python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# Test for gaussian kernel operation using LazyTensors. import time import math import torch from pykeops.torch import LazyTensor M, N, D, DV = 200, 300, 300, 1 dtype = torch.float32 sum_scheme = "block_sum" device_id = "cuda:0" if torch.cuda.is_available() else "cpu" do_warmup = False x = torch.rand(M, 1, D, device=device_id, dtype=dtype) / math.sqrt(D) y = torch.rand(1, N, D, device=device_id, dtype=dtype) / math.sqrt(D) b = torch.randn(N, DV, device=device_id, dtype=dtype) def fun(x, y, b, backend): if "keops" in backend: x = LazyTensor(x) y = LazyTensor(y) Dxy = ((x - y).square()).sum(dim=2) Kxy = (-Dxy).exp() if "keops" in backend: out = Kxy.__matmul__(b, sum_scheme=sum_scheme) else: out = Kxy @ b if device_id != "cpu": torch.cuda.synchronize() # print("out:",out) return out backends = ["keops", "torch"] out = [] for backend in backends: if do_warmup: fun( x[: min(M, 100), :, :], y[:, : min(N, 100), :], b[: min(N, 100), :], backend ) fun( x[: min(M, 100), :, :], y[:, : min(N, 100), :], b[: min(N, 100), :], backend ) start = time.time() out.append(fun(x, y, b, backend).squeeze()) end = time.time() print("time for " + backend + ":", end - start) if len(out) > 1: print("relative error:", (torch.norm(out[0] - out[1]) / torch.norm(out[0])).item())
keops-main
keopscore/keopscore/sandbox/chunks.py
import time import math import numpy as np from pykeops.numpy import LazyTensor, ComplexLazyTensor M, N, D = 1000, 1000, 3 dtype = "float32" do_warmup = False x = np.random.rand(M, 1, D).astype(dtype) + 1j * np.random.rand(M, 1, D).astype(dtype) y = np.random.rand(1, N, D).astype(dtype) + 1j * np.random.rand(1, N, D).astype(dtype) a = -1.23 b = 1.54 def view_as_real(x): if x.dtype == complex: return torch.view_as_real(x) else: return x def fun(x, y, a, b, backend): if backend == "keops": x = LazyTensor(x) y = LazyTensor(y) conj = ComplexLazyTensor.conj angle = ComplexLazyTensor.angle else: conj = np.conj angle = np.angle Kxy = ((x * y) * y.real + x + x.real).sum(axis=2) return Kxy.sum(axis=0) backends = ["numpy", "keops"] out = [] for backend in backends: if do_warmup: fun(x[: min(M, 100), :, :], y[:, : min(N, 100), :], a, b, backend) fun(x[: min(M, 100), :, :], y[:, : min(N, 100), :], a, b, backend) start = time.time() out.append(fun(x, y, a, b, backend).squeeze()) end = time.time() print("time for " + backend + ":", end - start) if len(out) > 1: # print(out[0]) # print(out[1]) print( "relative error:", ( np.linalg.norm((out[0] - out[1]).view("float")) / np.linalg.norm((out[0]).view("float")) ).item(), )
keops-main
keopscore/keopscore/sandbox/complex_numpy.py
# Test for gaussian kernel operation using LazyTensors. import time import math import torch import numpy as np from pykeops.numpy import LazyTensor M, N, D, DV = 3000, 2000, 3, 1 dtype = np.float32 do_warmup = False x = np.random.rand(M, 1, D).astype(dtype) / math.sqrt(D) y = np.random.rand(1, N, D).astype(dtype) / math.sqrt(D) b = np.random.randn(N, DV).astype(dtype) a = np.empty((M, DV), dtype=dtype) def fun(x, y, b, backend, out=None): if "keops" in backend: x = LazyTensor(x) y = LazyTensor(y) Dxy = ((x - y)).sum(axis=2) if backend == "keops": Kxy = (-Dxy).exp() out = Kxy.__matmul__(b, out=out) else: Kxy = np.exp(-Dxy) out = Kxy @ b return out backends = ["keops", "numpy"] out = [] for backend in backends: if do_warmup: fun( x[: min(M, 100), :, :], y[:, : min(N, 100), :], b[: min(N, 100), :], backend ) fun( x[: min(M, 100), :, :], y[:, : min(N, 100), :], b[: min(N, 100), :], backend ) start = time.time() out.append(fun(x, y, b, backend, out=a).squeeze()) end = time.time() print("time for " + backend + ":", end - start) if len(out) > 1: print("relative error:", (np.linalg.norm(out[0] - out[1]) / np.linalg.norm(out[0])))
keops-main
keopscore/keopscore/sandbox/lazytensor_gaussian_numpy_inplace.py
keops-main
keopscore/keopscore/binders/__init__.py
import os import keopscore.config.config from keopscore.config.config import get_build_folder from keopscore.utils.code_gen_utils import get_hash_name from keopscore.utils.misc_utils import KeOps_Error, KeOps_Message from keopscore.config.config import cpp_flags class LinkCompile: """ Base class for compiling the map_reduce schemes and providing the dll to KeOps bindings. """ def __init__(self): # N.B. Here self is assumed to be populated by the __init__ of one of the MapReduce classes # we create the hash string id corresponding to all parameters, e.g. 7b9a611f7e self.gencode_filename = get_hash_name( type(self), self.red_formula_string, self.aliases, self.nargs, self.dtype, self.dtypeacc, self.sum_scheme_string, self.tagHostDevice, self.tagCpuGpu, self.tag1D2D, self.use_half, self.device_id, cpp_flags, ) # info_file is the name of the file that will contain some meta-information required by the bindings, e.g. 7b9a611f7e.nfo self.info_file = os.path.join( get_build_folder(), self.gencode_filename + ".nfo" ) # gencode_file is the name of the source file to be created and then compiled, e.g. 7b9a611f7e.cpp or 7b9a611f7e.cu self.gencode_file = os.path.join( get_build_folder(), self.gencode_filename + "." + self.source_code_extension, ) def save_info(self): # create info_file to save some parameters : dim (dimension of output vectors), # tagI (O or 1, reduction over i or j indices), # dimy (sum of dimensions of j-indexed vectors) f = open(self.info_file, "w") f.write( f"red_formula={self.red_formula_string}\ndim={self.dim}\ntagI={self.tagI}\ndimy={self.dimy}" ) f.close() def read_info(self): # read info_file to retreive dim, tagI, dimy f = open(self.info_file, "r") string = f.read() f.close() tmp = string.split("\n") if len(tmp) != 4: KeOps_Error("Incorrect info file") tmp_dim, tmp_tag, tmp_dimy = ( tmp[1].split("="), tmp[2].split("="), tmp[3].split("="), ) if ( len(tmp_dim) != 2 or tmp_dim[0] != "dim" or len(tmp_tag) != 2 or tmp_tag[0] != "tagI" or len(tmp_dimy) != 2 or tmp_dimy[0] != "dimy" ): KeOps_Error("Incorrect info file") self.dim = eval(tmp_dim[1]) self.tagI = eval(tmp_tag[1]) self.dimy = eval(tmp_dimy[1]) def write_code(self): # write the generated code in the source file ; this is used as a subfunction of compile_code f = open(self.gencode_file, "w") f.write(self.code) f.close() def generate_code(self): pass def get_dll_and_params(self): # main method of the class : it generates - if needed - the code and returns the name of the dll to be run for # performing the reduction, e.g. 7b9a611f7e.so, or in the case of JIT compilation, the name of the main KeOps dll, # and the name of the assembly code file. if not os.path.exists(self.file_to_check): KeOps_Message( "Generating code for formula " + self.red_formula.__str__() + " ... ", flush=True, end="", ) self.generate_code() self.save_info() KeOps_Message("OK", use_tag=False, flush=True) else: self.read_info() return dict( tag=self.gencode_filename, source_file=self.true_dllname, low_level_code_file=self.low_level_code_file, tagI=self.tagI, use_half=self.use_half, tag1D2D=self.tag1D2D, dimred=self.red_formula.dimred, dim=self.dim, dimy=self.dimy, indsi=self.varloader.indsi, indsj=self.varloader.indsj, indsp=self.varloader.indsp, dimsx=self.varloader.dimsx, dimsy=self.varloader.dimsy, dimsp=self.varloader.dimsp, )
keops-main
keopscore/keopscore/binders/LinkCompile.py
keops-main
keopscore/keopscore/binders/nvrtc/__init__.py
import os from ctypes import create_string_buffer, CDLL, c_int from os import RTLD_LAZY import sysconfig from keopscore.binders.LinkCompile import LinkCompile import keopscore.config from keopscore.config.config import ( cuda_version, jit_binary, cxx_compiler, nvrtc_flags, nvrtc_include, jit_source_file, cuda_available, get_build_folder, ) from keopscore.utils.misc_utils import KeOps_Error, KeOps_Message, KeOps_OS_Run from keopscore.utils.gpu_utils import get_gpu_props, cuda_include_fp16_path jit_compile_src = os.path.join( os.path.abspath(os.path.dirname(__file__)), "nvrtc_jit.cpp" ) def jit_compile_dll(): return os.path.join( get_build_folder(), "nvrtc_jit" + sysconfig.get_config_var("SHLIB_SUFFIX"), ) class Gpu_link_compile(LinkCompile): source_code_extension = "cu" low_level_code_prefix = "cubin_" if cuda_version >= 11010 else "ptx_" ngpu, gpu_props_compile_flags = get_gpu_props() def __init__(self): # checking that the system has a Gpu : if not (cuda_available and Gpu_link_compile.ngpu): KeOps_Error( "Trying to compile cuda code... but we detected that the system has no properly configured cuda lib." ) LinkCompile.__init__(self) # these are used for JIT compiling mode # low_level_code_file is filename of low level code (PTX for Cuda) or binary (CUBIN for Cuda) # generated by the JIT compiler, e.g. ptx_7b9a611f7e self.low_level_code_file = os.path.join( get_build_folder(), self.low_level_code_prefix + self.gencode_filename, ).encode("utf-8") self.my_c_dll = CDLL(jit_compile_dll(), mode=RTLD_LAZY) # actual dll to be called is the jit binary, TODO: check if this is relevent self.true_dllname = jit_binary # file to check for existence to detect compilation is needed self.file_to_check = self.low_level_code_file def generate_code(self): # method to generate the code and compile it # generate the code and save it in self.code, by calling get_code method from GpuReduc class : self.get_code() # write the code in the source file self.write_code() # we execute the main dll, passing the code as argument, and the name of the low level code file to save the assembly instructions self.my_c_dll.Compile( create_string_buffer(self.low_level_code_file), create_string_buffer(self.code.encode("utf-8")), c_int(self.use_half), c_int(self.device_id), create_string_buffer( (cuda_include_fp16_path() + os.path.sep).encode("utf-8") ), ) # retreive some parameters that will be saved into info_file. self.tagI = self.red_formula.tagI self.dim = self.red_formula.dim @staticmethod def get_compile_command( sourcename=jit_source_file, dllname=jit_binary, extra_flags="" ): # This is about the main KeOps binary (dll) that will be used to JIT compile all formulas. # If the dll is not present, it compiles it from source, except if check_compile is False. target_tag = ( "CUBIN" if Gpu_link_compile.low_level_code_prefix == "cubin_" else "PTX" ) nvrtcGetTARGET = "nvrtcGet" + target_tag nvrtcGetTARGETSize = nvrtcGetTARGET + "Size" arch_tag = ( '\\"sm\\"' if Gpu_link_compile.low_level_code_prefix == "cubin_" else '\\"compute\\"' ) target_type_define = f"-DnvrtcGetTARGET={nvrtcGetTARGET} -DnvrtcGetTARGETSize={nvrtcGetTARGETSize} -DARCHTAG={arch_tag}" return f"{cxx_compiler} {nvrtc_flags} {extra_flags} {target_type_define} {nvrtc_include} {Gpu_link_compile.gpu_props_compile_flags} {sourcename} -o {dllname}" @staticmethod def compile_jit_compile_dll(): KeOps_Message("Compiling cuda jit compiler engine ... ", flush=True, end="") KeOps_OS_Run( Gpu_link_compile.get_compile_command( sourcename=jit_compile_src, dllname=jit_compile_dll(), ), ) KeOps_Message("OK", use_tag=False, flush=True)
keops-main
keopscore/keopscore/binders/nvrtc/Gpu_link_compile.py
from keopscore.binders.LinkCompile import LinkCompile class Cpu_link_compile(LinkCompile): source_code_extension = "cpp" def __init__(self): LinkCompile.__init__(self) # these are used for command line compiling mode self.low_level_code_file = "".encode("utf-8") # actual dll to be called self.true_dllname = self.gencode_file # file to check for existence to detect compilation is needed self.file_to_check = self.gencode_file def generate_code(self): # method to generate the code and compile it # generate the code and save it in self.code, by calling get_code method from CpuReduc class : self.get_code() # write the code in the source file self.write_code() # retreive some parameters that will be saved into info_file. self.tagI = self.red_formula.tagI self.dim = self.red_formula.dim
keops-main
keopscore/keopscore/binders/cpp/Cpu_link_compile.py
keops-main
keopscore/keopscore/binders/cpp/__init__.py
from keopscore.config.chunks import dimchunk from keopscore.utils.code_gen_utils import GetDims, GetInds, Var_loader class Chunk_Mode_Constants: def __init__(self, red_formula): varloader = Var_loader(red_formula) self.red_formula = red_formula self.dimred = red_formula.dimred # dimension of reduction operation self.dimsp = varloader.dimsp # dimensions of parameters variables self.indsp = varloader.indsp self.dimp = varloader.dimp self.dimout = ( red_formula.dim ) # dimension of output variable of reduction operation formula = red_formula.formula self.dimfout = formula.dim # dimension of output variable of inner function chunked_formula = formula.chunked_formulas(dimchunk)[0] self.dim_org = chunked_formula["dim_org"] self.nchunks = 1 + (self.dim_org - 1) // dimchunk self.dimlastchunk = self.dim_org - (self.nchunks - 1) * dimchunk self.nminargs = varloader.nminargs self.fun_chunked = chunked_formula["formula"] self.dimout_chunk = self.fun_chunked.dim self.varsi_chunked = self.fun_chunked.chunked_vars(red_formula.tagI) self.dimsx_chunked = GetDims(self.varsi_chunked) self.indsi_chunked = GetInds(self.varsi_chunked) self.varsj_chunked = self.fun_chunked.chunked_vars(red_formula.tagJ) self.dimsy_chunked = GetDims(self.varsj_chunked) self.indsj_chunked = GetInds(self.varsj_chunked) self.fun_postchunk = formula.post_chunk_formula(self.nminargs) self.varsi_postchunk = self.fun_postchunk.Vars(red_formula.tagI) self.dimsx_postchunk = GetDims(self.varsi_postchunk) self.indsi_postchunk = GetInds(self.varsi_postchunk) self.varsj_postchunk = self.fun_postchunk.Vars(red_formula.tagJ) self.dimsy_postchunk = GetDims(self.varsj_postchunk) self.indsj_postchunk = GetInds(self.varsj_postchunk) self.varsi_notchunked = list( set.union( set(self.varsi_postchunk), set(self.fun_chunked.notchunked_vars(red_formula.tagI)), ) ) # Here we detect if chunked variables are also used in the postchunk formula # Currently the code in GpuReduc1D_chunks.py does not handle this case, so # we will use the "chunk_postchunk_mix" tag defined below # in get_keops_dll to disable the chunked mode for the formula. self.chunk_postchunk_mix = ( len(set.intersection(set(self.indsi_postchunk), set(self.indsi_chunked))) + len(set.intersection(set(self.indsj_postchunk), set(self.indsj_chunked))) ) > 0 self.indsi_notchunked = GetInds(self.varsi_notchunked) self.dimsx_notchunked = GetDims(self.varsi_notchunked) self.dimx_notchunked = sum(self.dimsx_notchunked) self.varsj_notchunked = list( set.union( set(self.varsj_postchunk), set(self.fun_chunked.notchunked_vars(red_formula.tagJ)), ) ) self.indsj_notchunked = GetInds(self.varsj_notchunked) self.dimsy_notchunked = GetDims(self.varsj_notchunked) self.dimy_notchunked = sum(self.dimsy_notchunked) self.fun_lastchunked = formula.chunked_formulas(self.dimlastchunk)[0]["formula"] self.varsi_lastchunked = self.fun_lastchunked.chunked_vars(red_formula.tagI) self.indsi_lastchunked = GetInds(self.varsi_lastchunked) self.dimsx_lastchunked = GetDims(self.varsi_lastchunked) self.varsj_lastchunked = self.fun_lastchunked.chunked_vars(red_formula.tagJ) self.indsj_lastchunked = GetInds(self.varsj_lastchunked) self.dimsy_lastchunked = GetDims(self.varsj_lastchunked) self.varsi = [*self.varsi_notchunked, *self.varsi_chunked] self.dimsx = GetDims(self.varsi) self.indsi = GetInds(self.varsi) self.dimx = sum(self.dimsx) self.varsj = [*self.varsj_notchunked, *self.varsj_chunked] self.dimsy = GetDims(self.varsj) self.indsj = GetInds(self.varsj) self.dimy = sum(self.dimsy) self.inds = [*self.indsi, *self.indsj, *self.indsp] self.varsi_last = [*self.varsi_notchunked, *self.varsi_lastchunked] self.indsi_last = GetInds(self.varsi_last) self.dimsx_last = GetDims(self.varsi_last) self.varsj_last = [*self.varsj_notchunked, *self.varsj_lastchunked] self.indsj_last = GetInds(self.varsj_last) self.dimsy_last = GetDims(self.varsj_last)
keops-main
keopscore/keopscore/mapreduce/Chunk_Mode_Constants.py
from .cpu import * from ..config.config import use_cuda if use_cuda: from .gpu import *
keops-main
keopscore/keopscore/mapreduce/__init__.py
from keopscore.formulas.reductions import * from keopscore.formulas.GetReduction import GetReduction from keopscore.utils.code_gen_utils import Var_loader, new_c_varname, pointer, c_include class MapReduce: """ base class for map-reduce schemes """ def __init__( self, red_formula_string, aliases, nargs, dtype, dtypeacc, sum_scheme_string, tagHostDevice, tagCpuGpu, tag1D2D, use_half, device_id, ): self.red_formula_string = red_formula_string self.aliases = aliases self.red_formula = GetReduction(red_formula_string, aliases=aliases) self.dtype = dtype self.dtypeacc = dtypeacc self.nargs = nargs self.sum_scheme_string = sum_scheme_string self.tagHostDevice, self.tagCpuGpu, self.tag1D2D = ( tagHostDevice, tagCpuGpu, tag1D2D, ) self.use_half = use_half self.device_id = device_id self.varloader = Var_loader(self.red_formula) def get_code(self): self.headers = "#define C_CONTIGUOUS 1\n" if self.use_half == 1: self.headers += "#define USE_HALF 1\n" self.headers += c_include("cuda_fp16.h") else: self.headers += "#define USE_HALF 0\n" red_formula = self.red_formula formula = red_formula.formula dtype = self.dtype dtypeacc = self.dtypeacc nargs = self.nargs self.sum_scheme = eval(self.sum_scheme_string)(red_formula, dtype) self.i = i = c_variable("int", "i") self.j = j = c_variable("int", "j") nx = c_variable("int", "nx") ny = c_variable("int", "ny") self.xi = c_array(dtype, self.varloader.dimx, "xi") self.param_loc = c_array(dtype, self.varloader.dimp, "param_loc") argname = new_c_varname("arg") self.arg = c_variable(pointer(pointer(dtype)), argname) self.args = [self.arg[k] for k in range(nargs)] self.acc = c_array(dtypeacc, red_formula.dimred, "acc") self.acctmp = c_array(dtypeacc, red_formula.dimred, "acctmp") self.fout = c_array(dtype, formula.dim, "fout") self.outi = c_array(dtype, red_formula.dim, f"(out + i * {red_formula.dim})")
keops-main
keopscore/keopscore/mapreduce/MapReduce.py
from .GpuAssignZero import GpuAssignZero from .GpuReduc1D import GpuReduc1D from .GpuReduc1D_chunks import GpuReduc1D_chunks from .GpuReduc1D_finalchunks import GpuReduc1D_finalchunks from .GpuReduc1D_ranges import GpuReduc1D_ranges from .GpuReduc1D_ranges_chunks import GpuReduc1D_ranges_chunks from .GpuReduc1D_ranges_finalchunks import ( GpuReduc1D_ranges_finalchunks, ) from .GpuReduc2D import GpuReduc2D
keops-main
keopscore/keopscore/mapreduce/gpu/__init__.py
