python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import torch from se3_transformer.model import SE3Transformer from se3_transformer.model.fiber import Fiber from tests.utils import get_random_graph, assign_relative_pos, get_max_diff, rot # Tolerances for equivariance error abs( f(x) @ R - f(x @ R) ) TOL = 1e-3 CHANNELS, NODES = 32, 512 def _get_outputs(model, R): feats0 = torch.randn(NODES, CHANNELS, 1) feats1 = torch.randn(NODES, CHANNELS, 3) coords = torch.randn(NODES, 3) graph = get_random_graph(NODES) if torch.cuda.is_available(): feats0 = feats0.cuda() feats1 = feats1.cuda() R = R.cuda() coords = coords.cuda() graph = graph.to('cuda') model.cuda() graph1 = assign_relative_pos(graph, coords) out1 = model(graph1, {'0': feats0, '1': feats1}, {}) graph2 = assign_relative_pos(graph, coords @ R) out2 = model(graph2, {'0': feats0, '1': feats1 @ R}, {}) return out1, out2 def _get_model(**kwargs): return SE3Transformer( num_layers=4, fiber_in=Fiber.create(2, CHANNELS), fiber_hidden=Fiber.create(3, CHANNELS), fiber_out=Fiber.create(2, CHANNELS), fiber_edge=Fiber({}), num_heads=8, channels_div=2, **kwargs ) def test_equivariance(): model = _get_model() R = rot(*torch.rand(3)) if torch.cuda.is_available(): R = R.cuda() out1, out2 = _get_outputs(model, R) assert torch.allclose(out2['0'], out1['0'], atol=TOL), \ f'type-0 features should be invariant {get_max_diff(out1["0"], out2["0"])}' assert torch.allclose(out2['1'], (out1['1'] @ R), atol=TOL), \ f'type-1 features should be equivariant {get_max_diff(out1["1"] @ R, out2["1"])}' def test_equivariance_pooled(): model = _get_model(pooling='avg', return_type=1) R = rot(*torch.rand(3)) if torch.cuda.is_available(): R = R.cuda() out1, out2 = _get_outputs(model, R) assert torch.allclose(out2, (out1 @ R), atol=TOL), \ f'type-1 features should be equivariant {get_max_diff(out1 @ R, out2)}' def test_invariance_pooled(): model = _get_model(pooling='avg', return_type=0) R = rot(*torch.rand(3)) if torch.cuda.is_available(): R = R.cuda() out1, out2 = _get_outputs(model, R) assert torch.allclose(out2, out1, atol=TOL), \ f'type-0 features should be invariant {get_max_diff(out1, out2)}'
RFdiffusion-main
env/SE3Transformer/tests/test_equivariance.py
RFdiffusion-main
env/SE3Transformer/tests/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES # SPDX-License-Identifier: MIT import dgl import torch def get_random_graph(N, num_edges_factor=18): graph = dgl.transform.remove_self_loop(dgl.rand_graph(N, N * num_edges_factor)) return graph def assign_relative_pos(graph, coords): src, dst = graph.edges() graph.edata['rel_pos'] = coords[src] - coords[dst] return graph def get_max_diff(a, b): return (a - b).abs().max().item() def rot_z(gamma): return torch.tensor([ [torch.cos(gamma), -torch.sin(gamma), 0], [torch.sin(gamma), torch.cos(gamma), 0], [0, 0, 1] ], dtype=gamma.dtype) def rot_y(beta): return torch.tensor([ [torch.cos(beta), 0, torch.sin(beta)], [0, 1, 0], [-torch.sin(beta), 0, torch.cos(beta)] ], dtype=beta.dtype) def rot(alpha, beta, gamma): return rot_z(alpha) @ rot_y(beta) @ rot_z(gamma)
RFdiffusion-main
env/SE3Transformer/tests/utils.py
"""Helper class for handle symmetric assemblies.""" from pyrsistent import v from scipy.spatial.transform import Rotation import functools as fn import torch import string import logging import numpy as np import pathlib format_rots = lambda r: torch.tensor(r).float() T3_ROTATIONS = [ torch.Tensor([ [ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]).float(), torch.Tensor([ [-1., -0., 0.], [-0., 1., 0.], [-0., 0., -1.]]).float(), torch.Tensor([ [-1., 0., 0.], [ 0., -1., 0.], [ 0., 0., 1.]]).float(), torch.Tensor([ [ 1., 0., 0.], [ 0., -1., 0.], [ 0., 0., -1.]]).float(), ] saved_symmetries = ['tetrahedral', 'octahedral', 'icosahedral'] class SymGen: def __init__(self, global_sym, recenter, radius, model_only_neibhbors=False): self._log = logging.getLogger(__name__) self._recenter = recenter self._radius = radius if global_sym.lower().startswith('c'): # Cyclic symmetry if not global_sym[1:].isdigit(): raise ValueError(f'Invalid cyclic symmetry {global_sym}') self._log.info( f'Initializing cyclic symmetry order {global_sym[1:]}.') self._init_cyclic(int(global_sym[1:])) self.apply_symmetry = self._apply_cyclic elif global_sym.lower().startswith('d'): # Dihedral symmetry if not global_sym[1:].isdigit(): raise ValueError(f'Invalid dihedral symmetry {global_sym}') self._log.info( f'Initializing dihedral symmetry order {global_sym[1:]}.') self._init_dihedral(int(global_sym[1:])) # Applied the same way as cyclic symmetry self.apply_symmetry = self._apply_cyclic elif global_sym.lower() == 't3': # Tetrahedral (T3) symmetry self._log.info('Initializing T3 symmetry order.') self.sym_rots = T3_ROTATIONS self.order = 4 # Applied the same way as cyclic symmetry self.apply_symmetry = self._apply_cyclic elif global_sym == 'octahedral': # Octahedral symmetry self._log.info( 'Initializing octahedral symmetry.') self._init_octahedral() self.apply_symmetry = self._apply_octahedral elif global_sym.lower() in saved_symmetries: # Using a saved symmetry self._log.info('Initializing %s symmetry order.'%global_sym) self._init_from_symrots_file(global_sym) # Applied the same way as cyclic symmetry self.apply_symmetry = self._apply_cyclic else: raise ValueError(f'Unrecognized symmetry {global_sym}') self.res_idx_procesing = fn.partial( self._lin_chainbreaks, num_breaks=self.order) ##################### ## Cyclic symmetry ## ##################### def _init_cyclic(self, order): sym_rots = [] for i in range(order): deg = i * 360.0 / order r = Rotation.from_euler('z', deg, degrees=True) sym_rots.append(format_rots(r.as_matrix())) self.sym_rots = sym_rots self.order = order def _apply_cyclic(self, coords_in, seq_in): coords_out = torch.clone(coords_in) seq_out = torch.clone(seq_in) if seq_out.shape[0] % self.order != 0: raise ValueError( f'Sequence length must be divisble by {self.order}') subunit_len = seq_out.shape[0] // self.order for i in range(self.order): start_i = subunit_len * i end_i = subunit_len * (i+1) coords_out[start_i:end_i] = torch.einsum( 'bnj,kj->bnk', coords_out[:subunit_len], self.sym_rots[i]) seq_out[start_i:end_i] = seq_out[:subunit_len] return coords_out, seq_out def _lin_chainbreaks(self, num_breaks, res_idx, offset=None): assert res_idx.ndim == 2 res_idx = torch.clone(res_idx) subunit_len = res_idx.shape[-1] // num_breaks chain_delimiters = [] if offset is None: offset = res_idx.shape[-1] for i in range(num_breaks): start_i = subunit_len * i end_i = subunit_len * (i+1) chain_labels = list(string.ascii_uppercase) + [str(i+j) for i in string.ascii_uppercase for j in string.ascii_uppercase] chain_delimiters.extend( [chain_labels[i] for _ in range(subunit_len)] ) res_idx[:, start_i:end_i] = res_idx[:, start_i:end_i] + offset * (i+1) return res_idx, chain_delimiters ####################### ## Dihedral symmetry ## ####################### def _init_dihedral(self, order): sym_rots = [] flip = Rotation.from_euler('x', 180, degrees=True).as_matrix() for i in range(order): deg = i * 360.0 / order rot = Rotation.from_euler('z', deg, degrees=True).as_matrix() sym_rots.append(format_rots(rot)) rot2 = flip @ rot sym_rots.append(format_rots(rot2)) self.sym_rots = sym_rots self.order = order * 2 ######################### ## Octahedral symmetry ## ######################### def _init_octahedral(self): sym_rots = np.load(f"{pathlib.Path(__file__).parent.resolve()}/sym_rots.npz") self.sym_rots = [ torch.tensor(v_i, dtype=torch.float32) for v_i in sym_rots['octahedral'] ] self.order = len(self.sym_rots) def _apply_octahedral(self, coords_in, seq_in): coords_out = torch.clone(coords_in) seq_out = torch.clone(seq_in) if seq_out.shape[0] % self.order != 0: raise ValueError( f'Sequence length must be divisble by {self.order}') subunit_len = seq_out.shape[0] // self.order base_axis = torch.tensor([self._radius, 0., 0.])[None] for i in range(self.order): start_i = subunit_len * i end_i = subunit_len * (i+1) subunit_chain = torch.einsum( 'bnj,kj->bnk', coords_in[:subunit_len], self.sym_rots[i]) if self._recenter: center = torch.mean(subunit_chain[:, 1, :], axis=0) subunit_chain -= center[None, None, :] rotated_axis = torch.einsum( 'nj,kj->nk', base_axis, self.sym_rots[i]) subunit_chain += rotated_axis[:, None, :] coords_out[start_i:end_i] = subunit_chain seq_out[start_i:end_i] = seq_out[:subunit_len] return coords_out, seq_out ####################### ## symmetry from file # ####################### def _init_from_symrots_file(self, name): """ _init_from_symrots_file initializes using ./inference/sym_rots.npz Args: name: name of symmetry (of tetrahedral, octahedral, icosahedral) sets self.sym_rots to be a list of torch.tensor of shape [3, 3] """ assert name in saved_symmetries, name + " not in " + str(saved_symmetries) # Load in list of rotation matrices for `name` fn = f"{pathlib.Path(__file__).parent.resolve()}/sym_rots.npz" obj = np.load(fn) symms = None for k, v in obj.items(): if str(k) == name: symms = v assert symms is not None, "%s not found in %s"%(name, fn) self.sym_rots = [torch.tensor(v_i, dtype=torch.float32) for v_i in symms] self.order = len(self.sym_rots) # Return if identity is the first rotation if not np.isclose(((self.sym_rots[0]-np.eye(3))**2).sum(), 0): # Move identity to be the first rotation for i, rot in enumerate(self.sym_rots): if np.isclose(((rot-np.eye(3))**2).sum(), 0): self.sym_rots = [self.sym_rots.pop(i)] + self.sym_rots assert len(self.sym_rots) == self.order assert np.isclose(((self.sym_rots[0]-np.eye(3))**2).sum(), 0) def close_neighbors(self): """close_neighbors finds the rotations within self.sym_rots that correspond to close neighbors. Returns: list of rotation matrices corresponding to the identity and close neighbors """ # set of small rotation angle rotations rel_rot = lambda M: np.linalg.norm(Rotation.from_matrix(M).as_rotvec()) rel_rots = [(i+1, rel_rot(M)) for i, M in enumerate(self.sym_rots[1:])] min_rot = min(rel_rot_val[1] for rel_rot_val in rel_rots) close_rots = [np.eye(3)] + [ self.sym_rots[i] for i, rel_rot_val in rel_rots if np.isclose(rel_rot_val, min_rot) ] return close_rots
RFdiffusion-main
inference/symmetry.py
import torch import numpy as np from omegaconf import DictConfig, OmegaConf from RoseTTAFoldModel import RoseTTAFoldModule from kinematics import get_init_xyz, xyz_to_t2d from diffusion import Diffuser from chemical import seq2chars from util_module import ComputeAllAtomCoords from contigs import ContigMap from inference import utils as iu from potentials.manager import PotentialManager from inference import symmetry import logging import torch.nn.functional as nn import util import hydra from hydra.core.hydra_config import HydraConfig import os import sys SCRIPT_DIR=os.path.dirname(os.path.realpath(__file__)) sys.path.append(SCRIPT_DIR + '../') # to access RF structure prediction stuff from model_input_logger import pickle_function_call TOR_INDICES = util.torsion_indices TOR_CAN_FLIP = util.torsion_can_flip REF_ANGLES = util.reference_angles # Check for cache schedule if not os.path.exists(f'{SCRIPT_DIR}/../schedules'): os.mkdir(f'{SCRIPT_DIR}/../schedules') class Sampler: def __init__(self, conf: DictConfig): """ Initialize sampler. Args: conf: Configuration. """ self.initialized = False self.initialize(conf) def initialize(self, conf: DictConfig) -> None: """ Initialize sampler. Args: conf: Configuration - Selects appropriate model from input - Assembles Config from model checkpoint and command line overrides """ self._log = logging.getLogger(__name__) if torch.cuda.is_available(): self.device = torch.device('cuda') else: self.device = torch.device('cpu') needs_model_reload = not self.initialized or conf.inference.ckpt_override_path != self._conf.inference.ckpt_override_path # Assign config to Sampler self._conf = conf ################################ ### Select Appropriate Model ### ################################ # Initialize inference only helper objects to Sampler if conf.inference.ckpt_override_path is not None: self.ckpt_path = conf.inference.ckpt_override_path print("WARNING: You're overriding the checkpoint path from the defaults. Check that the model you're providing can run with the inputs you're providing.") else: if conf.contigmap.inpaint_seq is not None or conf.contigmap.provide_seq is not None: # use model trained for inpaint_seq if conf.contigmap.provide_seq is not None: # this is only used for partial diffusion assert conf.diffuser.partial_T is not None, "The provide_seq input is specifically for partial diffusion" if conf.scaffoldguided.scaffoldguided: self.ckpt_path=f'{SCRIPT_DIR}/../models/InpaintSeq_Fold_ckpt.pt' else: self.ckpt_path = f'{SCRIPT_DIR}/../models/InpaintSeq_ckpt.pt' elif conf.ppi.hotspot_res is not None and conf.scaffoldguided.scaffoldguided is False: # use complex trained model self.ckpt_path = f'{SCRIPT_DIR}/../models/Complex_base_ckpt.pt' elif conf.scaffoldguided.scaffoldguided is True: # use complex and secondary structure-guided model self.ckpt_path = f'{SCRIPT_DIR}/../models/Complex_Fold_base_ckpt.pt' else: # use default model self.ckpt_path = f'{SCRIPT_DIR}/../models/Base_ckpt.pt' # for saving in trb file: assert self._conf.inference.trb_save_ckpt_path is None, "trb_save_ckpt_path is not the place to specify an input model. Specify in inference.ckpt_override_path" self._conf['inference']['trb_save_ckpt_path']=self.ckpt_path ####################### ### Assemble Config ### ####################### if needs_model_reload: # Load checkpoint, so that we can assemble the config self.load_checkpoint() self.assemble_config_from_chk() # Now actually load the model weights into RF self.model = self.load_model() else: self.assemble_config_from_chk() # self.initialize_sampler(conf) self.initialized=True # Initialize helper objects self.inf_conf = self._conf.inference self.contig_conf = self._conf.contigmap self.denoiser_conf = self._conf.denoiser self.ppi_conf = self._conf.ppi self.potential_conf = self._conf.potentials self.diffuser_conf = self._conf.diffuser self.preprocess_conf = self._conf.preprocess self.diffuser = Diffuser(**self._conf.diffuser, cache_dir=f'{SCRIPT_DIR}/../schedules') ########################### ### Initialise Symmetry ### ########################### if self.inf_conf.symmetry is not None: self.symmetry = symmetry.SymGen( self.inf_conf.symmetry, self.inf_conf.model_only_neighbors, self.inf_conf.recenter, self.inf_conf.radius, ) else: self.symmetry = None self.allatom = ComputeAllAtomCoords().to(self.device) if self.inf_conf.input_pdb is None: # set default pdb script_dir=os.path.dirname(os.path.realpath(__file__)) self.inf_conf.input_pdb=os.path.join(script_dir, '../examples/input_pdbs/1qys.pdb') self.target_feats = iu.process_target(self.inf_conf.input_pdb, parse_hetatom=True, center=False) self.chain_idx = None ############################## ### Handle Partial Noising ### ############################## if self.diffuser_conf.partial_T: assert self.diffuser_conf.partial_T <= self.diffuser_conf.T self.t_step_input = int(self.diffuser_conf.partial_T) else: self.t_step_input = int(self.diffuser_conf.T) @property def T(self): ''' Return the maximum number of timesteps that this design protocol will perform. Output: T (int): The maximum number of timesteps to perform ''' return self.diffuser_conf.T def load_checkpoint(self) -> None: """Loads RF checkpoint, from which config can be generated.""" self._log.info(f'Reading checkpoint from {self.ckpt_path}') print('This is inf_conf.ckpt_path') print(self.ckpt_path) self.ckpt = torch.load( self.ckpt_path, map_location=self.device) def assemble_config_from_chk(self) -> None: """ Function for loading model config from checkpoint directly. Takes: - config file Actions: - Replaces all -model and -diffuser items - Throws a warning if there are items in -model and -diffuser that aren't in the checkpoint This throws an error if there is a flag in the checkpoint 'config_dict' that isn't in the inference config. This should ensure that whenever a feature is added in the training setup, it is accounted for in the inference script. """ # get overrides to re-apply after building the config from the checkpoint overrides = [] if HydraConfig.initialized(): overrides = HydraConfig.get().overrides.task print("Assembling -model, -diffuser and -preprocess configs from checkpoint") for cat in ['model','diffuser','preprocess']: for key in self._conf[cat]: try: print(f"USING MODEL CONFIG: self._conf[{cat}][{key}] = {self.ckpt['config_dict'][cat][key]}") self._conf[cat][key] = self.ckpt['config_dict'][cat][key] except: pass # add overrides back in again for override in overrides: if override.split(".")[0] in ['model','diffuser','preprocess']: print(f'WARNING: You are changing {override.split("=")[0]} from the value this model was trained with. Are you sure you know what you are doing?') mytype = type(self._conf[override.split(".")[0]][override.split(".")[1].split("=")[0]]) self._conf[override.split(".")[0]][override.split(".")[1].split("=")[0]] = mytype(override.split("=")[1]) def load_model(self): """Create RosettaFold model from preloaded checkpoint.""" # Read input dimensions from checkpoint. self.d_t1d=self._conf.preprocess.d_t1d self.d_t2d=self._conf.preprocess.d_t2d model = RoseTTAFoldModule(**self._conf.model, d_t1d=self.d_t1d, d_t2d=self.d_t2d, T=self._conf.diffuser.T).to(self.device) if self._conf.logging.inputs: pickle_dir = pickle_function_call(model, 'forward', 'inference') print(f'pickle_dir: {pickle_dir}') model = model.eval() self._log.info(f'Loading checkpoint.') model.load_state_dict(self.ckpt['model_state_dict'], strict=True) return model def construct_contig(self, target_feats): """ Construct contig class describing the protein to be generated """ self._log.info(f'Using contig: {self.contig_conf.contigs}') return ContigMap(target_feats, **self.contig_conf) def construct_denoiser(self, L, visible): """Make length-specific denoiser.""" denoise_kwargs = OmegaConf.to_container(self.diffuser_conf) denoise_kwargs.update(OmegaConf.to_container(self.denoiser_conf)) denoise_kwargs.update({ 'L': L, 'diffuser': self.diffuser, 'potential_manager': self.potential_manager, 'visible': visible }) return iu.Denoise(**denoise_kwargs) def sample_init(self, return_forward_trajectory=False): """ Initial features to start the sampling process. Modify signature and function body for different initialization based on the config. Returns: xt: Starting positions with a portion of them randomly sampled. seq_t: Starting sequence with a portion of them set to unknown. """ ####################### ### Parse input pdb ### ####################### self.target_feats = iu.process_target(self.inf_conf.input_pdb, parse_hetatom=True, center=False) ################################ ### Generate specific contig ### ################################ # Generate a specific contig from the range of possibilities specified at input self.contig_map = self.construct_contig(self.target_feats) self.mappings = self.contig_map.get_mappings() self.mask_seq = torch.from_numpy(self.contig_map.inpaint_seq)[None,:] self.mask_str = torch.from_numpy(self.contig_map.inpaint_str)[None,:] self.binderlen = len(self.contig_map.inpaint) #################### ### Get Hotspots ### #################### self.hotspot_0idx=iu.get_idx0_hotspots(self.mappings, self.ppi_conf, self.binderlen) ##################################### ### Initialise Potentials Manager ### ##################################### self.potential_manager = PotentialManager(self.potential_conf, self.ppi_conf, self.diffuser_conf, self.inf_conf, self.hotspot_0idx, self.binderlen) ################################### ### Initialize other attributes ### ################################### xyz_27 = self.target_feats['xyz_27'] mask_27 = self.target_feats['mask_27'] seq_orig = self.target_feats['seq'] L_mapped = len(self.contig_map.ref) contig_map=self.contig_map self.diffusion_mask = self.mask_str self.chain_idx=['A' if i < self.binderlen else 'B' for i in range(L_mapped)] #################################### ### Generate initial coordinates ### #################################### if self.diffuser_conf.partial_T: assert xyz_27.shape[0] == L_mapped, f"there must be a coordinate in the input PDB for \ each residue implied by the contig string for partial diffusion. length of \ input PDB != length of contig string: {xyz_27.shape[0]} != {L_mapped}" assert contig_map.hal_idx0 == contig_map.ref_idx0, f'for partial diffusion there can \ be no offset between the index of a residue in the input and the index of the \ residue in the output, {contig_map.hal_idx0} != {contig_map.ref_idx0}' # Partially diffusing from a known structure xyz_mapped=xyz_27 atom_mask_mapped = mask_27 else: # Fully diffusing from points initialised at the origin # adjust size of input xt according to residue map xyz_mapped = torch.full((1,1,L_mapped,27,3), np.nan) xyz_mapped[:, :, contig_map.hal_idx0, ...] = xyz_27[contig_map.ref_idx0,...] xyz_motif_prealign = xyz_mapped.clone() motif_prealign_com = xyz_motif_prealign[0,0,:,1].mean(dim=0) self.motif_com = xyz_27[contig_map.ref_idx0,1].mean(dim=0) xyz_mapped = get_init_xyz(xyz_mapped).squeeze() # adjust the size of the input atom map atom_mask_mapped = torch.full((L_mapped, 27), False) atom_mask_mapped[contig_map.hal_idx0] = mask_27[contig_map.ref_idx0] # Diffuse the contig-mapped coordinates if self.diffuser_conf.partial_T: assert self.diffuser_conf.partial_T <= self.diffuser_conf.T, "Partial_T must be less than T" self.t_step_input = int(self.diffuser_conf.partial_T) else: self.t_step_input = int(self.diffuser_conf.T) t_list = np.arange(1, self.t_step_input+1) ################################# ### Generate initial sequence ### ################################# seq_t = torch.full((1,L_mapped), 21).squeeze() # 21 is the mask token seq_t[contig_map.hal_idx0] = seq_orig[contig_map.ref_idx0] # Unmask sequence if desired if self._conf.contigmap.provide_seq is not None: seq_t[self.mask_seq.squeeze()] = seq_orig[self.mask_seq.squeeze()] seq_t[~self.mask_seq.squeeze()] = 21 seq_t = torch.nn.functional.one_hot(seq_t, num_classes=22).float() # [L,22] seq_orig = torch.nn.functional.one_hot(seq_orig, num_classes=22).float() # [L,22] fa_stack, xyz_true = self.diffuser.diffuse_pose( xyz_mapped, torch.clone(seq_t), atom_mask_mapped.squeeze(), diffusion_mask=self.diffusion_mask.squeeze(), t_list=t_list) xT = fa_stack[-1].squeeze()[:,:14,:] xt = torch.clone(xT) self.denoiser = self.construct_denoiser(len(self.contig_map.ref), visible=self.mask_seq.squeeze()) ###################### ### Apply Symmetry ### ###################### if self.symmetry is not None: xt, seq_t = self.symmetry.apply_symmetry(xt, seq_t) self._log.info(f'Sequence init: {seq2chars(torch.argmax(seq_t, dim=-1))}') self.msa_prev = None self.pair_prev = None self.state_prev = None ######################################### ### Parse ligand for ligand potential ### ######################################### if self.potential_conf.guiding_potentials is not None: if any(list(filter(lambda x: "substrate_contacts" in x, self.potential_conf.guiding_potentials))): assert len(self.target_feats['xyz_het']) > 0, "If you're using the Substrate Contact potential, \ you need to make sure there's a ligand in the input_pdb file!" het_names = np.array([i['name'].strip() for i in self.target_feats['info_het']]) xyz_het = self.target_feats['xyz_het'][het_names == self._conf.potentials.substrate] xyz_het = torch.from_numpy(xyz_het) assert xyz_het.shape[0] > 0, f'expected >0 heteroatoms from ligand with name {self._conf.potentials.substrate}' xyz_motif_prealign = xyz_motif_prealign[0,0][self.diffusion_mask.squeeze()] motif_prealign_com = xyz_motif_prealign[:,1].mean(dim=0) xyz_het_com = xyz_het.mean(dim=0) for pot in self.potential_manager.potentials_to_apply: pot.motif_substrate_atoms = xyz_het pot.diffusion_mask = self.diffusion_mask.squeeze() pot.xyz_motif = xyz_motif_prealign pot.diffuser = self.diffuser return xt, seq_t def _preprocess(self, seq, xyz_t, t, repack=False): """ Function to prepare inputs to diffusion model seq (L,22) one-hot sequence msa_masked (1,1,L,48) msa_full (1,1,L,25) xyz_t (L,14,3) template crds (diffused) t1d (1,L,28) this is the t1d before tacking on the chi angles: - seq + unknown/mask (21) - global timestep (1-t/T if not motif else 1) (1) MODEL SPECIFIC: - contacting residues: for ppi. Target residues in contact with binder (1) - empty feature (legacy) (1) - ss (H, E, L, MASK) (4) t2d (1, L, L, 45) - last plane is block adjacency """ L = seq.shape[0] T = self.T binderlen = self.binderlen target_res = self.ppi_conf.hotspot_res ################## ### msa_masked ### ################## msa_masked = torch.zeros((1,1,L,48)) msa_masked[:,:,:,:22] = seq[None, None] msa_masked[:,:,:,22:44] = seq[None, None] msa_masked[:,:,0,46] = 1.0 msa_masked[:,:,-1,47] = 1.0 ################ ### msa_full ### ################ msa_full = torch.zeros((1,1,L,25)) msa_full[:,:,:,:22] = seq[None, None] msa_full[:,:,0,23] = 1.0 msa_full[:,:,-1,24] = 1.0 ########### ### t1d ### ########### # Here we need to go from one hot with 22 classes to one hot with 21 classes (last plane is missing token) t1d = torch.zeros((1,1,L,21)) seqt1d = torch.clone(seq) for idx in range(L): if seqt1d[idx,21] == 1: seqt1d[idx,20] = 1 seqt1d[idx,21] = 0 t1d[:,:,:,:21] = seqt1d[None,None,:,:21] # Set timestep feature to 1 where diffusion mask is True, else 1-t/T timefeature = torch.zeros((L)).float() timefeature[self.mask_str.squeeze()] = 1 timefeature[~self.mask_str.squeeze()] = 1 - t/self.T timefeature = timefeature[None,None,...,None] t1d = torch.cat((t1d, timefeature), dim=-1).float() ############# ### xyz_t ### ############# if self.preprocess_conf.sidechain_input: xyz_t[torch.where(seq == 21, True, False),3:,:] = float('nan') else: xyz_t[~self.mask_str.squeeze(),3:,:] = float('nan') xyz_t=xyz_t[None, None] xyz_t = torch.cat((xyz_t, torch.full((1,1,L,13,3), float('nan'))), dim=3) ########### ### t2d ### ########### t2d = xyz_to_t2d(xyz_t) ########### ### idx ### ########### idx = torch.tensor(self.contig_map.rf)[None] ############### ### alpha_t ### ############### seq_tmp = t1d[...,:-1].argmax(dim=-1).reshape(-1,L) alpha, _, alpha_mask, _ = util.get_torsions(xyz_t.reshape(-1,L,27,3), seq_tmp, TOR_INDICES, TOR_CAN_FLIP, REF_ANGLES) alpha_mask = torch.logical_and(alpha_mask, ~torch.isnan(alpha[...,0])) alpha[torch.isnan(alpha)] = 0.0 alpha = alpha.reshape(1,-1,L,10,2) alpha_mask = alpha_mask.reshape(1,-1,L,10,1) alpha_t = torch.cat((alpha, alpha_mask), dim=-1).reshape(1, -1, L, 30) #put tensors on device msa_masked = msa_masked.to(self.device) msa_full = msa_full.to(self.device) seq = seq.to(self.device) xyz_t = xyz_t.to(self.device) idx = idx.to(self.device) t1d = t1d.to(self.device) t2d = t2d.to(self.device) alpha_t = alpha_t.to(self.device) ###################### ### added_features ### ###################### if self.preprocess_conf.d_t1d >= 24: # add hotspot residues hotspot_tens = torch.zeros(L).float() if self.ppi_conf.hotspot_res is None: print("WARNING: you're using a model trained on complexes and hotspot residues, without specifying hotspots.\ If you're doing monomer diffusion this is fine") hotspot_idx=[] else: hotspots = [(i[0],int(i[1:])) for i in self.ppi_conf.hotspot_res] hotspot_idx=[] for i,res in enumerate(self.contig_map.con_ref_pdb_idx): if res in hotspots: hotspot_idx.append(self.contig_map.hal_idx0[i]) hotspot_tens[hotspot_idx] = 1.0 # Add blank (legacy) feature and hotspot tensor t1d=torch.cat((t1d, torch.zeros_like(t1d[...,:1]), hotspot_tens[None,None,...,None].to(self.device)), dim=-1) return msa_masked, msa_full, seq[None], torch.squeeze(xyz_t, dim=0), idx, t1d, t2d, xyz_t, alpha_t def sample_step(self, *, t, x_t, seq_init, final_step): '''Generate the next pose that the model should be supplied at timestep t-1. Args: t (int): The timestep that has just been predicted seq_t (torch.tensor): (L,22) The sequence at the beginning of this timestep x_t (torch.tensor): (L,14,3) The residue positions at the beginning of this timestep seq_init (torch.tensor): (L,22) The initialized sequence used in updating the sequence. Returns: px0: (L,14,3) The model's prediction of x0. x_t_1: (L,14,3) The updated positions of the next step. seq_t_1: (L,22) The updated sequence of the next step. tors_t_1: (L, ?) The updated torsion angles of the next step. plddt: (L, 1) Predicted lDDT of x0. ''' msa_masked, msa_full, seq_in, xt_in, idx_pdb, t1d, t2d, xyz_t, alpha_t = self._preprocess( seq_init, x_t, t) N,L = msa_masked.shape[:2] if self.symmetry is not None: idx_pdb, self.chain_idx = self.symmetry.res_idx_procesing(res_idx=idx_pdb) msa_prev = None pair_prev = None state_prev = None with torch.no_grad(): msa_prev, pair_prev, px0, state_prev, alpha, logits, plddt = self.model(msa_masked, msa_full, seq_in, xt_in, idx_pdb, t1d=t1d, t2d=t2d, xyz_t=xyz_t, alpha_t=alpha_t, msa_prev = msa_prev, pair_prev = pair_prev, state_prev = state_prev, t=torch.tensor(t), return_infer=True, motif_mask=self.diffusion_mask.squeeze().to(self.device)) # prediction of X0 _, px0 = self.allatom(torch.argmax(seq_in, dim=-1), px0, alpha) px0 = px0.squeeze()[:,:14] ##################### ### Get next pose ### ##################### if t > final_step: seq_t_1 = nn.one_hot(seq_init,num_classes=22).to(self.device) x_t_1, px0 = self.denoiser.get_next_pose( xt=x_t, px0=px0, t=t, diffusion_mask=self.mask_str.squeeze(), align_motif=self.inf_conf.align_motif ) else: x_t_1 = torch.clone(px0).to(x_t.device) seq_t_1 = torch.clone(seq_init) px0 = px0.to(x_t.device) if self.symmetry is not None: x_t_1, seq_t_1 = self.symmetry.apply_symmetry(x_t_1, seq_t_1) return px0, x_t_1, seq_t_1, plddt class SelfConditioning(Sampler): """ Model Runner for self conditioning pX0[t+1] is provided as a template input to the model at time t """ def sample_step(self, *, t, x_t, seq_init, final_step): ''' Generate the next pose that the model should be supplied at timestep t-1. Args: t (int): The timestep that has just been predicted seq_t (torch.tensor): (L,22) The sequence at the beginning of this timestep x_t (torch.tensor): (L,14,3) The residue positions at the beginning of this timestep seq_init (torch.tensor): (L,22) The initialized sequence used in updating the sequence. Returns: px0: (L,14,3) The model's prediction of x0. x_t_1: (L,14,3) The updated positions of the next step. seq_t_1: (L) The sequence to the next step (== seq_init) plddt: (L, 1) Predicted lDDT of x0. ''' msa_masked, msa_full, seq_in, xt_in, idx_pdb, t1d, t2d, xyz_t, alpha_t = self._preprocess( seq_init, x_t, t) B,N,L = xyz_t.shape[:3] ################################## ######## Str Self Cond ########### ################################## if (t < self.diffuser.T) and (t != self.diffuser_conf.partial_T): zeros = torch.zeros(B,1,L,24,3).float().to(xyz_t.device) xyz_t = torch.cat((self.prev_pred.unsqueeze(1),zeros), dim=-2) # [B,T,L,27,3] t2d_44 = xyz_to_t2d(xyz_t) # [B,T,L,L,44] else: xyz_t = torch.zeros_like(xyz_t) t2d_44 = torch.zeros_like(t2d[...,:44]) # No effect if t2d is only dim 44 t2d[...,:44] = t2d_44 if self.symmetry is not None: idx_pdb, self.chain_idx = self.symmetry.res_idx_procesing(res_idx=idx_pdb) #################### ### Forward Pass ### #################### with torch.no_grad(): msa_prev, pair_prev, px0, state_prev, alpha, logits, plddt = self.model(msa_masked, msa_full, seq_in, xt_in, idx_pdb, t1d=t1d, t2d=t2d, xyz_t=xyz_t, alpha_t=alpha_t, msa_prev = None, pair_prev = None, state_prev = None, t=torch.tensor(t), return_infer=True, motif_mask=self.diffusion_mask.squeeze().to(self.device)) if self.symmetry is not None and self.inf_conf.symmetric_self_cond: px0 = self.symmetrise_prev_pred(px0=px0,seq_in=seq_in, alpha=alpha)[:,:,:3] self.prev_pred = torch.clone(px0) # prediction of X0 _, px0 = self.allatom(torch.argmax(seq_in, dim=-1), px0, alpha) px0 = px0.squeeze()[:,:14] ########################### ### Generate Next Input ### ########################### seq_t_1 = torch.clone(seq_init) if t > final_step: x_t_1, px0 = self.denoiser.get_next_pose( xt=x_t, px0=px0, t=t, diffusion_mask=self.mask_str.squeeze(), align_motif=self.inf_conf.align_motif, include_motif_sidechains=self.preprocess_conf.motif_sidechain_input ) self._log.info( f'Timestep {t}, input to next step: { seq2chars(torch.argmax(seq_t_1, dim=-1).tolist())}') else: x_t_1 = torch.clone(px0).to(x_t.device) px0 = px0.to(x_t.device) ###################### ### Apply symmetry ### ###################### if self.symmetry is not None: x_t_1, seq_t_1 = self.symmetry.apply_symmetry(x_t_1, seq_t_1) return px0, x_t_1, seq_t_1, plddt def symmetrise_prev_pred(self, px0, seq_in, alpha): """ Method for symmetrising px0 output for self-conditioning """ _,px0_aa = self.allatom(torch.argmax(seq_in, dim=-1), px0, alpha) px0_sym,_ = self.symmetry.apply_symmetry(px0_aa.to('cpu').squeeze()[:,:14], torch.argmax(seq_in, dim=-1).squeeze().to('cpu')) px0_sym = px0_sym[None].to(self.device) return px0_sym class ScaffoldedSampler(SelfConditioning): """ Model Runner for Scaffold-Constrained diffusion """ def __init__(self, conf: DictConfig): """ Initialize scaffolded sampler. Two basic approaches here: i) Given a block adjacency/secondary structure input, generate a fold (in the presence or absence of a target) - This allows easy generation of binders or specific folds - Allows simple expansion of an input, to sample different lengths ii) Providing a contig input and corresponding block adjacency/secondary structure input - This allows mixed motif scaffolding and fold-conditioning. - Adjacency/secondary structure inputs must correspond exactly in length to the contig string """ super().__init__(conf) # initialize BlockAdjacency sampling class self.blockadjacency = iu.BlockAdjacency(conf.scaffoldguided, conf.inference.num_designs) ################################################# ### Initialize target, if doing binder design ### ################################################# if conf.scaffoldguided.target_pdb: self.target = iu.Target(conf.scaffoldguided, conf.ppi.hotspot_res) self.target_pdb = self.target.get_target() if conf.scaffoldguided.target_ss is not None: self.target_ss = torch.load(conf.scaffoldguided.target_ss).long() self.target_ss = torch.nn.functional.one_hot(self.target_ss, num_classes=4) if self._conf.scaffoldguided.contig_crop is not None: self.target_ss=self.target_ss[self.target_pdb['crop_mask']] if conf.scaffoldguided.target_adj is not None: self.target_adj = torch.load(conf.scaffoldguided.target_adj).long() self.target_adj=torch.nn.functional.one_hot(self.target_adj, num_classes=3) if self._conf.scaffoldguided.contig_crop is not None: self.target_adj=self.target_adj[self.target_pdb['crop_mask']] self.target_adj=self.target_adj[:,self.target_pdb['crop_mask']] else: self.target = None self.target_pdb=False def sample_init(self): """ Wrapper method for taking secondary structure + adj, and outputting xt, seq_t """ ########################## ### Process Fold Input ### ########################## self.L, self.ss, self.adj = self.blockadjacency.get_scaffold() self.adj = nn.one_hot(self.adj.long(), num_classes=3) ############################## ### Auto-contig generation ### ############################## if self.contig_conf.contigs is None: # process target xT = torch.full((self.L, 27,3), np.nan) xT = get_init_xyz(xT[None,None]).squeeze() seq_T = torch.full((self.L,),21) self.diffusion_mask = torch.full((self.L,),False) atom_mask = torch.full((self.L,27), False) self.binderlen=self.L if self.target: target_L = np.shape(self.target_pdb['xyz'])[0] # xyz target_xyz = torch.full((target_L, 27, 3), np.nan) target_xyz[:,:14,:] = torch.from_numpy(self.target_pdb['xyz']) xT = torch.cat((xT, target_xyz), dim=0) # seq seq_T = torch.cat((seq_T, torch.from_numpy(self.target_pdb['seq'])), dim=0) # diffusion mask self.diffusion_mask = torch.cat((self.diffusion_mask, torch.full((target_L,), True)),dim=0) # atom mask mask_27 = torch.full((target_L, 27), False) mask_27[:,:14] = torch.from_numpy(self.target_pdb['mask']) atom_mask = torch.cat((atom_mask, mask_27), dim=0) self.L += target_L # generate contigmap object contig = [] for idx,i in enumerate(self.target_pdb['pdb_idx'][:-1]): if idx==0: start=i[1] if i[1] + 1 != self.target_pdb['pdb_idx'][idx+1][1] or i[0] != self.target_pdb['pdb_idx'][idx+1][0]: contig.append(f'{i[0]}{start}-{i[1]}/0 ') start = self.target_pdb['pdb_idx'][idx+1][1] contig.append(f"{self.target_pdb['pdb_idx'][-1][0]}{start}-{self.target_pdb['pdb_idx'][-1][1]}/0 ") contig.append(f"{self.binderlen}-{self.binderlen}") contig = ["".join(contig)] else: contig = [f"{self.binderlen}-{self.binderlen}"] self.contig_map=ContigMap(self.target_pdb, contig) self.mappings = self.contig_map.get_mappings() self.mask_seq = self.diffusion_mask self.mask_str = self.diffusion_mask L_mapped=len(self.contig_map.ref) ############################ ### Specific Contig mode ### ############################ else: # get contigmap from command line assert self.target is None, "Giving a target is the wrong way of handling this is you're doing contigs and secondary structure" # process target and reinitialise potential_manager. This is here because the 'target' is always set up to be the second chain in out inputs. self.target_feats = iu.process_target(self.inf_conf.input_pdb) self.contig_map = self.construct_contig(self.target_feats) self.mappings = self.contig_map.get_mappings() self.mask_seq = torch.from_numpy(self.contig_map.inpaint_seq)[None,:] self.mask_str = torch.from_numpy(self.contig_map.inpaint_str)[None,:] self.binderlen = len(self.contig_map.inpaint) target_feats = self.target_feats contig_map = self.contig_map xyz_27 = target_feats['xyz_27'] mask_27 = target_feats['mask_27'] seq_orig = target_feats['seq'] L_mapped = len(self.contig_map.ref) seq_T=torch.full((L_mapped,),21) seq_T[contig_map.hal_idx0] = seq_orig[contig_map.ref_idx0] seq_T[~self.mask_seq.squeeze()] = 21 assert L_mapped==self.adj.shape[0] diffusion_mask = self.mask_str self.diffusion_mask = diffusion_mask xT = torch.full((1,1,L_mapped,27,3), np.nan) xT[:, :, contig_map.hal_idx0, ...] = xyz_27[contig_map.ref_idx0,...] xT = get_init_xyz(xT).squeeze() atom_mask = torch.full((L_mapped, 27), False) atom_mask[contig_map.hal_idx0] = mask_27[contig_map.ref_idx0] #################### ### Get hotspots ### #################### self.hotspot_0idx=iu.get_idx0_hotspots(self.mappings, self.ppi_conf, self.binderlen) ######################### ### Set up potentials ### ######################### self.potential_manager = PotentialManager(self.potential_conf, self.ppi_conf, self.diffuser_conf, self.inf_conf, self.hotspot_0idx, self.binderlen) self.chain_idx=['A' if i < self.binderlen else 'B' for i in range(self.L)] ######################## ### Handle Partial T ### ######################## if self.diffuser_conf.partial_T: assert self.diffuser_conf.partial_T <= self.diffuser_conf.T self.t_step_input = int(self.diffuser_conf.partial_T) else: self.t_step_input = int(self.diffuser_conf.T) t_list = np.arange(1, self.t_step_input+1) seq_T=torch.nn.functional.one_hot(seq_T, num_classes=22).float() fa_stack, xyz_true = self.diffuser.diffuse_pose( xT, torch.clone(seq_T), atom_mask.squeeze(), diffusion_mask=self.diffusion_mask.squeeze(), t_list=t_list, include_motif_sidechains=self.preprocess_conf.motif_sidechain_input) ####################### ### Set up Denoiser ### ####################### self.denoiser = self.construct_denoiser(self.L, visible=self.mask_seq.squeeze()) xT = torch.clone(fa_stack[-1].squeeze()[:,:14,:]) return xT, seq_T def _preprocess(self, seq, xyz_t, t): msa_masked, msa_full, seq, xyz_prev, idx_pdb, t1d, t2d, xyz_t, alpha_t = super()._preprocess(seq, xyz_t, t, repack=False) ################################### ### Add Adj/Secondary Structure ### ################################### assert self.preprocess_conf.d_t1d == 28, "The checkpoint you're using hasn't been trained with sec-struc/block adjacency features" assert self.preprocess_conf.d_t2d == 47, "The checkpoint you're using hasn't been trained with sec-struc/block adjacency features" ##################### ### Handle Target ### ##################### if self.target: blank_ss = torch.nn.functional.one_hot(torch.full((self.L-self.binderlen,), 3), num_classes=4) full_ss = torch.cat((self.ss, blank_ss), dim=0) if self._conf.scaffoldguided.target_ss is not None: full_ss[self.binderlen:] = self.target_ss else: full_ss = self.ss t1d=torch.cat((t1d, full_ss[None,None].to(self.device)), dim=-1) t1d = t1d.float() ########### ### t2d ### ########### if self.d_t2d == 47: if self.target: full_adj = torch.zeros((self.L, self.L, 3)) full_adj[:,:,-1] = 1. #set to mask full_adj[:self.binderlen, :self.binderlen] = self.adj if self._conf.scaffoldguided.target_adj is not None: full_adj[self.binderlen:,self.binderlen:] = self.target_adj else: full_adj = self.adj t2d=torch.cat((t2d, full_adj[None,None].to(self.device)),dim=-1) ########### ### idx ### ########### if self.target: idx_pdb[:,self.binderlen:] += 200 return msa_masked, msa_full, seq, xyz_prev, idx_pdb, t1d, t2d, xyz_t, alpha_t
RFdiffusion-main
inference/model_runners.py
