_WHEEL" .
!gsutil cp "$DIST_BUCKET/$TORCH_XLA_WHEEL" .
!gsutil cp "$DIST_BUCKET/$TORCHVISION_WHEEL" .
!pip install "$TORCH_WHEEL"
!pip install "$TORCH_XLA_WHEEL"
!pip install "$TORCHVISION_WHEEL"
!sudo apt-get install libomp5
"""
###################################################
#
import torch
import torch_xla
import torch_xla.core.xla_model as xm
t = torch.randn(2, 2, device=xm.xla_device())
print(t.device)
print(t)
###################################################
#
# Run the cell below two times: once for the compilation, once for profiling!
#
nits = 100
Ns, D = [10000, 100000, 1000000], 3
for N in Ns:
x = torch.randn(N, D, device=xm.xla_device())
y = torch.randn(N, D, device=xm.xla_device())
p = torch.randn(N, 1, device=xm.xla_device())
def KP(x, y, p):
D_xx = (x * x).sum(-1).unsqueeze(1) # (N,1)
D_xy = torch.matmul(x, y.permute(1, 0)) # (N,D) @ (D,M) = (N,M)
D_yy = (y * y).sum(-1).unsqueeze(0) # (1,M)
D_xy = D_xx - 2 * D_xy + D_yy
K_xy = (-D_xy).exp()
return K_xy @ p
import time
start = time.time()
for _ in range(nits):
p = KP(x, y, p)
print(p)
end = time.time()
print("Timing with {} points: {} x {:.4f}s".format(N, nits, (end - start) / nits))
| keops-main | benchmarks/PyTorch_TPU.py |
"""
KeOps specific
========================================
"""
#########################
# (N.B.: with data on device would be slightly better!)
#
import torch
import numpy as np
from time import time
######################################################################
# Benchmark specifications:
#
nits = 1
Ns, D = [10000, 100000, 1000000], 3
dtype = "float32"
from pykeops.numpy import RadialKernelConv
my_conv = RadialKernelConv(dtype)
def KP(x, y, p):
return my_conv(x, y, p, 1.0, kernel="gaussian")
for N in Ns:
# Generate the data
x = np.random.randn(N, D).astype(dtype)
y = np.random.randn(N, D).astype(dtype)
p = np.random.randn(N, 1).astype(dtype)
# First run just in case...
p = KP(x, y, p)
# Timings for KeOps specific
start = time()
for _ in range(nits):
p = KP(x, y, p)
end = time()
print("Timing with {} points: {} x {:.4f}s".format(N, nits, (end - start) / nits))
| keops-main | benchmarks/KeOps_specific.py |
"""
KeOps
=====
"""
import torch
import numpy as np
from time import time
nits = 10
Ns, D = [10000, 100000, 1000000], 3
from pykeops.torch import generic_sum
KP = generic_sum(
"Exp(-SqDist(X,Y)) * B", # Formula
"A = Vi(1)", # Output
"X = Vi({})".format(D), # 1st argument
"Y = Vj({})".format(D), # 2nd argument
"B = Vj(1)",
) # 3rd argument
for N in Ns:
# Generate the data
x = torch.randn(N, D).cuda()
y = torch.randn(N, D).cuda()
p = torch.randn(N, 1).cuda()
# First run just in case...
p = KP(x, y, p)
# Timings for KeOps
start = time()
for _ in range(nits):
p = KP(x, y, p)
end = time()
print("Timing with {} points: {} x {:.4f}s".format(N, nits, (end - start) / nits))
| keops-main | benchmarks/KeOps.py |
"""
TVM
===============
"""
##########################
# If you're running this script on Google Colab, use the following lines to install TVM on your session:
#%matplotlib inline
#
# try:
# import google.colab
# IN_COLAB = True
# except:
# IN_COLAB = False
#
# if IN_COLAB:
# ! gsutil cp "gs://tvm-fcrc-binaries-7f775516ff9dfab922c304049f294cec/tvm.tar.gz" /tmp/tvm.tar.gz
# ! mkdir -p /tvm
# ! tar -xf /tmp/tvm.tar.gz --strip-components=4 --directory /tvm
# ! ls -la /tvm
# ! bash /tvm/package.sh
# # Add TVM to the Python path.
# import sys
# sys.path.append('/tvm/python')
# sys.path.append('/tvm/topi/python')
# sys.path.append('/tvm/nnvm/python')
# sys.path.append('/tvm/vta/python')
# else:
# print("Notebook executing locally, skipping Colab setup ...")
###################################################################
# Actual benchmark:
from __future__ import absolute_import, print_function
import tvm
import numpy as np
from time import time
# Global declarations of environment.
tgt_host = "llvm"
tgt = "cuda"
ctx = tvm.context(tgt, 0)
# Declare axis and reduction indices
n = tvm.var("n")
j = tvm.reduce_axis((0, n), "j")
# Declare Variable
A0 = tvm.placeholder((n,), name="A0", dtype="float32")
A1 = tvm.placeholder((n,), name="A1", dtype="float32")
A2 = tvm.placeholder((n,), name="A2", dtype="float32")
B0 = tvm.placeholder((n,), name="B0", dtype="float32")
B1 = tvm.placeholder((n,), name="B1", dtype="float32")
B2 = tvm.placeholder((n,), name="B2", dtype="float32")
D = tvm.placeholder((n,), name="D", dtype="float32")
D_ij = (
lambda i: (A0[i] - B0[j]) * (B0[j] - A0[i])
+ (A1[i] - B1[j]) * (B1[j] - A1[i])
+ (A2[i] - B2[j]) * (B2[j] - A2[i])
)
K_ij = lambda i: tvm.call_pure_extern("float32", "__expf", D_ij(i))
C0 = tvm.compute((n,), lambda i: tvm.sum(K_ij(i) * D[j], axis=j), name="C0")
# Scheduled the computation
s0 = tvm.create_schedule(C0.op)
bx, tx = s0[C0].split(C0.op.axis[0], factor=192)
s0[C0].bind(bx, tvm.thread_axis("blockIdx.x"))
s0[C0].bind(tx, tvm.thread_axis("threadIdx.x"))
# Actually build the binary
fconv0 = tvm.build(
s0, [A0, A1, A2, B0, B1, B2, D, C0], tgt, target_host=tgt_host, name="myconv0"
)
# Benchmark
nits = 10
Ns = [10000, 100000, 1000000]
for n in Ns:
a_np = np.random.randn(n, 3).astype(A0.dtype)
a0 = tvm.nd.array(a_np[:, 0], ctx)
a1 = tvm.nd.array(a_np[:, 1], ctx)
a2 = tvm.nd.array(a_np[:, 2], ctx)
b_np = np.random.randn(n, 3).astype(B0.dtype)
b0 = tvm.nd.array(b_np[:, 0], ctx)
b1 = tvm.nd.array(b_np[:, 1], ctx)
b2 = tvm.nd.array(b_np[:, 2], ctx)
d_np = np.random.randn(
n,
).astype(D.dtype)
d = tvm.nd.array(d_np, ctx)
c_np = np.random.randn(n, 3).astype(C0.dtype)
c = tvm.nd.array(c_np[:, 0], ctx)
start = time()
for _ in range(nits):
fconv0(a0, a1, a2, b0, b1, b2, d, c) # Evaluations
ctx.sync()
end = time()
print("Timing with {} points: {} x {:.4f}s".format(n, nits, (end - start) / nits))
| keops-main | benchmarks/TVM.py |
"""
TensorFlow, with an XLA backend
====================================
"""
import tensorflow as tf
# tf.config.optimizer.set_jit(True)
from time import time
# Make sure that we're using the v2.0.0
print(tf.__version__)
# Our function, that XLA is going to compile
def KP(x, y, p):
D_ij = tf.math.reduce_sum((x - y) ** 2, axis=2)
K_ij = tf.math.exp(-D_ij)
return K_ij @ p
nits = 100
Ns, D = [10000, 100000, 1000000], 3
#############################################
#
#
# First, test without XLA
for N in Ns[:1]:
# Generate the data
x = tf.random.normal((N, 1, D))
y = tf.random.normal((1, N, D))
p = tf.random.normal((N, 1))
# First run just in case...
out = KP(x, y, p)
# Timings for TF vanilla
start = time()
for _ in range(nits):
out = KP(x, y, p)
# N.B.: we need some kind of "print" statement to make
# sure that TF actually executes our code
print("TF Vanilla : ", out[:10])
end = time()
print("Timing with {} points: {} x {:.4f}s".format(N, nits, (end - start) / nits))
##############################################
#
# Second, test with XLA
for N in Ns:
# Generate the data
x = tf.random.normal((N, 1, D))
y = tf.random.normal((1, N, D))
p = tf.random.normal((N, 1))
# Precompile just in case...
out = tf.xla.experimental.compile(KP, inputs=[x, y, p])
start = time()
for _ in range(nits):
out = tf.xla.experimental.compile(KP, inputs=[x, y, p])[0]
# N.B.: we need some kind of "print" statement to make
# sure that TF actually executes our code
print("XLA : ", out[:10])
end = time()
print("Timing with {} points: {} x {:.4f}s".format(N, nits, (end - start) / nits))
| keops-main | benchmarks/TF_XLA.py |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# KeOps documentation build configuration file, created by
# sphinx-quickstart on Thu Sep 13 14:50:06 2018.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath("."))
sys.path.insert(0, os.path.abspath("sphinxext"))
try:
import pykeops
except:
sys.path.insert(0, os.path.join(os.path.abspath(os.pardir), "pykeops"))
import pykeops
from pykeops import __version__
# -- General configuration ------------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
"sphinx.ext.autodoc",
"sphinx.ext.doctest",
"sphinx.ext.coverage",
"sphinx.ext.mathjax",
"sphinx.ext.autosummary",
"sphinx.ext.intersphinx",
"matplotlib.sphinxext.plot_directive",
"sphinxcontrib.httpdomain",
"sphinx_gallery.gen_gallery",
"sphinx.ext.napoleon",
# 'sphinx.ext.viewcode',
"sphinx.ext.linkcode",
]
# sphinx.ext.linkcode
def linkcode_resolve(domain, info):
def find_source():
# try to find the file and line number, based on code from numpy:
# https://github.com/numpy/numpy/blob/main/doc/source/conf.py#L286
obj = sys.modules[info["module"]]
for part in info["fullname"].split("."):
obj = getattr(obj, part)
import inspect
import os
fn = inspect.getsourcefile(obj)
fn = os.path.relpath(fn, start=os.path.dirname(pykeops.__file__))
source, lineno = inspect.getsourcelines(obj)
return fn, lineno, lineno + len(source) - 1
if domain != "py" or not info["module"]:
return None
try:
filename = "pykeops/%s#L%d-L%d" % find_source()
except Exception:
filename = info["module"].replace(".", "/") + ".py"
return "https://github.com/getkeops/keops/tree/main/%s" % filename
# def linkcode_resolve(domain, info):
# from sphinx.util import get_full_modname
# if domain != 'py':
# return None
# if not info['module']:
# return None
# filename = get_full_modname(info['module'], info['fullname']).replace('.', '/')
# return "https://github.com/getkeops/keops/tree/main/%s.py" % filename
from sphinx_gallery.sorting import FileNameSortKey
sphinx_gallery_conf = {
# path to your examples scripts
"examples_dirs": [
"../pykeops/pykeops/tutorials",
"../pykeops/pykeops/benchmarks",
"../pykeops/pykeops/examples",
],
# path where to save gallery generated examples
"gallery_dirs": ["_auto_tutorials", "_auto_benchmarks", "./_auto_examples"],
# order of the Gallery
"within_subsection_order": FileNameSortKey,
# Add patterns
# 'filename_pattern': r'../pykeops/pykeops/tutorials/*',
}
# Generate the API documentation when building
autosummary_generate = True
numpydoc_show_class_members = False
autodoc_member_order = "bysource"
def skip(app, what, name, obj, would_skip, options):
if name == "__call__":
return False
return would_skip
def setup(app):
app.connect("autodoc-skip-member", skip)
# Include the example source for plots in API docs
# plot_include_source = True
# plot_formats = [("png", 90)]
# plot_html_show_formats = False
# plot_html_show_source_link = False
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
source_parsers = {
".md": "recommonmark.parser.CommonMarkParser",
}
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
source_suffix = [".rst", ".md"]
# The root toctree document.
root_doc = "index"
# General information about the project.
project = "KeOps"
# import time
# copyright = '2018-{}, Benjamin Charlier, Jean Feydy, Joan A. Glaunès'.format(time.strftime("%Y"))
copyright = "2018-2021, Benjamin Charlier, Jean Feydy, Joan A. Glaunès."
author = "Benjamin Charlier, Jean Feydy, Joan A. Glaunès."
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
version = __version__
# The full version, including alpha/beta/rc tags.
release = __version__
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"]
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = "sphinx"
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = False
exclude_patterns = ["readme_first.md"]
# display broken internal links
nitpicky = False
# -- Options for HTML output ----------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
html_theme = "sphinx_rtd_theme"
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
html_theme_options = {
"canonical_url": "",
"analytics_id": "",
"logo_only": False,
"display_version": True,
"prev_next_buttons_location": "bottom",
"style_external_links": False,
# Toc options
"collapse_navigation": True,
"sticky_navigation": True,
"navigation_depth": 4,
"includehidden": True,
"titles_only": False,
}
html_context = {
"display_github": True, # Integrate Github
"github_user": "getkeops", # Username
"github_repo": "keops", # Repo name
"github_version": "main", # Version
"conf_py_path": "/doc/", # Path in the checkout to the docs root
}
# The name for this set of Sphinx documents. If None, it defaults to
# "<project> v<release> documentation".
html_title = "KeOps"
# A shorter title for the navigation bar. Default is the same as html_title.
html_short_title = "KeOps documentation"
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
html_logo = "_static/logo.png"
# The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
html_favicon = "_static/logo.ico"
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ["_static"]
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
html_last_updated_fmt = "%b %d, %Y"
# If true, links to the reST sources are added to the pages.
html_show_sourcelink = False
html_show_sphinx = False
# -- Options for HTMLHelp output ------------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = "KeOpsdoc"
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
# 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
# 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
# 'preamble': '',
# Latex figure (float) alignment
# 'figure_align': 'htbp',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
(
root_doc,
"KeOps.tex",
"KeOps Documentation",
"Benjamin Charlier, Jean Feydy, Joan A. Glaunès",
"manual",
),
]
# -- Options for manual page output ---------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [(root_doc, "keops", "KeOps Documentation", [author], 1)]
# -- Options for Texinfo output -------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(
root_doc,
"KeOps",
"KeOps Documentation",
author,
"KeOps",
"One line description of project.",
"Miscellaneous",
),
]
def setup(app):
app.add_css_file("css/custom.css")
| keops-main | doc/conf.py |
#! /usr/bin/env python
"""
Convert empty IPython notebook to a sphinx doc page.
"""
import sys
from subprocess import check_call as sh
def convert_nb(nbname):
# Execute the notebook
sh(["jupyter", "nbconvert", "--to", "notebook", "--execute", "--inplace", nbname])
# Convert to .rst for Sphinx
sh(
[
"jupyter",
"nbconvert",
"--to",
"rst",
nbname,
"--TagRemovePreprocessor.remove_cell_tags={'hide'}",
"--TagRemovePreprocessor.remove_input_tags={'hide-input'}",
"--TagRemovePreprocessor.remove_all_outputs_tags={'hide-output'}",
]
)
# Clear notebook output
sh(
[
"jupyter",
"nbconvert",
"--to",
"notebook",
"--inplace",
"--ClearOutputPreprocessor.enabled=True",
nbname,
]
)
# Touch the .rst file so it has a later modify time than the source
sh(["touch", nbname + ".rst"])
if __name__ == "__main__":
for nbname in sys.argv[1:]:
convert_nb(nbname)
| keops-main | doc/tools/nb_to_doc.py |
from setuptools import setup, find_packages
setup(
name = 'res-mlp-pytorch',
packages = find_packages(exclude=[]),
version = '0.0.6',
license='MIT',
description = 'ResMLP - Pytorch',
author = 'Phil Wang',
author_email = '[email protected]',
url = 'https://github.com/lucidrains/res-mlp-pytorch',
keywords = [
'artificial intelligence',
'deep learning',
'image recognition'
],
install_requires=[
'einops>=0.3',
'torch>=1.6'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
| res-mlp-pytorch-main | setup.py |
from res_mlp_pytorch.res_mlp_pytorch import ResMLP
| res-mlp-pytorch-main | res_mlp_pytorch/__init__.py |
import torch
from torch import nn, einsum
from einops.layers.torch import Rearrange, Reduce
# helpers
def pair(val):
return (val, val) if not isinstance(val, tuple) else val
# classes
class Affine(nn.Module):
def __init__(self, dim):
super().__init__()
self.g = nn.Parameter(torch.ones(1, 1, dim))
self.b = nn.Parameter(torch.zeros(1, 1, dim))
def forward(self, x):
return x * self.g + self.b
class PreAffinePostLayerScale(nn.Module): # https://arxiv.org/abs/2103.17239
def __init__(self, dim, depth, fn):
super().__init__()
if depth <= 18:
init_eps = 0.1
elif depth > 18 and depth <= 24:
init_eps = 1e-5
else:
init_eps = 1e-6
scale = torch.zeros(1, 1, dim).fill_(init_eps)
self.scale = nn.Parameter(scale)
self.affine = Affine(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.affine(x)) * self.scale + x
def ResMLP(*, image_size, patch_size, dim, depth, num_classes, expansion_factor = 4):
image_height, image_width = pair(image_size)
assert (image_height % patch_size) == 0 and (image_width % patch_size) == 0, 'image height and width must be divisible by patch size'
num_patches = (image_height // patch_size) * (image_width // patch_size)
wrapper = lambda i, fn: PreAffinePostLayerScale(dim, i + 1, fn)
return nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.Linear((patch_size ** 2) * 3, dim),
*[nn.Sequential(
wrapper(i, nn.Conv1d(num_patches, num_patches, 1)),
wrapper(i, nn.Sequential(
nn.Linear(dim, dim * expansion_factor),
nn.GELU(),
nn.Linear(dim * expansion_factor, dim)
))
) for i in range(depth)],
Affine(dim),
Reduce('b n c -> b c', 'mean'),
nn.Linear(dim, num_classes)
)
| res-mlp-pytorch-main | res_mlp_pytorch/res_mlp_pytorch.py |
from setuptools import setup, find_packages
setup(
name = 'BS-RoFormer',
packages = find_packages(exclude=[]),
version = '0.0.2',
license='MIT',
description = 'BS-RoFormer - Band-Split Rotary Transformer for SOTA Music Source Separation',
author = 'Phil Wang',
author_email = '[email protected]',
long_description_content_type = 'text/markdown',
url = 'https://github.com/lucidrains/BS-RoFormer',
keywords = [
'artificial intelligence',
'deep learning',
'transformers',
'attention mechanism',
'music source separation'
],
install_requires=[
'beartype',
'einops>=0.6.1',
'rotary-embedding-torch>=0.3.0',
'torch>=2.0',
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
| BS-RoFormer-main | setup.py |
from bs_roformer.bs_roformer import BSRoformer
| BS-RoFormer-main | bs_roformer/__init__.py |
from functools import wraps
from packaging import version
from collections import namedtuple
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, reduce
# constants
FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
# helpers
def exists(val):
return val is not None
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
# main class
class Attend(nn.Module):
def __init__(
self,
dropout = 0.,
flash = False
):
super().__init__()
self.dropout = dropout
self.attn_dropout = nn.Dropout(dropout)
self.flash = flash
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
# determine efficient attention configs for cuda and cpu
self.cpu_config = FlashAttentionConfig(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not flash:
return
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
if device_properties.major == 8 and device_properties.minor == 0:
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
self.cuda_config = FlashAttentionConfig(True, False, False)
else:
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
self.cuda_config = FlashAttentionConfig(False, True, True)
def flash_attn(self, q, k, v):
_, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
# Check if there is a compatible device for flash attention
config = self.cuda_config if is_cuda else self.cpu_config
# pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale
with torch.backends.cuda.sdp_kernel(**config._asdict()):
out = F.scaled_dot_product_attention(
q, k, v,
dropout_p = self.dropout if self.training else 0.
)
return out
def forward(self, q, k, v):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
q_len, k_len, device = q.shape[-2], k.shape[-2], q.device
scale = q.shape[-1] ** -0.5
if self.flash:
return self.flash_attn(q, k, v)
# similarity
sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale
# attention
attn = sim.softmax(dim=-1)
attn = self.attn_dropout(attn)
# aggregate values
out = einsum(f"b h i j, b h j d -> b h i d", attn, v)
return out
| BS-RoFormer-main | bs_roformer/attend.py |
import torch
from torch import nn, einsum, Tensor
from torch.nn import Module, ModuleList
import torch.nn.functional as F
from bs_roformer.attend import Attend
from beartype.typing import Tuple, Optional, List
from beartype import beartype
from rotary_embedding_torch import RotaryEmbedding
from einops import rearrange, pack, unpack
# helper functions
def exists(val):
return val is not None
# norm
class RMSNorm(Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim = -1) * self.scale * self.gamma
# attention
class FeedForward(Module):
def __init__(
self,
dim,
mult = 4,
dropout = 0.
):
super().__init__()
dim_inner = int(dim * mult)
self.net = nn.Sequential(
RMSNorm(dim),
nn.Linear(dim, dim_inner),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(dim_inner, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(Module):
def __init__(
self,
dim,
heads = 8,
dim_head = 64,
dropout = 0.,
rotary_embed = None,
flash = True
):
super().__init__()
self.heads = heads
self.scale = dim_head **-0.5
dim_inner = heads * dim_head
self.rotary_embed = rotary_embed
self.attend = Attend(flash = flash, dropout = dropout)
self.norm = RMSNorm(dim)
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(dim_inner, dim, bias = False),
nn.Dropout(dropout)
)
def forward(self, x):
x = self.norm(x)
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv = 3, h = self.heads)
if exists(self.rotary_embed):
q = self.rotary_embed.rotate_queries_or_keys(q)
k = self.rotary_embed.rotate_queries_or_keys(k)
out = self.attend(q, k, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(Module):
def __init__(
self,
*,
dim,
depth,
dim_head = 64,
heads = 8,
attn_dropout = 0.,
ff_dropout = 0.,
ff_mult = 4,
norm_output = True,
rotary_embed = None,
flash_attn = True
):
super().__init__()
self.layers = ModuleList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, rotary_embed = rotary_embed, flash = flash_attn),
FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)
]))
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
# bandsplit module
class BandSplit(Module):
@beartype
def __init__(
self,
dim,
dim_inputs: Tuple[int, ...]
):
super().__init__()
self.dim_inputs = dim_inputs
self.to_features = ModuleList([])
for dim_in in dim_inputs:
net = nn.Sequential(
RMSNorm(dim_in),
nn.Linear(dim_in, dim)
)
self.to_features.append(net)
def forward(self, x):
x = x.split(self.dim_inputs, dim = -1)
outs = []
for split_input, to_feature in zip(x, self.to_features):
split_output = to_feature(split_input)
outs.append(split_output)
return torch.stack(outs, dim = -2)
class LinearGLUWithTanH(Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim = -1)
return x.tanh() * gate.sigmoid()
class MaskEstimator(Module):
@beartype
def __init__(
self,
dim,
dim_inputs: Tuple[int, ...],
depth
):
super().__init__()
self.dim_inputs = dim_inputs
self.to_freqs = ModuleList([])
for dim_in in dim_inputs:
net = []
for ind in range(depth):
is_last = ind == (depth - 1)
dim_out = dim if not is_last else dim_in
net.append(LinearGLUWithTanH(dim, dim_out))
self.to_freqs.append(nn.Sequential(*net))
def forward(self, x):
x = x.unbind(dim = -2)
outs = []
for band_features, to_freq in zip(x, self.to_freqs):
freq_out = to_freq(band_features)
outs.append(freq_out)
return torch.cat(outs, dim = -1)
# main class
class BSRoformer(Module):
@beartype
def __init__(
self,
dim,
*,
depth,
time_transformer_depth = 2,
freq_transformer_depth = 2,
freqs_per_bands: Tuple[int, ...] = (256, 257), # in the paper, they divide into ~60 bands, test with 1 for starters
dim_head = 64,
heads = 8,
attn_dropout = 0.,
ff_dropout = 0.,
flash_attn = True,
dim_freqs_in = 513,
stft_n_fft = 1024,
stft_hop_length = 256,
stft_win_length = 1024,
stft_normalized = False,
mask_estimator_depth = 1,
multi_stft_resolution_loss_weight = 1.,
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
multi_stft_hop_size = 147,
multi_stft_normalized = False
):
super().__init__()
self.layers = ModuleList([])
transformer_kwargs = dict(
dim = dim,
heads = heads,
dim_head = dim_head,
attn_dropout = attn_dropout,
ff_dropout = ff_dropout,
flash_attn = flash_attn
)
time_rotary_embed = RotaryEmbedding(dim = dim_head)
freq_rotary_embed = RotaryEmbedding(dim = dim_head)
for _ in range(depth):
self.layers.append(nn.ModuleList([
Transformer(depth = time_transformer_depth, rotary_embed = time_rotary_embed, **transformer_kwargs),
Transformer(depth = freq_transformer_depth, rotary_embed = freq_rotary_embed, **transformer_kwargs)
]))
self.stft_kwargs = dict(
n_fft = stft_n_fft,
hop_length = stft_hop_length,
win_length = stft_win_length,
normalized = stft_normalized
)
freqs = torch.stft(torch.randn(1, 1024), **self.stft_kwargs, return_complex = True).shape[1]
assert len(freqs_per_bands) > 1
assert sum(freqs_per_bands) == freqs, f'the number of freqs in the bands must equal {freqs} based on the STFT settings'
freqs_per_bands_with_complex = tuple(2 * f for f in freqs_per_bands)
self.band_split = BandSplit(
dim = dim,
dim_inputs = freqs_per_bands_with_complex
)
self.mask_estimator = MaskEstimator(
dim = dim,
dim_inputs = freqs_per_bands_with_complex,
depth = mask_estimator_depth
)
# for the multi-resolution stft loss
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
self.multi_stft_n_fft = stft_n_fft
self.multi_stft_kwargs = dict(
hop_length = multi_stft_hop_size,
normalized = multi_stft_normalized
)
def forward(
self,
raw_audio,
target = None,
return_loss_breakdown = False
):
"""
einops
b - batch
f - freq
t - time
c - complex (2)
d - feature dimension
"""
# to stft
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, return_complex = True)
stft_repr = torch.view_as_real(stft_repr)
x = rearrange(stft_repr, 'b f t c -> b t (f c)')
x = self.band_split(x)
# axial / hierarchical attention
for time_transformer, freq_transformer in self.layers:
x = rearrange(x, 'b t f d -> b f t d')
x, ps = pack([x], 'b * d')
x = time_transformer(x)
x, = unpack(x, ps, 'b * d')
x = rearrange(x, 'b f t d -> b t f d')
x, ps = pack([x], 'b * d')
x = freq_transformer(x)
x, = unpack(x, ps, 'b * d')
mask = self.mask_estimator(x)
mask = rearrange(mask, 'b t (f c) -> b f t c', c = 2)
# modulate frequency representation
stft_repr = stft_repr * mask
# istft
stft_repr = torch.view_as_complex(stft_repr)
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, return_complex = False)
# if a target is passed in, calculate loss for learning
if not exists(target):
return recon_audio
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
loss = F.l1_loss(recon_audio, target)
multi_stft_resolution_loss = 0.