from keopscore import cuda_block_size from keopscore.config.chunks import dimfinalchunk from keopscore.binders.nvrtc.Gpu_link_compile import Gpu_link_compile from keopscore.formulas.reductions.Sum_Reduction import Sum_Reduction from keopscore.formulas.reductions.sum_schemes import * from keopscore.mapreduce.gpu.GpuAssignZero import GpuAssignZero from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import ( load_vars, load_vars_chunks, load_vars_chunks_offsets, sizeof, pointer, Var_loader, use_pragma_unroll, ) from keopscore.utils.misc_utils import KeOps_Error def do_finalchunk_sub_ranges( dtype, fun_global, varfinal, dimfinalchunk_curr, acc, i, j, jstart, start_y, chunk, end_x, end_y, nbatchdims, indices_j, arg, fout, yj, out, ): dimout = varfinal.dim yjloc = c_variable(pointer(dtype), f"({yj.id} + threadIdx.x * {dimfinalchunk})") indsj_global = Var_loader(fun_global).indsj load_chunks_routine_j = load_vars_chunks( [varfinal.ind], dimfinalchunk, dimfinalchunk_curr, varfinal.dim, yjloc, arg, chunk, row_index=j, ) load_chunks_routine_j_ranges = load_vars_chunks_offsets( [varfinal.ind], indsj_global, dimfinalchunk, dimfinalchunk_curr, varfinal.dim, yjloc, arg, chunk, indices_j, row_index=j - start_y, ) return f""" {acc.assign(c_zero_float)} {dtype} *yjrel = yj; if ({j.id} < {end_y.id}) {{ // we load yj from device global memory only if j<end_y if ({nbatchdims.id}==0) {{ {load_chunks_routine_j} }} else {{ {load_chunks_routine_j_ranges} }} }} __syncthreads(); for (int jrel = 0; (jrel < blockDim.x) && (jrel < {end_y.id} - {jstart.id}); jrel++, yjrel += {dimfinalchunk}) {{ if ({i.id} < {end_x.id}) {{ // we compute only if needed {use_pragma_unroll()} for (int k=0; k<{dimfinalchunk_curr}; k++) {{ {acc.id}[k] += yjrel[k] * fout[jrel]; }} }} __syncthreads(); }} if ({i.id} < {end_x.id}) {{ {use_pragma_unroll()} for (int k=0; k<{dimfinalchunk_curr}; k++) {out.id}[i*{dimout}+{chunk.id}*{dimfinalchunk}+k] += {acc.id}[k]; }} __syncthreads(); """ class GpuReduc1D_ranges_finalchunks(MapReduce, Gpu_link_compile): # class for generating the final C++ code, Gpu version AssignZero = GpuAssignZero def __init__(self, *args): MapReduce.__init__(self, *args) Gpu_link_compile.__init__(self) def get_code(self): super().get_code() dtype = self.dtype dtypeacc = self.dtypeacc i = self.i j = self.j nx = c_variable("int", "nx") ny = c_variable("int", "ny") jstart = c_variable("int", "jstart") chunk = c_variable("int", "chunk") arg = self.arg args = self.args yj = c_variable(pointer(dtype), "yj") out = c_variable(pointer(dtype), "out") fun_internal = Sum_Reduction( self.red_formula.formula.children[0], self.red_formula.tagI ) formula = fun_internal.formula varfinal = self.red_formula.formula.children[1] nchunks = 1 + (varfinal.dim - 1) // dimfinalchunk dimlastfinalchunk = varfinal.dim - (nchunks - 1) * dimfinalchunk varloader = Var_loader(fun_internal) dimsx = varloader.dimsx dimsy = varloader.dimsy dimsp = varloader.dimsp indsi = varloader.indsi indsj = varloader.indsj indsp = varloader.indsp dimx = sum(dimsx) dimy = sum(dimsy) dimp = sum(dimsp) dimout = varfinal.dim dimfout = fun_internal.formula.dim if dimfout != 1: KeOps_Error("dimfout should be 1") sum_scheme = self.sum_scheme self.dimy = max(dimfinalchunk, dimy) blocksize_chunks = min( cuda_block_size, 1024, 49152 // max(1, self.dimy * sizeof(self.dtype)) ) if not isinstance(sum_scheme, block_sum): KeOps_Error("only block_sum available") param_loc = c_array(dtype, dimp, "param_loc") fout = c_array(dtype, dimfout * blocksize_chunks, "fout") xi = c_array(dtype, dimx, "xi") acc = c_array(dtypeacc, dimfinalchunk, "acc") yjloc = c_array(dtype, dimy, f"(yj + threadIdx.x * {dimy})") foutjrel = c_array(dtype, dimfout, f"({fout.id}+jrel*{dimfout})") yjrel = c_array(dtype, dimy, "yjrel") table = varloader.table(xi, yjrel, param_loc) lastchunk = c_variable("int", f"{nchunks-1}") startx = c_variable("int", "start_x") starty = c_variable("int", "start_y") end_x = c_variable("int", "end_x") end_y = c_variable("int", "end_y") nbatchdims = c_variable("int", "nbatchdims") fun_global = self.red_formula varloader_global = Var_loader(fun_global) indsi_global = varloader_global.indsi indsj_global = varloader_global.indsj nvarsi_global, nvarsj_global, nvarsp_global = ( len(varloader_global.Varsi), len(varloader_global.Varsj), len(varloader_global.Varsp), ) nvars_global = nvarsi_global + nvarsj_global + nvarsp_global offsets = c_array("int", nvars_global, "offsets") indices_i = c_array("int", nvarsi_global, "indices_i") indices_j = c_array("int", nvarsj_global, "indices_j") indices_p = c_array("int", nvarsp_global, "indices_p") declare_assign_indices_i = ( "int *indices_i = offsets;" if nvarsi_global > 0 else "" ) declare_assign_indices_j = ( f"int *indices_j = offsets + {nvarsi_global};" if nvarsj_global > 0 else "" ) declare_assign_indices_p = ( f"int *indices_p = offsets + {nvarsi_global} + {nvarsj_global};" if nvarsp_global > 0 else "" ) chunk_sub_routine = do_finalchunk_sub_ranges( dtype, fun_global, varfinal, dimfinalchunk, acc, i, j, jstart, starty, chunk, end_x, end_y, nbatchdims, indices_j, arg, fout, yj, out, ) chunk_sub_routine_last = do_finalchunk_sub_ranges( dtype, fun_global, varfinal, dimlastfinalchunk, acc, i, j, jstart, starty, lastchunk, end_x, end_y, nbatchdims, indices_j, arg, fout, yj, out, ) threadIdx_x = c_variable("int", "threadIdx.x") self.code = f""" {self.headers} extern "C" __global__ void GpuConv1DOnDevice_ranges(int nx, int ny, int nbatchdims, int *offsets_d, int *lookup_d, int *slices_x, int *ranges_y, {dtype} *out, {dtype} **{arg.id}) {{ {offsets.declare()} {declare_assign_indices_i} {declare_assign_indices_j} {declare_assign_indices_p} if (nbatchdims > 0) {{ for (int k = 0; k < {nvars_global}; k++) {{ offsets[k] = offsets_d[ {nvars_global} * blockIdx.x + k ]; }} }} // Retrieve our position along the laaaaarge [1,~nx] axis: ----------------- int range_id= (lookup_d)[3*blockIdx.x] ; int start_x = (lookup_d)[3*blockIdx.x+1] ; int end_x = (lookup_d)[3*blockIdx.x+2] ; // The "slices_x" vector encodes a set of cutting points in // the "ranges_y" array of ranges. // As discussed in the Genred docstring, the first "0" is implicit: int start_slice = range_id < 1 ? 0 : slices_x[range_id-1]; int end_slice = slices_x[range_id]; // get the index of the current thread int i = start_x + threadIdx.x; // declare shared mem extern __shared__ {dtype} yj[]; // load parameter(s) {param_loc.declare()} {load_vars(dimsp, indsp, param_loc, args)} {fout.declare()} // get the value of variable (index with i) {xi.declare()} if (i < end_x) {{ if (nbatchdims == 0) {{ {varloader.load_vars("i", xi, args, row_index=i)} // load xi variables from global memory to local thread memory }} else {{ {varloader.load_vars("i", xi, args, row_index=threadIdx_x, offsets=indices_i, indsref=indsi_global)} // Possibly, with offsets as we support broadcasting over batch dimensions }} {use_pragma_unroll()} for (int k=0; k<{dimout}; k++) {{ out[i*{dimout}+k] = 0.0f; }} }} {acc.declare()} int start_y = ranges_y[2*start_slice], end_y = 0; for(int index = start_slice ; index < end_slice ; index++ ) {{ if( (index+1 >= end_slice) || (ranges_y[2*index+2] != ranges_y[2*index+1]) ) {{ end_y = ranges_y[2*index+1]; for (int jstart = start_y, tile = 0; jstart < end_y; jstart += blockDim.x, tile++) {{ // get the current column int j = jstart + threadIdx.x; if (j < end_y) {{ // we load yj from device global memory only if j<end_y if (nbatchdims == 0) {{ {varloader.load_vars("j", yjloc, args, row_index=j)} // load yj variables from global memory to shared memory }} else {{ {varloader.load_vars("j", yjloc, args, row_index=j-starty, offsets=indices_j, indsref=indsj_global)} // Possibly, with offsets as we support broadcasting over batch dimensions }} }} __syncthreads(); if (i < end_x) {{ // we compute x1i only if needed {dtype} * yjrel = yj; // Loop on the columns of the current block. for (int jrel = 0; (jrel < {blocksize_chunks}) && (jrel < end_y - jstart); jrel++, yjrel += {dimy}) {{ {formula(foutjrel, table)} // Call the function, which outputs results in fout }} }} __syncthreads(); for (int chunk=0; chunk<{nchunks-1}; chunk++) {{ {chunk_sub_routine} }} {chunk_sub_routine_last} }} if(index+1 < end_slice) start_y = ranges_y[2*index+2]; }} }} }} """
keops-main
keopscore/keopscore/mapreduce/gpu/GpuReduc1D_ranges_finalchunks.py
from keopscore import cuda_block_size from keopscore.config.chunks import dimchunk from keopscore.binders.nvrtc.Gpu_link_compile import Gpu_link_compile from keopscore.formulas.reductions.sum_schemes import * from keopscore.mapreduce.gpu.GpuAssignZero import GpuAssignZero from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import ( load_vars, load_vars_chunks, load_vars_chunks_offsets, sizeof, pointer, table, table4, Var_loader, use_pragma_unroll, ) from keopscore.mapreduce.Chunk_Mode_Constants import Chunk_Mode_Constants def do_chunk_sub_ranges( dtype, red_formula, fun_chunked_curr, dimchunk_curr, dimsx, dimsy, indsi, indsj, indsi_chunked, indsj_chunked, acc, tile, i, j, jstart, start_y, chunk, end_x, end_y, nbatchdims, indices_i, indices_j, arg, fout, xi, yj, param_loc, ): chk = Chunk_Mode_Constants(red_formula) fout_tmp_chunk = c_array(dtype, chk.fun_chunked.dim) xiloc = c_variable(pointer(dtype), f"({xi.id} + {chk.dimx_notchunked})") yjloc = c_variable( pointer(dtype), f"({yj.id} + threadIdx.x * {chk.dimy} + {chk.dimy_notchunked})" ) load_chunks_routine_i = load_vars_chunks( indsi_chunked, dimchunk, dimchunk_curr, chk.dim_org, xiloc, arg, chunk, row_index=i, ) varloader_global = Var_loader(red_formula) indsi_global = varloader_global.indsi indsj_global = varloader_global.indsj threadIdx_x = c_variable("int", "threadIdx.x") load_chunks_routine_i_batches = load_vars_chunks_offsets( indsi_chunked, indsi_global, dimchunk, dimchunk_curr, chk.dim_org, xiloc, arg, chunk, indices_i, row_index=threadIdx_x, ) load_chunks_routine_j = load_vars_chunks( indsj_chunked, dimchunk, dimchunk_curr, chk.dim_org, yjloc, arg, chunk, row_index=j, ) load_chunks_routine_j_batches = load_vars_chunks_offsets( indsj_chunked, indsj_global, dimchunk, dimchunk_curr, chk.dim_org, yjloc, arg, chunk, indices_j, row_index=j - start_y, ) yjrel = c_variable(pointer(dtype), "yjrel") chktable = table( chk.nminargs, dimsx, dimsy, chk.dimsp, indsi, indsj, chk.indsp, xi, yjrel, param_loc, ) foutj = c_variable(pointer(dtype), "foutj") return f""" {fout_tmp_chunk.declare()} if ({i.id} < {end_x.id}) {{ if ({nbatchdims.id}==0) {{ {load_chunks_routine_i} }} else {{ {load_chunks_routine_i_batches} }} }} if ({j.id} < {end_y.id}) {{ // we load yj from device global memory only if j<ny if ({nbatchdims.id}==0) {{ {load_chunks_routine_j} }} else {{ {load_chunks_routine_j_batches} }} }} __syncthreads(); if ({i.id} < {end_x.id}) {{ // we compute only if needed {dtype} *yjrel = {yj.id}; // Loop on the columns of the current block. for (int jrel = 0; (jrel < blockDim.x) && (jrel < {end_y.id} - jstart); jrel++, yjrel += {chk.dimy}) {{ {dtype} *foutj = {fout.id} + jrel*{chk.fun_chunked.dim}; {fun_chunked_curr(fout_tmp_chunk, chktable)} {chk.fun_chunked.acc_chunk(foutj, fout_tmp_chunk)} }} }} __syncthreads(); """ class GpuReduc1D_ranges_chunks(MapReduce, Gpu_link_compile): # class for generating the final C++ code, Gpu version AssignZero = GpuAssignZero def __init__(self, *args): MapReduce.__init__(self, *args) Gpu_link_compile.__init__(self) self.chk = Chunk_Mode_Constants(self.red_formula) self.dimy = self.chk.dimy self.blocksize_chunks = min( cuda_block_size, 1024, 49152 // max(1, self.dimy * sizeof(self.dtype)) ) def get_code(self): super().get_code() red_formula = self.red_formula dtype = self.dtype dtypeacc = self.dtypeacc varloader_global = Var_loader(red_formula) indsi_global = varloader_global.indsi indsj_global = varloader_global.indsj i = self.i j = self.j arg = self.arg args = self.args nvarsi, nvarsj, nvarsp = ( len(self.varloader.Varsi), len(self.varloader.Varsj), len(self.varloader.Varsp), ) nvars = nvarsi + nvarsj + nvarsp indices_i = c_array("int", nvarsi, "indices_i") indices_j = c_array("int", nvarsj, "indices_j") indices_p = c_array("int", nvarsp, "indices_p") declare_assign_indices_i = "int *indices_i = offsets;" if nvarsi > 0 else "" declare_assign_indices_j = ( f"int *indices_j = offsets + {nvarsi};" if nvarsj > 0 else "" ) declare_assign_indices_p = ( f"int *indices_p = offsets + {nvarsi} + {nvarsj};" if nvarsp > 0 else "" ) yjrel = c_array(dtype, varloader_global.dimy, "yjrel") jreltile = c_variable("int", "(jrel + tile * blockDim.x)") chk = self.chk param_loc = c_array(dtype, chk.dimp, "param_loc") acc = c_array(dtypeacc, chk.dimred, "acc") sum_scheme = eval(self.sum_scheme_string)(red_formula, dtype, dimred=chk.dimred) xi = c_array(dtype, chk.dimx, "xi") fout_chunk = c_array( dtype, self.blocksize_chunks * chk.dimout_chunk, "fout_chunk" ) yj = c_variable(pointer(dtype), "yj") yjloc = c_array(dtype, chk.dimy, f"(yj + threadIdx.x * {chk.dimy})") fout_chunk_loc = c_variable( pointer(dtype), f"({fout_chunk.id}+jrel*{chk.dimout_chunk})" ) tile = c_variable("int", "tile") nx = c_variable("int", "nx") ny = c_variable("int", "ny") jstart = c_variable("int", "jstart") chunk = c_variable("int", "chunk") end_x = c_variable("int", "end_x") end_y = c_variable("int", "end_y") starty = c_variable("int", "start_y") nbatchdims = c_variable("int", "nbatchdims") chunk_sub_routine = do_chunk_sub_ranges( dtype, red_formula, chk.fun_chunked, dimchunk, chk.dimsx, chk.dimsy, chk.indsi, chk.indsj, chk.indsi_chunked, chk.indsj_chunked, acc, tile, i, j, jstart, starty, chunk, end_x, end_y, nbatchdims, indices_i, indices_j, arg, fout_chunk, xi, yj, param_loc, ) last_chunk = c_variable("int", f"{chk.nchunks-1}") chunk_sub_routine_last = do_chunk_sub_ranges( dtype, red_formula, chk.fun_lastchunked, chk.dimlastchunk, chk.dimsx_last, chk.dimsy_last, chk.indsi, chk.indsj, chk.indsi_lastchunked, chk.indsj_lastchunked, acc, tile, i, j, jstart, starty, last_chunk, end_x, end_y, nbatchdims, indices_i, indices_j, arg, fout_chunk, xi, yj, param_loc, ) foutj = c_array(dtype, chk.dimout_chunk, "foutj") chktable_out = table4( chk.nminargs + 1, chk.dimsx, chk.dimsy, chk.dimsp, [chk.dimout_chunk], chk.indsi, chk.indsj, chk.indsp, [chk.nminargs], xi, yjrel, param_loc, foutj, ) fout_tmp = c_array(dtype, chk.dimfout, "fout_tmp") outi = c_array(dtype, chk.dimout, f"(out + i * {chk.dimout})") threadIdx_x = c_variable("int", "threadIdx.x") self.code = f""" {self.headers} extern "C" __global__ void GpuConv1DOnDevice_ranges(int nx, int ny, int nbatchdims, int *offsets_d, int *lookup_d, int *slices_x, int *ranges_y, {dtype} *out, {dtype} **{arg.id}) {{ int offsets[{nvars}]; {declare_assign_indices_i} {declare_assign_indices_j} {declare_assign_indices_p} if (nbatchdims > 0) for (int k = 0; k < {nvars}; k++) offsets[k] = offsets_d[ {nvars} * blockIdx.x + k ]; // Retrieve our position along the laaaaarge [1,~nx] axis: ----------------- int range_id= (lookup_d)[3*blockIdx.x] ; int start_x = (lookup_d)[3*blockIdx.x+1] ; int end_x = (lookup_d)[3*blockIdx.x+2] ; // The "slices_x" vector encodes a set of cutting points in // the "ranges_y" array of ranges. // As discussed in the Genred docstring, the first "0" is implicit: int start_slice = range_id < 1 ? 0 : slices_x[range_id-1]; int end_slice = slices_x[range_id]; // get the index of the current thread int i = start_x + threadIdx.x; // declare shared mem extern __shared__ {dtype} yj[]; // load parameters variables from global memory to local thread memory {param_loc.declare()} if (nbatchdims == 0) {{ {load_vars(chk.dimsp, chk.indsp, param_loc, args)} }} else {{ {load_vars(chk.dimsp, chk.indsp, param_loc, args, offsets=indices_p)} }} {acc.declare()} {sum_scheme.declare_temporary_accumulator()} if (i < end_x) {{ {red_formula.InitializeReduction(acc)} // acc = 0 {sum_scheme.initialize_temporary_accumulator_first_init()} }} {xi.declare()} {fout_chunk.declare()} if (i < end_x) {{ // load xi variables from global memory to local thread memory if (nbatchdims == 0) {{ {load_vars(chk.dimsx_notchunked, chk.indsi_notchunked, xi, args, row_index=i)} }} else {{ {load_vars(chk.dimsx_notchunked, chk.indsi_notchunked, xi, args, row_index=threadIdx_x, offsets=indices_i, indsref=indsi_global)} }} }} int start_y = ranges_y[2*start_slice], end_y = 0; for( int index = start_slice ; index < end_slice ; index++ ) {{ if( (index+1 >= end_slice) || (ranges_y[2*index+2] != ranges_y[2*index+1]) ) {{ //start_y = ranges_y[2*index] ; end_y = ranges_y[2*index+1]; for(int jstart = start_y, tile = 0; jstart < end_y; jstart += blockDim.x, tile++) {{ // get the current column int j = jstart + threadIdx.x; if(j<end_y) // we load yj from device global memory only if j<end_y if (nbatchdims == 0) {{ // load yj variables from global memory to shared memory {load_vars(chk.dimsy_notchunked, chk.indsj_notchunked, yjloc, args, row_index=j)} }} else {{ // Possibly, with offsets as we support broadcasting over batch dimensions {load_vars(chk.dimsy_notchunked, chk.indsj_notchunked, yjloc, args, row_index=j-starty, offsets=indices_j, indsref=indsj_global)} }} __syncthreads(); if(i<end_x) {{ // we compute x1i only if needed for (int jrel = 0; (jrel < blockDim.x) && (jrel < end_y - jstart); jrel++) {{ {chk.fun_chunked.initacc_chunk(fout_chunk_loc)} }} {sum_scheme.initialize_temporary_accumulator_block_init()} }} // looping on chunks (except the last) {use_pragma_unroll()} for (int chunk=0; chunk<{chk.nchunks}-1; chunk++) {{ {chunk_sub_routine} }} // last chunk {chunk_sub_routine_last} if (i < end_x) {{ {dtype} * yjrel = yj; // Loop on the columns of the current block. if (nbatchdims == 0) {{ for (int jrel = 0; (jrel < blockDim.x) && (jrel <end_y - jstart); jrel++, yjrel += {chk.dimy}) {{ {dtype} *foutj = fout_chunk + jrel*{chk.dimout_chunk}; {fout_tmp.declare()} {chk.fun_postchunk(fout_tmp, chktable_out)} {sum_scheme.accumulate_result(acc, fout_tmp, jreltile)} }} }} else {{ for (int jrel = 0; (jrel < blockDim.x) && (jrel <end_y - jstart); jrel++, yjrel += {chk.dimy}) {{ {dtype} *foutj = fout_chunk + jrel*{chk.dimout_chunk}; {fout_tmp.declare()} {chk.fun_postchunk(fout_tmp, chktable_out)} {sum_scheme.accumulate_result(acc, fout_tmp, jreltile)} }} }} {sum_scheme.final_operation(acc)} }} __syncthreads(); }} if(index+1 < end_slice) {{ start_y = ranges_y[2*index+2] ; }} }} }} if (i < end_x) {{ {red_formula.FinalizeOutput(acc, outi, i)} }} }} """
keops-main
keopscore/keopscore/mapreduce/gpu/GpuReduc1D_ranges_chunks.py