import numpy as np import os import sys from omegaconf import DictConfig from kinematics import xyz_to_t2d import torch import torch.nn.functional as nn from diffusion import get_beta_schedule from scipy.spatial.transform import Rotation as scipy_R from util import rigid_from_3_points from util_module import ComputeAllAtomCoords from potentials.manager import PotentialManager import util import random import logging import string from inference import model_runners import hydra import glob ########################################################### #### Functions which can be called outside of Denoiser #### ########################################################### def get_next_frames(xt, px0, t, diffuser, so3_type, diffusion_mask, noise_scale=1.0): """ get_next_frames gets updated frames using IGSO(3) + score_based reverse diffusion. based on self.so3_type use score based update. Generate frames at t-1 Rather than generating random rotations (as occurs during forward process), calculate rotation between xt and px0 Args: xt: noised coordinates of shape [L, 14, 3] px0: prediction of coordinates at t=0, of shape [L, 14, 3] t: integer time step diffuser: Diffuser object for reverse igSO3 sampling so3_type: The type of SO3 noising being used ('igso3') diffusion_mask: of shape [L] of type bool, True means not to be updated (e.g. mask is true for motif residues) noise_scale: scale factor for the noise added (IGSO3 only) Returns: backbone coordinates for step x_t-1 of shape [L, 3, 3] """ N_0 = px0[None, :, 0, :] Ca_0 = px0[None, :, 1, :] C_0 = px0[None, :, 2, :] R_0, Ca_0 = rigid_from_3_points(N_0, Ca_0, C_0) N_t = xt[None, :, 0, :] Ca_t = xt[None, :, 1, :] C_t = xt[None, :, 2, :] R_t, Ca_t = rigid_from_3_points(N_t, Ca_t, C_t) # this must be to normalize them or something R_0 = scipy_R.from_matrix(R_0.squeeze().numpy()).as_matrix() R_t = scipy_R.from_matrix(R_t.squeeze().numpy()).as_matrix() L = R_t.shape[0] all_rot_transitions = np.broadcast_to(np.identity(3), (L, 3, 3)).copy() # Sample next frame for each residue if so3_type == "igso3": # don't do calculations on masked positions since they end up as identity matrix all_rot_transitions[ ~diffusion_mask ] = diffuser.so3_diffuser.reverse_sample_vectorized( R_t[~diffusion_mask], R_0[~diffusion_mask], t, noise_level=noise_scale, mask=None, return_perturb=True, ) else: assert False, "so3 diffusion type %s not implemented" % so3_type all_rot_transitions = all_rot_transitions[:, None, :, :] # Apply the interpolated rotation matrices to the coordinates next_crds = ( np.einsum( "lrij,laj->lrai", all_rot_transitions, xt[:, :3, :] - Ca_t.squeeze()[:, None, ...].numpy(), ) + Ca_t.squeeze()[:, None, None, ...].numpy() ) # (L,3,3) set of backbone coordinates with slight rotation return next_crds.squeeze(1) def get_mu_xt_x0(xt, px0, t, beta_schedule, alphabar_schedule, eps=1e-6): """ Given xt, predicted x0 and the timestep t, give mu of x(t-1) Assumes t is 0 indexed """ # sigma is predefined from beta. Often referred to as beta tilde t t_idx = t - 1 sigma = ( (1 - alphabar_schedule[t_idx - 1]) / (1 - alphabar_schedule[t_idx]) ) * beta_schedule[t_idx] xt_ca = xt[:, 1, :] px0_ca = px0[:, 1, :] a = ( (torch.sqrt(alphabar_schedule[t_idx - 1] + eps) * beta_schedule[t_idx]) / (1 - alphabar_schedule[t_idx]) ) * px0_ca b = ( ( torch.sqrt(1 - beta_schedule[t_idx] + eps) * (1 - alphabar_schedule[t_idx - 1]) ) / (1 - alphabar_schedule[t_idx]) ) * xt_ca mu = a + b return mu, sigma def get_next_ca( xt, px0, t, diffusion_mask, crd_scale, beta_schedule, alphabar_schedule, noise_scale=1.0, ): """ Given full atom x0 prediction (xyz coordinates), diffuse to x(t-1) Parameters: xt (L, 14/27, 3) set of coordinates px0 (L, 14/27, 3) set of coordinates t: time step. Note this is zero-index current time step, so are generating t-1 logits_aa (L x 20 ) amino acid probabilities at each position seq_schedule (L): Tensor of bools, True is unmasked, False is masked. For this specific t diffusion_mask (torch.tensor, required): Tensor of bools, True means NOT diffused at this residue, False means diffused noise_scale: scale factor for the noise being added """ get_allatom = ComputeAllAtomCoords().to(device=xt.device) L = len(xt) # bring to origin after global alignment (when don't have a motif) or replace input motif and bring to origin, and then scale px0 = px0 * crd_scale xt = xt * crd_scale # get mu(xt, x0) mu, sigma = get_mu_xt_x0( xt, px0, t, beta_schedule=beta_schedule, alphabar_schedule=alphabar_schedule ) sampled_crds = torch.normal(mu, torch.sqrt(sigma * noise_scale)) delta = sampled_crds - xt[:, 1, :] # check sign of this is correct if not diffusion_mask is None: # Don't move motif delta[diffusion_mask, ...] = 0 out_crds = xt + delta[:, None, :] return out_crds / crd_scale, delta / crd_scale def get_noise_schedule(T, noiseT, noise1, schedule_type): """ Function to create a schedule that varies the scale of noise given to the model over time Parameters: T: The total number of timesteps in the denoising trajectory noiseT: The inital (t=T) noise scale noise1: The final (t=1) noise scale schedule_type: The type of function to use to interpolate between noiseT and noise1 Returns: noise_schedule: A function which maps timestep to noise scale """ noise_schedules = { "constant": lambda t: noiseT, "linear": lambda t: ((t - 1) / (T - 1)) * (noiseT - noise1) + noise1, } assert ( schedule_type in noise_schedules ), f"noise_schedule must be one of {noise_schedules.keys()}. Received noise_schedule={schedule_type}. Exiting." return noise_schedules[schedule_type] class Denoise: """ Class for getting x(t-1) from predicted x0 and x(t) Strategy: Ca coordinates: Rediffuse to x(t-1) from predicted x0 Frames: Approximate update from rotation score Torsions: 1/t of the way to the x0 prediction """ def __init__( self, T, L, diffuser, visible, seq_diffuser=None, b_0=0.001, b_T=0.1, min_b=1.0, max_b=12.5, min_sigma=0.05, max_sigma=1.5, noise_level=0.5, schedule_type="linear", so3_schedule_type="linear", schedule_kwargs={}, so3_type="igso3", noise_scale_ca=1.0, final_noise_scale_ca=1, ca_noise_schedule_type="constant", noise_scale_frame=0.5, final_noise_scale_frame=0.5, frame_noise_schedule_type="constant", crd_scale=1 / 15, potential_manager=None, partial_T=None, ): """ Parameters: noise_level: scaling on the noise added (set to 0 to use no noise, to 1 to have full noise) """ self.T = T self.L = L self.diffuser = diffuser self.seq_diffuser = seq_diffuser self.b_0 = b_0 self.b_T = b_T self.noise_level = noise_level self.schedule_type = schedule_type self.so3_type = so3_type self.crd_scale = crd_scale self.noise_scale_ca = noise_scale_ca self.final_noise_scale_ca = final_noise_scale_ca self.ca_noise_schedule_type = ca_noise_schedule_type self.noise_scale_frame = noise_scale_frame self.final_noise_scale_frame = final_noise_scale_frame self.frame_noise_schedule_type = frame_noise_schedule_type self.potential_manager = potential_manager self._log = logging.getLogger(__name__) self.schedule, self.alpha_schedule, self.alphabar_schedule = get_beta_schedule( self.T, self.b_0, self.b_T, self.schedule_type, inference=True ) self.noise_schedule_ca = get_noise_schedule( self.T, self.noise_scale_ca, self.final_noise_scale_ca, self.ca_noise_schedule_type, ) self.noise_schedule_frame = get_noise_schedule( self.T, self.noise_scale_frame, self.final_noise_scale_frame, self.frame_noise_schedule_type, ) @property def idx2steps(self): return self.decode_scheduler.idx2steps.numpy() def align_to_xt_motif(self, px0, xT, diffusion_mask, eps=1e-6): """ Need to align px0 to motif in xT. This is to permit the swapping of residue positions in the px0 motif for the true coordinates. First, get rotation matrix from px0 to xT for the motif residues. Second, rotate px0 (whole structure) by that rotation matrix Third, centre at origin """ # if True: # return px0 def rmsd(V, W, eps=0): # First sum down atoms, then sum down xyz N = V.shape[-2] return np.sqrt(np.sum((V - W) * (V - W), axis=(-2, -1)) / N + eps) assert ( xT.shape[1] == px0.shape[1] ), f"xT has shape {xT.shape} and px0 has shape {px0.shape}" L, n_atom, _ = xT.shape # A is number of atoms atom_mask = ~torch.isnan(px0) # convert to numpy arrays px0 = px0.cpu().detach().numpy() xT = xT.cpu().detach().numpy() diffusion_mask = diffusion_mask.cpu().detach().numpy() # 1 centre motifs at origin and get rotation matrix px0_motif = px0[diffusion_mask, :3].reshape(-1, 3) xT_motif = xT[diffusion_mask, :3].reshape(-1, 3) px0_motif_mean = np.copy(px0_motif.mean(0)) # need later xT_motif_mean = np.copy(xT_motif.mean(0)) # center at origin px0_motif = px0_motif - px0_motif_mean xT_motif = xT_motif - xT_motif_mean # A = px0_motif # B = xT_motif A = xT_motif B = px0_motif C = np.matmul(A.T, B) # compute optimal rotation matrix using SVD U, S, Vt = np.linalg.svd(C) # ensure right handed coordinate system d = np.eye(3) d[-1, -1] = np.sign(np.linalg.det(Vt.T @ U.T)) # construct rotation matrix R = Vt.T @ d @ U.T # get rotated coords rB = B @ R # calculate rmsd rms = rmsd(A, rB) self._log.info(f"Sampled motif RMSD: {rms:.2f}") # 2 rotate whole px0 by rotation matrix atom_mask = atom_mask.cpu() px0[~atom_mask] = 0 # convert nans to 0 px0 = px0.reshape(-1, 3) - px0_motif_mean px0_ = px0 @ R # xT_motif_out = xT_motif.reshape(-1,3) # xT_motif_out = (xT_motif_out @ R ) + px0_motif_mean # ic(xT_motif_out.shape) # xT_motif_out = xT_motif_out.reshape((diffusion_mask.sum(),3,3)) # 3 put in same global position as xT px0_ = px0_ + xT_motif_mean px0_ = px0_.reshape([L, n_atom, 3]) px0_[~atom_mask] = float("nan") return torch.Tensor(px0_) # return torch.tensor(xT_motif_out) def get_potential_gradients(self, xyz, diffusion_mask): """ This could be moved into potential manager if desired - NRB Function to take a structure (x) and get per-atom gradients used to guide diffusion update Inputs: xyz (torch.tensor, required): [L,27,3] Coordinates at which the gradient will be computed Outputs: Ca_grads (torch.tensor): [L,3] The gradient at each Ca atom """ if self.potential_manager == None or self.potential_manager.is_empty(): return torch.zeros(xyz.shape[0], 3) use_Cb = False # seq.requires_grad = True xyz.requires_grad = True if not xyz.grad is None: xyz.grad.zero_() current_potential = self.potential_manager.compute_all_potentials(xyz) current_potential.backward() # Since we are not moving frames, Cb grads are same as Ca grads # Need access to calculated Cb coordinates to be able to get Cb grads though Ca_grads = xyz.grad[:, 1, :] if not diffusion_mask == None: Ca_grads[diffusion_mask, :] = 0 # check for NaN's if torch.isnan(Ca_grads).any(): print("WARNING: NaN in potential gradients, replacing with zero grad.") Ca_grads[:] = 0 return Ca_grads def get_next_pose( self, xt, px0, t, diffusion_mask, fix_motif=True, align_motif=True, include_motif_sidechains=True, ): """ Wrapper function to take px0, xt and t, and to produce xt-1 First, aligns px0 to xt Then gets coordinates, frames and torsion angles Parameters: xt (torch.tensor, required): Current coordinates at timestep t px0 (torch.tensor, required): Prediction of x0 t (int, required): timestep t diffusion_mask (torch.tensor, required): Mask for structure diffusion fix_motif (bool): Fix the motif structure align_motif (bool): Align the model's prediction of the motif to the input motif include_motif_sidechains (bool): Provide sidechains of the fixed motif to the model """ get_allatom = ComputeAllAtomCoords().to(device=xt.device) L, n_atom = xt.shape[:2] assert (xt.shape[1] == 14) or (xt.shape[1] == 27) assert (px0.shape[1] == 14) or (px0.shape[1] == 27) ############################### ### Align pX0 onto Xt motif ### ############################### if align_motif and diffusion_mask.any(): px0 = self.align_to_xt_motif(px0, xt, diffusion_mask) # xT_motif_aligned = self.align_to_xt_motif(px0, xt, diffusion_mask) px0 = px0.to(xt.device) # Now done with diffusion mask. if fix motif is False, just set diffusion mask to be all True, and all coordinates can diffuse if not fix_motif: diffusion_mask[:] = False # get the next set of CA coordinates noise_scale_ca = self.noise_schedule_ca(t) _, ca_deltas = get_next_ca( xt, px0, t, diffusion_mask, crd_scale=self.crd_scale, beta_schedule=self.schedule, alphabar_schedule=self.alphabar_schedule, noise_scale=noise_scale_ca, ) # get the next set of backbone frames (coordinates) noise_scale_frame = self.noise_schedule_frame(t) frames_next = get_next_frames( xt, px0, t, diffuser=self.diffuser, so3_type=self.so3_type, diffusion_mask=diffusion_mask, noise_scale=noise_scale_frame, ) # Apply gradient step from guiding potentials # This can be moved to below where the full atom representation is calculated to allow for potentials involving sidechains grad_ca = self.get_potential_gradients( xt.clone(), diffusion_mask=diffusion_mask ) ca_deltas += self.potential_manager.get_guide_scale(t) * grad_ca # add the delta to the new frames frames_next = torch.from_numpy(frames_next) + ca_deltas[:, None, :] # translate fullatom_next = torch.full_like(xt, float("nan")).unsqueeze(0) fullatom_next[:, :, :3] = frames_next[None] # This is never used so just make it a fudged tensor - NRB torsions_next = torch.zeros(1, 1) if include_motif_sidechains: fullatom_next[:, diffusion_mask, :14] = xt[None, diffusion_mask] return fullatom_next.squeeze()[:, :14, :], px0 def sampler_selector(conf: DictConfig): if conf.scaffoldguided.scaffoldguided: sampler = model_runners.ScaffoldedSampler(conf) else: if conf.inference.model_runner == "default": sampler = model_runners.Sampler(conf) elif conf.inference.model_runner == "SelfConditioning": sampler = model_runners.SelfConditioning(conf) elif conf.inference.model_runner == "ScaffoldedSampler": sampler = model_runners.ScaffoldedSampler(conf) else: raise ValueError(f"Unrecognized sampler {conf.model_runner}") return sampler def parse_pdb(filename, **kwargs): """extract xyz coords for all heavy atoms""" lines = open(filename, "r").readlines() return parse_pdb_lines(lines, **kwargs) def parse_pdb_lines(lines, parse_hetatom=False, ignore_het_h=True): # indices of residues observed in the structure res = [ (l[22:26], l[17:20]) for l in lines if l[:4] == "ATOM" and l[12:16].strip() == "CA" ] seq = [util.aa2num[r[1]] if r[1] in util.aa2num.keys() else 20 for r in res] pdb_idx = [ (l[21:22].strip(), int(l[22:26].strip())) for l in lines if l[:4] == "ATOM" and l[12:16].strip() == "CA" ] # chain letter, res num # 4 BB + up to 10 SC atoms xyz = np.full((len(res), 14, 3), np.nan, dtype=np.float32) for l in lines: if l[:4] != "ATOM": continue chain, resNo, atom, aa = ( l[21:22], int(l[22:26]), " " + l[12:16].strip().ljust(3), l[17:20], ) idx = pdb_idx.index((chain, resNo)) # for i_atm, tgtatm in enumerate(util.aa2long[util.aa2num[aa]]): for i_atm, tgtatm in enumerate( util.aa2long[util.aa2num[aa]][:14] ): # Nate's proposed change if ( tgtatm is not None and tgtatm.strip() == atom.strip() ): # ignore whitespace xyz[idx, i_atm, :] = [float(l[30:38]), float(l[38:46]), float(l[46:54])] break # save atom mask mask = np.logical_not(np.isnan(xyz[..., 0])) xyz[np.isnan(xyz[..., 0])] = 0.0 # remove duplicated (chain, resi) new_idx = [] i_unique = [] for i, idx in enumerate(pdb_idx): if idx not in new_idx: new_idx.append(idx) i_unique.append(i) pdb_idx = new_idx xyz = xyz[i_unique] mask = mask[i_unique] seq = np.array(seq)[i_unique] out = { "xyz": xyz, # cartesian coordinates, [Lx14] "mask": mask, # mask showing which atoms are present in the PDB file, [Lx14] "idx": np.array( [i[1] for i in pdb_idx] ), # residue numbers in the PDB file, [L] "seq": np.array(seq), # amino acid sequence, [L] "pdb_idx": pdb_idx, # list of (chain letter, residue number) in the pdb file, [L] } # heteroatoms (ligands, etc) if parse_hetatom: xyz_het, info_het = [], [] for l in lines: if l[:6] == "HETATM" and not (ignore_het_h and l[77] == "H"): info_het.append( dict( idx=int(l[7:11]), atom_id=l[12:16], atom_type=l[77], name=l[16:20], ) ) xyz_het.append([float(l[30:38]), float(l[38:46]), float(l[46:54])]) out["xyz_het"] = np.array(xyz_het) out["info_het"] = info_het return out def process_target(pdb_path, parse_hetatom=False, center=True): # Read target pdb and extract features. target_struct = parse_pdb(pdb_path, parse_hetatom=parse_hetatom) # Zero-center positions ca_center = target_struct["xyz"][:, :1, :].mean(axis=0, keepdims=True) if not center: ca_center = 0 xyz = torch.from_numpy(target_struct["xyz"] - ca_center) seq_orig = torch.from_numpy(target_struct["seq"]) atom_mask = torch.from_numpy(target_struct["mask"]) seq_len = len(xyz) # Make 27 atom representation xyz_27 = torch.full((seq_len, 27, 3), np.nan).float() xyz_27[:, :14, :] = xyz[:, :14, :] mask_27 = torch.full((seq_len, 27), False) mask_27[:, :14] = atom_mask out = { "xyz_27": xyz_27, "mask_27": mask_27, "seq": seq_orig, "pdb_idx": target_struct["pdb_idx"], } if parse_hetatom: out["xyz_het"] = target_struct["xyz_het"] out["info_het"] = target_struct["info_het"] return out def get_idx0_hotspots(mappings, ppi_conf, binderlen): """ Take pdb-indexed hotspot resudes and the length of the binder, and makes the 0-indexed tensor of hotspots """ hotspot_idx = None if binderlen > 0: if ppi_conf.hotspot_res is not None: assert all( [i[0].isalpha() for i in ppi_conf.hotspot_res] ), "Hotspot residues need to be provided in pdb-indexed form. E.g. A100,A103" hotspots = [(i[0], int(i[1:])) for i in ppi_conf.hotspot_res] hotspot_idx = [] for i, res in enumerate(mappings["receptor_con_ref_pdb_idx"]): if res in hotspots: hotspot_idx.append(mappings["receptor_con_hal_idx0"][i]) return hotspot_idx class BlockAdjacency: """ Class for handling PPI design inference with ss/block_adj inputs. Basic idea is to provide a list of scaffolds, and to output ss and adjacency matrices based off of these, while sampling additional lengths. Inputs: - scaffold_list: list of scaffolds (e.g. ['2kl8','1cif']). Can also be a .txt file. - scaffold dir: directory where scaffold ss and adj are precalculated - sampled_insertion: how many additional residues do you want to add to each loop segment? Randomly sampled 0-this number (or within given range) - sampled_N: randomly sample up to this number of additional residues at N-term - sampled_C: randomly sample up to this number of additional residues at C-term - ss_mask: how many residues do you want to mask at either end of a ss (H or E) block. Fixed value - num_designs: how many designs are you wanting to generate? Currently only used for bookkeeping - systematic: do you want to systematically work through the list of scaffolds, or randomly sample (default) - num_designs_per_input: Not really implemented yet. Maybe not necessary Outputs: - L: new length of chain to be diffused - ss: all loops and insertions, and ends of ss blocks (up to ss_mask) set to mask token (3). Onehot encoded. (L,4) - adj: block adjacency with equivalent masking as ss (L,L) """ def __init__(self, conf, num_designs): """ Parameters: inputs: conf.scaffold_list as conf conf.inference.num_designs for sanity checking """ # either list or path to .txt file with list of scaffolds if conf.scaffold_list is not None: if type(conf.scaffold_list) == list: self.scaffold_list = scaffold_list elif conf.scaffold_list[-4:] == ".txt": # txt file with list of ids list_from_file = [] with open(conf.scaffold_list, "r") as f: for line in f: list_from_file.append(line.strip()) self.scaffold_list = list_from_file else: raise NotImplementedError else: self.scaffold_list = [ os.path.split(i)[1][:-6] for i in glob.glob(f"{conf.scaffold_dir}/*_ss.pt") ] # path to directory with scaffolds, ss files and block_adjacency files self.scaffold_dir = conf.scaffold_dir # maximum sampled insertion in each loop segment if "-" in str(conf.sampled_insertion): self.sampled_insertion = [ int(str(conf.sampled_insertion).split("-")[0]), int(str(conf.sampled_insertion).split("-")[1]), ] else: self.sampled_insertion = [0, int(conf.sampled_insertion)] # maximum sampled insertion at N- and C-terminus if "-" in str(conf.sampled_N): self.sampled_N = [ int(str(conf.sampled_N).split("-")[0]), int(str(conf.sampled_N).split("-")[1]), ] else: self.sampled_N = [0, int(conf.sampled_N)] if "-" in str(conf.sampled_C): self.sampled_C = [ int(str(conf.sampled_C).split("-")[0]), int(str(conf.sampled_C).split("-")[1]), ] else: self.sampled_C = [0, int(conf.sampled_C)] # number of residues to mask ss identity of in H/E regions (from junction) # e.g. if ss_mask = 2, L,L,L,H,H,H,H,H,H,H,L,L,E,E,E,E,E,E,L,L,L,L,L,L would become\ # M,M,M,M,M,H,H,H,M,M,M,M,M,M,E,E,M,M,M,M,M,M,M,M where M is mask self.ss_mask = conf.ss_mask # whether or not to work systematically through the list self.systematic = conf.systematic self.num_designs = num_designs if len(self.scaffold_list) > self.num_designs: print( "WARNING: Scaffold set is bigger than num_designs, so not every scaffold type will be sampled" ) # for tracking number of designs self.num_completed = 0 if self.systematic: self.item_n = 0 # whether to mask loops or not if not conf.mask_loops: assert conf.sampled_N == 0, "can't add length if not masking loops" assert conf.sampled_C == 0, "can't add lemgth if not masking loops" assert conf.sampled_insertion == 0, "can't add length if not masking loops" self.mask_loops = False else: self.mask_loops = True def get_ss_adj(self, item): """ Given at item, get the ss tensor and block adjacency matrix for that item """ ss = torch.load(os.path.join(self.scaffold_dir, f'{item.split(".")[0]}_ss.pt')) adj = torch.load( os.path.join(self.scaffold_dir, f'{item.split(".")[0]}_adj.pt') ) return ss, adj def mask_to_segments(self, mask): """ Takes a mask of True (loop) and False (non-loop), and outputs list of tuples (loop or not, length of element) """ segments = [] begin = -1 end = -1 for i in range(mask.shape[0]): # Starting edge case if i == 0: begin = 0 continue if not mask[i] == mask[i - 1]: end = i if mask[i - 1].item() is True: segments.append(("loop", end - begin)) else: segments.append(("ss", end - begin)) begin = i # Ending edge case: last segment is length one if not end == mask.shape[0]: if mask[i].item() is True: segments.append(("loop", mask.shape[0] - begin)) else: segments.append(("ss", mask.shape[0] - begin)) return segments def expand_mask(self, mask, segments): """ Function to generate a new mask with dilated loops and N and C terminal additions """ N_add = random.randint(self.sampled_N[0], self.sampled_N[1]) C_add = random.randint(self.sampled_C[0], self.sampled_C[1]) output = N_add * [False] for ss, length in segments: if ss == "ss": output.extend(length * [True]) else: # randomly sample insertion length ins = random.randint( self.sampled_insertion[0], self.sampled_insertion[1] ) output.extend((length + ins) * [False]) output.extend(C_add * [False]) assert torch.sum(torch.tensor(output)) == torch.sum(~mask) return torch.tensor(output) def expand_ss(self, ss, adj, mask, expanded_mask): """ Given an expanded mask, populate a new ss and adj based on this """ ss_out = torch.ones(expanded_mask.shape[0]) * 3 # set to mask token adj_out = torch.full((expanded_mask.shape[0], expanded_mask.shape[0]), 0.0) ss_out[expanded_mask] = ss[~mask] expanded_mask_2d = torch.full(adj_out.shape, True) # mask out loops/insertions, which is ~expanded_mask expanded_mask_2d[~expanded_mask, :] = False expanded_mask_2d[:, ~expanded_mask] = False mask_2d = torch.full(adj.shape, True) # mask out loops. This mask is True=loop mask_2d[mask, :] = False mask_2d[:, mask] = False adj_out[expanded_mask_2d] = adj[mask_2d] adj_out = adj_out.reshape((expanded_mask.shape[0], expanded_mask.shape[0])) return ss_out, adj_out def mask_ss_adj(self, ss, adj, expanded_mask): """ Given an expanded ss and adj, mask some number of residues at either end of non-loop ss """ original_mask = torch.clone(expanded_mask) if self.ss_mask > 0: for i in range(1, self.ss_mask + 1): expanded_mask[i:] *= original_mask[:-i] expanded_mask[:-i] *= original_mask[i:] if self.mask_loops: ss[~expanded_mask] = 3 adj[~expanded_mask, :] = 0 adj[:, ~expanded_mask] = 0 # mask adjacency adj[~expanded_mask] = 2 adj[:, ~expanded_mask] = 2 return ss, adj def get_scaffold(self): """ Wrapper method for pulling an item from the list, and preparing ss and block adj features """ if self.systematic: # reset if num designs > num_scaffolds if self.item_n >= len(self.scaffold_list): self.item_n = 0 item = self.scaffold_list[self.item_n] self.item_n += 1 else: item = random.choice(self.scaffold_list) print("Scaffold constrained based on file: ", item) # load files ss, adj = self.get_ss_adj(item) adj_orig = torch.clone(adj) # separate into segments (loop or not) mask = torch.where(ss == 2, 1, 0).bool() segments = self.mask_to_segments(mask) # insert into loops to generate new mask expanded_mask = self.expand_mask(mask, segments) # expand ss and adj ss, adj = self.expand_ss(ss, adj, mask, expanded_mask) # finally, mask some proportion of the ss at either end of the non-loop ss blocks ss, adj = self.mask_ss_adj(ss, adj, expanded_mask) # and then update num_completed self.num_completed += 1 return ss.shape[0], torch.nn.functional.one_hot(ss.long(), num_classes=4), adj class Target: """ Class to handle targets (fixed chains). Inputs: - path to pdb file - hotspot residues, in the form B10,B12,B60 etc - whether or not to crop, and with which method Outputs: - Dictionary of xyz coordinates, indices, pdb_indices, pdb mask """ def __init__(self, conf: DictConfig, hotspots=None): self.pdb = parse_pdb(conf.target_path) if hotspots is not None: self.hotspots = hotspots else: self.hotspots = [] self.pdb["hotspots"] = np.array( [ True if f"{i[0]}{i[1]}" in self.hotspots else False for i in self.pdb["pdb_idx"] ] ) if conf.contig_crop: self.contig_crop(conf.contig_crop) def parse_contig(self, contig_crop): """ Takes contig input and parses """ contig_list = [] for contig in contig_crop[0].split(" "): subcon = [] for crop in contig.split("/"): if crop[0].isalpha(): subcon.extend( [ (crop[0], p) for p in np.arange( int(crop.split("-")[0][1:]), int(crop.split("-")[1]) + 1 ) ] ) contig_list.append(subcon) return contig_list def contig_crop(self, contig_crop, residue_offset=200) -> None: """ Method to take a contig string referring to the receptor and output a pdb dictionary with just this crop NB there are two ways to provide inputs: - 1) e.g. B1-30,0 B50-60,0. This will add a residue offset between each chunk - 2) e.g. B1-30,B50-60,B80-100. This will keep the original indexing of the pdb file. Can handle the target being on multiple chains """ # add residue offset between chains if multiple chains in receptor file for idx, val in enumerate(self.pdb["pdb_idx"]): if idx != 0 and val != self.pdb["pdb_idx"][idx - 1]: self.pdb["idx"][idx:] += residue_offset + idx # convert contig to mask contig_list = self.parse_contig(contig_crop) # add residue offset to different parts of contig_list for contig in contig_list[1:]: start = int(contig[0][1]) self.pdb["idx"][start:] += residue_offset # flatten list contig_list = [i for j in contig_list for i in j] mask = np.array( [True if i in contig_list else False for i in self.pdb["pdb_idx"]] ) # sanity check assert np.sum(self.pdb["hotspots"]) == np.sum( self.pdb["hotspots"][mask] ), "Supplied hotspot residues are missing from the target contig!" # crop pdb for key, val in self.pdb.items(): try: self.pdb[key] = val[mask] except: self.pdb[key] = [i for idx, i in enumerate(val) if mask[idx]] self.pdb["crop_mask"] = mask def get_target(self): return self.pdb
RFdiffusion-main
inference/utils.py
#!/usr/bin/env python import os,sys,glob,torch,random import numpy as np import argparse try: import pyrosetta pyrosetta.init() APPROX = False except: print("WARNING: pyRosetta not found, will use an approximate SSE calculation") APPROX = True def main(): args=get_args() assert args.input_pdb or args.pdb_dir is not None, 'Need to provide either an input pdb (--input_pdb) or a path to pdbs (--pdb_dir)' assert not (args.input_pdb is not None and args.pdb_dir is not None), 'Need to provide either --input_pdb or --pdb_dir, not both' os.makedirs(args.out_dir, exist_ok=True) if args.pdb_dir is not None: pdbs=glob.glob(f'{args.pdb_dir}/*pdb') else: pdbs=[args.input_pdb] for pdb in pdbs: name=os.path.split(pdb)[1][:-4] secstruc_dict=extract_secstruc(pdb) xyz,_,_ = parse_pdb_torch(pdb) ss, idx = ss_to_tensor(secstruc_dict) block_adj = construct_block_adj_matrix(torch.FloatTensor(ss), torch.tensor(xyz)).float() ss_tens, mask = mask_ss(ss, idx, max_mask=0) ss_argmax = torch.argmax(ss_tens[:,:4], dim=1).float() torch.save(ss_argmax, os.path.join(args.out_dir, f'{name}_ss.pt')) torch.save(block_adj, os.path.join(args.out_dir, f'{name}_adj.pt')) def get_args(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--pdb_dir",required=False, help="path to directory of pdbs. Either pass this or the path to a specific pdb (--input_pdb)", default=None) parser.add_argument("--input_pdb", required=False, help="path to input pdb. Either provide this of path to directory of pdbs (--pdb_dir)", default=None) parser.add_argument("--out_dir",dest="out_dir", required=True, help='need to specify an output path') args = parser.parse_args() return args def extract_secstruc(fn): pdb=parse_pdb(fn) idx = pdb['idx'] if APPROX: aa_sequence = pdb["seq"] secstruct = get_sse(pdb["xyz"][:,1]) else: dssp = pyrosetta.rosetta.core.scoring.dssp pose = pyrosetta.io.pose_from_pdb(fn) dssp.Dssp(pose).insert_ss_into_pose(pose, True) aa_sequence = pose.sequence() secstruct = pose.secstruct() secstruc_dict = {'sequence':[i for i in aa_sequence], 'idx':[int(i) for i in idx], 'ss':[i for i in secstruct]} return secstruc_dict def ss_to_tensor(ss): """ Function to convert ss files to indexed tensors 0 = Helix 1 = Strand 2 = Loop 3 = Mask/unknown 4 = idx for pdb """ ss_conv = {'H':0,'E':1,'L':2} idx = np.array(ss['idx']) ss_int = np.array([int(ss_conv[i]) for i in ss['ss']]) return ss_int, idx def mask_ss(ss, idx, min_mask = 0, max_mask = 1.0): mask_prop = random.uniform(min_mask, max_mask) transitions = np.where(ss[:-1] - ss[1:] != 0)[0] #gets last index of each block of ss stuck_counter = 0 while len(ss[ss == 3])/len(ss) < mask_prop or stuck_counter > 100: width = random.randint(1,9) start = random.choice(transitions) offset = random.randint(-8,1) try: ss[start+offset:start+offset+width] = 3 except: stuck_counter += 1 pass ss = torch.tensor(ss) ss = torch.nn.functional.one_hot(ss, num_classes=4) ss = torch.cat((ss, torch.tensor(idx)[...,None]), dim=-1) # mask = torch.where(torch.argmax(ss[:,:-1], dim=-1) == 3, False, True) mask=torch.tensor(np.where(np.argmax(ss[:,:-1].numpy(), axis=-1) == 3)) return ss, mask def generate_Cbeta(N,Ca,C): # recreate Cb given N,Ca,C b = Ca - N c = C - Ca a = torch.cross(b, c, dim=-1) #Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca # fd: below matches sidechain generator (=Rosetta params) Cb = -0.57910144*a + 0.5689693*b - 0.5441217*c + Ca return Cb def get_pair_dist(a, b): """calculate pair distances between two sets of points Parameters ---------- a,b : pytorch tensors of shape [batch,nres,3] store Cartesian coordinates of two sets of atoms Returns ------- dist : pytorch tensor of shape [batch,nres,nres] stores paitwise distances between atoms in a and b """ dist = torch.cdist(a, b, p=2) return dist def construct_block_adj_matrix( sstruct, xyz, cutoff=6, include_loops=False ): ''' Given a sstruct specification and backbone coordinates, build a block adjacency matrix. Input: sstruct (torch.FloatTensor): (L) length tensor with numeric encoding of sstruct at each position xyz (torch.FloatTensor): (L,3,3) tensor of Cartesian coordinates of backbone N,Ca,C atoms cutoff (float): The Cb distance cutoff under which residue pairs are considered adjacent By eye, Nate thinks 6A is a good Cb distance cutoff Output: block_adj (torch.FloatTensor): (L,L) boolean matrix where adjacent secondary structure contacts are 1 ''' L = xyz.shape[0] # three anchor atoms N = xyz[:,0] Ca = xyz[:,1] C = xyz[:,2] # recreate Cb given N,Ca,C Cb = generate_Cbeta(N,Ca,C) # May need a batch dimension - NRB dist = get_pair_dist(Cb,Cb) # [L,L] dist[torch.isnan(dist)] = 999.9 dist += 999.9*torch.eye(L,device=xyz.device) # Now we have dist matrix and sstruct specification, turn this into a block adjacency matrix # There is probably a way to do this in closed-form with a beautiful einsum but I am going to do the loop approach # First: Construct a list of segments and the index at which they begin and end in_segment = True segments = [] begin = -1 end = -1 for i in range(sstruct.shape[0]): # Starting edge case if i == 0: begin = 0 continue if not sstruct[i] == sstruct[i-1]: end = i segments.append( (sstruct[i-1], begin, end) ) begin = i # Ending edge case: last segment is length one if not end == sstruct.shape[0]: segments.append( (sstruct[-1], begin, sstruct.shape[0]) ) block_adj = torch.zeros_like(dist) for i in range(len(segments)): curr_segment = segments[i] if curr_segment[0] == 2 and not include_loops: continue begin_i = curr_segment[1] end_i = curr_segment[2] for j in range(i+1, len(segments)): j_segment = segments[j] if j_segment[0] == 2 and not include_loops: continue begin_j = j_segment[1] end_j = j_segment[2] if torch.any( dist[begin_i:end_i, begin_j:end_j] < cutoff ): # Matrix is symmetic block_adj[begin_i:end_i, begin_j:end_j] = torch.ones(end_i - begin_i, end_j - begin_j) block_adj[begin_j:end_j, begin_i:end_i] = torch.ones(end_j - begin_j, end_i - begin_i) return block_adj def parse_pdb_torch(filename): lines = open(filename,'r').readlines() return parse_pdb_lines_torch(lines) #''' def parse_pdb_lines_torch(lines): # indices of residues observed in the structure pdb_idx = [] for l in lines: if l[:4]=="ATOM" and l[12:16].strip()=="CA": idx = ( l[21:22].strip(), int(l[22:26].strip()) ) if idx not in pdb_idx: pdb_idx.append(idx) # 4 BB + up to 10 SC atoms xyz = np.full((len(pdb_idx), 27, 3), np.nan, dtype=np.float32) for l in lines: if l[:4] != "ATOM": continue chain, resNo, atom, aa = l[21:22], int(l[22:26]), ' '+l[12:16].strip().ljust(3), l[17:20] idx = pdb_idx.index((chain,resNo)) for i_atm, tgtatm in enumerate(aa2long[aa2num[aa]]): if tgtatm == atom: xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])] break # save atom mask mask = np.logical_not(np.isnan(xyz[...,0])) xyz[np.isnan(xyz[...,0])] = 0.0 return xyz,mask,np.array(pdb_idx) def parse_pdb(filename, **kwargs): '''extract xyz coords for all heavy atoms''' lines = open(filename,'r').readlines() return parse_pdb_lines(lines, **kwargs) def parse_pdb_lines(lines, parse_hetatom=False, ignore_het_h=True): # indices of residues observed in the structure res = [(l[22:26],l[17:20]) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"] seq = [aa2num[r[1]] if r[1] in aa2num.keys() else 20 for r in res] pdb_idx = [( l[21:22].strip(), int(l[22:26].strip()) ) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"] # chain letter, res num # 4 BB + up to 10 SC atoms xyz = np.full((len(res), 27, 3), np.nan, dtype=np.float32) for l in lines: if l[:4] != "ATOM": continue chain, resNo, atom, aa = l[21:22], int(l[22:26]), ' '+l[12:16].strip().ljust(3), l[17:20] idx = pdb_idx.index((chain,resNo)) for i_atm, tgtatm in enumerate(aa2long[aa2num[aa]]): if tgtatm is not None and tgtatm.strip() == atom.strip(): # ignore whitespace xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])] break # save atom mask mask = np.logical_not(np.isnan(xyz[...,0])) xyz[np.isnan(xyz[...,0])] = 0.0 # remove duplicated (chain, resi) new_idx = [] i_unique = [] for i,idx in enumerate(pdb_idx): if idx not in new_idx: new_idx.append(idx) i_unique.append(i) pdb_idx = new_idx xyz = xyz[i_unique] mask = mask[i_unique] seq = np.array(seq)[i_unique] out = {'xyz':xyz, # cartesian coordinates, [Lx14] 'mask':mask, # mask showing which atoms are present in the PDB file, [Lx14] 'idx':np.array([i[1] for i in pdb_idx]), # residue numbers in the PDB file, [L] 'seq':np.array(seq), # amino acid sequence, [L] 'pdb_idx': pdb_idx, # list of (chain letter, residue number) in the pdb file, [L] } # heteroatoms (ligands, etc) if parse_hetatom: xyz_het, info_het = [], [] for l in lines: if l[:6]=='HETATM' and not (ignore_het_h and l[77]=='H'): info_het.append(dict( idx=int(l[7:11]), atom_id=l[12:16], atom_type=l[77], name=l[16:20] )) xyz_het.append([float(l[30:38]), float(l[38:46]), float(l[46:54])]) out['xyz_het'] = np.array(xyz_het) out['info_het'] = info_het return out num2aa=[ 'ALA','ARG','ASN','ASP','CYS', 'GLN','GLU','GLY','HIS','ILE', 'LEU','LYS','MET','PHE','PRO', 'SER','THR','TRP','TYR','VAL', 'UNK','MAS', ] aa2num= {x:i for i,x in enumerate(num2aa)} # full sc atom representation (Nx14) aa2long=[ (" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # ala (" N "," CA "," C "," O "," CB "," CG "," CD "," NE "," CZ "," NH1"," NH2", None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD "," HE ","1HH1","2HH1","1HH2","2HH2"), # arg (" N "," CA "," C "," O "," CB "," CG "," OD1"," ND2", None, None, None, None, None, None," H "," HA ","1HB ","2HB ","1HD2","2HD2", None, None, None, None, None, None, None), # asn (" N "," CA "," C "," O "," CB "," CG "," OD1"," OD2", None, None, None, None, None, None," H "," HA ","1HB ","2HB ", None, None, None, None, None, None, None, None, None), # asp (" N "," CA "," C "," O "," CB "," SG ", None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB "," HG ", None, None, None, None, None, None, None, None), # cys (" N "," CA "," C "," O "," CB "," CG "," CD "," OE1"," NE2", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HE2","2HE2", None, None, None, None, None), # gln (" N "," CA "," C "," O "," CB "," CG "," CD "," OE1"," OE2", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ", None, None, None, None, None, None, None), # glu (" N "," CA "," C "," O ", None, None, None, None, None, None, None, None, None, None," H ","1HA ","2HA ", None, None, None, None, None, None, None, None, None, None), # gly (" N "," CA "," C "," O "," CB "," CG "," ND1"," CD2"," CE1"," NE2", None, None, None, None," H "," HA ","1HB ","2HB "," HD2"," HE1"," HE2", None, None, None, None, None, None), # his (" N "," CA "," C "," O "," CB "," CG1"," CG2"," CD1", None, None, None, None, None, None," H "," HA "," HB ","1HG2","2HG2","3HG2","1HG1","2HG1","1HD1","2HD1","3HD1", None, None), # ile (" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2", None, None, None, None, None, None," H "," HA ","1HB ","2HB "," HG ","1HD1","2HD1","3HD1","1HD2","2HD2","3HD2", None, None), # leu (" N "," CA "," C "," O "," CB "," CG "," CD "," CE "," NZ ", None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ","1HE ","2HE ","1HZ ","2HZ ","3HZ "), # lys (" N "," CA "," C "," O "," CB "," CG "," SD "," CE ", None, None, None, None, None, None," H "," HA ","1HB ","2HB ","1HG ","2HG ","1HE ","2HE ","3HE ", None, None, None, None), # met (" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," CE1"," CE2"," CZ ", None, None, None," H "," HA ","1HB ","2HB "," HD1"," HD2"," HE1"," HE2"," HZ ", None, None, None, None), # phe (" N "," CA "," C "," O "," CB "," CG "," CD ", None, None, None, None, None, None, None," HA ","1HB ","2HB ","1HG ","2HG ","1HD ","2HD ", None, None, None, None, None, None), # pro (" N "," CA "," C "," O "," CB "," OG ", None, None, None, None, None, None, None, None," H "," HG "," HA ","1HB ","2HB ", None, None, None, None, None, None, None, None), # ser (" N "," CA "," C "," O "," CB "," OG1"," CG2", None, None, None, None, None, None, None," H "," HG1"," HA "," HB ","1HG2","2HG2","3HG2", None, None, None, None, None, None), # thr (" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," NE1"," CE2"," CE3"," CZ2"," CZ3"," CH2"," H "," HA ","1HB ","2HB "," HD1"," HE1"," HZ2"," HH2"," HZ3"," HE3", None, None, None), # trp (" N "," CA "," C "," O "," CB "," CG "," CD1"," CD2"," CE1"," CE2"," CZ "," OH ", None, None," H "," HA ","1HB ","2HB "," HD1"," HE1"," HE2"," HD2"," HH ", None, None, None, None), # tyr (" N "," CA "," C "," O "," CB "," CG1"," CG2", None, None, None, None, None, None, None," H "," HA "," HB ","1HG1","2HG1","3HG1","1HG2","2HG2","3HG2", None, None, None, None), # val (" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # unk (" N "," CA "," C "," O "," CB ", None, None, None, None, None, None, None, None, None," H "," HA ","1HB ","2HB ","3HB ", None, None, None, None, None, None, None, None), # mask ] def get_sse(ca_coord): ''' calculates the SSE of a peptide chain based on the P-SEA algorithm (Labesse 1997) code borrowed from biokite: https://github.com/biokit/biokit ''' def vector_dot(v1,v2): return (v1*v2).sum(-1) def norm_vector(v): return v / np.linalg.norm(v, axis=-1, keepdims=True) def displacement(atoms1, atoms2): v1 = np.asarray(atoms1) v2 = np.asarray(atoms2) if len(v1.shape) <= len(v2.shape): diff = v2 - v1 else: diff = -(v1 - v2) return diff def distance(atoms1, atoms2): diff = displacement(atoms1, atoms2) return np.sqrt(vector_dot(diff, diff)) def angle(atoms1, atoms2, atoms3): v1 = norm_vector(displacement(atoms1, atoms2)) v2 = norm_vector(displacement(atoms3, atoms2)) return np.arccos(vector_dot(v1,v2)) def dihedral(atoms1, atoms2, atoms3, atoms4): v1 = norm_vector(displacement(atoms1, atoms2)) v2 = norm_vector(displacement(atoms2, atoms3)) v3 = norm_vector(displacement(atoms3, atoms4)) n1 = np.cross(v1, v2) n2 = np.cross(v2, v3) # Calculation using atan2, to ensure the correct sign of the angle x = vector_dot(n1,n2) y = vector_dot(np.cross(n1,n2), v2) return np.arctan2(y,x) _radians_to_angle = 2*np.pi/360 _r_helix = ((89-12)*_radians_to_angle, (89+12)*_radians_to_angle) _a_helix = ((50-20)*_radians_to_angle, (50+20)*_radians_to_angle) _d2_helix = ((5.5-0.5), (5.5+0.5)) _d3_helix = ((5.3-0.5), (5.3+0.5)) _d4_helix = ((6.4-0.6), (6.4+0.6)) _r_strand = ((124-14)*_radians_to_angle, (124+14)*_radians_to_angle) _a_strand = ((-180)*_radians_to_angle, (-125)*_radians_to_angle, (145)*_radians_to_angle, (180)*_radians_to_angle) _d2_strand = ((6.7-0.6), (6.7+0.6)) _d3_strand = ((9.9-0.9), (9.9+0.9)) _d4_strand = ((12.4-1.1), (12.4+1.1)) # Filter all CA atoms in the relevant chain. d2i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan) d3i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan) d4i_coord = np.full(( len(ca_coord), 2, 3 ), np.nan) ri_coord = np.full(( len(ca_coord), 3, 3 ), np.nan) ai_coord = np.full(( len(ca_coord), 4, 3 ), np.nan) # The distances and angles are not defined for the entire interval, # therefore the indices do not have the full range # Values that are not defined are NaN for i in range(1, len(ca_coord)-1): d2i_coord[i] = (ca_coord[i-1], ca_coord[i+1]) for i in range(1, len(ca_coord)-2): d3i_coord[i] = (ca_coord[i-1], ca_coord[i+2]) for i in range(1, len(ca_coord)-3): d4i_coord[i] = (ca_coord[i-1], ca_coord[i+3]) for i in range(1, len(ca_coord)-1): ri_coord[i] = (ca_coord[i-1], ca_coord[i], ca_coord[i+1]) for i in range(1, len(ca_coord)-2): ai_coord[i] = (ca_coord[i-1], ca_coord[i], ca_coord[i+1], ca_coord[i+2]) d2i = distance(d2i_coord[:,0], d2i_coord[:,1]) d3i = distance(d3i_coord[:,0], d3i_coord[:,1]) d4i = distance(d4i_coord[:,0], d4i_coord[:,1]) ri = angle(ri_coord[:,0], ri_coord[:,1], ri_coord[:,2]) ai = dihedral(ai_coord[:,0], ai_coord[:,1], ai_coord[:,2], ai_coord[:,3]) sse = ["L"] * len(ca_coord) # Annotate helices # Find CA that meet criteria for potential helices is_pot_helix = np.zeros(len(sse), dtype=bool) for i in range(len(sse)): if ( d3i[i] >= _d3_helix[0] and d3i[i] <= _d3_helix[1] and d4i[i] >= _d4_helix[0] and d4i[i] <= _d4_helix[1] ) or ( ri[i] >= _r_helix[0] and ri[i] <= _r_helix[1] and ai[i] >= _a_helix[0] and ai[i] <= _a_helix[1] ): is_pot_helix[i] = True # Real helices are 5 consecutive helix elements is_helix = np.zeros(len(sse), dtype=bool) counter = 0 for i in range(len(sse)): if is_pot_helix[i]: counter += 1 else: if counter >= 5: is_helix[i-counter : i] = True counter = 0 # Extend the helices by one at each end if CA meets extension criteria i = 0 while i < len(sse): if is_helix[i]: sse[i] = "H" if ( d3i[i-1] >= _d3_helix[0] and d3i[i-1] <= _d3_helix[1] ) or ( ri[i-1] >= _r_helix[0] and ri[i-1] <= _r_helix[1] ): sse[i-1] = "H" sse[i] = "H" if ( d3i[i+1] >= _d3_helix[0] and d3i[i+1] <= _d3_helix[1] ) or ( ri[i+1] >= _r_helix[0] and ri[i+1] <= _r_helix[1] ): sse[i+1] = "H" i += 1 # Annotate sheets # Find CA that meet criteria for potential strands is_pot_strand = np.zeros(len(sse), dtype=bool) for i in range(len(sse)): if ( d2i[i] >= _d2_strand[0] and d2i[i] <= _d2_strand[1] and d3i[i] >= _d3_strand[0] and d3i[i] <= _d3_strand[1] and d4i[i] >= _d4_strand[0] and d4i[i] <= _d4_strand[1] ) or ( ri[i] >= _r_strand[0] and ri[i] <= _r_strand[1] and ( (ai[i] >= _a_strand[0] and ai[i] <= _a_strand[1]) or (ai[i] >= _a_strand[2] and ai[i] <= _a_strand[3])) ): is_pot_strand[i] = True # Real strands are 5 consecutive strand elements, # or shorter fragments of at least 3 consecutive strand residues, # if they are in hydrogen bond proximity to 5 other residues pot_strand_coord = ca_coord[is_pot_strand] is_strand = np.zeros(len(sse), dtype=bool) counter = 0 contacts = 0 for i in range(len(sse)): if is_pot_strand[i]: counter += 1 coord = ca_coord[i] for strand_coord in ca_coord: dist = distance(coord, strand_coord) if dist >= 4.2 and dist <= 5.2: contacts += 1 else: if counter >= 4: is_strand[i-counter : i] = True elif counter == 3 and contacts >= 5: is_strand[i-counter : i] = True counter = 0 contacts = 0 # Extend the strands by one at each end if CA meets extension criteria i = 0 while i < len(sse): if is_strand[i]: sse[i] = "E" if d3i[i-1] >= _d3_strand[0] and d3i[i-1] <= _d3_strand[1]: sse[i-1] = "E" sse[i] = "E" if d3i[i+1] >= _d3_strand[0] and d3i[i+1] <= _d3_strand[1]: sse[i+1] = "E" i += 1 return sse if __name__ == "__main__": main()
RFdiffusion-main
helper_scripts/make_secstruc_adj.py
from setuptools import setup, find_packages setup( name = 'voicebox-pytorch', packages = find_packages(exclude=[]), version = '0.0.34', license='MIT', description = 'Voicebox - Pytorch', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/voicebox-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'text to speech' ], install_requires=[ 'audiolm-pytorch>=1.2.28', 'naturalspeech2-pytorch>=0.0.41', 'beartype', 'einops>=0.6.1', 'lightning>=2.0.7', 'torch>=2.0', 'torchdiffeq', 'torchode', 'vocos' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
voicebox-pytorch-main
setup.py
from voicebox_pytorch.voicebox_pytorch import ( Transformer, EncodecVoco, VoiceBox, DurationPredictor, ConditionalFlowMatcherWrapper, )
voicebox-pytorch-main
voicebox_pytorch/__init__.py