for window_size in self.multi_stft_resolutions_window_sizes:
res_stft_kwargs = dict(
n_fft = max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft
win_length = window_size,
return_complex = True,
**self.multi_stft_kwargs,
)
recon_Y = torch.stft(recon_audio, **res_stft_kwargs)
target_Y = torch.stft(target, **res_stft_kwargs)
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight
total_loss = loss + weighted_multi_resolution_loss
if not return_loss_breakdown:
return total_loss
return total_loss, (loss, multi_stft_resolution_loss)
| BS-RoFormer-main | bs_roformer/bs_roformer.py |
from setuptools import setup, find_packages
setup(
name = 'invariant-point-attention',
packages = find_packages(),
version = '0.2.2',
license='MIT',
description = 'Invariant Point Attention',
long_description_content_type = 'text/markdown',
author = 'Phil Wang',
author_email = '[email protected]',
url = 'https://github.com/lucidrains/invariant-point-attention',
keywords = [
'artificial intelligence',
'deep learning',
'protein folding'
],
install_requires=[
'einops>=0.3',
'torch>=1.7'
],
setup_requires=[
'pytest-runner',
],
tests_require=[
'pytest'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
| invariant-point-attention-main | setup.py |
import torch
import torch.nn.functional as F
from torch import nn, einsum
from torch.optim import Adam
from einops import rearrange, repeat
import sidechainnet as scn
from invariant_point_attention import IPATransformer
BATCH_SIZE = 1
GRADIENT_ACCUMULATE_EVERY = 16
def cycle(loader, len_thres = 200):
while True:
for data in loader:
if data.seqs.shape[1] > len_thres:
continue
yield data
net = IPATransformer(
dim = 16,
num_tokens = 21,
depth = 5,
require_pairwise_repr = False,
predict_points = True
).cuda()
data = scn.load(
casp_version = 12,
thinning = 30,
with_pytorch = 'dataloaders',
batch_size = BATCH_SIZE,
dynamic_batching = False
)
dl = cycle(data['train'])
optim = Adam(net.parameters(), lr=1e-3)
for _ in range(10000):
for _ in range(GRADIENT_ACCUMULATE_EVERY):
batch = next(dl)
seqs, coords, masks = batch.seqs, batch.crds, batch.msks
seqs = seqs.cuda().argmax(dim = -1)
coords = coords.cuda()
masks = masks.cuda().bool()
l = seqs.shape[1]
coords = rearrange(coords, 'b (l s) c -> b l s c', s = 14)
# Keeping only the Ca atom
coords = coords[:, :, 1, :]
noised_coords = coords + torch.randn_like(coords)
denoised_coords = net(
seqs,
translations = noised_coords,
mask = masks
)
loss = F.mse_loss(denoised_coords[masks], coords[masks])
(loss / GRADIENT_ACCUMULATE_EVERY).backward()
print('loss:', loss.item())
optim.step()
optim.zero_grad()
| invariant-point-attention-main | denoise.py |
import torch
from torch import nn
from einops import repeat
from invariant_point_attention import InvariantPointAttention, IPABlock
from invariant_point_attention.utils import rot
def test_ipa_invariance():
attn = InvariantPointAttention(
dim = 64,
heads = 8,
scalar_key_dim = 16,
scalar_value_dim = 16,
point_key_dim = 4,
point_value_dim = 4
)
seq = torch.randn(1, 256, 64)
pairwise_repr = torch.randn(1, 256, 256, 64)
mask = torch.ones(1, 256).bool()
rotations = repeat(rot(*torch.randn(3)), 'r1 r2 -> b n r1 r2', b = 1, n = 256)
translations = torch.randn(1, 256, 3)
# random rotation, for testing invariance
random_rotation = rot(*torch.randn(3))
# get outputs of IPA
attn_out = attn(
seq,
pairwise_repr = pairwise_repr,
rotations = rotations,
translations = translations,
mask = mask
)
rotated_attn_out = attn(
seq,
pairwise_repr = pairwise_repr,
rotations = rotations @ random_rotation,
translations = translations @ random_rotation,
mask = mask
)
# output must be invariant
diff = (attn_out - rotated_attn_out).max()
assert diff <= 1e-6, 'must be invariant to global rotation'
def test_ipa_block_invariance():
attn = IPABlock(
dim = 64,
heads = 8,
scalar_key_dim = 16,
scalar_value_dim = 16,
point_key_dim = 4,
point_value_dim = 4
)
seq = torch.randn(1, 256, 64)
pairwise_repr = torch.randn(1, 256, 256, 64)
mask = torch.ones(1, 256).bool()
rotations = repeat(rot(*torch.randn(3)), 'r1 r2 -> b n r1 r2', b = 1, n = 256)
translations = torch.randn(1, 256, 3)
# random rotation, for testing invariance
random_rotation = rot(*torch.randn(3))
# get outputs of IPA
attn_out = attn(
seq,
pairwise_repr = pairwise_repr,
rotations = rotations,
translations = translations,
mask = mask
)
rotated_attn_out = attn(
seq,
pairwise_repr = pairwise_repr,
rotations = rotations @ random_rotation,
translations = translations @ random_rotation,
mask = mask
)
# output must be invariant
diff = (attn_out - rotated_attn_out).max()
assert diff <= 1e-6, 'must be invariant to global rotation'
| invariant-point-attention-main | tests/invariance.py |
import torch
import torch.nn.functional as F
from torch.cuda.amp import autocast
from contextlib import contextmanager
from torch import nn, einsum
from einops.layers.torch import Rearrange
from einops import rearrange, repeat
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
@contextmanager
def disable_tf32():
orig_value = torch.backends.cuda.matmul.allow_tf32
torch.backends.cuda.matmul.allow_tf32 = False
yield
torch.backends.cuda.matmul.allow_tf32 = orig_value
# classes
class InvariantPointAttention(nn.Module):
def __init__(
self,
*,
dim,
heads = 8,
scalar_key_dim = 16,
scalar_value_dim = 16,
point_key_dim = 4,
point_value_dim = 4,
pairwise_repr_dim = None,
require_pairwise_repr = True,
eps = 1e-8
):
super().__init__()
self.eps = eps
self.heads = heads
self.require_pairwise_repr = require_pairwise_repr
# num attention contributions
num_attn_logits = 3 if require_pairwise_repr else 2
# qkv projection for scalar attention (normal)
self.scalar_attn_logits_scale = (num_attn_logits * scalar_key_dim) ** -0.5
self.to_scalar_q = nn.Linear(dim, scalar_key_dim * heads, bias = False)
self.to_scalar_k = nn.Linear(dim, scalar_key_dim * heads, bias = False)
self.to_scalar_v = nn.Linear(dim, scalar_value_dim * heads, bias = False)
# qkv projection for point attention (coordinate and orientation aware)
point_weight_init_value = torch.log(torch.exp(torch.full((heads,), 1.)) - 1.)
self.point_weights = nn.Parameter(point_weight_init_value)
self.point_attn_logits_scale = ((num_attn_logits * point_key_dim) * (9 / 2)) ** -0.5
self.to_point_q = nn.Linear(dim, point_key_dim * heads * 3, bias = False)
self.to_point_k = nn.Linear(dim, point_key_dim * heads * 3, bias = False)
self.to_point_v = nn.Linear(dim, point_value_dim * heads * 3, bias = False)
# pairwise representation projection to attention bias
pairwise_repr_dim = default(pairwise_repr_dim, dim) if require_pairwise_repr else 0
if require_pairwise_repr:
self.pairwise_attn_logits_scale = num_attn_logits ** -0.5
self.to_pairwise_attn_bias = nn.Sequential(
nn.Linear(pairwise_repr_dim, heads),
Rearrange('b ... h -> (b h) ...')
)
# combine out - scalar dim + pairwise dim + point dim * (3 for coordinates in R3 and then 1 for norm)
self.to_out = nn.Linear(heads * (scalar_value_dim + pairwise_repr_dim + point_value_dim * (3 + 1)), dim)
def forward(
self,
single_repr,
pairwise_repr = None,
*,
rotations,
translations,
mask = None
):
x, b, h, eps, require_pairwise_repr = single_repr, single_repr.shape[0], self.heads, self.eps, self.require_pairwise_repr
assert not (require_pairwise_repr and not exists(pairwise_repr)), 'pairwise representation must be given as second argument'
# get queries, keys, values for scalar and point (coordinate-aware) attention pathways
q_scalar, k_scalar, v_scalar = self.to_scalar_q(x), self.to_scalar_k(x), self.to_scalar_v(x)
q_point, k_point, v_point = self.to_point_q(x), self.to_point_k(x), self.to_point_v(x)
# split out heads
q_scalar, k_scalar, v_scalar = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q_scalar, k_scalar, v_scalar))
q_point, k_point, v_point = map(lambda t: rearrange(t, 'b n (h d c) -> (b h) n d c', h = h, c = 3), (q_point, k_point, v_point))
rotations = repeat(rotations, 'b n r1 r2 -> (b h) n r1 r2', h = h)
translations = repeat(translations, 'b n c -> (b h) n () c', h = h)
# rotate qkv points into global frame
q_point = einsum('b n d c, b n c r -> b n d r', q_point, rotations) + translations
k_point = einsum('b n d c, b n c r -> b n d r', k_point, rotations) + translations
v_point = einsum('b n d c, b n c r -> b n d r', v_point, rotations) + translations
# derive attn logits for scalar and pairwise
attn_logits_scalar = einsum('b i d, b j d -> b i j', q_scalar, k_scalar) * self.scalar_attn_logits_scale
if require_pairwise_repr:
attn_logits_pairwise = self.to_pairwise_attn_bias(pairwise_repr) * self.pairwise_attn_logits_scale
# derive attn logits for point attention
point_qk_diff = rearrange(q_point, 'b i d c -> b i () d c') - rearrange(k_point, 'b j d c -> b () j d c')
point_dist = (point_qk_diff ** 2).sum(dim = (-1, -2))
point_weights = F.softplus(self.point_weights)
point_weights = repeat(point_weights, 'h -> (b h) () ()', b = b)
attn_logits_points = -0.5 * (point_dist * point_weights * self.point_attn_logits_scale)
# combine attn logits
attn_logits = attn_logits_scalar + attn_logits_points
if require_pairwise_repr:
attn_logits = attn_logits + attn_logits_pairwise
# mask
if exists(mask):
mask = rearrange(mask, 'b i -> b i ()') * rearrange(mask, 'b j -> b () j')
mask = repeat(mask, 'b i j -> (b h) i j', h = h)
mask_value = max_neg_value(attn_logits)
attn_logits = attn_logits.masked_fill(~mask, mask_value)
# attention
attn = attn_logits.softmax(dim = - 1)
with disable_tf32(), autocast(enabled = False):
# disable TF32 for precision
# aggregate values
results_scalar = einsum('b i j, b j d -> b i d', attn, v_scalar)
attn_with_heads = rearrange(attn, '(b h) i j -> b h i j', h = h)
if require_pairwise_repr:
results_pairwise = einsum('b h i j, b i j d -> b h i d', attn_with_heads, pairwise_repr)
# aggregate point values
results_points = einsum('b i j, b j d c -> b i d c', attn, v_point)
# rotate aggregated point values back into local frame
results_points = einsum('b n d c, b n c r -> b n d r', results_points - translations, rotations.transpose(-1, -2))
results_points_norm = torch.sqrt( torch.square(results_points).sum(dim=-1) + eps )
# merge back heads
results_scalar = rearrange(results_scalar, '(b h) n d -> b n (h d)', h = h)
results_points = rearrange(results_points, '(b h) n d c -> b n (h d c)', h = h)
results_points_norm = rearrange(results_points_norm, '(b h) n d -> b n (h d)', h = h)
results = (results_scalar, results_points, results_points_norm)
if require_pairwise_repr:
results_pairwise = rearrange(results_pairwise, 'b h n d -> b n (h d)', h = h)
results = (*results, results_pairwise)
# concat results and project out
results = torch.cat(results, dim = -1)
return self.to_out(results)
# one transformer block based on IPA
def FeedForward(dim, mult = 1., num_layers = 2, act = nn.ReLU):
layers = []
dim_hidden = dim * mult
for ind in range(num_layers):
is_first = ind == 0
is_last = ind == (num_layers - 1)
dim_in = dim if is_first else dim_hidden
dim_out = dim if is_last else dim_hidden
layers.append(nn.Linear(dim_in, dim_out))
if is_last:
continue
layers.append(act())
return nn.Sequential(*layers)
class IPABlock(nn.Module):
def __init__(
self,
*,
dim,
ff_mult = 1,
ff_num_layers = 3, # in the paper, they used 3 layer transition (feedforward) block
post_norm = True, # in the paper, they used post-layernorm - offering pre-norm as well
post_attn_dropout = 0.,
post_ff_dropout = 0.,
**kwargs
):
super().__init__()
self.post_norm = post_norm
self.attn_norm = nn.LayerNorm(dim)
self.attn = InvariantPointAttention(dim = dim, **kwargs)
self.post_attn_dropout = nn.Dropout(post_attn_dropout)
self.ff_norm = nn.LayerNorm(dim)
self.ff = FeedForward(dim, mult = ff_mult, num_layers = ff_num_layers)
self.post_ff_dropout = nn.Dropout(post_ff_dropout)
def forward(self, x, **kwargs):
post_norm = self.post_norm
attn_input = x if post_norm else self.attn_norm(x)
x = self.attn(attn_input, **kwargs) + x
x = self.post_attn_dropout(x)
x = self.attn_norm(x) if post_norm else x
ff_input = x if post_norm else self.ff_norm(x)
x = self.ff(ff_input) + x
x = self.post_ff_dropout(x)
x = self.ff_norm(x) if post_norm else x
return x
# add an IPA Transformer - iteratively updating rotations and translations
# this portion is not accurate to AF2, as AF2 applies a FAPE auxiliary loss on each layer, as well as a stop gradient on the rotations
# just an attempt to see if this could evolve to something more generally usable
class IPATransformer(nn.Module):
def __init__(
self,
*,
dim,
depth,
num_tokens = None,
predict_points = False,
detach_rotations = True,
**kwargs
):
super().__init__()
# using quaternion functions from pytorch3d
try:
from pytorch3d.transforms import quaternion_multiply, quaternion_to_matrix
self.quaternion_to_matrix = quaternion_to_matrix
self.quaternion_multiply = quaternion_multiply
except (ImportError, ModuleNotFoundError) as err:
print('unable to import pytorch3d - please install with `conda install pytorch3d -c pytorch3d`')
raise err
# embedding
self.token_emb = nn.Embedding(num_tokens, dim) if exists(num_tokens) else None
# layers
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
IPABlock(dim = dim, **kwargs),
nn.Linear(dim, 6)
]))
# whether to detach rotations or not, for stability during training
self.detach_rotations = detach_rotations
# output
self.predict_points = predict_points
if predict_points:
self.to_points = nn.Linear(dim, 3)
def forward(
self,
single_repr,
*,
translations = None,
quaternions = None,
pairwise_repr = None,
mask = None
):
x, device, quaternion_multiply, quaternion_to_matrix = single_repr, single_repr.device, self.quaternion_multiply, self.quaternion_to_matrix
b, n, *_ = x.shape
if exists(self.token_emb):
x = self.token_emb(x)
# if no initial quaternions passed in, start from identity
if not exists(quaternions):
quaternions = torch.tensor([1., 0., 0., 0.], device = device) # initial rotations
quaternions = repeat(quaternions, 'd -> b n d', b = b, n = n)
# if not translations passed in, start from identity
if not exists(translations):
translations = torch.zeros((b, n, 3), device = device)
# go through the layers and apply invariant point attention and feedforward
for block, to_update in self.layers:
rotations = quaternion_to_matrix(quaternions)
if self.detach_rotations:
rotations = rotations.detach()
x = block(
x,
pairwise_repr = pairwise_repr,
rotations = rotations,
translations = translations
)
# update quaternion and translation
quaternion_update, translation_update = to_update(x).chunk(2, dim = -1)
quaternion_update = F.pad(quaternion_update, (1, 0), value = 1.)
quaternion_update = quaternion_update / torch.linalg.norm(quaternion_update, dim=-1, keepdim=True)
quaternions = quaternion_multiply(quaternions, quaternion_update)
translations = translations + einsum('b n c, b n c r -> b n r', translation_update, rotations)
if not self.predict_points:
return x, translations, quaternions
points_local = self.to_points(x)
rotations = quaternion_to_matrix(quaternions)
points_global = einsum('b n c, b n c d -> b n d', points_local, rotations) + translations
return points_global
| invariant-point-attention-main | invariant_point_attention/invariant_point_attention.py |
from invariant_point_attention.invariant_point_attention import InvariantPointAttention, IPABlock, IPATransformer
| invariant-point-attention-main | invariant_point_attention/__init__.py |
import torch
from torch import sin, cos, atan2, acos
from functools import wraps
def cast_torch_tensor(fn):
@wraps(fn)
def inner(t):
if not torch.is_tensor(t):
t = torch.tensor(t, dtype = torch.get_default_dtype())
return fn(t)
return inner
@cast_torch_tensor
def rot_z(gamma):
return torch.tensor([
[cos(gamma), -sin(gamma), 0],
[sin(gamma), cos(gamma), 0],
[0, 0, 1]
], dtype=gamma.dtype)
@cast_torch_tensor
def rot_y(beta):
return torch.tensor([
[cos(beta), 0, sin(beta)],
[0, 1, 0],
[-sin(beta), 0, cos(beta)]
], dtype=beta.dtype)
def rot(alpha, beta, gamma):
return rot_z(alpha) @ rot_y(beta) @ rot_z(gamma)
| invariant-point-attention-main | invariant_point_attention/utils.py |
from setuptools import setup, find_packages
setup(
name = 'toolformer-pytorch',
packages = find_packages(exclude=[]),
version = '0.0.27',
license='MIT',
description = 'Toolformer - Pytorch',
author = 'Phil Wang',
author_email = '[email protected]',
long_description_content_type = 'text/markdown',
url = 'https://github.com/lucidrains/toolformer-pytorch',
keywords = [
'artificial intelligence',
'deep learning',
'transformers',
'attention mechanism',
'automated-tool-use'
],
install_requires=[
'beartype',
'einops>=0.4',
'torch>=1.6',
'tqdm',
'x-clip'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
| toolformer-pytorch-main | setup.py |
import torch
from torch import nn, einsum
from einops import rearrange
from x_clip.tokenizer import tokenizer
# helpers
def exists(val):
return val is not None
# normalization
class RMSNorm(nn.Module):
def __init__(self, dim, eps = 1e-8):
super().__init__()
self.scale = dim ** -0.5
self.eps = eps
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
norm = torch.norm(x, dim = -1, keepdim = True) * self.scale
return x / norm.clamp(min = self.eps) * self.g
# rotary positional embedding
# https://arxiv.org/abs/2104.09864
class RotaryEmbedding(nn.Module):
def __init__(self, dim):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
def forward(self, max_seq_len, *, device):
seq = torch.arange(max_seq_len, device=device, dtype=self.inv_freq.dtype)
freqs = einsum("i , j -> i j", seq, self.inv_freq)
return torch.cat((freqs, freqs), dim=-1)
def rotate_half(x):
x = rearrange(x, "... (j d) -> ... j d", j=2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(pos, t):
return (t * pos.cos()) + (rotate_half(t) * pos.sin())
# all we need
class ParallelTransformerBlock(nn.Module):
def __init__(self, dim, dim_head=64, heads=8, ff_mult=4):
super().__init__()
self.norm = RMSNorm(dim)
attn_inner_dim = dim_head * heads
ff_inner_dim = dim * ff_mult
self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim))
self.heads = heads
self.scale = dim_head**-0.5
self.rotary_emb = RotaryEmbedding(dim_head)
self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False)
self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False)
self.ff_out = nn.Sequential(
nn.GELU(),
nn.Linear(ff_inner_dim, dim, bias=False)
)
# for caching causal mask and rotary embeddings
self.register_buffer("mask", None, persistent=False)
self.register_buffer("pos_emb", None, persistent=False)
def get_mask(self, n, device):
if self.mask is not None and self.mask.shape[-1] >= n:
return self.mask[:n, :n]
mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1)
self.register_buffer("mask", mask, persistent=False)
return mask
def get_rotary_embedding(self, n, device):
if self.pos_emb is not None and self.pos_emb.shape[-2] >= n:
return self.pos_emb[:n]
pos_emb = self.rotary_emb(n, device=device)
self.register_buffer("pos_emb", pos_emb, persistent=False)
return pos_emb
def forward(self, x):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
n, device, h = x.shape[1], x.device, self.heads
# pre layernorm
x = self.norm(x)
# attention queries, keys, values, and feedforward inner
q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1)
# split heads
# they use multi-query single-key-value attention, yet another Noam Shazeer paper
# they found no performance loss past a certain scale, and more efficient decoding obviously
# https://arxiv.org/abs/1911.02150
q = rearrange(q, "b n (h d) -> b h n d", h=h)
# rotary embeddings
positions = self.get_rotary_embedding(n, device)
q, k = map(lambda t: apply_rotary_pos_emb(positions, t), (q, k))
# scale
q = q * self.scale
# similarity
sim = einsum("b h i d, b j d -> b h i j", q, k)
# causal mask
causal_mask = self.get_mask(n, device)
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
# attention
attn = sim.softmax(dim=-1)
# aggregate values
out = einsum("b h i j, b j d -> b h i d", attn, v)
# merge heads
out = rearrange(out, "b h n d -> b n (h d)")
return self.attn_out(out) + self.ff_out(ff)
# Transformer
class Transformer(nn.Module):
def __init__(
self,
dim,
depth,
heads,
dim_head,
ff_mult = 4,
):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
ParallelTransformerBlock(dim, dim_head, heads, ff_mult),
)
def forward(self, x):
for block in self.layers:
x = block(x) + x
return x
# classes
class PaLM(nn.Module):
def __init__(
self,
dim,
depth,
num_tokens=tokenizer.vocab_size,
dim_head=64,
heads=8,
ff_mult=4,
):
super().__init__()
self.emb = nn.Embedding(num_tokens, dim)
self.transformer = Transformer(dim, depth, heads, dim_head, ff_mult)
self.to_logits = nn.Sequential(
RMSNorm(dim),
nn.Linear(dim, num_tokens)
)
def forward(self, x):
x = self.emb(x)
x = self.transformer(x)
return self.to_logits(x)
if __name__ == "__main__":
palm = PaLM(
num_tokens = 20000,
dim = 512,
depth = 6,
dim_head = 64,
heads = 8,
ff_mult = 4,
)
tokens = torch.randint(0, 20000, (1, 512))
logits = palm(tokens)
print(logits.shape)
| toolformer-pytorch-main | toolformer_pytorch/palm.py |
import os
try:
from dotenv import load_dotenv
load_dotenv()
import requests
import calendar
import wolframalpha
import datetime
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from operator import pow, truediv, mul, add, sub
# Optional imports
from googleapiclient.discovery import build
except ImportError:
print('please run `pip install tools-requirements.txt` first at project directory')
exit()
'''
Calendar
Uses Python's datetime and calendar libraries to retrieve the current date.
input - None
output - A string, the current date.
'''
def Calendar():
now = datetime.datetime.now()
return f'Today is {calendar.day_name[now.weekday()]}, {calendar.month_name[now.month]} {now.day}, {now.year}.'
'''
Wikipedia Search
Uses ColBERTv2 to retrieve Wikipedia documents.
input_query - A string, the input query (e.g. "what is a dog?")
k - The number of documents to retrieve
output - A list of strings, each string is a Wikipedia document
Adapted from Stanford's DSP: https://github.com/stanfordnlp/dsp/
Also see: https://github.com/lucabeetz/dsp
'''
class ColBERTv2:
def __init__(self, url: str):
self.url = url
def __call__(self, query, k=10):
topk = colbertv2_get_request(self.url, query, k)
topk = [doc['text'] for doc in topk]
return topk
def colbertv2_get_request(url: str, query: str, k: int):
payload = {'query': query, 'k': k}
res = requests.get(url, params=payload)
topk = res.json()['topk'][:k]
return topk
def WikiSearch(
input_query: str,
url: str = 'http://ec2-44-228-128-229.us-west-2.compute.amazonaws.com:8893/api/search',
k: int = 10
):
retrieval_model = ColBERTv2(url)
output = retrieval_model(input_query, k)
return output
'''
Machine Translation - NLLB-600M
Uses HuggingFace's transformers library to translate input query to English.
input_query - A string, the input query (e.g. "what is a dog?")
output - A string, the translated input query.
'''
def MT(input_query: str, model_name: str = "facebook/nllb-200-distilled-600M"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
input_ids = tokenizer(input_query, return_tensors='pt')
outputs = model.generate(
**input_ids,
forced_bos_token_id=tokenizer.lang_code_to_id["eng_Latn"],
)
output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return output
'''
Calculator
Calculates the result of a mathematical expression.
input_query - A string, the input query (e.g. "400/1400")
output - A float, the result of the calculation
Adapted from: https://levelup.gitconnected.com/3-ways-to-write-a-calculator-in-python-61642f2e4a9a
'''
def Calculator(input_query: str):
operators = {
'+': add,
'-': sub,
'*': mul,
'/': truediv
}
if input_query.isdigit():
return float(input_query)
for c in operators.keys():
left, operator, right = input_query.partition(c)
if operator in operators:
return round(operators[operator](Calculator(left), Calculator(right)), 2)
# Other Optional Tools
'''
Wolfram Alpha Calculator
pip install wolframalpha
Uses Wolfram Alpha API to calculate input query.
input_query - A string, the input query (e.g. "what is 2 + 2?")
output - A string, the answer to the input query
wolfarm_alpha_appid - your Wolfram Alpha API key
'''
def WolframAlphaCalculator(input_query: str):
wolfram_alpha_appid = os.environ.get('WOLFRAM_ALPHA_APPID')
wolfram_client = wolframalpha.Client(wolfram_alpha_appid)
res = wolfram_client.query(input_query)
assumption = next(res.pods).text
answer = next(res.results).text
return f'Assumption: {assumption} \nAnswer: {answer}'
'''
Google Search
Uses Google's Custom Search API to retrieve Google Search results.
input_query - The query to search for.
num_results - The number of results to return.
api_key - Your Google API key.
cse_id - Your Google Custom Search Engine ID.
output - A list of dictionaries, each dictionary is a Google Search result
'''
def custom_search(query, api_key, cse_id, **kwargs):
service = build("customsearch", "v1", developerKey=api_key)
res = service.cse().list(q=query, cx=cse_id, **kwargs).execute()
return res['items']
def google_search(input_query: str, num_results: int = 10):
api_key = os.environ.get('GOOGLE_API_KEY')
cse_id = os.environ.get('GOOGLE_CSE_ID')
metadata_results = []
results = custom_search(input_query, num=num_results, api_key=api_key, cse_id=cse_id)
for result in results:
metadata_result = {
"snippet": result["snippet"],
"title": result["title"],
"link": result["link"],
}
metadata_results.append(metadata_result)
return metadata_results
'''
Bing Search
Uses Bing's Custom Search API to retrieve Bing Search results.
input_query: The query to search for.
bing_subscription_key: Your Bing API key.
num_results: The number of results to return.
output: A list of dictionaries, each dictionary is a Bing Search result
'''
def _bing_search_results(
search_term: str,
bing_subscription_key: str,
count: int,
url: str = "https://api.bing.microsoft.com/v7.0/search"
):
headers = {"Ocp-Apim-Subscription-Key": bing_subscription_key}
params = {
"q": search_term,
"count": count,
"textDecorations": True,
"textFormat": "HTML",
}
response = requests.get(
url, headers=headers, params=params
)
response.raise_for_status()
search_results = response.json()
return search_results["webPages"]["value"]
def bing_search(
input_query: str,
num_results: int = 10
):
bing_subscription_key = os.environ.get("BING_API_KEY")
metadata_results = []
results = _bing_search_results(input_query, bing_subscription_key, count=num_results)
for result in results:
metadata_result = {
"snippet": result["snippet"],
"title": result["name"],
"link": result["url"],
}
metadata_results.append(metadata_result)
return metadata_results
if __name__ == '__main__':
print(Calendar()) # Outputs a string, the current date
print(Calculator('400/1400')) # For Optional Basic Calculator
print(WikiSearch('What is a dog?')) # Outputs a list of strings, each string is a Wikipedia document
print(MT("Un chien c'est quoi?")) # What is a dog?