from keopscore import cuda_block_size from keopscore.config.chunks import dimfinalchunk from keopscore.binders.nvrtc.Gpu_link_compile import Gpu_link_compile from keopscore.formulas.reductions.Sum_Reduction import Sum_Reduction from keopscore.formulas.reductions.sum_schemes import * from keopscore.mapreduce.gpu.GpuAssignZero import GpuAssignZero from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import ( load_vars, load_vars_chunks, sizeof, pointer, Var_loader, use_pragma_unroll, ) from keopscore.utils.misc_utils import KeOps_Error def do_finalchunk_sub( dtype, varfinal, dimfinalchunk_curr, acc, i, j, jstart, chunk, nx, ny, arg, fout, yj, out, ): dimout = varfinal.dim yjloc = c_variable(pointer(dtype), f"({yj.id} + threadIdx.x * {dimfinalchunk})") load_chunks_routine_j = load_vars_chunks( [varfinal.ind], dimfinalchunk, dimfinalchunk_curr, varfinal.dim, yjloc, arg, chunk, row_index=j, ) return f""" {acc.assign(c_zero_float)} {dtype} *yjrel = yj; if ({j.id} < {ny.id}) {{ // we load yj from device global memory only if j<ny {load_chunks_routine_j} }} __syncthreads(); for (int jrel = 0; (jrel < blockDim.x) && (jrel < {ny.id} - {jstart.id}); jrel++, yjrel += {dimfinalchunk}) {{ if ({i.id} < {nx.id}) {{ // we compute only if needed {use_pragma_unroll()} for (int k=0; k<{dimfinalchunk_curr}; k++) {{ {acc.id}[k] += yjrel[k] * fout[jrel]; }} }} __syncthreads(); }} if ({i.id} < {nx.id}) {{ {use_pragma_unroll()} for (int k=0; k<{dimfinalchunk_curr}; k++) {out.id}[i*{dimout}+{chunk.id}*{dimfinalchunk}+k] += {acc.id}[k]; }} __syncthreads(); """ class GpuReduc1D_finalchunks(MapReduce, Gpu_link_compile): # class for generating the final C++ code, Gpu version AssignZero = GpuAssignZero def __init__(self, *args): MapReduce.__init__(self, *args) Gpu_link_compile.__init__(self) def get_code(self): super().get_code() dtype = self.dtype dtypeacc = self.dtypeacc i = self.i j = self.j nx = c_variable("int", "nx") ny = c_variable("int", "ny") jstart = c_variable("int", "jstart") chunk = c_variable("int", "chunk") arg = self.arg args = self.args yj = c_variable(pointer(dtype), "yj") out = c_variable(pointer(dtype), "out") fun_internal = Sum_Reduction( self.red_formula.formula.children[0], self.red_formula.tagI ) formula = fun_internal.formula varfinal = self.red_formula.formula.children[1] nchunks = 1 + (varfinal.dim - 1) // dimfinalchunk dimlastfinalchunk = varfinal.dim - (nchunks - 1) * dimfinalchunk varloader = Var_loader(fun_internal) dimsx = varloader.dimsx dimsy = varloader.dimsy dimsp = varloader.dimsp indsi = varloader.indsi indsj = varloader.indsj indsp = varloader.indsp dimx = sum(dimsx) dimy = sum(dimsy) dimp = sum(dimsp) dimout = varfinal.dim dimfout = fun_internal.formula.dim if dimfout != 1: KeOps_Error("dimfout should be 1") sum_scheme = self.sum_scheme self.dimy = max(dimfinalchunk, dimy) blocksize_chunks = min( cuda_block_size, 1024, 49152 // max(1, self.dimy * sizeof(self.dtype)) ) if not isinstance(sum_scheme, block_sum): KeOps_Error("only block_sum available") param_loc = c_array(dtype, dimp, "param_loc") fout = c_array(dtype, dimfout * blocksize_chunks, "fout") xi = c_array(dtype, dimx, "xi") acc = c_array(dtypeacc, dimfinalchunk, "acc") yjloc = c_array(dtype, dimy, f"(yj + threadIdx.x * {dimy})") foutjrel = c_array(dtype, dimfout, f"({fout.id}+jrel*{dimfout})") yjrel = c_array(dtype, dimy, "yjrel") table = self.varloader.table(xi, yjrel, param_loc) last_chunk = c_variable("int", f"{nchunks-1}") chunk_sub_routine = do_finalchunk_sub( dtype, varfinal, dimfinalchunk, acc, i, j, jstart, chunk, nx, ny, arg, fout, yj, out, ) chunk_sub_routine_last = do_finalchunk_sub( dtype, varfinal, dimlastfinalchunk, acc, i, j, jstart, last_chunk, nx, ny, arg, fout, yj, out, ) self.code = f""" {self.headers} extern "C" __global__ void GpuConv1DOnDevice(int nx, int ny, {dtype} *out, {dtype} **{arg.id}) {{ // get the index of the current thread int i = blockIdx.x * blockDim.x + threadIdx.x; // declare shared mem extern __shared__ {dtype} yj[]; // load parameter(s) {param_loc.declare()} {load_vars(dimsp, indsp, param_loc, args)} {fout.declare()} // get the value of variable (index with i) {xi.declare()} if (i < nx) {{ {load_vars(dimsx, indsi, xi, args, row_index=i)} // load xi variables from global memory to local thread memory {use_pragma_unroll()} for (int k=0; k<{dimout}; k++) {{ out[i*{dimout}+k] = 0.0f; }} }} {acc.declare()} for (int jstart = 0, tile = 0; jstart < ny; jstart += blockDim.x, tile++) {{ // get the current column int j = tile * blockDim.x + threadIdx.x; if (j < ny) {{ // we load yj from device global memory only if j<ny {load_vars(dimsy, indsj, yjloc, args, row_index=j)} // load yj variables from global memory to shared memory }} __syncthreads(); if (i < nx) {{ // we compute x1i only if needed {dtype} * yjrel = yj; // Loop on the columns of the current block. for (int jrel = 0; (jrel < {blocksize_chunks}) && (jrel < ny - jstart); jrel++, yjrel += {dimy}) {{ {formula(foutjrel, table)} // Call the function, which outputs results in fout }} }} __syncthreads(); for (int chunk=0; chunk<{nchunks-1}; chunk++) {{ {chunk_sub_routine} }} {chunk_sub_routine_last} }} }} """
keops-main
keopscore/keopscore/mapreduce/gpu/GpuReduc1D_finalchunks.py
from keopscore import cuda_block_size from keopscore.config.chunks import dimchunk from keopscore.binders.nvrtc.Gpu_link_compile import Gpu_link_compile from keopscore.formulas.reductions.sum_schemes import * from keopscore.mapreduce.gpu.GpuAssignZero import GpuAssignZero from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import ( load_vars, load_vars_chunks, sizeof, pointer, table, table4, use_pragma_unroll, ) from keopscore.mapreduce.Chunk_Mode_Constants import Chunk_Mode_Constants def do_chunk_sub( dtype, red_formula, fun_chunked_curr, dimchunk_curr, dimsx, dimsy, indsi, indsj, indsi_chunked, indsj_chunked, acc, tile, i, j, jstart, chunk, nx, ny, arg, fout, xi, yj, param_loc, ): chk = Chunk_Mode_Constants(red_formula) fout_tmp_chunk = c_array(dtype, chk.fun_chunked.dim) xiloc = c_variable(pointer(dtype), f"({xi.id} + {chk.dimx_notchunked})") yjloc = c_variable( pointer(dtype), f"({yj.id} + threadIdx.x * {chk.dimy} + {chk.dimy_notchunked})" ) load_chunks_routine_i = load_vars_chunks( indsi_chunked, dimchunk, dimchunk_curr, chk.dim_org, xiloc, arg, chunk, row_index=i, ) load_chunks_routine_j = load_vars_chunks( indsj_chunked, dimchunk, dimchunk_curr, chk.dim_org, yjloc, arg, chunk, row_index=j, ) yjrel = c_variable(pointer(dtype), "yjrel") chktable = table( chk.nminargs, dimsx, dimsy, chk.dimsp, indsi, indsj, chk.indsp, xi, yjrel, param_loc, ) foutj = c_variable(pointer(dtype), "foutj") return f""" // Starting chunk_sub routine {fout_tmp_chunk.declare()} if ({i.id} < {nx.id}) {{ {load_chunks_routine_i} }} if (j < ny) {{ // we load yj from device global memory only if j<ny {load_chunks_routine_j} }} __syncthreads(); if ({i.id} < {nx.id}) {{ // we compute only if needed {dtype} *yjrel = {yj.id}; // Loop on the columns of the current block. for (int jrel = 0; (jrel < blockDim.x) && (jrel < {ny.id} - jstart); jrel++, yjrel += {chk.dimy}) {{ {dtype} *foutj = {fout.id} + jrel*{chk.fun_chunked.dim}; {fun_chunked_curr(fout_tmp_chunk, chktable)} {chk.fun_chunked.acc_chunk(foutj, fout_tmp_chunk)} }} }} __syncthreads(); // Finished chunk_sub routine """ class GpuReduc1D_chunks(MapReduce, Gpu_link_compile): # class for generating the final C++ code, Gpu version AssignZero = GpuAssignZero def __init__(self, *args): MapReduce.__init__(self, *args) Gpu_link_compile.__init__(self) self.chk = Chunk_Mode_Constants(self.red_formula) self.dimy = self.chk.dimy self.blocksize_chunks = min( cuda_block_size, 1024, 49152 // max(1, self.dimy * sizeof(self.dtype)) ) def get_code(self): super().get_code() red_formula = self.red_formula dtype = self.dtype dtypeacc = self.dtypeacc varloader = self.varloader i = self.i j = self.j arg = self.arg args = self.args yjrel = c_array(dtype, varloader.dimy, "yjrel") jreltile = c_variable("int", "(jrel + tile * blockDim.x)") chk = self.chk param_loc = c_array(dtype, chk.dimp, "param_loc") acc = c_array(dtypeacc, chk.dimred, "acc") sum_scheme = eval(self.sum_scheme_string)(red_formula, dtype, dimred=chk.dimred) xi = c_array(dtype, chk.dimx, "xi") fout_chunk = c_array( dtype, self.blocksize_chunks * chk.dimout_chunk, "fout_chunk" ) yj = c_variable(pointer(dtype), "yj") yjloc = c_array(dtype, chk.dimy, f"(yj + threadIdx.x * {chk.dimy})") fout_chunk_loc = c_variable( pointer(dtype), f"({fout_chunk.id}+jrel*{chk.dimout_chunk})" ) tile = c_variable("int", "tile") nx = c_variable("int", "nx") ny = c_variable("int", "ny") jstart = c_variable("int", "jstart") chunk = c_variable("int", "chunk") chunk_sub_routine = do_chunk_sub( dtype, red_formula, chk.fun_chunked, dimchunk, chk.dimsx, chk.dimsy, chk.indsi, chk.indsj, chk.indsi_chunked, chk.indsj_chunked, acc, tile, i, j, jstart, chunk, nx, ny, arg, fout_chunk, xi, yj, param_loc, ) last_chunk = c_variable("int", f"{chk.nchunks - 1}") chunk_sub_routine_last = do_chunk_sub( dtype, red_formula, chk.fun_lastchunked, chk.dimlastchunk, chk.dimsx_last, chk.dimsy_last, chk.indsi, chk.indsj, chk.indsi_lastchunked, chk.indsj_lastchunked, acc, tile, i, j, jstart, last_chunk, nx, ny, arg, fout_chunk, xi, yj, param_loc, ) foutj = c_array(dtype, chk.dimout_chunk, "foutj") chktable_out = table4( chk.nminargs + 1, chk.dimsx, chk.dimsy, chk.dimsp, [chk.dimout_chunk], chk.indsi, chk.indsj, chk.indsp, [chk.nminargs], xi, yjrel, param_loc, foutj, ) fout_tmp = c_array(dtype, chk.dimfout, "fout_tmp") outi = c_array(dtype, chk.dimout, f"(out + i * {chk.dimout})") self.code = f""" {self.headers} extern "C" __global__ void GpuConv1DOnDevice(int nx, int ny, {dtype} *out, {dtype} **{arg.id}) {{ // get the index of the current thread int i = blockIdx.x * blockDim.x + threadIdx.x; // declare shared mem extern __shared__ {dtype} yj[]; // load parameters variables from global memory to local thread memory {param_loc.declare()} {load_vars(chk.dimsp, chk.indsp, param_loc, args)} {acc.declare()} {sum_scheme.declare_temporary_accumulator()} if (i < nx) {{ {red_formula.InitializeReduction(acc)} // acc = 0 {sum_scheme.initialize_temporary_accumulator_first_init()} }} {xi.declare()} {fout_chunk.declare()} if (i < nx) {{ {load_vars(chk.dimsx_notchunked, chk.indsi_notchunked, xi, args, row_index=i)} // load xi variables from global memory to local thread memory }} for (int jstart = 0, tile = 0; jstart < ny; jstart += blockDim.x, tile++) {{ // get the current column int j = tile * blockDim.x + threadIdx.x; if (j < ny) {{ // we load yj from device global memory only if j<ny {load_vars(chk.dimsy_notchunked, chk.indsj_notchunked, yjloc, args, row_index=j)} }} __syncthreads(); if (i < nx) {{ // we compute x1i only if needed for (int jrel = 0; (jrel < blockDim.x) && (jrel < ny - jstart); jrel++) {{ {chk.fun_chunked.initacc_chunk(fout_chunk_loc)} }} {sum_scheme.initialize_temporary_accumulator_block_init()} }} // looping on chunks (except the last) {use_pragma_unroll()} for (int chunk=0; chunk<{chk.nchunks}-1; chunk++) {{ {chunk_sub_routine} }} // last chunk {chunk_sub_routine_last} if (i < nx) {{ {dtype} * yjrel = yj; // Loop on the columns of the current block. for (int jrel = 0; (jrel < blockDim.x) && (jrel < ny - jstart); jrel++, yjrel += {chk.dimy}) {{ {dtype} *foutj = fout_chunk + jrel*{chk.dimout_chunk}; {fout_tmp.declare()} {chk.fun_postchunk(fout_tmp, chktable_out)} {sum_scheme.accumulate_result(acc, fout_tmp, jreltile)} }} {sum_scheme.final_operation(acc)} }} __syncthreads(); }} if (i < nx) {{ {red_formula.FinalizeOutput(acc, outi, i)} }} }} """
keops-main
keopscore/keopscore/mapreduce/gpu/GpuReduc1D_chunks.py
from keopscore.binders.nvrtc.Gpu_link_compile import Gpu_link_compile from keopscore.mapreduce.gpu.GpuAssignZero import GpuAssignZero from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import ( c_variable, c_array, ) class GpuReduc1D(MapReduce, Gpu_link_compile): # class for generating the final C++ code, Gpu version AssignZero = GpuAssignZero def __init__(self, *args): MapReduce.__init__(self, *args) Gpu_link_compile.__init__(self) self.dimy = self.varloader.dimy def get_code(self): super().get_code() red_formula = self.red_formula dtype = self.dtype varloader = self.varloader i = self.i j = self.j fout = self.fout outi = self.outi acc = self.acc arg = self.arg args = self.args sum_scheme = self.sum_scheme param_loc = self.param_loc xi = self.xi yjloc = c_array(dtype, varloader.dimy, f"(yj + threadIdx.x * {varloader.dimy})") yjrel = c_array(dtype, varloader.dimy, "yjrel") table = varloader.table(self.xi, yjrel, self.param_loc) jreltile = c_variable("int", "(jrel + tile * blockDim.x)") self.code = f""" {self.headers} extern "C" __global__ void GpuConv1DOnDevice(int nx, int ny, {dtype} *out, {dtype} **{arg.id}) {{ // get the index of the current thread int i = blockIdx.x * blockDim.x + threadIdx.x; // declare shared mem extern __shared__ {dtype} yj[]; // load parameters variables from global memory to local thread memory {param_loc.declare()} {varloader.load_vars("p", param_loc, args)} {fout.declare()} {xi.declare()} {acc.declare()} {sum_scheme.declare_temporary_accumulator()} if (i < nx) {{ {red_formula.InitializeReduction(acc)} // acc = 0 {sum_scheme.initialize_temporary_accumulator_first_init()} {varloader.load_vars('i', xi, args, row_index=i)} // load xi variables from global memory to local thread memory }} for (int jstart = 0, tile = 0; jstart < ny; jstart += blockDim.x, tile++) {{ // get the current column int j = tile * blockDim.x + threadIdx.x; if (j < ny) {{ // we load yj from device global memory only if j<ny {varloader.load_vars("j", yjloc, args, row_index=j)} }} __syncthreads(); if (i < nx) {{ // we compute x1i only if needed {dtype} * yjrel = yj; {sum_scheme.initialize_temporary_accumulator_block_init()} for (int jrel = 0; (jrel < blockDim.x) && (jrel < ny - jstart); jrel++, yjrel += {varloader.dimy}) {{ {red_formula.formula(fout, table)} // Call the function, which outputs results in fout {sum_scheme.accumulate_result(acc, fout, jreltile)} }} {sum_scheme.final_operation(acc)} }} __syncthreads(); }} if (i < nx) {{ {red_formula.FinalizeOutput(acc, outi, i)} }} }} """
keops-main
keopscore/keopscore/mapreduce/gpu/GpuReduc1D.py
from keopscore.binders.nvrtc.Gpu_link_compile import Gpu_link_compile from keopscore.formulas.reductions.sum_schemes import block_sum, kahan_scheme from keopscore.mapreduce.gpu.GpuAssignZero import GpuAssignZero from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import c_variable, c_array, use_pragma_unroll from keopscore.utils.misc_utils import KeOps_Error class GpuReduc2D(MapReduce, Gpu_link_compile): # class for generating the final C++ code, Gpu version AssignZero = GpuAssignZero def __init__(self, *args): MapReduce.__init__(self, *args) Gpu_link_compile.__init__(self) self.dimy = self.varloader.dimy def get_code(self): super().get_code() i = self.i j = self.j red_formula = self.red_formula dtype = self.dtype dimin = red_formula.dimred dimout = red_formula.dim varloader = self.varloader dtypeacc = self.dtypeacc acc2 = c_array(dtypeacc, dimin, "acc2") inloc = c_array(dtype, dimin, f"(in + (tid+y*nx)*{dimin})") outloc = c_array(dtype, dimout, f"(out+tid*{dimout})") dimsx = varloader.dimsx dimsy = varloader.dimsy dimsp = varloader.dimsp indsi = varloader.indsi indsj = varloader.indsj indsp = varloader.indsp dimx = sum(dimsx) dimy = sum(dimsy) dimp = sum(dimsp) dimred = red_formula.dimred dimfout = red_formula.formula.dim fout = c_array(dtype, dimfout, "fout") param_loc = c_array(dtype, dimp, "param_loc") xi = c_array(dtype, dimx, "xi") sum_scheme = self.sum_scheme # N.B. To be consistent with the convention used in GpuConv1D, when SUM_SCHEME == BLOCK_SUM=1 we accumulate results in TYPE # instead of __TYPEACC__ in each block, __TYPEACC__ will be used only to sum up results from each block if isinstance(sum_scheme, block_sum): acc = c_array(dtype, dimred, "acc") elif isinstance(sum_scheme, direct_sum): acc = c_array(dtypeacc, dimred, "acc") else: KeOps_Error("incorrect reduction scheme") yjloc = c_array(dtype, varloader.dimy, f"(yj + threadIdx.x * {varloader.dimy})") arg = self.arg args = self.args yjrel = c_array(dtype, dimy, "yjrel") table = varloader.table(self.xi, yjrel, self.param_loc) jrelloc = c_variable("int", "(blockDim.x*blockIdx.y+jrel)") tid = c_variable("int", "tid") self.code = f""" {self.headers} extern "C" __global__ void reduce2D({dtype} *in, {dtype} *out, int sizeY, int nx) {{ /* Function used as a final reduction pass in the 2D scheme, * once the block reductions have been made. * Takes as input: * - in, a sizeY * (nx * DIMIN ) array * - out, an nx * DIMOUT array * * Computes, in parallel, the "columnwise"-reduction (which correspond to lines of blocks) * of *in and stores the result in out. */ int tid = blockIdx.x * blockDim.x + threadIdx.x; /* As shown below, the code that is used to store the block-wise sum "tmp" in parallel is: if(i<nx) for(int k=0; k<DIMX1; k++) (*px)[blockIdx.y*DIMX1*nx+i*DIMX1+k] = tmp[k]; */ /* // This code should be a bit more efficient (more parallel) in the case // of a simple "fully parallel" reduction op such as "sum", "max" or "min" TYPE res = 0; if(tid < nx*DIMVECT) {{ for (int i = 0; i < sizeY; i++) res += in[tid + i*nx*DIMVECT]; // We use "+=" as a reduction op. But it could be anything, really! // res = in[tid+ nx* DIMVECT]; out[tid] = res; }} */ // However, for now, we use a "vectorized" reduction op., // which can also handle non-trivial reductions such as "LogSumExp" {acc2.declare()} {red_formula.InitializeReduction(acc2)} // acc = 0 if(tid < nx) {{ for (int y = 0; y < sizeY; y++) {{ {red_formula.ReducePair(acc2, inloc)} // acc += in[(tid+y*nx) *DIMVECT : +DIMVECT]; }} {red_formula.FinalizeOutput(acc2, outloc, tid)} }} }} extern "C" __global__ void GpuConv2DOnDevice(int nx, int ny, {dtype} *out, {dtype} **{arg.id}) {{ {fout.declare()} // Load the parameter vector in the Thread Memory, for improved efficiency {param_loc.declare()} {varloader.load_vars("p", param_loc, args)} // load parameters variables from global memory to local thread memory // Weird syntax to create a pointer in shared memory. extern __shared__ char yj_char[]; {dtype}* const yj = reinterpret_cast<{dtype}*>(yj_char); // Step 1 : Load in Thread Memory the information needed in the current line --------------------------- int i = blockIdx.x * blockDim.x + threadIdx.x; {xi.declare()} {acc.declare()} {sum_scheme.tmp_acc.declare()} //# if isinstance(sum_scheme, kahan_scheme) else "" if(i<nx) {{ // we will compute outi only if i is in the range {red_formula.InitializeReduction(acc)} // acc = 0 {sum_scheme.tmp_acc.assign(c_zero_float) if isinstance(sum_scheme, kahan_scheme) else ""} // Load xi from device global memory. // Remember that we use an interleaved memory scheme where // xi = [ x1i, x2i, x3i, ... ]. {varloader.load_vars('i', xi, args, row_index=i)} // load xi variables from global memory to local thread memory }} // Step 2 : Load in Shared Memory the information needed in the current block of the product ----------- // In the 1D scheme, we use a loop to run through the line. // In the 2D scheme presented here, the computation is done in parallel wrt both lines and columns. // Hence, we use "blockId.y" to get our current column number. int j = blockIdx.y * blockDim.x + threadIdx.x; // Same blockDim in x and y : squared tiles. if(j<ny) {{ // we load yj from device global memory only if j<ny {varloader.load_vars("j", yjloc, args, row_index=j)} // load yj variables from global memory to shared memory }} // More precisely : the j-th line of py is loaded to yj, at a location which depends on the // current threadId. __syncthreads(); // Make sure nobody lags behind // Step 3 : Once the data is loaded, execute fun -------------------------------------------------------- // N.B.: There's no explicit summation here. Just calls to fun, which *accumulates* the results // along the line, but does not *have* to use a "+=" as reduction operator. // In the future, we could provide other reductions: max, min, ... whatever's needed. if(i<nx) {{ // we compute x1i only if needed {dtype}* yjrel = yj; // Loop on the columns of the current block. for(int jrel = 0; (jrel<blockDim.x) && ((blockDim.x*blockIdx.y+jrel)< ny); jrel++, yjrel+={dimy}) {{ {red_formula.formula(fout,table)} // Call the function, which outputs results in fout {sum_scheme.accumulate_result(acc, fout, jrelloc, hack=True)} }} }} __syncthreads(); // Step 4 : Save the result in global memory ----------------------------------------------------------- // The current thread has computed the "linewise-sum" of a small block of the full Kernel Product // matrix, which corresponds to KP[ blockIdx.x * blockDim.x : (blockIdx.x+1) * blockDim.x , // blockIdx.y * blockDim.x : (blockIdx.y+1) * blockDim.x ] // We accumulate it in the output array out, which has in fact gridSize.y * nx // lines of size DIMRED. The final reduction, which "sums over the block lines", // shall be done in a later step. if(i<nx) {{ {use_pragma_unroll()} for(int k=0; k<{dimred}; k++) {{ out[blockIdx.y*{dimred}*nx+i*{dimred}+k] = acc[k]; }} }} }} """
