python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/inferencer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/inferencer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n?nvidia_tao_deploy/cv/detectnet_v2/proto/inferencer_config.proto\"`\n\x10\x43\x61libratorConfig\x12\x19\n\x11\x63\x61libration_cache\x18\x01 \x01(\t\x12\x1e\n\x16\x63\x61libration_tensorfile\x18\x02 \x01(\t\x12\x11\n\tn_batches\x18\x03 \x01(\x05\"\x1a\n\tTLTConfig\x12\r\n\x05model\x18\x01 \x01(\t\"\xf1\x02\n\x0eTensorRTConfig\x12&\n\x06parser\x18\x01 \x01(\x0e\x32\x16.TensorRTConfig.Parser\x12\x12\n\ncaffemodel\x18\x02 \x01(\t\x12\x10\n\x08prototxt\x18\x03 \x01(\t\x12\x11\n\tuff_model\x18\x04 \x01(\t\x12\x12\n\netlt_model\x18\x05 \x01(\t\x12:\n\x11\x62\x61\x63kend_data_type\x18\x06 \x01(\x0e\x32\x1f.TensorRTConfig.BackendDataType\x12\x13\n\x0bsave_engine\x18\x07 \x01(\x08\x12\x12\n\ntrt_engine\x18\x08 \x01(\t\x12,\n\x11\x63\x61librator_config\x18\t \x01(\x0b\x32\x11.CalibratorConfig\"&\n\x06Parser\x12\t\n\x05\x43\x41\x46\x46\x45\x10\x00\x12\x07\n\x03UFF\x10\x01\x12\x08\n\x04\x45TLT\x10\x02\"/\n\x0f\x42\x61\x63kendDataType\x12\x08\n\x04\x46P32\x10\x00\x12\x08\n\x04\x46P16\x10\x01\x12\x08\n\x04INT8\x10\x02\"\xb2\x02\n\x10InferencerConfig\x12 \n\ntlt_config\x18\x01 \x01(\x0b\x32\n.TLTConfigH\x00\x12*\n\x0ftensorrt_config\x18\x02 \x01(\x0b\x32\x0f.TensorRTConfigH\x00\x12\x13\n\x0binput_nodes\x18\x03 \x03(\t\x12\x14\n\x0coutput_nodes\x18\x04 \x03(\t\x12\x12\n\nbatch_size\x18\x05 \x01(\x05\x12\x14\n\x0cimage_height\x18\x06 \x01(\x05\x12\x13\n\x0bimage_width\x18\x07 \x01(\x05\x12\x16\n\x0eimage_channels\x18\x08 \x01(\x05\x12\x11\n\tgpu_index\x18\t \x01(\x05\x12\x16\n\x0etarget_classes\x18\n \x03(\t\x12\x0e\n\x06stride\x18\x0b \x01(\x05\x42\x13\n\x11model_config_typeb\x06proto3') ) _TENSORRTCONFIG_PARSER = _descriptor.EnumDescriptor( name='Parser', full_name='TensorRTConfig.Parser', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='CAFFE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='UFF', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ETLT', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=476, serialized_end=514, ) _sym_db.RegisterEnumDescriptor(_TENSORRTCONFIG_PARSER) _TENSORRTCONFIG_BACKENDDATATYPE = _descriptor.EnumDescriptor( name='BackendDataType', full_name='TensorRTConfig.BackendDataType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='FP32', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FP16', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INT8', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=516, serialized_end=563, ) _sym_db.RegisterEnumDescriptor(_TENSORRTCONFIG_BACKENDDATATYPE) _CALIBRATORCONFIG = _descriptor.Descriptor( name='CalibratorConfig', full_name='CalibratorConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='calibration_cache', full_name='CalibratorConfig.calibration_cache', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='calibration_tensorfile', full_name='CalibratorConfig.calibration_tensorfile', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_batches', full_name='CalibratorConfig.n_batches', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=67, serialized_end=163, ) _TLTCONFIG = _descriptor.Descriptor( name='TLTConfig', full_name='TLTConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='model', full_name='TLTConfig.model', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=165, serialized_end=191, ) _TENSORRTCONFIG = _descriptor.Descriptor( name='TensorRTConfig', full_name='TensorRTConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='parser', full_name='TensorRTConfig.parser', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='caffemodel', full_name='TensorRTConfig.caffemodel', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='prototxt', full_name='TensorRTConfig.prototxt', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='uff_model', full_name='TensorRTConfig.uff_model', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='etlt_model', full_name='TensorRTConfig.etlt_model', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='backend_data_type', full_name='TensorRTConfig.backend_data_type', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='save_engine', full_name='TensorRTConfig.save_engine', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='trt_engine', full_name='TensorRTConfig.trt_engine', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='calibrator_config', full_name='TensorRTConfig.calibrator_config', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _TENSORRTCONFIG_PARSER, _TENSORRTCONFIG_BACKENDDATATYPE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=194, serialized_end=563, ) _INFERENCERCONFIG = _descriptor.Descriptor( name='InferencerConfig', full_name='InferencerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='tlt_config', full_name='InferencerConfig.tlt_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tensorrt_config', full_name='InferencerConfig.tensorrt_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input_nodes', full_name='InferencerConfig.input_nodes', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_nodes', full_name='InferencerConfig.output_nodes', index=3, number=4, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='InferencerConfig.batch_size', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_height', full_name='InferencerConfig.image_height', index=5, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_width', full_name='InferencerConfig.image_width', index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_channels', full_name='InferencerConfig.image_channels', index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gpu_index', full_name='InferencerConfig.gpu_index', index=8, number=9, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_classes', full_name='InferencerConfig.target_classes', index=9, number=10, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stride', full_name='InferencerConfig.stride', index=10, number=11, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='model_config_type', full_name='InferencerConfig.model_config_type', index=0, containing_type=None, fields=[]), ], serialized_start=566, serialized_end=872, ) _TENSORRTCONFIG.fields_by_name['parser'].enum_type = _TENSORRTCONFIG_PARSER _TENSORRTCONFIG.fields_by_name['backend_data_type'].enum_type = _TENSORRTCONFIG_BACKENDDATATYPE _TENSORRTCONFIG.fields_by_name['calibrator_config'].message_type = _CALIBRATORCONFIG _TENSORRTCONFIG_PARSER.containing_type = _TENSORRTCONFIG _TENSORRTCONFIG_BACKENDDATATYPE.containing_type = _TENSORRTCONFIG _INFERENCERCONFIG.fields_by_name['tlt_config'].message_type = _TLTCONFIG _INFERENCERCONFIG.fields_by_name['tensorrt_config'].message_type = _TENSORRTCONFIG _INFERENCERCONFIG.oneofs_by_name['model_config_type'].fields.append( _INFERENCERCONFIG.fields_by_name['tlt_config']) _INFERENCERCONFIG.fields_by_name['tlt_config'].containing_oneof = _INFERENCERCONFIG.oneofs_by_name['model_config_type'] _INFERENCERCONFIG.oneofs_by_name['model_config_type'].fields.append( _INFERENCERCONFIG.fields_by_name['tensorrt_config']) _INFERENCERCONFIG.fields_by_name['tensorrt_config'].containing_oneof = _INFERENCERCONFIG.oneofs_by_name['model_config_type'] DESCRIPTOR.message_types_by_name['CalibratorConfig'] = _CALIBRATORCONFIG DESCRIPTOR.message_types_by_name['TLTConfig'] = _TLTCONFIG DESCRIPTOR.message_types_by_name['TensorRTConfig'] = _TENSORRTCONFIG DESCRIPTOR.message_types_by_name['InferencerConfig'] = _INFERENCERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) CalibratorConfig = _reflection.GeneratedProtocolMessageType('CalibratorConfig', (_message.Message,), dict( DESCRIPTOR = _CALIBRATORCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.inferencer_config_pb2' # @@protoc_insertion_point(class_scope:CalibratorConfig) )) _sym_db.RegisterMessage(CalibratorConfig) TLTConfig = _reflection.GeneratedProtocolMessageType('TLTConfig', (_message.Message,), dict( DESCRIPTOR = _TLTCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.inferencer_config_pb2' # @@protoc_insertion_point(class_scope:TLTConfig) )) _sym_db.RegisterMessage(TLTConfig) TensorRTConfig = _reflection.GeneratedProtocolMessageType('TensorRTConfig', (_message.Message,), dict( DESCRIPTOR = _TENSORRTCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.inferencer_config_pb2' # @@protoc_insertion_point(class_scope:TensorRTConfig) )) _sym_db.RegisterMessage(TensorRTConfig) InferencerConfig = _reflection.GeneratedProtocolMessageType('InferencerConfig', (_message.Message,), dict( DESCRIPTOR = _INFERENCERCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.inferencer_config_pb2' # @@protoc_insertion_point(class_scope:InferencerConfig) )) _sym_db.RegisterMessage(InferencerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/inferencer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/cost_function_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/cost_function_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nBnvidia_tao_deploy/cv/detectnet_v2/proto/cost_function_config.proto\"\x88\x03\n\x12\x43ostFunctionConfig\x12\x37\n\x0etarget_classes\x18\x01 \x03(\x0b\x32\x1f.CostFunctionConfig.TargetClass\x12\x1c\n\x14\x65nable_autoweighting\x18\x02 \x01(\x08\x12\x1c\n\x14max_objective_weight\x18\x03 \x01(\x02\x12\x1c\n\x14min_objective_weight\x18\x04 \x01(\x02\x1a\xde\x01\n\x0bTargetClass\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x14\n\x0c\x63lass_weight\x18\x02 \x01(\x02\x12\"\n\x1a\x63overage_foreground_weight\x18\x03 \x01(\x02\x12=\n\nobjectives\x18\x04 \x03(\x0b\x32).CostFunctionConfig.TargetClass.Objective\x1aH\n\tObjective\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x16\n\x0einitial_weight\x18\x02 \x01(\x02\x12\x15\n\rweight_target\x18\x03 \x01(\x02\x62\x06proto3') ) _COSTFUNCTIONCONFIG_TARGETCLASS_OBJECTIVE = _descriptor.Descriptor( name='Objective', full_name='CostFunctionConfig.TargetClass.Objective', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='CostFunctionConfig.TargetClass.Objective.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='initial_weight', full_name='CostFunctionConfig.TargetClass.Objective.initial_weight', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_target', full_name='CostFunctionConfig.TargetClass.Objective.weight_target', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=391, serialized_end=463, ) _COSTFUNCTIONCONFIG_TARGETCLASS = _descriptor.Descriptor( name='TargetClass', full_name='CostFunctionConfig.TargetClass', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='CostFunctionConfig.TargetClass.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='class_weight', full_name='CostFunctionConfig.TargetClass.class_weight', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='coverage_foreground_weight', full_name='CostFunctionConfig.TargetClass.coverage_foreground_weight', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='objectives', full_name='CostFunctionConfig.TargetClass.objectives', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_COSTFUNCTIONCONFIG_TARGETCLASS_OBJECTIVE, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=241, serialized_end=463, ) _COSTFUNCTIONCONFIG = _descriptor.Descriptor( name='CostFunctionConfig', full_name='CostFunctionConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='target_classes', full_name='CostFunctionConfig.target_classes', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_autoweighting', full_name='CostFunctionConfig.enable_autoweighting', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_objective_weight', full_name='CostFunctionConfig.max_objective_weight', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_objective_weight', full_name='CostFunctionConfig.min_objective_weight', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_COSTFUNCTIONCONFIG_TARGETCLASS, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=71, serialized_end=463, ) _COSTFUNCTIONCONFIG_TARGETCLASS_OBJECTIVE.containing_type = _COSTFUNCTIONCONFIG_TARGETCLASS _COSTFUNCTIONCONFIG_TARGETCLASS.fields_by_name['objectives'].message_type = _COSTFUNCTIONCONFIG_TARGETCLASS_OBJECTIVE _COSTFUNCTIONCONFIG_TARGETCLASS.containing_type = _COSTFUNCTIONCONFIG _COSTFUNCTIONCONFIG.fields_by_name['target_classes'].message_type = _COSTFUNCTIONCONFIG_TARGETCLASS DESCRIPTOR.message_types_by_name['CostFunctionConfig'] = _COSTFUNCTIONCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) CostFunctionConfig = _reflection.GeneratedProtocolMessageType('CostFunctionConfig', (_message.Message,), dict( TargetClass = _reflection.GeneratedProtocolMessageType('TargetClass', (_message.Message,), dict( Objective = _reflection.GeneratedProtocolMessageType('Objective', (_message.Message,), dict( DESCRIPTOR = _COSTFUNCTIONCONFIG_TARGETCLASS_OBJECTIVE, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.cost_function_config_pb2' # @@protoc_insertion_point(class_scope:CostFunctionConfig.TargetClass.Objective) )) , DESCRIPTOR = _COSTFUNCTIONCONFIG_TARGETCLASS, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.cost_function_config_pb2' # @@protoc_insertion_point(class_scope:CostFunctionConfig.TargetClass) )) , DESCRIPTOR = _COSTFUNCTIONCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.cost_function_config_pb2' # @@protoc_insertion_point(class_scope:CostFunctionConfig) )) _sym_db.RegisterMessage(CostFunctionConfig) _sym_db.RegisterMessage(CostFunctionConfig.TargetClass) _sym_db.RegisterMessage(CostFunctionConfig.TargetClass.Objective) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/cost_function_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/model_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/model_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n:nvidia_tao_deploy/cv/detectnet_v2/proto/model_config.proto\"\xd9\x07\n\x0bModelConfig\x12\x1d\n\x15pretrained_model_file\x18\x01 \x01(\t\x12 \n\x18\x66reeze_pretrained_layers\x18\x02 \x01(\x08\x12\'\n\x1f\x61llow_loaded_model_modification\x18\x03 \x01(\x08\x12\x12\n\nnum_layers\x18\x04 \x01(\x05\x12\x13\n\x0buse_pooling\x18\x05 \x01(\x08\x12\x16\n\x0euse_batch_norm\x18\x06 \x01(\x08\x12\x14\n\x0c\x64ropout_rate\x18\x07 \x01(\x02\x12+\n\nactivation\x18\x08 \x01(\x0b\x32\x17.ModelConfig.Activation\x12\x30\n\robjective_set\x18\t \x01(\x0b\x32\x19.ModelConfig.ObjectiveSet\x12:\n\x12training_precision\x18\n \x01(\x0b\x32\x1e.ModelConfig.TrainingPrecision\x12\x11\n\tfreeze_bn\x18\x0b \x01(\x08\x12\x15\n\rfreeze_blocks\x18\x0c \x03(\x02\x12\x0c\n\x04\x61rch\x18\r \x01(\t\x12\x12\n\nload_graph\x18\x0e \x01(\x08\x12\x17\n\x0f\x61ll_projections\x18\x0f \x01(\x08\x1a\xb4\x01\n\nActivation\x12\x17\n\x0f\x61\x63tivation_type\x18\x01 \x01(\t\x12P\n\x15\x61\x63tivation_parameters\x18\x02 \x03(\x0b\x32\x31.ModelConfig.Activation.ActivationParametersEntry\x1a;\n\x19\x41\x63tivationParametersEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\x1a=\n\rBboxObjective\x12\r\n\x05input\x18\x01 \x01(\t\x12\r\n\x05scale\x18\x02 \x01(\x02\x12\x0e\n\x06offset\x18\x03 \x01(\x02\x1a\x1d\n\x0c\x43ovObjective\x12\r\n\x05input\x18\x01 \x01(\t\x1a`\n\x0cObjectiveSet\x12(\n\x04\x62\x62ox\x18\x01 \x01(\x0b\x32\x1a.ModelConfig.BboxObjective\x12&\n\x03\x63ov\x18\x02 \x01(\x0b\x32\x19.ModelConfig.CovObjective\x1a\x91\x01\n\x11TrainingPrecision\x12\x44\n\x0e\x62\x61\x63kend_floatx\x18\x01 \x01(\x0e\x32,.ModelConfig.TrainingPrecision.BackendFloatx\"6\n\rBackendFloatx\x12\x0b\n\x07\x46LOAT32\x10\x00\x12\x0b\n\x07\x46LOAT16\x10\x01\x12\x0b\n\x07INVALID\x10\x02\x62\x06proto3') ) _MODELCONFIG_TRAININGPRECISION_BACKENDFLOATX = _descriptor.EnumDescriptor( name='BackendFloatx', full_name='ModelConfig.TrainingPrecision.BackendFloatx', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='FLOAT32', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FLOAT16', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INVALID', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=994, serialized_end=1048, ) _sym_db.RegisterEnumDescriptor(_MODELCONFIG_TRAININGPRECISION_BACKENDFLOATX) _MODELCONFIG_ACTIVATION_ACTIVATIONPARAMETERSENTRY = _descriptor.Descriptor( name='ActivationParametersEntry', full_name='ModelConfig.Activation.ActivationParametersEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ModelConfig.Activation.ActivationParametersEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='ModelConfig.Activation.ActivationParametersEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=649, serialized_end=708, ) _MODELCONFIG_ACTIVATION = _descriptor.Descriptor( name='Activation', full_name='ModelConfig.Activation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='activation_type', full_name='ModelConfig.Activation.activation_type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='activation_parameters', full_name='ModelConfig.Activation.activation_parameters', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_MODELCONFIG_ACTIVATION_ACTIVATIONPARAMETERSENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=528, serialized_end=708, ) _MODELCONFIG_BBOXOBJECTIVE = _descriptor.Descriptor( name='BboxObjective', full_name='ModelConfig.BboxObjective', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='input', full_name='ModelConfig.BboxObjective.input', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scale', full_name='ModelConfig.BboxObjective.scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='offset', full_name='ModelConfig.BboxObjective.offset', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=710, serialized_end=771, ) _MODELCONFIG_COVOBJECTIVE = _descriptor.Descriptor( name='CovObjective', full_name='ModelConfig.CovObjective', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='input', full_name='ModelConfig.CovObjective.input', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=773, serialized_end=802, ) _MODELCONFIG_OBJECTIVESET = _descriptor.Descriptor( name='ObjectiveSet', full_name='ModelConfig.ObjectiveSet', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='bbox', full_name='ModelConfig.ObjectiveSet.bbox', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cov', full_name='ModelConfig.ObjectiveSet.cov', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=804, serialized_end=900, ) _MODELCONFIG_TRAININGPRECISION = _descriptor.Descriptor( name='TrainingPrecision', full_name='ModelConfig.TrainingPrecision', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='backend_floatx', full_name='ModelConfig.TrainingPrecision.backend_floatx', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _MODELCONFIG_TRAININGPRECISION_BACKENDFLOATX, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=903, serialized_end=1048, ) _MODELCONFIG = _descriptor.Descriptor( name='ModelConfig', full_name='ModelConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pretrained_model_file', full_name='ModelConfig.pretrained_model_file', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_pretrained_layers', full_name='ModelConfig.freeze_pretrained_layers', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='allow_loaded_model_modification', full_name='ModelConfig.allow_loaded_model_modification', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_layers', full_name='ModelConfig.num_layers', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_pooling', full_name='ModelConfig.use_pooling', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_batch_norm', full_name='ModelConfig.use_batch_norm', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dropout_rate', full_name='ModelConfig.dropout_rate', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='activation', full_name='ModelConfig.activation', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='objective_set', full_name='ModelConfig.objective_set', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_precision', full_name='ModelConfig.training_precision', index=9, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_bn', full_name='ModelConfig.freeze_bn', index=10, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_blocks', full_name='ModelConfig.freeze_blocks', index=11, number=12, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='arch', full_name='ModelConfig.arch', index=12, number=13, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='load_graph', full_name='ModelConfig.load_graph', index=13, number=14, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='all_projections', full_name='ModelConfig.all_projections', index=14, number=15, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_MODELCONFIG_ACTIVATION, _MODELCONFIG_BBOXOBJECTIVE, _MODELCONFIG_COVOBJECTIVE, _MODELCONFIG_OBJECTIVESET, _MODELCONFIG_TRAININGPRECISION, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=63, serialized_end=1048, ) _MODELCONFIG_ACTIVATION_ACTIVATIONPARAMETERSENTRY.containing_type = _MODELCONFIG_ACTIVATION _MODELCONFIG_ACTIVATION.fields_by_name['activation_parameters'].message_type = _MODELCONFIG_ACTIVATION_ACTIVATIONPARAMETERSENTRY _MODELCONFIG_ACTIVATION.containing_type = _MODELCONFIG _MODELCONFIG_BBOXOBJECTIVE.containing_type = _MODELCONFIG _MODELCONFIG_COVOBJECTIVE.containing_type = _MODELCONFIG _MODELCONFIG_OBJECTIVESET.fields_by_name['bbox'].message_type = _MODELCONFIG_BBOXOBJECTIVE _MODELCONFIG_OBJECTIVESET.fields_by_name['cov'].message_type = _MODELCONFIG_COVOBJECTIVE _MODELCONFIG_OBJECTIVESET.containing_type = _MODELCONFIG _MODELCONFIG_TRAININGPRECISION.fields_by_name['backend_floatx'].enum_type = _MODELCONFIG_TRAININGPRECISION_BACKENDFLOATX _MODELCONFIG_TRAININGPRECISION.containing_type = _MODELCONFIG _MODELCONFIG_TRAININGPRECISION_BACKENDFLOATX.containing_type = _MODELCONFIG_TRAININGPRECISION _MODELCONFIG.fields_by_name['activation'].message_type = _MODELCONFIG_ACTIVATION _MODELCONFIG.fields_by_name['objective_set'].message_type = _MODELCONFIG_OBJECTIVESET _MODELCONFIG.fields_by_name['training_precision'].message_type = _MODELCONFIG_TRAININGPRECISION DESCRIPTOR.message_types_by_name['ModelConfig'] = _MODELCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) ModelConfig = _reflection.GeneratedProtocolMessageType('ModelConfig', (_message.Message,), dict( Activation = _reflection.GeneratedProtocolMessageType('Activation', (_message.Message,), dict( ActivationParametersEntry = _reflection.GeneratedProtocolMessageType('ActivationParametersEntry', (_message.Message,), dict( DESCRIPTOR = _MODELCONFIG_ACTIVATION_ACTIVATIONPARAMETERSENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig.Activation.ActivationParametersEntry) )) , DESCRIPTOR = _MODELCONFIG_ACTIVATION, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig.Activation) )) , BboxObjective = _reflection.GeneratedProtocolMessageType('BboxObjective', (_message.Message,), dict( DESCRIPTOR = _MODELCONFIG_BBOXOBJECTIVE, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig.BboxObjective) )) , CovObjective = _reflection.GeneratedProtocolMessageType('CovObjective', (_message.Message,), dict( DESCRIPTOR = _MODELCONFIG_COVOBJECTIVE, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig.CovObjective) )) , ObjectiveSet = _reflection.GeneratedProtocolMessageType('ObjectiveSet', (_message.Message,), dict( DESCRIPTOR = _MODELCONFIG_OBJECTIVESET, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig.ObjectiveSet) )) , TrainingPrecision = _reflection.GeneratedProtocolMessageType('TrainingPrecision', (_message.Message,), dict( DESCRIPTOR = _MODELCONFIG_TRAININGPRECISION, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig.TrainingPrecision) )) , DESCRIPTOR = _MODELCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig) )) _sym_db.RegisterMessage(ModelConfig) _sym_db.RegisterMessage(ModelConfig.Activation) _sym_db.RegisterMessage(ModelConfig.Activation.ActivationParametersEntry) _sym_db.RegisterMessage(ModelConfig.BboxObjective) _sym_db.RegisterMessage(ModelConfig.CovObjective) _sym_db.RegisterMessage(ModelConfig.ObjectiveSet) _sym_db.RegisterMessage(ModelConfig.TrainingPrecision) _MODELCONFIG_ACTIVATION_ACTIVATIONPARAMETERSENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/model_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/detectnet_v2/proto/dataset_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/detectnet_v2/proto/dataset_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n<nvidia_tao_deploy/cv/detectnet_v2/proto/dataset_config.proto\"Y\n\nDataSource\x12\x16\n\x0etfrecords_path\x18\x01 \x01(\t\x12\x1c\n\x14image_directory_path\x18\x02 \x01(\t\x12\x15\n\rsource_weight\x18\x03 \x01(\x02\"\x99\x04\n\rDatasetConfig\x12!