# Optional Tools
print(WolframAlphaCalculator('What is 2 + 2?')) # 4
print(google_search('What is a dog?'))
# Outputs a list of dictionaries, each dictionary is a Google Search result
print(bing_search('What is a dog?'))
# Outputs a list of dictionaries, each dictionary is a Bing Search result
| toolformer-pytorch-main | toolformer_pytorch/tools.py |
from toolformer_pytorch.palm import PaLM
from toolformer_pytorch.toolformer_pytorch import (
Toolformer,
filter_tokens_with_api_response,
sample,
sample_with_api_call,
has_api_calls,
invoke_tools,
replace_all_but_first
)
| toolformer-pytorch-main | toolformer_pytorch/__init__.py |
DEFAULT_PROMPT_INPUT_TAG = '[input]'
calculator_prompt = f"""
Your task is to add calls to a Calculator API to a piece of text.
The calls should help you get information required to complete the text.
You can call the API by writing "[Calculator(expression)]" where "expression" is the expression to be computed.
Here are some examples of API calls:
Input: The number in the next term is 18 + 12 x 3 = 54.
Output: The number in the next term is 18 + 12 x 3 = [Calculator(18 + 12 * 3)] 54.
Input: The population is 658,893 people. This is 11.4% of the national average of 5,763,868 people.
Output: The population is 658,893 people. This is 11.4% of the national average of [Calculator(658,893 / 11.4%)] 5,763,868 people.
Input: A total of 252 qualifying matches were played, and 723 goals were scored (an average of 2.87 per match). This is three times less than the 2169 goals last year.
Output: A total of 252 qualifying matches were played, and 723 goals were scored (an average of [Calculator(723 / 252)] 2.87 per match). This is twenty goals more than the [Calculator(723 - 20)] 703 goals last year.
Input: I went to Paris in 1994 and stayed there until 2011, so in total, it was 17 years.
Output: I went to Paris in 1994 and stayed there until 2011, so in total, it was [Calculator(2011 - 1994)] 17 years.
Input: From this, we have 4 * 30 minutes = 120 minutes.
Output: From this, we have 4 * 30 minutes = [Calculator(4 * 30)] 120 minutes.
Input: {DEFAULT_PROMPT_INPUT_TAG}
Output:
"""
wikipedia_search_prompt = f"""
Your task is to complete a given piece of text.
You can use a Wikipedia Search API to look up information.
You can do so by writing "[WikiSearch(term)]" where "term" is the search term you want to look up.
Here are some examples of API calls:
Input: The colors on the flag of Ghana have the following meanings: red is for the blood of martyrs, green for forests, and gold for mineral wealth.
Output: The colors on the flag of Ghana have the following meanings: red is for [WikiSearch("Ghana flag red meaning")] the blood of martyrs, green for forests, and gold for mineral wealth.
Input: But what are the risks during production of nanomaterials? Some nanomaterials may give rise to various kinds of lung damage.
Output: But what are the risks during production of nanomaterials? [WikiSearch("nanomaterial production risks")] Some nanomaterials may give rise to various kinds of lung damage.
Input: Metformin is the first-line drug for patients with type 2 diabetes and obesity.
Output: Metformin is the first-line drug for [WikiSearch("Metformin first-line drug")] patients with type 2 diabetes and obesity.
Input: {DEFAULT_PROMPT_INPUT_TAG}
Output:
"""
machine_translation_prompt = f"""
Your task is to complete a given piece of text by using a Machine Translation API.
You can do so by writing "[MT(text)]" where text is the text to be translated into English.
Here are some examples:
Input: He has published one book: O homem suprimido (“The Supressed Man”)
Output: He has published one book: O homem suprimido [MT(O homem suprimido)] (“The Supressed Man”)
Input: In Morris de Jonge’s Jeschuah, der klassische jüdische Mann, there is a description of a Jewish writer
Output: In Morris de Jonge’s Jeschuah, der klassische jüdische Mann [MT(der klassische jüdische Mann)], there is a description of a Jewish writer
Input: 南 京 高 淳 县 住 房 和 城 乡 建 设 局 城 市 新 区 设 计 a plane of reference Gaochun is one of seven districts of the provincial capital Nanjing
Output: [MT(南京高淳县住房和城乡建设局 城市新 区 设 计)] a plane of reference Gaochun is one of seven districts of the provincial capital Nanjing
Input: {DEFAULT_PROMPT_INPUT_TAG}
Output:
"""
calendar_prompt = f"""
Your task is to add calls to a Calendar API to a piece of text.
The API calls should help you get information required to complete the text.
You can call the API by writing "[Calendar()]"
Here are some examples of API calls:
Input: Today is the first Friday of the year.
Output: Today is the first [Calendar()] Friday of the year.
Input: The president of the United States is Joe Biden.
Output: The president of the United States is [Calendar()] Joe Biden.
Input: The current day of the week is Wednesday.
Output: The current day of the week is [Calendar()] Wednesday.
Input: The number of days from now until Christmas is 30.
Output: The number of days from now until Christmas is [Calendar()] 30.
Input: The store is never open on the weekend, so today it is closed.
Output: The store is never open on the weekend, so today [Calendar()] it is closed.
Input: {DEFAULT_PROMPT_INPUT_TAG}
Output:
"""
| toolformer-pytorch-main | toolformer_pytorch/prompts.py |
import re
from functools import partial, wraps
from collections import namedtuple
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence
from einops import rearrange, reduce
from toolformer_pytorch.palm import PaLM
from toolformer_pytorch.optimizer import get_optimizer
from toolformer_pytorch.prompts import DEFAULT_PROMPT_INPUT_TAG
from beartype import beartype
from beartype.typing import Callable, Optional, Union, List, Tuple
from tqdm import tqdm
from x_clip.tokenizer import tokenizer
pad_sequence = partial(pad_sequence, batch_first = True)
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def identity(t):
return t
def always(val):
def inner(*args, **kwargs):
return val
return inner
def try_except(fn, callback = identity):
@wraps(fn)
def inner(*args):
try:
return fn(*args)
except Exception as e:
return callback(e)
return inner
# tensor helpers
def log(t, eps = 1e-20):
return t.clamp(min = eps).log()
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature = 1., dim = -1, eps = 1e-10):
if temperature == 0:
return t.argmax(dim = dim)
return ((t / max(temperature, eps)) + gumbel_noise(t)).argmax(dim = dim)
def top_k(logits, thres = 0.9):
k = math.ceil((1 - thres) * logits.shape[-1])
val, indices = torch.topk(logits, k)
probs = torch.full_like(logits, -torch.finfo(logits.dtype).max)
probs.scatter_(1, indices, val)
return probs
def all_contains_id(t: torch.Tensor, token_id: int):
mask = t == token_id
return mask.any(dim = -1).all()
def find_indices_of(t: torch.Tensor, token_id: int, occurrence = 1):
assert occurrence > 0
mask = (t == token_id)
has_occurred = mask.cumsum(dim = -1)
has_occurred = F.pad(has_occurred, (1, 0), value = 0.)
return (has_occurred < occurrence).sum(dim = -1).long()
# invoking api call functions
def is_valid_string(s):
return exists(re.fullmatch(r"'[^']*'|\"[^\"]*\"", s))
def is_valid_integer(s):
return exists(re.fullmatch(r"[+-]?\d+", s))
def is_valid_float(s):
return exists(re.fullmatch(r"[+-]?\d+(\.\d+)?", s))
def parse_param(s: str) -> Optional[Union[int, float, str]]:
if is_valid_string(s):
return str(s)
elif is_valid_integer(s):
return int(s)
elif is_valid_float(s):
return float(s)
return None
@beartype
def replace_fn(
registry: dict[str, Callable],
matches,
delimiter = '→'
):
orig_text = matches.group(0)
text_without_end_api_token = matches.group(1)
end_api_token = matches.group(4)
function_name = matches.group(2)
# unable to find function in registry
if function_name not in registry:
return orig_text
fn = registry[function_name]
params = matches.group(3).split(',')
params = list(map(lambda s: s.strip(), params))
params = list(filter(len, params))
params = list(map(parse_param, params))
# if any of the parameters are not parseable, return
if any([(not exists(p)) for p in params]):
return orig_text
# just return original text if there is some error with the function
out = try_except(fn, always(None))(*params)
# the api calling function can also arrest the process, by returning None
if not exists(out):
return orig_text
# return original text with the output delimiter and the stringified output
return f'{text_without_end_api_token} {delimiter} {str(out)} {end_api_token}'
# main function, which takes a registry of functions, the text in question, and makes all the appropriate api calls and append the output
def create_function_regex(
api_start = ' [',
api_stop = ']'
):
api_start_regex, api_stop_regex = map(re.escape, (api_start, api_stop))
return rf'({api_start_regex}(\w+)\(([^)]*)\))({api_stop_regex})'
def num_matches(substr: str, text: str):
return len(re.findall(re.escape(substr), text))
def has_api_calls(
text,
api_start = ' [',
api_stop = ']'
):
regex = create_function_regex(api_start, api_stop)
matches = re.findall(regex, text)
return len(matches) > 0
def replace_all_but_first(
text: str,
api_start = ' [',
api_stop = ']'
) -> str:
regex = create_function_regex(api_start, api_stop)
count = 0
def replace_(matches):
orig_text = matches.group(0)
nonlocal count
count += 1
if count > 1:
return ''
return orig_text
return re.sub(regex, replace_, text)
def invoke_tools(
registry: dict[str, Callable],
text: str,
delimiter: str = '→',
api_start = ' [',
api_stop = ' ]'
) -> str:
regex = create_function_regex(api_start, api_stop)
replace_ = partial(replace_fn, registry, delimiter = delimiter)
return re.sub(regex, replace_, text)
def invoke_tools_on_batch_sequences(
registry: dict[str, Callable],
token_ids: torch.Tensor,
*,
encode: Callable,
decode: Callable,
delimiter: str = '→',
api_start = ' [',
api_stop = ']'
) -> torch.Tensor:
regex = create_function_regex(api_start_regex, api_stop_regex)
all_texts = [decode(one_seq_token_ids) for one_seq_token_ids in token_ids]
invoke_tools_ = partial(invoke_tools, api_start = api_start, api_stop = api_stop)
all_texts_with_api_calls = [invoke_tools_(registry, text, delimiter) for text in all_texts]
return encode(all_texts_with_api_calls)
# sampling api related functions
# they do greedy sampling, but encourage sampling api calls by auto-selecting <api> when that token is in the top k = 10
@beartype
@torch.no_grad()
def sample(
model: nn.Module,
*,
seq_len,
prime: Optional[torch.Tensor] = None,
positions: Optional[torch.Tensor] = None,
batch_size = 1,
eos_token_id = None,
sos_token_id = 1,
temperature = 0.,
pad_id = 0,
call_api_only_once = False,
api_start_token_id = None,
auto_select_api_start_token_when_topk = False,
select_api_start_id_top_k = 10,
):
device = next(model.parameters()).device
max_seq_len = seq_len + 1
# validate
if call_api_only_once:
assert exists(api_start_token_id)
# prime
if exists(prime):
batch_size, prime_length = prime.shape
else:
prime_length = 1
prime = torch.full((batch_size, 1), sos_token_id, device = device, dtype = torch.long)
prime = prime.to(device)
# sampling positions - different sequences have different cursors
if exists(positions):
positions = positions.clone()
else:
positions = torch.zeros((batch_size,), device = device, dtype = torch.long)
assert (positions <= (prime_length + 1)).all() and (positions <= max_seq_len).all(), 'all positions must be less then initial prime length as well as the total sequence length + 1 (plus one for noop if one sequence finished sampling before the other)'
# eval model
model.eval()
# lengthen the prime to the entire sequence length
remain_iterations = seq_len - prime_length
output = F.pad(prime, (0, max_seq_len - prime_length), value = 0.)
batch_indices = torch.arange(batch_size, device = device)
batch_indices = rearrange(batch_indices, 'b -> b 1')
position_indices = rearrange(positions, 'b -> b 1')
# determine the <api> token mask, for making sure api is called only once, masking out logit to prevent it from being selected for those rows which already contains an <api> token
api_token_mask = None # lazily created, since do not know logit dimensions
def create_api_token_mask(num_tokens, api_start_token_id):
mask = torch.zeros((1, 1, num_tokens), dtype = torch.bool)
assert api_start_token_id < num_tokens
mask[..., api_start_token_id] = True
return mask
# start iterating
for iteration in tqdm(range(remain_iterations)):
logits = model(output)
last_logits = logits[batch_indices, position_indices]
# this will ensure that each batch token sequence will have at most one <api> token
if call_api_only_once:
if not exists(api_token_mask):
num_tokens = last_logits.shape[-1]
api_token_mask = create_api_token_mask(num_tokens, api_start_token_id)
api_token_mask = api_token_mask.to(device)
api_called = (output == api_start_token_id).any(dim = -1)
logit_mask = api_token_mask & rearrange(api_called, 'b -> b 1 1')
last_logits = last_logits.masked_fill(logit_mask, -torch.finfo(last_logits.dtype).max)
# greedy sample (but could be made non-greedy)
sampled = gumbel_sample(last_logits, temperature = temperature)
# for those sequences without an api call, if the api_start_token_id is within top k (set to 10 in paper) of logits, just auto-select
# seems to be an important hack in the paper
# it seems like this paper will take a lot more follow up research to be viable
if auto_select_api_start_token_when_topk:
top_token_ids = last_logits.topk(select_api_start_id_top_k, dim = -1).indices
has_api_token_in_topk = (top_token_ids == api_start_token_id).any(dim = -1)
should_auto_select_api_token = has_api_token_in_topk & ~rearrange(api_called, 'b -> b 1')
sampled = sampled.masked_fill(should_auto_select_api_token, api_start_token_id)
# set the sampled tokens at the right curosr positions
output[batch_indices, position_indices] = sampled
# increment positions
position_indices += 1
position_indices.clamp_(max = seq_len) # noop if one sequence is further along and near the end
# if using <eos> tokens, look for all sequences having it and terminate, also anything after <eos> will be padded
if exists(eos_token_id):
eos_mask = (output == eos_token_id)
all_rows_have_eos = eos_mask.any(dim = -1).all()
if all_rows_have_eos:
keep_mask = eos_mask.cumsum(dim = -1) == 0
keep_mask = F.pad(keep_mask, (1, 0), value = True)
output = output.masked_fill(~keep_mask, pad_id)
break
# remove the last token in output (use as noop placeholder)
output = output[:, :-1]
return output
@beartype
@torch.no_grad()
def sample_with_api_call(
model: nn.Module,
*,
seq_len,
call_apis: Callable,
prime: torch.Tensor,
api_end_token_id: int,
occurrence = 1,
**kwargs
):
sampled = sample(
model = model,
prime = prime,
seq_len = seq_len,
**kwargs
)
sampled = call_apis(sampled)
sampled_seq_len = sampled.shape[-1]
null_positions = sampled_seq_len # handle sequences that do not have api calls
pos_starting_at_end_of_api = find_indices_of(
sampled,
api_end_token_id,
occurrence = occurrence
)
resample_after_api_calls = sample(
model = model,
prime = sampled,
seq_len = sampled_seq_len,
positions = (pos_starting_at_end_of_api + 1).clamp(max = null_positions), # start at the position right after the </api>
**kwargs
)
return resample_after_api_calls
# the main contribution of the paper is simply the filtering equations presented in section 2
def default_weight_fn(t):
# following the formula in section 4.1 - however, not sure what w_s is in the denominator
# if t stands for each timestep, this would also mean within 5 tokens it would diminish to 0?
return (1. - t * 0.2).clamp(min = 0.)
def get_pred_prob(token_ids, logits):
logits = logits[:, :-1] # logits of each token... (omit last logit)
token_ids = token_ids[:, 1:] # predicts the next token id (omit first token id)
token_ids = rearrange(token_ids, 'b n -> b n 1')
probs = logits.softmax(dim = -1)
correct_token_id_pred_prob = probs.gather(-1, token_ids)
return rearrange(correct_token_id_pred_prob, 'b n 1 -> b n')
def get_arange_start_at_token_id(
token_ids: torch.Tensor,
token_id: int,
pad_id = -1
):
is_token_id_mask = token_ids == token_id
arange = (is_token_id_mask.cumsum(dim = -1) > 0).cumsum(dim = -1)
before_token_mask = arange == 0
arange = arange - 1
arange = arange.masked_fill(before_token_mask, pad_id)
return arange
def weight_and_mask(
token_ids: torch.Tensor,
token_id: int,
pad_id = -1,
weighting_fn: Callable = default_weight_fn
):
t = get_arange_start_at_token_id(token_ids, token_id, pad_id)
weights = weighting_fn(t)
return weights.masked_fill(weights == pad_id, 0.)
FilteredResults = namedtuple('FilteredResults', [
'num_passed',
'num_failed',
'selected_indices',
'selected_mask',
'filtered_tokens',
'filtered_tokens_without_api_response',
'filtered_tokens_with_api_response'
])
@beartype
def filter_tokens_with_api_response(
model: nn.Module, # the language model should accept the token ids below and return the logits in shape (batch, seq, num tokens)
*,
tokens: torch.Tensor, # token ids (batch, seq) of the original passage, without api calls
tokens_without_api_response: torch.Tensor, # token ids (batch, seq) of the passage, but with the api call (but without a response filled in) - <api>tool1(x, y)</api>
tokens_with_api_response: torch.Tensor, # token ids (batch, seq) of the passage with api call and the response - <api>tool1(x, y) → {response}</api>
api_start_token_id: int, # token id of the <api> tag
api_end_token_id: int, # token id of the </api> tag
filter_threshold: float = 1., # the threshold at which to accept the sampled api call (tokens_with_api_response) for fine-tuning
weighting_fn: Callable = default_weight_fn # weighting function
) -> FilteredResults:
# validations
assert all([*map(lambda t: t.dtype == torch.long, (tokens, tokens_with_api_response, tokens_without_api_response))])
assert all_contains_id(tokens_without_api_response, api_start_token_id)
assert all_contains_id(tokens_without_api_response, api_end_token_id)
assert all_contains_id(tokens_with_api_response, api_start_token_id)
assert all_contains_id(tokens_with_api_response, api_end_token_id)
# auto set devices
device = next(model.parameters()).device
tokens, tokens_without_api_response, tokens_with_api_response = map(lambda t: t.to(device), (tokens, tokens_without_api_response, tokens_with_api_response))
# get all the logits
with torch.no_grad():
model.eval()
logits, logits_without_api_response, logits_with_api_response = map(model, (tokens, tokens_without_api_response, tokens_with_api_response))
# derive all predicted prob of the actual next token id in sequence
probs = get_pred_prob(tokens, logits)
probs_without_api_response = get_pred_prob(tokens_without_api_response, logits_without_api_response)
probs_with_api_response = get_pred_prob(tokens_with_api_response, logits_with_api_response)
weight_and_mask_fn = partial(weight_and_mask, weighting_fn = weighting_fn)
# derive the weighting
weight_without_api_response = weight_and_mask_fn(tokens_without_api_response[:, :-1], api_end_token_id)
weight_with_api_response = weight_and_mask_fn(tokens_with_api_response[:, :-1], api_end_token_id)
# deriving the weighting for the original passage is more tricky
# would need to start counting up from <api> start token location
# this would also assume that the language model perfectly copied the passage over and that both token ids are aligned except for the inserted API call - but this can be done with the custom filtering functions eventually
weight = weight_and_mask_fn(tokens_without_api_response[:, 1:], api_start_token_id) # shift to the left by one since <api> does not exist in the original sequence
weight = weight[:, :probs.shape[-1]]
# get the loss L for all three types of sequences
def loss_fn(weight, probs):
return (weight * -log(probs)).sum(dim = -1)
loss = loss_fn(weight, probs)
loss_without_api_response = loss_fn(weight_without_api_response, probs_without_api_response)
loss_with_api_response = loss_fn(weight_with_api_response, probs_with_api_response)
# calculate the main formula in the paper
# loss+ = loss with api response
# loss- = min(loss without api response, loss without api at all)
loss_plus = loss_with_api_response
loss_minus = torch.minimum(loss_without_api_response, loss)
selected_mask = (loss_minus - loss_plus) >= filter_threshold
# now we can select and return the entries that survived the filtering stage
# also returning the selected indices of the batch being processed
# for finetuning the model into toolformer
batch = tokens.shape[0]
indices = torch.arange(batch, device = tokens.device)
selected_indices = indices[selected_mask]
ret = FilteredResults(
selected_mask.sum().item(),
(~selected_mask).sum().item(),
selected_indices,
selected_mask,
tokens[selected_mask],
tokens_without_api_response[selected_mask],
tokens_with_api_response[selected_mask]
)
return ret
# datasets and dataloaders
# for bootstrapping the initial datasets with api calls
# as well as for the final finetuning
@beartype
class PromptDataset(Dataset):
def __init__(
self,
prompt: str,
prompt_input_tag: str,
data: List[str],
tokenizer_encode: Callable
):
self.data = data
self.prompt = prompt
self.prompt_input_tag_regex = re.escape(prompt_input_tag)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data_string = self.data[idx]
data_with_prompt = re.sub(self.prompt_input_tag_regex, data_string, self.prompt)
token_ids = tokenizer.encode(data_with_prompt)
return torch.tensor(token_ids).long(), torch.tensor(len(token_ids)).long()
def prompt_collate_fn(data, padding_value = 0):
prompts, prompt_lengths = zip(*data)
prompts = pad_sequence(prompts, padding_value = padding_value)
return prompts, torch.stack(prompt_lengths)
def PromptDataloader(ds: Dataset, *args, padding_value = 0, **kwargs):
collate_fn = partial(prompt_collate_fn, padding_value = padding_value)
return DataLoader(ds, *args, collate_fn = collate_fn, **kwargs)
class FinetuneDataset(Dataset):
def __init__(
self,
tokens: torch.Tensor
):
self.tokens = tokens
def __len__(self):
return len(self.tokens)
def __getitem__(self, idx):
return self.tokens[idx]
def FinetuneDataloader(ds: Dataset, *args, padding_value = 0, **kwargs):
return DataLoader(ds, *args, collate_fn = partial(pad_sequence, padding_value = padding_value), **kwargs)
# classes
@beartype
class Toolformer(nn.Module):
def __init__(
self,
model: nn.Module,
*,
tool_id: str,
tool: Callable,
api_start_str = ' [',
api_stop_str = ']',
api_response_delimiter = '→',
api_start_id = None,
api_stop_id = None,
teach_tool_prompt: str,
filter_threshold = 1.,
pad_id = 0,
prompt_batch_size = 4,
model_seq_len = 2048,
tokenizer_encode: Callable = tokenizer.encode,
tokenizer_decode: Callable = tokenizer.decode,
post_prompt_callback: Callable = identity,
prompt_input_tag: str = DEFAULT_PROMPT_INPUT_TAG,
exclude_filters: dict[str, Callable[[str], bool]] = dict(),
finetune = False,
finetune_lr = 1e-4,
finetune_wd = 1e-2,
finetune_betas = (0.9, 0.99),
finetune_eps = 1e-8,
finetune_epochs = 3,
finetune_batch_size = 16
):
super().__init__()
self.model = model
self.model_seq_len = model_seq_len
self.teach_tool_prompt = teach_tool_prompt
self.prompt_batch_size = prompt_batch_size
self.prompt_input_tag = prompt_input_tag
self.post_prompt_callback = post_prompt_callback # for easy mocking
self.tokenizer_encode = tokenizer_encode
self.tokenizer_decode = tokenizer_decode
self.tokenizer_encode_to_tensor = lambda s: torch.tensor(tokenizer_encode(s)).long()
self.filter_threshold = filter_threshold
self.api_start_str = api_start_str
self.api_stop_str = api_stop_str
self.api_response_delimiter = api_response_delimiter
if not exists(api_start_id):
api_start_id = tokenizer_encode(api_start_str)
assert len(api_start_id) == 1
api_start_id = api_start_id[0]
self.api_start_id = api_start_id
if not exists(api_stop_id):
api_stop_id = tokenizer_encode(api_stop_str)
assert len(api_stop_id) == 1
api_stop_id = api_stop_id[0]
self.api_stop_id = api_stop_id
self.pad_id = pad_id
self.tool_id = tool_id
self.tool = tool
self.registry = {tool_id: tool}
assert num_matches(prompt_input_tag, teach_tool_prompt) == 1, f'there must be exactly one prompt input tag `{prompt_input_tag}` in your prompt to encourage the language model to use the designated tool'
self.teach_tool_prompt = teach_tool_prompt
self.exclude_filters = exclude_filters
self.should_finetune = finetune
if not finetune:
return
self.finetune_batch_size = finetune_batch_size
self.finetune_epochs = finetune_epochs
self.optimizer = get_optimizer(
model.parameters(),
lr = finetune_lr,
wd = finetune_wd,
betas = finetune_betas,
eps = finetune_eps
)
def generate_data_with_api_calls(
self,
data: List[str],
temperature: float = 0.9
) -> List[str]:
dataset = PromptDataset(
data = data,
prompt_input_tag = self.prompt_input_tag,
prompt = self.teach_tool_prompt,
tokenizer_encode = self.tokenizer_encode
)
dl = PromptDataloader(
dataset,
batch_size = self.prompt_batch_size
)
prompted_outputs = []
for prime, positions in dl:
sampled_outputs = sample(
model = self.model,
prime = prime,
positions = positions,
seq_len = self.model_seq_len,
pad_id = self.pad_id,
temperature = temperature
)
for sample_output, position in zip(sampled_outputs, positions):
start_position = position.item()
prompted_output = self.tokenizer_decode(sample_output[start_position:])
prompted_outputs.append(prompted_output)
return self.post_prompt_callback(prompted_outputs)
def filter_and_keep_only_first_api_call(
self,
data,
data_with_api_calls: List[str],
return_excluded = False
):
included_data = []
included_data_with_api_calls = []
included = (included_data, included_data_with_api_calls)
excluded_data = []
excluded_data_with_api_calls = []
excluded = (excluded_data, excluded_data_with_api_calls)
api_start_stop_kwargs = dict(api_start = self.api_start_str, api_stop = self.api_stop_str)
has_api_calls_ = partial(has_api_calls, **api_start_stop_kwargs)
replace_all_but_first_ = partial(replace_all_but_first, **api_start_stop_kwargs)
for datum, data_with_api_call in zip(data, data_with_api_calls):
if has_api_calls_(data_with_api_call):
data_with_api_call = replace_all_but_first_(data_with_api_call)
included_data.append(datum)
included_data_with_api_calls.append(data_with_api_call)
else:
excluded_data.append(datum)
excluded_data_with_api_calls.append(data_with_api_call)
if not return_excluded:
return included
return included, excluded
@torch.no_grad()
def sample_model_with_api_calls(
self,
prime: Union[torch.Tensor, str],
occurrence = 1,
**kwargs
):
self.model.eval()
prime_is_str = isinstance(prime, str)
if prime_is_str:
prime = self.tokenizer_encode(prime)
prime = torch.tensor(prime).long()
prime = rearrange(prime, 'n -> 1 n')
assert prime.shape[0] == 1, 'only one at a time for now'
invoke_tools_ = partial(invoke_tools, self.registry)
def call_apis(t: torch.Tensor):
t = self.tokenizer_decode(t[0])