keops-main
keopscore/keopscore/mapreduce/gpu/GpuReduc2D.py
from keopscore.binders.nvrtc.Gpu_link_compile import Gpu_link_compile from keopscore.mapreduce.gpu.GpuAssignZero import GpuAssignZero from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import ( c_variable, c_array, c_include, ) class GpuReduc1D_ranges(MapReduce, Gpu_link_compile): # class for generating the final C++ code, Gpu version AssignZero = GpuAssignZero def __init__(self, *args): MapReduce.__init__(self, *args) Gpu_link_compile.__init__(self) self.dimy = self.varloader.dimy def get_code(self): super().get_code() red_formula = self.red_formula dtype = self.dtype varloader = self.varloader i = self.i j = self.j fout = self.fout outi = self.outi acc = self.acc arg = self.arg args = self.args sum_scheme = self.sum_scheme nvarsi, nvarsj, nvarsp = ( len(self.varloader.Varsi), len(self.varloader.Varsj), len(self.varloader.Varsp), ) nvars = nvarsi + nvarsj + nvarsp param_loc = self.param_loc xi = self.xi yjloc = c_array(dtype, varloader.dimy, f"(yj + threadIdx.x * {varloader.dimy})") yjrel = c_array(dtype, varloader.dimy, "yjrel") table = varloader.table(self.xi, yjrel, self.param_loc) jreltile = c_variable("int", "(jrel + tile * blockDim.x)") indices_i = c_array("int", nvarsi, "indices_i") indices_j = c_array("int", nvarsj, "indices_j") indices_p = c_array("int", nvarsp, "indices_p") declare_assign_indices_i = "int *indices_i = offsets;" if nvarsi > 0 else "" declare_assign_indices_j = ( f"int *indices_j = offsets + {nvarsi};" if nvarsj > 0 else "" ) declare_assign_indices_p = ( f"int *indices_p = offsets + {nvarsi} + {nvarsj};" if nvarsp > 0 else "" ) starty = c_variable("int", "start_y") threadIdx_x = c_variable("int", "threadIdx.x") if dtype == "half2": self.headers += c_include("cuda_fp16.h") self.code = f""" {self.headers} extern "C" __global__ void GpuConv1DOnDevice_ranges(int nx, int ny, int nbatchdims, int *offsets_d, int *lookup_d, int *slices_x, int *ranges_y, {dtype} *out, {dtype} **{arg.id}) {{ int offsets[{nvars}]; {declare_assign_indices_i} {declare_assign_indices_j} {declare_assign_indices_p} if (nbatchdims > 0) for (int k = 0; k < {nvars}; k++) offsets[k] = offsets_d[ {nvars} * blockIdx.x + k ]; // Retrieve our position along the laaaaarge [1,~nx] axis: ----------------- int range_id= (lookup_d)[3*blockIdx.x] ; int start_x = (lookup_d)[3*blockIdx.x+1] ; int end_x = (lookup_d)[3*blockIdx.x+2] ; // The "slices_x" vector encodes a set of cutting points in // the "ranges_y" array of ranges. // As discussed in the Genred docstring, the first "0" is implicit: int start_slice = range_id < 1 ? 0 : slices_x[range_id-1]; int end_slice = slices_x[range_id]; // get the index of the current thread int i = start_x + threadIdx.x; // declare shared mem extern __shared__ {dtype} yj[]; // load parameter(s) {param_loc.declare()} if (nbatchdims == 0) {{ {varloader.load_vars("p", param_loc, args)} }} else {{ {varloader.load_vars("p", param_loc, args, offsets=indices_p)} }} {fout.declare()} {xi.declare()} {acc.declare()} {sum_scheme.declare_temporary_accumulator()} if(i<end_x) {{ {red_formula.InitializeReduction(acc)} // acc = 0 {sum_scheme.initialize_temporary_accumulator_first_init()} if (nbatchdims == 0) {{ {varloader.load_vars('i', xi, args, row_index=i)} // load xi variables from global memory to local thread memory }} else {{ {varloader.load_vars('i', xi, args, row_index=threadIdx_x, offsets=indices_i)} // Possibly, with offsets as we support broadcasting over batch dimensions }} }} int start_y = ranges_y[2*start_slice], end_y = 0; for( int index = start_slice ; index < end_slice ; index++ ) {{ if( (index+1 >= end_slice) || (ranges_y[2*index+2] != ranges_y[2*index+1]) ) {{ //start_y = ranges_y[2*index] ; end_y = ranges_y[2*index+1]; for(int jstart = start_y, tile = 0; jstart < end_y; jstart += blockDim.x, tile++) {{ // get the current column int j = jstart + threadIdx.x; if(j<end_y) // we load yj from device global memory only if j<end_y if (nbatchdims == 0) {{ {varloader.load_vars('j', yjloc, args, row_index=j)} // load yj variables from global memory to shared memory }} else {{ {varloader.load_vars('j', yjloc, args, row_index=j-starty, offsets=indices_j)} // Possibly, with offsets as we support broadcasting over batch dimensions }} __syncthreads(); if(i<end_x) {{ // we compute x1i only if needed {dtype} * yjrel = yj; // Loop on the columns of the current block. {sum_scheme.initialize_temporary_accumulator_block_init()} if (nbatchdims == 0) {{ for(int jrel = 0; (jrel < blockDim.x) && (jrel<end_y-jstart); jrel++, yjrel+={varloader.dimy}) {{ {red_formula.formula(fout,table)} // Call the function, which outputs results in xi[0:DIMX1] {sum_scheme.accumulate_result(acc, fout, jreltile+starty)} }} }} else {{ for(int jrel = 0; (jrel < blockDim.x) && (jrel<end_y-jstart); jrel++, yjrel+={varloader.dimy}) {{ {red_formula.formula(fout,table)} // Call the function, which outputs results in fout {sum_scheme.accumulate_result(acc, fout, jreltile)} }} }} {sum_scheme.final_operation(acc)} }} __syncthreads(); }} if(index+1 < end_slice) start_y = ranges_y[2*index+2] ; }} }} if(i<end_x) {{ {red_formula.FinalizeOutput(acc, outi, i)} }} }} """
keops-main
keopscore/keopscore/mapreduce/gpu/GpuReduc1D_ranges.py
from keopscore.binders.nvrtc.Gpu_link_compile import Gpu_link_compile from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import ( c_include, c_zero_float, ) class GpuAssignZero(MapReduce, Gpu_link_compile): # class for generating the final C++ code, Gpu version def __init__(self, *args): MapReduce.__init__(self, *args) Gpu_link_compile.__init__(self) self.dimy = self.varloader.dimy def get_code(self): super().get_code() outi = self.outi dtype = self.dtype arg = self.arg varloader = self.varloader if dtype == "half2": self.headers += c_include("cuda_fp16.h") self.code = f""" {self.headers} extern "C" __global__ void GpuConv1DOnDevice(int nx, int ny, {dtype} *out, {dtype} **{arg.id}) {{ // get the index of the current thread int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < nx) {{ {outi.assign(c_zero_float)} }} }} """
keops-main
keopscore/keopscore/mapreduce/gpu/GpuAssignZero.py
from keopscore import debug_ops_at_exec from keopscore.binders.cpp.Cpu_link_compile import Cpu_link_compile from keopscore.mapreduce.cpu.CpuAssignZero import CpuAssignZero from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import c_include import keopscore class CpuReduc(MapReduce, Cpu_link_compile): """ class for generating the final C++ code, Cpu version """ AssignZero = CpuAssignZero def __init__(self, *args): MapReduce.__init__(self, *args) Cpu_link_compile.__init__(self) self.dimy = self.varloader.dimy def get_code(self): super().get_code() i = self.i j = self.j red_formula = self.red_formula fout = self.fout outi = self.outi acc = self.acc arg = self.arg args = self.args table = self.varloader.direct_table(args, i, j) sum_scheme = self.sum_scheme headers = ["cmath", "stdlib.h"] if keopscore.config.config.use_OpenMP: headers.append("omp.h") if debug_ops_at_exec: headers.append("iostream") self.headers += c_include(*headers) self.code = f""" {self.headers} template < typename TYPE > int CpuConv_{self.gencode_filename}(int nx, int ny, TYPE* out, TYPE **{arg.id}) {{ #pragma omp parallel for for (int i = 0; i < nx; i++) {{ {fout.declare()} {acc.declare()} {sum_scheme.declare_temporary_accumulator()} {red_formula.InitializeReduction(acc)} {sum_scheme.initialize_temporary_accumulator()} for (int j = 0; j < ny; j++) {{ {red_formula.formula(fout,table)} {sum_scheme.accumulate_result(acc, fout, j)} {sum_scheme.periodic_accumulate_temporary(acc, j)} }} {sum_scheme.final_operation(acc)} {red_formula.FinalizeOutput(acc, outi, i)} }} return 0; }} """ self.code += f""" #include "stdarg.h" #include <vector> template < typename TYPE > int launch_keops_{self.gencode_filename}(int nx, int ny, int tagI, TYPE *out, TYPE **arg) {{ if (tagI==1) {{ int tmp = ny; ny = nx; nx = tmp; }} return CpuConv_{self.gencode_filename}< TYPE >(nx, ny, out, arg); }} template < typename TYPE > int launch_keops_cpu_{self.gencode_filename}(int dimY, int nx, int ny, int tagI, int tagZero, int use_half, int dimred, int use_chunk_mode, std::vector< int > indsi, std::vector< int > indsj, std::vector< int > indsp, int dimout, std::vector< int > dimsx, std::vector< int > dimsy, std::vector< int > dimsp, int **ranges, std::vector< int > shapeout, TYPE *out, TYPE **arg, std::vector< std::vector< int > > argshape) {{ return launch_keops_{self.gencode_filename} < TYPE >(nx, ny, tagI, out, arg); }} """
keops-main
keopscore/keopscore/mapreduce/cpu/CpuReduc.py
from .CpuReduc_ranges import CpuReduc_ranges from .CpuReduc import CpuReduc from .CpuAssignZero import CpuAssignZero
keops-main
keopscore/keopscore/mapreduce/cpu/__init__.py
from keopscore import debug_ops_at_exec from keopscore.binders.cpp.Cpu_link_compile import Cpu_link_compile from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import ( c_include, c_zero_float, ) import keopscore class CpuAssignZero(MapReduce, Cpu_link_compile): # class for generating the final C++ code, Cpu version def __init__(self, *args): MapReduce.__init__(self, *args) Cpu_link_compile.__init__(self) self.dimy = self.varloader.dimy def get_code(self): super().get_code() outi = self.outi dtype = self.dtype arg = self.arg args = self.args headers = ["stdlib.h"] if keopscore.config.config.use_OpenMP: headers.append("omp.h") if debug_ops_at_exec: headers.append("iostream") self.headers += c_include(*headers) self.code = f""" {self.headers} template < typename TYPE > int AssignZeroCpu_{self.gencode_filename}(int nx, int ny, TYPE* out, TYPE **{arg.id}) {{ #pragma omp parallel for for (int i = 0; i < nx; i++) {{ {outi.assign(c_zero_float)} }} return 0; }} #include "stdarg.h" #include <vector> template < typename TYPE > int launch_keops_{self.gencode_filename}(int nx, int ny, int tagI, TYPE *out, TYPE **arg) {{ if (tagI==1) {{ int tmp = ny; ny = nx; nx = tmp; }} return AssignZeroCpu_{self.gencode_filename}< TYPE > (nx, ny, out, arg); }} template < typename TYPE > int launch_keops_cpu_{self.gencode_filename}(int dimY, int nx, int ny, int tagI, int tagZero, int use_half, int dimred, int use_chunk_mode, std::vector< int > indsi, std::vector< int > indsj, std::vector< int > indsp, int dimout, std::vector< int > dimsx, std::vector< int > dimsy, std::vector< int > dimsp, int **ranges, std::vector< int > shapeout, TYPE *out, TYPE **arg, std::vector< std::vector< int > > argshape) {{ return launch_keops_{self.gencode_filename}< TYPE > (nx, ny, tagI, out, arg); }} """
keops-main
keopscore/keopscore/mapreduce/cpu/CpuAssignZero.py
from keopscore import debug_ops_at_exec from keopscore.binders.cpp.Cpu_link_compile import Cpu_link_compile from keopscore.mapreduce.cpu.CpuAssignZero import CpuAssignZero from keopscore.mapreduce.MapReduce import MapReduce from keopscore.utils.code_gen_utils import ( c_variable, c_array, c_include, ) import keopscore class CpuReduc_ranges(MapReduce, Cpu_link_compile): # class for generating the final C++ code, Cpu version AssignZero = CpuAssignZero def __init__(self, *args): MapReduce.__init__(self, *args) Cpu_link_compile.__init__(self) self.dimy = self.varloader.dimy def get_code(self): super().get_code() i = self.i j = self.j dtype = self.dtype red_formula = self.red_formula fout = self.fout outi = self.outi acc = self.acc acctmp = self.acctmp arg = self.arg args = self.args nargs = len(args) xi = self.xi yj = c_array(dtype, self.varloader.dimy, "yj") param_loc = self.param_loc varloader = self.varloader table = varloader.table(xi, yj, param_loc) nvarsi, nvarsj, nvarsp = ( len(self.varloader.Varsi), len(self.varloader.Varsj), len(self.varloader.Varsp), ) tagHostDevice, tagCpuGpu, tag1D2D = ( self.tagHostDevice, self.tagCpuGpu, self.tag1D2D, ) sum_scheme = self.sum_scheme indices_i = c_array("int", nvarsi, "indices_i") indices_j = c_array("int", nvarsj, "indices_j") indices_p = c_array("int", nvarsp, "indices_p") imstartx = c_variable("int", "i-start_x") jmstarty = c_variable("int", "j-start_y") headers = ["cmath", "stdlib.h"] if keopscore.config.config.use_OpenMP: headers.append("omp.h") if debug_ops_at_exec: headers.append("iostream") self.headers += c_include(*headers) self.code = f""" {self.headers} #define do_keops_checks 0 #if do_keops_checks #include <string> #include <iostream> #endif #if do_keops_checks #define Error_msg_no_cuda "[KeOps] This KeOps shared object has been compiled without cuda support: - 1) to perform computations on CPU, simply set tagHostDevice to 0 - 2) to perform computations on GPU, please recompile the formula with a working version of cuda." void keops_error(std::string message) {{ throw std::runtime_error(message); }} #endif #if do_keops_checks void check_nargs(int nargs, int nminargs) {{ if(nargs<nminargs) {{ keops_error("[KeOps] : not enough input arguments"); }} }} #endif #include "include/Sizes.h" #include "include/ranges_utils.h" #include "include/Ranges.h" template< typename TYPE> int CpuConv_ranges_{self.gencode_filename}(int nx, int ny, int nbatchdims, int* shapes, std::vector< int > indsi, std::vector< int > indsj, std::vector< int > indsp, int nranges_x, int nranges_y, int **ranges, TYPE* out, TYPE **{arg.id}) {{ int sizei = indsi.size(); int sizej = indsj.size(); int sizep = indsp.size(); // Separate and store the shapes of the "i" and "j" variables + parameters -------------- // // shapes is an array of size (1+nargs)*(nbatchdims+3), which looks like: // [ A, .., B, M, N, D_out] -> output // [ A, .., B, M, 1, D_1 ] -> "i" variable // [ A, .., B, 1, N, D_2 ] -> "j" variable // [ A, .., B, 1, 1, D_3 ] -> "parameter" // [ A, .., 1, M, 1, D_4 ] -> N.B.: we support broadcasting on the batch dimensions! // [ 1, .., 1, M, 1, D_5 ] -> (we'll just ask users to fill in the shapes with *explicit* ones) int shapes_i[sizei * (nbatchdims + 1)], shapes_j[sizej * (nbatchdims + 1)], shapes_p[sizep * (nbatchdims + 1)]; // First, we fill shapes_i with the "relevant" shapes of the "i" variables, // making it look like, say: // [ A, .., B, M] // [ A, .., 1, M] // [ A, .., A, M] // Then, we do the same for shapes_j, but with "N" instead of "M". // And finally for the parameters, with "1" instead of "M". fill_shapes(nbatchdims, shapes, shapes_i, shapes_j, shapes_p, {red_formula.tagJ}, indsi, indsj, indsp); // Actual for-for loop ----------------------------------------------------- {param_loc.declare()} {varloader.load_vars("p", param_loc, args)} // If nbatchdims == 0, the parameters are fixed once and for all // Set the output to zero, as the ranges may not cover the full output ----- {acctmp.declare()} // __TYPEACC__ acctmp[DIMRED]; for (int i = 0; i < nx; i++) {{ {red_formula.InitializeReduction(acctmp)} {red_formula.FinalizeOutput(acctmp, outi, i)} }} // N.B.: In the following code, we assume that the x-ranges do not overlap. // Otherwise, we'd have to assume that DIMRED == DIMOUT // or allocate a buffer of size nx * DIMRED. This may be done in the future. // Cf. reduction.h: // FUN::tagJ = 1 for a reduction over j, result indexed by i // FUN::tagJ = 0 for a reduction over i, result indexed by j int nranges = {red_formula.tagJ} ? nranges_x : nranges_y; int* ranges_x = {red_formula.tagJ} ? ranges[0] : ranges[3]; int* slices_x = {red_formula.tagJ} ? ranges[1] : ranges[4]; int* ranges_y = {red_formula.tagJ} ? ranges[2] : ranges[5]; int indices_i[sizei], indices_j[sizej], indices_p[sizep]; // Buffers for the "broadcasted indices" for (int k = 0; k < sizei; k++) {{ indices_i[k] = 0; }} // Fill the "offsets" with zeroes, for (int k = 0; k < sizej; k++) {{ indices_j[k] = 0; }} // the default value when nbatchdims == 0. for (int k = 0; k < sizep; k++) {{ indices_p[k] = 0; }} for (int range_index = 0; range_index < nranges; range_index++) {{ int start_x = ranges_x[2 * range_index]; int end_x = ranges_x[2 * range_index + 1]; int start_slice = (range_index < 1) ? 0 : slices_x[range_index - 1]; int end_slice = slices_x[range_index]; // If needed, compute the "true" start indices of the range, turning // the "abstract" index start_x into an array of actual "pointers/offsets" stored in indices_i: if (nbatchdims > 0) {{ vect_broadcast_index(start_x, nbatchdims, sizei, shapes, shapes_i, indices_i); // And for the parameters, too: vect_broadcast_index(range_index, nbatchdims, sizep, shapes, shapes_p, indices_p); {varloader.load_vars("p", param_loc, args, offsets=indices_p)} // Load the paramaters, once per tile }} #pragma omp parallel for for (int i = start_x; i < end_x; i++) {{ {xi.declare()} {yj.declare()} {fout.declare()} {acc.declare()} {sum_scheme.declare_temporary_accumulator()} if (nbatchdims == 0) {{ {varloader.load_vars("i", xi, args, row_index=i)} }} else {{ {varloader.load_vars("i", xi, args, row_index=imstartx, offsets=indices_i)} }} {red_formula.InitializeReduction(acc)} {sum_scheme.initialize_temporary_accumulator()} for (int slice = start_slice; slice < end_slice; slice++) {{ int start_y = ranges_y[2 * slice]; int end_y = ranges_y[2 * slice + 1]; // If needed, compute the "true" start indices of the range, turning // the "abstract" index start_y into an array of actual "pointers/offsets" stored in indices_j: if (nbatchdims > 0) {{ vect_broadcast_index(start_y, nbatchdims, sizej, shapes, shapes_j, indices_j); }} if (nbatchdims == 0) {{ for (int j = start_y; j < end_y; j++) {{ {varloader.load_vars("j", yj, args, row_index=j)} {red_formula.formula(fout,table)} {sum_scheme.accumulate_result(acc, fout, j)} }} }} else {{ for (int j = start_y; j < end_y; j++) {{ {varloader.load_vars("j", yj, args, row_index=jmstarty, offsets=indices_j)} {red_formula.formula(fout,table)} {sum_scheme.accumulate_result(acc, fout, jmstarty)} }} }} }} {sum_scheme.final_operation(acc)} {red_formula.FinalizeOutput(acc, outi, i)} }} }} return 0; }} """ self.code += f""" #include "stdarg.h" #include <vector> template < typename TYPE > int launch_keops_{self.gencode_filename}(int nx, int ny, int tagI, int use_half, int dimred, int use_chunk_mode, std::vector< int > indsi, std::vector< int > indsj, std::vector< int > indsp, int dimout, std::vector< int > dimsx, std::vector< int > dimsy, std::vector< int > dimsp, int **ranges, TYPE *out, int nargs, TYPE** arg, std::vector<std::vector< int >> argshape) {{ Sizes< TYPE > SS (nargs, arg, argshape, nx, ny,tagI, use_half, dimout, indsi, indsj, indsp, dimsx, dimsy, dimsp ); if (use_half) SS.switch_to_half2_indexing(); Ranges < TYPE > RR(SS, ranges); nx = SS.nx; ny = SS.ny; if (tagI==1) {{ int tmp = ny; ny = nx; nx = tmp; std::vector< int > tmp_v; tmp_v = indsj; indsj = indsi; indsi = tmp_v; tmp_v = dimsy; dimsy = dimsx; dimsx = tmp_v; }} return CpuConv_ranges_{self.gencode_filename}< TYPE> (nx, ny, SS.nbatchdims, SS.shapes, indsi, indsj, indsp, RR.nranges_x, RR.nranges_y, RR.castedranges, out, arg); }} template < typename TYPE > int launch_keops_cpu_{self.gencode_filename}(int dimY, int nx, int ny, int tagI, int tagZero, int use_half, int dimred, int use_chunk_mode, std::vector< int > indsi, std::vector< int > indsj, std::vector< int > indsp, int dimout, std::vector< int > dimsx, std::vector< int > dimsy, std::vector< int > dimsp, int **ranges, std::vector< int > shapeout, TYPE *out, TYPE **arg, std::vector< std::vector< int > > argshape) {{ return launch_keops_{self.gencode_filename}< TYPE >(nx, ny, tagI, use_half, dimred, use_chunk_mode, indsi, indsj, indsp, dimout, dimsx, dimsy, dimsp, ranges, out, argshape.size(), arg, argshape); }} """