\n\x0c\x64\x61ta_sources\x18\x01 \x03(\x0b\x32\x0b.DataSource\x12\x17\n\x0fimage_extension\x18\x02 \x01(\t\x12\x44\n\x14target_class_mapping\x18\x03 \x03(\x0b\x32&.DatasetConfig.TargetClassMappingEntry\x12\x19\n\x0fvalidation_fold\x18\x04 \x01(\rH\x00\x12-\n\x16validation_data_source\x18\x05 \x01(\x0b\x32\x0b.DataSourceH\x00\x12\x37\n\x0f\x64\x61taloader_mode\x18\x06 \x01(\x0e\x32\x1e.DatasetConfig.DATALOADER_MODE\x12\x33\n\rsampling_mode\x18\x07 \x01(\x0e\x32\x1c.DatasetConfig.SAMPLING_MODE\x1a\x39\n\x17TargetClassMappingEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\";\n\x0f\x44\x41TALOADER_MODE\x12\x0f\n\x0bMULTISOURCE\x10\x00\x12\n\n\x06LEGACY\x10\x01\x12\x0b\n\x07\x44\x45\x46\x41ULT\x10\x02\"@\n\rSAMPLING_MODE\x12\x10\n\x0cUSER_DEFINED\x10\x00\x12\x10\n\x0cPROPORTIONAL\x10\x01\x12\x0b\n\x07UNIFORM\x10\x02\x42\x14\n\x12\x64\x61taset_split_typeb\x06proto3') ) _DATASETCONFIG_DATALOADER_MODE = _descriptor.EnumDescriptor( name='DATALOADER_MODE', full_name='DatasetConfig.DATALOADER_MODE', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MULTISOURCE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='LEGACY', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DEFAULT', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=546, serialized_end=605, ) _sym_db.RegisterEnumDescriptor(_DATASETCONFIG_DATALOADER_MODE) _DATASETCONFIG_SAMPLING_MODE = _descriptor.EnumDescriptor( name='SAMPLING_MODE', full_name='DatasetConfig.SAMPLING_MODE', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='USER_DEFINED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='PROPORTIONAL', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='UNIFORM', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=607, serialized_end=671, ) _sym_db.RegisterEnumDescriptor(_DATASETCONFIG_SAMPLING_MODE) _DATASOURCE = _descriptor.Descriptor( name='DataSource', full_name='DataSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='tfrecords_path', full_name='DataSource.tfrecords_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_directory_path', full_name='DataSource.image_directory_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source_weight', full_name='DataSource.source_weight', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=64, serialized_end=153, ) _DATASETCONFIG_TARGETCLASSMAPPINGENTRY = _descriptor.Descriptor( name='TargetClassMappingEntry', full_name='DatasetConfig.TargetClassMappingEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='DatasetConfig.TargetClassMappingEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='DatasetConfig.TargetClassMappingEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=487, serialized_end=544, ) _DATASETCONFIG = _descriptor.Descriptor( name='DatasetConfig', full_name='DatasetConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data_sources', full_name='DatasetConfig.data_sources', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_extension', full_name='DatasetConfig.image_extension', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_class_mapping', full_name='DatasetConfig.target_class_mapping', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_fold', full_name='DatasetConfig.validation_fold', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_data_source', full_name='DatasetConfig.validation_data_source', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dataloader_mode', full_name='DatasetConfig.dataloader_mode', index=5, number=6, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sampling_mode', full_name='DatasetConfig.sampling_mode', index=6, number=7, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_DATASETCONFIG_TARGETCLASSMAPPINGENTRY, ], enum_types=[ _DATASETCONFIG_DATALOADER_MODE, _DATASETCONFIG_SAMPLING_MODE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='dataset_split_type', full_name='DatasetConfig.dataset_split_type', index=0, containing_type=None, fields=[]), ], serialized_start=156, serialized_end=693, ) _DATASETCONFIG_TARGETCLASSMAPPINGENTRY.containing_type = _DATASETCONFIG _DATASETCONFIG.fields_by_name['data_sources'].message_type = _DATASOURCE _DATASETCONFIG.fields_by_name['target_class_mapping'].message_type = _DATASETCONFIG_TARGETCLASSMAPPINGENTRY _DATASETCONFIG.fields_by_name['validation_data_source'].message_type = _DATASOURCE _DATASETCONFIG.fields_by_name['dataloader_mode'].enum_type = _DATASETCONFIG_DATALOADER_MODE _DATASETCONFIG.fields_by_name['sampling_mode'].enum_type = _DATASETCONFIG_SAMPLING_MODE _DATASETCONFIG_DATALOADER_MODE.containing_type = _DATASETCONFIG _DATASETCONFIG_SAMPLING_MODE.containing_type = _DATASETCONFIG _DATASETCONFIG.oneofs_by_name['dataset_split_type'].fields.append( _DATASETCONFIG.fields_by_name['validation_fold']) _DATASETCONFIG.fields_by_name['validation_fold'].containing_oneof = _DATASETCONFIG.oneofs_by_name['dataset_split_type'] _DATASETCONFIG.oneofs_by_name['dataset_split_type'].fields.append( _DATASETCONFIG.fields_by_name['validation_data_source']) _DATASETCONFIG.fields_by_name['validation_data_source'].containing_oneof = _DATASETCONFIG.oneofs_by_name['dataset_split_type'] DESCRIPTOR.message_types_by_name['DataSource'] = _DATASOURCE DESCRIPTOR.message_types_by_name['DatasetConfig'] = _DATASETCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) DataSource = _reflection.GeneratedProtocolMessageType('DataSource', (_message.Message,), dict( DESCRIPTOR = _DATASOURCE, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:DataSource) )) _sym_db.RegisterMessage(DataSource) DatasetConfig = _reflection.GeneratedProtocolMessageType('DatasetConfig', (_message.Message,), dict( TargetClassMappingEntry = _reflection.GeneratedProtocolMessageType('TargetClassMappingEntry', (_message.Message,), dict( DESCRIPTOR = _DATASETCONFIG_TARGETCLASSMAPPINGENTRY, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:DatasetConfig.TargetClassMappingEntry) )) , DESCRIPTOR = _DATASETCONFIG, __module__ = 'nvidia_tao_deploy.cv.detectnet_v2.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:DatasetConfig) )) _sym_db.RegisterMessage(DatasetConfig) _sym_db.RegisterMessage(DatasetConfig.TargetClassMappingEntry) _DATASETCONFIG_TARGETCLASSMAPPINGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/proto/dataset_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DetectNetv2 convert etlt/onnx model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import tempfile from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.detectnet_v2.engine_builder import DetectNetEngineBuilder from nvidia_tao_deploy.cv.detectnet_v2.proto.utils import load_proto from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) DEFAULT_MAX_BATCH_SIZE = 1 DEFAULT_MIN_BATCH_SIZE = 1 DEFAULT_OPT_BATCH_SIZE = 1 @monitor_status(name='detectnet_v2', mode='gen_trt_engine') def main(args): """DetectNetv2 TRT convert.""" # decrypt etlt tmp_onnx_file, file_format = decode_model(args.model_path, args.key) if args.engine_file is not None or args.data_type == 'int8': if args.engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = args.engine_file experiment_spec = load_proto(args.experiment_spec) if args.cal_image_dir: calib_input = args.cal_image_dir else: # Load data sources from experiment specs calib_input = [] dataset_proto = experiment_spec.dataset_config for data_source_proto in dataset_proto.data_sources: calib_input.append(str(data_source_proto.image_directory_path)) # DNv2 supports both UFF and ONNX builder = DetectNetEngineBuilder(verbose=args.verbose, is_qat=experiment_spec.training_config.enable_qat, workspace=args.max_workspace_size, min_batch_size=args.min_batch_size, opt_batch_size=args.opt_batch_size, max_batch_size=args.max_batch_size, strict_type_constraints=args.strict_type_constraints, force_ptq=args.force_ptq) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, args.data_type, calib_data_file=args.cal_data_file, calib_input=calib_input, calib_cache=args.cal_cache_file, calib_num_images=args.batch_size * args.batches, calib_batch_size=args.batch_size, calib_json_file=args.cal_json_file) logging.info("Export finished successfully.