t = invoke_tools_(t)
t = self.tokenizer_encode_to_tensor(t)
return rearrange(t, 'n -> 1 n')
output = sample_with_api_call(
model = self.model,
prime = prime,
seq_len = self.model_seq_len,
call_apis = call_apis,
api_end_token_id = self.api_stop_id,
occurrence = occurrence,
**kwargs
)
if not prime_is_str:
return output
return self.tokenizer_decode(output[0])
def make_api_calls(
self,
filtered_data_with_api_calls: List[str]
):
invoke_tools_ = partial(
invoke_tools,
self.registry,
api_start = self.api_start_str,
api_stop = self.api_stop_str, delimiter = self.api_response_delimiter
)
data_with_api_responses = []
for data in filtered_data_with_api_calls:
output = invoke_tools_(data)
data_with_api_responses.append(output)
return data_with_api_responses
def filter_by_api_responses(
self,
data: List[str],
data_with_api_calls: List[str],
data_with_api_responses: List[str]
) -> FilteredResults:
to_token_ids = lambda l: pad_sequence([*map(self.tokenizer_encode_to_tensor, l)], padding_value = self.pad_id)
tokens, tokens_without_api_response, tokens_with_api_response = map(to_token_ids, (data, data_with_api_calls, data_with_api_responses))
filtered_results = filter_tokens_with_api_response(
model = self.model,
tokens = tokens,
tokens_with_api_response = tokens_with_api_response,
tokens_without_api_response = tokens_without_api_response,
filter_threshold = self.filter_threshold,
api_start_token_id = self.api_start_id,
api_end_token_id = self.api_stop_id
)
return filtered_results
def finetune(
self,
filtered_results: Union[FilteredResults, torch.Tensor]
):
self.model.train()
if isinstance(filtered_results, FilteredResults):
filtered_results = filtered_results.filtered_tokens_without_api_response
dataset = FinetuneDataset(tokens = filtered_results)
dl = FinetuneDataloader(dataset, batch_size = self.finetune_batch_size, shuffle = True)
for epoch in tqdm(range(self.finetune_epochs), desc = 'finetune epochs'):
for batch in dl:
inp, labels = batch[:, :-1], batch[:, 1:]
logits = self.model(inp)
logits = rearrange(logits, 'b n c -> b c n')
loss = F.cross_entropy(logits, labels, ignore_index = self.pad_id)
loss.backward()
print(f'loss: {loss.item()}')
self.optimizer.step()
self.optimizer.zero_grad()
print(f'finished finetuning on {len(dataset)} filtered samples')
def forward(
self,
data: List[str],
return_after_generating_api_calls = False,
return_after_making_api_calls = False,
return_after_filtering_api_calls = False,
return_after_filtering_by_api_response = False
):
data_with_api_calls = self.generate_data_with_api_calls(data)
if return_after_generating_api_calls:
return data_with_api_calls
filtered_data, filtered_data_with_api_calls = self.filter_and_keep_only_first_api_call(data, data_with_api_calls)
if return_after_filtering_api_calls:
return filtered_data, filtered_data_with_api_calls
assert len(filtered_data_with_api_calls) > 0, 'your model failed to follow instructions and make API calls. please try a better model or do some better prompt engineering'
data_with_responses = self.make_api_calls(filtered_data_with_api_calls)
if return_after_making_api_calls:
return filtered_data, filtered_data_with_api_calls, data_with_responses
filtered_results = self.filter_by_api_responses(filtered_data, filtered_data_with_api_calls, data_with_responses)
if return_after_filtering_by_api_response:
return filtered_results
if self.should_finetune:
assert filtered_results.num_passed > 0, f'none of the sequences with API calls passed the filtering criteria with threshold {self.filter_threshold}'
self.finetune(filtered_results)
return filtered_results
| toolformer-pytorch-main | toolformer_pytorch/toolformer_pytorch.py |
from torch.optim import AdamW, Adam
def separate_weight_decayable_params(params):
wd_params, no_wd_params = [], []
for param in params:
param_list = no_wd_params if param.ndim < 2 else wd_params
param_list.append(param)
return wd_params, no_wd_params
def get_optimizer(
params,
lr = 1e-4,
wd = 1e-2,
betas = (0.9, 0.99),
eps = 1e-8,
filter_by_requires_grad = False,
group_wd_params = True,
**kwargs
):
has_weight_decay = wd > 0
if filter_by_requires_grad:
params = list(filter(lambda t: t.requires_grad, params))
if group_wd_params and has_weight_decay:
wd_params, no_wd_params = separate_weight_decayable_params(params)
params = [
{'params': wd_params},
{'params': no_wd_params, 'weight_decay': 0},
]
adam_kwargs = dict(lr = lr, betas = betas, eps = eps)
if not has_weight_decay:
return Adam(params, **adam_kwargs)
return AdamW(params, weight_decay = wd, **adam_kwargs)
| toolformer-pytorch-main | toolformer_pytorch/optimizer.py |
from setuptools import setup, find_packages
setup(
name = 'electra-pytorch',
packages = find_packages(),
version = '0.1.2',
license='MIT',
description = 'Electra - Pytorch',
author = 'Erik Nijkamp, Phil Wang',
author_email = '[email protected], [email protected]',
url = 'https://github.com/lucidrains/electra-pytorch',
keywords = [
'transformers',
'artificial intelligence',
'pretraining'
],
install_requires=[
'torch>=1.6.0',
'transformers==3.0.2',
'scipy',
'sklearn'
],
setup_requires=[
'pytest-runner'
],
tests_require=[
'pytest',
'reformer-pytorch'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.7',
],
) | electra-pytorch-master | setup.py |
import torch
from torch import nn
from reformer_pytorch import ReformerLM
from electra_pytorch import Electra
def test_electra():
generator = ReformerLM(
num_tokens = 20000,
dim = 512,
depth = 1,
max_seq_len = 1024
)
discriminator = ReformerLM(
num_tokens = 20000,
dim = 512,
depth = 2,
max_seq_len = 1024
)
generator.token_emb = discriminator.token_emb
generator.pos_emb = discriminator.pos_emb
trainer = Electra(
generator,
discriminator,
num_tokens = 20000,
discr_dim = 512,
discr_layer = 'reformer',
pad_token_id = 1,
mask_ignore_token_ids = [2, 3]
)
data = torch.randint(0, 20000, (1, 1024))
results = trainer(data)
results.loss.backward()
def test_electra_without_magic():
generator = ReformerLM(
num_tokens = 20000,
dim = 512,
depth = 1,
max_seq_len = 1024
)
discriminator = ReformerLM(
num_tokens = 20000,
dim = 512,
depth = 2,
max_seq_len = 1024,
return_embeddings = True
)
generator.token_emb = discriminator.token_emb
generator.pos_emb = discriminator.pos_emb
discriminator_with_adapter = nn.Sequential(
discriminator,
nn.Linear(512, 1),
nn.Sigmoid()
)
trainer = Electra(
generator,
discriminator_with_adapter,
num_tokens = 20000,
pad_token_id = 1,
mask_ignore_token_ids = [2, 3]
)
data = torch.randint(0, 20000, (1, 1024))
results = trainer(data)
results.loss.backward()
| electra-pytorch-master | tests/test_electra_pytorch.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef, f1_score
_has_sklearn = True
except (AttributeError, ImportError):
_has_sklearn = False
def is_sklearn_available():
return _has_sklearn
if _has_sklearn:
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
return {
"acc": acc,
"f1": f1,
"acc_and_f1": (acc + f1) / 2,
}
def pearson_and_spearman(preds, labels):
pearson_corr = pearsonr(preds, labels)[0]
spearman_corr = spearmanr(preds, labels)[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def glue_compute_metrics(task_name, preds, labels):
assert len(preds) == len(labels)
if task_name == "cola":
return {"mcc": matthews_corrcoef(labels, preds)}
elif task_name == "sst-2":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mrpc":
return acc_and_f1(preds, labels)
elif task_name == "sts-b":
return pearson_and_spearman(preds, labels)
elif task_name == "qqp":
return acc_and_f1(preds, labels)
elif task_name == "mnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mnli-mm":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "qnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "rte":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "wnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "hans":
return {"acc": simple_accuracy(preds, labels)}
else:
raise KeyError(task_name)
def xnli_compute_metrics(task_name, preds, labels):
assert len(preds) == len(labels)
if task_name == "xnli":
return {"acc": simple_accuracy(preds, labels)}
else:
raise KeyError(task_name) | electra-pytorch-master | examples/glue/metrics.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa, Albert, XLM-RoBERTa)."""
import argparse
import glob
import json
import logging
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from metrics import glue_compute_metrics as compute_metrics
from processors import glue_convert_examples_to_features as convert_examples_to_features
from processors import glue_output_modes as output_modes
from processors import glue_processors as processors
from processors import glue_tasks_num_labels as task_num_labels
logger = logging.getLogger(__name__)
##################################################
# adapters for Google-like GLUE code
class TokenizerAdapter:
def __init__(self, tokenizer, pad_token, cls_token="[CLS]", sep_token="[SEP]"):
self.tokenizer = tokenizer
self.pad_token = pad_token
self.cls_token = cls_token
self.sep_token = sep_token
def convert_tokens_to_ids(self, tokens):
return self.tokenizer.convert_tokens_to_ids(tokens)
def truncate_sequences(
self,
ids,
pair_ids,
num_tokens_to_remove,
truncation_strategy,
stride,
):
assert len(ids) > num_tokens_to_remove
window_len = min(len(ids), stride + num_tokens_to_remove)
overflowing_tokens = ids[-window_len:]
ids = ids[:-num_tokens_to_remove]
return (ids, pair_ids, overflowing_tokens)
def encode_plus(self, text, text_pair, add_special_tokens, max_length, return_token_type_ids):
# Tokenization
token_ids_0 = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(text))
len_ids = len(token_ids_0)
if text_pair:
token_ids_1 = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(text_pair))
len_pair_ids = len(token_ids_1)
else:
token_ids_1 = None
len_pair_ids = 0
# Truncation
assert add_special_tokens
num_special_tokens_to_add = (2 if not text_pair else 3)
total_len = len_ids + len_pair_ids + num_special_tokens_to_add
if max_length and total_len > max_length:
token_ids_0, token_ids_1, overflowing_tokens = self.truncate_sequences(
token_ids_0,
pair_ids=token_ids_1,
num_tokens_to_remove=total_len - max_length,
truncation_strategy='only_first', # TODO(nijkamp): is this the correct truncation strategy for all GLUE tasks?
stride=0,
)
# Add special tokens
cls = [self.tokenizer.vocab[self.cls_token]]
sep = [self.tokenizer.vocab[self.sep_token]]
if not text_pair:
input_ids = cls + token_ids_0 + sep
token_type_ids = len(cls + token_ids_0 + sep) * [0]
else:
input_ids = cls + token_ids_0 + sep + token_ids_1 + sep
token_type_ids = len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
assert len(input_ids) <= max_length
return {"input_ids": input_ids, "token_type_ids": token_type_ids}
def __len__(self):
return len(self.tokenizer.vocab)
def save_pretrained(self, outputdir):
pass
def wrap_tokenizer(tokenizer, pad_token):
return TokenizerAdapter(tokenizer, pad_token)
##################################################
# distilled Google-like/HF glue code
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
""" Create a schedule with a learning rate that decreases linearly after
linearly increasing during a warmup period.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
)
return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch)
def train(args, train_dataset, model, tokenizer):
""" Train the model """
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True,
)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to global_step of last saved checkpoint from model path
try:
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
except ValueError:
global_step = 0
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0],
)
set_seed(args) # Added here for reproductibility
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
outputs = model(**inputs)
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if step % 10 == 0:
print(step, loss.item())
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0 or (
# last step in epoch but step is always smaller than gradient_accumulation_steps
len(epoch_iterator) <= args.gradient_accumulation_steps
and (step + 1) == len(epoch_iterator)
):
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
logs = {}
if (
args.local_rank == -1 and args.evaluate_during_training
): # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
loss_scalar = (tr_loss - logging_loss) / args.logging_steps
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
logs["loss"] = loss_scalar
logging_loss = tr_loss
print(json.dumps({**logs, **{"step": global_step}}))
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.bin"))
logger.info("Saving model checkpoint to %s", output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# multi-gpu eval
if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel):
model = torch.nn.DataParallel(model)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if args.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
) # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
print(preds)
elif args.output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(eval_task, preds, out_label_ids)
results.update(result)
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(prefix))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = processors[task]()
output_mode = output_modes[task]
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
"cached_{}_{}_{}_{}".format(
"dev" if evaluate else "train",
list(filter(None, args.model_name_or_path.split("/"))).pop(),
str(args.max_seq_length),
str(task),
),
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels()
if task in ["mnli", "mnli-mm"] and args.model_type in ["roberta", "xlmroberta"]:
# HACK(label indices are swapped in RoBERTa pretrained model)
label_list[1], label_list[2] = label_list[2], label_list[1]
examples = (
processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
)
features = convert_examples_to_features(
examples,
tokenizer,
label_list=label_list,
max_length=args.max_seq_length,
output_mode=output_mode,
pad_on_left=False, # pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=0,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
if output_mode == "classification":
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
elif output_mode == "regression":
all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
return dataset
# python run_glue.py \
# --model_name_or_path bert-base-uncased \
# --task_name $TASK_NAME \
# --do_train \
# --do_eval \
# --data_dir $GLUE_DIR/$TASK_NAME \
# --max_seq_length 128 \
# --per_gpu_train_batch_size 32 \
# --learning_rate 2e-5 \
# --num_train_epochs 3.0 \
# --output_dir /tmp/$TASK_NAME \
# --overwrite_output_dir \
# --cache_dir cache_glue_bert
def main(task='MRPC', seed=42, ckpt='output/pretrain/2020-08-28-02-41-37/ckpt/60000'):
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=f'data/glue_data/{task}',
type=str,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
)
parser.add_argument(
"--model_type",
default="bert",
type=str,
)
parser.add_argument(
"--model_name_or_path",
default=ckpt,
type=str,
)
parser.add_argument(
"--vocab_path",
default='data/vocab.txt',
type=str,
)
parser.add_argument(
"--task_name",
default=task,
type=str,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),
)
parser.add_argument(
"--output_dir",
default='output/glue',
type=str,
help="The output directory where the model predictions and checkpoints will be written.",
)
# Other parameters
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--do_train", default=True, help="Whether to run training.")
parser.add_argument("--do_eval", default=True, help="Whether to run eval on the dev set.")
parser.add_argument(
"--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.",
)
parser.add_argument(
"--do_lower_case", default=True, help="Set this flag if you are using an uncased model.",
)
parser.add_argument(
"--per_gpu_train_batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.",
)
parser.add_argument(
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.",
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
)
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
parser.add_argument(
"--overwrite_output_dir", default=True, help="Overwrite the content of the output directory",
)
parser.add_argument(
"--overwrite_cache", default=True, help="Overwrite the cached training and evaluation sets",
)
parser.add_argument("--seed", type=int, default=seed, help="random seed for initialization")
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
args = parser.parse_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
# Setup distant debugging if needed
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup CUDA, GPU & distributed training
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank,
device,
args.n_gpu,
bool(args.local_rank != -1),
args.fp16,
)
# Set seed
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# Load pretrained model and tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
from transformers import AutoConfig, AutoModelForSequenceClassification
args.model_type = args.model_type.lower()
config = AutoConfig.from_pretrained(
args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
from pretraining.openwebtext.dataset import new_tokenizer
tokenizer = wrap_tokenizer(new_tokenizer(args.vocab_path), pad_token='[PAD]')
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Load a trained model and vocabulary that you have fine-tuned
model = model_to_save
# TODO(nijkamp): we ignore model serialization
# model = AutoModelForSequenceClassification.from_pretrained(args.output_dir)
# tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
model.to(args.device)
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
# TODO(nijkamp): we ignore model serialization
# tokenizer = AutoTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
# TODO(nijkamp): we ignore model serialization
# model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
model.to(args.device)
result = evaluate(args, model, tokenizer, prefix=prefix)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
main() | electra-pytorch-master | examples/glue/run.py |
''' Script for downloading all GLUE data.
Note: for legal reasons, we are unable to host MRPC.
You can either use the version hosted by the SentEval team, which is already tokenized,
or you can download the original data from (https://download.microsoft.com/download/D/4/6/D46FF87A-F6B9-4252-AA8B-3604ED519838/MSRParaphraseCorpus.msi) and extract the data from it manually.
For Windows users, you can run the .msi file. For Mac and Linux users, consider an external library such as 'cabextract' (see below for an example).
You should then rename and place specific files in a folder (see below for an example).
mkdir MRPC
cabextract MSRParaphraseCorpus.msi -d MRPC
cat MRPC/_2DEC3DBE877E4DB192D17C0256E90F1D | tr -d $'\r' > MRPC/msr_paraphrase_train.txt
cat MRPC/_D7B391F9EAFF4B1B8BCE8F21B20B1B61 | tr -d $'\r' > MRPC/msr_paraphrase_test.txt
rm MRPC/_*
rm MSRParaphraseCorpus.msi
1/30/19: It looks like SentEval is no longer hosting their extracted and tokenized MRPC data, so you'll need to download the data from the original source for now.
2/11/19: It looks like SentEval actually *is* hosting the extracted data. Hooray!
'''
import os
import sys
import shutil
import argparse
import tempfile
import urllib.request
import zipfile
TASKS = ["CoLA", "SST", "MRPC", "QQP", "STS", "MNLI", "SNLI", "QNLI", "RTE", "WNLI", "diagnostic"]
TASK2PATH = {"CoLA":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FCoLA.zip?alt=media&token=46d5e637-3411-4188-bc44-5809b5bfb5f4',
"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8',
"MRPC":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2Fmrpc_dev_ids.tsv?alt=media&token=ec5c0836-31d5-48f4-b431-7480817f1adc',
"QQP":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FQQP.zip?alt=media&token=700c6acf-160d-4d89-81d1-de4191d02cb5',
"STS":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSTS-B.zip?alt=media&token=bddb94a7-8706-4e0d-a694-1109e12273b5',
"MNLI":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FMNLI.zip?alt=media&token=50329ea1-e339-40e2-809c-10c40afff3ce',
"SNLI":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSNLI.zip?alt=media&token=4afcfbb2-ff0c-4b2d-a09a-dbf07926f4df',
"QNLI": 'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FQNLIv2.zip?alt=media&token=6fdcf570-0fc5-4631-8456-9505272d1601',
"RTE":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FRTE.zip?alt=media&token=5efa7e85-a0bb-4f19-8ea2-9e1840f077fb',
"WNLI":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FWNLI.zip?alt=media&token=068ad0a0-ded7-4bd7-99a5-5e00222e0faf',
"diagnostic":'https://storage.googleapis.com/mtl-sentence-representations.appspot.com/tsvsWithoutLabels%2FAX.tsv?GoogleAccessId=firebase-adminsdk-0khhl@mtl-sentence-representations.iam.gserviceaccount.com&Expires=2498860800&Signature=DuQ2CSPt2Yfre0C%2BiISrVYrIFaZH1Lc7hBVZDD4ZyR7fZYOMNOUGpi8QxBmTNOrNPjR3z1cggo7WXFfrgECP6FBJSsURv8Ybrue8Ypt%2FTPxbuJ0Xc2FhDi%2BarnecCBFO77RSbfuz%2Bs95hRrYhTnByqu3U%2FYZPaj3tZt5QdfpH2IUROY8LiBXoXS46LE%2FgOQc%2FKN%2BA9SoscRDYsnxHfG0IjXGwHN%2Bf88q6hOmAxeNPx6moDulUF6XMUAaXCSFU%2BnRO2RDL9CapWxj%2BDl7syNyHhB7987hZ80B%2FwFkQ3MEs8auvt5XW1%2Bd4aCU7ytgM69r8JDCwibfhZxpaa4gd50QXQ%3D%3D'}
MRPC_TRAIN = 'https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt'
MRPC_TEST = 'https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt'
def download_and_extract(task, data_dir):
print("Downloading and extracting %s..." % task)
data_file = "%s.zip" % task
urllib.request.urlretrieve(TASK2PATH[task], data_file)
with zipfile.ZipFile(data_file) as zip_ref:
zip_ref.extractall(data_dir)
os.remove(data_file)
print("\tCompleted!")
def format_mrpc(data_dir, path_to_data):
print("Processing MRPC...")
mrpc_dir = os.path.join(data_dir, "MRPC")
if not os.path.isdir(mrpc_dir):
os.mkdir(mrpc_dir)
if path_to_data:
mrpc_train_file = os.path.join(path_to_data, "msr_paraphrase_train.txt")
mrpc_test_file = os.path.join(path_to_data, "msr_paraphrase_test.txt")
else:
print("Local MRPC data not specified, downloading data from %s" % MRPC_TRAIN)
mrpc_train_file = os.path.join(mrpc_dir, "msr_paraphrase_train.txt")
mrpc_test_file = os.path.join(mrpc_dir, "msr_paraphrase_test.txt")
urllib.request.urlretrieve(MRPC_TRAIN, mrpc_train_file)
urllib.request.urlretrieve(MRPC_TEST, mrpc_test_file)
assert os.path.isfile(mrpc_train_file), "Train data not found at %s" % mrpc_train_file
assert os.path.isfile(mrpc_test_file), "Test data not found at %s" % mrpc_test_file
urllib.request.urlretrieve(TASK2PATH["MRPC"], os.path.join(mrpc_dir, "dev_ids.tsv"))
dev_ids = []
with open(os.path.join(mrpc_dir, "dev_ids.tsv"), encoding="utf8") as ids_fh:
for row in ids_fh:
dev_ids.append(row.strip().split('\t'))
with open(mrpc_train_file, encoding="utf8") as data_fh, \
open(os.path.join(mrpc_dir, "train.tsv"), 'w', encoding="utf8") as train_fh, \
open(os.path.join(mrpc_dir, "dev.tsv"), 'w', encoding="utf8") as dev_fh:
header = data_fh.readline()
train_fh.write(header)
dev_fh.write(header)
for row in data_fh:
label, id1, id2, s1, s2 = row.strip().split('\t')
if [id1, id2] in dev_ids:
dev_fh.write("%s\t%s\t%s\t%s\t%s\n" % (label, id1, id2, s1, s2))
else:
train_fh.write("%s\t%s\t%s\t%s\t%s\n" % (label, id1, id2, s1, s2))
with open(mrpc_test_file, encoding="utf8") as data_fh, \
open(os.path.join(mrpc_dir, "test.tsv"), 'w', encoding="utf8") as test_fh:
header = data_fh.readline()
test_fh.write("index\t#1 ID\t#2 ID\t#1 String\t#2 String\n")
for idx, row in enumerate(data_fh):
label, id1, id2, s1, s2 = row.strip().split('\t')
test_fh.write("%d\t%s\t%s\t%s\t%s\n" % (idx, id1, id2, s1, s2))
print("\tCompleted!")
def download_diagnostic(data_dir):
print("Downloading and extracting diagnostic...")
if not os.path.isdir(os.path.join(data_dir, "diagnostic")):
os.mkdir(os.path.join(data_dir, "diagnostic"))
data_file = os.path.join(data_dir, "diagnostic", "diagnostic.tsv")
urllib.request.urlretrieve(TASK2PATH["diagnostic"], data_file)
print("\tCompleted!")
return
def get_tasks(task_names):
task_names = task_names.split(',')
if "all" in task_names:
tasks = TASKS
else:
tasks = []
for task_name in task_names:
assert task_name in TASKS, "Task %s not found!" % task_name
tasks.append(task_name)
return tasks
def main(arguments):
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', help='directory to save data to', type=str, default='./data/glue_data')
parser.add_argument('--tasks', help='tasks to download data for as a comma separated string',
type=str, default='all')
parser.add_argument('--path_to_mrpc', help='path to directory containing extracted MRPC data, msr_paraphrase_train.txt and msr_paraphrase_text.txt',
type=str, default='')
args = parser.parse_args(arguments)
if not os.path.exists(args.data_dir):
os.makedirs(args.data_dir)
tasks = get_tasks(args.tasks)
for task in tasks:
if task == 'MRPC':
format_mrpc(args.data_dir, args.path_to_mrpc)
elif task == 'diagnostic':
download_diagnostic(args.data_dir)
else:
download_and_extract(task, args.data_dir)
if __name__ == '__main__':
sys.exit(main(sys.argv[1:])) | electra-pytorch-master | examples/glue/download.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import csv
import dataclasses
import json
import logging
from dataclasses import dataclass
from typing import Optional
# from ...file_utils import is_tf_available, is_torch_available
is_torch_available = lambda: True
is_tf_available = lambda: False
logger = logging.getLogger(__name__)
@dataclass(frozen=True)
class InputExample:
"""
A single training/test example for simple sequence classification.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
guid: str
text_a: str
text_b: Optional[str] = None
label: Optional[str] = None
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(dataclasses.asdict(self), indent=2, sort_keys=True) + "\n"
class InputFeatures(object):
"""
A single set of features of data.
Args:
input_ids: Indices of input sequence tokens in the vocabulary.
attention_mask: Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens.
token_type_ids: Segment token indices to indicate first and second portions of the inputs.
label: Label corresponding to the input
"""
def __init__(self, input_ids, attention_mask=None, token_type_ids=None, label=None):
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.label = label
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_example_from_tensor_dict(self, tensor_dict):
"""Gets an example from a dict with tensorflow tensors
Args:
tensor_dict: Keys and values should match the corresponding Glue
tensorflow_dataset examples.
"""
raise NotImplementedError()
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
def tfds_map(self, example):
"""Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are.