keops-main
keopscore/keopscore/mapreduce/cpu/CpuReduc_ranges.py
from keopscore.utils.code_gen_utils import VectApply from keopscore.formulas.Operation import Operation from keopscore.utils.misc_utils import KeOps_Error class VectorizedScalarOp(Operation): # class for operations that are vectorized or broadcasted # scalar operations, # such as Exp(f), Cos(f), Mult(f,g), Subtract(f,g), etc. def __init__(self, *args, params=()): dims = set(arg.dim for arg in args) if len(dims) > 2 or (len(dims) == 2 and min(dims) != 1): KeOps_Error("dimensions are not compatible for VectorizedScalarOp") super().__init__(*args, params=params) @property def dim(self): # dim gives the output dimension of the operation, # here it is the same as the output dimension of the child operation return max(child.dim for child in self.children) def Op(self, out, table, *args): # Atomic evaluation of the operation : it consists in a simple # for loop around the call to the correponding scalar operation return VectApply(self.ScalarOp, out, *args) def ScalarOp(self, out, *args): # returns the atomic piece of c++ code to evaluate the function on arg and return # the result in out return out.assign(type(self).ScalarOpFun(*args, *self.params)) def DiffT(self, v, gradin): derivatives = self.Derivative(*self.children, *self.params) if len(self.children) == 1: derivatives = (derivatives,) return sum(f.DiffT(v, gradin * df) for f, df in zip(self.children, derivatives)) def Derivative(self): pass @property def is_chunkable(self): return all(child.is_chunkable for child in self.children) def chunked_version(self, dimchk): return type(self)( *( (child if child.dim == 1 else child.chunked_version(dimchk)) for child in self.children ), *self.params ) def chunked_vars(self, cat): res = set() for child in self.children: if child.dim != 1: res = set.union(res, set(child.chunked_vars(cat))) return list(res) def notchunked_vars(self, cat): res = set() for child in self.children: if child.dim == 1: res = set.union(res, set(child.Vars(cat))) else: res = set.union(res, set(child.notchunked_vars(cat))) return list(res) enable_test = True
keops-main
keopscore/keopscore/formulas/VectorizedScalarOp.py
keops-main
keopscore/keopscore/formulas/checks.py
from .complex import * from .maths import * from .reductions import * from .variables import * from .autodiff import *
keops-main
keopscore/keopscore/formulas/__init__.py
from keopscore.utils.code_gen_utils import new_c_varname, c_array from keopscore.utils.Tree import Tree from keopscore import debug_ops, debug_ops_at_exec from keopscore.utils.misc_utils import KeOps_Error ################### ## Base class ################### class Operation(Tree): """Base class for all keops building block operations in a formula""" def __init__(self, *args, params=()): # *args are other instances of Operation, they are the child operations of self self.children = args self.params = params # The variables in the current formula is the union of the variables in the child operations. # Note that this requires implementing properly __eq__ and __hash__ methods in Var class. # N.B. We need to sort according to ind. set_vars = ( set.union(*(set(arg.Vars_) for arg in args)) if len(args) > 0 else set() ) self.Vars_ = sorted(list(set_vars), key=lambda v: v.ind) def Vars(self, cat="all"): # if cat=="all", returns the list of all variables in a formula, stored in self.Vars_ # if cat is an integer between 0 and 2, returns the list of variables v such that v.cat=cat if cat == "all": return self.Vars_ else: res = [] for v in self.Vars_: if v.cat == cat: res.append(v) return res def replace(self, old, new): # replace all occurences of subformula old by new in self. if self == old: return new else: new_children = [child.replace(old, new) for child in self.children] return type(self)(*new_children, *self.params) def __call__(self, out, table): """returns the C++ code string corresponding to the evaluation of the formula - out is a c_variable in which the result of the evaluation is stored - table is the list of c_variables corresponding to actual local variables required for evaluation : each Var(ind,*,*) corresponds to table[ind]""" from keopscore.formulas.variables.Var import Var string = f"\n{{\n// Starting code block for {self.__repr__()}.\n\n" if debug_ops: print(f"Building code block for {self.__repr__()}") print("out=", out) print("dim of out : ", out.dim) print("table=", table) for v in table: print(f"dim of {v} : ", v.dim) if debug_ops_at_exec: string += f'printf("\\n\\nComputing {self.__repr__()} :\\n");\n' args = [] # Evaluation of the child operations for child in self.children: if isinstance(child, Var): # if the child of the operation is a Var, we do not need to evaluate it, # we simply record the corresponding c_variable arg = table[child.ind] else: # otherwise, we need to evaluate the child operation. # We first create a new c_array to store the result of the child operation. # This c_array must have a unique name in the code, to avoid conflicts # when we will recursively evaluate nested operations. template_string_id = "out_" + child.string_id.lower() arg_name = new_c_varname(template_string_id) arg = c_array(out.dtype, child.dim, arg_name) # Now we append into string the C++ code to declare the array string += f"{arg.declare()}\n" # Now we evaluate the child operation and append the result into string string += child(arg, table) args.append(arg) # Finally, evaluation of the operation itself string += self.Op(out, table, *args) # some debugging helper : if debug_ops_at_exec: for arg in args: string += arg.c_print string += out.c_print string += f'printf("\\n\\n");\n' if debug_ops: print(f"Finished building code block for {self.__repr__()}") string += f"\n\n// Finished code block for {self.__repr__()}.\n}}\n\n" return string def __mul__(self, other): """f*g redirects to Mult(f,g)""" from keopscore.formulas.maths.Mult import Mult return Mult(self, int2Op(other)) def __rmul__(self, other): from keopscore.formulas.maths.Mult import Mult return Mult(int2Op(other), self) def __truediv__(self, other): """f/g redirects to Divide(f,g)""" from keopscore.formulas.maths.Divide import Divide return Divide(self, int2Op(other)) def __rtruediv__(self, other): if other == 1: from keopscore.formulas.maths.Inv import Inv return Inv(self) else: return int2Op(other) / self def __add__(self, other): """f+g redirects to Add(f,g)""" from keopscore.formulas.maths.Add import Add return Add(self, int2Op(other)) def __radd__(self, other): """f+g redirects to Add(f,g)""" return int2Op(other) + self def __sub__(self, other): """f-g redirects to Subtract(f,g)""" from keopscore.formulas.maths.Subtract import Subtract return Subtract(self, int2Op(other)) def __rsub__(self, other): """f-g redirects to Subtract(f,g)""" return int2Op(other) - self def __neg__(self): """-f redirects to Minus(f)""" from keopscore.formulas.maths.Minus import Minus return Minus(self) def __pow__(self, other): if other == 2: """f**2 redirects to Square(f)""" from keopscore.formulas.maths.Square import Square return Square(self) elif isinstance(other, int): """f**m with m integer redirects to Pow(f,m)""" from keopscore.formulas.maths.Pow import Pow return Pow(self, other) else: from keopscore.formulas.maths.Powf import Powf raise Powf(self, other) def __or__(self, other): """f|g redirects to Scalprod(f,g)""" from keopscore.formulas.maths.Scalprod import Scalprod return Scalprod(self, other) def __eq__(self, other): return ( type(self) == type(other) and self.children == other.children and self.params == other.params ) def Op(self, out, table, param): pass def chunked_version(self, dimchk): return None @property def is_chunkable(self): return False def chunked_formulas(self, dimchk): res = [] for child in self.children: res += child.chunked_formulas(dimchk) return res @property def num_chunked_formulas(self): return sum([child.num_chunked_formulas for child in self.children]) def post_chunk_formula(self, ind): args = [] for child in self.children: args.append(child.post_chunk_formula(ind)) ind += child.num_chunked_formulas return type(self)(*args, *self.params) enable_test = False def int2Op(x): if isinstance(x, int): from keopscore.formulas.variables.IntCst import IntCst return IntCst(x) elif isinstance(x, Operation): return x else: KeOps_Error("invalid type : " + str(type(x))) ########################## ##### Broadcast #### ########################## # N.B. this is used internally def Broadcast(arg, dim): from keopscore.formulas.maths import SumT if arg.dim == dim or dim == 1: return arg elif arg.dim == 1: return SumT(arg, dim) else: KeOps_Error("dimensions are not compatible for Broadcast operation")
keops-main
keopscore/keopscore/formulas/Operation.py
import ast, inspect import keopscore.formulas from keopscore.utils.code_gen_utils import get_hash_name from keopscore.formulas.reductions import * from keopscore.formulas.maths import * from keopscore.formulas.complex import * from keopscore.formulas.variables import * from keopscore.formulas.autodiff import * class GetReduction: library = {} def __new__(self, red_formula_string, aliases=[]): string_id_hash = get_hash_name(red_formula_string, aliases) if string_id_hash in GetReduction.library: return GetReduction.library[string_id_hash] else: self.check_formula(red_formula_string) aliases_dict = {} for alias in aliases: self.check_formula(alias) if "=" in alias: varname, var = alias.split("=") aliases_dict[varname] = eval(var) reduction = eval(red_formula_string, globals(), aliases_dict) GetReduction.library[string_id_hash] = reduction return reduction @staticmethod def check_formula(string): formula_class = dict(inspect.getmembers(keopscore.formulas)) parsed = ast.parse(string) for node in ast.walk(parsed): if isinstance(node, ast.Call) and ( node.func.id not in formula_class.keys() ): print(node.func.id) # raise NotImplementedError
keops-main
keopscore/keopscore/formulas/GetReduction.py
from keopscore.formulas.Operation import Operation from keopscore.formulas.variables.Var import Var from keopscore.config.chunks import enable_chunk, dim_treshold_chunk, specdims_use_chunk class Chunkable_Op(Operation): def chunked_version(self, dimchk): chunked_args = [child.chunked_version(dimchk) for child in self.children] if self.params == (): return type(self)(*chunked_args) else: return type(self)(*chunked_args, params=self.params) def chunked_vars(self, cat): res = set() for child in self.children: res = set.union(res, set(child.chunked_vars(cat))) return list(res) def notchunked_vars(self, cat): return [] @property def use_chunk(self): test = enable_chunk & all(child.is_chunkable for child in self.children) child = self.children[0] subtest = (child.dim >= dim_treshold_chunk) | (child.dim in specdims_use_chunk) test &= subtest return test def chunked_formula(self, dimchk): if self.use_chunk: return dict( formula=self.chunked_version(dimchk), dim_org=self.children[0].dim ) else: return None def chunked_formulas(self, dimchk): chk_f = self.chunked_formula(dimchk) res = [chk_f] if chk_f is not None else [] for child in self.children: res += child.chunked_formulas(dimchk) return res @property def num_chunked_formulas(self): return ( sum(child.num_chunked_formulas for child in self.children) + self.use_chunk ) def post_chunk_formula(self, ind): if self.use_chunk: return Var(ind, 1, 3) else: return type(self)( *(child.post_chunk_formula(ind) for child in self.children), params=self.params )
keops-main
keopscore/keopscore/formulas/Chunkable_Op.py
from keopscore.utils.code_gen_utils import ComplexVectApply from keopscore.formulas.Operation import Operation from keopscore.utils.misc_utils import KeOps_Error class VectorizedComplexScalarOp(Operation): # class for operations that are vectorized or broadcasted # complex scalar operations, # such as ComplexExp(f), ComplexMult(f), ComplexAdd(f,g), etc. def __init__(self, *args, params=()): dims = set(arg.dim for arg in args) if max(dims) % 2 != 0 or len(dims) > 2 or (len(dims) == 2 and min(dims) != 2): KeOps_Error("dimensions are not compatible for VectorizedComplexScalarOp") super().__init__(*args, params=params) @property def dim(self): # dim gives the output dimension of the operation, # here it is the same as the output dimension of the child operation return max(child.dim for child in self.children) def Op(self, out, table, *args): # Atomic evaluation of the operation : it consists in a simple # for loop around the call to the correponding scalar operation return ComplexVectApply(self.ScalarOp, out, *args)
keops-main
keopscore/keopscore/formulas/VectorizedComplexScalarOp.py
from .Grad import Grad from .Grad_WithSavedForward import Grad_WithSavedForward
keops-main
keopscore/keopscore/formulas/autodiff/__init__.py
# same as Grad with additional saved forward variable. This is only used for taking gradients of reductions operations. def Grad_WithSavedForward(red_formula, v, gradin, f0): return red_formula.DiffT(v, gradin, f0)
keops-main
keopscore/keopscore/formulas/autodiff/Grad_WithSavedForward.py
from keopscore.formulas import Var from keopscore.utils.code_gen_utils import GetInds from keopscore.utils.misc_utils import KeOps_Error # ///////////////////////////////////////////////////////////// # /// GRADIENT OPERATOR : Grad< F, V, Gradin > //// # ///////////////////////////////////////////////////////////// # Defines [\partial_V F].gradin function # Symbolic differentiation is a straightforward recursive operation, # provided that the operators have implemented their DiffT "compiler methods": def Grad(formula, v, gradin=None): if gradin is None: if v.cat == 2: KeOps_Error("not implemented") inds = GetInds(formula.Vars_) ind = 1 + max(inds) if len(inds) > 0 else 0 dim = formula.dim cat = 1 - v.cat gradin = Var(ind, dim, cat) return formula.DiffT(v, gradin)
keops-main
keopscore/keopscore/formulas/autodiff/Grad.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_for_loop from keopscore.formulas.complex.Real2Complex import Real2Complex from keopscore.formulas.complex.ComplexMult import ComplexMult from keopscore.utils.misc_utils import KeOps_Error # ///////////////////////////////////////////////////////////////////////// # //// ComplexRealScal //// # ///////////////////////////////////////////////////////////////////////// class ComplexRealScal_Impl(Operation): string_id = "ComplexRealScal" def __init__(self, f, g): if f.dim != 1: KeOps_Error("Dimension of F must be 1") if g.dim % 2 != 0: KeOps_Error("Dimension of G must be even") self.dim = g.dim super().__init__(f, g) def Op(self, out, table, inF, inG): forloop, i = c_for_loop(0, self.dim, 2, pragma_unroll=True) body = out[i].assign(inF[0] * inG[i]) body += out[i + 1].assign(inF[0] * inG[i + 1]) return forloop(body) def DiffT(self, v, gradin): f, g = self.children AltFormula = ComplexMult(Real2Complex(f), g) return AltFormula.DiffT(v, gradin) def ComplexRealScal(f, g): return ComplexRealScal_Impl(f, g) if f.dim == 1 else ComplexRealScal_Impl(g, f)
keops-main
keopscore/keopscore/formulas/complex/ComplexRealScal.py
from keopscore.formulas.VectorizedComplexScalarOp import VectorizedComplexScalarOp from keopscore.utils.code_gen_utils import ( c_for_loop, new_c_varname, c_variable, ) from keopscore.utils.math_functions import keops_exp, keops_cos, keops_sin from keopscore.utils.code_gen_utils import c_variable from keopscore.formulas.complex.ComplexReal import ComplexReal from keopscore.formulas.complex.ComplexImag import ComplexImag from keopscore.formulas.complex.Real2Complex import Real2Complex from keopscore.formulas.complex.Imag2Complex import Imag2Complex from keopscore.formulas.maths.Exp import Exp from keopscore.formulas.maths.Cos import Cos from keopscore.formulas.maths.Sin import Sin # ///////////////////////////////////////////////////////////////////////// # //// ComplexExp //// # ///////////////////////////////////////////////////////////////////////// class ComplexExp(VectorizedComplexScalarOp): string_id = "ComplexExp" def ScalarOp(self, out, inF): r = c_variable(out.dtype, new_c_varname("r")) string = r.declare_assign(keops_exp(inF[0])) string += out[0].assign(r * keops_cos(inF[1])) string += out[1].assign(r * keops_sin(inF[1])) return string # building equivalent formula for autodiff def DiffT(self, v, gradin): f = self.children[0] AltAbs = Exp(ComplexReal(f)) AltReal = AltAbs * Cos(ComplexImag(f)) AltImag = AltAbs * Sin(ComplexImag(f)) AltFormula = Real2Complex(AltReal) + Imag2Complex(AltImag) return AltFormula.DiffT(v, gradin)
keops-main
keopscore/keopscore/formulas/complex/ComplexExp.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_zero_float, c_for_loop # ///////////////////////////////////////////////////////////////////////// # //// Imag2Complex //// # ///////////////////////////////////////////////////////////////////////// class Imag2Complex(Operation): string_id = "Imag2Complex" def __init__(self, f): self.dim = 2 * f.dim super().__init__(f) def Op(self, out, table, inF): forloop, i = c_for_loop(0, self.dim, 2, pragma_unroll=True) body = out[i].assign(c_zero_float) body += out[i + 1].assign(inF[i / 2]) return forloop(body) def DiffT(self, v, gradin): from keopscore.formulas.complex.ComplexImag import ComplexImag f = self.children[0] return f.DiffT(v, ComplexImag(gradin))
keops-main
keopscore/keopscore/formulas/complex/Imag2Complex.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_zero_float, c_for_loop # ///////////////////////////////////////////////////////////////////////// # //// Real2Complex //// # ///////////////////////////////////////////////////////////////////////// class Real2Complex(Operation): string_id = "Real2Complex" def __init__(self, f): self.dim = 2 * f.dim super().__init__(f) def Op(self, out, table, inF): forloop, i = c_for_loop(0, self.dim, 2, pragma_unroll=True) body = out[i].assign(inF[i / 2]) body += out[i + 1].assign(c_zero_float) return forloop(body) def DiffT(self, v, gradin): from keopscore.formulas.complex.ComplexReal import ComplexReal f = self.children[0] return f.DiffT(v, ComplexReal(gradin))