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='gen_trt_engine', description='Generate TRT engine of DetectNetv2 model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to a DetectNetv2 .etlt or .onnx model file.' ) parser.add_argument( '-k', '--key', type=str, required=False, help='Key to save or load a .etlt model.' ) parser.add_argument( "-e", "--experiment_spec", default="specs/experiment_spec.txt", type=str, required=True, help="Experiment spec file for DetectNetv2.") parser.add_argument( "--data_type", type=str, default="fp32", help="Data type for the TensorRT export.", choices=["fp32", "fp16", "int8"]) parser.add_argument( "--cal_image_dir", default="", type=str, help="Directory of images to run int8 calibration.") parser.add_argument( "--cal_data_file", default="", type=str, help="Tensorfile to run calibration for int8 optimization.") parser.add_argument( '--cal_cache_file', default=None, type=str, help='Calibration cache file to write to.') parser.add_argument( '--cal_json_file', default=None, type=str, help='Dictionary containing tensor scale for QAT models.') parser.add_argument( "--engine_file", type=str, default=None, help="Path to the exported TRT engine.") parser.add_argument( "--max_batch_size", type=int, default=DEFAULT_MAX_BATCH_SIZE, help="Max batch size for TensorRT engine builder.") parser.add_argument( "--min_batch_size", type=int, default=DEFAULT_MIN_BATCH_SIZE, help="Min batch size for TensorRT engine builder.") parser.add_argument( "--opt_batch_size", type=int, default=DEFAULT_OPT_BATCH_SIZE, help="Opt batch size for TensorRT engine builder.") parser.add_argument( "--batch_size", type=int, default=1, help="Number of images per batch.") parser.add_argument( "--batches", type=int, default=10, help="Number of batches to calibrate over.") parser.add_argument( "--max_workspace_size", type=int, default=2, help="Max memory workspace size to allow in Gb for TensorRT engine builder (default: 2).") parser.add_argument( "-s", "--strict_type_constraints", action="store_true", default=False, help="A Boolean flag indicating whether to apply the \ TensorRT strict type constraints when building the TensorRT engine.") parser.add_argument( "--force_ptq", action="store_true", default=False, help="Flag to force post training quantization for QAT models.") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbosity of the logger.") parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy DetectNetv2 scripts module."""
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os from PIL import Image import numpy as np from tqdm.auto import tqdm import logging from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.detectnet_v2.proto.utils import load_proto logging.basicConfig(format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', level='INFO') from nvidia_tao_deploy.cv.detectnet_v2.dataloader import DetectNetKITTILoader # noqa: E402 from nvidia_tao_deploy.cv.detectnet_v2.inferencer import DetectNetInferencer # noqa: E402 from nvidia_tao_deploy.cv.detectnet_v2.postprocessor import BboxHandler # noqa: E402 @monitor_status(name='detectnet_v2', mode='inference') def main(args): """DetectNetv2 TRT inference.""" inferencer_spec = load_proto(args.experiment_spec, "inference") # Load target classes from label file target_classes = inferencer_spec.inferencer_config.target_classes # Load mapping_dict from the spec file mapping_dict = {c: c for c in target_classes} batch_size = args.batch_size if args.batch_size else inferencer_spec.inferencer_config.batch_size trt_infer = DetectNetInferencer(args.model_path, batch_size=batch_size, target_classes=target_classes) if batch_size != trt_infer.max_batch_size and trt_infer.etlt_type == "uff": logging.warning("Using deprecated UFF format. Overriding provided batch size " "%d to engine's batch size %d", batch_size, trt_infer.max_batch_size) batch_size = trt_infer.max_batch_size c, h, w = trt_infer._input_shape dl = DetectNetKITTILoader( shape=(c, h, w), image_dirs=[args.image_dir], label_dirs=[None], mapping_dict=mapping_dict, exclude_difficult=True, batch_size=batch_size, is_inference=True, image_mean=None, dtype=trt_infer.inputs[0].host.dtype) bboxer = BboxHandler(batch_size=batch_size, frame_height=h, frame_width=w, target_classes=target_classes, postproc_classes=target_classes, classwise_cluster_params=inferencer_spec.bbox_handler_config.classwise_bbox_handler_config, ) # Override class mapping with the class order specified by target_classes dl.classes = {c: i + 1 for i, c in enumerate(target_classes)} dl.class_mapping = {key.lower(): dl.classes[str(val.lower())] for key, val in mapping_dict.items()} inv_classes = {v: k for k, v in dl.classes.items()} if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir os.makedirs(results_dir, exist_ok=True) output_annotate_root = os.path.join(results_dir, "images_annotated") output_label_root = os.path.join(results_dir, "labels") os.makedirs(output_annotate_root, exist_ok=True) os.makedirs(output_label_root, exist_ok=True) # Get classwise edge color box_color = {} for k, v in inferencer_spec.bbox_handler_config.classwise_bbox_handler_config.items(): box_color[k] = (0, 255, 0) if v.bbox_color: box_color[k] = (v.bbox_color.R, v.bbox_color.G, v.bbox_color.B) for i, (imgs, _) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): y_pred = trt_infer.infer(imgs) processed_inference = bboxer.bbox_preprocessing(y_pred) classwise_detections = bboxer.cluster_detections(processed_inference) y_pred_valid = bboxer.postprocess(classwise_detections, batch_size, dl.image_size[i], (w, h), dl.classes) image_paths = dl.image_paths[np.arange(batch_size) + batch_size * i] for img_path, pred in zip(image_paths, y_pred_valid): # Load image img = Image.open(img_path) # No need to rescale here as rescaling was done in bboxer.postprocess bbox_img, label_strings = trt_infer.draw_bbox(img, pred, inv_classes, bboxer.state['confidence_th'], box_color) img_filename = os.path.basename(img_path) bbox_img.save(os.path.join(output_annotate_root, img_filename)) # Store labels filename, _ = os.path.splitext(img_filename) label_file_name = os.path.join(output_label_root, filename + ".txt") with open(label_file_name, "w", encoding="utf-8") as f: for l_s in label_strings: f.write(l_s) logging.info("Finished inference.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='infer', description='Inference with a DetectNetv2 TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the RetinaNet TensorRT engine.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=None, help='Batch size.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import json import numpy as np from tqdm.auto import tqdm import logging from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.detectnet_v2.proto.utils import load_proto from nvidia_tao_deploy.cv.detectnet_v2.proto.postprocessing_config import build_postprocessing_config from nvidia_tao_deploy.cv.detectnet_v2.dataloader import DetectNetKITTILoader from nvidia_tao_deploy.cv.detectnet_v2.inferencer import DetectNetInferencer from nvidia_tao_deploy.cv.detectnet_v2.postprocessor import BboxHandler from nvidia_tao_deploy.metrics.kitti_metric import KITTIMetric logger = logging.getLogger(__name__) logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', level='INFO') @monitor_status(name='detectnet_v2', mode='evaluation') def main(args): """DetectNetv2 TRT evaluation.""" experiment_spec = load_proto(args.experiment_spec) pproc_config = build_postprocessing_config(experiment_spec.postprocessing_config) # Load mapping_dict from the spec file mapping_dict = dict(experiment_spec.dataset_config.target_class_mapping) # Load target classes from label file target_classes = [target_class.name for target_class in experiment_spec.cost_function_config.target_classes] batch_size = args.batch_size if args.batch_size else experiment_spec.training_config.batch_size_per_gpu trt_infer = DetectNetInferencer(args.model_path, batch_size=batch_size, target_classes=target_classes) if batch_size != trt_infer.max_batch_size and trt_infer.etlt_type == "uff": logging.warning("Using deprecated UFF format. Overriding provided batch size " "%d to engine's batch size %d", batch_size, trt_infer.max_batch_size) batch_size = trt_infer.max_batch_size c, h, w = trt_infer._input_shape dl = DetectNetKITTILoader( shape=(c, h, w), image_dirs=[args.image_dir], label_dirs=[args.label_dir], mapping_dict=mapping_dict, exclude_difficult=True, batch_size=batch_size, image_mean=None, dtype=trt_infer.inputs[0].host.dtype) bboxer = BboxHandler(batch_size=batch_size, frame_height=h, frame_width=w, target_classes=target_classes, postproc_classes=target_classes, classwise_cluster_params=pproc_config, ) # Override class mapping with the class order specified by target_classes dl.classes = {c: i + 1 for i, c in enumerate(target_classes)} dl.class_mapping = {key.lower(): dl.classes[str(val.lower())] for key, val in mapping_dict.items()} eval_metric = KITTIMetric(n_classes=len(dl.classes) + 1) gt_labels = [] pred_labels = [] for i, (imgs, labels) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): gt_labels.extend(labels) y_pred = trt_infer.infer(imgs) processed_inference = bboxer.bbox_preprocessing(y_pred) classwise_detections = bboxer.cluster_detections(processed_inference) y_pred_valid = bboxer.postprocess(classwise_detections, batch_size, dl.image_size[i], (w, h), dl.classes) pred_labels.extend(y_pred_valid) m_ap, ap = eval_metric(gt_labels, pred_labels, verbose=True) m_ap = np.mean(ap[1:]) logging.info("*******************************") class_mapping = {v: k for k, v in dl.classes.items()} eval_results = {} for i in range(len(dl.classes)): eval_results['AP_' + class_mapping[i + 1]] = np.float64(ap[i + 1]) logging.info("{:<14}{:<6}{}".format(class_mapping[i + 1], 'AP', round(ap[i + 1], 5))) # noqa pylint: disable=C0209 logging.info("{:<14}{:<6}{}".format('', 'mAP', round(m_ap, 3))) # noqa pylint: disable=C0209 logging.info("*******************************") # Store evaluation results into JSON if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='eval', description='Evaluate with a RetinaNet TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the RetinaNet TensorRT engine.' ) parser.add_argument( '-l', '--label_dir', type=str, required=False, help='Label directory.') parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for DetectNetv2."""