import math from random import random from functools import partial import logging import torch from torch import nn, Tensor, einsum, IntTensor, FloatTensor, BoolTensor from torch.nn import Module import torch.nn.functional as F import torchode as to from torchdiffeq import odeint from beartype import beartype from beartype.typing import Tuple, Optional from einops.layers.torch import Rearrange from einops import rearrange, repeat, reduce, pack, unpack from voicebox_pytorch.attend import Attend from naturalspeech2_pytorch.aligner import Aligner, ForwardSumLoss, maximum_path from audiolm_pytorch import EncodecWrapper import torchaudio.transforms as T from torchaudio.functional import DB_to_amplitude from vocos import Vocos LOGGER = logging.getLogger(__file__) # helper functions def exists(val): return val is not None def identity(t): return t def default(val, d): return val if exists(val) else d def divisible_by(num, den): return (num % den) == 0 def is_odd(n): return not divisible_by(n, 2) def coin_flip(): return random() < 0.5 def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] # tensor helpers def prob_mask_like(shape, prob, device): if prob == 1: return torch.ones(shape, device = device, dtype = torch.bool) elif prob == 0: return torch.zeros(shape, device = device, dtype = torch.bool) else: return torch.zeros(shape, device = device).float().uniform_(0, 1) < prob # mask construction helpers def mask_from_start_end_indices( seq_len: int, start: Tensor, end: Tensor ): assert start.shape == end.shape device = start.device seq = torch.arange(seq_len, device = device, dtype = torch.long) seq = seq.reshape(*((-1,) * start.ndim), seq_len) seq = seq.expand(*start.shape, seq_len) mask = seq >= start[..., None].long() mask &= seq < end[..., None].long() return mask def mask_from_frac_lengths( seq_len: int, frac_lengths: Tensor ): device = frac_lengths lengths = (frac_lengths * seq_len).long() max_start = seq_len - lengths rand = torch.zeros_like(frac_lengths).float().uniform_(0, 1) start = (max_start * rand).clamp(min = 0) end = start + lengths return mask_from_start_end_indices(seq_len, start, end) # sinusoidal positions class LearnedSinusoidalPosEmb(Module): """ used by @crowsonkb """ def __init__(self, dim): super().__init__() assert divisible_by(dim, 2) half_dim = dim // 2 self.weights = nn.Parameter(torch.randn(half_dim)) def forward(self, x): x = rearrange(x, 'b -> b 1') freqs = x * rearrange(self.weights, 'd -> 1 d') * 2 * math.pi fouriered = torch.cat((freqs.sin(), freqs.cos()), dim = -1) return fouriered # rotary positional embeddings # https://arxiv.org/abs/2104.09864 class RotaryEmbedding(Module): def __init__(self, dim, theta = 10000): super().__init__() inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) @property def device(self): return self.inv_freq.device def forward(self, seq_len): t = torch.arange(seq_len, device = self.device).type_as(self.inv_freq) freqs = torch.einsum('i , j -> i j', t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim = -1) return freqs def rotate_half(x): x1, x2 = x.chunk(2, dim = -1) return torch.cat((-x2, x1), dim = -1) def apply_rotary_pos_emb(pos, t): return t * pos.cos() + rotate_half(t) * pos.sin() # convolutional positional generating module class ConvPositionEmbed(Module): def __init__( self, dim, *, kernel_size, groups = None ): super().__init__() assert is_odd(kernel_size) groups = default(groups, dim) # full depthwise conv by default self.dw_conv1d = nn.Sequential( nn.Conv1d(dim, dim, kernel_size, groups = groups, padding = kernel_size // 2), nn.GELU() ) def forward(self, x): x = rearrange(x, 'b n c -> b c n') x = self.dw_conv1d(x) return rearrange(x, 'b c n -> b n c') # norms class RMSNorm(Module): def __init__( self, dim ): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): return F.normalize(x, dim = -1) * self.scale * self.gamma class AdaptiveRMSNorm(Module): def __init__( self, dim, cond_dim = None ): super().__init__() cond_dim = default(cond_dim, dim) self.scale = dim ** 0.5 self.to_gamma = nn.Linear(cond_dim, dim) self.to_beta = nn.Linear(cond_dim, dim) # init to identity nn.init.zeros_(self.to_gamma.weight) nn.init.ones_(self.to_gamma.bias) nn.init.zeros_(self.to_beta.weight) nn.init.zeros_(self.to_beta.bias) def forward(self, x, *, cond): normed = F.normalize(x, dim = -1) * self.scale gamma, beta = self.to_gamma(cond), self.to_beta(cond) gamma, beta = map(lambda t: rearrange(t, 'b d -> b 1 d'), (gamma, beta)) return normed * gamma + beta # attention class Attention(Module): def __init__( self, dim, dim_head = 64, heads = 8, dropout=0, flash = False ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 dim_inner = dim_head * heads self.attend = Attend(dropout, flash = flash) self.to_qkv = nn.Linear(dim, dim_inner * 3, bias = False) self.to_out = nn.Linear(dim_inner, dim, bias = False) def forward(self, x, mask = None, rotary_emb = None): h = self.heads q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) if exists(rotary_emb): q, k = map(lambda t: apply_rotary_pos_emb(rotary_emb, t), (q, k)) out = self.attend(q, k, v, mask = mask) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) # feedforward def FeedForward(dim, mult = 4): return nn.Sequential( nn.Linear(dim, dim * mult), nn.GELU(), nn.Linear(dim * mult, dim) ) # transformer class Transformer(Module): def __init__( self, dim, *, depth, dim_head = 64, heads = 8, ff_mult = 4, attn_dropout=0, attn_flash = False, adaptive_rmsnorm = False, adaptive_rmsnorm_cond_dim_in = None ): super().__init__() assert divisible_by(depth, 2) self.layers = nn.ModuleList([]) self.rotary_emb = RotaryEmbedding(dim = dim_head) if adaptive_rmsnorm: rmsnorm_klass = partial(AdaptiveRMSNorm, cond_dim = adaptive_rmsnorm_cond_dim_in) else: rmsnorm_klass = RMSNorm for ind in range(depth): layer = ind + 1 has_skip = layer > (depth // 2) self.layers.append(nn.ModuleList([ nn.Linear(dim * 2, dim) if has_skip else None, rmsnorm_klass(dim = dim), Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=attn_flash), rmsnorm_klass(dim = dim), FeedForward(dim = dim, mult = ff_mult) ])) self.final_norm = RMSNorm(dim) def forward( self, x, adaptive_rmsnorm_cond = None ): skip_connects = [] rotary_emb = self.rotary_emb(x.shape[-2]) rmsnorm_kwargs = dict() if exists(adaptive_rmsnorm_cond): rmsnorm_kwargs = dict(cond = adaptive_rmsnorm_cond) for skip_combiner, attn_prenorm, attn, ff_prenorm, ff in self.layers: # in the paper, they use a u-net like skip connection # unclear how much this helps, as no ablations or further numbers given besides a brief one-two sentence mention if not exists(skip_combiner): skip_connects.append(x) else: x = torch.cat((x, skip_connects.pop()), dim = -1) x = skip_combiner(x) attn_input = attn_prenorm(x, **rmsnorm_kwargs) x = attn(attn_input, rotary_emb = rotary_emb) + x ff_input = ff_prenorm(x, **rmsnorm_kwargs) x = ff(ff_input) + x return self.final_norm(x) # encoder decoders class AudioEncoderDecoder(nn.Module): pass class MelVoco(AudioEncoderDecoder): def __init__( self, *, log = True, n_mels = 100, sampling_rate = 24000, f_max = 8000, n_fft = 1024, win_length = 640, hop_length = 160, pretrained_vocos_path = 'charactr/vocos-mel-24khz' ): super().__init__() self.log = log self.n_mels = n_mels self.n_fft = n_fft self.f_max = f_max self.win_length = win_length self.hop_length = hop_length self.sampling_rate = sampling_rate self.vocos = Vocos.from_pretrained(pretrained_vocos_path) @property def latent_dim(self): return self.num_mels def encode(self, audio): stft_transform = T.Spectrogram( n_fft = self.n_fft, win_length = self.win_length, hop_length = self.hop_length, window_fn = torch.hann_window ) spectrogram = stft_transform(audio) mel_transform = T.MelScale( n_mels = self.n_mels, sample_rate = self.sampling_rate, n_stft = self.n_fft // 2 + 1, f_max = self.f_max ) mel = mel_transform(spectrogram) if self.log: mel = T.AmplitudeToDB()(mel) mel = rearrange(mel, 'b d n -> b n d') return mel def decode(self, mel): mel = rearrange(mel, 'b n d -> b d n') if self.log: mel = DB_to_amplitude(mel, ref = 1., power = 0.5) return self.vocos.decode(mel) class EncodecVoco(AudioEncoderDecoder): def __init__( self, *, pretrained_vocos_path = 'charactr/vocos-encodec-24khz', bandwidth_id = 2 ): super().__init__() self.encodec = EncodecWrapper() self.vocos = Vocos.from_pretrained(pretrained_vocos_path) self.register_buffer('bandwidth_id', torch.tensor([bandwidth_id])) @property def latent_dim(self): return self.encodec.codebook_dim def encode(self, audio): encoded_audio, _, _ = self.encodec(audio, return_encoded = True) return encoded_audio def decode(self, latents): _, codes, _ = self.encodec.rq(latents) codes = rearrange(codes, 'b n q -> b q n') all_audios = [] for code in codes: features = self.vocos.codes_to_features(code) audio = self.vocos.decode(features, bandwidth_id = self.bandwidth_id) all_audios.append(audio) return torch.stack(all_audios) # both duration and main denoising model are transformers class DurationPredictor(Module): def __init__( self, *, num_phoneme_tokens, audio_enc_dec: Optional[AudioEncoderDecoder] = None, dim_phoneme_emb = 512, dim = 512, depth = 10, dim_head = 64, heads = 8, ff_mult = 4, conv_pos_embed_kernel_size = 31, conv_pos_embed_groups = None, attn_dropout=0, attn_flash = False, p_drop_prob = 0.2, # p_drop in paper frac_lengths_mask: Tuple[float, float] = (0.1, 1.), aligner_kwargs: dict = dict(dim_in = 80, attn_channels = 80) ): super().__init__() self.audio_enc_dec = audio_enc_dec if exists(audio_enc_dec) and dim != audio_enc_dec.latent_dim: self.proj_in = nn.Linear(audio_enc_dec.latent_dim, dim) else: self.proj_in = nn.Identity() self.null_phoneme_id = num_phoneme_tokens # use last phoneme token as null token for CFG self.to_phoneme_emb = nn.Embedding(num_phoneme_tokens + 1, dim_phoneme_emb) self.p_drop_prob = p_drop_prob self.frac_lengths_mask = frac_lengths_mask self.to_embed = nn.Linear(dim * 2 + dim_phoneme_emb, dim) self.null_cond = nn.Parameter(torch.zeros(dim)) self.conv_embed = ConvPositionEmbed( dim = dim, kernel_size = conv_pos_embed_kernel_size, groups = conv_pos_embed_groups ) self.transformer = Transformer( dim = dim, depth = depth, dim_head = dim_head, heads = heads, ff_mult = ff_mult, attn_dropout=attn_dropout, attn_flash = attn_flash ) self.to_pred = nn.Sequential( nn.Linear(dim, 1), Rearrange('... 1 -> ...') ) # aligner related # if we are using mel spec with 80 channels, we need to set attn_channels to 80 # dim_in assuming we have spec with 80 channels self.aligner = Aligner(dim_hidden = dim_phoneme_emb, **aligner_kwargs) self.align_loss = ForwardSumLoss() @property def device(self): return next(self.parameters()).device @torch.inference_mode() def forward_with_cond_scale( self, *args, cond_scale = 1., **kwargs ): logits = self.forward(*args, cond_drop_prob = 0., **kwargs) if cond_scale == 1.: return logits null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale @beartype def forward_aligner( self, x: FloatTensor, # (b, t, c) x_mask: IntTensor, # (b, 1, t) y: FloatTensor, # (b, t, c) y_mask: IntTensor # (b, 1, t) ) -> Tuple[ FloatTensor, # alignment_hard: (b, t) FloatTensor, # alignment_soft: (b, tx, ty) FloatTensor, # alignment_logprob: (b, 1, ty, tx) BoolTensor # alignment_mas: (b, tx, ty) ]: attn_mask = rearrange(x_mask, 'b 1 t -> b 1 t 1') * rearrange(y_mask, 'b 1 t -> b 1 1 t') alignment_soft, alignment_logprob = self.aligner(rearrange(y, 'b t c -> b c t'), x, x_mask) assert not torch.isnan(alignment_soft).any() alignment_mas = maximum_path( rearrange(alignment_soft, 'b 1 t1 t2 -> b t2 t1').contiguous(), rearrange(attn_mask, 'b 1 t1 t2 -> b t1 t2').contiguous() ) alignment_hard = torch.sum(alignment_mas, -1).float() alignment_soft = rearrange(alignment_soft, 'b 1 t1 t2 -> b t2 t1') return alignment_hard, alignment_soft, alignment_logprob, alignment_mas def forward( self, x, *, phoneme_ids, mel, cond, cond_drop_prob = 0., target = None, mask = None, phoneme_len = None, mel_len = None, phoneme_mask = None, mel_mask = None, ): batch, seq_len, cond_dim = cond.shape assert cond_dim == x.shape[-1] x, cond = map(self.proj_in, (x, cond)) # construct mask if not given if not exists(mask): if coin_flip(): frac_lengths = torch.zeros((batch,), device = self.device).float().uniform_(*self.frac_lengths_mask) mask = mask_from_frac_lengths(seq_len, frac_lengths) else: mask = prob_mask_like((batch, seq_len), self.p_drop_prob, self.device) cond = cond * rearrange(~mask, '... -> ... 1') # classifier free guidance if cond_drop_prob > 0.: cond_drop_mask = prob_mask_like(cond.shape[:1], cond_drop_prob, cond.device) cond = torch.where( rearrange(cond_drop_mask, '... -> ... 1 1'), self.null_cond, cond ) phoneme_ids = torch.where( rearrange(cond_drop_mask, '... -> ... 1'), self.null_phoneme_id, phoneme_ids ) phoneme_emb = self.to_phoneme_emb(phoneme_ids) # aligner # use alignment_hard to oversample phonemes # Duration Predictor should predict the duration of unmasked phonemes where target is masked alignment_hard should_align = all([exists(el) for el in (phoneme_len, mel_len, phoneme_mask, mel_mask)]) if should_align: alignment_hard, _, alignment_logprob, _ = self.forward_aligner(phoneme_emb, phoneme_mask, mel, mel_mask) target = alignment_hard # combine audio, phoneme, conditioning embed = torch.cat((x, phoneme_emb, cond), dim = -1) x = self.to_embed(embed) x = self.conv_embed(x) + x x = self.transformer(x) x = self.to_pred(x) if not exists(target): return x if not exists(mask): return F.l1_loss(x, target) loss = F.l1_loss(x, target, reduction = 'none') loss = loss.masked_fill(~mask, 0.) # masked mean num = reduce(loss, 'b n -> b', 'sum') den = mask.sum(dim = -1).clamp(min = 1e-5) loss = num / den loss = loss.mean() if not should_align: return loss #aligner loss align_loss = self.align_loss(alignment_logprob, phoneme_len, mel_len) loss = loss + align_loss return loss class VoiceBox(Module): def __init__( self, *, num_phoneme_tokens, audio_enc_dec: Optional[AudioEncoderDecoder] = None, dim_in = None, dim_phoneme_emb = 1024, dim = 1024, depth = 24, dim_head = 64, heads = 16, ff_mult = 4, time_hidden_dim = None, conv_pos_embed_kernel_size = 31, conv_pos_embed_groups = None, attn_dropout=0, attn_flash = False, p_drop_prob = 0.3, # p_drop in paper frac_lengths_mask: Tuple[float, float] = (0.7, 1.) ): super().__init__() dim_in = default(dim_in, dim) time_hidden_dim = default(time_hidden_dim, dim * 4) self.audio_enc_dec = audio_enc_dec if exists(audio_enc_dec) and dim != audio_enc_dec.latent_dim: self.proj_in = nn.Linear(audio_enc_dec.latent_dim, dim) else: self.proj_in = nn.Identity() self.sinu_pos_emb = nn.Sequential( LearnedSinusoidalPosEmb(dim), nn.Linear(dim, time_hidden_dim), nn.SiLU() ) self.null_phoneme_id = num_phoneme_tokens # use last phoneme token as null token for CFG self.to_phoneme_emb = nn.Embedding(num_phoneme_tokens + 1, dim_phoneme_emb) self.p_drop_prob = p_drop_prob self.frac_lengths_mask = frac_lengths_mask self.to_embed = nn.Linear(dim_in * 2 + dim_phoneme_emb, dim) self.null_cond = nn.Parameter(torch.zeros(dim_in)) self.conv_embed = ConvPositionEmbed( dim = dim, kernel_size = conv_pos_embed_kernel_size, groups = conv_pos_embed_groups ) self.transformer = Transformer( dim = dim, depth = depth, dim_head = dim_head, heads = heads, ff_mult = ff_mult, attn_dropout=attn_dropout, attn_flash = attn_flash, adaptive_rmsnorm = True, adaptive_rmsnorm_cond_dim_in = time_hidden_dim ) dim_out = audio_enc_dec.latent_dim if exists(audio_enc_dec) else dim_in self.to_pred = nn.Linear(dim, dim_out, bias = False) @property def device(self): return next(self.parameters()).device @torch.inference_mode() def forward_with_cond_scale( self, *args, cond_scale = 1., **kwargs ): logits = self.forward(*args, cond_drop_prob = 0., **kwargs) if cond_scale == 1.: return logits null_logits = self.forward(*args, cond_drop_prob = 1., **kwargs) return null_logits + (logits - null_logits) * cond_scale def forward( self, x, *, phoneme_ids, cond, times, cond_drop_prob = 0.1, target = None, mask = None, ): batch, seq_len, cond_dim = cond.shape assert cond_dim == x.shape[-1] # project in, in case codebook dim is not equal to model dimensions x, cond = map(self.proj_in, (x, cond)) # auto manage shape of times, for odeint times if times.ndim == 0: times = repeat(times, '-> b', b = cond.shape[0]) if times.ndim == 1 and times.shape[0] == 1: times = repeat(times, '1 -> b', b = cond.shape[0]) # construct mask if not given if not exists(mask): if coin_flip(): frac_lengths = torch.zeros((batch,), device = self.device).float().uniform_(*self.frac_lengths_mask) mask = mask_from_frac_lengths(seq_len, frac_lengths) else: mask = prob_mask_like((batch, seq_len), self.p_drop_prob, self.device) cond = cond * rearrange(~mask, '... -> ... 1') # classifier free guidance if cond_drop_prob > 0.: cond_drop_mask = prob_mask_like(cond.shape[:1], cond_drop_prob, self.device) cond = torch.where( rearrange(cond_drop_mask, '... -> ... 1 1'), self.null_cond, cond ) phoneme_ids = torch.where( rearrange(cond_drop_mask, '... -> ... 1'), self.null_phoneme_id, phoneme_ids ) phoneme_emb = self.to_phoneme_emb(phoneme_ids) embed = torch.cat((x, phoneme_emb, cond), dim = -1) x = self.to_embed(embed) x = self.conv_embed(x) + x time_emb = self.sinu_pos_emb(times) # attend x = self.transformer(x, adaptive_rmsnorm_cond = time_emb) x = self.to_pred(x) # if no target passed in, just return logits if not exists(target): return x if not exists(mask): return F.mse_loss(x, target) loss = F.mse_loss(x, target, reduction = 'none') loss = reduce(loss, 'b n d -> b n', 'mean') loss = loss.masked_fill(~mask, 0.) # masked mean num = reduce(loss, 'b n -> b', 'sum') den = mask.sum(dim = -1).clamp(min = 1e-5) loss = num / den return loss.mean() # wrapper for the CNF def is_probably_audio_from_shape(t): return t.ndim == 2 or (t.ndim == 3 and t.shape[1] == 1) class ConditionalFlowMatcherWrapper(Module): @beartype def __init__( self, voicebox: VoiceBox, sigma = 0., ode_atol = 1e-5, ode_rtol = 1e-5, ode_step_size = 0.0625, use_torchode = False, torchdiffeq_ode_method = 'midpoint', # use midpoint for torchdiffeq, as in paper torchode_method_klass = to.Tsit5, # use tsit5 for torchode, as torchode does not have midpoint (recommended by Bryan @b-chiang) cond_drop_prob = 0. ): super().__init__() self.sigma = sigma self.voicebox = voicebox self.cond_drop_prob = cond_drop_prob self.use_torchode = use_torchode self.torchode_method_klass = torchode_method_klass self.odeint_kwargs = dict( atol = ode_atol, rtol = ode_rtol, method = torchdiffeq_ode_method, options = dict(step_size = ode_step_size) ) @property def device(self): return next(self.parameters()).device @torch.inference_mode() def sample( self, *, phoneme_ids, cond, mask = None, steps = 3, cond_scale = 1., decode_to_audio = True ): shape = cond.shape batch = shape[0] # take care of condition as raw audio cond_is_raw_audio = is_probably_audio_from_shape(cond) if cond_is_raw_audio: assert exists(self.voicebox.audio_enc_dec) self.voicebox.audio_enc_dec.eval() cond = self.voicebox.audio_enc_dec.encode(cond) self.voicebox.eval() def fn(t, x, *, packed_shape = None): if exists(packed_shape): x = unpack_one(x, packed_shape, 'b *') out = self.voicebox.forward_with_cond_scale( x, times = t, phoneme_ids = phoneme_ids, cond = cond, cond_scale = cond_scale ) if exists(packed_shape): out = rearrange(out, 'b ... -> b (...)') return out y0 = torch.randn_like(cond) t = torch.linspace(0, 1, steps, device = self.device) if not self.use_torchode: LOGGER.debug('sampling with torchdiffeq') trajectory = odeint(fn, y0, t, **self.odeint_kwargs) sampled = trajectory[-1] else: LOGGER.debug('sampling with torchode') t = repeat(t, 'n -> b n', b = batch) y0, packed_shape = pack_one(y0, 'b *') fn = partial(fn, packed_shape = packed_shape) term = to.ODETerm(fn) step_method = self.torchode_method_klass(term = term) step_size_controller = to.IntegralController( atol = self.odeint_kwargs['atol'], rtol = self.odeint_kwargs['rtol'], term = term ) solver = to.AutoDiffAdjoint(step_method, step_size_controller) jit_solver = torch.compile(solver) init_value = to.InitialValueProblem(y0 = y0, t_eval = t) sol = jit_solver.solve(init_value) sampled = sol.ys[:, -1] sampled = unpack_one(sampled, packed_shape, 'b *') if not decode_to_audio or not exists(self.voicebox.audio_enc_dec): return sampled return self.voicebox.audio_enc_dec.decode(sampled) def forward( self, x1, *, phoneme_ids, cond, mask = None ): """ following eq (5) (6) in https://arxiv.org/pdf/2306.15687.pdf """ batch, seq_len, dtype, σ = *x1.shape[:2], x1.dtype, self.sigma # if raw audio is given, convert if audio encoder / decoder was passed in input_is_raw_audio, cond_is_raw_audio = map(is_probably_audio_from_shape, (x1, cond)) if any([input_is_raw_audio, cond_is_raw_audio]): assert exists(self.voicebox.audio_enc_dec), 'audio_enc_dec must be set on VoiceBox to train directly on raw audio' with torch.no_grad(): self.voicebox.audio_enc_dec.eval() if input_is_raw_audio: x1 = self.voicebox.audio_enc_dec.encode(x1) if cond_is_raw_audio: cond = self.voicebox.audio_enc_dec.encode(cond) # x0 is gaussian noise x0 = torch.randn_like(x1) # random times times = torch.rand((batch,), dtype = dtype, device = self.device) t = rearrange(times, 'b -> b 1 1') # sample xt (w in the paper) w = (1 - (1 - σ) * t) * x0 + t * x1 flow = x1 - (1 - σ) * x0 # predict self.voicebox.train() loss = self.voicebox( w, phoneme_ids = phoneme_ids, cond = cond, mask = mask, times = times, target = flow, cond_drop_prob = self.cond_drop_prob ) return loss
voicebox-pytorch-main
voicebox_pytorch/voicebox_pytorch.py
from functools import wraps from packaging import version from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, reduce # constants FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, dropout = 0., flash = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = FlashAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = FlashAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = FlashAttentionConfig(False, True, True) def flash_attn(self, q, k, v, mask = None): _, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L if exists(mask): mask = mask.expand(-1, heads, q_len, -1) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0. ) return out def forward(self, q, k, v, mask = None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ q_len, k_len, device = q.shape[-2], k.shape[-2], q.device scale = q.shape[-1] ** -0.5 if exists(mask) and mask.ndim != 4: mask = rearrange(mask, 'b j -> b 1 1 j') if self.flash: return self.flash_attn(q, k, v, mask = mask) # similarity sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale # key padding mask if exists(mask): sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum(f"b h i j, b h j d -> b h i d", attn, v) return out
voicebox-pytorch-main
voicebox_pytorch/attend.py
from setuptools import setup, find_packages setup( name = 'x-transformers', packages = find_packages(exclude=['examples']), version = '1.21.2', license='MIT', description = 'X-Transformers - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/x-transformers', long_description_content_type = 'text/markdown', keywords = [ 'artificial intelligence', 'attention mechanism', 'transformers' ], install_requires=[ 'torch>=1.6', 'einops>=0.6.1' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
x-transformers-main
setup.py
from math import ceil import torch from torch import nn import torch.nn.functional as F from einops import rearrange, pack, unpack from x_transformers.autoregressive_wrapper import top_p, top_k, eval_decorator # helper functions def exists(val): return val is not None def divisible_by(numer, denom): return (numer % denom) == 0 # xl autoregressive wrapper class class XLAutoregressiveWrapper(nn.Module): def __init__( self, net, ignore_index = -100, pad_value = 0 ): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.max_seq_len = net.max_seq_len @torch.no_grad() @eval_decorator def generate( self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, mems = None, **kwargs ): device, max_seq_len = start_tokens.device, self.max_seq_len start_tokens, ps = pack([start_tokens], '* n') b, t = start_tokens.shape *all_leading_tokens, _ = start_tokens.split(max_seq_len, dim = -1) # catch the memory up to the current segment for leading_tokens in all_leading_tokens: _, mems = self.net( leading_tokens, mems = mems, return_mems = True, **kwargs ) # now start sampling from the current segment curr_pos = len(all_leading_tokens) * max_seq_len curr_mems = mems out = start_tokens for _ in range(seq_len): curr_segment_len = out.shape[-1] is_last_segment_tokens = divisible_by(curr_segment_len, max_seq_len) x = out[:, curr_pos:] logits, mems = self.net( x, mems = curr_mems, return_mems = True, **kwargs ) logits = logits[:, -1] filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) if is_last_segment_tokens: curr_pos = curr_segment_len curr_mems = mems out = torch.cat((out, sample), dim=-1) if exists(eos_token): is_eos_tokens = (out == eos_token) if is_eos_tokens.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.pad_value) break out = out[:, t:] out, = unpack(out, ps, '* n') return out def forward( self, x, mems = None, **kwargs ): ignore_index, max_seq_len = self.ignore_index, self.max_seq_len x, labels = x[:, :-1], x[:, 1:] seq_len = x.shape[1] # prepare chunks split_x = x.split(max_seq_len, dim = -1) split_labels = labels.split(max_seq_len, dim = -1) loss_weights = tuple(map(lambda t: t.shape[-1] / seq_len, split_x)) # go through each chunk and derive weighted losses total_loss = 0. for chunk, chunk_labels, loss_weight in zip(split_x, split_labels, loss_weights): logits, mems = self.net( chunk, mems = mems, return_mems = True, **kwargs ) loss = F.cross_entropy( rearrange(logits, 'b n c -> b c n'), chunk_labels, ignore_index = ignore_index ) total_loss = total_loss + loss * loss_weight return total_loss
x-transformers-main
x_transformers/xl_autoregressive_wrapper.py
from math import ceil import torch from torch import nn import torch.nn.functional as F from einops import rearrange, pack, unpack def exists(val): return val is not None def eval_decorator(fn): def inner(self, *args, **kwargs): was_training = self.training self.eval() out = fn(self, *args, **kwargs) self.train(was_training) return out return inner # nucleus def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > (1 - thres) sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) # topk def top_k(logits, thres = 0.9): k = ceil((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # top_a def top_a(logits, min_p_pow=2.0, min_p_ratio=0.02): probs = F.softmax(logits, dim=-1) limit = torch.pow(torch.max(probs), min_p_pow) * min_p_ratio logits[probs < limit] = float('-inf') logits[probs >= limit] = 1 return logits # autoregressive wrapper class class AutoregressiveWrapper(nn.Module): def __init__( self, net, ignore_index = -100, pad_value = 0, mask_prob = 0., add_attn_z_loss = False ): super().__init__() self.pad_value = pad_value self.ignore_index = ignore_index self.net = net self.max_seq_len = net.max_seq_len # paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432 assert mask_prob < 1. self.mask_prob = mask_prob # whether to add router z-loss self.add_attn_z_loss = add_attn_z_loss @torch.no_grad() @eval_decorator def generate( self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, min_p_pow = 2.0, min_p_ratio = 0.02, restrict_to_max_seq_len = True, **kwargs ): max_seq_len = self.max_seq_len device = start_tokens.device num_dims = start_tokens.ndim start_tokens, ps = pack([start_tokens], '* n') b, t = start_tokens.shape out = start_tokens cache = None for _ in range(seq_len): if restrict_to_max_seq_len: x = out[:, -max_seq_len:] if exists(cache): for inter in cache.attn_intermediates: inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv] logits, cache = self.net( x, return_intermediates = True, cache = cache, **kwargs ) logits = logits[:, -1] if filter_logits_fn in {top_k, top_p}: filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) elif filter_logits_fn is top_a: filtered_logits = filter_logits_fn(logits, min_p_pow = min_p_pow, min_p_ratio= min_p_ratio) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) if exists(eos_token): is_eos_tokens = (out == eos_token) if is_eos_tokens.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.pad_value) break out = out[:, t:] out, = unpack(out, ps, '* n') return out def forward(self, x, **kwargs): seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss inp, target = x[:, :-1], x[:, 1:] inp = torch.where(inp == ignore_index, self.pad_value, inp) if self.mask_prob > 0.: rand = torch.randn(inp.shape, device = x.device) rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out num_mask = min(int(seq * self.mask_prob), seq - 1) indices = rand.topk(num_mask, dim = -1).indices mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool() kwargs.update(self_attn_context_mask = mask) logits, cache = self.net( inp, return_intermediates = True, return_attn_z_loss = add_attn_z_loss, **kwargs ) loss = F.cross_entropy( rearrange(logits, 'b n c -> b c n'), target, ignore_index = ignore_index ) if add_attn_z_loss: loss = loss + cache.attn_z_loss return loss
x-transformers-main
x_transformers/autoregressive_wrapper.py
import math from random import random import torch from torch import nn, einsum, Tensor import torch.nn.functional as F from functools import partial, wraps from inspect import isfunction from collections import namedtuple from dataclasses import dataclass from typing import List, Callable, Optional from einops import rearrange, repeat, reduce, pack, unpack from einops.layers.torch import Rearrange from x_transformers.attend import Attend, Intermediates, CascadingHeads from x_transformers.autoregressive_wrapper import AutoregressiveWrapper # constants DEFAULT_DIM_HEAD = 64 @dataclass class LayerIntermediates: hiddens: Optional[List[Tensor]] = None attn_intermediates: Optional[List[Intermediates]] = None layer_hiddens: Optional[List[Tensor]] = None attn_z_loss: Optional[Tensor] = None # helpers def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d def cast_tuple(val, depth): return val if isinstance(val, tuple) else (val,) * depth def divisible_by(num, den): return (num % den) == 0 def maybe(fn): @wraps(fn) def inner(x, *args, **kwargs): if not exists(x): return x return fn(x, *args, **kwargs) return inner class always(): def __init__(self, val): self.val = val def __call__(self, *args, **kwargs): return self.val class not_equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x != self.val class equals(): def __init__(self, val): self.val = val def __call__(self, x, *args, **kwargs): return x == self.val def Sequential(*modules): return nn.Sequential(*filter(exists, modules)) # tensor helpers def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max def l2norm(t, groups = 1): t = rearrange(t, '... (g d) -> ... g d', g = groups) t = F.normalize(t, p = 2, dim = -1) return rearrange(t, '... g d -> ... (g d)') def pad_at_dim(t, pad, dim = -1, value = 0.): dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) zeros = ((0, 0) * dims_from_right) return F.pad(t, (*zeros, *pad), value = value) def or_reduce(masks): head, *body = masks for rest in body: head = head | rest return head # auxiliary loss helpers def calc_z_loss( pre_softmax_attns: List[Tensor], mask = None, weight = 1. ): # the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906 # in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects # also used in PaLM as one of the measures lse = 0. for attn in pre_softmax_attns: lse = lse + attn.logsumexp(dim = -1) loss = torch.square(lse) loss = reduce(loss, 'b h n -> b n', 'sum') if not exists(mask): return loss.mean() * weight loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5) return loss * weight # init helpers def init_zero_(layer): nn.init.constant_(layer.weight, 0.) if exists(layer.bias): nn.init.constant_(layer.bias, 0.) # keyword argument helpers def pick_and_pop(keys, d): values = list(map(lambda key: d.pop(key), keys)) return dict(zip(keys, values)) def group_dict_by_key(cond, d): return_val = [dict(),dict()] for key in d.keys(): match = bool(cond(key)) ind = int(not match) return_val[ind][key] = d[key] return (*return_val,) def string_begins_with(prefix, str): return str.startswith(prefix) def group_by_key_prefix(prefix, d): return group_dict_by_key(partial(string_begins_with, prefix), d) def groupby_prefix_and_trim(prefix, d): kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) return kwargs_without_prefix, kwargs # structured dropout, more effective than traditional attention dropouts def dropout_seq(seq, mask, dropout): b, n, *_, device = *seq.shape, seq.device logits = torch.randn(b, n, device = device) if exists(mask): mask_value = max_neg_value(logits) logits = logits.masked_fill(~mask, mask_value) keep_prob = 1. - dropout num_keep = max(1, int(keep_prob * n)) keep_indices = logits.topk(num_keep, dim = 1).indices batch_indices = torch.arange(b, device = device) batch_indices = rearrange(batch_indices, 'b -> b 1') seq = seq[batch_indices, keep_indices] if exists(mask): seq_counts = mask.sum(dim = -1) seq_keep_counts = torch.ceil(seq_counts * keep_prob).int() keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1') mask = mask[batch_indices, keep_indices] & keep_mask return seq, mask # activations class ReluSquared(nn.Module): def forward(self, x): return F.relu(x) ** 2 # embedding class TokenEmbedding(nn.Module): def __init__(self, dim, num_tokens, l2norm_embed = False): super().__init__() self.l2norm_embed = l2norm_embed self.emb = nn.Embedding(num_tokens, dim) def forward(self, x): token_emb = self.emb(x) return l2norm(token_emb) if self.l2norm_embed else token_emb # positional embeddings class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len, l2norm_embed = False): super().__init__() self.scale = dim ** -0.5 if not l2norm_embed else 1. self.max_seq_len = max_seq_len self.l2norm_embed = l2norm_embed self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x, pos = None): seq_len, device = x.shape[1], x.device assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' if not exists(pos): pos = torch.arange(seq_len, device = device) pos_emb = self.emb(pos) pos_emb = pos_emb * self.scale return l2norm(pos_emb) if self.l2norm_embed else pos_emb class ScaledSinusoidalEmbedding(nn.Module): def __init__(self, dim, theta = 10000): super().__init__() assert divisible_by(dim, 2) self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) half_dim = dim // 2 freq_seq = torch.arange(half_dim).float() / half_dim inv_freq = theta ** -freq_seq self.register_buffer('inv_freq', inv_freq, persistent = False) def forward(self, x, pos = None): seq_len, device = x.shape[1], x.device if not exists(pos): pos = torch.arange(seq_len, device = device) emb = einsum('i, j -> i j', pos, self.inv_freq) emb = torch.cat((emb.sin(), emb.cos()), dim = -1) return emb * self.scale class RelativePositionBias(nn.Module): def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8): super().__init__() self.scale = scale self.causal = causal self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): ret = 0 n = -relative_position if not causal: num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) else: n = torch.max(n, torch.zeros_like(n)) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret @property def device(self): return next(self.parameters()).device def forward(self, i, j): device = self.device q_pos = torch.arange(j - i, j, dtype = torch.long, device = device) k_pos = torch.arange(j, dtype = torch.long, device = device) rel_pos = k_pos[None, :] - q_pos[:, None] rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) bias = rearrange(values, 'i j h -> h i j') return bias * self.scale class DynamicPositionBias(nn.Module): def __init__(self, dim, *, heads, depth, log_distance = False, norm = False): super().__init__() assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1' self.log_distance = log_distance self.mlp = nn.ModuleList([]) self.mlp.append(Sequential( nn.Linear(1, dim), nn.LayerNorm(dim) if norm else None, nn.SiLU() )) for _ in range(depth - 1): self.mlp.append(Sequential( nn.Linear(dim, dim), nn.LayerNorm(dim) if norm else None, nn.SiLU() )) self.mlp.append(nn.Linear(dim, heads)) @property def device(self): return next(self.parameters()).device def forward(self, i, j): assert i == j n, device = j, self.device # get the (n x n) matrix of distances seq_arange = torch.arange(n, device = device) context_arange = torch.arange(n, device = device) indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j') indices += (n - 1) # input to continuous positions MLP pos = torch.arange(-n + 1, n, device = device).float() pos = rearrange(pos, '... -> ... 1') if self.log_distance: pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1) for layer in self.mlp: pos = layer(pos) # get position biases bias = pos[indices] bias = rearrange(bias, 'i j h -> h i j') return bias class AlibiPositionalBias(nn.Module): def __init__(self, heads, total_heads, **kwargs): super().__init__() self.heads = heads self.total_heads = total_heads slopes = Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> h 1 1') self.register_buffer('slopes', slopes, persistent = False) self.register_buffer('bias', None, persistent = False) def get_bias(self, i, j, device): i_arange = torch.arange(j - i, j, device = device) j_arange = torch.arange(j, device = device) bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) return bias @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2**(-2**-(math.log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if math.log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** math.floor(math.log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] @property def device(self): return next(self.buffers()).device def forward(self, i, j): h, device = self.total_heads, self.device if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i: return self.bias[..., :i, :j] bias = self.get_bias(i, j, device) bias = bias * self.slopes num_heads_unalibied = h - bias.shape[0] bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0) self.register_buffer('bias', bias, persistent = False) return self.bias class RotaryEmbedding(nn.Module): def __init__( self, dim, use_xpos = False, scale_base = 512, interpolation_factor = 1., base = 10000, base_rescale_factor = 1. ): super().__init__() # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning # has some connection to NTK literature # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ base *= base_rescale_factor ** (dim / (dim - 2)) inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) assert interpolation_factor >= 1. self.interpolation_factor = interpolation_factor if not use_xpos: self.register_buffer('scale', None) return scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.scale_base = scale_base self.register_buffer('scale', scale) def forward(self, seq_len, device): t = torch.arange(seq_len, device = device).type_as(self.inv_freq) t = t / self.interpolation_factor freqs = torch.einsum('i , j -> i j', t, self.inv_freq) freqs = torch.cat((freqs, freqs), dim = -1) if not exists(self.scale): return freqs, 1. power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base scale = self.scale ** rearrange(power, 'n -> n 1') scale = torch.cat((scale, scale), dim = -1) return freqs, scale def rotate_half(x): x = rearrange(x, '... (j d) -> ... j d', j = 2) x1, x2 = x.unbind(dim = -2) return torch.cat((-x2, x1), dim = -1) def apply_rotary_pos_emb(t, freqs, scale = 1): rot_dim, seq_len = freqs.shape[-1], t.shape[-2] freqs = freqs[-seq_len:, :] # partial rotary embeddings, Wang et al. GPT-J t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) return torch.cat((t, t_unrotated), dim = -1) # norms class Scale(nn.Module): def __init__(self, value, fn): super().__init__() self.value = value self.fn = fn def forward(self, x, **kwargs): out = self.fn(x, **kwargs) scale_fn = lambda t: t * self.value if not isinstance(out, tuple): return scale_fn(out) return (scale_fn(out[0]), *out[1:]) class ScaleNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) return x / norm.clamp(min = self.eps) * self.g class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): return F.normalize(x, dim = -1) * self.scale * self.g class SimpleRMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 def forward(self, x): return F.normalize(x, dim = -1) * self.scale # residual and residual gates class Residual(nn.Module): def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.): super().__init__() self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None self.scale_residual_constant = scale_residual_constant def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale if self.scale_residual_constant != 1: residual = residual * self.scale_residual_constant return x + residual class GRUGating(nn.Module): def __init__(self, dim, scale_residual = False, **kwargs): super().__init__() self.gru = nn.GRUCell(dim, dim) self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None def forward(self, x, residual): if exists(self.residual_scale): residual = residual * self.residual_scale gated_output = self.gru( rearrange(x, 'b n d -> (b n) d'), rearrange(residual, 'b n d -> (b n) d') ) return gated_output.reshape_as(x) # token shifting def shift(t, amount, mask = None): if amount == 0: return t else: amount = min(amount, t.shape[1]) if exists(mask): t = t.masked_fill(~mask[..., None], 0.) return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.) class ShiftTokens(nn.Module): def __init__(self, shifts, fn): super().__init__() self.fn = fn self.shifts = tuple(shifts) def forward(self, x, **kwargs): mask = kwargs.get('mask', None) shifts = self.shifts segments = len(shifts) feats_per_shift = x.shape[-1] // segments splitted = x.split(feats_per_shift, dim = -1) segments_to_shift, rest = splitted[:segments], splitted[segments:] segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts))) x = torch.cat((*segments_to_shift, *rest), dim = -1) return self.fn(x, **kwargs) # feedforward class GLU(nn.Module): def __init__( self, dim_in, dim_out, activation: Callable, mult_bias = False ): super().