keops-main
keopscore/keopscore/formulas/complex/Real2Complex.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_for_loop from keopscore.formulas.complex.Imag2Complex import Imag2Complex from keopscore.utils.misc_utils import KeOps_Error # ///////////////////////////////////////////////////////////////////////// # //// ComplexImag //// # ///////////////////////////////////////////////////////////////////////// class ComplexImag(Operation): string_id = "ComplexImag" def __init__(self, f): if f.dim % 2 != 0: KeOps_Error("Dimension of F must be even") self.dim = int(f.dim / 2) super().__init__(f) def Op(self, out, table, inF): f = self.children[0] forloop, i = c_for_loop(0, f.dim, 2, pragma_unroll=True) return forloop(out[i / 2].assign(inF[i + 1])) def DiffT(self, v, gradin): f = self.children[0] return f.DiffT(v, Imag2Complex(gradin))
keops-main
keopscore/keopscore/formulas/complex/ComplexImag.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_zero_float, c_for_loop from keopscore.utils.misc_utils import KeOps_Error # ///////////////////////////////////////////////////////////////////////// # //// ComplexSum //// # ///////////////////////////////////////////////////////////////////////// class ComplexSum(Operation): string_id = "ComplexSum" def __init__(self, f): if f.dim % 2 != 0: KeOps_Error("Dimension of F must be even") self.dim = 2 super().__init__(f) def Op(self, out, table, inF): f = self.children[0] string = out[0].assign(c_zero_float) string += out[1].assign(out[0]) forloop, i = c_for_loop(0, f.dim, 2, pragma_unroll=True) body = out[0].add_assign(inF[i]) body += out[1].add_assign(inF[i + 1]) string += forloop(body) return string def DiffT(self, v, gradin): from keopscore.formulas.complex.ComplexSumT import ComplexSumT f = self.children[0] return f.DiffT(v, ComplexSumT(gradin, f.dim))
keops-main
keopscore/keopscore/formulas/complex/ComplexSum.py
from keopscore.formulas.maths.Atan2 import Atan2 from keopscore.formulas.complex.ComplexReal import ComplexReal from keopscore.formulas.complex.ComplexImag import ComplexImag # ///////////////////////////////////////////////////////////////////////// # //// ComplexAngle //// # ///////////////////////////////////////////////////////////////////////// def ComplexAngle(f): return Atan2(ComplexImag(f), ComplexReal(f))
keops-main
keopscore/keopscore/formulas/complex/ComplexAngle.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_for_loop from keopscore.formulas.complex.ComplexReal import ComplexReal from keopscore.formulas.complex.ComplexMult import ComplexMult from keopscore.formulas.complex.Conj import Conj from keopscore.utils.misc_utils import KeOps_Error # ///////////////////////////////////////////////////////////////////////// # //// ComplexSquareAbs //// # ///////////////////////////////////////////////////////////////////////// class ComplexSquareAbs(Operation): string_id = "ComplexSquareAbs" def __init__(self, f): if f.dim % 2 != 0: KeOps_Error("Dimension of F must be even") self.dim = int(f.dim / 2) super().__init__(f) def Op(self, out, table, inF): f = self.children[0] forloop, i = c_for_loop(0, f.dim, 2, pragma_unroll=True) return forloop(out[i / 2].assign(inF[i] * inF[i] + inF[i + 1] * inF[i + 1])) def DiffT(self, v, gradin): f = self.children[0] AltFormula = ComplexReal(ComplexMult(f, Conj(f))) return AltFormula.DiffT(v, gradin)
keops-main
keopscore/keopscore/formulas/complex/ComplexSquareAbs.py
from keopscore.formulas.VectorizedComplexScalarOp import VectorizedComplexScalarOp # ///////////////////////////////////////////////////////////////////////// # //// ComplexSubtract //// # ///////////////////////////////////////////////////////////////////////// class ComplexSubtract(VectorizedComplexScalarOp): string_id = "ComplexSubtract" def ScalarOp(self, out, inF, inG): string = out[0].assign(inF[0] - inG[0]) string += out[1].assign(inF[1] - inG[1]) return string def DiffT(self, v, gradin): f, g = self.children return ComplexSubtract(f.DiffT(v, gradin), g.DiffT(v, gradin))
keops-main
keopscore/keopscore/formulas/complex/ComplexSubtract.py
from .ComplexAbs import ComplexAbs from .ComplexAdd import ComplexAdd from .ComplexAngle import ComplexAngle from .ComplexDivide import ComplexDivide from .ComplexExp import ComplexExp from .ComplexExp1j import ComplexExp1j from .ComplexImag import ComplexImag from .ComplexMult import ComplexMult from .ComplexReal import ComplexReal from .ComplexRealScal import ComplexRealScal from .ComplexSquareAbs import ComplexSquareAbs from .ComplexSubtract import ComplexSubtract from .ComplexSum import ComplexSum from .ComplexSumT import ComplexSumT from .Conj import Conj from .Imag2Complex import Imag2Complex from .Real2Complex import Real2Complex
keops-main
keopscore/keopscore/formulas/complex/__init__.py
from keopscore.formulas.complex.ComplexSquareAbs import ComplexSquareAbs from keopscore.formulas.maths.Sqrt import Sqrt # ///////////////////////////////////////////////////////////////////////// # //// ComplexAbs //// # ///////////////////////////////////////////////////////////////////////// def ComplexAbs(f): return Sqrt(ComplexSquareAbs(f))
keops-main
keopscore/keopscore/formulas/complex/ComplexAbs.py
from keopscore.formulas.complex.Real2Complex import Real2Complex from keopscore.formulas.complex.ComplexMult import ComplexMult from keopscore.formulas.complex.ComplexSquareAbs import ComplexSquareAbs from keopscore.formulas.complex.Conj import Conj from keopscore.formulas.maths.Inv import Inv # ///////////////////////////////////////////////////////////////////////// # //// ComplexDivide //// # ///////////////////////////////////////////////////////////////////////// def ComplexDivide(f, g): return ComplexMult(Real2Complex(Inv(ComplexSquareAbs(g))), ComplexMult(f, Conj(g)))
keops-main
keopscore/keopscore/formulas/complex/ComplexDivide.py
from keopscore.formulas.VectorizedComplexScalarOp import VectorizedComplexScalarOp from keopscore.formulas.complex.Conj import Conj # ///////////////////////////////////////////////////////////////////////// # //// ComplexMult //// # ///////////////////////////////////////////////////////////////////////// class ComplexMult(VectorizedComplexScalarOp): string_id = "ComplexMult" def ScalarOp(self, out, inF, inG): string = out[0].assign(inF[0] * inG[0] - inF[1] * inG[1]) string += out[1].assign(inF[0] * inG[1] + inF[1] * inG[0]) return string def DiffT(self, v, gradin): f, g = self.children DiffTF = f.DiffT(v, gradin) DiffTG = g.DiffT(v, gradin) return DiffTF(v, ComplexMult(Conj(g), gradin)) + DiffTG( v, ComplexMult(Conj(f), gradin) )
keops-main
keopscore/keopscore/formulas/complex/ComplexMult.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_for_loop from keopscore.formulas.complex.Real2Complex import Real2Complex from keopscore.utils.misc_utils import KeOps_Error # ///////////////////////////////////////////////////////////////////////// # //// ComplexReal //// # ///////////////////////////////////////////////////////////////////////// class ComplexReal(Operation): string_id = "ComplexReal" def __init__(self, f): if f.dim % 2 != 0: KeOps_Error("Dimension of F must be even") self.dim = int(f.dim / 2) super().__init__(f) def Op(self, out, table, inF): f = self.children[0] forloop, i = c_for_loop(0, f.dim, 2, pragma_unroll=True) return forloop(out[i / 2].assign(inF[i])) def DiffT(self, v, gradin): f = self.children[0] return f.DiffT(v, Real2Complex(gradin))
keops-main
keopscore/keopscore/formulas/complex/ComplexReal.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_for_loop from keopscore.utils.misc_utils import KeOps_Error # ///////////////////////////////////////////////////////////////////////// # //// adjoint of ComplexSum //// # ///////////////////////////////////////////////////////////////////////// class ComplexSumT(Operation): string_id = "ComplexSumT" def __init__(self, f, dim): if f.dim != 2: KeOps_Error("Dimension of F must be 2") self.dim = dim super().__init__(f) def Op(self, out, table, inF): forloop, i = c_for_loop(0, self.dim, 2, pragma_unroll=True) body = out[i].assign(inF[0]) body += out[i + 1].assign(inF[1]) return forloop(body) def DiffT(self, v, gradin): from keopscore.formulas.complex.ComplexSum import ComplexSum f = self.children[0] return f.DiffT(v, ComplexSum(gradin))
keops-main
keopscore/keopscore/formulas/complex/ComplexSumT.py
from keopscore.formulas.VectorizedComplexScalarOp import VectorizedComplexScalarOp # ///////////////////////////////////////////////////////////////////////// # //// Conj : complex conjugate //// # ///////////////////////////////////////////////////////////////////////// class Conj(VectorizedComplexScalarOp): string_id = "Conj" def ScalarOp(self, out, inF): string = out[0].assign(inF[0]) string += out[1].assign(-inF[1]) return string def DiffT(self, v, gradin): f = self.children[0] return f.DiffT(v, Conj(gradin))
keops-main
keopscore/keopscore/formulas/complex/Conj.py
from keopscore.formulas.VectorizedComplexScalarOp import VectorizedComplexScalarOp # ///////////////////////////////////////////////////////////////////////// # //// ComplexAdd //// # ///////////////////////////////////////////////////////////////////////// class ComplexAdd(VectorizedComplexScalarOp): string_id = "ComplexAdd" def ScalarOp(self, out, inF, inG): string = out[0].assign(inF[0] + inG[0]) string += out[1].assign(inF[1] + inG[1]) return string def DiffT(self, v, gradin): f, g = self.children return ComplexAdd(f.DiffT(v, gradin), g.DiffT(v, gradin))
keops-main
keopscore/keopscore/formulas/complex/ComplexAdd.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_for_loop from keopscore.utils.math_functions import keops_sincos from keopscore.formulas.complex.Real2Complex import Real2Complex from keopscore.formulas.complex.Imag2Complex import Imag2Complex from keopscore.formulas.maths.Cos import Cos from keopscore.formulas.maths.Sin import Sin # ///////////////////////////////////////////////////////////////////////// # //// ComplexExp1j //// # ///////////////////////////////////////////////////////////////////////// class ComplexExp1j(Operation): string_id = "ComplexExp1j" def __init__(self, f): self.dim = 2 * f.dim super().__init__(f) def Op(self, out, table, inF): forloop, i = c_for_loop(0, self.dim, 2, pragma_unroll=True) body = keops_sincos(inF[i / 2], out[i] + 1, out[i]) return forloop(body) def DiffT(self, v, gradin): # building equivalent formula for autodiff f = self.children[0] AltFormula = Real2Complex(Cos(f)) + Imag2Complex(Sin(f)) return AltFormula.DiffT(v, gradin)
keops-main
keopscore/keopscore/formulas/complex/ComplexExp1j.py
from .IntCst import IntCst from .Var import Var from .Zero import Zero
keops-main
keopscore/keopscore/formulas/variables/__init__.py
from keopscore.utils.code_gen_utils import c_zero_float from keopscore.formulas.Operation import Operation class Zero(Operation): """zero operation : encodes a vector of zeros""" string_id = "Zero" def __init__(self, dim): super().__init__() self.dim = dim self.params = (dim,) # custom __eq__ method def __eq__(self, other): return type(self) == type(other) and self.dim == other.dim def Op(self, out, table): return out.assign(c_zero_float) def DiffT(self, v, gradin): return Zero(v.dim)
keops-main
keopscore/keopscore/formulas/variables/Zero.py
from keopscore.utils.code_gen_utils import cast_to, c_variable from keopscore.formulas.Operation import Operation from keopscore.formulas.variables.Zero import Zero class IntCst_Impl(Operation): # constant integer "operation" string_id = "IntCst" print_spec = "", "pre", 0 def __init__(self, val): super().__init__() self.val = val self.dim = 1 self.params = (val,) # custom __eq__ method def __eq__(self, other): return type(self) == type(other) and self.val == other.val def Op(self, out, table): float_val = c_variable("float", f"(float){self.val}") return f"*{out.id} = {cast_to(out.dtype, float_val)};\n" def DiffT(self, v, gradin): return Zero(v.dim) # N.B. The following separate function should theoretically be implemented # as a __new__ method of the previous class, but this can generate infinite recursion problems def IntCst(arg): if arg == 0: return Zero(1) else: return IntCst_Impl(arg)
keops-main
keopscore/keopscore/formulas/variables/IntCst.py
from keopscore.utils.code_gen_utils import VectCopy from keopscore.formulas.Operation import Operation ####################### ## Var operation ####################### class Var(Operation): """Var operation class. Var(ind,dim,cat) is a symbolic object that encodes an input tensor in the call to the KeOps routine, where - ind gives the position of the input tensor in the list of tensors sent to the routine - dim gives the "dimension" of the data : each input tensor is interpreted as a matrix of size (n,dim), where n is dynamically handled and dim is known at compile time. - cat is the "category" of the variable : either a "i"-indexed variable (cat=0), a "j"-indexed variable (cat=1), or a parameter variable (cat=2)""" string_id = "Var" def __init__(self, ind, dim, cat): super().__init__() self.ind = ind self.dim = dim self.cat = cat self.Vars_ = {self} self.params = (ind, dim, cat) # custom __eq__ and __hash__ methods, required to handle properly the union of two sets of Var objects def __eq__(self, other): return ( type(self) == type(other) and self.ind == other.ind and self.dim == other.dim and self.cat == other.cat ) def __hash__(self): return hash((self.ind, self.dim, self.cat)) def Op(self, out, table): return VectCopy(out, table[self.ind]) # Assuming that the gradient wrt. Var is GRADIN, how does it affect V ? # Var::DiffT<V, grad_input> = grad_input if V == Var (in the sense that it represents the same symb. var.) # Zero(V::DIM) otherwise def DiffT(self, v, gradin): from keopscore.formulas.variables.Zero import Zero return gradin if v == self else Zero(v.dim) def chunked_version(self, dimchk): return Var(self.ind, dimchk, self.cat) @property def is_chunkable(self): return True def chunked_formulas(self, dimchk): return [] @property def num_chunked_formulas(self): return 0 def post_chunk_formula(self, ind): return Var(self.ind, self.dim, self.cat) def chunked_vars(self, cat): return self.Vars(cat) def notchunked_vars(self, cat): return set()
keops-main
keopscore/keopscore/formulas/variables/Var.py
from keopscore.formulas.Operation import Broadcast from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.maths.Scalprod import Scalprod from keopscore.formulas.maths.Square import Square from keopscore.formulas.variables.Zero import Zero from keopscore.utils.math_functions import keops_mul from keopscore.formulas.variables.IntCst import IntCst_Impl from keopscore.formulas.maths.SumT import SumT, SumT_Impl from keopscore.utils.misc_utils import KeOps_Error ########################## ###### Mult ##### ########################## class Mult_Impl(VectorizedScalarOp): """the binary multiply operation""" string_id = "Mult" print_spec = "*", "mid", 3 ScalarOpFun = keops_mul # \diff_V (A*B) = (\diff_V A) * B + A * (\diff_V B) def DiffT(self, v, gradin): fa, fb = self.children if fa.dim == 1 and fb.dim > 1: return fa.DiffT(v, Scalprod(gradin, fb)) + fb.DiffT(v, fa * gradin) elif fb.dim == 1 and fa.dim > 1: return fa.DiffT(v, fb * gradin) + fb.DiffT(v, Scalprod(gradin, fa)) else: return fa.DiffT(v, fb * gradin) + fb.DiffT(v, fa * gradin) # parameters for testing the operation (optional) nargs = 2 # number of arguments torch_op = "torch.mul" # equivalent PyTorch operation # N.B. The following separate function should theoretically be implemented # as a __new__ method of the previous class, but this can generate infinite recursion problems def Mult(arg0, arg1): if isinstance(arg0, Zero): return Broadcast(arg0, arg1.dim) elif isinstance(arg1, Zero): return Broadcast(arg1, arg0.dim) elif isinstance(arg0, IntCst_Impl): if arg0.val == 1: # 1*f -> f return arg1 if arg0.val == -1: # -1*f -> -f return -arg1 elif isinstance(arg1, IntCst_Impl): # m*n -> mn return IntCst_Impl(arg0.val * arg1.val) if isinstance(arg1, IntCst_Impl): # f*n -> n*f (bringing integers to the left) return Mult(arg1, arg0) elif isinstance(arg1, Mult_Impl) and isinstance(arg1.children[0], IntCst_Impl): # f*(n*g) -> (n*f)*g return (arg1.children[0] * arg0) * arg1.children[1] elif arg0 == arg1: # f*f -> f^2 return Square(arg0) elif isinstance(arg1, SumT_Impl): # f*SumT(g) if isinstance(arg0, SumT_Impl): # SumT(f)*SumT(g) -> SumT(f*g) if arg0.dim != arg1.dim: # should never happen... KeOps_Error("dimensions are not compatible for Mult operation") return SumT(arg0.children[0] * arg1.children[0], arg0.dim) elif arg0.dim == 1: # f*SumT(g) -> SumT(f*g) return SumT(arg0 * arg1.children[0], arg1.dim) elif arg1.dim == arg0.dim: # f*SumT(g) -> f*g (broadcasted) return arg0 * arg1.children[0] else: KeOps_Error("dimensions are not compatible for Mult operation") elif isinstance(arg0, SumT_Impl): # SumT(f)*g -> g*SumT(f) return arg1 * arg0 else: return Mult_Impl(arg0, arg1)
keops-main
keopscore/keopscore/formulas/maths/Mult.py
from keopscore.formulas.Operation import Operation from keopscore.formulas.maths.ArgMax import ArgMax from keopscore.formulas.maths.OneHot import OneHot from keopscore.utils.code_gen_utils import c_for_loop, c_if, value from keopscore.utils.misc_utils import KeOps_Error ############################ ###### Max ##### ############################ class Max(Operation): string_id = "Max" def __init__(self, f): super().__init__(f) if f.dim < 1: KeOps_Error("Max operation is only possible when dimension is non zero.") self.dim = 1 self.argdim = f.dim def Op(self, out, table, arg): loop, k = c_for_loop(1, arg.dim, 1, pragma_unroll=True) string = value(out).assign(arg[0]) if out.dtype == "half2": loop_string = f""" // we have to work element-wise... __half2 cond = __hlt2(*{out.id},{arg[k].id}); // cond = (out > outF[k]) (element-wise) __half2 negcond = __float2half2_rn(1.0f)-cond; // negcond = 1-cond *{out.id} = cond * {arg[k].id} + negcond * *{out.id}; // out = cond * outF[k] + (1-cond) * out """ string += loop(loop_string) else: string += loop(c_if(arg[k] > value(out), value(out).assign(arg[k]))) return string def DiffT(self, v, gradin): f = self.children[0] return f.DiffT(v, OneHot(ArgMax(f), self.argdim) * gradin) # parameters for testing the operation (optional) enable_test = True # enable testing for this operation nargs = 1 # number of arguments test_argdims = [5] # dimensions of arguments for testing torch_op = "lambda x : torch.max(x, dim=-1, keepdim=True)[0].type(x.dtype)"
keops-main
keopscore/keopscore/formulas/maths/Max.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.utils.math_functions import keops_pow class Pow(VectorizedScalarOp): """the integer power vectorized operation Pow(f,m) where m is integer, computes f^m """ def __init__(self, f, m): super().__init__(f, params=(m,)) string_id = "Pow" ScalarOpFun = keops_pow @staticmethod def Derivative(f, m): from keopscore.formulas.variables.IntCst import IntCst return IntCst(m) * Pow(f, m - 1) # parameters for testing the operation (optional) nargs = 1 # number of arguments (excluding parameters) test_ranges = [(0, 2)] # ranges of arguments test_params = [2] # values of parameters for testing torch_op = "lambda x,m : torch.pow(x, m)"