This method converts examples to the correct format."""
if len(self.get_labels()) > 1:
example.label = self.get_labels()[int(example.label)]
return example
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding="utf-8-sig") as f:
return list(csv.reader(f, delimiter="\t", quotechar=quotechar))
class SingleSentenceClassificationProcessor(DataProcessor):
""" Generic processor for a single sentence classification data set."""
def __init__(self, labels=None, examples=None, mode="classification", verbose=False):
self.labels = [] if labels is None else labels
self.examples = [] if examples is None else examples
self.mode = mode
self.verbose = verbose
def __len__(self):
return len(self.examples)
def __getitem__(self, idx):
if isinstance(idx, slice):
return SingleSentenceClassificationProcessor(labels=self.labels, examples=self.examples[idx])
return self.examples[idx]
@classmethod
def create_from_csv(
cls, file_name, split_name="", column_label=0, column_text=1, column_id=None, skip_first_row=False, **kwargs
):
processor = cls(**kwargs)
processor.add_examples_from_csv(
file_name,
split_name=split_name,
column_label=column_label,
column_text=column_text,
column_id=column_id,
skip_first_row=skip_first_row,
overwrite_labels=True,
overwrite_examples=True,
)
return processor
@classmethod
def create_from_examples(cls, texts_or_text_and_labels, labels=None, **kwargs):
processor = cls(**kwargs)
processor.add_examples(texts_or_text_and_labels, labels=labels)
return processor
def add_examples_from_csv(
self,
file_name,
split_name="",
column_label=0,
column_text=1,
column_id=None,
skip_first_row=False,
overwrite_labels=False,
overwrite_examples=False,
):
lines = self._read_tsv(file_name)
if skip_first_row:
lines = lines[1:]
texts = []
labels = []
ids = []
for (i, line) in enumerate(lines):
texts.append(line[column_text])
labels.append(line[column_label])
if column_id is not None:
ids.append(line[column_id])
else:
guid = "%s-%s" % (split_name, i) if split_name else "%s" % i
ids.append(guid)
return self.add_examples(
texts, labels, ids, overwrite_labels=overwrite_labels, overwrite_examples=overwrite_examples
)
def add_examples(
self, texts_or_text_and_labels, labels=None, ids=None, overwrite_labels=False, overwrite_examples=False
):
assert labels is None or len(texts_or_text_and_labels) == len(labels)
assert ids is None or len(texts_or_text_and_labels) == len(ids)
if ids is None:
ids = [None] * len(texts_or_text_and_labels)
if labels is None:
labels = [None] * len(texts_or_text_and_labels)
examples = []
added_labels = set()
for (text_or_text_and_label, label, guid) in zip(texts_or_text_and_labels, labels, ids):
if isinstance(text_or_text_and_label, (tuple, list)) and label is None:
text, label = text_or_text_and_label
else:
text = text_or_text_and_label
added_labels.add(label)
examples.append(InputExample(guid=guid, text_a=text, text_b=None, label=label))
# Update examples
if overwrite_examples:
self.examples = examples
else:
self.examples.extend(examples)
# Update labels
if overwrite_labels:
self.labels = list(added_labels)
else:
self.labels = list(set(self.labels).union(added_labels))
return self.examples
def get_features(
self,
tokenizer,
max_length=None,
pad_on_left=False,
pad_token=0,
mask_padding_with_zero=True,
return_tensors=None,
):
"""
Convert examples in a list of ``InputFeatures``
Args:
tokenizer: Instance of a tokenizer that will tokenize the examples
max_length: Maximum example length
task: GLUE task
label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method
output_mode: String indicating the output mode. Either ``regression`` or ``classification``
pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default)
pad_token: Padding token
mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values
and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for
actual values)
Returns:
If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset``
containing the task-specific features. If the input is a list of ``InputExamples``, will return
a list of task-specific ``InputFeatures`` which can be fed to the model.
"""
if max_length is None:
max_length = tokenizer.max_len
label_map = {label: i for i, label in enumerate(self.labels)}
all_input_ids = []
for (ex_index, example) in enumerate(self.examples):
if ex_index % 10000 == 0:
logger.info("Tokenizing example %d", ex_index)
input_ids = tokenizer.encode(
example.text_a, add_special_tokens=True, max_length=min(max_length, tokenizer.max_len),
)
all_input_ids.append(input_ids)
batch_length = max(len(input_ids) for input_ids in all_input_ids)
features = []
for (ex_index, (input_ids, example)) in enumerate(zip(all_input_ids, self.examples)):
if ex_index % 10000 == 0:
logger.info("Writing example %d/%d" % (ex_index, len(self.examples)))
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = batch_length - len(input_ids)
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask
else:
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
assert len(input_ids) == batch_length, "Error with input length {} vs {}".format(
len(input_ids), batch_length
)
assert len(attention_mask) == batch_length, "Error with input length {} vs {}".format(
len(attention_mask), batch_length
)
if self.mode == "classification":
label = label_map[example.label]
elif self.mode == "regression":
label = float(example.label)
else:
raise ValueError(self.mode)
if ex_index < 5 and self.verbose:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
logger.info("label: %s (id = %d)" % (example.label, label))
features.append(InputFeatures(input_ids=input_ids, attention_mask=attention_mask, label=label))
if return_tensors is None:
return features
elif return_tensors == "tf":
if not is_tf_available():
raise RuntimeError("return_tensors set to 'tf' but TensorFlow 2.0 can't be imported")
import tensorflow as tf
def gen():
for ex in features:
yield ({"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label)
dataset = tf.data.Dataset.from_generator(
gen,
({"input_ids": tf.int32, "attention_mask": tf.int32}, tf.int64),
({"input_ids": tf.TensorShape([None]), "attention_mask": tf.TensorShape([None])}, tf.TensorShape([])),
)
return dataset
elif return_tensors == "pt":
if not is_torch_available():
raise RuntimeError("return_tensors set to 'pt' but PyTorch can't be imported")
import torch
from torch.utils.data import TensorDataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
if self.mode == "classification":
all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
elif self.mode == "regression":
all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_labels)
return dataset
else:
raise ValueError("return_tensors should be one of 'tf' or 'pt'") | electra-pytorch-master | examples/glue/utils.py |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GLUE processors and helpers """
import logging
import os
# from ...file_utils import is_tf_available
from utils import DataProcessor, InputExample, InputFeatures
is_tf_available = lambda: False
if is_tf_available():
import tensorflow as tf
logger = logging.getLogger(__name__)
def glue_convert_examples_to_features(
examples,
tokenizer,
max_length=512,
task=None,
label_list=None,
output_mode=None,
pad_on_left=False,
pad_token=0,
pad_token_segment_id=0,
mask_padding_with_zero=True,
):
"""
Loads a data file into a list of ``InputFeatures``
Args:
examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples.
tokenizer: Instance of a tokenizer that will tokenize the examples
max_length: Maximum example length
task: GLUE task
label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method
output_mode: String indicating the output mode. Either ``regression`` or ``classification``
pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default)
pad_token: Padding token
pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4)
mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values
and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for
actual values)
Returns:
If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset``
containing the task-specific features. If the input is a list of ``InputExamples``, will return
a list of task-specific ``InputFeatures`` which can be fed to the model.
"""
is_tf_dataset = False
if is_tf_available() and isinstance(examples, tf.data.Dataset):
is_tf_dataset = True
if task is not None:
processor = glue_processors[task]()
if label_list is None:
label_list = processor.get_labels()
logger.info("Using label list %s for task %s" % (label_list, task))
if output_mode is None:
output_mode = glue_output_modes[task]
logger.info("Using output mode %s for task %s" % (output_mode, task))
label_map = {label: i for i, label in enumerate(label_list)}
features = []
for (ex_index, example) in enumerate(examples):
len_examples = 0
if is_tf_dataset:
example = processor.get_example_from_tensor_dict(example)
example = processor.tfds_map(example)
len_examples = tf.data.experimental.cardinality(examples)
else:
len_examples = len(examples)
if ex_index % 10000 == 0:
logger.info("Writing example %d/%d" % (ex_index, len_examples))
inputs = tokenizer.encode_plus(
example.text_a, example.text_b, add_special_tokens=True, max_length=max_length, return_token_type_ids=True,
)
input_ids, token_type_ids = inputs["input_ids"], inputs["token_type_ids"]
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_length - len(input_ids)
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask
token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids
else:
input_ids = input_ids + ([pad_token] * padding_length)
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length)
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length)
assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length)
assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(
len(attention_mask), max_length
)
assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(
len(token_type_ids), max_length
)
if output_mode == "classification":
label = label_map[example.label]
elif output_mode == "regression":
label = float(example.label)
else:
raise KeyError(output_mode)
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask]))
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]))
logger.info("label: %s (id = %d)" % (example.label, label))
features.append(
InputFeatures(
input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label
)
)
if is_tf_available() and is_tf_dataset:
def gen():
for ex in features:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
return tf.data.Dataset.from_generator(
gen,
({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64),
(
{
"input_ids": tf.TensorShape([None]),
"attention_mask": tf.TensorShape([None]),
"token_type_ids": tf.TensorShape([None]),
},
tf.TensorShape([]),
),
)
return features
class MrpcProcessor(DataProcessor):
"""Processor for the MRPC data set (GLUE version)."""
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence1"].numpy().decode("utf-8"),
tensor_dict["sentence2"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = line[3]
text_b = line[4]
label = line[0]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class MnliProcessor(DataProcessor):
"""Processor for the MultiNLI data set (GLUE version)."""
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["premise"].numpy().decode("utf-8"),
tensor_dict["hypothesis"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[8]
text_b = line[9]
label = line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class MnliMismatchedProcessor(MnliProcessor):
"""Processor for the MultiNLI Mismatched data set (GLUE version)."""
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_matched")
class ColaProcessor(DataProcessor):
"""Processor for the CoLA data set (GLUE version)."""
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence"].numpy().decode("utf-8"),
None,
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = line[3]
label = line[1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
class Sst2Processor(DataProcessor):
"""Processor for the SST-2 data set (GLUE version)."""
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence"].numpy().decode("utf-8"),
None,
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = line[0]
label = line[1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
class StsbProcessor(DataProcessor):
"""Processor for the STS-B data set (GLUE version)."""
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence1"].numpy().decode("utf-8"),
tensor_dict["sentence2"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return [None]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[7]
text_b = line[8]
label = line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class QqpProcessor(DataProcessor):
"""Processor for the QQP data set (GLUE version)."""
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["question1"].numpy().decode("utf-8"),
tensor_dict["question2"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
try:
text_a = line[3]
text_b = line[4]
label = line[5]
except IndexError:
continue
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class QnliProcessor(DataProcessor):
"""Processor for the QNLI data set (GLUE version)."""
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["question"].numpy().decode("utf-8"),
tensor_dict["sentence"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched")
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class RteProcessor(DataProcessor):
"""Processor for the RTE data set (GLUE version)."""
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence1"].numpy().decode("utf-8"),
tensor_dict["sentence2"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
class WnliProcessor(DataProcessor):
"""Processor for the WNLI data set (GLUE version)."""
def get_example_from_tensor_dict(self, tensor_dict):
"""See base class."""
return InputExample(
tensor_dict["idx"].numpy(),
tensor_dict["sentence1"].numpy().decode("utf-8"),
tensor_dict["sentence2"].numpy().decode("utf-8"),
str(tensor_dict["label"].numpy()),
)
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
glue_tasks_num_labels = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
glue_processors = {
"cola": ColaProcessor,
"mnli": MnliProcessor,
"mnli-mm": MnliMismatchedProcessor,
"mrpc": MrpcProcessor,
"sst-2": Sst2Processor,
"sts-b": StsbProcessor,
"qqp": QqpProcessor,
"qnli": QnliProcessor,
"rte": RteProcessor,
"wnli": WnliProcessor,
}
glue_output_modes = {
"cola": "classification",
"mnli": "classification",
"mnli-mm": "classification",
"mrpc": "classification",
"sst-2": "classification",
"sts-b": "regression",
"qqp": "classification",
"qnli": "classification",
"rte": "classification",
"wnli": "classification",
} | electra-pytorch-master | examples/glue/processors.py |
from electra_pytorch.electra_pytorch import Electra
| electra-pytorch-master | electra_pytorch/__init__.py |
import math
from functools import reduce
from collections import namedtuple
import torch
from torch import nn
import torch.nn.functional as F
# constants
Results = namedtuple('Results', [
'loss',
'mlm_loss',
'disc_loss',
'gen_acc',
'disc_acc',
'disc_labels',
'disc_predictions'
])
# helpers
def log(t, eps=1e-9):
return torch.log(t + eps)
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature = 1.):
return ((t / temperature) + gumbel_noise(t)).argmax(dim=-1)
def prob_mask_like(t, prob):
return torch.zeros_like(t).float().uniform_(0, 1) < prob
def mask_with_tokens(t, token_ids):
init_no_mask = torch.full_like(t, False, dtype=torch.bool)
mask = reduce(lambda acc, el: acc | (t == el), token_ids, init_no_mask)
return mask
def get_mask_subset_with_prob(mask, prob):
batch, seq_len, device = *mask.shape, mask.device
max_masked = math.ceil(prob * seq_len)
num_tokens = mask.sum(dim=-1, keepdim=True)
mask_excess = (mask.cumsum(dim=-1) > (num_tokens * prob).ceil())
mask_excess = mask_excess[:, :max_masked]
rand = torch.rand((batch, seq_len), device=device).masked_fill(~mask, -1e9)
_, sampled_indices = rand.topk(max_masked, dim=-1)
sampled_indices = (sampled_indices + 1).masked_fill_(mask_excess, 0)
new_mask = torch.zeros((batch, seq_len + 1), device=device)
new_mask.scatter_(-1, sampled_indices, 1)
return new_mask[:, 1:].bool()
# hidden layer extractor class, for magically adding adapter to language model to be pretrained
class HiddenLayerExtractor(nn.Module):
def __init__(self, net, layer = -2):
super().__init__()
self.net = net
self.layer = layer
self.hidden = None
self.hook_registered = False
def _find_layer(self):
if type(self.layer) == str:
modules = dict([*self.net.named_modules()])
return modules.get(self.layer, None)
elif type(self.layer) == int:
children = [*self.net.children()]
return children[self.layer]
return None
def _hook(self, _, __, output):
self.hidden = output
def _register_hook(self):
layer = self._find_layer()
assert layer is not None, f'hidden layer ({self.layer}) not found'
handle = layer.register_forward_hook(self._hook)
self.hook_registered = True
def forward(self, x):
if self.layer == -1:
return self.net(x)
if not self.hook_registered:
self._register_hook()
_ = self.net(x)
hidden = self.hidden
self.hidden = None
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
return hidden
# main electra class
class Electra(nn.Module):
def __init__(
self,
generator,
discriminator,
*,
num_tokens = None,
discr_dim = -1,
discr_layer = -1,
mask_prob = 0.15,
replace_prob = 0.85,
random_token_prob = 0.,
mask_token_id = 2,
pad_token_id = 0,
mask_ignore_token_ids = [],
disc_weight = 50.,
gen_weight = 1.,
temperature = 1.):
super().__init__()
self.generator = generator
self.discriminator = discriminator
if discr_dim > 0:
self.discriminator = nn.Sequential(
HiddenLayerExtractor(discriminator, layer = discr_layer),
nn.Linear(discr_dim, 1)
)
# mlm related probabilities
self.mask_prob = mask_prob
self.replace_prob = replace_prob
self.num_tokens = num_tokens
self.random_token_prob = random_token_prob
# token ids
self.pad_token_id = pad_token_id
self.mask_token_id = mask_token_id
self.mask_ignore_token_ids = set([*mask_ignore_token_ids, pad_token_id])
# sampling temperature
self.temperature = temperature
# loss weights
self.disc_weight = disc_weight
self.gen_weight = gen_weight
def forward(self, input, **kwargs):
b, t = input.shape
replace_prob = prob_mask_like(input, self.replace_prob)
# do not mask [pad] tokens, or any other tokens in the tokens designated to be excluded ([cls], [sep])
# also do not include these special tokens in the tokens chosen at random
no_mask = mask_with_tokens(input, self.mask_ignore_token_ids)
mask = get_mask_subset_with_prob(~no_mask, self.mask_prob)
# get mask indices
mask_indices = torch.nonzero(mask, as_tuple=True)
# mask input with mask tokens with probability of `replace_prob` (keep tokens the same with probability 1 - replace_prob)
masked_input = input.clone().detach()
# set inverse of mask to padding tokens for labels
gen_labels = input.masked_fill(~mask, self.pad_token_id)
# clone the mask, for potential modification if random tokens are involved
# not to be mistakened for the mask above, which is for all tokens, whether not replaced nor replaced with random tokens
masking_mask = mask.clone()
# if random token probability > 0 for mlm
if self.random_token_prob > 0:
assert self.num_tokens is not None, 'Number of tokens (num_tokens) must be passed to Electra for randomizing tokens during masked language modeling'
random_token_prob = prob_mask_like(input, self.random_token_prob)
random_tokens = torch.randint(0, self.num_tokens, input.shape, device=input.device)
random_no_mask = mask_with_tokens(random_tokens, self.mask_ignore_token_ids)
random_token_prob &= ~random_no_mask
masked_input = torch.where(random_token_prob, random_tokens, masked_input)
# remove random token prob mask from masking mask
masking_mask = masking_mask & ~random_token_prob
# [mask] input
masked_input = masked_input.masked_fill(masking_mask * replace_prob, self.mask_token_id)
# get generator output and get mlm loss
logits = self.generator(masked_input, **kwargs)
mlm_loss = F.cross_entropy(
logits.transpose(1, 2),
gen_labels,
ignore_index = self.pad_token_id
)
# use mask from before to select logits that need sampling
sample_logits = logits[mask_indices]
# sample
sampled = gumbel_sample(sample_logits, temperature = self.temperature)
# scatter the sampled values back to the input
disc_input = input.clone()
disc_input[mask_indices] = sampled.detach()
# generate discriminator labels, with replaced as True and original as False
disc_labels = (input != disc_input).float().detach()
# get discriminator predictions of replaced / original
non_padded_indices = torch.nonzero(input != self.pad_token_id, as_tuple=True)
# get discriminator output and binary cross entropy loss
disc_logits = self.discriminator(disc_input, **kwargs)
disc_logits = disc_logits.reshape_as(disc_labels)
disc_loss = F.binary_cross_entropy_with_logits(
disc_logits[non_padded_indices],
disc_labels[non_padded_indices]
)
# gather metrics
with torch.no_grad():
gen_predictions = torch.argmax(logits, dim=-1)
disc_predictions = torch.round((torch.sign(disc_logits) + 1.0) * 0.5)
gen_acc = (gen_labels[mask] == gen_predictions[mask]).float().mean()
disc_acc = 0.5 * (disc_labels[mask] == disc_predictions[mask]).float().mean() + 0.5 * (disc_labels[~mask] == disc_predictions[~mask]).float().mean()
# return weighted sum of losses
return Results(self.gen_weight * mlm_loss + self.disc_weight * disc_loss, mlm_loss, disc_loss, gen_acc, disc_acc, disc_labels, disc_predictions)
| electra-pytorch-master | electra_pytorch/electra_pytorch.py |
import os
import sys
dir_path = os.path.dirname(os.path.realpath(__file__))
parent_dir_path = os.path.abspath(os.path.join(dir_path, os.pardir))
sys.path.insert(0, parent_dir_path)
import random
import logging
from time import time
from dataclasses import dataclass
import numpy as np
import torch
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data.dataloader import DataLoader
from electra_pytorch import Electra
from openwebtext import arg
from openwebtext.dataset import load_owt, new_tokenizer, wrap_example_builder
logger = logging.getLogger(__name__)
########################################################################################################
## args
@dataclass
class Args:
data_dir: arg.Str = 'data/openwebtext_features'
data_vocab_file: arg.Str = 'data/vocab.txt'
data_n_tensors_per_file: arg.Int = 2048
data_max_seq_length: arg.Int = 128
gpu: arg.Int = 0
gpu_enabled: arg.Bool = True
gpu_deterministic: arg.Bool = False
gpu_mixed_precision: arg.Bool = False
distributed_port: arg.Int = 8888
distributed_enabled: arg.Bool = True
distributed_world_size: arg.Int = 4
model_generator: arg.Str = 'pretraining/openwebtext/small_generator.json'
model_discriminator: arg.Str = 'pretraining/openwebtext/small_discriminator.json'
model_mask_prob: arg.Float = 0.15
opt_lr: arg.Float = 5e-4
opt_batch_size: arg.Int = 128 // (distributed_world_size if distributed_enabled else 1)
opt_warmup_steps: arg.Int = 10_000
opt_num_training_steps: arg.Int = 200_000
step_log: arg.Int = 10
step_ckpt: arg.Int = 10_000
########################################################################################################
## train
def train(rank, args):
#######################
## distributed
if args.distributed_enabled:
torch.distributed.init_process_group(
backend='nccl',
init_method='env://',
world_size=args.distributed_world_size,
rank=rank)
if args.gpu_enabled:
device = torch.device('cuda:{}'.format(rank))
else:
device = torch.device('cpu')
is_master = True if not args.distributed_enabled else args.distributed_enabled and rank == 0
#######################
## preamble
set_gpus(rank)
set_seed(rank)
set_cuda(deterministic=args.gpu_deterministic)
output_dir = f'{args.output_dir}/{rank}'
os.makedirs(output_dir, exist_ok=False)
setup_logging(filename=f'{output_dir}/output.log', console=is_master)
#######################
## dataset
tokenizer = new_tokenizer(vocab_file=args.data_vocab_file)
vocab_size = len(tokenizer.vocab)
ds_train = wrap_example_builder(dataset=load_owt(owt_dir=args.data_dir, n_tensors_per_file=args.data_n_tensors_per_file), vocab=tokenizer.vocab, max_length=args.data_max_seq_length)
pad_token_id = tokenizer.vocab['[PAD]']
mask_token_id = tokenizer.vocab['[MASK]']
cls_token_id = tokenizer.vocab['[CLS]']
sep_token_id = tokenizer.vocab['[SEP]']
assert pad_token_id == 0
assert cls_token_id == 101
assert sep_token_id == 102
assert mask_token_id == 103
def collate_batch(examples):
input_ids = torch.nn.utils.rnn.pad_sequence([example['input_ids'] for example in examples], batch_first=True, padding_value=pad_token_id)
input_mask = torch.nn.utils.rnn.pad_sequence([example['input_mask'] for example in examples], batch_first=True, padding_value=pad_token_id)
segment_ids = torch.nn.utils.rnn.pad_sequence([example['segment_ids'] for example in examples], batch_first=True, padding_value=pad_token_id)
return input_ids, input_mask, segment_ids
def cycle(iterable):
while True:
for x in iterable:
yield x
ds_train_loader = iter(cycle(DataLoader(ds_train, batch_size=args.opt_batch_size, collate_fn=collate_batch)))
#######################
## model
def to_distributed_model(model):
return model if not args.distributed_enabled else torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank], find_unused_parameters=True)
def tie_weights(generator, discriminator):
generator.electra.embeddings.word_embeddings = discriminator.electra.embeddings.word_embeddings
generator.electra.embeddings.position_embeddings = discriminator.electra.embeddings.position_embeddings
generator.electra.embeddings.token_type_embeddings = discriminator.electra.embeddings.token_type_embeddings
class LogitsAdapter(torch.nn.Module):
def __init__(self, adaptee):
super().__init__()
self.adaptee = adaptee
def forward(self, *args, **kwargs):
return self.adaptee(*args, **kwargs)[0]
from transformers import AutoConfig, ElectraForMaskedLM, ElectraForPreTraining
generator = ElectraForMaskedLM(AutoConfig.from_pretrained(args.model_generator))
discriminator = ElectraForPreTraining(AutoConfig.from_pretrained(args.model_discriminator))
tie_weights(generator, discriminator)
model = to_distributed_model(Electra(
LogitsAdapter(generator),
LogitsAdapter(discriminator),
num_tokens = vocab_size,
mask_token_id = mask_token_id,
pad_token_id = pad_token_id,
mask_prob = args.model_mask_prob,
mask_ignore_token_ids = [tokenizer.vocab['[CLS]'], tokenizer.vocab['[SEP]']],
random_token_prob = 0.0).to(device))
#######################
## optimizer
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
def lr_lambda(current_step):
learning_rate = max(0.0, 1. - (float(current_step) / float(num_training_steps)))
learning_rate *= min(1.0, float(current_step) / float(num_warmup_steps))
return learning_rate
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_params_without_weight_decay_ln(named_params, weight_decay):
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{
'params': [p for n, p in named_params if not any(nd in n for nd in no_decay)],
'weight_decay': weight_decay,
},
{
'params': [p for n, p in named_params if any(nd in n for nd in no_decay)],
'weight_decay': 0.0,
},
]
return optimizer_grouped_parameters
optimizer = torch.optim.AdamW(get_params_without_weight_decay_ln(model.named_parameters(), weight_decay=0.1), lr=args.opt_lr, betas=(0.9, 0.999), eps=1e-08)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.opt_warmup_steps, num_training_steps=args.opt_num_training_steps)
scaler = torch.cuda.amp.GradScaler(enabled=args.gpu_mixed_precision)
#######################
## train
t, steps_s, eta_m = time(), 0., 0
for step in range(args.opt_num_training_steps+1):
input_ids, input_mask, segment_ids = next(ds_train_loader)
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
assert input_ids.shape[1] <= args.data_max_seq_length
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=args.gpu_mixed_precision):
loss, loss_mlm, loss_disc, acc_gen, acc_disc, disc_labels, disc_pred = model(input_ids, attention_mask=input_mask, token_type_ids=segment_ids)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()
scheduler.step()
metrics = {
'step': (step, '{:8d}'),
'loss': (loss.item(), '{:8.5f}'),
'loss_mlm': (loss_mlm.item(), '{:8.5f}'),
'loss_disc': (loss_disc.item(), '{:8.5f}'),
'acc_gen': (acc_gen.item(), '{:5.3f}'),
'acc_disc': (acc_disc.item(), '{:5.3f}'),
'lr': (scheduler.get_last_lr()[0], '{:8.7f}'),
'steps': (steps_s, '{:4.1f}/s'),
'eta': (eta_m, '{:4d}m'),
}
if step % args.step_log == 0:
sep = ' ' * 2
logger.info(sep.join([f'{k}: {v[1].format(v[0])}' for (k, v) in metrics.items()]))
if step > 0 and step % 100 == 0:
t2 = time()
steps_s = 100. / (t2 - t)
eta_m = int(((args.opt_num_training_steps - step) / steps_s) // 60)
t = t2
if step % 200 == 0:
logger.info(np.array2string(disc_labels[0].cpu().numpy(), threshold=sys.maxsize, max_line_width=sys.maxsize))
logger.info(np.array2string(disc_pred[0].cpu().numpy(), threshold=sys.maxsize, max_line_width=sys.maxsize))
if step > 0 and step % args.step_ckpt == 0 and is_master:
discriminator.electra.save_pretrained(f'{args.output_dir}/ckpt/{step}')
########################################################################################################
## preamble
def set_gpus(gpu):
torch.cuda.set_device(gpu)
def set_seed(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def set_cuda(deterministic=True):
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = deterministic
torch.backends.cudnn.benchmark = not deterministic
def get_exp_id(file):
return os.path.splitext(os.path.basename(file))[0]
def get_output_dir(exp_id):
import datetime
t = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
output_dir = os.path.join('output/' + exp_id, t)
os.makedirs(output_dir, exist_ok=True)
return output_dir
def setup_logging(filename, console=True):
log_format = logging.Formatter("%(asctime)s : %(message)s")
logger = logging.getLogger()
logger.handlers = []
file_handler = logging.FileHandler(filename)
file_handler.setFormatter(log_format)
logger.addHandler(file_handler)
if console:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(log_format)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)
return logger
def copy_source(file, output_dir):
import shutil
shutil.copyfile(file, os.path.join(output_dir, os.path.basename(file)))
########################################################################################################
## main
def main():
# preamble
exp_id = get_exp_id(__file__)
output_dir = get_output_dir(exp_id)
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f'{output_dir}/ckpt', exist_ok=False)
copy_source(__file__, output_dir)
# args
args = arg.parse_to(Args)
args.output_dir = output_dir
args.exp_id = exp_id
# distributed
if args.distributed_enabled:
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(args.distributed_port)
torch.multiprocessing.spawn(train, nprocs=args.distributed_world_size, args=(args,))
else:
train(rank=args.gpu, args=args)
if __name__ == '__main__':
main()
| electra-pytorch-master | pretraining/openwebtext/pretrain.py |
import logging
import logging
import math
import multiprocessing
import os
import random
import tarfile
from dataclasses import dataclass
from itertools import chain
from functools import partial
from pathlib import Path
import numpy as np
import torch
import torch.utils.data
from pretraining.openwebtext import arg
from pretraining.openwebtext import tokenization
logger = logging.getLogger(__name__)
def parse_tokenizer(tokenizer, text):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
def create_tokenizer(vocab_file, do_lower_case=True):
tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file, do_lower_case=do_lower_case)
return partial(parse_tokenizer, tokenizer)
def preprocess_owt(tokenizer, src_dir, tmp_dir, trg_dir, n_dataset_building_processes, n_tensors_per_file, max_seq_length=None):
# Preamble
logger.info(f'Writing features to {trg_dir}.')
os.makedirs(trg_dir, exist_ok=False)
# Crunch files
trg_dir = Path(trg_dir)
src_dir = Path(src_dir)
tmp_dir = Path(tmp_dir)
archives = os.listdir(src_dir)
n_archives_per_job = math.ceil(len(archives) / n_dataset_building_processes)
job_archives = [
archives[i * n_archives_per_job : (i + 1) * n_archives_per_job]
for i in range(n_dataset_building_processes)
]
logger.info(f'Processing {len(archives)} archives.')
assert len(archives) > 0
if n_dataset_building_processes == 1:
feature_set_paths = preprocess_owt_job(tokenizer, src_dir, tmp_dir, trg_dir, job_archives, n_tensors_per_file, max_seq_length, job_id=0)
else:
pool = multiprocessing.Pool(processes=n_dataset_building_processes)
preprocess_owt_job_partial = partial(preprocess_owt_job, tokenizer, src_dir, tmp_dir, trg_dir, job_archives, n_tensors_per_file, max_seq_length)
feature_sets = pool.map(preprocess_owt_job_partial, range(n_dataset_building_processes))
feature_set_paths = [file_path for feature_set in feature_sets for file_path in feature_set]
return feature_set_paths
def preprocess_owt_job(tokenizer, src_dir, tmp_dir, trg_dir, job_archives, n_tensors_per_file, max_seq_length, job_id=0):
'''
OpenWebText is saved under the following format:
openwebtext.zip
|-> archive_xxx.zip
|-> file_xxx.txt
|-> file_xxz.txt
...
|-> archive_xxz.zip
|-> file_xxy.txt
...