__init__() self.act = activation self.proj = nn.Linear(dim_in, dim_out * 2) self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1. def forward(self, x): x, gate = self.proj(x).chunk(2, dim = -1) return x * self.act(gate) * self.mult_bias class FeedForward(nn.Module): def __init__( self, dim, dim_out = None, mult = 4, glu = False, glu_mult_bias = False, swish = False, relu_squared = False, post_act_ln = False, dropout = 0., no_bias = False, zero_init_output = False ): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) if relu_squared: activation = ReluSquared() elif swish: activation = nn.SiLU() else: activation = nn.GELU() if glu: project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias) else: project_in = nn.Sequential( nn.Linear(dim, inner_dim, bias = not no_bias), activation ) self.ff = Sequential( project_in, nn.LayerNorm(inner_dim) if post_act_ln else None, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out, bias = not no_bias) ) # init last linear layer to 0 if zero_init_output: init_zero_(self.ff[-1]) def forward(self, x): return self.ff(x) # attention. it is all we need class Attention(nn.Module): def __init__( self, dim, dim_head = DEFAULT_DIM_HEAD, heads = 8, causal = False, flash = False, talking_heads = False, head_scale = False, sparse_topk = None, num_mem_kv = 0, dropout = 0., on_attn = False, gate_values = False, zero_init_output = False, max_attend_past = None, qk_norm = False, qk_norm_groups = 1, qk_norm_scale = 10, qk_norm_dim_scale = False, one_kv_head = False, kv_heads = None, shared_kv = False, value_dim_head = None, tensor_product = False, # https://arxiv.org/abs/2208.06061 cascading_heads = False, add_zero_kv = False, # same as add_zero_attn in pytorch rotary_embed_values = False, onnxable = False ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads self.causal = causal self.max_attend_past = max_attend_past assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both' value_dim_head = default(value_dim_head, dim_head) kv_heads = default(kv_heads, heads) kv_heads = 1 if one_kv_head else kv_heads assert divisible_by(heads, kv_heads) self.kv_heads = kv_heads q_dim = dim_head * heads k_dim = dim_head * kv_heads v_dim = value_dim_head * kv_heads out_dim = value_dim_head * heads self.to_q = nn.Linear(dim, q_dim, bias = False) self.to_k = nn.Linear(dim, k_dim, bias = False) # shared key / values, for further memory savings during inference assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values' self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None # relations projection from tp-attention self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None # add GLU gating for aggregated values, from alphafold2 self.to_v_gate = None if gate_values: self.to_v_gate = nn.Linear(dim, out_dim) nn.init.constant_(self.to_v_gate.weight, 0) nn.init.constant_(self.to_v_gate.bias, 1) # cosine sim attention self.qk_norm = qk_norm self.qk_norm_groups = qk_norm_groups self.qk_norm_scale = qk_norm_scale # whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442 self.qk_norm_dim_scale = qk_norm_dim_scale self.qk_norm_q_scale = self.qk_norm_k_scale = 1 if qk_norm and qk_norm_dim_scale: self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups' assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)' # attend class - includes core attention algorithm + talking heads self.attend = Attend( heads = heads, causal = causal, talking_heads = talking_heads, dropout = dropout, sparse_topk = sparse_topk, qk_norm = qk_norm, scale = qk_norm_scale if qk_norm else self.scale, add_zero_kv = add_zero_kv, flash = flash, onnxable = onnxable ) if cascading_heads: # cascading heads - wrap the Attend logic self.attend = CascadingHeads(self.attend) # head scaling self.head_scale = head_scale if head_scale: self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) # explicit topk sparse attention self.sparse_topk = sparse_topk # add memory key / values self.num_mem_kv = num_mem_kv if num_mem_kv > 0: self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) # attention on attention self.attn_on_attn = on_attn self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False) # whether to rotate positions into values, for absolute positions in addition to relative self.rotary_embed_values = rotary_embed_values # init output projection 0 if zero_init_output: init_zero_(self.to_out) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, rel_pos = None, rotary_pos_emb = None, prev_attn = None, mem = None, return_intermediates = False, cache: Optional[Intermediates] = None, ): b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context) kv_input = default(context, x) q_input = x k_input = kv_input v_input = kv_input r_input = x if exists(mem): k_input, mem_packed_shape = pack([mem, k_input], 'b * d') v_input, _ = pack([mem, v_input], 'b * d') q = self.to_q(q_input) k = self.to_k(k_input) v = self.to_v(v_input) if exists(self.to_v) else k r = self.to_r(r_input) if exists(self.to_r) else None q = rearrange(q, 'b n (h d) -> b h n d', h = h) k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r)) if exists(cache) and not has_context: ck, cv = cache.cached_kv if exists(mem): mk, k = unpack(k, mem_packed_shape, 'b * d') mv, v = unpack(v, mem_packed_shape, 'b * d') k = torch.cat((ck, k), dim = -2) v = torch.cat((cv, v), dim = -2) if exists(mem): k = torch.cat((mk, k), dim = -2) v = torch.cat((mv, v), dim = -2) if return_intermediates: mem_len = mem.shape[-2] if exists(mem) else 0 cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :]) if self.qk_norm: qk_l2norm = partial(l2norm, groups = self.qk_norm_groups) q, k = map(qk_l2norm, (q, k)) scale = self.qk_norm_scale q = q * self.qk_norm_q_scale k = k * self.qk_norm_k_scale if exists(rotary_pos_emb) and not has_context: freqs, xpos_scale = rotary_pos_emb q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.) q = apply_rotary_pos_emb(q, freqs, q_xpos_scale) k = apply_rotary_pos_emb(k, freqs, k_xpos_scale) if self.rotary_embed_values: v = apply_rotary_pos_emb(v, freqs, k_xpos_scale) input_mask = context_mask if has_context else mask if self.num_mem_kv > 0: mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v)) if self.qk_norm: mem_k = l2norm(mem_k) mem_k = mem_k * self.qk_norm_k_scale k = torch.cat((mem_k, k), dim = -2) v = torch.cat((mem_v, v), dim = -2) if exists(input_mask): input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True) i, j = map(lambda t: t.shape[-2], (q, k)) # determine masking mask_value = max_neg_value(q) masks = [] final_attn_mask = None if exists(input_mask): input_mask = rearrange(input_mask, 'b j -> b 1 1 j') masks.append(~input_mask) if exists(attn_mask): assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' if attn_mask.ndim == 2: attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j') elif attn_mask.ndim == 3: attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j') masks.append(~attn_mask) if exists(self.max_attend_past): range_q = torch.arange(j - i, j, device = device) range_k = torch.arange(j, device = device) dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j') max_attend_past_mask = dist > self.max_attend_past masks.append(max_attend_past_mask) if len(masks) > 0: final_attn_mask = ~or_reduce(masks) # prepare relative positional bias, if needed attn_bias = None if exists(rel_pos): attn_bias = rel_pos(i, j) # attention is all we need out, intermediates = self.attend( q, k, v, mask = final_attn_mask, attn_bias = attn_bias, prev_attn = prev_attn ) # https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients if exists(r): out = out * r + out # normformer scaling of heads if head_scale: out = out * self.head_scale_params # merge heads out = rearrange(out, 'b h n d -> b n (h d)') # alphafold2 styled gating of the values if exists(self.to_v_gate): gates = self.to_v_gate(x) out = out * gates.sigmoid() # combine the heads out = self.to_out(out) if exists(mask): mask = rearrange(mask, 'b n -> b n 1') out = out.masked_fill(~mask, 0.) if not return_intermediates: return out intermediates.cached_kv = cached_kv return out, intermediates class AttentionLayers(nn.Module): def __init__( self, dim, depth, heads = 8, causal = False, cross_attend = False, only_cross = False, use_scalenorm = False, use_rmsnorm = False, use_simple_rmsnorm = False, alibi_pos_bias = False, alibi_num_heads = None, rel_pos_bias = False, rel_pos_num_buckets = 32, rel_pos_max_distance = 128, dynamic_pos_bias = False, dynamic_pos_bias_log_distance = False, dynamic_pos_bias_mlp_depth = 2, dynamic_pos_bias_norm = False, rotary_pos_emb = False, rotary_emb_dim = None, rotary_xpos = False, rotary_interpolation_factor = 1., rotary_xpos_scale_base = 512, rotary_base_rescale_factor = 1., custom_layers = None, sandwich_coef = None, par_ratio = None, residual_attn = False, cross_residual_attn = False, macaron = False, pre_norm = True, pre_norm_has_final_norm = True, gate_residual = False, scale_residual = False, scale_residual_constant = 1., shift_tokens = 0, sandwich_norm = False, resi_dual = False, resi_dual_scale = 1., zero_init_branch_output = False, layer_dropout = 0., cross_attn_tokens_dropout = 0., **kwargs ): super().__init__() rotary_pos_emb = rotary_pos_emb or rotary_xpos ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs) dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) self.dim = dim self.depth = depth self.causal = causal self.layers = nn.ModuleList([]) self.has_pos_emb = rel_pos_bias or rotary_pos_emb rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention' self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' # relative positional bias flash_attn = attn_kwargs.get('flash', False) assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias' self.rel_pos = None if rel_pos_bias: assert not flash_attn, 'flash attention not compatible with t5 relative positional bias' self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance) elif dynamic_pos_bias: assert not flash_attn, 'flash attention not compatible with dynamic positional bias' self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm) elif alibi_pos_bias: alibi_num_heads = default(alibi_num_heads, heads) assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads) assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both' assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' if resi_dual: pre_norm = False self.pre_norm = pre_norm self.sandwich_norm = sandwich_norm self.resi_dual = resi_dual assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.' self.resi_dual_scale = resi_dual_scale self.residual_attn = residual_attn self.cross_residual_attn = cross_residual_attn assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention' self.cross_attend = cross_attend assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm' if use_scalenorm: norm_class = ScaleNorm elif use_rmsnorm: norm_class = RMSNorm elif use_simple_rmsnorm: norm_class = SimpleRMSNorm else: norm_class = nn.LayerNorm norm_fn = partial(norm_class, dim) if cross_attend and not only_cross: default_block = ('a', 'c', 'f') elif cross_attend and only_cross: default_block = ('c', 'f') else: default_block = ('a', 'f') if macaron: default_block = ('f',) + default_block # zero init if zero_init_branch_output: attn_kwargs = {**attn_kwargs, 'zero_init_output': True} ff_kwargs = {**ff_kwargs, 'zero_init_output': True} # calculate layer block order if exists(custom_layers): layer_types = custom_layers elif exists(par_ratio): par_depth = depth * len(default_block) assert 1 < par_ratio <= par_depth, 'par ratio out of range' default_block = tuple(filter(not_equals('f'), default_block)) par_attn = par_depth // par_ratio depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper par_width = (depth_cut + depth_cut // par_attn) // par_attn assert len(default_block) <= par_width, 'default block is too large for par_ratio' par_block = default_block + ('f',) * (par_width - len(default_block)) par_head = par_block * par_attn layer_types = par_head + ('f',) * (par_depth - len(par_head)) elif exists(sandwich_coef): assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef else: layer_types = default_block * depth self.layer_types = layer_types self.num_attn_layers = len(list(filter(equals('a'), layer_types))) # stochastic depth self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types)) # structured dropout for cross attending self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # calculate token shifting shift_tokens = cast_tuple(shift_tokens, len(layer_types)) # whether it has post norm self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity() # iterate and construct layers for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): is_last_layer = ind == (len(self.layer_types) - 1) if layer_type == 'a': layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs) elif layer_type == 'c': layer = Attention(dim, heads = heads, **attn_kwargs) elif layer_type == 'f': layer = FeedForward(dim, **ff_kwargs) layer = layer if not macaron else Scale(0.5, layer) else: raise Exception(f'invalid layer type {layer_type}') if layer_shift_tokens > 0: shift_range_upper = layer_shift_tokens + 1 shift_range_lower = -layer_shift_tokens if not causal else 0 layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) residual_fn = GRUGating if gate_residual else Residual residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant) pre_branch_norm = norm_fn() if pre_norm else None post_branch_norm = norm_fn() if sandwich_norm else None post_main_norm = norm_fn() if not pre_norm else None norms = nn.ModuleList([ pre_branch_norm, post_branch_norm, post_main_norm ]) self.layers.append(nn.ModuleList([ norms, layer, residual ])) def forward( self, x, context = None, mask = None, context_mask = None, attn_mask = None, self_attn_context_mask = None, mems = None, cache: Optional[LayerIntermediates] = None, cache_age = 1, return_hiddens = False ): assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' # initialize accums hiddens = [] layer_hiddens = [] intermediates = [] prev_attn = None prev_cross_attn = None mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers # rotary positions rotary_pos_emb = None if exists(self.rotary_pos_emb): max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems))) rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length, x.device) # assume cached key / values attn_cache = [] if exists(cache): assert not self.training and self.causal if cache_age > 0: x = x[:, -cache_age:] # for spec decoding, may be greater than 1 attn_cache = cache.attn_intermediates iter_attn_cache = iter(attn_cache) # outer residual - for resiDual paper outer_residual = x * self.resi_dual_scale for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(self.layer_types, self.layers, self.layer_dropouts)): is_last = ind == (len(self.layers) - 1) if self.training and layer_dropout > 0. and random() < layer_dropout: continue if layer_type == 'a': if return_hiddens: hiddens.append(x) layer_mem = mems.pop(0) if mems else None if layer_type == 'c': if self.training and self.cross_attn_tokens_dropout > 0.: context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout) inner_residual = x if return_hiddens: layer_hiddens.append(x) pre_norm, post_branch_norm, post_main_norm = norm if exists(pre_norm): x = pre_norm(x) if layer_type == 'a': out, inter = block(x, mask = mask, context_mask = self_attn_context_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, return_intermediates = True) elif layer_type == 'c': out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True) elif layer_type == 'f': out = block(x) if self.resi_dual: outer_residual = outer_residual + out * self.resi_dual_scale if exists(post_branch_norm): out = post_branch_norm(out) x = residual_fn(out, inner_residual) if layer_type in ('a', 'c') and return_hiddens: intermediates.append(inter) if layer_type == 'a' and self.residual_attn: prev_attn = inter.pre_softmax_attn elif layer_type == 'c' and self.cross_residual_attn: prev_cross_attn = inter.pre_softmax_attn if exists(post_main_norm): x = post_main_norm(x) if return_hiddens: layer_hiddens.append(x) if self.resi_dual: x = x + self.final_norm(outer_residual) else: x = self.final_norm(x) if not return_hiddens: return x intermediates = LayerIntermediates( hiddens = hiddens, attn_intermediates = intermediates, layer_hiddens = layer_hiddens ) return x, intermediates class Encoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on encoder' super().__init__(causal = False, **kwargs) class Decoder(AttentionLayers): def __init__(self, **kwargs): assert 'causal' not in kwargs, 'cannot set causality on decoder' super().__init__(causal = True, **kwargs) class CrossAttender(AttentionLayers): def __init__(self, **kwargs): super().__init__(cross_attend = True, only_cross = True, **kwargs) class ViTransformerWrapper(nn.Module): def __init__( self, *, image_size, patch_size, attn_layers, channels = 3, num_classes = None, post_emb_norm = False, emb_dropout = 0. ): super().__init__() assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder' assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size' dim = attn_layers.dim num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 self.patch_size = patch_size self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) self.patch_to_embedding = nn.Sequential( nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() self.dropout = nn.Dropout(emb_dropout) self.attn_layers = attn_layers self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity() def forward( self, img, return_embeddings = False ): p = self.patch_size x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) x = self.patch_to_embedding(x) n = x.shape[1] x = x + self.pos_embedding[:, :n] x = self.post_emb_norm(x) x = self.dropout(x) x = self.attn_layers(x) if not exists(self.mlp_head) or return_embeddings: return x x = x.mean(dim = -2) return self.mlp_head(x) class TransformerWrapper(nn.Module): def __init__( self, *, num_tokens, max_seq_len, attn_layers, emb_dim = None, max_mem_len = 0, shift_mem_down = 0, emb_dropout = 0., post_emb_norm = False, num_memory_tokens = None, tie_embedding = False, logits_dim = None, use_abs_pos_emb = True, scaled_sinu_pos_emb = False, l2norm_embed = False, emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1 attn_z_loss_weight = 1e-4 ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim emb_dim = default(emb_dim, dim) self.emb_dim = emb_dim self.num_tokens = num_tokens self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len self.shift_mem_down = shift_mem_down self.l2norm_embed = l2norm_embed self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed) if not (use_abs_pos_emb and not attn_layers.has_pos_emb): self.pos_emb = always(0) elif scaled_sinu_pos_emb: self.pos_emb = ScaledSinusoidalEmbedding(emb_dim) else: self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed) self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290 self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity() self.emb_dropout = nn.Dropout(emb_dropout) self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() self.attn_layers = attn_layers self.init_() logits_dim = default(logits_dim, num_tokens) self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t() # memory tokens (like [cls]) from Memory Transformers paper num_memory_tokens = default(num_memory_tokens, 0) self.num_memory_tokens = num_memory_tokens if num_memory_tokens > 0: self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) def init_(self): if self.l2norm_embed: nn.init.normal_(self.token_emb.emb.weight, std = 1e-5) if not isinstance(self.pos_emb, always): nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5) return nn.init.kaiming_normal_(self.token_emb.emb.weight) def forward( self, x, return_embeddings = False, return_logits_and_embeddings = False, return_intermediates = False, mask = None, return_mems = False, return_attn = False, mems = None, pos = None, prepend_embeds = None, sum_embeds = None, return_attn_z_loss = False, attn_z_loss_weight = 1e-4, cache: Optional[LayerIntermediates] = None, **kwargs ): b, n, device, num_mem, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.emb_frac_gradient return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss # absolute positional embedding external_pos_emb = exists(pos) and pos.dtype != torch.long pos_emb = self.pos_emb(x, pos = pos) if not external_pos_emb else pos x = self.token_emb(x) + pos_emb # for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training if exists(sum_embeds): x = x + sum_embeds # post embedding norm, purportedly leads to greater stabilization x = self.post_emb_norm(x) # whether to append embeds, as in PaLI, for image embeddings if exists(prepend_embeds): prepend_seq, prepend_dim = prepend_embeds.shape[1:] assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions' x = torch.cat((prepend_embeds, x), dim = -2) # whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model if emb_frac_gradient < 1: assert emb_frac_gradient > 0 x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient) # embedding dropout x = self.emb_dropout(x) x = self.project_emb(x) if num_mem > 0: mem = repeat(self.memory_tokens, 'n d -> b n d', b = b) x = torch.cat((mem, x), dim = 1) # auto-handle masking after appending memory tokens if exists(mask): mask = pad_at_dim(mask, (num_mem, 0), dim = -1, value = True) if self.shift_mem_down and exists(mems): mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] mems = [*mems_r, *mems_l] x, intermediates = self.attn_layers(x, mask = mask, mems = mems, cache = cache, return_hiddens = True, **kwargs) mem, x = x[:, :num_mem], x[:, num_mem:] if return_logits_and_embeddings: out = (self.to_logits(x), x) elif return_embeddings: out = x else: out = self.to_logits(x) if return_attn_z_loss: pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates)) intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight) return_intermediates = True if return_intermediates: return out, intermediates if return_mems: hiddens = intermediates.hiddens new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) return out, new_mems if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out class ContinuousTransformerWrapper(nn.Module): def __init__( self, *, max_seq_len, attn_layers, dim_in = None, dim_out = None, emb_dim = None, max_mem_len = 0, post_emb_norm = False, emb_dropout = 0., use_abs_pos_emb = True, scaled_sinu_pos_emb = False ): super().__init__() assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' dim = attn_layers.dim self.max_seq_len = max_seq_len self.max_mem_len = max_mem_len if not (use_abs_pos_emb and not attn_layers.has_pos_emb): self.pos_emb = always(0) elif scaled_sinu_pos_emb: self.pos_emb = ScaledSinusoidalEmbedding(dim) else: self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() self.emb_dropout = nn.Dropout(emb_dropout) self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity() self.attn_layers = attn_layers self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity() def forward( self, x, return_embeddings = False, return_intermediates = False, return_mems = False, mask = None, return_attn = False, mems = None, pos = None, prepend_embeds = None, **kwargs ): x = self.project_in(x) x = x + self.pos_emb(x, pos = pos) x = self.post_emb_norm(x) # whether to append embeds, as in PaLI, for image embeddings if exists(prepend_embeds): _, prepend_dim = prepend_embeds.shape[1:] assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions' x = torch.cat((prepend_embeds, x), dim = -2) x = self.emb_dropout(x) x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) out = self.project_out(x) if not return_embeddings else x if return_intermediates: return out, intermediates if return_mems: hiddens = intermediates.hiddens new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens)) return out, new_mems if return_attn: attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) return out, attn_maps return out class XTransformer(nn.Module): def __init__( self, *, dim, tie_token_emb = False, ignore_index = -100, pad_value = 0, cross_attn_tokens_dropout = 0., **kwargs ): super().__init__() enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs) dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs) assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword' enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs) enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0) enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None) enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False) enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True) dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs) dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0) dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False) dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True) self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories self.encoder = TransformerWrapper( **enc_transformer_kwargs, attn_layers = Encoder(dim = dim, **enc_kwargs) ) self.decoder = TransformerWrapper( **dec_transformer_kwargs, attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs) ) if tie_token_emb: self.decoder.token_emb = self.encoder.token_emb self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value) @torch.no_grad() def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs): encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True) return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs) def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None): if exists(src_prepend_embeds) and exists(mask): mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True) enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True) if self.training and self.cross_attn_tokens_dropout > 0: enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout) out = self.decoder(tgt, context = enc, context_mask = mask) return out
x-transformers-main
x_transformers/x_transformers.py
import torch from packaging import version if version.parse(torch.__version__) >= version.parse('2.0.0'): from einops._torch_specific import allow_ops_in_compiled_graph allow_ops_in_compiled_graph() from x_transformers.x_transformers import XTransformer, Encoder, Decoder, CrossAttender, Attention, TransformerWrapper, ViTransformerWrapper, ContinuousTransformerWrapper from x_transformers.autoregressive_wrapper import AutoregressiveWrapper from x_transformers.nonautoregressive_wrapper import NonAutoregressiveWrapper from x_transformers.continuous_autoregressive_wrapper import ContinuousAutoregressiveWrapper from x_transformers.xl_autoregressive_wrapper import XLAutoregressiveWrapper
x-transformers-main
x_transformers/__init__.py
import torch from torch import nn import torch.nn.functional as F def exists(val): return val is not None class ContinuousAutoregressiveWrapper(nn.Module): def __init__(self, net, ignore_index = -100, pad_value = 0): super().__init__() self.net = net self.max_seq_len = net.max_seq_len @torch.no_grad() def generate(self, start_tokens, seq_len, **kwargs): device = start_tokens.device was_training = self.net.training num_dims = len(start_tokens.shape) assert num_dims >= 2, 'number of dimensions of your start tokens must be greater or equal to 2' if num_dims == 2: start_tokens = start_tokens[None, :] b, t, _, device = *start_tokens.shape, start_tokens.device self.net.eval() out = start_tokens for _ in range(seq_len): x = out[:, -self.max_seq_len:] last = self.net(x, **kwargs)[:, -1:] out = torch.cat((out, last), dim = -2) out = out[:, t:] if num_dims == 2: out = out.squeeze(0) self.net.train(was_training) return out def forward(self, x, **kwargs): inp, target = x[:, :-1], x[:, 1:] mask = kwargs.get('mask', None) if exists(mask) and mask.shape[1] == x.shape[1]: mask = mask[:, :-1] kwargs['mask'] = mask out = self.net(inp, **kwargs) loss = F.mse_loss(out, target, reduction = 'none') if exists(mask): loss = loss[mask] return loss.mean()
x-transformers-main
x_transformers/continuous_autoregressive_wrapper.py
from functools import partial from typing import Optional, Tuple import torch from torch import nn, einsum, Tensor import torch.nn.functional as F from collections import namedtuple from functools import wraps from packaging import version from dataclasses import dataclass from einops import rearrange, repeat # constants EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) @dataclass class Intermediates: qk_similarities: Optional[Tensor] = None pre_softmax_attn: Optional[Tensor] = None post_softmax_attn: Optional[Tensor] = None cached_kv: Optional[Tuple[Tensor, Tensor]] = None def to_tuple(self): return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn) # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def compact(arr): return [*filter(exists, arr)] def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # functions for creating causal mask # need a special one for onnx cpu (no support for .triu) def create_causal_mask(i, j, device): return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) def onnx_create_causal_mask(i, j, device): r = torch.arange(i, device = device) causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j') causal_mask = F.pad(causal_mask, (j - i, 0), value = False) return causal_mask # main class class Attend(nn.Module): def __init__( self, *, dropout = 0., causal = False, heads = None, talking_heads = False, sparse_topk = None, scale = None, qk_norm = False, flash = False, add_zero_kv = False, onnxable = False ): super().__init__() self.scale = scale self.qk_norm = qk_norm self.causal = causal self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) # talking heads assert not (flash and talking_heads), 'talking heads not compatible with flash attention' self.talking_heads = talking_heads if talking_heads: self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) # sparse topk assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention' self.sparse_topk = sparse_topk # add a key / value token composed of zeros # in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html self.add_zero_kv = add_zero_kv # flash attention self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = EfficientAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = EfficientAttentionConfig(False, True, True) def flash_attn( self, q, k, v, mask = None, attn_bias = None ): batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device # Recommended for multi-query single-key-value attention by Tri Dao # kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) if k.ndim == 3: k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) if v.ndim == 3: v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) # handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention if self.qk_norm: default_scale = q.shape[-1] ** -0.5 q = q * (default_scale / self.scale) # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L causal = self.causal if exists(mask): assert mask.ndim == 4 mask = mask.expand(batch, heads, q_len, k_len) # manually handle causal mask, if another mask was given if causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) mask = mask & ~causal_mask causal = False # handle alibi positional bias # convert from bool to float if exists(attn_bias): attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1) # if mask given, the mask would already contain the causal mask from above logic # otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number mask_value = -torch.finfo(q.dtype).max if exists(mask): attn_bias = attn_bias.masked_fill(~mask, mask_value // 2) elif causal: causal_mask = self.create_causal_mask(q_len, k_len, device = device) attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2) causal = False # scaled_dot_product_attention handles attn_mask either as bool or additive bias # make it an additive bias here mask = attn_bias # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask = mask, dropout_p = self.dropout if self.training else 0., is_causal = causal ) return out, Intermediates() def forward( self, q, k, v, mask = None, attn_bias = None, prev_attn = None ): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device scale = default(self.scale, q.shape[-1] ** -0.5) # handle grouped multi-query attention if kv_heads == 1: k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v)) elif kv_heads < heads: k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v)) # handle zero kv, as means for allowing network to attend to nothing if self.add_zero_kv: k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v)) if exists(mask): mask = F.pad(mask, (1, 0), value = True) if exists(attn_bias): attn_bias = F.pad(attn_bias, (1, 0), value = 0.) if self.flash: assert not exists(prev_attn), 'residual attention not compatible with flash attention' return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias) kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale if exists(prev_attn): dots = dots + prev_attn qk_similarities = dots.clone() if self.talking_heads: dots = self.pre_softmax_talking_heads(dots) if exists(attn_bias): dots = dots + attn_bias i, j, dtype = *dots.shape[-2:], dots.dtype mask_value = -torch.finfo(dots.dtype).max if exists(self.sparse_topk) and self.sparse_topk < j: top_values, _ = dots.topk(self.sparse_topk, dim = -1) sparse_topk_mask = dots < top_values[..., -1:] mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask if exists(mask): dots = dots.masked_fill(~mask, mask_value) if self.causal: causal_mask = self.create_causal_mask(i, j, device = device) dots = dots.masked_fill(causal_mask, mask_value) pre_softmax_attn = dots.clone() attn = self.attn_fn(dots, dim = -1) attn = attn.type(dtype) post_softmax_attn = attn.clone() attn = self.attn_dropout(attn) if self.talking_heads: attn = self.post_softmax_talking_heads(attn) out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) intermediates = Intermediates( qk_similarities = qk_similarities, pre_softmax_attn = pre_softmax_attn, post_softmax_attn = post_softmax_attn ) return out, intermediates # cascading heads logic def to_single_heads(t, dim = 1): heads = t.unbind(dim = dim) return tuple(head.unsqueeze(dim) for head in heads) class CascadingHeads(nn.Module): def __init__(self, attend: Attend): super().__init__() self.attend = attend def forward( self, q, k, v, mask = None, attn_bias = None, prev_attn = None ): assert q.shape[-1] == v.shape[-1], 'cascading heads can only be done if query / key and value head dimensions are the same' # split inputs into per-head inputs heads = q.shape[1] queries = to_single_heads(q) keys = to_single_heads(k) if k.ndim == 4 else ((k,) * heads) values = to_single_heads(v) if v.ndim == 4 else ((v,) * heads) mask = (mask,) * heads attn_bias = to_single_heads(attn_bias, dim = 0) if exists(attn_bias) else ((None,) * heads) prev_attn = to_single_heads(prev_attn) if exists(prev_attn) else ((None,) * heads) # now loop through each head, without output of previous head summed with the next head # thus cascading all_outs = [] all_intermediates = [] prev_head_out = None for h_q, h_k, h_v, h_mask, h_attn_bias, h_prev_attn in zip(queries, keys, values, mask, attn_bias, prev_attn): if exists(prev_head_out): h_q = h_q + prev_head_out out, intermediates = self.attend( h_q, h_k, h_v, mask = h_mask, attn_bias = h_attn_bias, prev_attn = h_prev_attn ) prev_head_out = out all_outs.append(out) all_intermediates.append(intermediates) # cat all output heads all_outs = torch.cat(all_outs, dim = 1) # cat all intermediates, if they exist qk_similarities, pre_softmax_attn, post_softmax_attn = zip(*map(lambda i: i.to_tuple(), all_intermediates)) qk_similarities, pre_softmax_attn, post_softmax_attn = map(compact, (qk_similarities, pre_softmax_attn, post_softmax_attn)) aggregated_intermediates = Intermediates( qk_similarities = torch.cat(qk_similarities, dim = 1) if len(qk_similarities) > 0 else None, pre_softmax_attn = torch.cat(pre_softmax_attn, dim = 1) if len(pre_softmax_attn) > 0 else None, post_softmax_attn = torch.cat(post_softmax_attn, dim = 1) if len(post_softmax_attn) > 0 else None ) return all_outs, aggregated_intermediates
x-transformers-main
x_transformers/attend.py
import math from random import random from contextlib import nullcontext from collections import namedtuple import torch import torch.nn.functional as F from torch import nn from einops import rearrange, repeat, pack, unpack from x_transformers.x_transformers import TransformerWrapper from typing import Optional # constants Losses = namedtuple('Losses', ['loss', 'generator_loss', 'critic_loss']) # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # sampling helpers def top_k(logits, thres = 0.9): k = math.ceil((1 - thres) * logits.shape[-1]) val, ind = logits.topk(k, dim = -1) probs = torch.full_like(logits, float('-inf')) probs.scatter_(2, ind, val) return probs def log(t, eps = 1e-10): return torch.log(t + eps) def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim = dim) # prob helpers def sample_prob(prob): return random() < prob def coin_flip(): return sample_prob(0.5) # tensor helpers def get_mask_subset_prob(mask, prob, min_mask = 0): batch, seq, device = *mask.shape, mask.device num_to_mask = (mask.sum(dim = -1, keepdim = True) * prob).clamp(min = min_mask) logits = torch.rand((batch, seq), device = device) logits = logits.masked_fill(~mask, -1) randperm = logits.argsort(dim = -1).float() num_padding = (~mask).sum(dim = -1, keepdim = True) randperm -= num_padding subset_mask = randperm < num_to_mask subset_mask.masked_fill_(~mask, False) return subset_mask # schedules def linear_schedule(t): return 1 - t def cosine_schedule(t): """ https://arxiv.org/abs/2202.04200 """ return torch.cos(t * math.pi / 2) # self token critic # inspired by Nijkamp et al. - https://aclanthology.org/2021.naacl-main.409/ class SelfCritic(nn.Module): def __init__(self, net): super().__init__() self.net = net dim = net.attn_layers.dim self.to_logits = nn.Linear(dim, 1) def forward(self, x): embed = self.net(x, return_embeddings = True) return self.to_logits(embed) class NonAutoregressiveWrapper(nn.Module): """ https://arxiv.org/abs/1904.09324 https://arxiv.org/abs/2202.04200 """ def __init__( self, net, *, mask_id, steps = 18, self_cond = False, self_cond_train_prob = 0.75, no_replace_prob = 0.15, # which percentage of the tokens masked will stay the same, done in original MLM paper random_token_prob = 0.1, # which percentage of tokens to be replaced with random token, done in original MLM paper schedule = 'linear', can_mask_prev_unmasked = False, # when unmasking, whether it can remask previously unmasked token_critic: Optional[TransformerWrapper] = None, self_token_critic = False, critic_loss_weight = 1. ): super().__init__() assert not (self_token_critic and exists(token_critic)) self.net = net dim = net.emb_dim self.dim = dim self.num_tokens = net.num_tokens self.mask_id = mask_id # afaict, maskgit paper did not do this # but may help for self conditioning, as used successfully in original BERT self.no_replace_prob = no_replace_prob self.random_token_prob = random_token_prob self.max_seq_len = net.max_seq_len self.steps = steps if callable(schedule): self.schedule_fn = schedule if schedule == 'linear': self.schedule_fn = linear_schedule elif schedule == 'cosine': self.schedule_fn = cosine_schedule else: raise ValueError(f'invalid schedule {schedule}') self.can_mask_prev_unmasked = can_mask_prev_unmasked # self conditioning self.self_cond = self_cond if self_cond: self.null_embed = nn.Parameter(torch.randn(dim)) self.to_self_cond = nn.Linear(dim, dim, bias = False) if self_cond else None self.self_cond_train_prob = self_cond_train_prob # token critic self.token_critic = token_critic if self_token_critic: self.token_critic = SelfCritic(net) self.critic_loss_weight = critic_loss_weight @torch.no_grad() def generate( self, batch_size = None, start_temperature = 1., filter_thres = 0.7, noise_level_scale = 1., **kwargs ): sample_one = not exists(batch_size) batch_size = default(batch_size, 1) device = next(self.net.parameters()).device was_training = self.training self.eval() times = torch.linspace(0., 1., self.steps + 1) # sequence starts off as all masked shape = (batch_size, self.max_seq_len) seq = torch.full(shape, self.mask_id, device = device) mask = torch.full(shape, True, device = device) # slowly demask all_mask_num_tokens = (self.schedule_fn(times[1:]) * self.max_seq_len).long() # self conditioning has_self_cond = self.self_cond last_embed = self.null_embed if has_self_cond else None for mask_num_tokens, steps_until_x0 in zip(all_mask_num_tokens.tolist(), reversed(range(self.steps))): self_cond = self.to_self_cond(last_embed) if has_self_cond else None logits, embeds = self.net( seq, sum_embeds = self_cond, return_logits_and_embeddings = True, **kwargs ) if has_self_cond: last_embed = embeds if exists(filter_thres): logits = top_k(logits, filter_thres) annealing_scale = steps_until_x0 / self.steps temperature = start_temperature * annealing_scale probs = (logits / max(temperature, 1e-3)).softmax(dim = -1) sampled_ids = gumbel_sample(logits, temperature = max(temperature, 1e-3)) seq = torch.where(mask, sampled_ids, seq) if exists(self.token_critic): scores = self.token_critic(seq) scores = rearrange(scores, 'b n 1 -> b n') scores = scores + noise_level_scale * gumbel_noise(scores) * annealing_scale else: scores = 1 - logits.softmax(dim = -1) scores = scores.gather(2, rearrange(sampled_ids, 'b n -> b n 1')) scores = rearrange(scores, 'b n 1 -> b n') if mask_num_tokens == 0: pass if not self.can_mask_prev_unmasked: scores = scores.masked_fill(~mask, -torch.finfo(scores.dtype).max) mask_indices = scores.topk(mask_num_tokens, dim = -1).indices mask = torch.zeros_like(scores, dtype = torch.bool).scatter(1, mask_indices, True) seq = seq.masked_fill(mask, self.mask_id) self.train(was_training) if sample_one: seq = rearrange(seq, '1 n -> n') return seq def forward( self, x, only_train_generator = False, only_train_critic = False, generator_sample_temperature = None, **kwargs ): b, n, device = *x.shape, x.device assert n == self.max_seq_len orig_seq = x.clone() rand_times = torch.empty(b, device = device).uniform_(0, 1) batched_randperm = torch.rand((b, n), device = device).argsort(dim = -1).float() rand_probs = self.schedule_fn(rand_times) num_tokens_mask = (rand_probs * n).clamp(min = 1.) mask = batched_randperm < rearrange(num_tokens_mask, 'b -> b 1') # to ensure all tokens produce embeddings, instead of just the ones with [mask] input, as done in seminal BERT MLM paper # potentially needed for self-conditioning (on embedding) to work well replace_mask_id_mask = mask.clone() frac_seq_left = 1. if self.no_replace_prob > 0. and coin_flip(): frac_seq_left -= self.no_replace_prob no_replace_prob_mask = get_mask_subset_prob(mask, self.no_replace_prob) replace_mask_id_mask &= ~no_replace_prob_mask if self.random_token_prob > 0. and coin_flip(): random_token_prob_mask = get_mask_subset_prob(replace_mask_id_mask, self.random_token_prob * frac_seq_left) random_tokens = torch.randint(0, self.num_tokens, (b, n), device = device) x = torch.where(random_token_prob_mask, random_tokens, x) replace_mask_id_mask &= ~random_token_prob_mask masked = torch.where(replace_mask_id_mask, self.mask_id, x) # self conditioning if self.self_cond: self_cond = self.null_embed if sample_prob(self.self_cond_train_prob): with torch.no_grad(): self_cond = self.net(masked, return_embeddings = True, **kwargs).detach() kwargs.update(sum_embeds = self.to_self_cond(self_cond)) # logits context = torch.no_grad if only_train_critic else nullcontext with context(): logits = self.net(masked, **kwargs) # cross entropy loss loss = F.cross_entropy( logits[mask], orig_seq[mask] ) if not exists(self.token_critic) or only_train_generator: return Losses(loss, loss, None) sampled_ids = gumbel_sample(logits, temperature = default(generator_sample_temperature, random())) generated = torch.where(mask, sampled_ids, orig_seq) critic_logits = self.token_critic(generated) critic_labels = (sampled_ids != orig_seq).float() critic_loss = F.binary_cross_entropy_with_logits( rearrange(critic_logits, '... 1 -> ...'), critic_labels ) # determine losses to be returned based on what researcher wants to train if only_train_critic: total_loss = critic_loss loss = None else: total_loss = loss + critic_loss * self.critic_loss_weight return Losses(total_loss, loss, critic_loss)
x-transformers-main
x_transformers/nonautoregressive_wrapper.py
import tqdm import torch import torch.optim as optim from x_transformers import XTransformer # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 32 LEARNING_RATE = 3e-4 GENERATE_EVERY = 100 NUM_TOKENS = 16 + 2 ENC_SEQ_LEN = 32 DEC_SEQ_LEN = 64 + 1 # helpers def cycle(): while True: prefix = torch.ones((BATCH_SIZE, 1)).long().cuda() src = torch.randint(2, NUM_TOKENS, (BATCH_SIZE, ENC_SEQ_LEN)).long().cuda() tgt = torch.cat((prefix, src, src), 1) src_mask = torch.ones(BATCH_SIZE, src.shape[1]).bool().cuda() yield (src, tgt, src_mask) # instantiate model model = XTransformer( dim = 512, tie_token_emb = True, return_tgt_loss = True, enc_num_tokens=NUM_TOKENS, enc_depth = 3, enc_heads = 8, enc_max_seq_len = ENC_SEQ_LEN, dec_num_tokens = NUM_TOKENS, dec_depth = 3, dec_heads = 8, dec_max_seq_len = DEC_SEQ_LEN ).cuda() # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() src, tgt, src_mask = next(cycle()) loss = model(src, tgt, mask=src_mask) loss.backward() print(f'{i}: {loss.item()}') optim.step() optim.zero_grad() if i != 0 and i % GENERATE_EVERY == 0: model.eval() src, _, src_mask = next(cycle()) src, src_mask = src[:1], src_mask[:1] start_tokens = (torch.ones((1, 1)) * 1).long().cuda() sample = model.generate(src, start_tokens, ENC_SEQ_LEN, mask = src_mask) incorrects = (src != sample).abs().sum() print(f"input: ", src) print(f"predicted output: ", sample) print(f"incorrects: {incorrects}")
x-transformers-main
examples/toy_tasks/enc_dec_copy.py
from x_transformers import ( TransformerWrapper, Encoder, NonAutoregressiveWrapper ) import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e8) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 250 SEQ_LEN = 256 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) model = TransformerWrapper( num_tokens = 256 + 1, logits_dim = 256, max_seq_len = SEQ_LEN, attn_layers = Encoder( dim = 512, depth = 8, heads = 8, dynamic_pos_bias = True ) ) model = NonAutoregressiveWrapper( model, steps = 18, schedule = 'cosine', mask_id = 256, # mask id is last token, which is why num_tokens above has a +1 (special token) self_token_critic = True ) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy() train_x, valid_x = np.split(data, [int(90e6)]) data_train, data_val = torch.from_numpy(train_x), torch.from_numpy(valid_x) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)).loss (loss / GRADIENT_ACCUMULATE_EVERY).backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): val_data = next(val_loader) loss = model(val_data).loss print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() sample = model.generate() output_str = decode_tokens(sample) print(output_str)
x-transformers-main
examples/enwik8_simple/train_nar.py
from x_transformers import TransformerWrapper, Decoder from x_transformers.autoregressive_wrapper import AutoregressiveWrapper import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 1e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 1024 SEQ_LEN = 1024 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = TransformerWrapper( num_tokens = 256, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 512, depth = 6, heads = 8) ) model = AutoregressiveWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy() train_x, valid_x = np.split(data, [int(90e6)]) data_train, data_val = torch.from_numpy(train_x), torch.from_numpy(valid_x) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE, drop_last = True)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE, drop_last = True)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)) (loss / GRADIENT_ACCUMULATE_EVERY).backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader)) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp, GENERATE_LENGTH) output_str = decode_tokens(sample) print(output_str)