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto import launch_job import nvidia_tao_deploy.cv.detectnet_v2.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_deploy.cv.detectnet_v2.scripts, "detectnet_v2", sys.argv[1:]) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/detectnet_v2/entrypoint/detectnet_v2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class for performing TensorRT image inference.""" import numpy as np import tensorrt as trt from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference def trt_output_process_fn(y_encoded): """Function to process TRT model output.""" cls_out = y_encoded[0] return np.copy(cls_out) class ClassificationInferencer(TRTInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, input_shape=None, batch_size=None, data_format="channel_first"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine super().__init__(engine_path) self.max_batch_size = self.engine.max_batch_size self.execute_v2 = False # Execution context is needed for inference self.context = None # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): binding_shape = self.engine.get_binding_shape(binding) self._input_shape = binding_shape[-3:] if len(binding_shape) == 4: self.etlt_type = "onnx" else: self.etlt_type = "uff" assert len(self._input_shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[1] self.width = self._input_shape[2] else: self.height = self._input_shape[0] self.width = self._input_shape[1] # set binding_shape for dynamic input # do not override if the original model was uff if (input_shape is not None or batch_size is not None) and (self.etlt_type != "uff"): self.context = self.engine.create_execution_context() if input_shape is not None: self.context.set_binding_shape(0, input_shape) self.max_batch_size = input_shape[0] else: self.context.set_binding_shape(0, [batch_size] + list(self._input_shape)) self.max_batch_size = batch_size self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volume = trt.volume(self._input_shape) self.numpy_array = np.zeros((self.max_batch_size, input_volume)) def infer(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. y_pred = [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] # Process TRT outputs to proper format return trt_output_process_fn(y_pred) def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free()
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classification TensorRT engine builder.""" import logging from pathlib import Path import os import random from six.moves import xrange import sys import traceback from tqdm import tqdm try: from uff.model.uff_pb2 import MetaGraph except ImportError: print("Loading uff directly from the package source code") # @scha: To disable tensorflow import issue import importlib import types import pkgutil package = pkgutil.get_loader("uff") # Returns __init__.py path src_code = package.get_filename().replace('__init__.py', 'model/uff_pb2.py') loader = importlib.machinery.SourceFileLoader('helper', src_code) helper = types.ModuleType(loader.name) loader.exec_module(helper) MetaGraph = helper.MetaGraph import numpy as np import onnx import tensorrt as trt from nvidia_tao_deploy.cv.common.constants import VALID_IMAGE_EXTENSIONS from nvidia_tao_deploy.engine.builder import EngineBuilder from nvidia_tao_deploy.engine.tensorfile import TensorFile from nvidia_tao_deploy.engine.tensorfile_calibrator import TensorfileCalibrator from nvidia_tao_deploy.engine.utils import generate_random_tensorfile, prepare_chunk logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class ClassificationEngineBuilder(EngineBuilder): """Parses an UFF graph and builds a TensorRT engine from it.""" def __init__( self, image_mean=None, data_format="channels_first", preprocess_mode="caffe", **kwargs ): """Init. Args: image_mean (list): Image mean per channel. data_format (str): data_format. preprocess_mode (str): preprocessing mode to use on input image. """ super().__init__(**kwargs) self.image_mean = image_mean self._data_format = data_format self.preprocess_mode = preprocess_mode def set_input_output_node_names(self): """Set input output node names.""" self._output_node_names = ["predictions/Softmax"] self._input_node_names = ["input_1"] def get_uff_input_dims(self, model_path): """Get input dimension of UFF model.""" metagraph = MetaGraph() with open(model_path, "rb") as f: metagraph.ParseFromString(f.read()) for node in metagraph.graphs[0].nodes: if node.operation == "Input": return np.array(node.fields['shape'].i_list.val)[1:] raise ValueError("Input dimension is not found in the UFF metagraph.") def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="onnx"): """Parse the UFF/ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: onnx). """ if file_format == "onnx": logger.info("Parsing ONNX model") self._input_dims = self.get_onnx_input_dims(model_path) self.batch_size = self._input_dims[0] self._input_dims = self._input_dims[1:] network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) network_flags = network_flags | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.batch_size <= 0: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_opt = (self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_max = (self.max_batch_size, input_shape[1], input_shape[2], input_shape[3]) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) else: self.builder.max_batch_size = self.max_batch_size else: logger.info("Parsing UFF model") self.network = self.builder.create_network() self.parser = trt.UffParser() self.set_input_output_node_names() in_tensor_name = self._input_node_names[0] self._input_dims = self.get_uff_input_dims(model_path) input_dict = {in_tensor_name: self._input_dims} for key, value in input_dict.items(): if self._data_format == "channels_first": self.parser.register_input(key, value, trt.UffInputOrder(0)) else: self.parser.register_input(key, value, trt.UffInputOrder(1)) for name in self._output_node_names: self.parser.register_output(name) self.builder.max_batch_size = self.max_batch_size try: assert self.parser.parse(model_path, self.network, trt.DataType.FLOAT) except AssertionError as e: logger.error("Failed to parse UFF File") _, _, tb = sys.exc_info() traceback.print_tb(tb) # Fixed format tb_info = traceback.extract_tb(tb) _, line, _, text = tb_info[-1] raise AssertionError( f"UFF parsing failed on line {line} in statement {text}" ) from e def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None): """Build the TensorRT engine and serialize it to disk. Args: engine_path: The path where to serialize the engine to. precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'. calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. """ engine_path = os.path.realpath(engine_path) engine_dir = os.path.dirname(engine_path) os.makedirs(engine_dir, exist_ok=True) logger.debug("Building %s Engine in %s", precision, engine_path) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] if self.batch_size is None: self.batch_size = calib_batch_size self.builder.max_batch_size = self.batch_size if precision.lower() == "fp16": if not self.builder.platform_has_fast_fp16: logger.warning("FP16 is not supported natively on this platform/device") else: self.config.set_flag(trt.BuilderFlag.FP16) elif precision.lower() == "int8": if not self.builder.platform_has_fast_int8: logger.warning("INT8 is not supported natively on this platform/device") elif self._is_qat: # Only applicable in TF2. # TF2 embeds QAT scales into the ONNX directly. # Hence, no need to set dynamic range of tensors. self.config.set_flag(trt.BuilderFlag.INT8) else: if