...
'''
# Preamble
os.makedirs(tmp_dir, exist_ok=True)
# Process
feature_index = 0
feature_set_paths = []
features = []
for archive_id, archive in enumerate(job_archives[job_id]):
if os.path.isdir(src_dir / archive):
logger.info(f'Ignoring rogue directory {src_dir / archive}.')
continue
logger.info(f'Job {job_id}: Processing {archive_id}/{len(job_archives[job_id])} {src_dir / archive}.')
with tarfile.open(src_dir / archive) as t:
extracted_archive = tmp_dir / f'{archive}-extracted'
t.extractall(extracted_archive)
for file in os.listdir(extracted_archive):
file_path = extracted_archive / file
with open(file_path, 'r') as f:
for line in f.readlines():
line = line.strip()
if len(line) > 2:
encoding = tokenizer(line)
features.append(torch.tensor(encoding))
while len(features) > n_tensors_per_file:
feature_set_path = trg_dir / f'feature_set_{job_id}_{feature_index}.pt'
torch.save(features[:n_tensors_per_file], feature_set_path)
features = features[n_tensors_per_file:]
feature_index += 1
feature_set_paths.append(feature_set_path)
# Serialize
if len(features) > 0:
feature_set_path = trg_dir / f'feature_set_{job_id}_{feature_index}.pt'
torch.save(features, feature_set_path)
feature_set_paths.append(feature_set_path)
return feature_set_paths
@dataclass(frozen=True)
class Args:
src_dir: arg.Str = 'data/openwebtext'
trg_dir: arg.Str = 'data/openwebtext_features'
tmp_dir: arg.Str = '/tmp/owt'
vocab_file: arg.Str = 'data/vocab.txt'
n_dataset_building_processes: arg.Int = 32
n_tensors_per_file: arg.Int = 2048
max_seq_length: arg.Int = 128
def main():
args = arg.parse_to(Args)
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO
)
tokenizer = create_tokenizer(args.vocab_file)
preprocess_owt(tokenizer=tokenizer, src_dir=args.src_dir, tmp_dir=args.tmp_dir, trg_dir=args.trg_dir, n_dataset_building_processes=args.n_dataset_building_processes, n_tensors_per_file=args.n_tensors_per_file, max_seq_length=args.max_seq_length)
if __name__ == '__main__':
main() | electra-pytorch-master | pretraining/openwebtext/preprocess.py |
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes, the same as used for BERT."""
import collections
import unicodedata
def convert_to_unicode(text):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
def printable_text(text):
"""Returns text encoded in a way suitable for print."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
index = 0
with open(vocab_file, "r") as reader:
while True:
token = convert_to_unicode(reader.readline())
if not token:
break
token = token.strip()
vocab[token] = index
index += 1
return vocab
def convert_by_vocab(vocab, items):
"""Converts a sequence of [tokens|ids] using the vocab."""
output = []
for item in items:
output.append(vocab[item])
return output
def convert_tokens_to_ids(vocab, tokens):
return convert_by_vocab(vocab, tokens)
def convert_ids_to_tokens(inv_vocab, ids):
return convert_by_vocab(inv_vocab, ids)
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FullTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self, vocab_file, do_lower_case=True):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
def tokenize(self, text):
"""Tokenizes a piece of text."""
text = convert_to_unicode(text)
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenziation."""
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
Returns:
A list of wordpiece tokens.
"""
text = convert_to_unicode(text)
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
| electra-pytorch-master | pretraining/openwebtext/tokenization.py |
import math
import os
import random
from dataclasses import dataclass
from itertools import chain
from functools import partial
from pathlib import Path
import numpy as np
import torch
import torch.utils.data
from openwebtext import tokenization
class ExampleBuilder:
"""Given a stream of input text, creates pretraining examples."""
def __init__(self, vocab, max_length):
self._vocab = vocab
self._current_sentences = []
self._current_length = 0
self._max_length = max_length
self._target_length = max_length
def add_line(self, bert_tokids):
"""Adds a line of text to the current example being built."""
# line = line.strip().replace("\n", " ")
# if (not line) and self._current_length != 0: # empty lines separate docs
# return self._create_example()
# bert_tokens = self._tokenizer.tokenize(line)
# bert_tokids = self._tokenizer.convert_tokens_to_ids(bert_tokens)
self._current_sentences.append(bert_tokids)
self._current_length += len(bert_tokids)
if self._current_length >= self._target_length:
return self._create_example()
return None
def _create_example(self):
"""Creates a pre-training example from the current list of sentences."""
# small chance to only have one segment as in classification tasks
if random.random() < 0.1:
first_segment_target_length = 100000
else:
# -3 due to not yet having [CLS]/[SEP] tokens in the input text
first_segment_target_length = (self._target_length - 3) // 2
first_segment = []
second_segment = []
for sentence in self._current_sentences:
# the sentence goes to the first segment if (1) the first segment is
# empty, (2) the sentence doesn't put the first segment over length or
# (3) 50% of the time when it does put the first segment over length
if (len(first_segment) == 0 or
len(first_segment) + len(sentence) < first_segment_target_length or
(len(second_segment) == 0 and
len(first_segment) < first_segment_target_length and
random.random() < 0.5)):
first_segment += sentence
else:
second_segment += sentence
# trim to max_length while accounting for not-yet-added [CLS]/[SEP] tokens
first_segment = first_segment[:self._max_length - 2]
second_segment = second_segment[:max(0, self._max_length - len(first_segment) - 3)]
# prepare to start building the next example
self._current_sentences = []
self._current_length = 0
# small chance for random-length instead of max_length-length example
if random.random() < 0.05:
self._target_length = random.randint(5, self._max_length)
else:
self._target_length = self._max_length
return self._make_tf_example(first_segment, second_segment)
def _make_tf_example(self, first_segment, second_segment):
"""Converts two "segments" of text into a tf.train.Example."""
vocab = self._vocab
input_ids = [vocab["[CLS]"]] + first_segment + [vocab["[SEP]"]]
segment_ids = [0] * len(input_ids)
if second_segment:
input_ids += second_segment + [vocab["[SEP]"]]
segment_ids += [1] * (len(second_segment) + 1)
input_mask = [1] * len(input_ids)
input_ids += [0] * (self._max_length - len(input_ids))
input_mask += [0] * (self._max_length - len(input_mask))
segment_ids += [0] * (self._max_length - len(segment_ids))
def create_int_feature(tensors):
return torch.tensor(tensors)
tf_example = {
"input_ids": create_int_feature(input_ids),
"input_mask": create_int_feature(input_mask),
"segment_ids": create_int_feature(segment_ids)
}
return tf_example
class OpenWebTextDataset(torch.utils.data.IterableDataset):
def __init__(self, feature_set_paths, n_tensors_per_file):
self.feature_set_paths = feature_set_paths
self.n_tensors_per_file = n_tensors_per_file
@staticmethod
def parse_file(file_index):
try:
features = torch.load(str(file_index))
yield from features
except RuntimeError:
raise RuntimeError(f'Corrupted file {file_index}')
def __len__(self):
return len(self.feature_set_paths) * self.n_tensors_per_file
def __iter__(self):
return chain.from_iterable(map(self.parse_file, self.feature_set_paths))
class ExampleBuilderDataset(torch.utils.data.IterableDataset):
def __init__(self, dataset, builder):
self.dataset = dataset
self.builder = builder
def __len__(self):
return len(self.dataset)
def __iter__(self):
def create_example():
while True:
token_ids = list(next(self.dataset).cpu().numpy())
example = self.builder.add_line(token_ids)
if example:
return example
while True:
yield create_example()
def cycle(iterable):
while True:
for x in iterable:
yield x
def new_tokenizer(vocab_file, do_lower_case=True):
return tokenization.FullTokenizer(vocab_file=vocab_file, do_lower_case=do_lower_case)
def parse_tokenizer(tokenizer, text):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
def create_tokenizer(vocab_file, do_lower_case=True):
tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file, do_lower_case=do_lower_case)
return partial(parse_tokenizer, tokenizer)
def load_owt(owt_dir, n_tensors_per_file):
owt_dir_path = Path(owt_dir)
feature_set_paths = [owt_dir_path / feature_set_path for feature_set_path in os.listdir(owt_dir_path)]
np.random.shuffle(feature_set_paths)
assert len(feature_set_paths) > 0
return OpenWebTextDataset(feature_set_paths, n_tensors_per_file=n_tensors_per_file)
def wrap_example_builder(dataset, vocab, max_length):
return ExampleBuilderDataset(cycle(iter(dataset)), ExampleBuilder(vocab, max_length))
| electra-pytorch-master | pretraining/openwebtext/dataset.py |
import argparse
import dataclasses
__all__ = ('Arg', 'Int', 'Float', 'Bool', 'Str', 'Choice', 'parse_to')
class Arg:
def __init__(self, **kwargs):
super().__init__()
self.kwargs = kwargs
class Int(Arg):
def __init__(self, **kwargs):
super().__init__(type=int, **kwargs)
class Float(Arg):
def __init__(self, **kwargs):
super().__init__(type=float, **kwargs)
class Bool(Arg):
def __init__(self, **kwargs):
super().__init__(type=bool, **kwargs)
class Str(Arg):
def __init__(self, **kwargs):
super().__init__(type=str, **kwargs)
class _MetaChoice(type):
def __getitem__(self, item):
return self(choices=list(item), type=item)
class Choice(Arg, metaclass=_MetaChoice):
def __init__(self, choices, **kwargs):
super().__init__(choices=choices, **kwargs)
def parse_to(container_class, **kwargs):
def mangle_name(name):
return '--' + name.replace('_', '-')
parser = argparse.ArgumentParser(description=container_class.__doc__)
for field in dataclasses.fields(container_class):
name = field.name
default = field.default
value_or_class = field.type
if isinstance(value_or_class, type):
value = value_or_class(default=default)
else:
value = value_or_class
value.kwargs['default'] = default
parser.add_argument(
mangle_name(name), **value.kwargs)
arg_dict = parser.parse_args(**kwargs)
return container_class(**vars(arg_dict)) | electra-pytorch-master | pretraining/openwebtext/arg.py |
from setuptools import setup, find_packages
setup(
name = 'flash-genomics-model',
packages = find_packages(exclude=[]),
version = '0.0.1',
license='MIT',
description = 'Flash Genomics Model (FGM)',
author = 'Phil Wang',
author_email = '[email protected]',
long_description_content_type = 'text/markdown',
url = 'https://github.com/lucidrains/flash-genomics-model',
keywords = [
'artificial intelligence',
'deep learning',
'transformers',
'attention mechanism',
'long context',
'genomics',
'pre-training'
],
install_requires=[
'einops>=0.6.1',
'MEGABYTE-pytorch',
'torch>=1.6',
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
| flash-genomics-model-main | setup.py |
from flash_genomics_model.flash_genomics_model import FlashGenomicsModel
| flash-genomics-model-main | flash_genomics_model/__init__.py |
from collections import namedtuple
from functools import wraps
from packaging import version
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange
# constants
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
# helpers
def exists(val):
return val is not None
def once(fn):
called = False
@wraps(fn)
def inner(x):
nonlocal called
if called:
return
called = True
return fn(x)
return inner
print_once = once(print)
# main class
class Attend(nn.Module):
def __init__(
self,
causal = False,
dropout = 0.,
flash = False
):
super().__init__()
self.dropout = dropout
self.attn_dropout = nn.Dropout(dropout)
self.causal = causal
self.flash = flash
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
# determine efficient attention configs for cuda and cpu
self.cpu_config = EfficientAttentionConfig(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not flash:
return
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
if device_properties.major == 8 and device_properties.minor == 0:
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
self.cuda_config = EfficientAttentionConfig(True, False, False)
else:
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
self.cuda_config = EfficientAttentionConfig(False, True, True)
def get_mask(self, i, j, device):
return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1)
def flash_attn(self, q, k, v, mask = None, attn_bias = None):
_, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
# single headed key / values
if k.ndim == 3:
k = rearrange(k, 'b n d -> b 1 n d')
if v.ndim == 3:
v = rearrange(v, 'b n d -> b 1 n d')
# Check if mask exists and expand to compatible shape
# The mask is B L, so it would have to be expanded to B H N L
if exists(mask) and mask.ndim != 4:
mask = rearrange(mask, 'b j -> b 1 1 j')
mask = mask.expand(-1, heads, q_len, -1)
# Check if there is a compatible device for flash attention
config = self.cuda_config if is_cuda else self.cpu_config
causal = self.causal
# handle attention bias
if exists(attn_bias):
mask_value = -torch.finfo(q.dtype).max // 2
causal_mask = self.get_mask(q_len, k_len, device)
attn_bias = attn_bias.masked_fill(causal_mask, mask_value)
if exists(mask):
attn_bias = attn_bias.masked_fill(~mask, mask_value)
mask = attn_bias
causal = False
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
with torch.backends.cuda.sdp_kernel(**config._asdict()):
out = F.scaled_dot_product_attention(
q, k, v,
attn_mask = mask,
dropout_p = self.dropout if self.training else 0.,
is_causal = causal
)
return out
def forward(self, q, k, v, mask = None, attn_bias = None):
"""
einstein notation
b - batch
h - heads
n, i, j - sequence length (base sequence length, source, target)
d - feature dimension
"""
q_len, k_len, device = q.shape[-2], k.shape[-2], q.device
scale = q.shape[-1] ** -0.5
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
if self.flash:
return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias)
# similarity
sim = einsum(f"b h i d, {kv_einsum_eq} -> b h i j", q, k) * scale
# attention bias
if exists(attn_bias):
sim = sim + attn_bias
# causal mask
if self.causal:
causal_mask = self.get_mask(q_len, k_len, device)
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
# attention
attn = sim.softmax(dim=-1)
attn = self.attn_dropout(attn)
# aggregate values
out = einsum(f"b h i j, {kv_einsum_eq} -> b h i d", attn, v)
return out
| flash-genomics-model-main | flash_genomics_model/attend.py |
import torch
import torch.nn.functional as F
from torch import nn, einsum, Tensor
from einops import rearrange, reduce
from flash_genomics_model.attend import Attend
# functions
# attention
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head = 64,
heads = 8,
flash = True
):
super().__init__()
self.heads = heads
dim_inner = heads * dim_head
self.attend = Attend(flash = flash)
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias = False)
self.to_out = nn.Linear(dim_inner, dim, bias = False)
def forward(
self,
x,
mask = None
):
h = self.heads
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
out = self.attend(q, k, v, mask = mask)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
# main class
class FlashGenomicsModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
| flash-genomics-model-main | flash_genomics_model/flash_genomics_model.py |
from setuptools import setup, find_packages
setup(
name = 'bioseq-clasp',
packages = find_packages(),
version = '0.0.1',
license='MIT',
description = 'CLASP - CLIP for biosequences and their annotation data',
author = 'MicPie',
author_email = '',
url = 'https://github.com/MicPie/clasp',
keywords = [
'artificial intelligence',
'deep learning',
'contrastive learning',
'proteomics'
],
install_requires=[
'einops>=0.3',
'torch>=1.6'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
| clasp-main | setup.py |
import torch
import torch.nn as nn
from operator import itemgetter
from torch.autograd.function import Function
from torch.utils.checkpoint import get_device_states, set_device_states
# for routing arguments into the functions of the reversible layer
def route_args(router, args, depth):
routed_args = [(dict(), dict()) for _ in range(depth)]
matched_keys = [key for key in args.keys() if key in router]
for key in matched_keys:
val = args[key]
for depth, ((f_args, g_args), routes) in enumerate(zip(routed_args, router[key])):
new_f_args, new_g_args = map(lambda route: ({key: val} if route else {}), routes)
routed_args[depth] = ({**f_args, **new_f_args}, {**g_args, **new_g_args})
return routed_args
# following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html
class Deterministic(nn.Module):
def __init__(self, net):
super().__init__()
self.net = net
self.cpu_state = None
self.cuda_in_fwd = None
self.gpu_devices = None
self.gpu_states = None
def record_rng(self, *args):
self.cpu_state = torch.get_rng_state()
if torch.cuda._initialized:
self.cuda_in_fwd = True
self.gpu_devices, self.gpu_states = get_device_states(*args)
def forward(self, *args, record_rng = False, set_rng = False, **kwargs):
if record_rng:
self.record_rng(*args)
if not set_rng:
return self.net(*args, **kwargs)
rng_devices = []
if self.cuda_in_fwd:
rng_devices = self.gpu_devices
with torch.random.fork_rng(devices=rng_devices, enabled=True):
torch.set_rng_state(self.cpu_state)
if self.cuda_in_fwd:
set_device_states(self.gpu_devices, self.gpu_states)
return self.net(*args, **kwargs)
# heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py
# once multi-GPU is confirmed working, refactor and send PR back to source
class ReversibleBlock(nn.Module):
def __init__(self, f, g):
super().__init__()
self.f = Deterministic(f)
self.g = Deterministic(g)
def forward(self, x, f_args = {}, g_args = {}):
x1, x2 = torch.chunk(x, 2, dim=2)
y1, y2 = None, None
with torch.no_grad():
y1 = x1 + self.f(x2, record_rng=self.training, **f_args)
y2 = x2 + self.g(y1, record_rng=self.training, **g_args)
return torch.cat([y1, y2], dim=2)
def backward_pass(self, y, dy, f_args = {}, g_args = {}):
y1, y2 = torch.chunk(y, 2, dim=2)
del y
dy1, dy2 = torch.chunk(dy, 2, dim=2)
del dy
with torch.enable_grad():
y1.requires_grad = True
gy1 = self.g(y1, set_rng=True, **g_args)
torch.autograd.backward(gy1, dy2)
with torch.no_grad():
x2 = y2 - gy1
del y2, gy1
dx1 = dy1 + y1.grad
del dy1
y1.grad = None
with torch.enable_grad():
x2.requires_grad = True
fx2 = self.f(x2, set_rng=True, **f_args)
torch.autograd.backward(fx2, dx1, retain_graph=True)
with torch.no_grad():
x1 = y1 - fx2
del y1, fx2
dx2 = dy2 + x2.grad
del dy2
x2.grad = None
x = torch.cat([x1, x2.detach()], dim=2)
dx = torch.cat([dx1, dx2], dim=2)
return x, dx
class _ReversibleFunction(Function):
@staticmethod
def forward(ctx, x, blocks, args):
ctx.args = args
for block, kwarg in zip(blocks, args):
x = block(x, **kwarg)
ctx.y = x.detach()
ctx.blocks = blocks
return x
@staticmethod
def backward(ctx, dy):
y = ctx.y
args = ctx.args
for block, kwargs in zip(ctx.blocks[::-1], args[::-1]):
y, dy = block.backward_pass(y, dy, **kwargs)
return dy, None, None
class SequentialSequence(nn.Module):
def __init__(self, layers, args_route = {}):
super().__init__()
assert all(len(route) == len(layers) for route in args_route.values()), 'each argument route map must have the same depth as the number of sequential layers'
self.layers = layers
self.args_route = args_route
def forward(self, x, **kwargs):
args = route_args(self.args_route, kwargs, len(self.layers))
layers_and_args = list(zip(self.layers, args))
for (f, g), (f_args, g_args) in layers_and_args:
x = x + f(x, **f_args)
x = x + g(x, **g_args)
return x
class ReversibleSequence(nn.Module):
def __init__(self, blocks, args_route = {}):
super().__init__()
self.args_route = args_route
self.blocks = nn.ModuleList([ReversibleBlock(f=f, g=g) for f, g in blocks])
def forward(self, x, **kwargs):
x = torch.cat([x, x], dim=-1)
blocks = self.blocks
args = route_args(self.args_route, kwargs, len(blocks))
args = list(map(lambda x: {'f_args': x[0], 'g_args': x[1]}, args))
out = _ReversibleFunction.apply(x, blocks, args)
return torch.stack(out.chunk(2, dim=-1)).sum(dim=0)
| clasp-main | clasp/reversible.py |
import torch
from torch import nn, einsum
import torch.nn.functional as F
class CLASP(nn.Module):
def __init__(
self,
*,
text_encoder,
bioseq_encoder
):
super().__init__()
self.text_encoder = text_encoder
self.bioseq_encoder = bioseq_encoder
self.temperature = nn.Parameter(torch.tensor(1.))
def forward(
self,
text,
bioseq,
text_mask = None,
bioseq_mask = None,
return_loss = False
):
b, device = text.shape[0], text.device
text_latents = self.text_encoder(text, mask = text_mask)
bioseq_latents = self.bioseq_encoder(bioseq, mask = bioseq_mask)
text_latents, bioseq_latents = map(lambda t: F.normalize(t, p = 2, dim = -1), (text_latents, bioseq_latents))
temp = self.temperature.exp()
if not return_loss:
sim = einsum('n d, n d -> n', text_latents, bioseq_latents) * temp
return sim
sim = einsum('i d, j d -> i j', text_latents, bioseq_latents) * temp
labels = torch.arange(b, device = device)
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
return loss.mean()
| clasp-main | clasp/clasp.py |
from clasp.clasp import CLASP
from clasp.transformer import Transformer
from clasp.simple_tokenizer import tokenize, VOCAB_SIZE
from clasp.utils import basic_rand_sampler, basic_aa_tokenizer, CLASPDataset
| clasp-main | clasp/__init__.py |
import torch
from torch.utils.data import Dataset, DataLoader
import random
import time
def basic_rand_sampler(seq, sample_len):
"""
Basic random text sampler.
If sample_len is greater than the length of the seq, the seq is returned.
"""
seq_len = len(seq)
if seq_len > sample_len:
start_idx = random.randint(0, min(seq_len,seq_len - sample_len))
end_idx = start_idx+sample_len
return seq[start_idx:end_idx]
else:
return seq
identity_sampler = lambda x: x
def basic_aa_tokenizer(seq, context_length, return_mask=True):
"""
Maps a number between 0 and 21 to each 21 proteogenic aminoacids.
Unknown char input gets mapped to 22.