x-transformers-main
examples/enwik8_simple/train.py
from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import pipeline model = AutoModelForCausalLM.from_pretrained("lightonai/RITA_s", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("lightonai/RITA_s") rita_gen = pipeline('text-generation', model=model, tokenizer=tokenizer) sequences = rita_gen("MAB", max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=2, eos_token_id=2) for seq in sequences: print(f"seq: {seq['generated_text'].replace(' ', '')}")
RITA-master
example.py
import argparse from itertools import product import torch from torch import einsum assert torch.cuda.is_available(), 'cuda must be available to run benchmark' from flash_cosine_sim_attention.benchmark import benchmark from flash_cosine_sim_attention import flash_cosine_sim_attention, l2norm_tensors # helper functions def exists(t): return t is not None def cast_tuple(t): return t if isinstance(t, tuple) else (t,) # argparse parser = argparse.ArgumentParser() parser.add_argument('--causal', default = False, action = 'store_true') parser.add_argument('--mask-prob', type = float, default = 0.) parser.add_argument('--only-forwards', default = False, action = 'store_true') parser.add_argument('--only-backwards', default = False, action = 'store_true') parser.add_argument('--num-times', default = 20, type = int) args = parser.parse_args() # constants BATCH_SIZES = 4 HEADS = 8 DIM = 64 CAUSAL = args.causal SHOULD_MASK = args.mask_prob > 0. assert args.mask_prob >= 0 and args.mask_prob < 1. assert not (args.only_forwards and args.only_backwards) assert not (CAUSAL and SHOULD_MASK) TEST_SEQUENCE_LENGTHS = (128, 256, 512, 1024, 2048, 4096, 8192) TEST_FORWARDS = not args.only_backwards TEST_BACKWARDS = not args.only_forwards # simplified cosine sim attention for benchmarking def simplified_cosine_sim_attention( q, k, v, scale = 10, l2norm_qk = True, causal_mask = None, mask = None ): if l2norm_qk: q, k = l2norm_tensors(q, k) sim = einsum(f'b h i d, b h j d -> b h i j', q, k) sim = sim * scale if exists(mask): sim = sim.masked_fill(~mask[:, None, None, :], -torch.finfo(sim.dtype).max) if exists(causal_mask): sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) attn = sim.softmax(dim = -1) return einsum(f'b h i j, b h j d -> b h i d', attn, v) # create benchmark function fused_attention_fn = benchmark( flash_cosine_sim_attention, forwards = TEST_FORWARDS, backwards = TEST_BACKWARDS, num_times = args.num_times ) attention_fn = benchmark( simplified_cosine_sim_attention, forwards = TEST_FORWARDS, backwards = TEST_BACKWARDS, num_times = args.num_times ) # all permutations params = dict(( ('batch size', BATCH_SIZES), ('heads', HEADS), ('feature dimension', DIM) )) permutations = list(product(*map(cast_tuple, params.values()))) for name, dtype in (('float32', torch.float32), ('float16', torch.float16)): for batch, heads, dim in permutations: print('-' * 60) print(f'{name}\t\tbatch: {batch}\theads: {heads}\tdim {dim}') print('-' * 60) for seq in TEST_SEQUENCE_LENGTHS: q = torch.randn(batch, heads, seq, dim, dtype = dtype).cuda().requires_grad_() k = torch.randn(batch, heads, seq, dim, dtype = dtype).cuda().requires_grad_() v = torch.randn(batch, heads, seq, dim, dtype = dtype).cuda().requires_grad_() causal_mask = torch.ones((seq, seq), dtype = torch.bool).cuda().triu(1) fused_args = dict(causal = CAUSAL) baseline_args = dict() if CAUSAL: baseline_args = {**baseline_args, 'causal_mask': causal_mask} if SHOULD_MASK: mask = torch.zeros((batch, seq)).float().cuda().uniform_(0, 1) > args.mask_prob fused_args = {**fused_args, 'mask': mask} baseline_args = {**baseline_args, 'mask': mask} # run benchmarks accounting for oom for baseline fused_time = fused_attention_fn(q, k, v, **fused_args) try: baseline_time = attention_fn(q, k, v, **baseline_args) except: torch.cuda.empty_cache() baseline_time = -1 times_slower = (fused_time / baseline_time) if baseline_time != -1 else 0. baseline_time_str = 'oom' if baseline_time == -1 else f"{baseline_time:.2f}ms" print(f'seq_len: {seq}\tslower: {times_slower:.2f}x\tkernel: {fused_time:.2f}ms\tbaseline: {baseline_time_str}')
flash-cosine-sim-attention-main
benchmark.py
import sys from functools import lru_cache from subprocess import DEVNULL, call from setuptools import setup, find_packages import torch from torch.utils.cpp_extension import CUDAExtension, BuildExtension # the following code was taken from # https://github.com/teddykoker/torchsort/blob/main/setup.py # which in turn was taken from # https://github.com/idiap/fast-transformers/blob/master/setup.py exec(open('flash_cosine_sim_attention/version.py').read()) @lru_cache(None) def cuda_toolkit_available(): try: call(["nvcc"], stdout = DEVNULL, stderr = DEVNULL) return True except FileNotFoundError: return False def compile_args(): args = ["-fopenmp", "-ffast-math"] if sys.platform == "darwin": args = ["-Xpreprocessor", *args] return args def ext_modules(): if not cuda_toolkit_available(): return [] return [ CUDAExtension( __cuda_pkg_name__, sources = ["flash_cosine_sim_attention/flash_cosine_sim_attention_cuda.cu"] ) ] # main setup code setup( name = 'flash-cosine-sim-attention', packages = find_packages(exclude=[]), version = __version__, license='MIT', description = 'Flash Cosine Similarity Attention', author = 'Phil Wang', author_email = '[email protected]', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/flash-cosine-sim-attention', keywords = [ 'artificial intelligence', 'deep learning', 'attention mechanism' ], install_requires=[ 'torch>=1.10' ], setup_requires=[ 'pytest-runner', ], tests_require=[ 'pytest' ], ext_modules = ext_modules(), cmdclass = {"build_ext": BuildExtension}, include_package_data = True, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
flash-cosine-sim-attention-main
setup.py
from flash_cosine_sim_attention.transformer import CosineSimCausalTransformer import argparse import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset from torch.cuda.amp import autocast, GradScaler # arguments parser = argparse.ArgumentParser() parser.add_argument('--use-cuda-kernel', default = False, action = 'store_true') parser.add_argument('--use-float32', default = False, action = 'store_true') parser.add_argument('--seq-len', default = 1024, type = int) args = parser.parse_args() # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = args.seq_len USE_AMP = not args.use_float32 print(f'\ntraining at sequence length {args.seq_len} with {"float32" if args.use_float32 else "float16"}\n') # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = CosineSimCausalTransformer( num_tokens = 256, dim = 512, depth = 8, attn_scale = 1, attn_l2norm_groups = 8, dim_head = 64, pre_norm = True, non_cosine_sim_attn = False, max_seq_len = SEQ_LEN, use_cuda_kernel = args.use_cuda_kernel ) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: x = np.array(np.frombuffer(file.read(int(95e6)), dtype = np.uint8)) train_x, valid_x = np.split(x, [int(90e6)]) data_train, data_val = torch.from_numpy(train_x), torch.from_numpy(valid_x) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) scaler = GradScaler(enabled = USE_AMP) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() optim.zero_grad() for __ in range(GRADIENT_ACCUMULATE_EVERY): with autocast(enabled = USE_AMP): loss = model(next(train_loader), return_loss = True) scaler.scale(loss / GRADIENT_ACCUMULATE_EVERY).backward() print(f'training loss: {loss.item()}') scaler.unscale_(optim) torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) scaler.step(optim) scaler.update() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader), return_loss = True) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f"\n\n {prime} \n\n {'-' * 80} \n") sample = model.generate(inp[None, ...], GENERATE_LENGTH) output_str = decode_tokens(sample[0]) print(output_str + "\n\n")
flash-cosine-sim-attention-main
train.py
flash-cosine-sim-attention-main
tests/__init__.py
import torch import pytest from flash_cosine_sim_attention import plain_cosine_sim_attention, flash_cosine_sim_attention assert torch.cuda.is_available(), 'cuda must be available' # helper functions def not_nan_or_infs(t): return not (torch.any(torch.isnan(t)) or torch.any(torch.isinf(t))) def allclose(a, b, atol = 1e-4): diff = (a - b).abs().amax() if torch.any(diff > atol): print(f'diff: {diff}') return diff <= atol def exists(t): return t is not None def maybe_cpu(t): if not exists(t): return None return t.cpu() # tests @pytest.mark.parametrize('causal,mask', [(True, False), (False, True), (False, False)]) @pytest.mark.parametrize('attn_bias', [True, False]) @pytest.mark.parametrize('seq_len', [63, 127]) @pytest.mark.parametrize('dim_head', [32, 64, 96, 128]) @pytest.mark.parametrize('float16', [False, True]) @pytest.mark.parametrize('attn_bias_batch_dim', [False, True]) @pytest.mark.parametrize('single_head_kv', [False, True]) def test_output_equal( causal, mask, attn_bias, seq_len, dim_head, float16, attn_bias_batch_dim, single_head_kv ): batch, heads = 4, 8 dtype, atol = (torch.float16, 1e-1) if float16 else (torch.float32, 1e-4) kv_shape = (batch, heads, seq_len, dim_head) if not single_head_kv else (batch, seq_len, dim_head) q = torch.randn(batch, heads, seq_len, dim_head, dtype = dtype).cuda() k = torch.randn(kv_shape, dtype = dtype).cuda() v = torch.randn(kv_shape, dtype = dtype).cuda() attn_mask = torch.randint(0, 2, (batch, seq_len), dtype = torch.bool).cuda() if mask else None bias = torch.randn(batch if attn_bias_batch_dim else heads, seq_len, seq_len, dtype = dtype).cuda() if attn_bias else None plain_output = plain_cosine_sim_attention(q, k, v, causal = causal, mask = attn_mask, attn_bias = bias, attn_bias_batch_dim = attn_bias_batch_dim) flash_output = flash_cosine_sim_attention(q, k, v, causal = causal, mask = attn_mask, attn_bias = bias, attn_bias_batch_dim = attn_bias_batch_dim) assert not_nan_or_infs(flash_output) assert allclose(plain_output, flash_output, atol = atol) @pytest.mark.parametrize('causal,mask', [(True, False), (False, True), (False, False)]) @pytest.mark.parametrize('attn_bias', [True, False]) @pytest.mark.parametrize('seq_len', [63, 127]) @pytest.mark.parametrize('dim_head', [32, 64, 96, 128]) @pytest.mark.parametrize('float16', [False, True]) @pytest.mark.parametrize('attn_bias_batch_dim', [False, True]) @pytest.mark.parametrize('single_head_kv', [False, True]) def test_grad_equal( causal, mask, attn_bias, seq_len, dim_head, float16, attn_bias_batch_dim, single_head_kv ): batch, heads = 4, 8 dtype, atol = (torch.float16, 1e-1) if float16 else (torch.float32, 1e-4) kv_shape = (batch, heads, seq_len, dim_head) q = torch.randn(batch, heads, seq_len, dim_head, dtype = dtype).cuda().requires_grad_() k = torch.randn(kv_shape, dtype = dtype).cuda().requires_grad_() v = torch.randn(kv_shape, dtype = dtype).cuda().requires_grad_() attn_mask = torch.randint(0, 2, (batch, seq_len), dtype = torch.bool).cuda() if mask else None bias = torch.randn(batch if attn_bias_batch_dim else heads, seq_len, seq_len, dtype = dtype).cuda().requires_grad_() if attn_bias else None plain_output = plain_cosine_sim_attention(q, k, v, causal = causal, mask = attn_mask, attn_bias = bias, attn_bias_batch_dim = attn_bias_batch_dim) plain_output.sum().backward() dq, dk, dv = q.grad, k.grad, v.grad db = bias.grad if attn_bias else None q.grad, k.grad, v.grad = None, None, None if attn_bias: bias.grad = None flash_output = flash_cosine_sim_attention(q, k, v, causal = causal, mask = attn_mask, attn_bias = bias, attn_bias_batch_dim = attn_bias_batch_dim) flash_output.sum().backward() fdq, fdk, fdv = q.grad, k.grad, v.grad fdb = bias.grad if attn_bias else None assert not_nan_or_infs(fdv) assert not_nan_or_infs(fdk) assert not_nan_or_infs(fdq) assert allclose(dv, fdv, atol = atol) assert allclose(dk, fdk, atol = atol) assert allclose(dq, fdq, atol = atol) if attn_bias: assert not_nan_or_infs(fdb) assert allclose(db, fdb, atol = atol) # test cpu @pytest.mark.parametrize('causal,mask', [(True, False), (False, True), (False, False)]) @pytest.mark.parametrize('attn_bias', [True, False]) @pytest.mark.parametrize('seq_len', [63, 127]) @pytest.mark.parametrize('dim_head', [32, 64, 96, 128]) @pytest.mark.parametrize('float16', [False, True]) @pytest.mark.parametrize('attn_bias_batch_dim', [False, True]) @pytest.mark.parametrize('single_head_kv', [False, True]) def test_output_equal_cuda_and_cpu_forward( causal, mask, attn_bias, seq_len, dim_head, float16, attn_bias_batch_dim, single_head_kv ): batch, heads = 4, 8 dtype, atol = (torch.float16, 1e-1) if float16 else (torch.float32, 1e-4) kv_shape = (batch, heads, seq_len, dim_head) if not single_head_kv else (batch, seq_len, dim_head) q = torch.randn(batch, heads, seq_len, dim_head, dtype = dtype).cuda() k = torch.randn(kv_shape, dtype = dtype).cuda() v = torch.randn(kv_shape, dtype = dtype).cuda() attn_mask = torch.randint(0, 2, (batch, seq_len), dtype = torch.bool).cuda() if mask else None bias = torch.randn(batch if attn_bias_batch_dim else heads, seq_len, seq_len, dtype = dtype).cuda() if attn_bias else None flash_output = flash_cosine_sim_attention(q, k, v, causal = causal, mask = attn_mask, attn_bias = bias, attn_bias_batch_dim = attn_bias_batch_dim) flash_output_cpu = flash_cosine_sim_attention(q.cpu(), k.cpu(), v.cpu(), causal = causal, mask = maybe_cpu(attn_mask), attn_bias = maybe_cpu(bias), attn_bias_batch_dim = attn_bias_batch_dim) assert allclose(flash_output.cpu(), flash_output_cpu, atol = atol)
flash-cosine-sim-attention-main
tests/test.py
__version__ = '0.1.40' __cuda_pkg_name__ = f'flash_cosine_sim_attention_cuda_{__version__.replace(".", "_")}'
flash-cosine-sim-attention-main
flash_cosine_sim_attention/version.py
import torch from torch.cuda import synchronize, Event from functools import wraps, partial timer = partial(Event, enable_timing = True) def benchmark( fn, *, num_times = 10, warmup_iters = 10, forwards = True, backwards = False ): assert forwards or backwards @wraps(fn) def inner(*args, **kwargs): # warmup for _ in range(warmup_iters): loss = fn(*args, **kwargs) if backwards: loss.sum().backward() # average across number of function calls all_measured_times_ms = 0. for _ in range(num_times): start_event = timer() end_event = timer() if forwards: start_event.record() o = fn(*args, **kwargs) if not backwards: end_event.record() if not forwards: start_event.record() if backwards: loss = o.sum() loss.backward() end_event.record() synchronize() elapsed_time_ms = start_event.elapsed_time(end_event) all_measured_times_ms += elapsed_time_ms return all_measured_times_ms / num_times return inner
flash-cosine-sim-attention-main
flash_cosine_sim_attention/benchmark.py
from flash_cosine_sim_attention.flash_cosine_sim_attention import flash_cosine_sim_attention, plain_cosine_sim_attention, l2norm_tensors, debug
flash-cosine-sim-attention-main
flash_cosine_sim_attention/__init__.py
import torch from functools import partial from torch import nn, einsum import torch.nn.functional as F try: from einops import rearrange except ImportError: print('pip install einops to use transformer') from flash_cosine_sim_attention.flash_cosine_sim_attention import plain_cosine_sim_attention, flash_cosine_sim_attention # helper function def exists(val): return val is not None def init_weight_xavier_normal_(module, beta): nn.init.xavier_normal_(module.weight.data, gain = beta) def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner def non_cosine_sim_attn_fn(q, k, v, **kwargs): q = q * (q.shape[-1] ** -0.5) sim = einsum('b h i d, b h j d -> b h i j', q, k) i, j = sim.shape[-2:] causal_mask = torch.ones((i, j), dtype = torch.bool, device = q.device).triu(j - i + 1) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) attn = sim.softmax(dim = -1) return einsum('b h i j, b h j d -> b h i d', attn, v) # top k filtering def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs # attention and feedforward def FeedForward(dim, mult = 4, pre_norm = False): dim_hidden = int(dim * mult) return nn.Sequential( nn.LayerNorm(dim) if pre_norm else nn.Identity(), nn.Linear(dim, dim_hidden, bias = False), nn.GELU(), nn.Linear(dim_hidden, dim, bias = False) ) class Attention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, scale = 8, l2norm_groups = 1, pre_norm = False, use_cuda_kernel = False, non_cosine_sim_attn = False, **kwargs ): super().__init__() inner_dim = dim_head * heads self.norm = nn.LayerNorm(dim) if pre_norm else nn.Identity() self.scale = scale self.heads = heads self.l2norm_groups = l2norm_groups if non_cosine_sim_attn: self.attn_fn = non_cosine_sim_attn_fn elif use_cuda_kernel: self.attn_fn = partial(flash_cosine_sim_attention, **kwargs) else: self.attn_fn = plain_cosine_sim_attention self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_k = nn.Linear(dim, inner_dim, bias = False) self.to_v = nn.Linear(dim, inner_dim, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): h, scale, l2norm_groups = self.heads, self.scale, self.l2norm_groups x = self.norm(x) q, k, v = self.to_q(x), self.to_k(x), self.to_v(x) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) o = self.attn_fn(q, k, v, causal = True, scale = scale, groups = l2norm_groups) o = rearrange(o, 'b h n d -> b n (h d)') return self.to_out(o) # transformer for testing class CosineSimCausalTransformer(nn.Module): def __init__( self, *, num_tokens, dim, max_seq_len, depth, attn_scale = 8, attn_l2norm_groups = 1, heads = 8, dim_head = 64, use_cuda_kernel = False, pre_norm = False, non_cosine_sim_attn = False, **kwargs ): super().__init__() self.max_seq_len = max_seq_len self.token_emb = nn.Embedding(num_tokens, dim) self.pos_emb = nn.Embedding(max_seq_len, dim) self.residual_scale = 1 if pre_norm else ((2 * depth) ** 0.25) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, dim_head = dim_head, heads = heads, use_cuda_kernel= use_cuda_kernel, scale = attn_scale, groups = attn_l2norm_groups, pre_norm = pre_norm, non_cosine_sim_attn = non_cosine_sim_attn, **kwargs), nn.LayerNorm(dim) if not pre_norm else nn.Identity(), FeedForward(dim, pre_norm = pre_norm), nn.LayerNorm(dim) if not pre_norm else nn.Identity(), ])) self.to_logits = nn.Sequential( nn.LayerNorm(dim) if pre_norm else nn.Identity(), nn.Linear(dim, num_tokens, bias = False) ) if not pre_norm: self.init_(depth) def init_(self, depth): nn.init.normal_(self.token_emb.weight, std = 1e-5) nn.init.normal_(self.pos_emb.weight, std = 1e-5) init_gain = (8 * depth) ** -0.25 for attn, _, ff, _ in self.layers: init_weight_xavier_normal_(attn.to_q, 1.) init_weight_xavier_normal_(attn.to_k, 1.) init_weight_xavier_normal_(attn.to_v, init_gain) init_weight_xavier_normal_(attn.to_out, init_gain) init_weight_xavier_normal_(ff[1], init_gain) init_weight_xavier_normal_(ff[3], init_gain) init_weight_xavier_normal_(self.to_logits[-1], 1) @torch.no_grad() @eval_decorator def generate(self, start_tokens, seq_len, temperature = 1., filter_thres = 0.9, **kwargs): b, n, device = *start_tokens.shape, start_tokens.device out = start_tokens for _ in range(seq_len): logits = self.forward(out[:, -self.max_seq_len:], **kwargs)[:, -1, :] filtered_logits = top_k(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim = -1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim = -1) return out[:, n:] def forward(self, x, return_loss = False): if return_loss: x, labels = x[:, :-1], x[:, 1:] x = self.token_emb(x) x = x + self.pos_emb(torch.arange(x.shape[1], device = x.device)) for attn, attn_norm, ff, ff_norm in self.layers: x = attn(x) + x * self.residual_scale x = attn_norm(x) x = ff(x) + x * self.residual_scale x = ff_norm(x) logits = self.to_logits(x) if not return_loss: return logits loss = F.cross_entropy(rearrange(logits, 'b c n -> b n c'), labels) return loss
flash-cosine-sim-attention-main
flash_cosine_sim_attention/transformer.py
import os import math import importlib from functools import partial, wraps import torch from torch import einsum import torch.nn.functional as F from torch.autograd import Function exec(open(os.path.dirname(os.path.abspath(__file__)) + '/version.py').read()) # try to import cuda try: cuda_pkg = importlib.import_module(__cuda_pkg_name__) forward = cuda_pkg.forward backward = cuda_pkg.backward debug = cuda_pkg.debug except ImportError: print('CUDA extension for flash-cosine-sim-attention was not compiled correctly - please run `pip install flash-cosine-sim-attention --force-reinstall --no-cache-dir`') # helper functions def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def divisible_by(numer, denom): return (numer % denom) == 0 def l2norm_cpu(t): eps = 1e-12 if t.dtype == torch.float32 else 1e-3 norm = t.norm(dim = -1) norm_clamped = torch.where(norm > eps, norm, eps) return t / norm_clamped[..., None] def l2norm(t): if t.data.is_cuda: return F.normalize(t, dim = -1) return l2norm_cpu(t) def grouped_l2norm(t, groups = 1): shape = t.shape dim = shape[-1] t = t.reshape(*shape[:-1], groups, dim // groups) t = l2norm(t) return t.reshape(shape) def l2norm_tensors(*tensors, groups = 1): assert len(tensors) > 0 dtype = tensors[0].dtype fn = partial(grouped_l2norm, groups = groups) tensors = tuple(map(fn, tensors)) tensors = tuple(map(lambda t: t.type(dtype), tensors)) return tensors # original cosine sim attention # b - batch # h - heads # i - src sequence length # j - target sequence length # d - feature dimension def plain_cosine_sim_attention( q, k, v, mask = None, attn_bias = None, scale = 8, groups = 1, causal = False, l2norm_qk = True, attn_bias_batch_dim = False ): assert not (causal and exists(mask)), 'mask should not be supplied if causality is needed' is_merged_batch_heads_query = q.ndim == 3 single_head_kv = k.ndim == 3 if is_merged_batch_heads_query: assert k.ndim == 3 and v.ndim ==3, 'if batch and heads are merged for queries, keys and values must also similarly have only 3 dimensions' attn_bias_batch_dim = True q = q[:, None, ...] if l2norm_qk: q, k = l2norm_tensors(q, k, groups = groups) kv_einsum_eq = 'b j d' if single_head_kv else 'b h j d' sim = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) sim = sim * scale if exists(attn_bias): attn_bias = attn_bias.unsqueeze(1 if attn_bias_batch_dim else 0) sim = sim + attn_bias mask_value = -torch.finfo(sim.dtype).max if causal: i, j = sim.shape[-2:] causal_mask = torch.ones((i, j), device = q.device, dtype = torch.bool).triu(j - i + 1) sim = sim.masked_fill(causal_mask, mask_value) if exists(mask): sim = sim.masked_fill(~mask[:, None, None, :], mask_value) attn = sim.softmax(dim = -1) out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) if is_merged_batch_heads_query: out = out.squeeze(1) return out # cpu forwards def flash_cosine_sim_attention_cpu( q, k, v, mask, attn_bias, scale, causal, attn_bias_batch_dim, row_tile_size = 512, col_tile_size = 512 ): needs_backwards = any([exists(t) and t.requires_grad for t in (q, k, v, attn_bias)]) assert not needs_backwards, 'cpu version does not support backwards' assert not (causal and exists(mask)), 'mask should not be supplied if causality is needed' dtype = q.dtype q, k, v = q.float(), k.float(), v.float() is_merged_batch_heads_query = q.ndim == 3 single_head_kv = k.ndim == 3 shape = q.shape col_seq_len = k.shape[-2] row_seq_len = q.shape[-2] seq_len_diff = col_seq_len - row_seq_len row_tiles = math.ceil(row_seq_len / row_tile_size) col_tiles = math.ceil(col_seq_len / col_tile_size) max_neg_value = -torch.finfo(q.dtype).max if is_merged_batch_heads_query: assert k.ndim == 3 and v.ndim ==3, 'if batch and heads are merged for queries, keys and values must also similarly have only 3 dimensions' attn_bias_batch_dim = True q = q.unsqueeze(1) if exists(attn_bias): attn_bias = attn_bias.unsqueeze(1 if attn_bias_batch_dim else 0) kv_einsum_eq = 'b j d' if single_head_kv else 'b h j d' # loop over rows and columns o = torch.zeros_like(q) l = torch.zeros((*q.shape[:-1], 1)) # prepare mask if not exists(mask): mask = (None,) * col_tiles else: mask = mask[:, None, None, :] mask = mask.split(col_tile_size, dim = -1) if not exists(attn_bias): attn_bias = (None,) * row_tiles else: attn_bias = attn_bias.split(row_tile_size, dim = -2) row_splits = zip( q.split(row_tile_size, dim = -2), o.split(row_tile_size, dim = -2), l.split(row_tile_size, dim = -2), attn_bias ) for ind, (qc, oc, lc, bc) in enumerate(row_splits): row_chunk_size = qc.shape[-2] q_start_index = ind * row_tile_size + seq_len_diff if not exists(bc): bc = (None,) * col_tiles else: bc = bc.split(col_tile_size, dim = -1) col_splits = zip( k.split(col_tile_size, dim = -2), v.split(col_tile_size, dim = -2), mask, bc ) for k_ind, (kc, vc, maskc, bias) in enumerate(col_splits): col_chunk_size = kc.shape[-2] k_start_index = k_ind * col_tile_size if causal and q_start_index >= (k_start_index + col_tile_size - 1): continue attn_weights = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', qc, kc) * scale if exists(bias): attn_weights += bias if exists(maskc): attn_weights.masked_fill_(~maskc, max_neg_value) if causal and q_start_index < (k_start_index + col_tile_size - 1): causal_mask = torch.ones((row_chunk_size, col_chunk_size), dtype = torch.bool).triu(q_start_index - k_start_index + 1) attn_weights.masked_fill_(causal_mask, max_neg_value) exp_weights = torch.exp(attn_weights - scale) if exists(maskc): exp_weights.masked_fill_(~maskc, 0.) exp_values = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', exp_weights, vc) oc.add_(exp_values) lc.add_(exp_weights.sum(dim = -1, keepdim = True)) o.div_(l.clamp(min = 1e-12)) return o.reshape(shape).type(dtype) # main class class FlashCosineSimAttention(Function): @staticmethod def forward( ctx, q, k, v, mask, attn_bias, scale, causal, attn_bias_batch_dim ): o, inv_l, should_backwards = forward( q, k, v, mask, attn_bias, attn_bias_batch_dim, scale, causal ) if not should_backwards: return o ctx.should_backwards = should_backwards ctx.save_for_backward(o, inv_l, q, k, v, mask, attn_bias) ctx.params = ( scale, causal, attn_bias_batch_dim ) return o @staticmethod def backward(ctx, do): assert ctx.should_backwards o, inv_l, q, k, v, mask, attn_bias = ctx.saved_tensors ( scale, causal, attn_bias_batch_dim ) = ctx.params dq, dk, dv, db = backward( do, o, inv_l, q, k, v, mask, attn_bias, attn_bias_batch_dim, scale, causal ) return dq, dk, dv, None, db, None, None, None, None, None, None, None, None, None, None flash_cosine_sim_attention_cuda = FlashCosineSimAttention.apply # wrapper function def flash_cosine_sim_attention( q, k, v, mask = None, attn_bias = None, scale = 8, groups = 1, causal = False, l2norm_qk = True, attn_bias_batch_dim = False ): if l2norm_qk: q, k = l2norm_tensors(q, k, groups = groups) fn = flash_cosine_sim_attention_cuda if q.data.is_cuda else flash_cosine_sim_attention_cpu o = fn( q, k, v, mask, attn_bias, scale, causal, attn_bias_batch_dim ) return o
flash-cosine-sim-attention-main
flash_cosine_sim_attention/flash_cosine_sim_attention.py
from setuptools import setup, find_packages setup( name = 'marge-pytorch', packages = find_packages(), version = '0.2.9', license='MIT', description = 'Marge - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/marge-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'transformers', 'pre-training' ], install_requires=[ 'einops>=0.3', 'faiss-gpu', 'numpy', 'torch>=1.6', 'tqdm' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
marge-pytorch-master
setup.py
from functools import partial import torch import random from torch import nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence def default(value, default): return value if value is not None else default def log(t, eps=1e-9): return torch.log(t + eps) def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > 1.0 - thres sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs class AutoregressiveWrapper(nn.Module): def __init__(self, net, ignore_index = None, pad_value = 0): super().__init__() self.pad_value = pad_value self.ignore_index = default(ignore_index, pad_value) self.net = net self.max_seq_len = net.max_seq_len @torch.no_grad() def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, **kwargs): was_training = self.net.training num_dims = len(start_tokens.shape) if num_dims == 1: start_tokens = start_tokens[None, :] b, t = start_tokens.shape self.net.eval() out = start_tokens input_mask = kwargs.pop('src_mask', None) if input_mask is None: input_mask = torch.full_like(out, True, dtype=torch.bool, device=out.device) for _ in range(seq_len): x = out[:, -self.max_seq_len:] input_mask = input_mask[:, -self.max_seq_len:] logits, *_ = self.net(x, src_mask=input_mask, **kwargs) logits = logits[:, -1, :] filtered_logits = filter_logits_fn(logits, thres = filter_thres) gumbel_noise = -log(-log(torch.zeros_like(filtered_logits).uniform_(0, 1))) sample = ((filtered_logits / temperature) + gumbel_noise).argmax(dim=-1) out = torch.cat((out, sample[:, None]), dim=-1) input_mask = F.pad(input_mask, (1, 0), value=True) if eos_token is not None and (sample == eos_token).all(): break out = out[:, t:] if num_dims == 1: out = out.squeeze(0) self.net.train(was_training) return out def forward(self, x, *args, **kwargs): pad = partial(pad_sequence, batch_first = True, padding_value = self.pad_value) m = kwargs.pop('input_mask', None) xi, xo = x[:, :-1], x[:, 1:] if m is not None: assert m.shape == x.shape[0:2], 'input mask must be the same shape as the input of the auto-regressive wrapper to automatically handle' kwargs.update(input_mask = m[:, :-1]) out, *rest = self.net(xi, *args, **kwargs) loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index) return (loss, *rest)
marge-pytorch-master
marge_pytorch/autoregressive_wrapper.py
from marge_pytorch.marge_pytorch import Marge, TrainingWrapper from marge_pytorch.autoregressive_wrapper import AutoregressiveWrapper
marge-pytorch-master
marge_pytorch/__init__.py
import faiss import math import numpy as np from tqdm import tqdm from einops import rearrange, repeat from functools import partial from contextlib import contextmanager import torch from torch.utils.data import Dataset, DataLoader from torch import nn, einsum import torch.nn.functional as F from marge_pytorch.autoregressive_wrapper import AutoregressiveWrapper # helpers def identity(x, *args, **kwargs): return x def exists(x): return x is not None def default(x, d): return x if exists(x) else d def chunk(chunk_size, l): for lo in range(0, l, chunk_size): hi = min(l, lo + chunk_size) yield slice(lo, hi) def max_neg_value(tensor): return -torch.finfo(tensor.dtype).max @contextmanager def memmap(*args, **kwargs): pointer = np.memmap(*args, **kwargs) yield pointer del pointer # attention distillation loss def distill_attn_loss(evi_dots, doc_similarities, mask = None, eps = 1e-5): evi_dots = rearrange(evi_dots, 'b l h i n j -> b (l h i) n j') if exists(mask): mask = rearrange(mask, 'b n j -> b () n j') evi_dots.masked_fill_(~mask, 0.) denom = mask.expand_as(evi_dots).sum(dim = (1, -1)) evi_dots_mean = evi_dots.sum(dim = (1, -1)) / (denom + eps) else: evi_dots_mean = evi_dots.mean(dim = (1, -1)) normed_evi_dots = evi_dots_mean.softmax(dim = -1) normed_evi_dots.detach_() doc_similarities = doc_similarities.softmax(dim = -1).log() loss = F.kl_div(doc_similarities, normed_evi_dots, reduction = 'batchmean') return loss # helper classes class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, *args, **kwargs): x = self.norm(x) return self.fn(x, *args, **kwargs) class GEGLU(nn.Module): def forward(self, x): x, gates = x.chunk(2, dim = -1) return F.gelu(gates) * x class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() # to keep the number of parameters / computation constant with respect to non-GLU variant mult = int(mult / 3 * 2) self.net = nn.Sequential( nn.Linear(dim, dim * mult * 2), GEGLU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) def forward(self, x): return self.net(x) class SelfAttention(nn.Module): def __init__(self, dim, heads = 8, causal = True, dropout = 0.): super().__init__() self.scale = dim ** -0.5 self.heads = heads self.causal = causal self.to_qkv = nn.Linear(dim, dim * 3, bias = False) self.to_out = nn.Linear(dim, dim) self.dropout = nn.Dropout(dropout) def forward(self, x, mask = None): _, n, _, h, device = *x.shape, self.heads, x.device qkv = self.to_qkv(x) q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', h = h, qkv = 3) dots = einsum('bhid,bhjd->bhij', q, k) * self.scale mask_value = max_neg_value(dots) if exists(mask): mask = mask[:, None, :, None] * mask[:, None, None, :] dots.masked_fill_(~mask, mask_value) del mask if self.causal: causal_mask = torch.ones(n, n, device=device).triu_(1).bool() dots.masked_fill_(causal_mask, mask_value) del causal_mask attn = dots.softmax(dim=-1) attn = self.dropout(attn) out = einsum('bhij,bhjd->bhid', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out class CrossAttention(nn.Module): def __init__(self, dim, heads = 8, dropout = 0.): super().__init__() self.scale = dim ** -0.5 self.heads = heads self.to_q = nn.Linear(dim, dim, bias = False) self.to_kv = nn.Linear(dim, dim * 2, bias = False) self.beta = nn.Parameter(torch.tensor(1.), requires_grad=True) self.to_out = nn.Linear(dim, dim) self.dropout = nn.Dropout(dropout) def forward(self, x, context, doc_similarities, mask = None, context_mask = None): b, n, _, h, device = *x.shape, self.heads, x.device q = self.to_q(x) q = rearrange(q, 'b n (h d) -> b h n d', h = h) context_len = context.shape[2] context = rearrange(context, 'b m n d -> b (m n) d') context_mask = rearrange(context_mask, 'b m n -> b (m n)') if exists(context_mask) else None doc_similarities = repeat(doc_similarities, 'b m -> b m n', n=context_len) doc_similarities = rearrange(doc_similarities, 'b m n -> b (m n)') doc_similarities = doc_similarities[:, None, None, :] * self.beta kv = self.to_kv(context) k, v = rearrange(kv, 'b n (kv h d) -> kv b h n d', h = h, kv = 2) dots = einsum('bhid,bhjd->bhij', q, k) * self.scale pre_attn_dots = dots dots = dots + doc_similarities if any(map(exists, (mask, context_mask))): if not exists(mask): mask = torch.full((b, n), True, dtype=torch.bool, device=device) if not exists(context_mask): context_mask = torch.full(context.shape[:2], True, dtype=torch.bool, device=device) cross_mask = mask[:, None, :, None] * context_mask[:, None, None, :] mask_value = max_neg_value(dots) dots.masked_fill_(~cross_mask, mask_value) del cross_mask attn = dots.softmax(dim=-1) attn = self.dropout(attn) out = einsum('bhij,bhjd->bhid', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out, pre_attn_dots class Encoder(nn.Module): def __init__(self, dim, depth, retrieval_depth = 4, heads = 8, ff_mult = 4, attn_dropout = 0., ff_dropout = 0.): super().__init__() assert depth > retrieval_depth, f'Depth must be at least the depth set for the retrieval encoder ({retrieval_depth})' block = lambda: nn.ModuleList([ PreNorm(dim, SelfAttention(dim, causal=False, dropout = attn_dropout)), PreNorm(dim, FeedForward(dim, mult = ff_mult)) ]) self.cls = nn.Parameter(torch.zeros(1, dim), requires_grad=True) self.encoder_head = nn.ModuleList([]) self.encoder_tail = nn.ModuleList([]) for _ in range(retrieval_depth): self.encoder_head.append(block()) for _ in range(depth - retrieval_depth): self.encoder_tail.append(block()) def forward(self, x, src_mask = None, return_embed_only = False): b, _, _ = x.shape # append cls token cls_token = repeat(self.cls, 'n d -> b n d', b=b) x = torch.cat((cls_token, x), dim=1) src_mask = F.pad(src_mask, (1, 0), value=True) if exists(src_mask) else None for attn, ff in self.encoder_head: x = attn(x, mask = src_mask) + x x = ff(x) + x cls_tokens = x[:, 0] if return_embed_only: return cls_tokens, None for attn, ff in self.encoder_tail: x = attn(x, mask = src_mask) + x x = ff(x) + x return x[:, 1:], cls_tokens class Decoder(nn.Module): def __init__(self, dim, depth, head_depth = 4, heads = 8, ff_mult = 4, attn_dropout = 0., ff_dropout = 0.): super().__init__() self.decoder_head = nn.ModuleList([]) self.decoder_tail = nn.ModuleList([]) for _ in range(head_depth): self.decoder_head.append(nn.ModuleList([ PreNorm(dim, SelfAttention(dim, causal = True, dropout = attn_dropout)), PreNorm(dim, FeedForward(dim)) ])) for _ in range(depth - head_depth): self.decoder_tail.append(nn.ModuleList([ PreNorm(dim, SelfAttention(dim, causal = True, dropout = attn_dropout)), PreNorm(dim, FeedForward(dim)), PreNorm(dim, CrossAttention(dim, dropout = attn_dropout)), PreNorm(dim, FeedForward(dim, mult = ff_mult)) ])) def forward(self, x, *, context, similarities, src_mask = None, context_mask = None): for self_attn, self_ff in self.decoder_head: x = self_attn(x, mask = src_mask) + x x = self_ff(x) + x cross_pre_attns = [] for self_attn, self_ff, cross_attn, cross_ff in self.decoder_tail: x = self_attn(x, mask = src_mask) + x x = self_ff(x) + x x_out, attn = cross_attn(x, context, similarities, mask = src_mask, context_mask = context_mask) x = x_out + x x = cross_ff(x) + x cross_pre_attns.append(attn) return x, cross_pre_attns class TransformerWrapper(nn.Module): def __init__(self, num_tokens, dim, max_seq_len, layers, return_logits = False): super().__init__() self.token_emb = nn.Embedding(num_tokens, dim) self.pos_emb = nn.Embedding(max_seq_len, dim) self.max_seq_len = max_seq_len self.layers = layers self.to_logits = nn.Linear(dim, num_tokens) if return_logits else identity def forward(self, x, *args, **kwargs): b, n, device = *x.shape, x.device assert n <= self.max_seq_len, f'your sequence length {n} needs to be less than or equal to the max sequence length {self.max_seq_len}' x = self.token_emb(x) x += self.pos_emb(torch.arange(n, device=device)) x, *out = self.layers(x, *args, **kwargs) return (self.to_logits(x), *out) class Marge(nn.Module): def __init__( self, dim, num_tokens = 20000, max_seq_len = 1024, enc_depth = 12, enc_retrieval_depth = 4, enc_heads = 8, enc_ff_mult = 4, enc_attn_dropout = 0., enc_ff_dropout = 0., dec_depth = 12, dec_heads = 8, dec_ff_mult = 16, dec_attn_dropout = 0., dec_ff_dropout = 0., distill_attn = False, distill_loss_coef = 1. ): super().__init__() self.dim = dim self.encoder = TransformerWrapper(num_tokens, dim, max_seq_len, Encoder(dim, depth = enc_depth, retrieval_depth = enc_retrieval_depth, heads = enc_heads, ff_mult = enc_ff_mult, attn_dropout = enc_attn_dropout, ff_dropout = enc_ff_dropout)) self.decoder = TransformerWrapper(num_tokens, dim, max_seq_len, Decoder(dim, depth = dec_depth, heads = dec_heads, ff_mult = dec_ff_mult, attn_dropout = dec_attn_dropout, ff_dropout = dec_ff_dropout), return_logits = True) self.encoder.token_emb = self.decoder.token_emb self.decoder = AutoregressiveWrapper(self.decoder) # experimental attn distillation settings self.distill_attn = distill_attn self.distill_loss_coef = distill_loss_coef def get_embeds(self, documents, batch_size = 16, masks = None): embeds = [] batched_documents = documents.split(batch_size) batched_masks = masks.split(batch_size) if exists(masks) else ([None] * len(batched_documents)) for docs, mask in zip(batched_documents, batched_masks): embed, *_ = self.encoder(docs, src_mask = mask, return_embed_only = True) embeds.append(embed) embeds = torch.cat(embeds) return F.normalize(embeds, dim=-1) @torch.no_grad() def generate(self, prime, seq_len, evidence, mask = None, similarities = None): b, num_evidences, *_ = evidence.shape evidence = rearrange(evidence, 'b m n -> (b m) n') enc_src_mask = rearrange(mask, 'b m n -> (b m) n') if exists(mask) else None encodings, evidence_embeds = self.encoder(evidence, src_mask = enc_src_mask) encodings = rearrange(encodings, '(b m) n d -> b m n d', m = num_evidences) similarities = similarities if exists(similarities) else torch.ones((b, num_evidences)).float().cuda() context_mask = F.pad(mask, (1, 0), value = True) if exists(mask) else None return self.decoder.generate(prime, seq_len, context = encodings, similarities = similarities, context_mask = context_mask) def forward(self, evidence, target, target_embeds, src_mask = None, tgt_mask = None): num_evidences = evidence.shape[1] evidence = rearrange(evidence, 'b m n -> (b m) n') enc_src_mask = rearrange(src_mask, 'b m n -> (b m) n') if exists(src_mask) else None encodings, evidence_embeds = self.encoder(evidence, src_mask = enc_src_mask) encodings = rearrange(encodings, '(b m) n d -> b m n d', m = num_evidences) evidence_embeds = rearrange(evidence_embeds, '(b m) d -> b m d', m = num_evidences) similarities = einsum('bmd,bd->bm', evidence_embeds, target_embeds) dec_src_mask = tgt_mask[:, :-1] if exists(tgt_mask) else None loss, cross_attns = self.decoder(target, context = encodings, similarities = similarities, src_mask = dec_src_mask, context_mask = src_mask) if self.distill_attn: cross_attns = torch.stack(cross_attns, dim = 1) cross_attns = rearrange(cross_attns, 'b l h i (n j) -> b l h i n j', n = num_evidences) distill_loss = distill_attn_loss(cross_attns, similarities, mask = src_mask) aux_loss = self.distill_loss_coef * distill_loss loss = loss + aux_loss return loss # training related classes def remove_target_from_evidence(evidence_ids, target_ids): b, n = evidence_ids.shape match_mask = evidence_ids == target_ids[:, None] rows_without_matches = (match_mask.sum(axis=-1) == 0)[:, None] remove_mask = np.concatenate((np.full((b, n - 1), False), rows_without_matches), axis=1) mask = match_mask + remove_mask filtered_ids = evidence_ids[~mask] return filtered_ids.reshape(b, n - 1) class DocumentDataset(Dataset): def __init__(self, num_docs, doc_seq_len, num_evidences, documents_path, masks_path, num_targets, target_seq_len, target_path, target_masks_path): super().__init__() self.shape = (num_docs, doc_seq_len) self.target_shape = (num_targets, target_seq_len) self.knn_shape = (num_targets, num_evidences) self.documents = np.memmap(documents_path, dtype=np.int32, shape=self.shape) self.targets = np.memmap(target_path, dtype=np.int32, shape=self.target_shape) self.masks = np.memmap(masks_path, dtype=np.bool, shape=self.shape) if exists(masks_path) else None self.target_masks = np.memmap(target_masks_path, dtype=np.bool, shape=self.target_shape) if exists(target_masks_path) else None self.knn = None def set_knn_path(self, path): if exists(self.knn): del self.knn self.knn = np.memmap(path, dtype=np.int32, shape=self.knn_shape) def __len__(self): return self.target_shape[0] def __getitem__(self, ind): assert exists(self.knn), 'The memmap path to the generated k nearest neighbors for evidences must be set for the dataset' target_data = torch.from_numpy(self.targets[ind, :]).long() target_masks = torch.from_numpy(self.target_masks[ind, :]) if exists(self.target_masks) else torch.ones_like(target_data).bool() evidence_ids = self.knn[ind, :] evidence_data = torch.from_numpy(self.documents[evidence_ids, :]).long() evidence_masks = torch.from_numpy(self.masks[evidence_ids, :]) if exists(self.masks) else torch.ones_like(evidence_data).bool() return target_data.cuda(), target_masks.cuda(), evidence_data.cuda(), evidence_masks.cuda() class FaissANN(): def __init__( self, dim, num_documents, num_subvectors = 16, hnsw_m = 32, nbits = 8 ): super().__init__() nlist = math.floor(math.sqrt(num_documents)) quantizer = faiss.IndexHNSWFlat(dim, hnsw_m) index = faiss.IndexIVFPQ(quantizer, dim, nlist, num_subvectors, nbits) self.index = faiss.index_cpu_to_all_gpus(index) self.num_training = max(nlist * 10, 256) def reset(self): return self.index.reset() def train(self, x): return self.index.train(x) def add(self, x): return self.index.add(x) def search(self, x, topk, nprobe=8): self.index.nprobe = nprobe return self.index.search(x, k=topk) class TrainingWrapper(nn.Module): def __init__( self, model, *, num_documents, doc_seq_len, documents_memmap_path, masks_memmap_path = None, num_targets = None, target_seq_len = None, target_memmap_path = None, target_masks_memmap_path = None, num_evidence = 4, reindex_batch_size = 4, use_faiss_ann = False ): super().__init__() self.dim = model.dim self.num_evidence = num_evidence self.model = model.cuda() self.num_docs = num_documents num_targets = default(num_targets, num_documents) self.num_targets = num_targets self.doc_shape = (num_documents, doc_seq_len) self.documents_path = documents_memmap_path self.separate_target_and_evidence = exists(target_memmap_path) if self.separate_target_and_evidence: assert exists(num_targets), 'number of target documents must be defined if target document set is different than evidence document set' assert exists(target_seq_len), 'target sequence length must be specified' else: target_memmap_path = default(target_memmap_path, documents_memmap_path) target_masks_memmap_path = default(target_masks_memmap_path, masks_memmap_path) target_seq_len = default(target_seq_len, doc_seq_len) self.target_shape = (num_targets, target_seq_len) self.target_path = target_memmap_path self.knn_path = f'{self.documents_path}.knn' self.use_faiss_ann = use_faiss_ann if use_faiss_ann: self.index = FaissANN(self.dim, self.num_docs) else: index = faiss.IndexFlatL2(self.dim) self.index = faiss.index_cpu_to_all_gpus(index) self.reindex_batch_size = reindex_batch_size self.reindex() self.dataset = DocumentDataset( num_documents, doc_seq_len, num_evidence, documents_memmap_path, masks_memmap_path, num_targets, target_seq_len, target_memmap_path, target_masks_memmap_path ) self.dataset.set_knn_path(self.knn_path) def get_dataset(self): return self.dataset @torch.no_grad() def reindex(self): batch_size = self.reindex_batch_size def get_embeds(data): embeds = self.model.get_embeds(data, batch_size = batch_size) return embeds.detach().cpu().numpy() with memmap(self.documents_path, dtype=np.int32, shape=self.doc_shape) as (doc_pointer ), memmap(self.target_path, dtype=np.int32, shape=self.target_shape) as (target_pointer ), memmap(self.knn_path, dtype=np.int32, shape=(self.num_docs, self.num_evidence), mode='w+') as knn_writer: if self.use_faiss_ann: random_indices = np.random.permutation(self.num_docs)[:self.index.num_training] np_data = torch.from_numpy(doc_pointer[random_indices]).cuda().long() train_embeds = get_embeds(np_data) self.index.train(train_embeds) total_evidence_chunks = math.ceil(self.num_docs / batch_size) for data_slice in tqdm(chunk(batch_size, self.num_docs), total=total_evidence_chunks, desc='Adding embedding to indexes'): np_data = torch.from_numpy(doc_pointer[data_slice, :]).cuda().long() embeds = get_embeds(np_data) self.index.add(embeds) total_target_chunks = math.ceil(self.num_targets / batch_size) for data_slice in tqdm(chunk(batch_size, self.num_targets), total=total_target_chunks, desc='Fetching and storing nearest neighbors'): np_data = torch.from_numpy(target_pointer[data_slice, :]).cuda().long() embeds = get_embeds(np_data) fetch_num_evidences = self.num_evidence + (0 if self.separate_target_and_evidence else 1) _, evidence_ids = self.index.search(embeds, fetch_num_evidences) target_ids = np.arange(data_slice.start, data_slice.stop) if not self.separate_target_and_evidence: evidence_ids = remove_target_from_evidence(evidence_ids, target_ids) knn_writer[data_slice, :] = evidence_ids self.index.reset() print('reindexing complete') def forward(self, data): targets, target_masks, evidences, evidence_masks = data target_embeds = self.model.get_embeds(targets, masks = target_masks) loss = self.model(evidences, targets, target_embeds, src_mask = evidence_masks, tgt_mask = target_masks) return loss