self.builder.platform_has_fast_fp16 and not self._strict_type: # Also enable fp16, as some layers may be even more efficient in fp16 than int8 self.config.set_flag(trt.BuilderFlag.FP16) else: self.config.set_flag(trt.BuilderFlag.STRICT_TYPES) self.config.set_flag(trt.BuilderFlag.INT8) # Set Tensorfile based calibrator self.set_calibrator(inputs=inputs, calib_cache=calib_cache, calib_input=calib_input, calib_num_images=calib_num_images, calib_batch_size=calib_batch_size, calib_data_file=calib_data_file, image_mean=self.image_mean) with self.builder.build_engine(self.network, self.config) as engine, \ open(engine_path, "wb") as f: logger.debug("Serializing engine to file: %s", engine_path) f.write(engine.serialize()) def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None, image_mean=None): """Simple function to set an Tensorfile based int8 calibrator. Args: calib_data_file: Path to the TensorFile. If the tensorfile doesn't exist at this path, then one is created with either n_batches of random tensors, images from the file in calib_input of dimensions (batch_size,) + (input_dims). calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. image_mean: Image mean per channel. Returns: No explicit returns. """ logger.info("Calibrating using TensorfileCalibrator") n_batches = calib_num_images // calib_batch_size if not os.path.exists(calib_data_file): self.generate_tensor_file(calib_data_file, calib_input, self._input_dims, n_batches=n_batches, batch_size=calib_batch_size, image_mean=image_mean) self.config.int8_calibrator = TensorfileCalibrator(calib_data_file, calib_cache, n_batches, calib_batch_size) def generate_tensor_file(self, data_file_name, calibration_images_dir, input_dims, n_batches=10, batch_size=1, image_mean=None): """Generate calibration Tensorfile for int8 calibrator. This function generates a calibration tensorfile from a directory of images, or dumps n_batches of random numpy arrays of shape (batch_size,) + (input_dims). Args: data_file_name (str): Path to the output tensorfile to be saved. calibration_images_dir (str): Path to the images to generate a tensorfile from. input_dims (list): Input shape in CHW order. n_batches (int): Number of batches to be saved. batch_size (int): Number of images per batch. image_mean (list): Image mean per channel. Returns: No explicit returns. """ if not os.path.exists(calibration_images_dir): logger.info("Generating a tensorfile with random tensor images. This may work well as " "a profiling tool, however, it may result in inaccurate results at " "inference. Please generate a tensorfile using the tlt-int8-tensorfile, " "or provide a custom directory of images for best performance.") generate_random_tensorfile(data_file_name, input_dims, n_batches=n_batches, batch_size=batch_size) else: # Preparing the list of images to be saved. num_images = n_batches * batch_size # classification has sub-directory structure where each directory is a single class image_list = [p.resolve() for p in Path(calibration_images_dir).glob("**/*") if p.suffix in VALID_IMAGE_EXTENSIONS] if len(image_list) < num_images: raise ValueError('Not enough number of images provided:' f' {len(image_list)} < {num_images}') image_idx = random.sample(xrange(len(image_list)), num_images) self.set_data_preprocessing_parameters(input_dims, image_mean) if self._data_format == "channels_first": channels, image_height, image_width = input_dims[0], input_dims[1], input_dims[2] else: channels, image_height, image_width = input_dims[2], input_dims[0], input_dims[1] # Writing out processed dump. with TensorFile(data_file_name, 'w') as f: for chunk in tqdm(image_idx[x:x + batch_size] for x in xrange(0, len(image_idx), batch_size)): dump_data = prepare_chunk(chunk, image_list, image_width=image_width, image_height=image_height, channels=channels, batch_size=batch_size, **self.preprocessing_arguments) f.write(dump_data) f.closed def set_data_preprocessing_parameters(self, input_dims, image_mean=None): """Set data pre-processing parameters for the int8 calibration.""" if self.preprocess_mode == "torch": default_mean = [123.675, 116.280, 103.53] default_scale = 0.017507 else: default_mean = [103.939, 116.779, 123.68] default_scale = 1.0 if self._data_format == "channels_first": num_channels = input_dims[0] else: num_channels = input_dims[-1] if num_channels == 3: if not image_mean: means = default_mean else: assert len(image_mean) == 3, "Image mean should have 3 values for RGB inputs." means = image_mean elif num_channels == 1: if not image_mean: means = [117.3786] else: assert len(image_mean) == 1, "Image mean should have 1 value for grayscale inputs." means = image_mean else: raise NotImplementedError( f"Invalid number of dimensions {num_channels}.") self.preprocessing_arguments = {"scale": default_scale, "means": means, "flip_channel": True}
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy TF1 Classification.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classification loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from pathlib import Path from abc import ABC import numpy as np from PIL import Image from nvidia_tao_deploy.cv.common.constants import VALID_IMAGE_EXTENSIONS from nvidia_tao_deploy.inferencer.preprocess_input import preprocess_input # padding size. # We firstly resize to (target_width + CROP_PADDING, target_height + CROP_PADDING) # , then crop to (target_width, target_height). # for standard ImageNet size: 224x224 the ratio is 0.875(224 / (224 + 32)). # but for EfficientNet B1-B7, larger resolution is used, hence this ratio # is no longer 0.875 # ref: # https://github.com/tensorflow/tpu/blob/r1.15/models/official/efficientnet/preprocessing.py#L110 CROP_PADDING = 32 _PIL_INTERPOLATION_METHODS = { 'nearest': Image.NEAREST, 'bilinear': Image.BILINEAR, 'bicubic': Image.BICUBIC, } class ClassificationLoader(ABC): """Classification Dataloader.""" def __init__(self, shape, image_dirs, class_mapping, is_inference=False, batch_size=10, data_format="channels_first", interpolation_method="bicubic", mode="caffe", crop="center", image_mean=None, image_std=None, image_depth=8, dtype=None): """Init. Args: shape (list): list of input dimension that is either (c, h, w) or (h, w, c) format. image_dirs (list): list of image directories. label_dirs (list): list of label directories. class_mapping (dict): class mapping. e.g. {'aeroplane': 0, 'car': 1} is_inference (bool): If set true, we do not load labels (Default: False) interpolation_method (str): Bilinear / Bicubic. mode (str): caffe / torch crop (str): random / center batch_size (int): size of the batch. image_mean (list): image mean used for preprocessing. image_std (list): image std used for preprocessing. image_depth(int): Bit depth of images(8 or 16). dtype (str): data type to cast to """ self.image_paths = [] self.is_inference = is_inference self._add_source(image_dirs[0]) # WARNING(@yuw): hardcoded 0 self.image_paths = np.array(self.image_paths) self.data_inds = np.arange(len(self.image_paths)) self.class_mapping = class_mapping self.resample = _PIL_INTERPOLATION_METHODS[interpolation_method] self.mode = mode self.crop = crop self.data_format = data_format if data_format == "channels_first": self.num_channels, self.height, self.width = shape else: self.height, self.width, self.num_channels = shape self.image_depth = image_depth self.batch_size = batch_size self.image_mean = image_mean self.image_std = image_std self.n_samples = len(self.data_inds) self.dtype = dtype self.n_batches = int(len(self.image_paths) // self.batch_size) assert self.n_batches > 0, "empty image dir or batch size too large!" self.model_img_mode = 'rgb' if self.num_channels == 3 else 'grayscale' def _add_source(self, image_folder): """Add classification sources.""" images = [p.resolve() for p in Path(image_folder).glob("**/*") if p.suffix in VALID_IMAGE_EXTENSIONS] images = sorted(images) self.image_paths = images def __len__(self): """Get length of Sequence.""" return self.n_batches def _load_gt_image(self, image_path): """Load GT image from file.""" img = Image.open(image_path) if self.num_channels == 3: img = img.convert('RGB') # Color Image else: if self.image_depth == 16: img = img.convert('I') # PIL int32 mode for 16-bit images else: img = img.convert('L') # Grayscale Image return img def __iter__(self): """Iterate.""" self.n = 0 return self def __next__(self): """Load a full batch.""" images = [] labels = [] if