keops-main
keopscore/keopscore/formulas/maths/Pow.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import ( c_variable, c_for_loop, c_zero_float, ) from keopscore.utils.misc_utils import KeOps_Error # ///////////////////////////////////////////////////////////////////////// # //// Vector-matrix product b x A //// # ///////////////////////////////////////////////////////////////////////// class VecMatMult(Operation): string_id = "VecMatMult" def __init__(self, B, A): # A is vector of size n*p, interpreted as matrix, B is vector of size n, interpreted as row vector # output is vector of size p if A.dim % B.dim != 0: KeOps_Error( "Dimensions of A and B are not compatible for vector-matrix product" ) super().__init__(B, A) self.dim = A.dim // B.dim def Op(self, out, table, inB, inA): q = c_variable("int") loop, i = c_for_loop(0, self.dim, 1, pragma_unroll=True) inner_loop, k = c_for_loop(0, inB.dim, 1, pragma_unroll=True) return f""" #if C_CONTIGUOUS // row major {q.declare_assign(0)} {loop(out[i].assign(c_zero_float) + inner_loop(out[i].add_assign(inA[k * self.dim + i] * inB[k])))} #else // column major {q.declare_assign(0)} {loop(out[i].assign(c_zero_float) + inner_loop(out[i].add_assign(inA[q] * inB[k]) + q.add_assign(1)))} #endif """ def DiffT(self, v, gradin): from keopscore.formulas.maths.MatVecMult import MatVecMult from keopscore.formulas.maths.TensorProd import TensorProd B, A = self.children return A.DiffT(v, TensorProd(B, gradin)) + B.DiffT(v, MatVecMult(A, gradin))
keops-main
keopscore/keopscore/formulas/maths/VecMatMult.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import value from keopscore.utils.misc_utils import KeOps_Error ############################ ###### ELEMENT EXTRACTION : Elem(f,m) (aka get_item) ##### ############################ class Elem(Operation): string_id = "Elem" def __init__(self, f, m): super().__init__(f, params=(m,)) if f.dim <= m: KeOps_Error("Index out of bound in Elem") self.dim = 1 self.m = m def Op(self, out, table, arg): return value(out).assign(arg[self.m]) def DiffT(self, v, gradin): from keopscore.formulas.maths.ElemT import ElemT f = self.children[0] return f.DiffT(v, ElemT(gradin, f.dim, self.m)) # parameters for testing the operation (optional) enable_test = True # enable testing for this operation nargs = 1 # number of arguments test_argdims = [5] # dimensions of arguments for testing test_params = [3] # dimensions of parameters for testing torch_op = "lambda x, m : x[..., m][..., None]"
keops-main
keopscore/keopscore/formulas/maths/Elem.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.maths.DiffClampInt import DiffClampInt from keopscore.utils.math_functions import keops_clampint class ClampInt(VectorizedScalarOp): """ClampInt(x,a,b) = a if x<a, x if a<=x<=b, b if b<x N.B. same as Clamp but a and b are fixed integers. ClampInt may be faster than Clamp because we avoid the transfer of A and B in memory. """ string_id = "ClampInt" def __init__(self, x, a, b): super().__init__(x, params=(a, b)) ScalarOpFun = keops_clampint @staticmethod def Derivative(x, a, b): return DiffClampInt(x, a, b) # parameters for testing the operation (optional) test_params = [0, 1] # parameters to try torch_op = "torch.clamp" # equivalent PyTorch operation
keops-main
keopscore/keopscore/formulas/maths/ClampInt.py
from keopscore.formulas.Operation import Broadcast from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.maths.Mult import Mult_Impl from keopscore.formulas.variables.IntCst import IntCst, IntCst_Impl from keopscore.formulas.variables.Zero import Zero ########################## ###### Add ##### ########################## class Add_Impl(VectorizedScalarOp): """the binary addition operation""" string_id = "Add" print_spec = "+", "mid", 4 def ScalarOp(self, out, arg0, arg1): # returns the atomic piece of c++ code to evaluate the function on arg and return # the result in out return f"{out.id} = {arg0.id}+{arg1.id};\n" def DiffT(self, v, gradin): fa, fb = self.children return fa.DiffT(v, gradin) + fb.DiffT(v, gradin) # parameters for testing the operation (optional) nargs = 2 # number of arguments # N.B. The following separate function could theoretically be implemented # as a __new__ method of the previous class, but this can generate infinite recursion problems def Add(arg0, arg1): if isinstance(arg0, Zero): return Broadcast(arg1, arg0.dim) elif isinstance(arg1, Zero): return Broadcast(arg0, arg1.dim) elif arg0 == arg1: return IntCst(2) * arg0 elif isinstance(arg0, Mult_Impl) and isinstance(arg0.children[0], IntCst_Impl): if arg0.children[1] == arg1: # factorization : n*x + x = (n+1)*x return IntCst(arg0.children[0].val + 1) * arg1 elif ( isinstance(arg1, Mult_Impl) and isinstance(arg1.children[0], IntCst_Impl) and arg1.children[1] == arg0.children[1] ): # factorization : m*x + n*x = (m+n)*x return ( IntCst(arg0.children[0].val + arg1.children[0].val) * arg0.children[1] ) if ( isinstance(arg1, Mult_Impl) and isinstance(arg1.children[0], IntCst_Impl) and arg1.children[1] == arg0 ): # factorization : x + n*x = (n+1)*x return IntCst(arg1.children[0].val + 1) * arg0 return Add_Impl(arg0, arg1)
keops-main
keopscore/keopscore/formulas/maths/Add.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import ( c_variable, c_for_loop, c_zero_float, ) from keopscore.utils.misc_utils import KeOps_Error # ///////////////////////////////////////////////////////////////////////// # //// Matrix-vector product A x b //// # ///////////////////////////////////////////////////////////////////////// class MatVecMult(Operation): string_id = "MatVecMult" def __init__(self, A, B): # A is vector of size n*p, interpreted as matrix, B is vector of size p, interpreted as column vector # output is vector of size n if A.dim % B.dim != 0: KeOps_Error( "Dimensions of A and B are not compatible for matrix-vector product" ) super().__init__(A, B) self.dim = A.dim // B.dim def Op(self, out, table, inA, inB): q = c_variable("int") loop, i = c_for_loop(0, self.dim, 1, pragma_unroll=True) inner_loop, k = c_for_loop(0, inB.dim, 1, pragma_unroll=True) return f""" #if C_CONTIGUOUS // row major {q.declare_assign(0)} {loop(out[i].assign(c_zero_float) + inner_loop(out[i].add_assign(inA[q] * inB[k]) + q.add_assign(1)))} #else // column major {loop(out[i].assign(c_zero_float) + inner_loop(out[i].add_assign(inA[k * self.dim + i] * inB[k])))} #endif """ def DiffT(self, v, gradin): from keopscore.formulas.maths import TensorProd, VecMatMult A, B = self.children return A.DiffT(v, TensorProd(gradin, B)) + B.DiffT(v, VecMatMult(gradin, A)) # parameters for testing the operation (optional) enable_test = True # enable testing for this operation nargs = 2 # number of arguments test_argdims = [6, 2] # dimensions of arguments for testing torch_op = None # equivalent PyTorch operation
keops-main
keopscore/keopscore/formulas/maths/MatVecMult.py
from keopscore.formulas.Operation import Broadcast from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.variables.Zero import Zero from keopscore.formulas.maths.Mult import Mult_Impl from keopscore.formulas.variables.IntCst import IntCst, IntCst_Impl ########################## ###### Subtract ##### ########################## class Subtract_Impl(VectorizedScalarOp): """the binary subtract operation""" string_id = "Subtract" print_spec = "-", "mid", 4 def ScalarOp(self, out, arg0, arg1): # returns the atomic piece of c++ code to evaluate the function on arg and return # the result in out return f"{out.id} = {arg0.id}-{arg1.id};\n" def DiffT(self, v, gradin): fa, fb = self.children return fa.DiffT(v, gradin) - fb.DiffT(v, gradin) # parameters for testing the operation (optional) nargs = 2 # number of arguments torch_op = "torch.sub" # equivalent PyTorch operation # N.B. The following separate function should theoretically be implemented # as a __new__ method of the previous class, but this can generate infinite recursion problems def Subtract(arg0, arg1): if isinstance(arg0, Zero): return -Broadcast(arg1, arg0.dim) elif isinstance(arg1, Zero): return Broadcast(arg0, arg1.dim) elif arg0 == arg1: return Zero(arg0.dim) elif isinstance(arg0, Mult_Impl) and isinstance(arg0.children[0], IntCst_Impl): if arg0.children[1] == arg1: # factorization : n*x - x = (n-1)*x return IntCst(arg0.children[0].val - 1) * arg1 elif ( isinstance(arg1, Mult_Impl) and isinstance(arg1.children[0], IntCst_Impl) and arg1.children[1] == arg0.children[1] ): # factorization : m*x - n*x = (m-n)*x return ( IntCst(arg0.children[0].val - arg1.children[0].val) * arg0.children[1] ) if ( isinstance(arg1, Mult_Impl) and isinstance(arg1.children[0], IntCst_Impl) and arg1.children[1] == arg0 ): # factorization : x - n*x = (1-n)*x return IntCst(1 - arg1.children[0].val) * arg0 else: return Subtract_Impl(arg0, arg1)
keops-main
keopscore/keopscore/formulas/maths/Subtract.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.variables.Zero import Zero ########################## ###### Minus ##### ########################## class Minus_Impl(VectorizedScalarOp): """the "minus" vectorized operation""" string_id = "Minus" print_spec = "-", "pre", 2 def ScalarOp(self, out, arg): # returns the atomic piece of c++ code to evaluate the function on arg and return # the result in out return f"{out.id} = -{arg.id};\n" def DiffT(self, v, gradin): f = self.children[0] return -f.DiffT(v, gradin) # parameters for testing the operation (optional) nargs = 1 # number of arguments torch_op = "torch.neg" # equivalent PyTorch operation # N.B. The following separate function should theoretically be implemented # as a __new__ method of the previous class, but this can generate infinite recursion problems def Minus(arg): if isinstance(arg, Zero): return arg else: return Minus_Impl(arg)
keops-main
keopscore/keopscore/formulas/maths/Minus.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.utils.math_functions import keops_rcp ########################## ###### INVERSE : Inv<F> ##### ########################## class Inv(VectorizedScalarOp): """the "Inv" vectorized operation""" string_id = "Inv" print_spec = "1/", "pre", 2 ScalarOpFun = keops_rcp @staticmethod def Derivative(f): return -1 / f**2 # parameters for testing the operation (optional) torch_op = "lambda x : 1 / x"
keops-main
keopscore/keopscore/formulas/maths/Inv.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.maths.IntInv import IntInv from keopscore.formulas.maths.Rsqrt import Rsqrt from keopscore.utils.math_functions import keops_sqrt ########################## ###### Sqrt ##### ########################## class Sqrt(VectorizedScalarOp): """the square root vectorized operation""" string_id = "Sqrt" ScalarOpFun = keops_sqrt @staticmethod def Derivative(f): return IntInv(2) * Rsqrt(f) # parameters for testing the operation (optional) test_ranges = [(0, 2)] # range of argument
keops-main
keopscore/keopscore/formulas/maths/Sqrt.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.maths.IntInv import IntInv ########################## ###### Rsqrt ##### ########################## class Rsqrt(VectorizedScalarOp): """the inverse square root vectorized operation""" string_id = "Rsqrt" def ScalarOp(self, out, arg): from keopscore.utils.math_functions import keops_rsqrt # returns the atomic piece of c++ code to evaluate the function on arg and return # the result in out return out.assign(keops_rsqrt(arg)) @staticmethod def Derivative(f): return IntInv(-2) * Rsqrt(f) ** 3 # parameters for testing the operation (optional) test_ranges = [(0.5, 2)] # range of argument
keops-main
keopscore/keopscore/formulas/maths/Rsqrt.py
from keopscore.formulas.Operation import Operation from keopscore.formulas.maths.Extract import Extract from keopscore.utils.code_gen_utils import VectCopy ############################ ###### Concat ##### ############################ class Concat(Operation): string_id = "Concat" def __init__(self, arg0, arg1): super().__init__(arg0, arg1) self.dim = arg0.dim + arg1.dim def Op(self, out, table, arg0, arg1): out0, out1 = out.split(arg0.dim, arg1.dim) return VectCopy(out0, arg0) + VectCopy(out1, arg1) def DiffT(self, v, gradin): f = self.children[0] g = self.children[1] return f.DiffT(v, Extract(gradin, 0, f.dim)) + g.DiffT( v, Extract(gradin, f.dim, g.dim) ) # parameters for testing the operation (optional) enable_test = True # enable testing for this operation nargs = 2 # number of arguments test_argdims = [5, 3] # dimensions of arguments for testing torch_op = None
keops-main
keopscore/keopscore/formulas/maths/Concat.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.utils.math_functions import keops_log class Log(VectorizedScalarOp): """the logarithm vectorized operation""" string_id = "Log" ScalarOpFun = keops_log @staticmethod def Derivative(f): return 1 / f # parameters for testing the operation (optional) test_ranges = [(0, 2)] # range of argument
keops-main
keopscore/keopscore/formulas/maths/Log.py
from keopscore.formulas.maths.SqNorm2 import SqNorm2 class SqDist: def __new__(cls, arg0, arg1): return SqNorm2(arg0 - arg1) enable_test = False
keops-main
keopscore/keopscore/formulas/maths/SqDist.py
from keopscore.formulas.maths.Square import Square from keopscore.formulas.maths.Sum import Sum class SqNormDiag: """ Anisotropic (but diagonal) norm, if S.dim == A.dim: SqNormDiag(S,A) = sum_i s_i*a_i*a_i """ def __new__(cls, S, A): return Sum(S * Square(A)) enable_test = False
keops-main
keopscore/keopscore/formulas/maths/SqNormDiag.py
from keopscore.formulas.maths.SqNorm2 import SqNorm2 class WeightedSqDist: """ WEIGHTED SQUARED DISTANCE : WeightedSqDist(S,A) """ def __new__(cls, S, A): return S * SqNorm2(A) enable_test = False
keops-main
keopscore/keopscore/formulas/maths/WeightedSqDist.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.maths.Rsqrt import Rsqrt from keopscore.utils.math_functions import keops_asin class Asin(VectorizedScalarOp): """the arc-sine vectorized operation""" string_id = "Asin" ScalarOpFun = keops_asin @staticmethod def Derivative(f): return Rsqrt(1 - f**2) # parameters for testing the operation (optional) test_ranges = [(-1, 1)] # range of argument
keops-main
keopscore/keopscore/formulas/maths/Asin.py
from keopscore.formulas.maths.Sum import Sum from keopscore.formulas.maths.TensorProd import TensorProd class SymSqNorm: """ Fully anisotropic norm, if S.dim == A.dim * A.dim SymSqNorm(A,X) = sum_{ij} a_ij * x_i*x_j """ def __new__(cls, A, X): return Sum(A * TensorProd(X, X)) enable_test = False
keops-main
keopscore/keopscore/formulas/maths/SymSqNorm.py
from keopscore.formulas.maths.Rsqrt import Rsqrt from keopscore.formulas.maths.SqNorm2 import SqNorm2 class Normalize: def __new__(cls, arg): return Rsqrt(SqNorm2(arg)) * arg enable_test = False
keops-main
keopscore/keopscore/formulas/maths/Normalize.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.utils.math_functions import keops_cos class Cos(VectorizedScalarOp): """the cosine vectorized operation""" string_id = "Cos" ScalarOpFun = keops_cos @staticmethod def Derivative(f): from .Sin import Sin return -Sin(f)
keops-main
keopscore/keopscore/formulas/maths/Cos.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.utils.math_functions import keops_atan2 # ////////////////////////////////////////////////////////////// # //// ATAN2 : Atan2< F, G > //// # ////////////////////////////////////////////////////////////// class Atan2(VectorizedScalarOp): string_id = "Atan2" ScalarOpFun = keops_atan2 @staticmethod def Derivative(f, g): r2 = f**2 + g**2 return g / r2, -f / r2
keops-main
keopscore/keopscore/formulas/maths/Atan2.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_zero_float from keopscore.utils.misc_utils import KeOps_Error # ////////////////////////////////////////////////////////////// # //// ONE-HOT REPRESENTATION : OneHot<F,DIM> //// # ////////////////////////////////////////////////////////////// class OneHot(Operation): string_id = "OneHot" def __init__(self, f, dim): if f.dim != 1: KeOps_Error("One-hot representation is only supported for scalar formulas.") if dim < 1: KeOps_Error("A one-hot vector should have length >= 1.") super().__init__(f) self.dim = dim self.params = (dim,) def Op(self, out, table, arg0): if out.dtype == "half2" and arg0.dtype == "half2": return f""" #pragma unroll for (int k = 0; k < {self.dim}; k++) {out.id}[k] = __heq2(h2rint(*{arg0.id}),__float2half2_rn(k)); """ else: string = out.assign(c_zero_float) string += f""" {out.id}[(int)(*{arg0.id}+.5)] = 1.0; """ return string def DiffT(self, v, gradin): from keopscore.formulas.variables.Zero import Zero return Zero(v.dim)
keops-main
keopscore/keopscore/formulas/maths/OneHot.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import value, c_zero_float, c_for_loop from keopscore.utils.misc_utils import KeOps_Error ############################ ###### ELEMENT "INJECTION" : ElemT(f,m,n) ############################ class ElemT(Operation): string_id = "ElemT" def __init__(self, f, n, m): super().__init__(f, params=(n, m)) if f.dim != 1: KeOps_Error("Input of ElemT should be a scalar") self.dim = n self.n = n self.m = m def Op(self, out, table, arg): n, m = self.n, self.m loop1, k = c_for_loop(0, m, 1, pragma_unroll=True) string = loop1(out[k].assign(c_zero_float)) string += out[m].assign(value(arg)) loop2, k = c_for_loop(m + 1, n, 1, pragma_unroll=True) string += loop2(out[k].assign(c_zero_float)) return string def DiffT(self, v, gradin): from keopscore.formulas.maths.Elem import Elem f = self.children[0] return f.DiffT(v, Elem(gradin, self.m)) # parameters for testing the operation (optional) enable_test = True # enable testing for this operation nargs = 1 # number of arguments test_argdims = [1] # dimensions of arguments for testing test_params = [5, 3] # dimensions of parameters for testing def torch_op(x, n, m): # equivalent PyTorch operation import torch out = torch.zeros((*x.shape[:-1], n), device=x.device, dtype=x.dtype) out[..., m][..., None] = x return out
keops-main
keopscore/keopscore/formulas/maths/ElemT.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.maths.Sign import Sign from keopscore.utils.math_functions import keops_abs class Abs(VectorizedScalarOp): """the absolute value vectorized operation""" string_id = "Abs" ScalarOpFun = keops_abs @staticmethod def Derivative(f): return Sign(f)
keops-main
keopscore/keopscore/formulas/maths/Abs.py