marge-pytorch-master
marge_pytorch/marge_pytorch.py
from setuptools import setup, find_packages setup( name = 'deformable-attention', packages = find_packages(exclude=[]), version = '0.0.18', license='MIT', description = 'Deformable Attention - from the paper "Vision Transformer with Deformable Attention"', long_description_content_type = 'text/markdown', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/deformable-attention', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism' ], install_requires=[ 'einops>=0.4', 'torch>=1.10' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
deformable-attention-main
setup.py
import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def divisible_by(numer, denom): return (numer % denom) == 0 # tensor helpers def create_grid_like(t, dim = 0): h, w, device = *t.shape[-2:], t.device grid = torch.stack(torch.meshgrid( torch.arange(w, device = device), torch.arange(h, device = device), indexing = 'xy'), dim = dim) grid.requires_grad = False grid = grid.type_as(t) return grid def normalize_grid(grid, dim = 1, out_dim = -1): # normalizes a grid to range from -1 to 1 h, w = grid.shape[-2:] grid_h, grid_w = grid.unbind(dim = dim) grid_h = 2.0 * grid_h / max(h - 1, 1) - 1.0 grid_w = 2.0 * grid_w / max(w - 1, 1) - 1.0 return torch.stack((grid_h, grid_w), dim = out_dim) class Scale(nn.Module): def __init__(self, scale): super().__init__() self.scale = scale def forward(self, x): return x * self.scale # continuous positional bias from SwinV2 class CPB(nn.Module): """ https://arxiv.org/abs/2111.09883v1 """ def __init__(self, dim, *, heads, offset_groups, depth): super().__init__() self.heads = heads self.offset_groups = offset_groups self.mlp = nn.ModuleList([]) self.mlp.append(nn.Sequential( nn.Linear(2, dim), nn.ReLU() )) for _ in range(depth - 1): self.mlp.append(nn.Sequential( nn.Linear(dim, dim), nn.ReLU() )) self.mlp.append(nn.Linear(dim, heads // offset_groups)) def forward(self, grid_q, grid_kv): device, dtype = grid_q.device, grid_kv.dtype grid_q = rearrange(grid_q, 'h w c -> 1 (h w) c') grid_kv = rearrange(grid_kv, 'b h w c -> b (h w) c') pos = rearrange(grid_q, 'b i c -> b i 1 c') - rearrange(grid_kv, 'b j c -> b 1 j c') bias = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1) for layer in self.mlp: bias = layer(bias) bias = rearrange(bias, '(b g) i j o -> b (g o) i j', g = self.offset_groups) return bias # main class class DeformableAttention2D(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, dropout = 0., downsample_factor = 4, offset_scale = None, offset_groups = None, offset_kernel_size = 6, group_queries = True, group_key_values = True ): super().__init__() offset_scale = default(offset_scale, downsample_factor) assert offset_kernel_size >= downsample_factor, 'offset kernel size must be greater than or equal to the downsample factor' assert divisible_by(offset_kernel_size - downsample_factor, 2) offset_groups = default(offset_groups, heads) assert divisible_by(heads, offset_groups) inner_dim = dim_head * heads self.scale = dim_head ** -0.5 self.heads = heads self.offset_groups = offset_groups offset_dims = inner_dim // offset_groups self.downsample_factor = downsample_factor self.to_offsets = nn.Sequential( nn.Conv2d(offset_dims, offset_dims, offset_kernel_size, groups = offset_dims, stride = downsample_factor, padding = (offset_kernel_size - downsample_factor) // 2), nn.GELU(), nn.Conv2d(offset_dims, 2, 1, bias = False), nn.Tanh(), Scale(offset_scale) ) self.rel_pos_bias = CPB(dim // 4, offset_groups = offset_groups, heads = heads, depth = 2) self.dropout = nn.Dropout(dropout) self.to_q = nn.Conv2d(dim, inner_dim, 1, groups = offset_groups if group_queries else 1, bias = False) self.to_k = nn.Conv2d(dim, inner_dim, 1, groups = offset_groups if group_key_values else 1, bias = False) self.to_v = nn.Conv2d(dim, inner_dim, 1, groups = offset_groups if group_key_values else 1, bias = False) self.to_out = nn.Conv2d(inner_dim, dim, 1) def forward(self, x, return_vgrid = False): """ b - batch h - heads x - height y - width d - dimension g - offset groups """ heads, b, h, w, downsample_factor, device = self.heads, x.shape[0], *x.shape[-2:], self.downsample_factor, x.device # queries q = self.to_q(x) # calculate offsets - offset MLP shared across all groups group = lambda t: rearrange(t, 'b (g d) ... -> (b g) d ...', g = self.offset_groups) grouped_queries = group(q) offsets = self.to_offsets(grouped_queries) # calculate grid + offsets grid =create_grid_like(offsets) vgrid = grid + offsets vgrid_scaled = normalize_grid(vgrid) kv_feats = F.grid_sample( group(x), vgrid_scaled, mode = 'bilinear', padding_mode = 'zeros', align_corners = False) kv_feats = rearrange(kv_feats, '(b g) d ... -> b (g d) ...', b = b) # derive key / values k, v = self.to_k(kv_feats), self.to_v(kv_feats) # scale queries q = q * self.scale # split out heads q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v)) # query / key similarity sim = einsum('b h i d, b h j d -> b h i j', q, k) # relative positional bias grid = create_grid_like(x) grid_scaled = normalize_grid(grid, dim = 0) rel_pos_bias = self.rel_pos_bias(grid_scaled, vgrid_scaled) sim = sim + rel_pos_bias # numerical stability sim = sim - sim.amax(dim = -1, keepdim = True).detach() # attention attn = sim.softmax(dim = -1) attn = self.dropout(attn) # aggregate and combine heads out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w) out = self.to_out(out) if return_vgrid: return out, vgrid return out
deformable-attention-main
deformable_attention/deformable_attention_2d.py
from deformable_attention.deformable_attention_1d import DeformableAttention1D from deformable_attention.deformable_attention_2d import DeformableAttention2D from deformable_attention.deformable_attention_3d import DeformableAttention3D DeformableAttention = DeformableAttention2D
deformable-attention-main
deformable_attention/__init__.py
import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def divisible_by(numer, denom): return (numer % denom) == 0 def cast_tuple(x, length = 1): return x if isinstance(x, tuple) else ((x,) * depth) # tensor helpers def create_grid_like(t, dim = 0): f, h, w, device = *t.shape[-3:], t.device grid = torch.stack(torch.meshgrid( torch.arange(f, device = device), torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij'), dim = dim) grid.requires_grad = False grid = grid.type_as(t) return grid def normalize_grid(grid, dim = 1, out_dim = -1): # normalizes a grid to range from -1 to 1 f, h, w = grid.shape[-3:] grid_f, grid_h, grid_w = grid.unbind(dim = dim) grid_f = 2.0 * grid_f / max(f - 1, 1) - 1.0 grid_h = 2.0 * grid_h / max(h - 1, 1) - 1.0 grid_w = 2.0 * grid_w / max(w - 1, 1) - 1.0 return torch.stack((grid_f, grid_h, grid_w), dim = out_dim) class Scale(nn.Module): def __init__(self, scale): super().__init__() self.register_buffer('scale', torch.tensor(scale, dtype = torch.float32)) def forward(self, x): return x * rearrange(self.scale, 'c -> 1 c 1 1 1') # continuous positional bias from SwinV2 class CPB(nn.Module): """ https://arxiv.org/abs/2111.09883v1 """ def __init__(self, dim, *, heads, offset_groups, depth): super().__init__() self.heads = heads self.offset_groups = offset_groups self.mlp = nn.ModuleList([]) self.mlp.append(nn.Sequential( nn.Linear(3, dim), nn.ReLU() )) for _ in range(depth - 1): self.mlp.append(nn.Sequential( nn.Linear(dim, dim), nn.ReLU() )) self.mlp.append(nn.Linear(dim, heads // offset_groups)) def forward(self, grid_q, grid_kv): device, dtype = grid_q.device, grid_kv.dtype grid_q = rearrange(grid_q, '... c -> 1 (...) c') grid_kv = rearrange(grid_kv, 'b ... c -> b (...) c') pos = rearrange(grid_q, 'b i c -> b i 1 c') - rearrange(grid_kv, 'b j c -> b 1 j c') bias = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1) for layer in self.mlp: bias = layer(bias) bias = rearrange(bias, '(b g) i j o -> b (g o) i j', g = self.offset_groups) return bias # main class class DeformableAttention3D(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, dropout = 0., downsample_factor = 4, offset_scale = None, offset_groups = None, offset_kernel_size = 6, group_queries = True, group_key_values = True ): super().__init__() downsample_factor = cast_tuple(downsample_factor, length = 3) offset_scale = default(offset_scale, downsample_factor) offset_conv_padding = tuple(map(lambda x: (x[0] - x[1]) / 2, zip(offset_kernel_size, downsample_factor))) assert all([(padding > 0 and padding.is_integer()) for padding in offset_conv_padding]) offset_groups = default(offset_groups, heads) assert divisible_by(heads, offset_groups) inner_dim = dim_head * heads self.scale = dim_head ** -0.5 self.heads = heads self.offset_groups = offset_groups offset_dims = inner_dim // offset_groups self.downsample_factor = downsample_factor self.to_offsets = nn.Sequential( nn.Conv3d(offset_dims, offset_dims, offset_kernel_size, groups = offset_dims, stride = downsample_factor, padding = tuple(map(int, offset_conv_padding))), nn.GELU(), nn.Conv3d(offset_dims, 3, 1, bias = False), nn.Tanh(), Scale(offset_scale) ) self.rel_pos_bias = CPB(dim // 4, offset_groups = offset_groups, heads = heads, depth = 2) self.dropout = nn.Dropout(dropout) self.to_q = nn.Conv3d(dim, inner_dim, 1, groups = offset_groups if group_queries else 1, bias = False) self.to_k = nn.Conv3d(dim, inner_dim, 1, groups = offset_groups if group_key_values else 1, bias = False) self.to_v = nn.Conv3d(dim, inner_dim, 1, groups = offset_groups if group_key_values else 1, bias = False) self.to_out = nn.Conv3d(inner_dim, dim, 1) def forward(self, x, return_vgrid = False): """ b - batch h - heads f - frames x - height y - width d - dimension g - offset groups """ heads, b, f, h, w, downsample_factor, device = self.heads, x.shape[0], *x.shape[-3:], self.downsample_factor, x.device # queries q = self.to_q(x) # calculate offsets - offset MLP shared across all groups group = lambda t: rearrange(t, 'b (g d) ... -> (b g) d ...', g = self.offset_groups) grouped_queries = group(q) offsets = self.to_offsets(grouped_queries) # calculate grid + offsets grid = create_grid_like(offsets) vgrid = grid + offsets vgrid_scaled = normalize_grid(vgrid) kv_feats = F.grid_sample( group(x), vgrid_scaled, mode = 'bilinear', padding_mode = 'zeros', align_corners = False) kv_feats = rearrange(kv_feats, '(b g) d ... -> b (g d) ...', b = b) # derive key / values k, v = self.to_k(kv_feats), self.to_v(kv_feats) # scale queries q = q * self.scale # split out heads q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v)) # query / key similarity sim = einsum('b h i d, b h j d -> b h i j', q, k) # relative positional bias grid = create_grid_like(x) grid_scaled = normalize_grid(grid, dim = 0) rel_pos_bias = self.rel_pos_bias(grid_scaled, vgrid_scaled) sim = sim + rel_pos_bias # numerical stability sim = sim - sim.amax(dim = -1, keepdim = True).detach() # attention attn = sim.softmax(dim = -1) attn = self.dropout(attn) # aggregate and combine heads out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h (f x y) d -> b (h d) f x y', f = f, x = h, y = w) out = self.to_out(out) if return_vgrid: return out, vgrid return out
deformable-attention-main
deformable_attention/deformable_attention_3d.py
import torch import torch.nn.functional as F from torch import nn, einsum from einops.layers.torch import Rearrange from einops import rearrange, repeat # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def divisible_by(numer, denom): return (numer % denom) == 0 # tensor helpers def grid_sample_1d(feats, grid, *args, **kwargs): # does 1d grid sample by reshaping it to 2d grid = rearrange(grid, '... -> ... 1 1') grid = F.pad(grid, (0, 1), value = 0.) feats = rearrange(feats, '... -> ... 1') out = F.grid_sample(feats, grid, **kwargs) return rearrange(out, '... 1 -> ...') def normalize_grid(arange, dim = 1, out_dim = -1): # normalizes 1d sequence to range of -1 to 1 n = arange.shape[-1] return 2.0 * arange / max(n - 1, 1) - 1.0 class Scale(nn.Module): def __init__(self, scale): super().__init__() self.scale = scale def forward(self, x): return x * self.scale # continuous positional bias from SwinV2 class CPB(nn.Module): """ https://arxiv.org/abs/2111.09883v1 """ def __init__(self, dim, *, heads, offset_groups, depth, log_distance = True): super().__init__() self.heads = heads self.offset_groups = offset_groups self.log_distance = log_distance self.mlp = nn.ModuleList([]) self.mlp.append(nn.Sequential( nn.Linear(1, dim), nn.ReLU() )) for _ in range(depth - 1): self.mlp.append(nn.Sequential( nn.Linear(dim, dim), nn.ReLU() )) self.mlp.append(nn.Linear(dim, heads // offset_groups)) def forward(self, grid_q, grid_kv): device, dtype = grid_q.device, grid_kv.dtype grid_q = rearrange(grid_q, 'n -> 1 n') grid_kv = rearrange(grid_kv, 'b n -> b n') pos = rearrange(grid_q, 'b i -> b i 1 1') - rearrange(grid_kv, 'b j -> b 1 j 1') if self.log_distance: pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1) bias = pos for layer in self.mlp: bias = layer(bias) bias = rearrange(bias, '(b g) i j o -> b (g o) i j', g = self.offset_groups) return bias # main class class DeformableAttention1D(nn.Module): def __init__( self, *, dim, dim_head = 64, heads = 8, dropout = 0., downsample_factor = 4, offset_scale = None, offset_groups = None, offset_kernel_size = 6, cpb_log_distance = True, group_queries = True, group_key_values = True ): super().__init__() offset_scale = default(offset_scale, downsample_factor) assert offset_kernel_size >= downsample_factor, 'offset kernel size must be greater than or equal to the downsample factor' assert divisible_by(offset_kernel_size - downsample_factor, 2) offset_groups = default(offset_groups, heads) assert divisible_by(heads, offset_groups) inner_dim = dim_head * heads self.scale = dim_head ** -0.5 self.heads = heads self.offset_groups = offset_groups offset_dims = inner_dim // offset_groups self.downsample_factor = downsample_factor self.to_offsets = nn.Sequential( nn.Conv1d(offset_dims, offset_dims, offset_kernel_size, groups = offset_dims, stride = downsample_factor, padding = (offset_kernel_size - downsample_factor) // 2), nn.GELU(), nn.Conv1d(offset_dims, 1, 1, bias = False), Rearrange('b 1 n -> b n'), nn.Tanh(), Scale(offset_scale) ) self.rel_pos_bias = CPB(dim // 4, offset_groups = offset_groups, heads = heads, depth = 2, log_distance = cpb_log_distance) self.dropout = nn.Dropout(dropout) self.to_q = nn.Conv1d(dim, inner_dim, 1, groups = offset_groups if group_queries else 1, bias = False) self.to_k = nn.Conv1d(dim, inner_dim, 1, groups = offset_groups if group_key_values else 1, bias = False) self.to_v = nn.Conv1d(dim, inner_dim, 1, groups = offset_groups if group_key_values else 1, bias = False) self.to_out = nn.Conv1d(inner_dim, dim, 1) def forward(self, x, return_vgrid = False): """ b - batch h - heads n - sequence dimension d - dimension g - offset groups """ heads, b, n, downsample_factor, device = self.heads, x.shape[0], x.shape[-1], self.downsample_factor, x.device # queries q = self.to_q(x) # calculate offsets - offset MLP shared across all groups group = lambda t: rearrange(t, 'b (g d) n -> (b g) d n', g = self.offset_groups) grouped_queries = group(q) offsets = self.to_offsets(grouped_queries) # calculate grid + offsets grid = torch.arange(offsets.shape[-1], device = device) vgrid = grid + offsets vgrid_scaled = normalize_grid(vgrid) kv_feats = grid_sample_1d( group(x), vgrid_scaled, mode = 'bilinear', padding_mode = 'zeros', align_corners = False) kv_feats = rearrange(kv_feats, '(b g) d n -> b (g d) n', b = b) # derive key / values k, v = self.to_k(kv_feats), self.to_v(kv_feats) # scale queries q = q * self.scale # split out heads q, k, v = map(lambda t: rearrange(t, 'b (h d) n -> b h n d', h = heads), (q, k, v)) # query / key similarity sim = einsum('b h i d, b h j d -> b h i j', q, k) # relative positional bias seq_range = torch.arange(n, device = device) seq_scaled = normalize_grid(seq_range, dim = 0) rel_pos_bias = self.rel_pos_bias(seq_scaled, vgrid_scaled) sim = sim + rel_pos_bias # numerical stability sim = sim - sim.amax(dim = -1, keepdim = True).detach() # attention attn = sim.softmax(dim = -1) attn = self.dropout(attn) # aggregate and combine heads out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b (h d) n') out = self.to_out(out) if return_vgrid: return out, vgrid return out
deformable-attention-main
deformable_attention/deformable_attention_1d.py
from setuptools import setup, find_packages setup( name = 'hourglass-transformer-pytorch', packages = find_packages(), version = '0.0.6', license='MIT', description = 'Hourglass Transformer', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/hourglass-transformer-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'transformers' ], install_requires=[ 'einops', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
hourglass-transformer-pytorch-main
setup.py
from hourglass_transformer_pytorch import HourglassTransformerLM from hourglass_transformer_pytorch.autoregressive_wrapper import AutoregressiveWrapper import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 512 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = HourglassTransformerLM( num_tokens = 256, dim = 512, max_seq_len = SEQ_LEN, depth = (4, 2, 4), shorten_factor = 2, heads = 8 ) model = AutoregressiveWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)) loss.backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader)) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp[None, ...], GENERATE_LENGTH) output_str = decode_tokens(sample[0]) print(output_str)
hourglass-transformer-pytorch-main
train.py
import torch from torch import nn import torch.nn.functional as F # helper function def exists(val): return val is not None def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner # top k filtering def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs class AutoregressiveWrapper(nn.Module): def __init__(self, net, pad_value = 0): super().__init__() assert hasattr(net, 'max_seq_len'), 'your transformer class must have max_seq_len set to the maximum sequence length' self.pad_value = pad_value self.net = net self.max_seq_len = net.max_seq_len @torch.no_grad() @eval_decorator def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_thres = 0.9, **kwargs): b, t, device = *start_tokens.shape, start_tokens.device out = start_tokens for _ in range(seq_len): x = out[:, -self.max_seq_len:] logits = self.net(x, **kwargs)[:, -1, :] filtered_logits = top_k(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) if exists(eos_token): is_eos_token = (out == eos_token) if is_eos_token.any(dim = -1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 out = out.masked_fill(mask, self.pad_value) break out = out[:, t:] return out def forward(self, x, **kwargs): x_inp, x_labels = x[:, :-1], x[:, 1:] logits = self.net(x_inp, **kwargs) return F.cross_entropy(logits.transpose(1, 2), x_labels, ignore_index = self.pad_value)
hourglass-transformer-pytorch-main
hourglass_transformer_pytorch/autoregressive_wrapper.py
from hourglass_transformer_pytorch.hourglass_transformer_pytorch import HourglassTransformerLM, HourglassTransformer
hourglass-transformer-pytorch-main
hourglass_transformer_pytorch/__init__.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, reduce, repeat # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def pad_to_multiple(tensor, multiple, dim = -1, value = 0): seq_len = tensor.shape[dim] m = seq_len / multiple if m.is_integer(): return tensor remainder = math.ceil(m) * multiple - seq_len pad_offset = (0,) * (-1 - dim) * 2 return F.pad(tensor, (*pad_offset, 0, remainder), value = value) def cast_tuple(val, depth = 1): return val if isinstance(val, tuple) else ((val,) * depth) # factory def get_hourglass_transformer( dim, *, depth, shorten_factor, attn_resampling, updown_sample_type, **kwargs ): assert isinstance(depth, int) or (isinstance(depth, tuple) and len(depth) == 3), 'depth must be either an integer or a tuple of 3, indicating (pre_transformer_depth, <nested-hour-glass-config>, post_transformer_depth)' assert not (isinstance(depth, int) and shorten_factor), 'there does not need to be a shortening factor when only a single transformer block is indicated (depth of one integer value)' if isinstance(depth, int): return Transformer(dim = dim, depth = depth, **kwargs) return HourglassTransformer(dim = dim, depth = depth, shorten_factor = shorten_factor, attn_resampling = attn_resampling, updown_sample_type = updown_sample_type, **kwargs) # up and down sample classes class NaiveDownsample(nn.Module): def __init__(self, shorten_factor): super().__init__() self.shorten_factor = shorten_factor def forward(self, x): return reduce(x, 'b (n s) d -> b n d', 'mean', s = self.shorten_factor) class NaiveUpsample(nn.Module): def __init__(self, shorten_factor): super().__init__() self.shorten_factor = shorten_factor def forward(self, x): return repeat(x, 'b n d -> b (n s) d', s = self.shorten_factor) class LinearDownsample(nn.Module): def __init__(self, dim, shorten_factor): super().__init__() self.proj = nn.Linear(dim * shorten_factor, dim) self.shorten_factor = shorten_factor def forward(self, x): x = rearrange(x, 'b (n s) d -> b n (s d)', s = self.shorten_factor) return self.proj(x) class LinearUpsample(nn.Module): def __init__(self, dim, shorten_factor): super().__init__() self.proj = nn.Linear(dim, dim * shorten_factor) self.shorten_factor = shorten_factor def forward(self, x): x = self.proj(x) return rearrange(x, 'b n (s d) -> b (n s) d', s = self.shorten_factor) # classes class PreNormResidual(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) + x class Attention(nn.Module): def __init__( self, dim, heads = 8, dim_head = 64, dropout = 0., causal = False ): super().__init__() self.heads = heads self.causal = causal self.scale = dim_head ** -0.5 inner_dim = heads * dim_head self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim) self.dropout = nn.Dropout(dropout) def forward(self, x, context = None, mask = None): h, device = self.heads, x.device kv_input = default(context, x) q, k, v = self.to_q(x), *self.to_kv(kv_input).chunk(2, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j', q, k) mask_value = -torch.finfo(sim.dtype).max if exists(mask): mask = rearrange(mask, 'b j -> b () () j') sim = sim.masked_fill(~mask, mask_value) if self.causal: i, j = sim.shape[-2:] mask = torch.ones(i, j, device = device, dtype = torch.bool).triu_(j - i + 1) mask = rearrange(mask, 'i j -> () () i j') sim = sim.masked_fill(mask, mask_value) attn = sim.softmax(dim = -1) attn = self.dropout(attn) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)', h = h) return self.to_out(out) def FeedForward(dim, mult = 4, dropout = 0.): return nn.Sequential( nn.Linear(dim, dim * mult), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) # transformer classes class Transformer(nn.Module): def __init__( self, dim, *, depth, causal = False, heads = 8, dim_head = 64, attn_dropout = 0., ff_mult = 4, ff_dropout = 0., norm_out = False ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNormResidual(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = attn_dropout, causal = causal)), PreNormResidual(dim, FeedForward(dim, mult = ff_mult, dropout = ff_dropout)) ])) self.norm = nn.LayerNorm(dim) if norm_out else nn.Identity() def forward(self, x, context = None, mask = None): for attn, ff in self.layers: x = attn(x, context = context, mask = mask) x = ff(x) return self.norm(x) class HourglassTransformer(nn.Module): def __init__( self, dim, *, depth, shorten_factor = 2, attn_resampling = True, updown_sample_type = 'naive', heads = 8, dim_head = 64, causal = False, norm_out = False ): super().__init__() assert len(depth) == 3, 'depth should be a tuple of length 3' assert updown_sample_type in {'naive', 'linear'}, 'downsample / upsample type must be either naive (average pool and repeat) or linear (linear projection and reshape)' pre_layers_depth, valley_depth, post_layers_depth = depth if isinstance(shorten_factor, (tuple, list)): shorten_factor, *rest_shorten_factor = shorten_factor elif isinstance(valley_depth, int): shorten_factor, rest_shorten_factor = shorten_factor, None else: shorten_factor, rest_shorten_factor = shorten_factor, shorten_factor transformer_kwargs = dict( dim = dim, heads = heads, dim_head = dim_head ) self.causal = causal self.shorten_factor = shorten_factor if updown_sample_type == 'naive': self.downsample = NaiveDownsample(shorten_factor) self.upsample = NaiveUpsample(shorten_factor) elif updown_sample_type == 'linear': self.downsample = LinearDownsample(dim, shorten_factor) self.upsample = LinearUpsample(dim, shorten_factor) else: raise ValueError(f'unknown updown_sample_type keyword value - must be either naive or linear for now') self.valley_transformer = get_hourglass_transformer( shorten_factor = rest_shorten_factor, depth = valley_depth, attn_resampling = attn_resampling, updown_sample_type = updown_sample_type, causal = causal, **transformer_kwargs ) self.attn_resampling_pre_valley = Transformer(depth = 1, **transformer_kwargs) if attn_resampling else None self.attn_resampling_post_valley = Transformer(depth = 1, **transformer_kwargs) if attn_resampling else None self.pre_transformer = Transformer(depth = pre_layers_depth, causal = causal, **transformer_kwargs) self.post_transformer = Transformer(depth = post_layers_depth, causal = causal, **transformer_kwargs) self.norm_out = nn.LayerNorm(dim) if norm_out else nn.Identity() def forward(self, x, mask = None): # b : batch, n : sequence length, d : feature dimension, s : shortening factor s, b, n = self.shorten_factor, *x.shape[:2] # top half of hourglass, pre-transformer layers x = self.pre_transformer(x, mask = mask) # pad to multiple of shortening factor, in preparation for pooling x = pad_to_multiple(x, s, dim = -2) if exists(mask): padded_mask = pad_to_multiple(mask, s, dim = -1, value = False) # save the residual, and for "attention resampling" at downsample and upsample x_residual = x.clone() # if autoregressive, do the shift by shortening factor minus one if self.causal: shift = s - 1 x = F.pad(x, (0, 0, shift, -shift), value = 0.) if exists(mask): padded_mask = F.pad(padded_mask, (shift, -shift), value = False) # naive average pool downsampled = self.downsample(x) if exists(mask): downsampled_mask = reduce(padded_mask, 'b (n s) -> b n', 'sum', s = s) > 0 else: downsampled_mask = None # pre-valley "attention resampling" - they have the pooled token in each bucket attend to the tokens pre-pooled if exists(self.attn_resampling_pre_valley): if exists(mask): attn_resampling_mask = rearrange(padded_mask, 'b (n s) -> (b n) s', s = s) else: attn_resampling_mask = None downsampled = self.attn_resampling_pre_valley( rearrange(downsampled, 'b n d -> (b n) () d'), rearrange(x, 'b (n s) d -> (b n) s d', s = s), mask = attn_resampling_mask ) downsampled = rearrange(downsampled, '(b n) () d -> b n d', b = b) # the "valley" - either a regular transformer or another hourglass x = self.valley_transformer(downsampled, mask = downsampled_mask) valley_out = x.clone() # naive repeat upsample x = self.upsample(x) # add the residual x = x + x_residual # post-valley "attention resampling" if exists(self.attn_resampling_post_valley): x = self.attn_resampling_post_valley( rearrange(x, 'b (n s) d -> (b n) s d', s = s), rearrange(valley_out, 'b n d -> (b n) () d') ) x = rearrange(x, '(b n) s d -> b (n s) d', b = b) # bring sequence back to original length, if it were padded for pooling x = x[:, :n] # post-valley transformers x = self.post_transformer(x, mask = mask) return self.norm_out(x) # main class class HourglassTransformerLM(nn.Module): def __init__( self, *, num_tokens, dim, max_seq_len, depth, shorten_factor = None, heads = 8, dim_head = 64, attn_resampling = True, updown_sample_type = 'naive', causal = True ): super().__init__() self.max_seq_len = max_seq_len self.token_emb = nn.Embedding(num_tokens, dim) self.pos_emb = nn.Embedding(max_seq_len, dim) self.transformer = get_hourglass_transformer( dim = dim, depth = depth, shorten_factor = shorten_factor, attn_resampling = attn_resampling, updown_sample_type = updown_sample_type, dim_head = dim_head, heads = heads, causal = causal, norm_out = True ) self.to_logits = nn.Linear(dim, num_tokens) def forward(self, x, mask = None): device = x.device x = self.token_emb(x) pos_emb = self.pos_emb(torch.arange(x.shape[-2], device = device)) x = x + rearrange(pos_emb, 'n d -> () n d') x = self.transformer(x, mask = mask) return self.to_logits(x)
hourglass-transformer-pytorch-main
hourglass_transformer_pytorch/hourglass_transformer_pytorch.py
from setuptools import setup, find_packages setup( name = 'htm-pytorch', packages = find_packages(), version = '0.0.4', license='MIT', description = 'Hierarchical Transformer Memory - Pytorch', author = 'Phil Wang', author_email = '[email protected]', url = 'https://github.com/lucidrains/htm-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'attention-mechanism', 'memory' ], install_requires=[ 'einops>=0.3', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
HTM-pytorch-main
setup.py
from math import ceil import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat # helpers def exists(val): return val is not None def default(val, d): return val if exists(val) else d def pad_to_multiple(t, multiple, dim = -2, value = 0.): seq_len = t.shape[dim] pad_to_len = ceil(seq_len / multiple) * multiple remainder = pad_to_len - seq_len if remainder == 0: return t zeroes = (0, 0) * (-dim - 1) padded_t = F.pad(t, (*zeroes, remainder, 0), value = value) return padded_t # positional encoding class SinusoidalPosition(nn.Module): def __init__( self, dim, min_timescale = 2., max_timescale = 1e4 ): super().__init__() freqs = torch.arange(0, dim, min_timescale) inv_freqs = max_timescale ** (-freqs / dim) self.register_buffer('inv_freqs', inv_freqs) def forward(self, x): seq_len = x.shape[-2] seq = torch.arange(seq_len - 1, -1, -1.) sinusoidal_inp = rearrange(seq, 'n -> n ()') * rearrange(self.inv_freqs, 'd -> () d') pos_emb = torch.cat((sinusoidal_inp.sin(), sinusoidal_inp.cos()), dim = -1) return pos_emb # multi-head attention class Attention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads inner_dim = dim_head * heads self.to_q = nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Linear(inner_dim, dim) def forward( self, x, mems, mask = None ): h = self.heads q, k, v = self.to_q(x), *self.to_kv(mems).chunk(2, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b ... (h d) -> (b h) ... d', h = h), (q, k, v)) q = q * self.scale sim = einsum('b m i d, b m i j d -> b m i j', q, k) if exists(mask): mask = repeat(mask, 'b ... -> (b h) ...', h = h) mask_value = -torch.finfo(sim.dtype).max sim = sim.masked_fill(~mask, mask_value) attn = sim.softmax(dim = -1) out = einsum('... i j, ... i j d -> ... i d', attn, v) out = rearrange(out, '(b h) ... d -> b ... (h d)', h = h) return self.to_out(out) # main class class HTMAttention(nn.Module): def __init__( self, dim, heads, topk_mems = 2, mem_chunk_size = 32, dim_head = 64, add_pos_enc = True, eps = 1e-5 ): super().__init__() self.dim = dim self.eps = eps self.scale = dim ** -0.5 self.to_summary_queries = nn.Linear(dim, dim) self.to_summary_keys = nn.Linear(dim, dim) self.attn = Attention(dim = dim, heads = heads, dim_head = dim_head) self.topk_mems = topk_mems self.mem_chunk_size = mem_chunk_size self.pos_emb = SinusoidalPosition(dim = dim) if add_pos_enc else None def forward( self, queries, memories, mask = None, chunk_attn_mask = None ): dim, query_len, mem_chunk_size, topk_mems, scale, eps = self.dim, queries.shape[1], self.mem_chunk_size, self.topk_mems, self.scale, self.eps # pad memories, and the memory mask, if needed # and then divide into chunks memories = pad_to_multiple(memories, mem_chunk_size, dim = -2, value = 0.) memories = rearrange(memories, 'b (n c) d -> b n c d', c = mem_chunk_size) if exists(mask): mask = pad_to_multiple(mask, mem_chunk_size, dim = -1, value = False) mask = rearrange(mask, 'b (n c) -> b n c', c = mem_chunk_size) # summarize memories through mean-pool, accounting for mask if exists(mask): mean_mask = rearrange(mask, '... -> ... ()') memories = memories.masked_fill(~mean_mask, 0.) numer = memories.sum(dim = 2) denom = mean_mask.sum(dim = 2) summarized_memories = numer / (denom + eps) else: summarized_memories = memories.mean(dim = 2) # derive queries and summarized memory keys summary_queries = self.to_summary_queries(queries) summary_keys = self.to_summary_keys(summarized_memories.detach()) # do a single head attention over summary keys sim = einsum('b i d, b j d -> b i j', summary_queries, summary_keys) * scale mask_value = -torch.finfo(sim.dtype).max if exists(mask): chunk_mask = mask.any(dim = 2) chunk_mask = rearrange(chunk_mask, 'b j -> b () j') sim = sim.masked_fill(~chunk_mask, mask_value) if exists(chunk_attn_mask): sim = sim.masked_fill(~chunk_attn_mask, mask_value) topk_logits, topk_indices = sim.topk(k = topk_mems, dim = -1) weights = topk_logits.softmax(dim = -1) # ready queries for in-memory attention queries = repeat(queries, 'b n d -> b k n d', k = topk_mems) # select the topk memories memories = repeat(memories, 'b m j d -> b m i j d', i = query_len) mem_topk_indices = repeat(topk_indices, 'b i m -> b m i j d', j = mem_chunk_size, d = dim) selected_memories = memories.gather(1, mem_topk_indices) # positional encoding if exists(self.pos_emb): pos_emb = self.pos_emb(memories) selected_memories = selected_memories + rearrange(pos_emb, 'n d -> () () () n d') # select the mask selected_mask = None if exists(mask): mask = repeat(mask, 'b m j -> b m i j', i = query_len) mask_topk_indices = repeat(topk_indices, 'b i m -> b m i j', j = mem_chunk_size) selected_mask = mask.gather(1, mask_topk_indices) # now do in-memory attention within_mem_output = self.attn( queries, selected_memories.detach(), mask = selected_mask ) # weight the in-memory attention outputs weighted_output = within_mem_output * rearrange(weights, 'b i m -> b m i ()') output = weighted_output.sum(dim = 1) return output # HTM Block class HTMBlock(nn.Module): def __init__(self, dim, **kwargs): super().__init__() self.norm = nn.LayerNorm(dim) self.attn = HTMAttention(dim = dim, **kwargs) def forward( self, queries, memories, **kwargs ): queries = self.norm(queries) out = self.attn(queries, memories, **kwargs) + queries return out
HTM-pytorch-main
htm_pytorch/htm_pytorch.py
from htm_pytorch.htm_pytorch import HTMAttention, HTMBlock
HTM-pytorch-main
htm_pytorch/__init__.py
from setuptools import find_packages import subprocess from glob import glob from distutils.core import setup, Extension # read the contents of your README file from pathlib import Path this_directory = Path(__file__).parent long_description = (this_directory / "README.md").read_text() def pkgconfig(package, kw): flag_map = {'-I': 'include_dirs', '-L': 'library_dirs', '-l': 'libraries'} output = subprocess.getoutput( 'pkg-config --cflags --libs {}'.format(package)) if 'not found' in output: raise Exception(f"Could not find required package: {package}.") for token in output.strip().split(): kw.setdefault(flag_map.get(token[:2]), []).append(token[2:]) return kw sources = ['./libffcv/libffcv.cpp'] extension_kwargs = { 'sources': sources, 'include_dirs': [] } extension_kwargs = pkgconfig('opencv4', extension_kwargs) extension_kwargs = pkgconfig('libturbojpeg', extension_kwargs) extension_kwargs['libraries'].append('pthread') libffcv = Extension('ffcv._libffcv', **extension_kwargs) setup(name='ffcv', version='0.0.3rc1', description=' FFCV: Fast Forward Computer Vision ', author='MadryLab', author_email='[email protected]', url='https://github.com/libffcv/ffcv', license_files = ('LICENSE.txt',), packages=find_packages(), long_description=long_description, long_description_content_type='text/markdown', ext_modules=[libffcv], install_requires=[ 'terminaltables', 'pytorch_pfn_extras', 'fastargs', 'matplotlib', 'sklearn', 'imgcat', 'pandas', 'assertpy', 'tqdm', 'psutil', 'webdataset', ] )
ffcv-main
setup.py
from tempfile import NamedTemporaryFile import torch as ch from tqdm import tqdm import time from assertpy import assert_that import numpy as np from torch.utils.data import Dataset from ffcv import DatasetWriter from ffcv.fields import IntField, NDArrayField from ffcv import Loader from ffcv.fields.basics import IntDecoder from ffcv.fields.ndarray import NDArrayDecoder from ffcv.loader.loader import OrderOption from ffcv.transforms import ToDevice, ToTensor, Squeeze import time class DummyArrayDataset(Dataset): def __init__(self, n_samples, shape): self.n_samples = n_samples self.shape = shape def __len__(self): return self.n_samples def __getitem__(self, index): if index >= self.n_samples: raise IndexError() np.random.seed(index) return (np.random.rand(50000) > 0.5).astype('bool'), np.random.rand(50000).astype('float32'), index def run_experiment_cuda(weight, loader, sync=False): total = 0. X = ch.empty(2048, 50_000, device=weight.device) for X_bool, _, __ in tqdm(loader): if sync: ch.cuda.synchronize() X.copy_(X_bool) total += X @ weight total += X @ weight total += X @ weight return total.sum(0) def run_cuda(weight, sync): n_samples, shape = (2048 * 10, (50000,)) with NamedTemporaryFile() as handle: name = handle.name dataset = DummyArrayDataset(n_samples, shape) writer = DatasetWriter(name, { 'mask': NDArrayField(dtype=np.dtype('bool'), shape=(50_000,)), 'targets': NDArrayField(dtype=np.dtype('float32'), shape=(50_000,)), 'idx': IntField() }) writer.from_indexed_dataset(dataset) loader = Loader( name, batch_size=2048, num_workers=10, order=OrderOption.QUASI_RANDOM, indices=np.arange(n_samples), drop_last=False, os_cache=True, pipelines={ 'mask': [NDArrayDecoder(), ToTensor(), ToDevice(ch.device('cuda:0'), non_blocking=False)], 'targets': [NDArrayDecoder(), ToTensor(), ToDevice(ch.device('cuda:0'), non_blocking=False)], 'idx': [IntDecoder(), ToTensor(), Squeeze(), ToDevice(ch.device('cuda:0'), non_blocking=False)] }) return run_experiment_cuda(weight, loader, sync) def test_cuda(): weight = ch.randn(50_000, 50_000).cuda() async_1 = run_cuda(weight, False) sync_1 = run_cuda(weight, True) sync_2 = run_cuda(weight, True) print(async_1) print(sync_1) print(sync_2) print(ch.abs(sync_1 - sync_2).max()) print(ch.abs(sync_1 - async_1).max()) assert ch.abs(sync_1 - sync_2).max().cpu().item() < 10., 'Sync-sync mismatch' assert ch.abs(async_1 - sync_1).max().cpu().item() < 10., 'Async-sync mismatch' # test_cuda()
ffcv-main
tests/test_cuda_nonblocking.py
from collections import defaultdict from tempfile import TemporaryDirectory from os import path from typing import Counter import pytest from assertpy import assert_that import numpy as np from torch.utils.data import Dataset, distributed from torch.multiprocessing import spawn, Queue from torch.distributed import init_process_group from ffcv.loader.loader import ORDER_TYPE, OrderOption from ffcv.writer import DatasetWriter from ffcv.fields import IntField, BytesField from ffcv import Loader class DummyDataset(Dataset): def __init__(self, l): self.l = l def __len__(self): return self.l def __getitem__(self, index): if index > self.l: raise IndexError() return (index, np.sin(np.array([index])).view('<u1')) def process_work(rank, world_size, fname, order, sync_fname, out_folder, indices): sync_url = f'file://{sync_fname}' if world_size > 1: init_process_group('nccl', sync_url, rank=rank, world_size=world_size) loader = Loader(fname, 8, num_workers=2, order=order, drop_last=False, distributed=world_size > 1, indices=indices) result = [] for _ in range(3): content = np.concatenate([x[0].numpy().reshape(-1).copy() for x in loader]) result.append(content) result = np.stack(result) np.save(path.join(out_folder, f"result-{rank}.npy"), result) def prep_and_run_test(num_workers, order, with_indices=False): length = 600 indices = None if with_indices: indices = np.random.choice(length, length//2, replace=False) with TemporaryDirectory() as folder: name = path.join(folder, 'dataset.beton') sync_file = path.join(folder, 'share') dataset = DummyDataset(length) writer = DatasetWriter(name, { 'index': IntField(), 'value': BytesField() }) writer.from_indexed_dataset(dataset) args = (num_workers, name, order, sync_file, folder, indices) if num_workers > 1: spawn(process_work, nprocs=num_workers, args=args) else: process_work(*((0, ) + args)) results = [] for r in range(num_workers): array = np.load(path.join(folder,f"result-{r}.npy")) results.append(array) results = np.concatenate(results, 1) # For each epoch for i in range(results.shape[0]): if not with_indices: if order == OrderOption.SEQUENTIAL and i < results.shape[0] - 1: assert_that((results[i] == results[i + 1]).all()).is_true() if order != OrderOption.SEQUENTIAL and i < results.shape[0] - 1: assert_that((results[i] == results[i + 1]).all()).is_false() epoch_content = Counter(results[i]) indices_gotten = np.array(sorted(list(epoch_content.keys()))) assert_that(np.all(np.arange(length) == indices_gotten)).is_true() assert_that(min(epoch_content.values())).is_equal_to(1) assert_that(max(epoch_content.values())).is_less_than_or_equal_to(2) else: assert_that(set(results[i])).is_equal_to(set(indices)) def test_traversal_sequential_1(): prep_and_run_test(1, OrderOption.SEQUENTIAL) def test_traversal_sequential_2(): prep_and_run_test(2, OrderOption.SEQUENTIAL) def test_traversal_sequential_3(): prep_and_run_test(3, OrderOption.SEQUENTIAL) def test_traversal_sequential_4(): prep_and_run_test(4, OrderOption.SEQUENTIAL) def test_traversal_random_1(): prep_and_run_test(1, OrderOption.RANDOM) def test_traversal_random_2(): prep_and_run_test(2, OrderOption.RANDOM) def test_traversal_random_3(): prep_and_run_test(3, OrderOption.RANDOM) def test_traversal_random_4(): prep_and_run_test(4, OrderOption.RANDOM) def test_traversal_quasirandom_1(): prep_and_run_test(1, OrderOption.QUASI_RANDOM) @pytest.mark.skip() def test_traversal_quasirandom_2(): prep_and_run_test(2, OrderOption.QUASI_RANDOM) @pytest.mark.skip() def test_traversal_quasirandom_3(): prep_and_run_test(3, OrderOption.QUASI_RANDOM) @pytest.mark.skip() def test_traversal_quasirandom_4(): prep_and_run_test(4, OrderOption.QUASI_RANDOM) def test_traversal_sequential_distributed_with_indices(): prep_and_run_test(2, OrderOption.SEQUENTIAL, True) def test_traversal_random_distributed_with_indices(): prep_and_run_test(2, OrderOption.RANDOM, True) @pytest.mark.skip() def test_traversal_quasi_random_distributed_with_indices(): prep_and_run_test(2, OrderOption.QUASI_RANDOM, True)