"""
aa = "ACDEFGHIKLMNOPQRSTUVWY"
d = {a: i for i, a in enumerate(aa)}
seq_len = len(seq)
seq_empty = torch.zeros(context_length - len(seq), dtype=torch.long)
seq_tok = torch.tensor([d[a] if a in aa else 22 for a in seq], dtype=torch.long)
seq = torch.cat([seq_tok, seq_empty], dim=0)
if return_mask:
mask = torch.zeros_like(seq).bool()
mask[0:seq_len+1] = True
return seq, mask
else:
return seq
class CLASPDataset(Dataset):
"""
Basic CLASP dataset that loads the preprocessed csv file into RAM.
path: path to the csv file
"""
def __init__(self, path, text_sampler, bioseq_sampler, text_tok, bioseq_tok):
super().__init__()
self.path = path
tp = time.time()
with open(path, "r") as reader:
self.data = reader.readlines()
print(f"Load data time: {time.time() - tp:.3f} s")
self.cols = self.data.pop(0).split(",")
self.len = len(self.data)
self.text_sampler = text_sampler
self.bioseq_sampler = bioseq_sampler
self.text_tok = text_tok
self.bioseq_tok = bioseq_tok
def __len__(self):
return self.len
def __getitem__(self, idx):
sample = self.data[idx][:-2] # without "\n"
sample = sample.split(",")
sample = [x for x in sample if len(x) > 0]
text = " ".join(sample[:-2])
bioseq = sample[-1]
text = self.text_sampler(text)
bioseq = self.bioseq_sampler(bioseq)
text, text_mask = self.text_tok(text)
bioseq, bioseq_mask = self.bioseq_tok(bioseq)
return text, text_mask, bioseq, bioseq_mask
| clasp-main | clasp/utils.py |
from functools import partial
from itertools import islice, cycle
from inspect import isfunction
from math import ceil
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from clasp.positional import SinuEmb, apply_rotary_pos_emb
from clasp.reversible import ReversibleSequence, SequentialSequence
# helpers
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def cast_tuple(val, depth = 1):
if isinstance(val, list):
val = tuple(val)
return val if isinstance(val, tuple) else (val,) * depth
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
# attention
class Attention(nn.Module):
def __init__(self, dim, seq_len, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.seq_len = seq_len
self.scale = dim_head ** -0.5
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def apply_rel_pos_emb(self, q, k, rel_pos_emb = None):
if not exists(rel_pos_emb):
return q, k
(cls_q, q), (cls_k, k) = map(lambda t: (t[:, :, :1], t[:, :, 1:]), (q, k))
q, k = apply_rotary_pos_emb(q, k, rel_pos_emb)
q, k = map(lambda t: torch.cat(t, dim = -2), ((cls_q, q), (cls_k, k)))
return q, k
def forward(self, x, mask = None, rel_pos_emb = None):
b, n, _, h, device = *x.shape, self.heads, x.device
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
if exists(rel_pos_emb):
q, k = self.apply_rel_pos_emb(q, k, rel_pos_emb)
dots = torch.einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
mask_value = max_neg_value(dots)
if exists(mask):
mask = rearrange(mask, 'b j -> b () () j')
dots.masked_fill_(~mask, mask_value)
del mask
attn = dots.softmax(dim=-1)
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
# microsoft sparse attention CUDA kernel
class SparseAttention(Attention):
def __init__(
self,
*args,
block_size = 16,
num_random_blocks = None,
**kwargs
):
super().__init__(*args, **kwargs)
from deepspeed.ops.sparse_attention import SparseSelfAttention, VariableSparsityConfig
self.block_size = block_size
num_random_blocks = default(num_random_blocks, self.seq_len // block_size // 4)
self.attn_fn = SparseSelfAttention(
sparsity_config = VariableSparsityConfig(
num_heads = self.heads,
block = self.block_size,
num_random_blocks = num_random_blocks,
attention = 'unidirectional' if self.causal else 'bidirectional'
),
max_seq_length = self.seq_len,
attn_mask_mode = 'add'
)
def forward(self, x, mask = None, rel_pos_emb = None):
b, n, _, h, device = *x.shape, self.heads, x.device
remainder = n % self.block_size
mask = default(mask, lambda: torch.ones(b, n, device = device).bool())
if remainder > 0:
padding = self.block_size - remainder
x = F.pad(x, (0, 0, 0, padding), value = 0)
mask = F.pad(mask, (0, padding), value = False)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
q, k = self.apply_rel_pos_emb(q, k, rel_pos_emb)
key_pad_mask = None
if exists(mask):
key_pad_mask = ~mask
out = self.attn_fn(q, k, v, key_padding_mask = key_pad_mask)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out[:, :n]
# classes
# https://arxiv.org/abs/2103.17239
class LayerScale(nn.Module):
def __init__(self, dim, depth, fn):
super().__init__()
if depth <= 18:
init_eps = 0.1
elif depth > 18 and depth <= 24:
init_eps = 1e-5
else:
init_eps = 1e-6
scale = torch.zeros(1, 1, dim).fill_(init_eps)
self.scale = nn.Parameter(scale)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class GEGLU(nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim = -1)
return x * F.gelu(gates)
class FeedForward(nn.Module):
def __init__(self, dim, dropout = 0., mult = 4.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim * mult * 2),
GEGLU(),
nn.Dropout(dropout),
nn.Linear(dim * mult, dim)
)
def forward(self, x):
return self.net(x)
class Transformer(nn.Module):
def __init__(
self,
*,
num_tokens,
dim,
depth,
seq_len,
heads = 8,
dim_head = 64,
ff_mult = 4,
attn_dropout = 0.,
ff_dropout = 0.,
attn_types = None,
image_fmap_size = None,
sparse_attn = False,
rel_pos_emb = True,
reversible = False
):
super().__init__()
self.token_emb = nn.Embedding(num_tokens, dim)
self.cls_token = nn.Parameter(torch.randn(dim))
# positional embeddings
self.pos_emb = SinuEmb(dim, seq_len + 1)
self.rel_pos_emb = SinuEmb(dim_head, seq_len) if rel_pos_emb else None
# layers
layers = nn.ModuleList([])
sparse_layer = cast_tuple(sparse_attn, depth)
attn_types = default(attn_types, ('full',))
attn_types = cast_tuple(attn_types)
attn_type_layer = islice(cycle(attn_types), depth)
for ind, sparse_attn, attn_type in zip(range(depth), sparse_layer, attn_type_layer):
if attn_type == 'full':
attn_class = Attention
elif attn_type == 'sparse':
attn_class = SparseAttention
else:
raise ValueError(f'attention type "{attn_type}" is not valid')
layers.append(nn.ModuleList([
LayerScale(dim, ind + 1, PreNorm(dim, attn_class(dim, seq_len = seq_len, heads = heads, dim_head = dim_head, dropout = attn_dropout))),
LayerScale(dim, ind + 1, PreNorm(dim, FeedForward(dim, mult = ff_mult, dropout = ff_dropout)))
]))
execute_type = ReversibleSequence if reversible else SequentialSequence
route_attn = ((True, False),) * depth
attn_route_map = {'mask': route_attn, 'rel_pos_emb': route_attn}
self.net = execute_type(layers, args_route = attn_route_map)
self.layers = execute_type(layers)
self.norm = nn.LayerNorm(dim)
def forward(self, x, mask = None):
b, n, device = *x.shape, x.device
x = self.token_emb(x)
rel_pos_emb = self.rel_pos_emb(x) if exists(self.rel_pos_emb) else None
cls_tokens = repeat(self.cls_token, 'd -> b () d', b = b)
x = torch.cat((cls_tokens, x), dim = 1)
if exists(mask):
mask = F.pad(mask, (1, 0), value = True)
pos_emb = self.pos_emb(x)
x += rearrange(pos_emb, 'n d -> () n d')
x = self.net(x)
return self.norm(x[:, 0])
| clasp-main | clasp/transformer.py |
# take from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py
import torch
import html
import os
from functools import lru_cache
from pathlib import Path
import ftfy
import regex as re
VOCAB_SIZE = 49408
@lru_cache()
def default_bpe():
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "data/bpe_simple_vocab_16e6.txt")
@lru_cache()
def bytes_to_unicode():
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
cs = bs[:]
n = 0
for b in range(2 ** 8):
if b not in bs:
bs.append(b)
cs.append(2 ** 8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text
class SimpleTokenizer(object):
def __init__(self, bpe_path = default_bpe()):
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
merges = Path(bpe_path).read_text(encoding='utf8').split('\n')
merges = merges[1:49152 - 256 - 2 + 1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v + '</w>' for v in vocab]
for merge in merges:
vocab.append(''.join(merge))
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
self.encoder = dict(zip(vocab, range(len(vocab))))
self.decoder = {v: k for k, v in self.encoder.items()}
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
self.pat = re.compile(
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""",
re.IGNORECASE)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + (token[-1] + '</w>',)
pairs = get_pairs(word)
if not pairs:
return token + '</w>'
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = whitespace_clean(basic_clean(text)).lower()
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
return bpe_tokens
def decode(self, tokens, remove_start_end = True):
if remove_start_end:
tokens = [token for token in tokens if token not in (49406, 40407, 0)]
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
return text
tokenizer = SimpleTokenizer()
def tokenize(texts, context_length = 256, add_start = False, add_end = False, truncate_text = False, return_mask = False):
if isinstance(texts, str):
texts = [texts]
sot_tokens = [tokenizer.encoder["<|startoftext|>"]] if add_start else []
eot_tokens = [tokenizer.encoder["<|endoftext|>"]] if add_end else []
all_tokens = [sot_tokens + tokenizer.encode(text) + eot_tokens for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
if len(tokens) > context_length:
if truncate_text:
tokens = tokens[:context_length]
else:
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
result[i, :len(tokens)] = torch.tensor(tokens)
if return_mask:
return result, result != 0
return result
| clasp-main | clasp/simple_tokenizer.py |
import torch
from torch import nn, einsum
from einops import rearrange, repeat
# rotary positional embedding helpers
def rotate_every_two(x):
x = rearrange(x, '... (d j) -> ... d j', j = 2)
x1, x2 = x.unbind(dim = -1)
x = torch.stack((-x2, x1), dim = -1)
return rearrange(x, '... d j -> ... (d j)')
def apply_rotary_pos_emb(q, k, sinu_pos):
sinu_pos = rearrange(sinu_pos, 'n (j d) -> n j d', j = 2)
sin, cos = sinu_pos.unbind(dim = -2)
sin, cos = map(lambda t: repeat(t, 'b n -> b (n j)', j = 2), (sin, cos))
q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k))
return q, k
class SinuEmb(nn.Module):
def __init__(self, dim, max_seq_len):
super().__init__()
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
t = torch.arange(max_seq_len).type_as(inv_freq)
sinusoid_inp = torch.einsum('i , j -> i j', t, inv_freq)
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim = -1)
self.register_buffer('emb', emb)
def forward(self, x):
n = x.shape[1]
return self.emb[:n]
| clasp-main | clasp/positional.py |
from datetime import datetime
import os
from pathlib import Path
import subprocess
import copy
# Note: Run preprocess_data.py file in the main repository directory or the preproc directory of the repository.
urls_download = ["https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz",
"https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_trembl.dat.gz"]
print(f"{datetime.now()} - Start downloading files.")
path_current_dir = os.path.abspath(os.path.dirname(__file__))
path_data_dir = path_current_dir.split("/preproc")[0]+"/data"
paths_raw_data = []
for url in urls_download:
print(f"{datetime.now()} - Start downloading from: {url}")
Path(path_data_dir).mkdir(exist_ok=True)
subprocess.run(["wget", url, "-P", path_data_dir])
paths_raw_data.append(path_data_dir+"/"+url.split("/")[-1])
print(f"{datetime.now()} - Download finished.")
print(f"{datetime.now()} - Decompress downloaded files.")
paths_data = []
for path_raw in paths_raw_data:
path_decomp = path_raw.split(".gz")[0]
print(f"{datetime.now()} - Decompress: {path_raw}")
subprocess.run(["gunzip", path_raw, path_decomp])
paths_data.append(path_decomp)
print(f"{datetime.now()} - Decompressed to: {path_decomp}")
print(f"{datetime.now()} - Preprocessing files and saving to csv.")
# Raw data setup see user manual: https://web.expasy.org/docs/userman.html
linetype_conversion = {
"ID": "id",
"AC": "accn", # accession number
"DT": "date",
"DE": "desc", # DEscription
"GN": "gene", # Gene Name
"OS": "spec", # Organism Species
"OG": "orga", # OrGanelle
"OC": "clas", # Organism Classification
"OX": "taxo", # Organism taxonomy cross-reference
"OH": "host", # Organism Host
"RN": "refn", # Reference Number
"RP": "refp", # Reference Position
"RC": "refc", # Reference Comment
"RX": "refx", # Reference cross-reference
"RG": "refg", # Reference Group
"RA": "refa", # Reference Author
"RT": "reft", # Reference Title
"RL": "refl", # Reference Location
"CC": "text", # free text comments
"DR": "xdb", # Database cross-Reference
"FT": "xns", # Cross-references to the nucleotide sequence database # RECHECK
"PE": "exist", # Protein existence
"KW": "kw", # KeyWord
"FT": "ft", # Feature Table
"SQ": "seqh", # SeQuence header)
" ": "seq",
}
preprocessing_fields = ["id","accn","date","desc","gene","spec","orga","clas","taxo","host","refn", "refp", "refc", "refx", "refg", "refa", "reft", "refl", "text","xdb","ft","exist","kw","seqh","seq"]
def get_csv(path, fields):
path_out = path.split(".")[0]+".csv"
print(f"{datetime.now()} - Processing: {path}")
print(f"{datetime.now()} - Saving to: {path_out}")
print("Processing file line:")
i = 0
data = {k: "" for k in fields}
with open(path, 'r') as rf, open(path_out, 'w') as wf:
while True:
if i == 0: # write header to csv
header = ",".join(fields)+"\n"
wf.write(header)
if i % 1_000_000 == 0:
print(i, end=", ")
i += 1
rline = rf.readline()
if rline.startswith("CC ----") or \
rline.startswith("CC Copy") or \
rline.startswith("CC Dist"):
continue
elif rline == "": # EOF is empty string
print(f"\n{datetime.now()} - Processing complete.")
break
elif rline.startswith("//"): # end of entry, save line to csv file
for key in data.keys():
if key == "seq":
data[key] = data[key].replace(" ","") # remove spaces in AA sequence
wline = ",".join([x.replace(",",";") for x in data.values()])+"\n"
wf.write(wline)
data = {k: "" for k in fields} # create new empty data dict
continue
key = linetype_conversion[rline[:2]] # get line key
content = " ".join(rline[5:].split()) # get line content
data[key] += content if data[key] == "" else " "+content
return path_out
paths_csv = []
for path in paths_data:
path_out = get_csv(path, fields=preprocessing_fields)
paths_csv.append(path_out)
print(f"{datetime.now()} - Preprocessed file saved to: {path_out}")
#print(f"{datetime.now()} - Getting string lengths for every column.")
#cols = copy.deepcopy(preprocessing_fields)
#cols.append("text_all")
#
#def get_cols_len_csv(path, cols):
# path_out = path.split(".")[0]+"_len.csv"
# print(f"Processing: {path}")
# print(f"Saving to: {path_out}")
# i = 0
# with open(path, 'r') as rf, open(path_out, 'w') as wf:
# while True:
# if i % 1_000_000 == 0:
# print(i, end=", ")
# i += 1
#
# line = rf.readline()
# if line == "": # EOF is an empty string
# break
#
# line = line.replace("\n","").split(",")
#
# if i == 1: # get index values for the wanted columns
# idx = dict()
# for c in cols:
# if c == "text_all":
# continue
# idx[c] = line.index(c)
#
# wline = ",".join(cols)+"\n" # write header
# wf.write(wline)
# continue
#
# out = []
# text_all = 0
# for c in cols:
# if c == "id":
# out.append(line[idx[c]].split(" ")[0])
# elif c == "text_all":
# out.append(str(text_all))
# else:
# length = len(line[idx[c]])
# text_all += length
# out.append(str(length))
#
# wline = ",".join(out)+"\n"
# wf.write(wline)
# return path_out
#
#for path in paths_csv:
# path_out = get_cols_len_csv(path, cols)
# print(f"{datetime.now()} - String lengths data saved to: {path_out}")
print(f"{datetime.now()} - Merging preprocessed csv files into one csv file.")
path_csv_full = path_data_dir+"/uniprot_full.csv"
subprocess.run(["cat", paths_csv[0], f"<(tail +2 {paths_csv[1]})", ">", path_csv_full])
print(f"{datetime.now()} - Merged files saved to: {path_csv_full}")
print(f"{datetime.now()} - Data preprocessing done.")
| clasp-main | preproc/preprocess_data.py |
from datetime import datetime
import os
from pathlib import Path
import subprocess
import copy
import re
# Note: Run preprocess_data.py file in the main repository directory or the preproc directory of the repository.
urls_download = ["https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.dat.gz",
"https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_trembl.dat.gz"]
print(f"{datetime.now()} - Start downloading files.")
path_current_dir = os.path.abspath(os.path.dirname(__file__))
path_data_dir = path_current_dir.split("/preproc")[0]+"/data"
paths_raw_data = []
for url in urls_download:
print(f"{datetime.now()} - Start downloading from: {url}")
Path(path_data_dir).mkdir(exist_ok=True)
subprocess.run(["wget", url, "-P", path_data_dir])
paths_raw_data.append(path_data_dir+"/"+url.split("/")[-1])
print(f"{datetime.now()} - Download finished.")
print(f"{datetime.now()} - Decompress downloaded files.")
paths_data = []
for path_raw in paths_raw_data:
path_decomp = path_raw.split(".gz")[0]
print(f"{datetime.now()} - Decompress: {path_raw}")
subprocess.run(["gunzip", path_raw, path_decomp])
paths_data.append(path_decomp)
print(f"{datetime.now()} - Decompressed to: {path_decomp}")
print(f"{datetime.now()} - Preprocessing files and saving to csv.")
# Raw data setup see user manual: https://web.expasy.org/docs/userman.html
linetype_conversion = {
"ID": "id",
"AC": "accn", # accession number
"DT": "date",
"DE": "desc", # DEscription
"GN": "gene", # Gene Name
"OS": "spec", # Organism Species
"OG": "orga", # OrGanelle
"OC": "clas", # Organism Classification
"OX": "taxo", # Organism taxonomy cross-reference
"OH": "host", # Organism Host
"RN": "refn", # Reference Number
"RP": "refp", # Reference Position
"RC": "refc", # Reference Comment
"RX": "refx", # Reference cross-reference
"RG": "refg", # Reference Group
"RA": "refa", # Reference Author
"RT": "reft", # Reference Title
"RL": "refl", # Reference Location
"CC": "text", # free text comments
"DR": "xdb", # Database cross-Reference
"FT": "xns", # Cross-references to the nucleotide sequence database # RECHECK
"PE": "exist", # Protein existence
"KW": "kw", # KeyWord
"FT": "ft", # Feature Table
"SQ": "seqh", # SeQuence header)
" ": "seq",
}
preprocessing_fields = ["id","accn","date","desc","gene","spec","orga","clas","taxo","host","refn", "refp", "refc", "refx", "refg", "refa", "reft", "refl", "text","xdb","ft","exist","kw","seqh","seq"]
def get_csv(path, fields):
path_out = path.split(".")[0]+".csv"
print(f"{datetime.now()} - Processing: {path}")
print(f"{datetime.now()} - Saving to: {path_out}")
print("Processing file line:")
i = 0
data = {k: "" for k in fields}
with open(path, 'r') as rf, open(path_out, 'w') as wf:
while True:
if i == 0: # write header to csv
header = ",".join(fields)+"\n"
wf.write(header)
if i % 1_000_000 == 0:
print(i, end=", ")
i += 1
rline = rf.readline()
if rline.startswith("CC ----") or \
rline.startswith("CC Copy") or \
rline.startswith("CC Dist") or \
rline.startswith("CC -!- CAUTION: The sequence shown here is derived from an EMBL/GenBank/DDBJ") or \
rline.startswith("CC whole genome shotgun (WGS) entry which is preliminary data.") or \
rline.startswith("DR") or \
rline.startswith("DT") or \
rline.startswith("RX") or \
rline.startswith("RL") or \
rline.startswith("OX") or \
rline.startswith("RN"):
continue
elif rline == "": # EOF is empty string
print(f"\n{datetime.now()} - Processing complete.")
break
elif rline.startswith("//"): # end of entry, save line to csv file
for key in data.keys():
data[key] = re.sub(r"\s*{.*}\s*", " ", data[key]) # Remove curly braces incl. their content
if key == "seq":
data[key] = data[key].replace(" ","") # remove spaces in AA sequence
if key == "seqh":
data[key] = ";".join(data[key].split(";")[:-2]) # Remove CRC64
wline = ",".join([x.replace(",",";") for x in data.values()])+"\n"
wf.write(wline)
data = {k: "" for k in fields} # create new empty data dict
continue
key = linetype_conversion[rline[:2]] # get line key
content = " ".join(rline[5:].split()) # get line content
data[key] += content if data[key] == "" else " "+content
return path_out
paths_csv = []
for path in paths_data:
path_out = get_csv(path, fields=preprocessing_fields)
paths_csv.append(path_out)
print(f"{datetime.now()} - Preprocessed file saved to: {path_out}")
#print(f"{datetime.now()} - Getting string lengths for every column.")
#cols = copy.deepcopy(preprocessing_fields)
#cols.append("text_all")
#
#def get_cols_len_csv(path, cols):
# path_out = path.split(".")[0]+"_len.csv"
# print(f"Processing: {path}")
# print(f"Saving to: {path_out}")
# i = 0
# with open(path, 'r') as rf, open(path_out, 'w') as wf:
# while True:
# if i % 1_000_000 == 0:
# print(i, end=", ")
# i += 1
#
# line = rf.readline()
# if line == "": # EOF is an empty string
# break
#
# line = line.replace("\n","").split(",")
#
# if i == 1: # get index values for the wanted columns
# idx = dict()
# for c in cols:
# if c == "text_all":
# continue
# idx[c] = line.index(c)
#
# wline = ",".join(cols)+"\n" # write header
# wf.write(wline)
# continue
#
# out = []
# text_all = 0
# for c in cols:
# if c == "id":
# out.append(line[idx[c]].split(" ")[0])
# elif c == "text_all":
# out.append(str(text_all))
# else:
# length = len(line[idx[c]])
# text_all += length
# out.append(str(length))
#
# wline = ",".join(out)+"\n"
# wf.write(wline)
# return path_out
#
#for path in paths_csv:
# path_out = get_cols_len_csv(path, cols)
# print(f"{datetime.now()} - String lengths data saved to: {path_out}")
print(f"{datetime.now()} - Merging preprocessed csv files into one csv file.")
path_csv_full = path_data_dir+"/uniprot_full.csv"
subprocess.run(["cat", paths_csv[0], f"<(tail +2 {paths_csv[1]})", ">", path_csv_full])
print(f"{datetime.now()} - Merged files saved to: {path_csv_full}")
print(f"{datetime.now()} - Data preprocessing done.")
| clasp-main | preproc/preprocess_data_reduced.py |
from setuptools import setup, find_packages
setup(
name = 'memorizing-transformers-pytorch',
packages = find_packages(exclude=[]),
version = '0.4.1',
license='MIT',
description = 'Memorizing Transformer - Pytorch',
long_description_content_type = 'text/markdown',
author = 'Phil Wang',
author_email = '[email protected]',
url = 'https://github.com/lucidrains/memorizing-transformers-pytorch',
keywords = [
'artificial intelligence',
'deep learning',
'transformers',
'memory',
'retrieval'
],
install_requires=[
'einops>=0.6',
'filelock',
'joblib',
'faiss-gpu',
'numpy',
'torch>=1.6',
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
| memorizing-transformers-pytorch-main | setup.py |
from memorizing_transformers_pytorch import MemorizingTransformer
import random
import tqdm
import gzip
import numpy as np
import torch
import torch.optim as optim
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
# constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 16
SEQ_LEN = 512
SEGMENTS = 5
LEARNING_RATE = 2e-4
MAX_GRAD_CLIP_NORM = 0.5
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
# helpers
def cycle(loader):
while True:
for data in loader:
yield data
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return ''.join(list(map(decode_token, tokens)))
# instantiate GPT-like decoder model
model = MemorizingTransformer(
num_tokens = 256,
dim = 512,
depth = 8,
memorizing_layers = 4,
max_knn_memories = 512 * 15,
num_retrieved_memories = 32,
xl_memory_layers = (7, 8),
xl_max_memories = 512,
).cuda()
# prepare enwik8 data
with gzip.open('./data/enwik8.gz') as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long()
return full_seq.cuda()
def __len__(self):
return self.data.size(0) // self.seq_len
# dataset and dataloader
train_dataset = TextSamplerDataset(data_train, SEQ_LEN * SEGMENTS)
train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE, drop_last = True))
valid_dataset = TextSamplerDataset(data_val, SEQ_LEN * SEGMENTS)
valid_loader = cycle(DataLoader(valid_dataset, batch_size = BATCH_SIZE, drop_last = True))
# optimizer
optim = torch.optim.Adam(model.parameters(), lr = LEARNING_RATE)
# training
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval = 10., desc = 'training'):
model.train()
data = next(train_loader)
train_loss = 0.
with model.knn_memories_context(batch_size = BATCH_SIZE) as knn_memories:
xl_memories = None
seq, labels = data[:, :-1], data[:, 1:]
for seq_segment, labels_segment in zip(seq.chunk(SEGMENTS, dim = -1), labels.chunk(SEGMENTS, dim = -1)):
loss, xl_memories = model(
seq_segment,
labels = labels_segment,
knn_memories = knn_memories,
xl_memories = xl_memories
)
train_loss += loss.item() / SEGMENTS
(loss / SEGMENTS).backward()
print(f'training loss: {train_loss}')
torch.nn.utils.clip_grad_norm_(model.parameters(), MAX_GRAD_CLIP_NORM)
optim.step()
optim.zero_grad()
if not (i % VALIDATE_EVERY):
model.eval()
valid_data = next(valid_loader)
valid_loss = 0.