from .Abs import Abs from .Acos import Acos from .Add import Add from .ArgMax import ArgMax from .ArgMin import ArgMin from .Asin import Asin from .Atan import Atan from .Atan2 import Atan2 from .Clamp import Clamp from .ClampInt import ClampInt from .Concat import Concat from .Cos import Cos from .DiffClampInt import DiffClampInt from .Divide import Divide from .Elem import Elem from .ElemT import ElemT from .Exp import Exp from .Extract import Extract from .ExtractT import ExtractT from .Floor import Floor from .GradMatrix import GradMatrix from .IfElse import IfElse from .IntInv import IntInv from .Inv import Inv from .Log import Log from .MatVecMult import MatVecMult from .Max import Max from .Min import Min from .Minus import Minus from .Mod import Mod from .Mult import Mult from .Norm2 import Norm2 from .Normalize import Normalize from .Pow import Pow from .Powf import Powf from .ReLU import ReLU from .Round import Round from .Rsqrt import Rsqrt from .Scalprod import Scalprod from .Sign import Sign from .Sin import Sin from .SinXDivX import SinXDivX from .SqDist import SqDist from .SqNorm2 import SqNorm2 from .SqNormDiag import SqNormDiag from .SqNormIso import SqNormIso from .Sqrt import Sqrt from .Square import Square from .Step import Step from .Subtract import Subtract from .Sum import Sum from .SumT import SumT from .SymSqNorm import SymSqNorm from .TensorDot import TensorDot from .TensorProd import TensorProd from .VecMatMult import VecMatMult from .WeightedSqDist import WeightedSqDist from .WeightedSqNorm import WeightedSqNorm from .XLogX import XLogX __all__ = [ "Abs", "Acos", "Add", "ArgMax", "ArgMin", "Asin", "Atan", "Atan2", "Clamp", "ClampInt", "Concat", "Cos", "DiffClampInt", "Divide", "Elem", "ElemT", "Exp", "Extract", "ExtractT", "GradMatrix", "Floor", "IfElse", "IntInv", "Inv", "Log", "MatVecMult", "Max", "Min", "Minus", "Mod", "Mult", "Norm2", "Normalize", "Pow", "Powf", "ReLU", "Round", "Rsqrt", "Scalprod", "Sign", "Sin", "SinXDivX", "SqDist", "SqNorm2", "SqNormDiag", "SqNormIso", "Sqrt", "Square", "Step", "Subtract", "Sum", "SumT", "SymSqNorm", "TensorDot", "TensorProd", "VecMatMult", "WeightedSqDist", "WeightedSqNorm", "XLogX", ]
keops-main
keopscore/keopscore/formulas/maths/__init__.py
from keopscore.formulas.Operation import Broadcast from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.maths.Scalprod import Scalprod from keopscore.formulas.maths.Square import Square from keopscore.formulas.variables.Zero import Zero from keopscore.utils.misc_utils import KeOps_Error ########################## ###### Divide ##### ########################## class Divide_Impl(VectorizedScalarOp): """the binary divide operation""" string_id = "Divide" print_spec = "/", "mid", 3 def ScalarOp(self, out, arg0, arg1): """returns the atomic piece of c++ code to evaluate the function on arg and return the result in out""" return f"{out.id} = {arg0.id} / {arg1.id};\n" # \diff_V (A/B) = ((\diff_V A) * B - A * (\diff_V B)) / B^2 def DiffT(self, v, gradin): fa, fb = self.children if fa.dim == 1 and fb.dim > 1: return ( fa.DiffT(v, Scalprod(gradin, fb)) - fb.DiffT(v, fa * gradin) ) / Square(fb) elif fb.dim == 1 and fa.dim > 1: return ( fa.DiffT(v, fb * gradin) - fb.DiffT(v, Scalprod(gradin, fa)) ) / Square(fb) else: return (fa.DiffT(v, fb * gradin) - fb.DiffT(v, fa * gradin)) / Square(fb) # parameters for testing the operation (optional) nargs = 2 # number of arguments # N.B. The following separate function should theoretically be implemented # as a __new__ method of the previous class, but this can generate infinite recursion problems def Divide(arg0, arg1): if isinstance(arg0, Zero): return Broadcast(arg0, arg1.dim) elif isinstance(arg1, Zero): KeOps_Error("division by zero") else: return Divide_Impl(arg0, arg1)
keops-main
keopscore/keopscore/formulas/maths/Divide.py
from keopscore.formulas.Operation import Operation from keopscore.formulas.variables.Zero import Zero from keopscore.utils.code_gen_utils import value from keopscore.utils.misc_utils import KeOps_Error ########################## ###### SumT ##### ########################## class SumT_Impl(Operation): # the adjoint of the summation operation string_id = "SumT" def __init__(self, arg, dim): super().__init__(arg, params=(dim,)) self.dim = dim def Op(self, out, table, arg): return out.assign(value(arg)) def DiffT(self, v, gradin): from keopscore.formulas.maths.Sum import Sum f = self.children[0] return f.DiffT(v, Sum(gradin)) # N.B. The following separate function should theoretically be implemented # as a __new__ method of the previous class, but this can generate infinite recursion problems def SumT(arg, dim): if arg.dim != 1: KeOps_Error("dimension of argument must be 1 for SumT operation") elif isinstance(arg, Zero): return Zero(dim) else: return SumT_Impl(arg, dim)
keops-main
keopscore/keopscore/formulas/maths/SumT.py
from keopscore.formulas.Operation import Operation from keopscore.formulas.variables.Zero import Zero from keopscore.utils.code_gen_utils import ( c_zero_float, c_for_loop, c_if, value, c_variable, ) from keopscore.utils.misc_utils import KeOps_Error ############################ ###### ArgMax ##### ############################ class ArgMax(Operation): string_id = "ArgMax" def __init__(self, f): super().__init__(f) if f.dim < 1: KeOps_Error("ArgMax operation is only possible when dimension is non zero.") self.dim = 1 def Op(self, out, table, arg): tmp = c_variable(out.dtype) loop, k = c_for_loop(1, arg.dim, 1, pragma_unroll=True) string = value(out).assign(c_zero_float) + tmp.declare_assign(arg[0]) if out.dtype == "half2": loop_string = f""" // we have to work element-wise... __half2 cond = __hlt2({tmp.id},{arg[k].id}); // cond = (tmp > outF[k]) (element-wise) __half2 negcond = __float2half2_rn(1.0f)-cond; // negcond = 1-cond *{out.id} = cond * __float2half2_rn({k.id}) + negcond * *{out.id}; // out = cond * k + (1-cond) * out {tmp.id} = cond * {arg[k].id} + negcond * {tmp.id}; // tmp = cond * outF[k] + (1-cond) * tmp """ string += loop(loop_string) else: string += loop( c_if(arg[k] > tmp, tmp.assign(arg[k]) + value(out).assign(k)) ) return string def DiffT(self, v, gradin): return Zero(v.dim) # parameters for testing the operation (optional) enable_test = True # enable testing for this operation nargs = 1 # number of arguments test_argdims = [5] # dimensions of arguments for testing torch_op = "lambda x : torch.argmax(x, dim=-1, keepdim=True).type(x.dtype)" no_torch_grad = True
keops-main
keopscore/keopscore/formulas/maths/ArgMax.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.variables.Zero import Zero from keopscore.utils.math_functions import keops_floor class Floor(VectorizedScalarOp): """the floor vectorized operation""" string_id = "Floor" ScalarOpFun = keops_floor def DiffT(self, v, gradin): return Zero(v.dim)
keops-main
keopscore/keopscore/formulas/maths/Floor.py
from keopscore.formulas.maths.Scalprod import Scalprod class SqNorm2: def __new__(cls, arg0): return Scalprod(arg0, arg0) enable_test = False
keops-main
keopscore/keopscore/formulas/maths/SqNorm2.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.utils.math_functions import keops_diffclampint """ ////////////////////////////////////////////////////////////// //// DIFFCLAMPINT : DiffClampInt< F, A, B > //// ////////////////////////////////////////////////////////////// // DiffClampInt(x,a,b) = 0 if x<a, 1 if a<=x<=b, 0 if b<x // N.B. used as derivative of ClampInt operation """ class DiffClampInt(VectorizedScalarOp): string_id = "DiffClampInt" def __init__(self, x, a, b): super().__init__(x, params=(a, b)) ScalarOpFun = keops_diffclampint def DiffT(self, v, gradin): from keopscore.formulas import Zero return Zero(v.dim) # parameters for testing the operation (optional) enable_test = ( False # (because it will be tested anyway if we test the gradient of ClampInt) )
keops-main
keopscore/keopscore/formulas/maths/DiffClampInt.py
from keopscore.formulas.maths.SqNorm2 import SqNorm2 class SqNormIso: """ ISOTROPIC NORM : SqNormIso(S,A) """ def __new__(cls, S, A): return S * SqNorm2(A) enable_test = False
keops-main
keopscore/keopscore/formulas/maths/SqNormIso.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.utils.math_functions import keops_ifelse class IfElse(VectorizedScalarOp): """the if/else vectorized operation IfElse(f,a,b) = a if f>=0, b otherwise """ string_id = "IfElse" ScalarOpFun = keops_ifelse def DiffT(self, v, gradin): f, a, b = self.children return IfElse(f, a.DiffT(v, gradin), b.DiffT(v, gradin)) # parameters for testing the operation (optional) nargs = 3 # number of arguments
keops-main
keopscore/keopscore/formulas/maths/IfElse.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.utils.math_functions import keops_powf class Powf(VectorizedScalarOp): """the Power vectorized operation""" string_id = "Powf" ScalarOpFun = keops_powf @staticmethod def Derivative(a, b): from keopscore.formulas.maths.Log import Log return b * Powf(a, b - 1), Log(a) * Powf(a, b) # parameters for testing the operation (optional) test_ranges = [(0, 2), (-1, 1)] # ranges of arguments torch_op = "lambda x,y : torch.pow(x, y)"
keops-main
keopscore/keopscore/formulas/maths/Powf.py
from keopscore.formulas.Operation import Operation from keopscore.formulas.maths.ArgMin import ArgMin from keopscore.formulas.maths.OneHot import OneHot from keopscore.utils.code_gen_utils import c_for_loop, c_if, value from keopscore.utils.misc_utils import KeOps_Error ############################ ###### Min ##### ############################ class Min(Operation): string_id = "Min" def __init__(self, f): super().__init__(f) if f.dim < 1: KeOps_Error("Min operation is only possible when dimension is non zero.") self.dim = 1 def Op(self, out, table, arg): f = self.children[0] loop, k = c_for_loop(1, f.dim, 1, pragma_unroll=True) string = value(out).assign(arg[0]) if out.dtype == "half2": loop_string = f""" // we have to work element-wise... __half2 cond = __hgt2(*{out.id},{arg[k].id}); // cond = (out > outF[k]) (element-wise) __half2 negcond = __float2half2_rn(1.0f)-cond; // negcond = 1-cond *{out.id} = cond * {arg[k].id} + negcond * *{out.id}; // out = cond * outF[k] + (1-cond) * out """ string += loop(loop_string) else: string += loop(c_if(arg[k] < value(out), value(out).assign(arg[k]))) return string def DiffT(self, v, gradin): f = self.children[0] return f.DiffT(v, OneHot(ArgMin(f), f.dim) * gradin) # parameters for testing the operation (optional) enable_test = True # enable testing for this operation nargs = 1 # number of arguments test_argdims = [5] # dimensions of arguments for testing torch_op = "lambda x : torch.min(x, dim=-1, keepdim=True)[0].type(x.dtype)"
keops-main
keopscore/keopscore/formulas/maths/Min.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import c_zero_float, VectCopy from keopscore.utils.misc_utils import KeOps_Error # ////////////////////////////////////////////////////////////// # //// VECTOR "INJECTION" : ExtractT<F,START,DIM> //// # ////////////////////////////////////////////////////////////// class ExtractT(Operation): string_id = "ExtractT" def __init__(self, f, start, dim): if start + f.dim > dim or start < 0: KeOps_Error("Index out of bound in ExtractT") super().__init__(f, params=(start, dim)) self.start = start self.dim = dim self.dimarg = f.dim def Op(self, out, table, arg): # returns the atomic piece of c++ code to evaluate the function on arg and return # the result in out out_prev, out_mid, out_end = out.split( self.start, self.dimarg, self.dim - self.start - self.dimarg ) return "\n".join( ( out_prev.assign(c_zero_float), VectCopy(out_mid, arg), out_end.assign(c_zero_float), ) ) def DiffT(self, v, gradin): from keopscore.formulas.maths.Extract import Extract f = self.children[0] return f.DiffT(v, Extract(gradin, self.start, f.dim)) # parameters for testing the operation (optional) enable_test = True # enable testing for this operation nargs = 1 # number of arguments test_argdims = [5] # dimensions of arguments for testing test_params = [3, 10] # dimensions of parameters for testing def torch_op(x, s, d): # equivalent PyTorch operation import torch out = torch.zeros((*x.shape[:-1], d), device=x.device, dtype=x.dtype) out[..., s : (s + x.shape[-1])] = x return out
keops-main
keopscore/keopscore/formulas/maths/ExtractT.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.maths.ClampInt import ClampInt from keopscore.utils.math_functions import keops_clamp class Clamp(VectorizedScalarOp): """Clamp(x,a,b) = a if x<a, x if a<=x<=b, b if b<x""" string_id = "Clamp" ScalarOpFun = keops_clamp def DiffT(self, v, gradin): # N.B. Clamp(F,G,H) = Clamp((F-G)/(H-G),0,1) * (H-G) + G # We use this fact to avoid writing another custom operation for the gradient. # (This may be slower however...) f, g, h = self.children Alt_Clamp = ClampInt((f - g) / (h - g), 0, 1) * (h - g) + g return Alt_Clamp.DiffT(v, gradin) # parameters for testing the operation (optional) nargs = 3 # number of arguments torch_op = None # equivalent PyTorch operation
keops-main
keopscore/keopscore/formulas/maths/Clamp.py
from keopscore.formulas.Operation import Operation from keopscore.utils.code_gen_utils import use_pragma_unroll #################################### ###### Tensor Dot Product ##### #################################### def prod(x): # product of all elements in list of integers res = 1 for item in x: res *= item return res def select(x, ind): # indexing of list via list of integers return [x[i] for i in ind] def delete(x, ind): # delete items given by indices in list n = len(x) indkeep = list(set(range(n)) - set(ind)) indkeep.sort() return select(x, indkeep) def cumprod_array(x): # special cumulative product if len(x) == 0: return x else: def cumprod(x): res = x.copy() for i in range(1, len(x)): res[i] *= res[i - 1] return res return cumprod(x[1:][::-1])[::-1] + [1] def permutation(perm, arr): if perm is None: return arr else: tmp = sorted(range(len(perm)), key=perm.__getitem__) return select(arr, tmp) class TensorDot(Operation): string_id = "TensorDot" def __init__(self, fa, fb, dimsfa, dimsfb, contfa, contfb, permute=None): dimsfa = list(dimsfa) dimsfb = list(dimsfb) contfa = list(contfa) contfb = list(contfb) assert select(dimsfb, contfb) == select(dimsfa, contfa) assert fa.dim == prod(dimsfa) assert fb.dim == prod(dimsfb) super().__init__(fa, fb) self.dimfa = dimsfa self.dimfb = dimsfb self.contdims = select(dimsfa, contfa) self.indices_keepdim_a = delete(list(range(len(dimsfa))), contfa) self.keepdims_a = delete(dimsfa, contfa) self.contdims_a = select(dimsfa, contfa) self.list_strides_dimsfa = cumprod_array(dimsfa) self.indices_keepdim_b = delete(list(range(len(dimsfb))), contfb) self.keepdims_b = delete(dimsfb, contfb) self.contdims_b = select(dimsfb, contfb) self.list_strides_dimsfb = cumprod_array(dimsfb) self.keepdims = self.keepdims_a + self.keepdims_b self.list_strides_keepdim = cumprod_array(permutation(permute, self.keepdims)) self.dim = fa.dim * fb.dim self.dim = int(self.dim / prod(self.contdims) ** 2) if len(contfa) else self.dim if permute is None: permute = list(range(len(self.keepdims))) else: assert permutation(permute, permute) == list(range(len(self.keepdims))) self.permute = permute # loop self.loopdim = self.keepdims + self.contdims_a self.dimloop = prod(self.loopdim) self.number_of_dimloop = len(dimsfa) + len(dimsfb) - len(contfa) self.ala = list(range(len(self.keepdims_a))) + list( range(len(self.keepdims), self.number_of_dimloop) ) self.ali = self.indices_keepdim_a + contfa self.list_indices_a_intot = permutation(self.ali, self.ala) self.bla = list(range(len(self.keepdims_a), len(self.keepdims))) + list( range(len(self.keepdims), self.number_of_dimloop) ) self.bli = self.indices_keepdim_b + contfb self.list_indices_b_intot = permutation(self.bli, self.bla) # Gradient self.dimfa_grad = permutation(permute, self.keepdims) self.list_indices_keepdim_a_inout = list(range(0, len(self.keepdims_a))) self.reordered_contfa = permutation(contfb, contfa) self.reordered_keepdim_a = permutation( select(permute, self.list_indices_keepdim_a_inout), self.indices_keepdim_a ) self.moveaxis_a = self.reordered_keepdim_a + self.reordered_contfa self.list_indices_keepdim_b_inout = list( range(len(self.keepdims_a), len(self.keepdims)) ) self.reordered_contfb = permutation(contfa, contfb) self.reordered_keepdim_b = permutation( select(permute, self.list_indices_keepdim_b_inout), self.indices_keepdim_b ) self.moveaxis_b = self.reordered_keepdim_b + self.reordered_contfb self.contfa_grad = select(permute, self.list_indices_keepdim_b_inout) self.contfb_grad = select(permute, self.list_indices_keepdim_a_inout) def Op(self, out, table, arg0, arg1): # returns the atomic piece of c++ code to evaluate the function on arg and return # the result in out str_code = "" for i in range(len(self.loopdim)): str_code += ( f"for(int TD_var_{chr(70 + i)}=0; TD_var_{chr(70 + i)}<{self.loopdim[i]}; ++TD_var_{chr(70 + i)})" + "{\n" + i * " " ) list_indices_keepdim = permutation(self.permute, range(len(self.keepdims))) str_out_indices = "" for i, v in enumerate(list_indices_keepdim): str_out_indices += ( f"TD_var_{chr(70 + v)} * {self.list_strides_keepdim[i]} + " ) str_a_indices = "" for i, v in enumerate(self.list_indices_a_intot): str_a_indices += f"TD_var_{chr(70 + v)} * {self.list_strides_dimsfa[i]} + " str_b_indices = "" for i, v in enumerate(self.list_indices_b_intot): str_b_indices += f"TD_var_{chr(70 + v)} * {self.list_strides_dimsfb[i]} + " str_code += ( len(self.loopdim) * " " + f"{out.id}[{str_out_indices[:-2]}] += {arg0.id}[{str_a_indices[:-2]}] * {arg1.id}[{str_b_indices[:-2]}];\n" ) str_code += len(self.loopdim) * "}\n" return f""" #if C_CONTIGUOUS // row major {use_pragma_unroll()} for (int i = 0; i < {out.dim}; i++) {out.id}[i] = ({out.dtype})(0.0f); {use_pragma_unroll()} {str_code} #else // column major #endif """ def DiffT(self, v, gradin): f = self.children[0] g = self.children[1] return f.DiffT( v, TensorDot( gradin, g, self.dimfa_grad, self.dimfb, self.contfa_grad, self.indices_keepdim_b, self.moveaxis_a, ), ) + g.DiffT( v, TensorDot( gradin, f, self.dimfa_grad, self.dimfa, self.contfb_grad, self.indices_keepdim_a, self.moveaxis_b, ), )
keops-main
keopscore/keopscore/formulas/maths/TensorDot.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.variables.Zero import Zero from keopscore.utils.math_functions import keops_step class Step(VectorizedScalarOp): """the Step vectorized operation""" string_id = "Step" ScalarOpFun = keops_step def DiffT(self, v, gradin): return Zero(v.dim)
keops-main
keopscore/keopscore/formulas/maths/Step.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.variables.Zero import Zero from keopscore.utils.math_functions import keops_round class Round(VectorizedScalarOp): """the Round vectorized operation Round(f,d) where d is integer, rounds f to d decimals """ def __init__(self, f, d): super().__init__(f, params=(d,)) string_id = "Round" ScalarOpFun = keops_round def DiffT(self, v, gradin): return Zero(v.dim) # parameters for testing the operation (optional) nargs = 1 # number of arguments test_params = [3] # parameters to try torch_op = None # equivalent PyTorch operation
keops-main
keopscore/keopscore/formulas/maths/Round.py
from keopscore.formulas.VectorizedScalarOp import VectorizedScalarOp from keopscore.formulas.maths.Step import Step from keopscore.utils.math_functions import keops_relu class ReLU(VectorizedScalarOp): """the ReLU vectorized operation""" string_id = "ReLU" ScalarOpFun = keops_relu @staticmethod def Derivative(f): return Step(f)
keops-main
keopscore/keopscore/formulas/maths/ReLU.py