ffcv-main
tests/test_traversal_orders.py
from dataclasses import replace import torch as ch from ffcv.pipeline.allocation_query import AllocationQuery from ffcv.pipeline.compiler import Compiler import numpy as np from typing import Callable from assertpy import assert_that from torch.utils.data import Dataset import logging import os from assertpy import assert_that from tempfile import NamedTemporaryFile from ffcv.pipeline.operation import Operation from ffcv.transforms.ops import ToTensor from ffcv.writer import DatasetWriter from ffcv.reader import Reader from ffcv.loader import Loader from ffcv.fields import IntField, FloatField, BytesField from ffcv.fields.basics import FloatDecoder from ffcv.pipeline.state import State from test_writer import DummyDataset numba_logger = logging.getLogger('numba') numba_logger.setLevel(logging.WARNING) class Doubler(Operation): def generate_code(self) -> Callable: def code(x, dst): dst[:x.shape[0]] = x * 2 return dst return code def declare_state_and_memory(self, previous_state: State): return (previous_state, AllocationQuery(previous_state.shape, previous_state.dtype, previous_state.device)) def run_test(bs, exp_length, drop_last=True): length = 600 batch_size = bs with NamedTemporaryFile() as handle: file_name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(file_name, { 'index': IntField(), 'value': FloatField() }) writer.from_indexed_dataset(dataset) Compiler.set_enabled(True) loader = Loader(file_name, batch_size, num_workers=5, seed=17, drop_last=drop_last, pipelines={ 'value': [FloatDecoder(), Doubler(), ToTensor()] }) assert_that(loader).is_length(exp_length) another_partial = drop_last for (batch, _) in loader: if batch.shape[0] != bs: assert_that(another_partial).is_false() another_partial = True def test_partial(): run_test(7, 85, True) def test_not_partial(): run_test(7, 86, False) def test_not_partial_multiple(): run_test(60, 10, False) def test_partial_multiple(): run_test(60, 10, True)
ffcv-main
tests/test_partial_batches.py
import pytest import numpy as np from uuid import uuid4 from ffcv.fields.ndarray import NDArrayField, NDArrayDecoder from ffcv.writer import DatasetWriter from ffcv.loader import Loader, OrderOption from tempfile import NamedTemporaryFile class StringDecoder(NDArrayDecoder): pass class StringField(NDArrayField): def __init__(self, max_len: int, pad_char='\0'): self.max_len = max_len self.pad_char = pad_char super().__init__(np.dtype('uint8'), (max_len,)) def encode(self, destination, field, malloc): padded_field = (field + self.pad_char * self.max_len)[:self.max_len] field = np.frombuffer(padded_field.encode('ascii'), dtype='uint8') return super().encode(destination, field, malloc) MAX_STRING_SIZE = 100 class CaptionDataset: def __init__(self, N): self.captions = [str(uuid4())[:np.random.randint(50)] for _ in range(N)] def __getitem__(self, idx): return (self.captions[idx],) def __len__(self): return len(self.captions) def test_string_field(): dataset = CaptionDataset(100) with NamedTemporaryFile() as handle: writer = DatasetWriter(handle.name, { 'label': StringField(MAX_STRING_SIZE) }) writer.from_indexed_dataset(dataset) loader = Loader(handle.name, batch_size=10, num_workers=2, order=OrderOption.RANDOM, pipelines={ 'label': [StringDecoder()] }, custom_fields={ 'label': StringField }) all_caps = [] for x, in loader: for cap in x: all_caps.append(cap.tobytes().decode('ascii').replace('\0', '')) assert set(all_caps) == set(dataset.captions) def test_no_custom_field(): dataset = CaptionDataset(100) with NamedTemporaryFile() as handle: writer = DatasetWriter(handle.name, { 'label': StringField(MAX_STRING_SIZE) }) writer.from_indexed_dataset(dataset) with pytest.raises(ValueError): Loader(handle.name, batch_size=10, num_workers=2, order=OrderOption.RANDOM, pipelines={ 'label': [StringDecoder()] })
ffcv-main
tests/test_custom_field.py
import numpy as np import torch as ch from torch.utils.data import Dataset from assertpy import assert_that from tempfile import NamedTemporaryFile from torchvision.datasets import CIFAR10 from tqdm import tqdm from ffcv.writer import DatasetWriter from ffcv.fields import IntField, RGBImageField from ffcv.fields.decoders import SimpleRGBImageDecoder from ffcv.loader import Loader from ffcv.pipeline.compiler import Compiler from ffcv.transforms import ToTorchImage, ToTensor, NormalizeImage, View, ToDevice class DummyDataset(Dataset): def __init__(self, length, height, width): self.length = length self.height = height self.width = width def __len__(self): return self.length def __getitem__(self, index): if index > self.length: raise IndexError dims = (self.height, self.width, 3) image_data = ((np.ones(dims) * index) % 255).astype('uint8') result = index,image_data return result def test_cpu_normalization(): dataset = DummyDataset(500, 25, 30) with NamedTemporaryFile() as handle: name = handle.name fields = { 'index': IntField(), 'value': RGBImageField(write_mode='raw', jpeg_quality=95) } writer = DatasetWriter(name, fields, num_workers=2) mean = np.array([0, 1, 2]) std = np.array([1, 10, 20]) writer.from_indexed_dataset(dataset, chunksize=5) loader = Loader(name, batch_size=5, num_workers=2, pipelines={ 'value': [ SimpleRGBImageDecoder(), NormalizeImage(mean, std, np.float16), View(np.float16), ToTensor(), ToTorchImage(), ] }) ix = 0 for res in tqdm(loader): index, images = res for image in images: image = image.numpy() ref_image = dataset[ix][1] ref_image = ref_image.transpose(2, 0, 1) ref_image = ref_image.astype(np.float16) ref_image -= mean[:, None, None] ref_image /= std[:, None, None] assert_that(np.allclose(ref_image, image)).is_true() ix += 1 def test_gpu_normalization(): dataset = DummyDataset(500, 25, 30) with NamedTemporaryFile() as handle: name = handle.name fields = { 'index': IntField(), 'value': RGBImageField(write_mode='raw', jpeg_quality=95) } writer = DatasetWriter(name, fields, num_workers=2) mean = np.array([0, 1, 2]) std = np.array([1, 10, 20]) writer.from_indexed_dataset(dataset, chunksize=5) loader = Loader(name, batch_size=5, num_workers=2, pipelines={ 'value': [ SimpleRGBImageDecoder(), ToTensor(), ToDevice(ch.device('cuda:0')), ToTorchImage(), NormalizeImage(mean, std, np.float16), View(ch.float16), ] }) ix = 0 for res in tqdm(loader): _, images = res for image in images: image = image.cpu().numpy() ref_image = dataset[ix][1] ref_image = ref_image.transpose(2, 0, 1) ref_image = ref_image.astype(np.float16) ref_image -= mean[:, None, None] ref_image /= std[:, None, None] assert_that(np.allclose(ref_image, image)).is_true() ix += 1
ffcv-main
tests/test_image_normalization.py
from dataclasses import replace import torch as ch from ffcv.pipeline.allocation_query import AllocationQuery from ffcv.pipeline.compiler import Compiler import numpy as np from typing import Callable from assertpy import assert_that from torch.utils.data import Dataset import logging import os from assertpy import assert_that from tempfile import NamedTemporaryFile from ffcv.pipeline.operation import Operation from ffcv.transforms.ops import ToTensor from ffcv.writer import DatasetWriter from ffcv.reader import Reader from ffcv.loader import Loader from ffcv.fields import IntField, FloatField, BytesField from ffcv.fields.basics import FloatDecoder from ffcv.pipeline.state import State from test_writer import DummyDataset numba_logger = logging.getLogger('numba') numba_logger.setLevel(logging.WARNING) class Doubler(Operation): def generate_code(self) -> Callable: def code(x, dst): dst[:] = x * 2 return dst return code def declare_state_and_memory(self, previous_state: State): return (previous_state, AllocationQuery(previous_state.shape, previous_state.dtype, previous_state.device)) def test_basic_simple(): length = 600 batch_size = 8 with NamedTemporaryFile() as handle: file_name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(file_name, { 'index': IntField(), 'value': FloatField() }) writer.from_indexed_dataset(dataset) Compiler.set_enabled(True) loader = Loader(file_name, batch_size, num_workers=5, seed=17, pipelines={ 'value': [FloatDecoder(), Doubler(), ToTensor()] }) it = iter(loader) indices, values = next(it) assert_that(np.allclose(indices.squeeze().numpy(), np.arange(batch_size))).is_true() assert_that(np.allclose(2 * np.sin(np.arange(batch_size)), values.squeeze().numpy())).is_true() def test_multiple_iterators_success(): length = 60 batch_size = 8 with NamedTemporaryFile() as handle: file_name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(file_name, { 'index': IntField(), 'value': FloatField() }) writer.from_indexed_dataset(dataset) Compiler.set_enabled(True) loader = Loader(file_name, batch_size, num_workers=5, seed=17, pipelines={ 'value': [FloatDecoder(), Doubler(), ToTensor()] }) it = iter(loader) it = iter(loader) def test_multiple_epoch_doesnt_recompile(): length = 60 batch_size = 8 with NamedTemporaryFile() as handle: file_name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(file_name, { 'index': IntField(), 'value': FloatField() }) writer.from_indexed_dataset(dataset) Compiler.set_enabled(True) loader = Loader(file_name, batch_size, num_workers=5, seed=17, pipelines={ 'value': [FloatDecoder(), Doubler(), ToTensor()] }) it = iter(loader) code = loader.code_per_stage it = iter(loader) new_code = loader.code_per_stage assert_that(code).is_equal_to(new_code) def test_multiple_epoch_does_recompile(): length = 60 batch_size = 8 with NamedTemporaryFile() as handle: file_name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(file_name, { 'index': IntField(), 'value': FloatField() }) writer.from_indexed_dataset(dataset) Compiler.set_enabled(True) loader = Loader(file_name, batch_size, num_workers=5, seed=17, recompile=True, pipelines={ 'value': [FloatDecoder(), Doubler(), ToTensor()] }) it = iter(loader) code = loader.code_per_stage it = iter(loader) new_code = loader.code_per_stage assert_that(code).is_not_equal_to(new_code)
ffcv-main
tests/test_basic_pipeline.py
import numpy as np import torch as ch from torch.utils.data import Dataset from assertpy import assert_that from tempfile import NamedTemporaryFile from torchvision.datasets import CIFAR10 from torch.utils.data import Subset from ffcv.writer import DatasetWriter from ffcv.fields import IntField, RGBImageField from ffcv.loader import Loader from ffcv.pipeline.compiler import Compiler class DummyDataset(Dataset): def __init__(self, length, height, width, reversed=False): self.length = length self.height = height self.width = width self.reversed = reversed def __len__(self): return self.length def __getitem__(self, index): if index > self.length: raise IndexError dims = (self.height, self.width, 3) image_data = ((np.ones(dims) * index) % 255).astype('uint8') result = index,image_data if self.reversed: result = tuple(reversed(result)) return result def create_and_validate(length, mode='raw', reversed=False): dataset = DummyDataset(length, 500, 300, reversed=reversed) with NamedTemporaryFile() as handle: name = handle.name fields = { 'index': IntField(), 'value': RGBImageField(write_mode=mode, jpeg_quality=95) } if reversed: fields = { 'value': RGBImageField(write_mode=mode, jpeg_quality=95), 'index': IntField() } writer = DatasetWriter(name, fields, num_workers=2) writer.from_indexed_dataset(dataset, chunksize=5) Compiler.set_enabled(False) loader = Loader(name, batch_size=5, num_workers=2) for res in loader: if not reversed: index, images = res else: images , index = res for i, image in zip(index, images): if mode == 'raw': assert_that(ch.all((image == (i % 255)).reshape(-1))).is_true() else: assert_that(ch.all((image == (i % 255)).reshape(-1))).is_true() def make_and_read_cifar_subset(length): my_dataset = Subset(CIFAR10(root='/tmp', train=True, download=True), range(length)) with NamedTemporaryFile() as handle: name = handle.name writer = DatasetWriter(name, { 'image': RGBImageField(write_mode='smart', max_resolution=32), 'label': IntField(), }, num_workers=2) writer.from_indexed_dataset(my_dataset, chunksize=10) Compiler.set_enabled(False) loader = Loader(name, batch_size=5, num_workers=2) for index, images in loader: pass def test_cifar_subset(): make_and_read_cifar_subset(200) def test_simple_raw_image_pipeline(): create_and_validate(500, 'raw', False) def test_simple_raw_image_pipeline_rev(): create_and_validate(500, 'raw', True) def test_simple_jpg_image_pipeline(): create_and_validate(500, 'jpg', False) def test_simple_jpg_image_pipeline_rev(): create_and_validate(500, 'jpg', True)
ffcv-main
tests/test_image_pipeline.py
import os from tempfile import NamedTemporaryFile from time import sleep, time import os, psutil import numpy as np import pytest from tqdm import tqdm from assertpy import assert_that from torch.utils.data import Dataset from ffcv.writer import DatasetWriter from ffcv.reader import Reader from ffcv.fields import BytesField, IntField from ffcv.pipeline.compiler import Compiler from ffcv import Loader class DummyDataset(Dataset): def __init__(self, l, size): self.l = l self.size = size def __len__(self): return self.l def __getitem__(self, index): if index > self.l: raise IndexError np.random.seed(index) return index, np.random.randint(0, 255, size=self.size, dtype='u1') def create_and_run(num_samples, size_bytes): handle = NamedTemporaryFile() with handle: name = handle.name dataset = DummyDataset(num_samples, size_bytes) writer = DatasetWriter(num_samples, name, { 'index': IntField(), 'value': BytesField() }) Compiler.set_enabled(True) with writer: writer.write_pytorch_dataset(dataset, num_workers=-1, chunksize=100) total_dataset_size = num_samples * size_bytes # Dataset should not be in RAM process = psutil.Process(os.getpid()) assert_that(process.memory_info().rss).is_less_than(total_dataset_size) loader = Loader(name, 128, 10) for _ in tqdm(loader): assert_that(process.memory_info().rss).is_less_than(total_dataset_size) @pytest.mark.skipif(bool(os.environ.get('FFCV_RUN_MEMORY_LEAK_TEST', "0")), reason="set FFCV_RUN_MEMORY_LEAK_TEST to enable it") def test_memory_leak_write(): create_and_run(128100, 500*300*3)
ffcv-main
tests/test_memory_leak.py
import numpy as np from assertpy import assert_that from numpy.random import shuffle from torch.utils.data import Dataset import logging import os from assertpy import assert_that from tempfile import NamedTemporaryFile from ffcv.writer import DatasetWriter from ffcv.reader import Reader from ffcv.fields import IntField, FloatField, BytesField numba_logger = logging.getLogger('numba') numba_logger.setLevel(logging.WARNING) class DummyDataset(Dataset): def __init__(self, l): self.l = l def __len__(self): return self.l def __getitem__(self, index): if index > self.l: raise IndexError() return (index, np.sin(index)) class DummyDatasetWithData(Dataset): def __init__(self, l): self.l = l def __len__(self): return self.l def __getitem__(self, index): if index > self.l: raise IndexError() return (index, np.zeros(2)) def validate_simple_dataset(name, length, shuffled=False): reader = Reader(name) assert_that(reader.handlers).is_length(2) assert_that(reader.handlers['index']).is_instance_of(IntField) assert_that(reader.handlers['value']).is_instance_of(FloatField) assert_that(reader.alloc_table).is_length(0) assert_that(reader.metadata).is_length(length) if shuffled: assert_that((reader.metadata['f0'] == np.arange(length).astype('int')).all()).is_false() assert_that(set(reader.metadata['f0'])).is_equal_to(set(np.arange(length).astype('int'))) else: assert_that((reader.metadata['f0'] == np.arange(length).astype('int')).all()).is_true() assert_that((np.sin(reader.metadata['f0']) == reader.metadata['f1']).all()).is_true() def test_write_shuffle(): length = 600 with NamedTemporaryFile() as handle: name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(name, { 'index': IntField(), 'value': FloatField() }) writer.from_indexed_dataset(dataset, shuffle_indices=True) validate_simple_dataset(name, length, shuffled=True) def test_write_simple(): length = 600 with NamedTemporaryFile() as handle: name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(name, { 'index': IntField(), 'value': FloatField() }) writer.from_indexed_dataset(dataset) validate_simple_dataset(name, length) def test_multiple_workers(): length = 600 with NamedTemporaryFile() as handle: name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(name, { 'index': IntField(), 'value': FloatField() }, num_workers=30) writer.from_indexed_dataset(dataset, chunksize=10000) validate_simple_dataset(name, length) def test_super_long(): length = 600000 with NamedTemporaryFile() as handle: name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(name, { 'index': IntField(), 'value': FloatField() }, num_workers=30) writer.from_indexed_dataset(dataset, chunksize=10000) validate_simple_dataset(name, length) def test_small_chunks_multiple_workers(): length = 600 with NamedTemporaryFile() as handle: name = handle.name dataset = DummyDatasetWithData(length) writer = DatasetWriter(name, { 'index': IntField(), 'value': BytesField() }, num_workers=30) writer.from_indexed_dataset(dataset, chunksize=1)
ffcv-main
tests/test_writer.py
import numpy as np from tqdm import tqdm from assertpy import assert_that from torch.utils.data import Dataset import logging from time import time import os from assertpy import assert_that from tempfile import NamedTemporaryFile from ffcv.writer import DatasetWriter from ffcv.reader import Reader from ffcv.fields import BytesField, IntField from ffcv.pipeline.compiler import Compiler from ffcv.memory_managers import OSCacheManager from test_memory_allocation import DummyDataset def create_and_validate(length, size, do_compile): dataset = DummyDataset(length, size) with NamedTemporaryFile() as handle: name = handle.name writer = DatasetWriter(name, { 'index': IntField(), 'value': BytesField() }, num_workers=2) writer.from_indexed_dataset(dataset, chunksize=5) reader = Reader(name) manager = OSCacheManager(reader) context = manager.schedule_epoch(np.array([0, 1])) indices = np.random.choice(length, 500) addresses = reader.alloc_table['ptr'][indices] sample_ids = reader.alloc_table['sample_id'][indices] Compiler.set_enabled(do_compile) read_fn = manager.compile_reader() with context: for addr, sample_id in zip(tqdm(addresses), sample_ids): read_buffer = read_fn(addr, context.state) np.random.seed(sample_id) expected_buff = np.random.randint(0, 255, size=size, dtype='u1') assert_that(read_buffer).is_length(len(expected_buff)) assert_that(np.all(read_buffer == expected_buff)).is_true() # We skip the first which is compilation def test_simple(): create_and_validate(600, 76, False) def test_large(): create_and_validate(600, 1024, False) def test_many(): create_and_validate(60000, 81, False) def test_many_compiled(): create_and_validate(1000000, 1, True)
ffcv-main
tests/test_memory_reader.py
from dataclasses import replace import torch as ch from ffcv.pipeline.allocation_query import AllocationQuery from ffcv.pipeline.compiler import Compiler import numpy as np from typing import Callable from assertpy import assert_that from torch.utils.data import Dataset import logging import os from assertpy import assert_that from tempfile import NamedTemporaryFile from ffcv.pipeline.operation import Operation from ffcv.transforms.ops import ToTensor from ffcv.writer import DatasetWriter from ffcv.reader import Reader from ffcv.loader import Loader from ffcv.fields import IntField, FloatField, BytesField from ffcv.fields.basics import FloatDecoder from ffcv.pipeline.state import State from test_writer import DummyDataset numba_logger = logging.getLogger('numba') numba_logger.setLevel(logging.WARNING) class Doubler(Operation): def generate_code(self) -> Callable: def code(x, dst): dst[:] = x * 2 return dst return code def declare_state_and_memory(self, previous_state: State): return (previous_state, AllocationQuery(previous_state.shape, previous_state.dtype, previous_state.device)) def test_basic_simple(): length = 600 batch_size = 8 with NamedTemporaryFile() as handle: file_name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(file_name, { 'index': IntField(), 'value': FloatField() }) writer.from_indexed_dataset(dataset) Compiler.set_enabled(True) loader = Loader(file_name, batch_size, num_workers=5, seed=17, pipelines={ 'value': [FloatDecoder(), Doubler(), ToTensor()], 'index': None }) it = iter(loader) result = next(it) # We should only have one element in the tuple assert_that(result).is_length(1) values = result[0] assert_that(np.allclose(2 * np.sin(np.arange(batch_size)), values.squeeze().numpy())).is_true()
ffcv-main
tests/test_partial_pipeline.py
import string from ctypes import pointer from tempfile import NamedTemporaryFile from collections import defaultdict from assertpy.assertpy import assert_that from assertpy import assert_that import numpy as np from torch.utils.data import Dataset from ffcv import DatasetWriter from ffcv.fields import IntField, JSONField from ffcv.fields.bytes import BytesDecoder from ffcv.fields.basics import IntDecoder from ffcv import Loader options = list(string.ascii_uppercase + string.digits) def generate_random_string(low, high): length = np.random.randint(low, high) content = ''.join(np.random.choice(options, size=length)) return content class DummyDictDataset(Dataset): def __init__(self, n_samples): self.n_samples = n_samples def __len__(self): return self.n_samples def __getitem__(self, index): if index >= self.n_samples: raise IndexError() np.random.seed(index) length = np.random.randint(5, 250) content = np.random.randint(0, 256, size=(length,)) json_content = {} for i in range(3): json_content[generate_random_string(5, 10)] = generate_random_string(50, 250) return index, json_content def run_test(n_samples): with NamedTemporaryFile() as handle: name = handle.name dataset = DummyDictDataset(n_samples) writer = DatasetWriter(name, { 'index': IntField(), 'activations': JSONField() }, num_workers=3) writer.from_indexed_dataset(dataset) loader = Loader(name, batch_size=3, num_workers=5, pipelines={ 'activation': [BytesDecoder()], 'index': [IntDecoder()] } ) ix = 0 for _, json_encoded in loader: json_docs = JSONField.unpack(json_encoded) for doc in json_docs: ref_doc = dataset[ix][1] assert_that(sorted(doc.items())).is_equal_to(sorted(ref_doc.items())) ix += 1 def test_simple_dict(): run_test(32)
ffcv-main
tests/test_json_field.py
import numpy as np from assertpy import assert_that from torch.utils.data import Dataset import logging import os from assertpy import assert_that from tempfile import NamedTemporaryFile from ffcv.writer import DatasetWriter from ffcv.reader import Reader from ffcv.fields import BytesField, IntField class DummyDataset(Dataset): def __init__(self, l, size): self.l = l self.size = size def __len__(self): return self.l def __getitem__(self, index): if index > self.l: raise IndexError np.random.seed(index) return index, np.random.randint(0, 255, size=self.size, dtype='u1') def create_and_validate(length, size): dataset = DummyDataset(length, size) with NamedTemporaryFile() as handle: name = handle.name writer = DatasetWriter(name, { 'index': IntField(), 'value': BytesField() }, num_workers=2) writer.from_indexed_dataset(dataset, chunksize=5) reader = Reader(name) assert_that(reader.handlers).is_length(2) assert_that(reader.handlers['index']).is_instance_of(IntField) assert_that(reader.handlers['value']).is_instance_of(BytesField) assert_that(reader.alloc_table).is_length(length) assert_that(reader.metadata).is_length(length) assert_that((reader.metadata['f0'] == np.arange(length).astype('int')).all()).is_true() assert_that(np.all(reader.alloc_table['size'] == size)).is_true() def test_simple(): create_and_validate(600, 76) def test_large(): create_and_validate(600, 1024) def test_many(): create_and_validate(60000, 81)
ffcv-main
tests/test_memory_allocation.py
import os import uuid import numpy as np import torch as ch from torch.utils.data import Dataset from torchvision import transforms as tvt from assertpy import assert_that from tempfile import NamedTemporaryFile from torchvision.datasets import CIFAR10 from torchvision.utils import save_image, make_grid from torch.utils.data import Subset from ffcv.fields.basics import IntDecoder from ffcv.fields.rgb_image import SimpleRGBImageDecoder from ffcv.writer import DatasetWriter from ffcv.fields import IntField, RGBImageField from ffcv.loader import Loader from ffcv.pipeline.compiler import Compiler from ffcv.transforms import * SAVE_IMAGES = True IMAGES_TMP_PATH = '/tmp/ffcv_augtest_output' if SAVE_IMAGES: os.makedirs(IMAGES_TMP_PATH, exist_ok=True) UNAUGMENTED_PIPELINE=[ SimpleRGBImageDecoder(), ToTensor(), ToTorchImage() ] def run_test(length, pipeline, compile=False): my_dataset = Subset(CIFAR10(root='/tmp', train=True, download=True), range(length)) with NamedTemporaryFile() as handle: name = handle.name writer = DatasetWriter(name, { 'image': RGBImageField(write_mode='smart', max_resolution=32), 'label': IntField(), }, num_workers=2) writer.from_indexed_dataset(my_dataset, chunksize=10) Compiler.set_enabled(compile) loader = Loader(name, batch_size=7, num_workers=2, pipelines={ 'image': pipeline, 'label': [IntDecoder(), ToTensor(), Squeeze()] }, drop_last=False) unaugmented_loader = Loader(name, batch_size=7, num_workers=2, pipelines={ 'image': UNAUGMENTED_PIPELINE, 'label': [IntDecoder(), ToTensor(), Squeeze()] }, drop_last=False) tot_indices = 0 tot_images = 0 for (images, labels), (original_images, original_labels) in zip(loader, unaugmented_loader): print(images.shape, original_images.shape) tot_indices += labels.shape[0] tot_images += images.shape[0] for label, original_label in zip(labels, original_labels): assert_that(label).is_equal_to(original_label) if SAVE_IMAGES: save_image(make_grid(ch.concat([images, original_images])/255., images.shape[0]), os.path.join(IMAGES_TMP_PATH, str(uuid.uuid4()) + '.jpeg') ) assert_that(tot_indices).is_equal_to(len(my_dataset)) assert_that(tot_images).is_equal_to(len(my_dataset)) def test_cutout(): for comp in [True, False]: run_test(100, [ SimpleRGBImageDecoder(), Cutout(8), ToTensor(), ToTorchImage() ], comp) def test_flip(): for comp in [True, False]: run_test(100, [ SimpleRGBImageDecoder(), RandomHorizontalFlip(1.0), ToTensor(), ToTorchImage() ], comp) def test_module_wrapper(): for comp in [True, False]: run_test(100, [ SimpleRGBImageDecoder(), ToTensor(), ToTorchImage(), ModuleWrapper(tvt.Grayscale(3)), ], comp) def test_mixup(): for comp in [True, False]: run_test(100, [ SimpleRGBImageDecoder(), ImageMixup(.5, False), ToTensor(), ToTorchImage() ], comp) def test_poison(): mask = np.zeros((32, 32, 3)) # Red sqaure mask[:5, :5, 0] = 1 alpha = np.ones((32, 32)) for comp in [True, False]: run_test(100, [ SimpleRGBImageDecoder(), Poison(mask, alpha, list(range(100))), ToTensor(), ToTorchImage() ], comp) def test_random_resized_crop(): for comp in [True, False]: run_test(100, [ SimpleRGBImageDecoder(), RandomResizedCrop(scale=(0.08, 1.0), ratio=(0.75, 4/3), size=32), ToTensor(), ToTorchImage() ], comp) def test_translate(): for comp in [True, False]: run_test(100, [ SimpleRGBImageDecoder(), RandomTranslate(padding=10), ToTensor(), ToTorchImage() ], comp) ## Torchvision Transforms def test_torchvision_greyscale(): run_test(100, [ SimpleRGBImageDecoder(), ToTensor(), ToTorchImage(), tvt.Grayscale(3), ]) def test_torchvision_centercrop_pad(): run_test(100, [ SimpleRGBImageDecoder(), ToTensor(), ToTorchImage(), tvt.CenterCrop(10), tvt.Pad(11) ]) def test_torchvision_random_affine(): run_test(100, [ SimpleRGBImageDecoder(), ToTensor(), ToTorchImage(), tvt.RandomAffine(25), ]) def test_torchvision_random_crop(): run_test(100, [ SimpleRGBImageDecoder(), ToTensor(), ToTorchImage(), tvt.Pad(10), tvt.RandomCrop(size=32), ]) def test_torchvision_color_jitter(): run_test(100, [ SimpleRGBImageDecoder(), ToTensor(), ToTorchImage(), tvt.ColorJitter(.5, .5, .5, .5), ]) if __name__ == '__main__': # test_cutout() test_flip() # test_module_wrapper() # test_mixup() # test_poison() # test_random_resized_crop() # test_translate() ## Torchvision Transforms # test_torchvision_greyscale() # test_torchvision_centercrop_pad() # test_torchvision_random_affine() # test_torchvision_random_crop() # test_torchvision_color_jitter()
ffcv-main
tests/test_augmentations.py
from dataclasses import replace import torch as ch from ffcv.pipeline.allocation_query import AllocationQuery from ffcv.pipeline.compiler import Compiler import numpy as np from typing import Callable from assertpy import assert_that from torch.utils.data import Dataset import logging import os from assertpy import assert_that from tempfile import NamedTemporaryFile from ffcv.pipeline.operation import Operation from ffcv.transforms.ops import ToTensor from ffcv.writer import DatasetWriter from ffcv.reader import Reader from ffcv.loader import Loader from ffcv.fields import IntField, FloatField, BytesField from ffcv.fields.basics import FloatDecoder from ffcv.pipeline.state import State from test_writer import DummyDataset numba_logger = logging.getLogger('numba') numba_logger.setLevel(logging.WARNING) class Doubler(Operation): def generate_code(self) -> Callable: def code(x, dst): dst[:] = x * 2 return dst return code def declare_state_and_memory(self, previous_state: State): return (previous_state, AllocationQuery(previous_state.shape, previous_state.dtype, previous_state.device)) def test_basic_simple(): length = 600 batch_size = 8 with NamedTemporaryFile() as handle: file_name = handle.name dataset = DummyDataset(length) writer = DatasetWriter(file_name, { 'index': IntField(), 'value': FloatField() }) writer.from_indexed_dataset(dataset) Compiler.set_enabled(True) loader = Loader(file_name, batch_size, num_workers=5, seed=17, pipelines={ 'value': [FloatDecoder(), Doubler(), ToTensor()], }) def cond(value): value = value[0] result = value < 1 and value >= 0.5 return result filtered = loader.filter('value', cond) assert_that(len(filtered)).is_greater_than(0) for index, values in filtered: assert_that(values.shape[0]).is_equal_to(batch_size) assert_that(((values < 1) & (values >= 0.5)).all()).is_true()
ffcv-main
tests/test_loader_filter.py
from ffcv.transforms.ops import ToTensor from ffcv.fields.rgb_image import RandomResizedCropRGBImageDecoder, SimpleRGBImageDecoder, CenterCropRGBImageDecoder import numpy as np import torch as ch from torch.utils.data import Dataset from assertpy import assert_that from tempfile import NamedTemporaryFile from torchvision.datasets import CIFAR10 from torch.utils.data import Subset from ffcv.writer import DatasetWriter from ffcv.fields import IntField, RGBImageField from ffcv.loader import Loader from ffcv.pipeline.compiler import Compiler class DummyDataset(Dataset): def __init__(self, length, size_range): self.length = length self.size_range = size_range def __len__(self): return self.length def __getitem__(self, index): if index > self.length: raise IndexError dims = ( np.random.randint(self.size_range[0], self.size_range[1] + 1), np.random.randint(self.size_range[0], self.size_range[1] + 1), 3 ) image_data = ((np.ones(dims) * index) % 255).astype('uint8') return index, image_data def create_and_validate(length, decoder, size, mode='raw', compile=False): dataset = DummyDataset(length, (300, 500)) with NamedTemporaryFile() as handle: name = handle.name fields = { 'index': IntField(), 'value': RGBImageField(write_mode=mode) } writer = DatasetWriter(name, fields, num_workers=2) writer.from_indexed_dataset(dataset, chunksize=5) Compiler.set_enabled(compile) loader = Loader(name, batch_size=5, num_workers=2, pipelines={ 'value': [decoder, ToTensor()] }) for index, images in loader: for i, image in zip(index, images): assert_that(image.shape).is_equal_to((size[0], size[1], 3)) if mode == 'raw': assert_that(ch.all((image == (i % 255)).reshape(-1))).is_true() else: assert_that(ch.all((image == (i % 255)).reshape(-1))).is_true() def test_simple_image_decoder_fails_with_variable_images(): decoder = SimpleRGBImageDecoder() assert_that(create_and_validate).raises(TypeError).when_called_with(500, decoder, 32, 'raw') # def test_rrc_decoder_raw(): # size = (160, 160) # decoder = RandomResizedCropRGBImageDecoder(size) # create_and_validate(500, decoder, size, 'raw') # # def test_rrc_decoder_jpg(): # size = (160, 160) # decoder = RandomResizedCropRGBImageDecoder(size) # create_and_validate(500, decoder, size, 'jpg') # # def test_rrc_decoder_raw_compiled(): # size = (160, 160) # decoder = RandomResizedCropRGBImageDecoder(size) # create_and_validate(500, decoder, size, 'raw', True) # # def test_rrc_decoder_jpg_compiled(): # size = (160, 160) # decoder = RandomResizedCropRGBImageDecoder(size) # create_and_validate(500, decoder, size, 'jpg', True) # # def test_cc_decoder_raw_nc(): # size = (160, 160) # decoder = CenterCropRGBImageDecoder(size) # create_and_validate(500, decoder, size, 'raw') # # def test_cc_decoder_jpg_nc(): # size = (160, 160) # decoder = CenterCropRGBImageDecoder(size) # create_and_validate(500, decoder, size, 'jpg') # # def test_cc_decoder_raw_compiled(): # size = (160, 160) # decoder = CenterCropRGBImageDecoder(size) # create_and_validate(500, decoder, size, 'raw', True) # # def test_cc_decoder_jpg_compiled(): # size = (160, 160) # decoder = CenterCropRGBImageDecoder(size) # create_and_validate(500, decoder, size, 'jpg', True)
ffcv-main
tests/test_rrc.py
from os import path from glob import glob import tempfile import numpy as np from tempfile import TemporaryDirectory, NamedTemporaryFile import torch as ch from torch.utils.data import Dataset import webdataset as wds from ffcv import DatasetWriter from ffcv.reader import Reader from ffcv.fields import IntField, FloatField from test_writer import validate_simple_dataset field_names = [ 'index', 'value.pyd' ] class DummyDataset(Dataset): def __init__(self, l): self.l = l def __len__(self): return self.l def __getitem__(self, index): if index >= self.l: raise IndexError() return (index, np.sin(index)) def write_webdataset(folder, dataset, field_names): pattern = path.join(folder, "dataset-%06d.tar") writer = wds.ShardWriter(pattern, maxcount=20) with writer as sink: for i, sample in enumerate(dataset): data = { '__key__': f'sample_{i}' } for field_name, value in zip(field_names, sample): data[field_name] = value sink.write(data) def pipeline(dataset): return (dataset .decode() .to_tuple(*field_names) ) if __name__ == '__main__': N = 1007 dataset = DummyDataset(N) with TemporaryDirectory() as temp_directory: with NamedTemporaryFile() as handle: fname = handle.name write_webdataset(temp_directory, dataset, field_names) files = glob(path.join(temp_directory, '*')) files = list(sorted(files)) print(fname) writer = DatasetWriter(fname, { 'index': IntField(), 'value': FloatField() }) writer.from_webdataset(files, pipeline) validate_simple_dataset(fname, N, shuffled=False)
ffcv-main
tests/test_webdataset.py
import numpy as np from tqdm import tqdm from assertpy import assert_that from torch.utils.data import Dataset import logging from time import time import os from assertpy import assert_that from tempfile import NamedTemporaryFile from ffcv.writer import DatasetWriter from ffcv.reader import Reader from ffcv.fields import IntField, RGBImageField from ffcv.pipeline.compiler import Compiler from ffcv.memory_managers import OSCacheManager class DummyDataset(Dataset): def __init__(self, length): self.length = length def __len__(self): return self.length def __getitem__(self, index): if index >= self.length: raise IndexError np.random.seed(37 + index) dims = tuple([128, 128, 3]) image_data = np.random.randint(low=0, high=255, size=dims, dtype='uint8') return index, image_data def create_and_validate(length, mode='raw', compile=False): dataset = DummyDataset(length) with NamedTemporaryFile() as handle: name = handle.name writer = DatasetWriter(name, { 'index': IntField(), 'value': RGBImageField(write_mode=mode) }, num_workers=2) writer.from_indexed_dataset(dataset, chunksize=5) reader = Reader(name) manager = OSCacheManager(reader) context = manager.schedule_epoch(np.array([0, 1])) Compiler.set_enabled(compile) with context: Decoder = RGBImageField().get_decoder_class() decoder = Decoder() decoder.accept_globals(reader.metadata['f1'], manager.compile_reader()) decode = Compiler.compile(decoder.generate_code()) assert_that(reader.metadata).is_length(length) buff = np.zeros((1, 128, 128, 3), dtype='uint8') for i in range(length): result = decode(np.array([i]), buff, reader.metadata['f1'], context.state)[0] _, ref_image = dataset[i] assert_that(result.shape).is_equal_to(ref_image.shape) if mode == 'jpg': dist = np.abs(ref_image.astype('float') - result.astype('float')) assert_that(dist.mean()).is_less_than(80) else: assert_that(np.all(ref_image == result)).is_true() def test_simple_image_dataset_raw(): create_and_validate(500, 'raw') def test_simple_image_dataset_jpg(): create_and_validate(100, 'jpg') def test_simple_image_dataset_raw_compile(): create_and_validate(500, 'raw', True) def test_simple_image_dataset_jpg_compile(): create_and_validate(100, 'jpg', True)
ffcv-main
tests/test_image_read.py
from ctypes import pointer from tempfile import NamedTemporaryFile from collections import defaultdict from assertpy.assertpy import assert_that from assertpy import assert_that import numpy as np from torch.utils.data import Dataset from ffcv import DatasetWriter from ffcv.fields import IntField, NDArrayField from ffcv import Loader class DummyActivationsDataset(Dataset): def __init__(self, n_samples, shape): self.n_samples = n_samples self.shape = shape def __len__(self): return self.n_samples def __getitem__(self, index): if index >= self.n_samples: raise IndexError() np.random.seed(index) return index, np.random.randn(*self.shape).astype('<f4') class TripleDummyActivationsDataset(Dataset): def __init__(self, n_samples, shape): self.n_samples = n_samples self.shape = shape def __len__(self): return self.n_samples def __getitem__(self, index): if index >= self.n_samples: raise IndexError() np.random.seed(index) d1 = np.random.randn(*self.shape).astype('<f4') d2 = np.random.randn(*self.shape).astype('<f4') d3 = np.random.randn(*self.shape).astype('<f4') return index, d1, d2, d3 def run_test(n_samples, shape): with NamedTemporaryFile() as handle: name = handle.name dataset = DummyActivationsDataset(n_samples, shape) writer = DatasetWriter(name, { 'index': IntField(), 'activations': NDArrayField(np.dtype('<f4'), shape) }, num_workers=3) writer.from_indexed_dataset(dataset) loader = Loader(name, batch_size=3, num_workers=5) for ixes, activations in loader: for ix, activation in zip(ixes, activations): assert_that(np.all(dataset[ix][1] == activation.numpy())).is_true() def test_simple_activations(): run_test(4096, (2048,)) def test_multi_fields(): n_samples = 4096 shape = (2048,) with NamedTemporaryFile() as handle: name = handle.name dataset = TripleDummyActivationsDataset(n_samples, shape) writer = DatasetWriter(name, { 'index': IntField(), 'activations': NDArrayField(np.dtype('<f4'), shape), 'activations2': NDArrayField(np.dtype('<f4'), shape), 'activations3': NDArrayField(np.dtype('<f4'), shape) }, num_workers=1) writer.from_indexed_dataset(dataset) loader = Loader(name, batch_size=3, num_workers=5) page_size_l2 = int(np.log2(loader.reader.page_size)) sample_ids = loader.reader.alloc_table['sample_id'] pointers = loader.reader.alloc_table['ptr'] pages = pointers >> page_size_l2 sample_to_pages = defaultdict(set) for sample_id, page in zip(sample_ids, pages): sample_to_pages[sample_id].add(page) assert_that(sample_to_pages[sample_id]).is_length(1) for ixes, activations, d2, d3 in loader: for ix, activation in zip(ixes, activations): assert_that(np.all(dataset[ix][1] == activation.numpy())).is_true()
ffcv-main
tests/test_array_field.py
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) # -- Project information ----------------------------------------------------- project = 'FFCV' copyright = '2022, ffcv' author = 'ffcv' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', 'sphinx.ext.autosectionlabel' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] autodoc_mock_imports = ['torch', 'torchvision', 'cv2', 'PIL', 'ffcv.libffcv'] autodoc_member_order = 'bysource' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'karma_sphinx_theme' autodoc_default_options = { 'undoc-members': False, } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] html_css_files = [ 'style.css', ]
ffcv-main
docs/conf.py
from .loader import Loader from .writer import DatasetWriter __version__ = '0.0.3rc1' __all__ = ['Loader']
ffcv-main
ffcv/__init__.py
from typing import List import numpy as np from .fields.base import Field from .fields import ( FloatField, IntField, RGBImageField, BytesField, NDArrayField, JSONField ) CURRENT_VERSION = 2 # Note that in this file we use dtypes in the format <u4 indead of uint32. This # forces endinaness of the data making datasets compatible between different # CPU architectures ARM for example is big-endian and x86 is little endian. We # fix the endianness to little-endian as we suspect that this library will # mostly be used on x86 architecture (at least in the near future) # Type describing the data coming HeaderType = np.dtype([ ('version', '<u2'), ('num_fields', '<u2'), ('page_size', '<u4'), ('num_samples', '<u8'), ('alloc_table_ptr', '<u8') ], align=True) ALLOC_TABLE_TYPE = np.dtype([ ('sample_id', '<u8'), ('ptr', '<u8'), ('size', '<u8'), ]) FieldDescType = np.dtype([ # This identifier will inform us on how to decode that field ('type_id', '<u1'), ('name', ('<u1', 16)), # Data that will depend on the type of the field (some might need arguments # like images, but some might not like integers and floats) ('arguments', ('<u1', (1024, ))) ], align=True) # Map from type_id to the handler for that kind of data TYPE_ID_HANDLER = { 255 : None, 0 : FloatField, 1 : IntField, 2 : RGBImageField, 3 : BytesField, 4 : NDArrayField, 5 : JSONField } # Parse the fields descriptors from the header of the dataset # Return the corresponding handlers def get_handlers(field_descriptors): handlers = [] for field_descriptor in field_descriptors: type_id = field_descriptor['type_id'] Handler = TYPE_ID_HANDLER[type_id] if Handler is None: handlers.append(None) else: handlers.append(Handler.from_binary(field_descriptor['arguments'])) return handlers # From a list of handlers return the combined data type that will # describe a complete sample def get_metadata_type(handlers: List[Field]) -> np.dtype: return np.dtype([('', handler.metadata_type) for handler in handlers], align=True)
ffcv-main
ffcv/types.py