with torch.no_grad(), model.knn_memories_context(batch_size = BATCH_SIZE) as knn_memories:
xl_memories = None
seq, labels = data[:, :-1], data[:, 1:]
for seq_segment, labels_segment in zip(seq.chunk(SEGMENTS, dim = -1), labels.chunk(SEGMENTS, dim = -1)):
loss, xl_memories = model(
seq_segment,
labels = labels_segment,
knn_memories = knn_memories,
xl_memories = xl_memories
)
valid_loss += loss.item() / SEGMENTS
print(f'valid loss: {valid_loss}')
| memorizing-transformers-pytorch-main | train.py |
from memorizing_transformers_pytorch.memorizing_transformers_pytorch import MemorizingTransformer, KNNAttention
from memorizing_transformers_pytorch.knn_memory import KNNMemory
| memorizing-transformers-pytorch-main | memorizing_transformers_pytorch/__init__.py |
import math
from functools import partial
from contextlib import contextmanager
from pathlib import Path
from filelock import FileLock
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
from einops_exts import repeat_many
from einops.layers.torch import Rearrange
from memorizing_transformers_pytorch.knn_memory import KNNMemoryList, DEFAULT_KNN_MEMORY_MEMMAP_DIRECTORY
# helper functions
def identity(t):
return t
def exists(val):
return val is not None
def unique(arr):
return list({el: True for el in arr}.keys())
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
def l2norm(t):
return F.normalize(t, dim = -1)
# helper classes
class PreNormResidual(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.fn = fn
self.norm = nn.LayerNorm(dim)
def forward(self, x, **kwargs):
out = self.fn(self.norm(x), **kwargs)
if not isinstance(out, tuple):
return out + x
head, *tail = out
return (head + x, *tail)
# t5 relative positional bias
class T5RelativePositionBias(nn.Module):
def __init__(
self,
scale,
num_buckets = 32,
max_distance = 128,
heads = 8
):
super().__init__()
self.scale = scale
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
@staticmethod
def _relative_position_bucket(
relative_position,
num_buckets = 32,
max_distance = 128
):
n = -relative_position
n = torch.max(n, torch.zeros_like(n))
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
return torch.where(is_small, n, val_if_large)
def forward(self, i, j, *, device):
q_pos = torch.arange(i, dtype = torch.long, device = device)
k_pos = torch.arange(j, dtype = torch.long, device = device)
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1')
rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance)
values = self.relative_attention_bias(rp_bucket)
bias = rearrange(values, 'i j h -> () h i j')
return bias * self.scale
# feedforward
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim * mult),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(dim * mult, dim)
)
def forward(self, x):
return self.net(x)
# attention
class Attention(nn.Module):
def __init__(
self,
*,
dim,
heads = 8,
dim_head = 64,
dropout = 0.,
xl_max_memories = 0.,
):
super().__init__()
self.heads = heads
self.scale = dim_head ** -0.5
inner_dim = heads * dim_head
self.xl_max_memories = xl_max_memories
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, dim_head * 2, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
def forward(self, x, *, xl_memory = None, rel_pos_bias = None):
h, device = self.heads, x.device
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1))
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
q = q * self.scale
if exists(xl_memory):
k_xl_mem, v_xl_mem = xl_memory.unbind(dim = -2)
k = torch.cat((k_xl_mem, k), dim = -2)
v = torch.cat((v_xl_mem, v), dim = -2)
sim = einsum('b h i d, b j d -> b h i j', q, k)
i, j = sim.shape[-2:]
if exists(rel_pos_bias):
sim = rel_pos_bias[..., -i:, -j:] + sim
causal_mask = torch.ones((i, j), dtype = torch.bool, device = device).triu(j - i + 1)
sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max)
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
out = einsum('b h i j, b j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
# new xl memories
new_kv_memories = torch.stack((k, v), dim = -2).detach()
if self.xl_max_memories > 0:
new_xl_kv_memories = new_kv_memories[:, -self.xl_max_memories:]
else:
new_xl_kv_memories = None
return self.to_out(out), new_xl_kv_memories
# approximate nearest neighbor attention
class KNNAttention(nn.Module):
def __init__(
self,
*,
dim,
heads = 8,
dim_head = 64,
dropout = 0.,
num_retrieved_memories = 32,
xl_max_memories = 0.,
attn_scale_init = 20,
gate_output = False
):
super().__init__()
self.heads = heads
self.scale = nn.Parameter(torch.ones(heads, 1, 1) * math.log(attn_scale_init))
inner_dim = heads * dim_head
self.xl_max_memories = xl_max_memories
self.num_retrieved_memories = num_retrieved_memories
self.dropout = nn.Dropout(dropout)
self.knn_mem_dropout = nn.Dropout(dropout)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, dim_head * 2, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
self.output_gate = nn.Parameter(torch.zeros(1)) if gate_output else None
def forward(
self,
x,
*,
knn_memory,
xl_memory = None,
add_knn_memory = True,
rel_pos_bias = None
):
b, n, h, device = *x.shape[:2], self.heads, x.device
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = -1))
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
# in paper, they showed normalizing of keys led to more stable training
# we'll just go with full cosine sim attention https://arxiv.org/abs/2010.04245
q, k = map(l2norm, (q, k))
# handle xl memory
if exists(xl_memory):
k_xl_mem, v_xl_mem = xl_memory.unbind(dim = -2)
k = torch.cat((k_xl_mem, k), dim = -2)
v = torch.cat((v_xl_mem, v), dim = -2)
# calculate local attention
scale = self.scale.exp()
sim = einsum('b h i d, b j d -> b h i j', q, k) * scale
i, j = sim.shape[-2:]
if exists(rel_pos_bias):
sim = rel_pos_bias[..., -i:, -j:] + sim
mask_value = -torch.finfo(sim.dtype).max
causal_mask = torch.ones((i, j), dtype = torch.bool, device = device).triu(j - i + 1)
sim = sim.masked_fill(causal_mask, mask_value)
# calculate knn attention over memory, if index is passed in
mem_kv, mem_mask = knn_memory.search(q, self.num_retrieved_memories)
mem_k, mem_v = mem_kv.unbind(dim = -2)
sim_mem = einsum('b h i d, b h i j d -> b h i j', q, mem_k) * scale
sim_mem = sim_mem.masked_fill(~mem_mask, mask_value)
# calculate new XL memories, as well as memories to be discarded
new_kv_memories = torch.stack((k, v), dim = -2).detach()
if self.xl_max_memories > 0:
new_kv_memories_discarded, new_xl_kv_memories = new_kv_memories[:, :-self.xl_max_memories], new_kv_memories[:, -self.xl_max_memories:]
else:
new_kv_memories_discarded, new_xl_kv_memories = new_kv_memories, None
# add memories to be discarded into KNN memory
if add_knn_memory and new_kv_memories_discarded.numel() > 0:
knn_memory.add(new_kv_memories_discarded)
# attention (combining local and distant)
sim = torch.cat((sim_mem, sim), dim = -1)
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
local_attn, mem_attn = attn[..., self.num_retrieved_memories:], attn[..., :self.num_retrieved_memories]
local_out = einsum('b h i j, b j d -> b h i d', local_attn, v)
mem_out = einsum('b h i j, b h i j d -> b h i d', mem_attn, mem_v)
out = local_out + mem_out
# combine heads and project out
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
# use flamingo styled gating of output, so that memorizing transformers can be gated into an existing LLM
# preparation to add this to block-recurrent-transformer-pytorch, for the pinnacle of long context attention network
if exists(self.output_gate):
out = out * self.output_gate.tanh()
return out, new_xl_kv_memories
# main class
class MemorizingTransformer(nn.Module):
def __init__(
self,
*,
num_tokens,
dim,
depth,
dim_head = 64,
heads = 8,
knn_attn_heads = None,
attn_dropout = 0.,
ff_mult = 4,
ff_dropout = 0.,
memorizing_layers = None,
max_knn_memories = 250000,
num_retrieved_memories = 32,
clear_memories_on_sos_token_id = None,
clear_memories_on_eos_token_id = None,
knn_memories_directory = DEFAULT_KNN_MEMORY_MEMMAP_DIRECTORY,
shift_knn_memories_down = 0.,
pad_id = 0,
xl_max_memories = 0,
xl_memory_layers = None,
shift_xl_memories_down = 0.,
knn_memory_multiprocessing = False
):
super().__init__()
self.token_emb = nn.Embedding(num_tokens, dim)
self.pad_id = pad_id
block_wrapper = partial(PreNormResidual, dim)
valid_layers = set(range(1, depth + 1))
memorizing_layers = default(memorizing_layers, (depth // 2,)) # default KNN attention layer to midpoint of transformer
memorizing_layers = cast_tuple(memorizing_layers)
memorizing_layers = tuple(filter(lambda i: i in valid_layers, memorizing_layers))
self.dim_head = dim_head
knn_attn_heads = default(knn_attn_heads, heads)
# xl memory hyperparameter
if xl_max_memories > 0:
xl_memory_layers = default(xl_memory_layers, tuple(range(1, depth + 1)))
xl_memory_layers = unique(xl_memory_layers)
self.xl_memory_layers = tuple(filter(lambda i: i in valid_layers, xl_memory_layers))
self.num_xl_memory_layers = len(self.xl_memory_layers)
else:
self.xl_memory_layers = tuple()
self.num_xl_memory_layers = 0
# knn memory hyperparameters
self.max_knn_memories = max_knn_memories
self.knn_memories_directory = knn_memories_directory
self.memorizing_layers = unique(memorizing_layers)
self.num_memory_layers = len(memorizing_layers)
self.clear_memories_on_sos_token_id = clear_memories_on_sos_token_id
self.clear_memories_on_eos_token_id = clear_memories_on_eos_token_id
# relative positional bias
self.rel_pos_bias = T5RelativePositionBias(scale = dim_head ** 0.5, heads = heads)
self.knn_rel_pos_bias = T5RelativePositionBias(scale = dim_head ** 0.5, heads = heads)
# layers
self.layers = nn.ModuleList([])
for idx in range(depth):
layer_num = idx + 1
use_xl_memories = layer_num in self.xl_memory_layers
use_knn_attention = layer_num in memorizing_layers
xl_max_memories_layer = 0 if not use_xl_memories else xl_max_memories
if use_knn_attention:
attn = KNNAttention(dim = dim, dim_head = dim_head, heads = knn_attn_heads, dropout = attn_dropout, num_retrieved_memories = num_retrieved_memories, xl_max_memories = xl_max_memories_layer)
else:
attn = Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout, xl_max_memories = xl_max_memories_layer)
self.layers.append(nn.ModuleList([
block_wrapper(attn),
block_wrapper(FeedForward(dim = dim, mult = ff_mult, dropout = ff_dropout)),
]))
# memory layer shifting
# from a little known paper https://arxiv.org/abs/2012.15688
self.shift_knn_memories_down = shift_knn_memories_down
self.shift_xl_memories_down = shift_xl_memories_down
# to logits
self.to_logits = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_tokens)
)
# knn memories init
self.knn_mem_kwargs = dict(
dim = self.dim_head,
max_memories = self.max_knn_memories,
multiprocessing = knn_memory_multiprocessing
)
def create_knn_memories(
self,
*,
batch_size
):
return KNNMemoryList.create_memories(
batch_size = batch_size,
num_memory_layers = self.num_memory_layers,
memories_directory = self.knn_memories_directory,
)(**self.knn_mem_kwargs)
@contextmanager
def knn_memories_context(
self,
**kwargs
):
knn_dir = Path(self.knn_memories_directory)
knn_dir.mkdir(exist_ok = True, parents = True)
lock = FileLock(str(knn_dir / 'mutex'))
with lock:
knn_memories = self.create_knn_memories(**kwargs)
yield knn_memories
knn_memories.cleanup()
def clear_memory(self, x, token_id):
""" clears the KNN memories based on if the batch row contains the specified token id """
""" for auto-clearing KNN memories based on start and end of strings """
clear_memory = (x == token_id).any(dim = -1)
batch_indices, _ = clear_memory.nonzero(as_tuple = True)
batch_indices_to_clear = batch_indices.tolist()
if len(batch_indices_to_clear) == 0:
return
knn_memories.clear_memory(batch_indices_to_clear)
def forward(
self,
x,
knn_memories,
xl_memories = None,
labels = None,
add_knn_memory = True
):
batch_size, seq_len, *_, device = *x.shape, x.device
x = self.token_emb(x)
# validate KNN memories to have enough indices for batch size
assert all([memory.num_indices == batch_size for memory in knn_memories]), f'you passed in an input with batch size {batch_size} but your memories were not instantiated with that number of KNN indices'
# if KNN memories are passed in, and researcher wants memories auto-cleared on <sos> token detection
# do the appropriate logic
if exists(self.clear_memories_on_sos_token_id):
self.clear_memory(x, self.clear_memories_on_sos_token_id)
# handle XL memories
xl_memories = default(xl_memories, (None,) * self.num_xl_memory_layers)
assert len(xl_memories) == self.num_xl_memory_layers
has_xl_memories = len(xl_memories) > 0
# shifting memories a number of layers down, little known technique shown to enhance memories from Ernie-Doc paper
if len(knn_memories) > 0 and self.shift_knn_memories_down > 0:
knn_memories = [*knn_memories[self.shift_knn_memories_down:], *knn_memories[:self.shift_knn_memories_down]]
if len(xl_memories) > 0 and self.shift_xl_memories_down > 0:
xl_memories = [*xl_memories[self.shift_xl_memories_down:], *xl_memories[:self.shift_xl_memories_down]]
# iterate through the memories in order of the ascending layers that contain KNNAttention
xl_memories_iter = iter(xl_memories)
knn_memories_iter = iter(knn_memories)
# positional bias
max_context_len = max([seq_len, *map(lambda t: (t.shape[-3] if exists(t) else 0) + seq_len, xl_memories)])
rel_pos_bias = self.rel_pos_bias(seq_len, max_context_len, device = device)
knn_rel_pos_bias = self.knn_rel_pos_bias(seq_len, max_context_len, device = device)
# keep track of new xl memories
new_xl_memories = [] if has_xl_memories else None
# go through all layers
for ind, (attn, ff) in enumerate(self.layers):
layer_num = ind + 1
is_memorizing_layer = layer_num in self.memorizing_layers
is_xl_memory_layer = layer_num in self.xl_memory_layers
attn_kwargs = dict(rel_pos_bias = rel_pos_bias if not is_memorizing_layer else knn_rel_pos_bias)
if is_memorizing_layer:
attn_kwargs = {**attn_kwargs, 'knn_memory': next(knn_memories_iter), 'add_knn_memory': add_knn_memory}
if is_xl_memory_layer:
attn_kwargs = {**attn_kwargs, 'xl_memory': next(xl_memories_iter)}
# attention
x, xl_mem = attn(x, **attn_kwargs)
# add new XL memories if needed
if exists(xl_mem):
new_xl_memories.append(xl_mem)
# feedforward
x = ff(x)
# to logits
logits = self.to_logits(x)
# auto-clear KNN memories on end of string token
if exists(self.clear_memories_on_eos_token_id):
self.clear_memory(x, self.clear_memories_on_eos_token_id)
# for training
if not exists(labels):
if exists(new_xl_memories):
return logits, new_xl_memories
return logits
loss = F.cross_entropy(rearrange(logits, 'b n c -> b c n'), labels, ignore_index = self.pad_id)
if exists(new_xl_memories):
return loss, new_xl_memories
return loss
| memorizing-transformers-pytorch-main | memorizing_transformers_pytorch/memorizing_transformers_pytorch.py |
import os
import math
import torch
import faiss
import numpy as np
from pathlib import Path
from functools import wraps
from contextlib import ExitStack, contextmanager
from einops import rearrange, pack, unpack
# multiprocessing
from joblib import Parallel, delayed, cpu_count
# constants
FAISS_INDEX_GPU_ID = int(os.getenv('FAISS_INDEX_GPU_ID', 0))
DEFAULT_KNN_MEMORY_MEMMAP_DIRECTORY = './.tmp/knn.memories'
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_list(val):
return val if isinstance(val, list) else [val]
def all_el_unique(arr):
return len(set(arr)) == len(arr)
@contextmanager
def multi_context(*cms):
with ExitStack() as stack:
yield [stack.enter_context(cls) for cls in cms]
def count_intersect(x, y):
# returns an array that shows how many times an element in x is contained in tensor y
return np.sum(rearrange(x, 'i -> i 1') == rearrange(y, 'j -> 1 j'), axis = -1)
def check_shape(tensor, pattern, **kwargs):
return rearrange(tensor, f"{pattern} -> {pattern}", **kwargs)
# a wrapper around faiss IndexIVFFlat
# taking care of expiring old keys automagically
class KNN():
def __init__(
self,
dim,
max_num_entries,
cap_num_entries = False,
M = 15,
keep_stats = False
):
index = faiss.IndexHNSWFlat(dim, M, faiss.METRIC_INNER_PRODUCT)
self.index = index
self.max_num_entries = max_num_entries
self.cap_num_entries = cap_num_entries
self.is_trained = False
self.keep_stats = keep_stats
self.reset()
def __del__(self):
if hasattr(self, 'index'):
del self.index
def reset(self):
self.ids = np.empty((0,), dtype = np.int32)
if self.keep_stats:
self.hits = np.empty((0,), dtype = np.int32)
self.age_num_iterations = np.empty((0,), dtype = np.int32)
self.ages_since_last_hit = np.empty((0,), dtype = np.int32)
self.index.reset()
self.is_trained = False
def train(self, x):
self.index.train(x)
self.is_trained = True
def add(self, x, ids):
if not self.is_trained:
self.train(x)
self.ids = np.concatenate((ids, self.ids))
if self.keep_stats:
self.hits = np.concatenate((np.zeros_like(ids), self.hits))
self.age_num_iterations = np.concatenate((np.zeros_like(ids), self.age_num_iterations))
self.ages_since_last_hit = np.concatenate((np.zeros_like(ids), self.ages_since_last_hit))
if self.cap_num_entries and len(self.ids) > self.max_num_entries:
self.reset()
return self.index.add(x)
def search(
self,
x,
topk,
nprobe = 8,
return_distances = False,
increment_hits = False,
increment_age = True
):
if not self.is_trained:
return np.full((x.shape[0], topk), -1)
distances, indices = self.index.search(x, k = topk)
if increment_hits and self.keep_stats:
hits = count_intersect(self.ids, rearrange(indices, '... -> (...)'))
self.hits += hits
self.ages_since_last_hit += 1
self.ages_since_last_hit *= (hits == 0)
if increment_age and self.keep_stats:
self.age_num_iterations += 1
if return_distances:
return indices, distances
return indices
# KNN memory layer, where one can store key / value memories
# can automatically take care of a collection of faiss indices (across batch dimension)
class KNNMemory():
def __init__(
self,
dim,
max_memories = 16000,
num_indices = 1,
memmap_filename = './knn.memory.memmap',
multiprocessing = True
):
self.dim = dim
self.num_indices = num_indices
self.scoped_indices = list(range(num_indices))
self.max_memories = max_memories
self.shape = (num_indices, max_memories, 2, dim)
self.db_offsets = np.zeros(num_indices, dtype = np.int32)
self.db = np.memmap(memmap_filename, mode = 'w+', dtype = np.float32, shape = self.shape)
self.knns = [KNN(dim = dim, max_num_entries = max_memories, cap_num_entries = True) for _ in range(num_indices)]
self.n_jobs = cpu_count() if multiprocessing else 1
def set_scoped_indices(self, indices):
indices = list(indices)
assert all_el_unique(indices), f'all scoped batch indices must be unique, received: {indices}'
assert all([0 <= i < self.num_indices for i in indices]), f'each batch index must be between 0 and less than {self.num_indices}: received {indices}'
self.scoped_indices = indices
@contextmanager
def at_batch_indices(self, indices):
prev_indices = self.scoped_indices
self.set_scoped_indices(indices)
yield self
self.set_scoped_indices(prev_indices)
def clear(self, batch_indices = None):
if not exists(batch_indices):
batch_indices = list(range(self.num_indices))
batch_indices = cast_list(batch_indices)
for index in batch_indices:
knn = self.knns[index]
knn.reset()
self.db_offsets[batch_indices] = 0
def add(self, memories):
check_shape(memories, 'b n kv d', d = self.dim, kv = 2, b = len(self.scoped_indices))
memories = memories.detach().cpu().numpy()
memories = memories[:, -self.max_memories:]
num_memories = memories.shape[1]
knn_insert_ids = np.arange(num_memories)
keys = np.ascontiguousarray(memories[..., 0, :])
knns = [self.knns[i] for i in self.scoped_indices]
db_offsets = [self.db_offsets[i] for i in self.scoped_indices]
# use joblib to insert new key / value memories into faiss index
@delayed
def knn_add(knn, key, db_offset):
knn.add(key, ids = knn_insert_ids + db_offset)
return knn
updated_knns = Parallel(n_jobs = self.n_jobs)(knn_add(*args) for args in zip(knns, keys, db_offsets))
for knn_idx, scoped_idx in enumerate(self.scoped_indices):
self.knns[scoped_idx] = updated_knns[knn_idx]
# add the new memories to the memmap "database"
add_indices = (rearrange(np.arange(num_memories), 'j -> 1 j') + rearrange(self.db_offsets[list(self.scoped_indices)], 'i -> i 1')) % self.max_memories
self.db[rearrange(np.array(self.scoped_indices), 'i -> i 1'), add_indices] = memories
self.db.flush()
self.db_offsets += num_memories
def search(
self,
queries,
topk,
nprobe = 8,
increment_hits = True,
increment_age = True
):
check_shape(queries, 'b ... d', d = self.dim, b = len(self.scoped_indices))
queries, ps = pack([queries], 'b * d')
device = queries.device
queries = queries.detach().cpu().numpy()
all_masks = []
all_key_values = []
knns = [self.knns[i] for i in self.scoped_indices]
# parallelize faiss search
@delayed
def knn_search(knn, query):
return knn.search(query, topk, nprobe, increment_hits = increment_hits, increment_age = increment_age)
fetched_indices = Parallel(n_jobs = self.n_jobs)(knn_search(*args) for args in zip(knns, queries))
# get all the memory key / values from memmap 'database'
# todo - remove for loop below
for batch_index, indices in zip(self.scoped_indices, fetched_indices):
mask = indices != -1
db_indices = np.where(mask, indices, 0)
all_masks.append(torch.from_numpy(mask))
key_values = self.db[batch_index, db_indices % self.max_memories]
all_key_values.append(torch.from_numpy(key_values))
all_masks = torch.stack(all_masks)
all_key_values = torch.stack(all_key_values)
all_key_values = all_key_values.masked_fill(~rearrange(all_masks, '... -> ... 1 1'), 0.)
all_key_values, = unpack(all_key_values, ps, 'b * n kv d')
all_masks, = unpack(all_masks, ps, 'b * n')
return all_key_values.to(device), all_masks.to(device)
def __del__(self):
if hasattr(self, 'knns'):
for knn in self.knns:
del knn
del self.db
# extends list with some extra methods for collections of KNN memories
class KNNMemoryList(list):
def cleanup(self):
for memory in self:
del memory
@classmethod
def create_memories(
self,
*,
batch_size,
num_memory_layers,
memories_directory = DEFAULT_KNN_MEMORY_MEMMAP_DIRECTORY
):
memories_path = Path(memories_directory)
memories_path.mkdir(exist_ok = True, parents = True)
def inner(*args, **kwargs):
return self([KNNMemory(*args, num_indices = batch_size, memmap_filename = str(memories_path / f'knn.memory.layer.{ind + 1}.memmap'), **kwargs) for ind in range(num_memory_layers)])
return inner
@contextmanager
def at_batch_indices(
self,
indices
):
knn_batch_indices_contexts = [memory.at_batch_indices(indices) for memory in self]
with multi_context(*knn_batch_indices_contexts):
yield
def clear_memory(
self,
batch_indices = None,
memory_indices = None
):
memory_indices = default(memory_indices, tuple(range(len(self))))
for memory_index in memory_indices:
memory = self[memory_index]
memory.clear(batch_indices)
| memorizing-transformers-pytorch-main | memorizing_transformers_pytorch/knn_memory.py |
from setuptools import setup, find_packages
setup(
name = 'segformer-pytorch',
packages = find_packages(),
version = '0.0.6',
license='MIT',
description = 'Segformer - Pytorch',
author = 'Phil Wang',
author_email = '[email protected]',
url = 'https://github.com/lucidrains/segformer-pytorch',
keywords = [
'artificial intelligence',
'deep learning',
'transformers',
'image segmentation'
],
install_requires=[
'einops>=0.3',
'torch>=1.6'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
| segformer-pytorch-main | setup.py |
from segformer_pytorch.segformer_pytorch import Segformer
| segformer-pytorch-main | segformer_pytorch/__init__.py |
from math import sqrt
from functools import partial
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, reduce
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else (val,) * depth
# classes
class DsConv2d(nn.Module):
def __init__(self, dim_in, dim_out, kernel_size, padding, stride = 1, bias = True):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias),
nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias)
)
def forward(self, x):
return self.net(x)
class LayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt()
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (std + self.eps) * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.fn = fn
self.norm = LayerNorm(dim)
def forward(self, x):
return self.fn(self.norm(x))
class EfficientSelfAttention(nn.Module):
def __init__(
self,
*,
dim,
heads,
reduction_ratio
):
super().__init__()
self.scale = (dim // heads) ** -0.5
self.heads = heads
self.to_q = nn.Conv2d(dim, dim, 1, bias = False)
self.to_kv = nn.Conv2d(dim, dim * 2, reduction_ratio, stride = reduction_ratio, bias = False)
self.to_out = nn.Conv2d(dim, dim, 1, bias = False)
def forward(self, x):
h, w = x.shape[-2:]
heads = self.heads
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = 1))
q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> (b h) (x y) c', h = heads), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
attn = sim.softmax(dim = -1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) (x y) c -> b (h c) x y', h = heads, x = h, y = w)
return self.to_out(out)
class MixFeedForward(nn.Module):
def __init__(
self,
*,
dim,
expansion_factor
):
super().__init__()
hidden_dim = dim * expansion_factor
self.net = nn.Sequential(
nn.Conv2d(dim, hidden_dim, 1),
DsConv2d(hidden_dim, hidden_dim, 3, padding = 1),
nn.GELU(),
nn.Conv2d(hidden_dim, dim, 1)
)
def forward(self, x):
return self.net(x)
class MiT(nn.Module):
def __init__(
self,
*,
channels,
dims,
heads,
ff_expansion,
reduction_ratio,
num_layers
):
super().__init__()
stage_kernel_stride_pad = ((7, 4, 3), (3, 2, 1), (3, 2, 1), (3, 2, 1))
dims = (channels, *dims)
dim_pairs = list(zip(dims[:-1], dims[1:]))
self.stages = nn.ModuleList([])
for (dim_in, dim_out), (kernel, stride, padding), num_layers, ff_expansion, heads, reduction_ratio in zip(dim_pairs, stage_kernel_stride_pad, num_layers, ff_expansion, heads, reduction_ratio):
get_overlap_patches = nn.Unfold(kernel, stride = stride, padding = padding)
overlap_patch_embed = nn.Conv2d(dim_in * kernel ** 2, dim_out, 1)
layers = nn.ModuleList([])
for _ in range(num_layers):
layers.append(nn.ModuleList([
PreNorm(dim_out, EfficientSelfAttention(dim = dim_out, heads = heads, reduction_ratio = reduction_ratio)),
PreNorm(dim_out, MixFeedForward(dim = dim_out, expansion_factor = ff_expansion)),
]))
self.stages.append(nn.ModuleList([
get_overlap_patches,
overlap_patch_embed,
layers
]))
def forward(
self,
x,
return_layer_outputs = False
):
h, w = x.shape[-2:]
layer_outputs = []
for (get_overlap_patches, overlap_embed, layers) in self.stages:
x = get_overlap_patches(x)
num_patches = x.shape[-1]
ratio = int(sqrt((h * w) / num_patches))
x = rearrange(x, 'b c (h w) -> b c h w', h = h // ratio)
x = overlap_embed(x)
for (attn, ff) in layers:
x = attn(x) + x
x = ff(x) + x
layer_outputs.append(x)
ret = x if not return_layer_outputs else layer_outputs
return ret
class Segformer(nn.Module):
def __init__(
self,
*,
dims = (32, 64, 160, 256),
heads = (1, 2, 5, 8),
ff_expansion = (8, 8, 4, 4),
reduction_ratio = (8, 4, 2, 1),
num_layers = 2,
channels = 3,
decoder_dim = 256,
num_classes = 4
):
super().__init__()
dims, heads, ff_expansion, reduction_ratio, num_layers = map(partial(cast_tuple, depth = 4), (dims, heads, ff_expansion, reduction_ratio, num_layers))
assert all([*map(lambda t: len(t) == 4, (dims, heads, ff_expansion, reduction_ratio, num_layers))]), 'only four stages are allowed, all keyword arguments must be either a single value or a tuple of 4 values'
self.mit = MiT(
channels = channels,
dims = dims,
heads = heads,
ff_expansion = ff_expansion,
reduction_ratio = reduction_ratio,
num_layers = num_layers
)
self.to_fused = nn.ModuleList([nn.Sequential(
nn.Conv2d(dim, decoder_dim, 1),
nn.Upsample(scale_factor = 2 ** i)
) for i, dim in enumerate(dims)])
self.to_segmentation = nn.Sequential(
nn.Conv2d(4 * decoder_dim, decoder_dim, 1),
nn.Conv2d(decoder_dim, num_classes, 1),
)
def forward(self, x):
layer_outputs = self.mit(x, return_layer_outputs = True)
fused = [to_fused(output) for output, to_fused in zip(layer_outputs, self.to_fused)]
fused = torch.cat(fused, dim = 1)
return self.to_segmentation(fused)
| segformer-pytorch-main | segformer_pytorch/segformer_pytorch.py |
from setuptools import setup, find_packages
exec(open('equiformer_pytorch/version.py').read())
setup(
name = 'equiformer-pytorch',
packages = find_packages(exclude=[]),
version = __version__,
license='MIT',
description = 'Equiformer - SE3/E3 Graph Attention Transformer for Molecules and Proteins',
author = 'Phil Wang',
author_email = '[email protected]',
long_description_content_type = 'text/markdown',
url = 'https://github.com/lucidrains/equiformer-pytorch',
keywords = [
'artificial intelligence',
'deep learning',
'transformers',
'attention mechanism',
'equivariance',
'molecules',
'proteins'
],
install_requires=[
'beartype',
'einops>=0.6',
'filelock',
'opt-einsum',
'torch>=1.6',
],
setup_requires=[
'pytest-runner',
],
tests_require=[
'pytest'
],
include_package_data = True,
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
| equiformer-pytorch-main | setup.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.