import numpy as np from time import sleep from os import SEEK_END from multiprocessing import Value from .utils import align_to_page import ctypes class MemoryAllocator(): def __init__(self, fname, offset_start, page_size): self.fname = fname self.offset = align_to_page(offset_start, page_size) self.next_page_allocated = Value(ctypes.c_uint64, 0) self.next_page_written = Value(ctypes.c_uint64, 0) self.page_size = page_size self.page_offset = 0 self.my_page = -1 self.page_data = np.zeros(self.page_size, '<u1') self.allocations = [] self.current_sample_id = None def __enter__(self): self.fp = open(self.fname, 'ab', buffering=0) def set_current_sample(self, current_sample_id): self.current_sample_id = current_sample_id @property def space_left_in_page(self): # We don't have a page allocated yet if self.my_page < 0: return 0 return self.page_size - self.page_offset def malloc(self, size): # print(f"Allocating {size} bytes") if size > self.page_size: raise ValueError(f"Tried allocating {size} but" + " page size is {self.page_size}") if size > self.space_left_in_page: self.flush_page() # We book the next available page in the file with self.next_page_allocated.get_lock(): self.my_page = self.next_page_allocated.value self.next_page_allocated.value = self.my_page + 1 self.page_offset = 0 # This is a new page so we erate the content of the buffer self.page_data.fill(0) # We check if we already allocated space for this sample on # the page that is now full region_in_previous_page = False while self.allocations and self.allocations[-1][0] == self.current_sample_id: # We have to revert the allocations we did and we are giving # up on this sample. self.allocations.pop() # We found at least memory region from the preivous page region_in_previous_page = True # The writer will restart from this freshly allocated page if region_in_previous_page: raise MemoryError("Not enough memory to fit the whole sample") previous_offset = self.page_offset self.page_offset += size buffer = self.page_data[previous_offset:self.page_offset] ptr = self.offset + self.my_page * self.page_size + previous_offset # We return the pointer to the location in file and where to write # the data self.allocations.append((self.current_sample_id, ptr, size)) return ptr, buffer def flush_page(self): # If we haven't allocated any page we end there if self.my_page < 0: return # We shouldn't have allocated a page and have nothing to write on it assert self.page_offset != 0 # Wait until it's my turn to write while self.next_page_written.value != self.my_page: # Essentially a spin lock # TODO we could replace it with like exponential backoff sleep(0.001) pass # Now it's my turn to write expected_file_offset = self.offset + self.my_page * self.page_size # in order to be aligned with page size # If this is the first page we have to pad with zeros if self.my_page == 0: # print("Padding headers to align with page size") current_location = self.fp.seek(0, SEEK_END) null_bytes_to_write = expected_file_offset - current_location self.fp.write(np.zeros(null_bytes_to_write, dtype='<u1').tobytes()) # print(f"current file pointer is no {self.fp.tell()} and should be {expected_file_offset}") self.fp.seek(expected_file_offset) # print(f"Writing page {self.my_page} at offset {self.fp.tell()}") self.fp.write(self.page_data.tobytes()) # print(f"Done writing {self.my_page} at offset {self.fp.tell()}") # We warn other processes that they are free to write the next page with self.next_page_written.get_lock(): self.next_page_written.value += 1 # Flush the last page and def __exit__(self, exc_type, exc_val, exc_tb): self.flush_page() self.fp.close()
ffcv-main
ffcv/memory_allocator.py
import numpy as np from .utils import decode_null_terminated_string from .types import (ALLOC_TABLE_TYPE, HeaderType, CURRENT_VERSION, FieldDescType, get_handlers, get_metadata_type) class Reader: def __init__(self, fname, custom_handlers={}): self._fname = fname self._custom_handlers = custom_handlers self.read_header() self.read_field_descriptors() self.read_metadata() self.read_allocation_table() @property def file_name(self): return self._fname def read_header(self): header = np.fromfile(self._fname, dtype=HeaderType, count=1)[0] header.setflags(write=False) version = header['version'] if version != CURRENT_VERSION: msg = f"file format mismatch: code={CURRENT_VERSION},file={version}" raise AssertionError(msg) self.num_samples = header['num_samples'] self.page_size = header['page_size'] self.num_fields = header['num_fields'] self.header = header def read_field_descriptors(self): offset = HeaderType.itemsize field_descriptors = np.fromfile(self._fname, dtype=FieldDescType, count=self.num_fields, offset=offset) field_descriptors.setflags(write=False) handlers = get_handlers(field_descriptors) self.field_descriptors = field_descriptors self.field_names = list(map(decode_null_terminated_string, self.field_descriptors['name'])) self.handlers = dict(zip(self.field_names, handlers)) for field_name, field_desc in zip(self.field_names, self.field_descriptors): if field_name in self._custom_handlers: CustomHandler = self._custom_handlers[field_name] self.handlers[field_name] = CustomHandler.from_binary(field_desc['arguments']) for field_name, handler in self.handlers.items(): if handler is None: raise ValueError(f"Must specify a custom_field entry " \ f"for custom field {field_name}") self.metadata_type = get_metadata_type(list(self.handlers.values())) def read_metadata(self): offset = HeaderType.itemsize + self.field_descriptors.nbytes self.metadata = np.fromfile(self._fname, dtype=self.metadata_type, count=self.num_samples, offset=offset) self.metadata.setflags(write=False) def read_allocation_table(self): offset = self.header['alloc_table_ptr'] alloc_table = np.fromfile(self._fname, dtype=ALLOC_TABLE_TYPE, offset=offset) alloc_table.setflags(write=False) self.alloc_table = alloc_table
ffcv-main
ffcv/reader.py
import numpy as np from numba import types from numba.extending import intrinsic def chunks(lst, n): for i in range(0, len(lst), n): yield lst[i:i + n] def is_power_of_2(n): return (n & (n-1) == 0) and n != 0 def align_to_page(ptr, page_size): # If we are not aligned with the start of a page: if ptr % page_size != 0: ptr = ptr + page_size - ptr % page_size return ptr def decode_null_terminated_string(bytes: np.ndarray): return bytes.tobytes().decode('ascii').split('\x00')[0] @intrinsic def cast_int_to_byte_ptr(typingctx, src): # check for accepted types if isinstance(src, types.Integer): # create the expected type signature result_type = types.CPointer(types.uint8) sig = result_type(types.uintp) # defines the custom code generation def codegen(context, builder, signature, args): # llvm IRBuilder code here [src] = args rtype = signature.return_type llrtype = context.get_value_type(rtype) return builder.inttoptr(src, llrtype) return sig, codegen from threading import Lock s_print_lock = Lock() def s_print(*a, **b): """Thread safe print function""" with s_print_lock: print(*a, **b)
ffcv-main
ffcv/utils.py
import ctypes from numba import njit import numpy as np from ctypes import CDLL, c_int64, c_uint8, c_uint64, POINTER, c_void_p, c_uint32, c_bool, cdll import ffcv._libffcv lib = CDLL(ffcv._libffcv.__file__) libc = cdll.LoadLibrary('libc.so.6') read_c = libc.pread read_c.argtypes = [c_uint32, c_void_p, c_uint64, c_uint64] def read(fileno:int, destination:np.ndarray, offset:int): return read_c(fileno, destination.ctypes.data, destination.size, offset) ctypes_resize = lib.resize ctypes_resize.argtypes = 11 * [c_int64] def resize_crop(source, start_row, end_row, start_col, end_col, destination): ctypes_resize(0, source.ctypes.data, source.shape[0], source.shape[1], start_row, end_row, start_col, end_col, destination.ctypes.data, destination.shape[0], destination.shape[1]) # Extract and define the interface of imdeocde ctypes_imdecode = lib.imdecode ctypes_imdecode.argtypes = [ c_void_p, c_uint64, c_uint32, c_uint32, c_void_p, c_uint32, c_uint32, c_uint32, c_uint32, c_uint32, c_uint32, c_bool, c_bool ] def imdecode(source: np.ndarray, dst: np.ndarray, source_height: int, source_width: int, crop_height=None, crop_width=None, offset_x=0, offset_y=0, scale_factor_num=1, scale_factor_denom=1, enable_crop=False, do_flip=False): return ctypes_imdecode(source.ctypes.data, source.size, source_height, source_width, dst.ctypes.data, crop_height, crop_width, offset_x, offset_y, scale_factor_num, scale_factor_denom, enable_crop, do_flip) ctypes_memcopy = lib.my_memcpy ctypes_memcopy.argtypes = [c_void_p, c_void_p, c_uint64] def memcpy(source: np.ndarray, dest: np.ndarray): return ctypes_memcopy(source.ctypes.data, dest.ctypes.data, source.size)
ffcv-main
ffcv/libffcv.py
from functools import partial from typing import Callable, List, Mapping from os import SEEK_END, path import numpy as np from time import sleep import ctypes from multiprocessing import (shared_memory, cpu_count, Queue, Process, Value) from tqdm import tqdm from tqdm.contrib.concurrent import thread_map from .utils import chunks, is_power_of_2 from .fields.base import Field from .memory_allocator import MemoryAllocator from .types import (TYPE_ID_HANDLER, get_metadata_type, HeaderType, FieldDescType, CURRENT_VERSION, ALLOC_TABLE_TYPE) MIN_PAGE_SIZE = 1 << 21 # 2MiB, which is the most common HugePage size def from_shard(shard, pipeline): # We import webdataset here so that it desn't crash if it's not required # (Webdataset is an optional depdency) from webdataset import WebDataset dataset = WebDataset(shard) dataset = pipeline(dataset) return dataset def count_samples_in_shard(shard, pipeline): # # We count the length of the dataset # We are not using __len__ since it might not be implemented count = 0 for _ in from_shard(shard, pipeline): count += 1 return count def handle_sample(sample, dest_ix, field_names, metadata, allocator, fields): # We should only have to retry at least one for i in range(2): try: allocator.set_current_sample(dest_ix) # We extract the sample in question from the dataset # We write each field individually to the metadata region for field_name, field, field_value in zip(field_names, fields.values(), sample): destination = metadata[field_name][dest_ix: dest_ix + 1] field.encode(destination, field_value, allocator.malloc) # We managed to write all the data without reaching # the end of the page so we stop retrying break # If we couldn't fit this sample in the previous page we retry once from a fresh page except MemoryError: # We raise the error if it happens on the second try if i == 1: raise def worker_job_webdataset(input_queue, metadata_sm, metadata_type, fields, allocator, done_number, allocations_queue, pipeline): metadata = np.frombuffer(metadata_sm.buf, dtype=metadata_type) field_names = metadata_type.names # This `with` block ensures that all the pages allocated have been written # onto the file with allocator: while True: todo = input_queue.get() if todo is None: # No more work left to do break shard, offset = todo # For each sample in the chunk done = 0 for i, sample in enumerate(from_shard(shard, pipeline)): done += 1 dest_ix = offset + i handle_sample(sample, dest_ix, field_names, metadata, allocator, fields) # We warn the main thread of our progress with done_number.get_lock(): done_number.value += done allocations_queue.put(allocator.allocations) def worker_job_indexed_dataset(input_queue, metadata_sm, metadata_type, fields, allocator, done_number, allocations_queue, dataset): metadata = np.frombuffer(metadata_sm.buf, dtype=metadata_type) field_names = metadata_type.names # This `with` block ensures that all the pages allocated have been written # onto the file with allocator: while True: chunk = input_queue.get() if chunk is None: # No more work left to do break # For each sample in the chunk for dest_ix, source_ix in chunk: sample = dataset[source_ix] handle_sample(sample, dest_ix, field_names, metadata, allocator, fields) # We warn the main thread of our progress with done_number.get_lock(): done_number.value += len(chunk) allocations_queue.put(allocator.allocations) class DatasetWriter(): """Writes given dataset into FFCV format (.beton). Supports indexable objects (e.g., PyTorch Datasets) and webdataset. Parameters ---------- fname: str File name to store dataset in FFCV format (.beton) fields : Mapping[str, Field] Map from keys to Field's (order matters!) page_size : int Page size used internally num_workers : int Number of processes to use """ def __init__(self, fname: str, fields: Mapping[str, Field], page_size: int = 4 * MIN_PAGE_SIZE, num_workers: int = -1): self.fields = fields self.fname = fname self.metadata_type = get_metadata_type(list(self.fields.values())) self.num_workers = num_workers # We use all cores by default if self.num_workers < 1: self.num_workers = cpu_count() if not is_power_of_2(page_size): raise ValueError(f'page_size isnt a power of 2') if page_size < MIN_PAGE_SIZE: raise ValueError(f"page_size can't be lower than{MIN_PAGE_SIZE}") self.page_size = page_size def prepare(self): with open(self.fname, 'wb') as fp: # Prepare the header data header = np.zeros(1, dtype=HeaderType)[0] header['version'] = CURRENT_VERSION header['num_samples'] = self.num_samples header['num_fields'] = len(self.fields) header['page_size'] = self.page_size self.header = header # We will write the header at the end because we need to know where # The memory allocation table is in the file # We still write it here to make space for it later fp.write(self.header.tobytes()) # Writes the information about the fields fields_descriptor = np.zeros(len(self.fields), dtype=FieldDescType) field_type_to_type_id = {v: k for (k, v) in TYPE_ID_HANDLER.items()} fieldname_max_len = fields_descriptor[0]['name'].shape[0] for i, (name, field) in enumerate(self.fields.items()): type_id = field_type_to_type_id.get(type(field), 255) encoded_name = name.encode('ascii') encoded_name = np.frombuffer(encoded_name, dtype='<u1') actual_length = min(fieldname_max_len, len(encoded_name)) fields_descriptor[i]['type_id'] = type_id fields_descriptor[i]['name'][:actual_length] = ( encoded_name[:actual_length]) fields_descriptor[i]['arguments'][:] = field.to_binary()[0] fp.write(fields_descriptor.tobytes()) total_metadata_size = self.num_samples * self.metadata_type.itemsize # Shared memory for all the writers to fill the information self.metadata_sm = 3 self.metadata_start = (HeaderType.itemsize + fields_descriptor.nbytes) self.metadata_sm = shared_memory.SharedMemory(create=True, size=total_metadata_size) self.data_region_start = self.metadata_start + total_metadata_size def _write_common(self, num_samples, queue_content, work_fn, extra_worker_args): self.num_samples = num_samples self.prepare() allocation_list = [] # Makes a memmap to the metadata for the samples # We publish all the work that has to be done into a queue workqueue: Queue = Queue() for todo in queue_content: workqueue.put(todo) # This will contain all the memory allocations each worker # produced. This will go at the end of the file allocations_queue: Queue = Queue() # We add a token for each worker to warn them that there # is no more work to be done for _ in range(self.num_workers): workqueue.put(None) # Define counters we need to orchestrate the workers done_number = Value(ctypes.c_uint64, 0) allocator = MemoryAllocator(self.fname, self.data_region_start, self.page_size) # Arguments that have to be passed to the workers worker_args = (workqueue, self.metadata_sm, self.metadata_type, self.fields, allocator, done_number, allocations_queue, *extra_worker_args) # Create the workers processes = [Process(target=work_fn, args=worker_args) for _ in range(self.num_workers)] # start the workers for p in processes: p.start() # Wait for all the workers to be done # Display progress progress = tqdm(total=self.num_samples) previous = 0 while previous != self.num_samples: val = done_number.value diff = val - previous if diff > 0: progress.update(diff) previous = val sleep(0.1) progress.close() # Wait for all the workers to be done and get their allocations for p in processes: content = allocations_queue.get() allocation_list.extend(content) self.finalize(allocation_list) self.metadata_sm.close() self.metadata_sm.unlink() def from_indexed_dataset(self, dataset, indices: List[int]=None, chunksize=100, shuffle_indices: bool = False): """Read dataset from an indexable dataset. See https://docs.ffcv.io/writing_datasets.html#indexable-dataset for sample usage. Parameters ---------- dataset: Indexable An indexable object that implements `__getitem__` and `__len__`. indices : List[int] Use a subset of the dataset specified by indices. chunksize : int Size of chunks processed by each worker during conversion. shuffle_indices : bool Shuffle order of the dataset. """ # If the user didn't specify an order we just add samples # sequentially if indices is None: indices = np.arange(len(dataset)) if shuffle_indices: np.random.shuffle(indices) # We add indices to the indices so that workers know where # to write in the metadata array indices: List[int] = list(enumerate(indices)) self._write_common(len(indices), chunks(indices, chunksize), worker_job_indexed_dataset, (dataset, )) def from_webdataset(self, shards: List[str], pipeline: Callable): """Read from webdataset-like format. See https://docs.ffcv.io/writing_datasets.html#webdataset for sample usage. Parameters ---------- shards: List[str] List of shards that comprise the dataset folder. pipeline: Callable Called by each worker to decode. Similar to pipelines used to load webdataset. """ counter = partial(count_samples_in_shard, pipeline=pipeline) lengths = thread_map(counter, shards, max_workers=self.num_workers) total_len = sum(lengths) offsets = np.cumsum([0] + lengths)[:-1] todos = zip(shards, offsets) self._write_common(total_len, todos, worker_job_webdataset, (pipeline, )) def finalize(self, allocations) : # Writing metadata with open(self.fname, 'r+b') as fp: fp.seek(self.metadata_start) fp.write(self.metadata_sm.buf) # We go at the end of the file fp.seek(0, SEEK_END) # Look at the current address allocation_table_location = fp.tell() # Retrieve all the allocations from the workers # Turn them into a numpy array try: allocation_table = np.concatenate([ np.array(x).view(ALLOC_TABLE_TYPE) for x in allocations if len(x) ]) except: allocation_table = np.array([]).view(ALLOC_TABLE_TYPE) fp.write(allocation_table.tobytes()) self.header['alloc_table_ptr'] = allocation_table_location # We go at the start of the file fp.seek(0) # And write the header fp.write(self.header.tobytes())
ffcv-main
ffcv/writer.py
import pdb from numba import njit, set_num_threads, prange, warnings as nwarnings, get_num_threads from numba.core.errors import NumbaPerformanceWarning from multiprocessing import cpu_count import torch as ch import warnings class Compiler: @classmethod def set_enabled(cls, b): cls.is_enabled = b @classmethod def set_num_threads(cls, n): if n < 1 : n = cpu_count() cls.num_threads = n set_num_threads(n) ch.set_num_threads(n) @classmethod def compile(cls, code, signature=None): parallel = False if hasattr(code, 'is_parallel'): parallel = code.is_parallel and cls.num_threads > 1 if cls.is_enabled: return njit(signature, fastmath=True, nogil=True, error_model='numpy', parallel=parallel)(code) return code @classmethod def get_iterator(cls): if cls.num_threads > 1: return prange else: return range Compiler.set_enabled(True) Compiler.set_num_threads(1)
ffcv-main
ffcv/pipeline/compiler.py
from .pipeline import Pipeline __all__ = ['Pipeline']
ffcv-main
ffcv/pipeline/__init__.py
from typing import Optional, Sequence, Tuple, Union from dataclasses import dataclass import numpy as np import torch as ch @dataclass(frozen=True) class AllocationQuery: shape: Tuple[int, ...] dtype: Union[np.dtype, ch.dtype] device: Optional[ch.device] = None Allocation = Union[AllocationQuery, Sequence[AllocationQuery]]
ffcv-main
ffcv/pipeline/allocation_query.py
from abc import ABC, abstractmethod from typing import TYPE_CHECKING from typing import Callable, Optional, Tuple import numpy as np from .state import State from .allocation_query import AllocationQuery if TYPE_CHECKING: from ..fields.base import Field class Operation(ABC): def __init__(self): self.metadata: np.ndarray = None self.memory_read: Callable[[np.uint64], np.ndarray] = None pass def accept_field(self, field:'Field'): self.field: 'Field' = field def accept_globals(self, metadata, memory_read): self.metadata = metadata self.memory_read = memory_read # Return the code to run this operation @abstractmethod def generate_code(self) -> Callable: raise NotImplementedError @abstractmethod def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: raise NotImplementedError
ffcv-main
ffcv/pipeline/operation.py
from typing import Any, Optional, Sequence, Mapping import torch as ch import numpy as np from .state import State from .operation import Operation from .allocation_query import Allocation, AllocationQuery BAD_COLLATION_MESSAGE: str = "Each pipeline needs one and one only Collate operation" class Pipeline: def __init__(self, operations: Sequence[Operation]): # This is the starting state of the pipeline self.original_state = State(jit_mode=True, device=ch.device('cpu'), dtype=np.dtype('u1'), shape=None) self.operations = operations self.operation_blocks, _ = self.parse_pipeline() self.compiled_ops = self.compile_ops() # Compile the pipeline self.compiled_code = None def parse_pipeline(self, batch_size=16): memory_allocations: Mapping[int, Optional[Allocation]] = {} operation_blocs = [] current_state: State = self.original_state current_block = [] # We read the content of the pipeline, validate and collect # Memory allocations for op_id, operation in enumerate(self.operations): previous_state = current_state current_state, memory_allocation = operation.declare_state_and_memory( current_state) if current_state.jit_mode != previous_state.jit_mode: if current_block: operation_blocs.append((previous_state.jit_mode, current_block)) current_block = [op_id] else: current_block.append(op_id) memory_allocations[op_id] = memory_allocation if current_block: operation_blocs.append((current_state.jit_mode, current_block)) return operation_blocs, memory_allocations def compile_ops(self): compiled_ops = {} for op_id, operation in enumerate(self.operations): compiled_ops[op_id] = operation.generate_code() return compiled_ops def allocate_query(self, memory_allocation: AllocationQuery, batch_size: int, batches_ahead: int): # We compute the total amount of memory needed for this # operation final_shape = [batches_ahead, batch_size, *memory_allocation.shape] if isinstance(memory_allocation.dtype, ch.dtype): result = [] for _ in range(final_shape[0]): partial = ch.empty(*final_shape[1:], dtype=memory_allocation.dtype, device=memory_allocation.device) try: partial = partial.pin_memory() except: pass result.append(partial) else: ch_dtype = ch.from_numpy(np.empty(0, dtype=memory_allocation.dtype)).dtype result = ch.empty(*final_shape, dtype=ch_dtype) try: result = result.pin_memory() except: pass result = result.numpy() return result def allocate_memory(self, batch_size: int, batches_ahead: int): _, memory_allocations = self.parse_pipeline() # Contains the actual allocated memory memory_buffers: Mapping[int, Any] = {} # For each allocation made by the operations in the pipeline for op_id, memory_allocation in memory_allocations.items(): # If the operation didn't make a query we stop here allocated_buffer = None if isinstance(memory_allocation, AllocationQuery): allocated_buffer = self.allocate_query(memory_allocation, batch_size, batches_ahead) elif isinstance(memory_allocation, Sequence): allocated_buffer = tuple( self.allocate_query(q, batch_size, batches_ahead) for q in memory_allocation ) memory_buffers[op_id] = allocated_buffer return memory_buffers
ffcv-main
ffcv/pipeline/pipeline.py
from dataclasses import dataclass from typing import Literal, Tuple import torch as ch import numpy as np @dataclass class State: jit_mode: bool device: ch.device shape: Tuple[int, ...] dtype: np.dtype # Assess the validity of a pipeline stage def __post_init__(self): if self.jit_mode and self.device != ch.device('cpu'): raise AssertionError("Can't be in JIT mode and on the GPU") if self.jit_mode and isinstance(self.dtype, ch.dtype): raise AssertionError("Can't allocate a torch tensor in JIT mode")
ffcv-main
ffcv/pipeline/state.py
from .base import MemoryManager, MemoryContext from .process_cache import ProcessCacheManager from .os_cache import OSCacheManager __all__ = ['OSCacheManager', 'ProcessCacheManager', 'MemoryManager', 'MemoryContext']
ffcv-main
ffcv/memory_managers/__init__.py
from typing import Sequence, TYPE_CHECKING BATCHES_TYPE = Sequence[Sequence[int]]
ffcv-main
ffcv/memory_managers/common.py
from abc import abstractmethod, ABCMeta, ABC from contextlib import AbstractContextManager from collections import defaultdict from typing import Callable, Mapping, Sequence, Set import numpy as np from numba.typed import Dict from numba import types from ..reader import Reader from ..pipeline.compiler import Compiler class MemoryContext(AbstractContextManager, metaclass=ABCMeta): @property @abstractmethod def state(self): raise NotImplementedError() @abstractmethod def __enter__(self): return super().__enter__() def start_batch(self, batch:int): pass @abstractmethod def __exit__(self, __exc_type, __exc_value, __traceback): return super().__exit__(__exc_type, __exc_value, __traceback) class MemoryManager(ABC): def __init__(self, reader:Reader): self.reader = reader alloc_table = self.reader.alloc_table # Table mapping any address in the file to the size of the data region # That was allocated there self.ptrs = alloc_table['ptr'] self.sizes = alloc_table['size'] order = np.argsort(self.ptrs) # Order them so that we can use search sorted self.ptrs = self.ptrs[order] self.sizes = self.sizes[order] self.ptr_to_size = dict(zip(self.ptrs, self.sizes)) # We extract the page number by shifting the address corresponding # to the page width page_size_bit_location = int(np.log2(reader.page_size)) page_locations = alloc_table['ptr'] >> page_size_bit_location sample_to_pages: Mapping[int, Set[int]] = defaultdict(set) page_to_samples: Mapping[int, Set[int]] = defaultdict(set) # We create a mapping that goes from sample id to the pages it has data # Stored to # (And the same for the other way around) for sid, pid in zip(alloc_table['sample_id'], page_locations): sample_to_pages[sid].add(pid) page_to_samples[pid].add(sid) self.sample_to_pages = sample_to_pages self.page_to_samples = page_to_samples super().__init__() @abstractmethod def schedule_epoch(self, batches: Sequence[Sequence[int]]) -> MemoryContext: raise NotImplementedError() @abstractmethod def compile_reader(self, address, size) -> Callable: raise NotImplemented() @property @abstractmethod def state_type(self): raise NotImplementedError()
ffcv-main
ffcv/memory_managers/base.py
from typing import TYPE_CHECKING import numpy as np import numba as nb from .base import MemoryManager, MemoryContext from ..pipeline.compiler import Compiler if TYPE_CHECKING: from ..reader import Reader class OSCacheContext(MemoryContext): def __init__(self, manager:MemoryManager): self.manager = manager self.mmap = None @property def state(self): return (self.mmap, self.manager.ptrs, self.manager.sizes) def __enter__(self): res = super().__enter__() if self.mmap is None: self.mmap = np.memmap(self.manager.reader.file_name, 'uint8', mode='r') return res def __exit__(self, __exc_type, __exc_value, __traceback): # Numpy doesn't have an API to close memory maps yet # The only thing one can do is flush it be since we are not # Writing to it it's pointless # Moreover we want to avoid opening the memmap over and over # anyway. return super().__exit__(__exc_type, __exc_value, __traceback) class OSCacheManager(MemoryManager): def __init__(self, reader: 'Reader'): super().__init__(reader) self.context = OSCacheContext(self) def schedule_epoch(self, schedule): return self.context @property def state_type(self): t1 = nb.uint8[::1] t1.multable = False t2 = nb.uint64[::1] t1.mutable = False return nb.types.Tuple([t1, t2, t2]) def compile_reader(self): def read(address, mem_state): size = mem_state[2][np.searchsorted(mem_state[1], address)] return mem_state[0][address:address + size] return Compiler.compile(read, nb.uint8[::1](nb.uint64, self.state_type))
ffcv-main
ffcv/memory_managers/os_cache.py
from .context import ProcessCacheContext from .manager import ProcessCacheManager __all__ = ['ProcessCacheContext', 'ProcessCacheManager']
ffcv-main
ffcv/memory_managers/process_cache/__init__.py
from threading import Thread from queue import Queue import numpy as np from ...libffcv import read class PageReader(Thread): def __init__(self, fname:str, queries: Queue, loaded: Queue, memory: np.ndarray): self.fname: str = fname self.queries: Queue = queries self.memory: np.ndarray = memory self.page_size = memory.shape[1] self.loaded: Queue = loaded super().__init__(daemon=True) def run(self): import hashlib with open(self.fname, 'rb') as handle: fileno = handle.fileno() while True: query = self.queries.get() # No more work if query is None: break page_number, slot = query offset = np.uint64(page_number * self.page_size) length = read(fileno, self.memory[slot], offset) # print("L", page_number, slot, hashlib.md5(self.memory[slot]).hexdigest(), self.memory[slot].ctypes.data, length) self.loaded.put(page_number)
ffcv-main
ffcv/memory_managers/process_cache/page_reader.py
from collections import defaultdict import numpy as np from ..base import MemoryManager, MemoryContext from ..common import BATCHES_TYPE from .schedule import Schedule, ScheduleExecutor, compute_schedule class ProcessCacheContext(MemoryContext): def __init__(self, manager: MemoryManager, batches: BATCHES_TYPE): self.manager = manager self.fname = manager.reader.file_name self.batches = batches self.page_size = manager.reader.page_size @property def state(self): return (self.memory, self.manager.ptrs, self.manager.sizes, self.page_to_slot) def __enter__(self): pages_at_batch = [] for batch in self.batches: pages_needed = set() for sample_id in batch: pages_needed.update(self.manager.sample_to_pages[sample_id]) pages_at_batch.append(pages_needed) self.schedule = compute_schedule(pages_at_batch) self.memory = np.zeros((self.schedule.num_slots, self.page_size), dtype='<u1') self.executor = ScheduleExecutor(self.fname, self.schedule, self.memory) try: max_page = max(self.schedule.page_to_slot.keys()) except ValueError: max_page = -1 # We need max + 1 slots # We use a table as it's O(1) indexing. Pages for the header will # be unused however so we are losing some space self.page_to_slot = np.zeros(max_page + np.uint32(1), dtype=np.uint32) for p, s in self.schedule.page_to_slot.items(): self.page_to_slot[p] = s self.executor.__enter__() def start_batch(self, batch: int): self.executor.load_batch(batch) return super().start_batch(batch) def __exit__(self, *args): self.executor.__exit__(*args)
ffcv-main
ffcv/memory_managers/process_cache/context.py
from collections import defaultdict from dataclasses import dataclass from typing import Mapping from queue import Queue import numpy as np from .page_reader import PageReader @dataclass class Schedule: # Number of slots needed num_slots: int # Which slot to use for each page page_to_slot: Mapping[int, int] # First iteration a page can be loaded can_prefetch_at: Mapping[int, int] # Iteration at which a page *has* to be loaded entering_at: Mapping[int, int] # Iteration at which we can discard a page leaving_at: Mapping[int, int] def compute_schedule(pages_in_batch, prefetch_ahead = 3): # We determine what is the early and latest times we will need a page page_end = {} page_start = {} for b_id, pages in enumerate(pages_in_batch): for page in pages: page_end[page] = b_id if page not in page_start: page_start[page] = b_id # We determine which pages are # - Can be preloaded # - Are needed # - Can be diposed of # At a given batch entering_at = defaultdict(set) can_prefetch_at = defaultdict(set) leaving_at = defaultdict(set) for page in page_start.keys(): prefetch_start = max(0, page_start[page] - prefetch_ahead) can_prefetch_at[prefetch_start].add(page) entering_at[page_start[page]].add(page) leaving_at[page_end[page] + 1].add(page) # We now find how many pages we need to keep in our buffer # We also determine where which page is going to reside next_slot = 0 page_to_slot = {} free_slots = set() # For each batch for b_id in range(len(pages_in_batch)): # First we free the pages that are leaving for page in leaving_at[b_id]: free_slots.add(page_to_slot[page]) # We use the prefetch timing here because we want to be able # To start prefetching ahead of time and not overwrite a slot # That is currently used for page in can_prefetch_at[b_id]: # Then we find a slot for the incoming pages if free_slots: # There is a slot available for this page slot = free_slots.pop() else: # We have to allocate a new slot because we ran out slot = next_slot next_slot += 1 page_to_slot[page] = slot return Schedule(next_slot, page_to_slot, can_prefetch_at, entering_at, leaving_at) class ScheduleExecutor(): def __init__(self, fname: str, schedule: Schedule, memory: np.ndarray, num_workers: int=12): self.fname = fname self.schedule = schedule self.memory = memory self.queries = Queue() self.loaded_queue = Queue() self.num_workers = num_workers self.entered = False self.next_batch = 0 self.loaded = set() def __enter__(self): msg = "You can only enter a ScheduleExecutor once" if self.entered: raise Exception(msg) self.entered = True # Create the number of threads we were asked to threads = [] for _ in range(self.num_workers): thread = PageReader(self.fname, self.queries, self.loaded_queue, self.memory) thread.start() threads.append(thread) self.threads = threads def __exit__(self, *_): # Terminating the child threads for _ in range(self.num_workers): self.queries.put(None) def load_batch(self, current_batch): assert current_batch == self.next_batch # Start prefetching everything we are allowed to to_prefetch = self.schedule.can_prefetch_at[current_batch] for page_to_fetch in to_prefetch: q = (page_to_fetch, self.schedule.page_to_slot[page_to_fetch]) self.queries.put(q) # Wait until we have all the pages we need to_wait_for = self.schedule.entering_at[current_batch] for page in to_wait_for: while page not in self.loaded: next_loaded = self.loaded_queue.get() self.loaded.add(next_loaded) # We enforce that we read in order otherwise our # assumptions are broken self.next_batch = current_batch + 1
ffcv-main
ffcv/memory_managers/process_cache/schedule.py
import numba as nb import numpy as np from .context import ProcessCacheContext from ...pipeline.compiler import Compiler from ..base import MemoryManager, MemoryContext from ..common import BATCHES_TYPE class ProcessCacheManager(MemoryManager): def schedule_epoch(self, batches: BATCHES_TYPE) -> MemoryContext: return ProcessCacheContext(self, batches) @property def state_type(self): # The data t1 = nb.uint8[:, ::1] t1.mutable = False # The pointers t2 = nb.uint64[::1] t2.mutable = False # # Their size t3 = nb.uint64[::1] t3.mutable = False # Page to slot t4 = nb.uint32[::1] t4.mutable = False return nb.types.Tuple([t1, t2, t3, t4]) def compile_reader(self): page_size = self.reader.page_size page_size_log2 = np.uint32(np.log2(page_size)) def read(address, mem_state): size = mem_state[2][np.searchsorted(mem_state[1], address)] page = address >> page_size_log2 offset = address - (page << page_size_log2) page_slot = mem_state[3][page] return mem_state[0][page_slot, offset:offset + size] return Compiler.compile(read)
ffcv-main
ffcv/memory_managers/process_cache/manager.py
import random from typing import Sequence, TYPE_CHECKING from numba import njit import numpy as np from torch.utils.data import DistributedSampler from .base import TraversalOrder if TYPE_CHECKING: from ..loader.loader import Loader @njit(parallel=False) def generate_order_inner(seed, page_to_samples_array, page_sizes, result, buffer_size=6): num_pages = len(page_sizes) random.seed(seed) np.random.seed(seed) current_pages = [0] current_pages.remove(0) # Force the type for page_ix in range(num_pages): page_size = page_sizes[page_ix] random.shuffle(page_to_samples_array[page_ix, :page_size]) next_page = 0 page_order = np.random.permutation(num_pages) samples_consumed = np.zeros_like(page_sizes) for s_ix in range(result.shape[0]): while next_page < num_pages and len(current_pages) < buffer_size: page_to_add = page_order[next_page] if page_sizes[page_to_add] > 0: current_pages.append(page_order[next_page]) next_page += 1 selected_page_ix = np.random.randint(0, len(current_pages)) page = current_pages[selected_page_ix] result[s_ix] = page_to_samples_array[page, samples_consumed[page]] samples_consumed[page] += 1 if samples_consumed[page] >= page_sizes[page]: current_pages.remove(page) class QuasiRandom(TraversalOrder): def __init__(self, loader: 'Loader'): super().__init__(loader) # TODO filter only the samples we care about!! self.page_to_samples = loader.memory_manager.page_to_samples if not self.page_to_samples: raise ValueError( "Dataset won't benefit from QuasiRandom order, use regular Random") if self.distributed: raise NotImplementedError( "distributed Not implemented yet for QuasiRandom") self.prepare_data_structures() def prepare_data_structures(self): index_set = set(self.indices) max_size = max(len(y) for y in self.page_to_samples.values()) num_pages = max(k for k in self.page_to_samples.keys()) + np.uint64(1) self.page_to_samples_array = np.empty((num_pages, max_size), dtype=np.int64) self.page_sizes = np.zeros(num_pages, dtype=np.int64) for page, content in self.page_to_samples.items(): for c in content: if c in index_set: self.page_to_samples_array[page][self.page_sizes[page]] = c self.page_sizes[page] += 1 def sample_order(self, epoch: int) -> Sequence[int]: seed = self.seed * 912300 + epoch result_order = np.zeros(len(self.indices), dtype=np.int64) generate_order_inner(seed, self.page_to_samples_array, self.page_sizes, result_order, 2*self.loader.batch_size) return result_order
ffcv-main
ffcv/traversal_order/quasi_random.py
from .sequential import Sequential from .random import Random from .quasi_random import QuasiRandom __all__ = ['Sequential', 'Random', "QuasiRandom"]
ffcv-main
ffcv/traversal_order/__init__.py
from typing import Sequence import numpy as np from torch.utils.data import DistributedSampler from .base import TraversalOrder class Random(TraversalOrder): def __init__(self, loader:'Loader'): super().__init__(loader) if self.distributed: self.sampler = DistributedSampler(self.indices, shuffle=True, seed=self.seed, drop_last=False) def sample_order(self, epoch: int) -> Sequence[int]: if not self.distributed: generator = np.random.default_rng(self.seed + epoch if self.seed is not None else None) return generator.permutation(self.indices) self.sampler.set_epoch(epoch) return self.indices[np.array(list(self.sampler))]
ffcv-main
ffcv/traversal_order/random.py
from typing import Sequence, TYPE_CHECKING import numpy as np from torch.utils.data import DistributedSampler from .base import TraversalOrder if TYPE_CHECKING: from ..loader.loader import Loader class Sequential(TraversalOrder): def __init__(self, loader:'Loader'): super().__init__(loader) if self.distributed: self.sampler = DistributedSampler(self.indices, shuffle=False, seed=self.seed, drop_last=False) def sample_order(self, epoch: int) -> Sequence[int]: if not self.distributed: return self.indices self.sampler.set_epoch(epoch) return self.indices[np.array(list(self.sampler))]
ffcv-main
ffcv/traversal_order/sequential.py
from abc import ABC, abstractmethod from typing import Sequence from ..reader import Reader from typing import TYPE_CHECKING if TYPE_CHECKING: from ..loader.main_thread import Loader class TraversalOrder(ABC): def __init__(self, loader: 'Loader'): self.loader = loader self.indices = self.loader.indices self.seed = self.loader.seed self.distributed = loader.distributed @abstractmethod def sample_order(self, epoch:int) -> Sequence[int]: raise NotImplemented()
ffcv-main
ffcv/traversal_order/base.py
""" Random translate """ import numpy as np from numpy.random import randint from typing import Callable, Optional, Tuple from dataclasses import replace from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State from ..pipeline.compiler import Compiler class RandomTranslate(Operation): """Translate each image randomly in vertical and horizontal directions up to specified number of pixels. Parameters ---------- padding : int Max number of pixels to translate in any direction. fill : tuple An RGB color ((0, 0, 0) by default) to fill the area outside the shifted image. """ def __init__(self, padding: int, fill: Tuple[int, int, int] = (0, 0, 0)): super().__init__() self.padding = padding self.fill = np.array(fill) def generate_code(self) -> Callable: my_range = Compiler.get_iterator() pad = self.padding def translate(images, dst): n, h, w, _ = images.shape # y_coords = randint(low=0, high=2 * pad + 1, size=(n,)) # x_coords = randint(low=0, high=2 * pad + 1, size=(n,)) # dst = fill dst[:, pad:pad+h, pad:pad+w] = images for i in my_range(n): y_coord = randint(low=0, high=2 * pad + 1) x_coord = randint(low=0, high=2 * pad + 1) # images[i] = dst[i, y_coords[i]:y_coords[i]+h, x_coords[i]:x_coords[i]+w] images[i] = dst[i, y_coord:y_coord+h, x_coord:x_coord+w] return images translate.is_parallel = True return translate def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: h, w, c = previous_state.shape return (replace(previous_state, jit_mode=True), \ AllocationQuery((h + 2 * self.padding, w + 2 * self.padding, c), previous_state.dtype))
ffcv-main
ffcv/transforms/translate.py
""" Mixup augmentation for images and labels (https://arxiv.org/abs/1710.09412) """ from typing import Tuple from numba import objmode import numpy as np import torch as ch import torch.nn.functional as F from dataclasses import replace from typing import Callable, Optional, Tuple from ..pipeline.allocation_query import AllocationQuery from ..pipeline.operation import Operation from ..pipeline.state import State from ..pipeline.compiler import Compiler class ImageMixup(Operation): """Mixup for images. Operates on raw arrays (not tensors). Parameters ---------- alpha : float Mixup parameter alpha same_lambda : bool Whether to use the same value of lambda across the whole batch, or an individually sampled lambda per image in the batch """ def __init__(self, alpha: float, same_lambda: bool): super().__init__() self.alpha = alpha self.same_lambda = same_lambda def generate_code(self) -> Callable: alpha = self.alpha same_lam = self.same_lambda my_range = Compiler.get_iterator() def mixer(images, dst, indices): np.random.seed(indices[-1]) num_images = images.shape[0] lam = np.random.beta(alpha, alpha) if same_lam else \ np.random.beta(alpha, alpha, num_images) for ix in my_range(num_images): l = lam if same_lam else lam[ix] dst[ix] = l * images[ix] + (1 - l) * images[ix - 1] return dst mixer.is_parallel = True mixer.with_indices = True return mixer def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: return (previous_state, AllocationQuery(shape=previous_state.shape, dtype=previous_state.dtype)) class LabelMixup(Operation): """Mixup for labels. Should be initialized in exactly the same way as :cla:`ffcv.transforms.ImageMixup`. """ def __init__(self, alpha: float, same_lambda: bool): super().__init__() self.alpha = alpha self.same_lambda = same_lambda def generate_code(self) -> Callable: alpha = self.alpha same_lam = self.same_lambda my_range = Compiler.get_iterator() def mixer(labels, temp_array, indices): num_labels = labels.shape[0] # permutation = np.random.permutation(num_labels) np.random.seed(indices[-1]) lam = np.random.beta(alpha, alpha) if same_lam else \ np.random.beta(alpha, alpha, num_labels) for ix in my_range(num_labels): temp_array[ix, 0] = labels[ix][0] temp_array[ix, 1] = labels[ix - 1][0] temp_array[ix, 2] = lam if same_lam else lam[ix] return temp_array mixer.is_parallel = True mixer.with_indices = True return mixer def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: return (replace(previous_state, shape=(3,), dtype=np.float32), AllocationQuery((3,), dtype=np.float32)) class MixupToOneHot(Operation): def __init__(self, num_classes: int): super().__init__() self.num_classes = num_classes def generate_code(self) -> Callable: def one_hotter(mixedup_labels, dst): dst.zero_() N = mixedup_labels.shape[0] dst[ch.arange(N), mixedup_labels[:, 0].long()] = mixedup_labels[:, 2] mixedup_labels[:, 2] *= -1 mixedup_labels[:, 2] += 1 dst[ch.arange(N), mixedup_labels[:, 1].long()] = mixedup_labels[:, 2] return dst return one_hotter def declare_state_and_memory(self, previous_state: State) -> Tuple[State, Optional[AllocationQuery]]: # Should already be converted to tensor assert not previous_state.jit_mode return (replace(previous_state, shape=(self.num_classes,)), \ AllocationQuery((self.num_classes,), dtype=previous_state.dtype, device=previous_state.device))
ffcv-main
ffcv/transforms/mixup.py