self.n < self.n_batches: for idx in range(self.n * self.batch_size, (self.n + 1) * self.batch_size): image, label = self._get_single_processed_item(idx) images.append(image) labels.append(label) self.n += 1 return self._batch_post_processing(images, labels) raise StopIteration def _batch_post_processing(self, images, labels): """Post processing for a batch.""" images = np.array(images) # try to make labels a numpy array is_make_array = True x_shape = None for x in labels: if not isinstance(x, np.ndarray): is_make_array = False break if x_shape is None: x_shape = x.shape elif x_shape != x.shape: is_make_array = False break if is_make_array: labels = np.array(labels) return images, labels def _get_single_processed_item(self, idx): """Load and process single image and its label.""" image, label = self._get_single_item_raw(idx) image = self.preprocessing(image) return image, label def _get_single_item_raw(self, idx): """Load single image and its label. Returns: image (PIL.image): image object in original resolution label (int): one-hot encoded class label """ image = self._load_gt_image(self.image_paths[self.data_inds[idx]]) img_dir = os.path.dirname(self.image_paths[self.data_inds[idx]]) if self.is_inference: label = -1 else: label = self.class_mapping[os.path.basename(img_dir)] return image, label def preprocessing(self, image): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. Args: image (PIL.image): The Pillow image on disk to load. Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch """ width, height = image.size if self.crop == 'center': # Resize keeping aspect ratio # result should be no smaller than the targer size, include crop fraction overhead target_size_before_crop = ( self.width + CROP_PADDING, self.height + CROP_PADDING ) ratio = max( target_size_before_crop[0] / width, target_size_before_crop[1] / height ) target_size_before_crop_keep_ratio = int(width * ratio), int(height * ratio) image = image.resize(target_size_before_crop_keep_ratio, resample=self.resample) width, height = image.size left_corner = int(round(width / 2)) - int(round(self.width / 2)) top_corner = int(round(height / 2)) - int(round(self.height / 2)) image = image.crop( (left_corner, top_corner, left_corner + self.width, top_corner + self.height)) else: image = image.resize((self.width, self.height), self.resample) image = np.asarray(image, dtype=self.dtype) if self.data_format == "channels_first": if image.ndim == 2 and self.model_img_mode == 'grayscale': image = np.expand_dims(image, axis=2) image = np.transpose(image, (2, 0, 1)) # Normalize and apply imag mean and std image = preprocess_input(image, data_format=self.data_format, img_mean=self.image_mean, img_std=self.image_std, img_depth=self.image_depth, mode=self.mode, color_mode=self.model_img_mode) return image
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/dataloader.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/classification_tf1/proto/optimizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/classification_tf1/proto/optimizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nDnvidia_tao_deploy/cv/classification_tf1/proto/optimizer_config.proto\"S\n\x12SgdOptimizerConfig\x12\n\n\x02lr\x18\x01 \x01(\x02\x12\r\n\x05\x64\x65\x63\x61y\x18\x02 \x01(\x02\x12\x10\n\x08momentum\x18\x03 \x01(\x02\x12\x10\n\x08nesterov\x18\x04 \x01(\x08\"a\n\x13\x41\x64\x61mOptimizerConfig\x12\n\n\x02lr\x18\x01 \x01(\x02\x12\x0e\n\x06\x62\x65ta_1\x18\x02 \x01(\x02\x12\x0e\n\x06\x62\x65ta_2\x18\x03 \x01(\x02\x12\x0f\n\x07\x65psilon\x18\x04 \x01(\x02\x12\r\n\x05\x64\x65\x63\x61y\x18\x05 \x01(\x02\"Q\n\x16RmspropOptimizerConfig\x12\n\n\x02lr\x18\x01 \x01(\x02\x12\x0b\n\x03rho\x18\x02 \x01(\x02\x12\x0f\n\x07\x65psilon\x18\x03 \x01(\x02\x12\r\n\x05\x64\x65\x63\x61y\x18\x04 \x01(\x02\"\x90\x01\n\x0fOptimizerConfig\x12\"\n\x03sgd\x18\x01 \x01(\x0b\x32\x13.SgdOptimizerConfigH\x00\x12$\n\x04\x61\x64\x61m\x18\x02 \x01(\x0b\x32\x14.AdamOptimizerConfigH\x00\x12*\n\x07rmsprop\x18\x03 \x01(\x0b\x32\x17.RmspropOptimizerConfigH\x00\x42\x07\n\x05optimb\x06proto3') ) _SGDOPTIMIZERCONFIG = _descriptor.Descriptor( name='SgdOptimizerConfig', full_name='SgdOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='lr', full_name='SgdOptimizerConfig.lr', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decay', full_name='SgdOptimizerConfig.decay', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='momentum', full_name='SgdOptimizerConfig.momentum', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nesterov', full_name='SgdOptimizerConfig.nesterov', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=72, serialized_end=155, ) _ADAMOPTIMIZERCONFIG = _descriptor.Descriptor( name='AdamOptimizerConfig', full_name='AdamOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='lr', full_name='AdamOptimizerConfig.lr', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta_1', full_name='AdamOptimizerConfig.beta_1', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta_2', full_name='AdamOptimizerConfig.beta_2', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='epsilon', full_name='AdamOptimizerConfig.epsilon', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decay', full_name='AdamOptimizerConfig.decay', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=157, serialized_end=254, ) _RMSPROPOPTIMIZERCONFIG = _descriptor.Descriptor( name='RmspropOptimizerConfig', full_name='RmspropOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='lr', full_name='RmspropOptimizerConfig.lr', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rho', full_name='RmspropOptimizerConfig.rho', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='epsilon', full_name='RmspropOptimizerConfig.epsilon', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decay', full_name='RmspropOptimizerConfig.decay', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=256, serialized_end=337, ) _OPTIMIZERCONFIG = _descriptor.Descriptor( name='OptimizerConfig', full_name='OptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='sgd', full_name='OptimizerConfig.sgd', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='adam', full_name='OptimizerConfig.adam', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rmsprop', full_name='OptimizerConfig.rmsprop', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='optim', full_name='OptimizerConfig.optim', index=0, containing_type=None, fields=[]), ], serialized_start=340, serialized_end=484, ) _OPTIMIZERCONFIG.fields_by_name['sgd'].message_type = _SGDOPTIMIZERCONFIG _OPTIMIZERCONFIG.fields_by_name['adam'].message_type = _ADAMOPTIMIZERCONFIG _OPTIMIZERCONFIG.fields_by_name['rmsprop'].message_type = _RMSPROPOPTIMIZERCONFIG _OPTIMIZERCONFIG.oneofs_by_name['optim'].fields.append( _OPTIMIZERCONFIG.fields_by_name['sgd']) _OPTIMIZERCONFIG.fields_by_name['sgd'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optim'] _OPTIMIZERCONFIG.oneofs_by_name['optim'].fields.append( _OPTIMIZERCONFIG.fields_by_name['adam']) _OPTIMIZERCONFIG.fields_by_name['adam'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optim'] _OPTIMIZERCONFIG.oneofs_by_name['optim'].fields.append( _OPTIMIZERCONFIG.fields_by_name['rmsprop']) _OPTIMIZERCONFIG.fields_by_name['rmsprop'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optim'] DESCRIPTOR.message_types_by_name['SgdOptimizerConfig'] = _SGDOPTIMIZERCONFIG DESCRIPTOR.message_types_by_name['AdamOptimizerConfig'] = _ADAMOPTIMIZERCONFIG DESCRIPTOR.message_types_by_name['RmspropOptimizerConfig'] = _RMSPROPOPTIMIZERCONFIG DESCRIPTOR.message_types_by_name['OptimizerConfig'] = _OPTIMIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) SgdOptimizerConfig = _reflection.GeneratedProtocolMessageType('SgdOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _SGDOPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:SgdOptimizerConfig) )) _sym_db.RegisterMessage(SgdOptimizerConfig) AdamOptimizerConfig = _reflection.GeneratedProtocolMessageType('AdamOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _ADAMOPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:AdamOptimizerConfig) )) _sym_db.RegisterMessage(AdamOptimizerConfig) RmspropOptimizerConfig = _reflection.GeneratedProtocolMessageType('RmspropOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _RMSPROPOPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:RmspropOptimizerConfig) )) _sym_db.RegisterMessage(RmspropOptimizerConfig) OptimizerConfig = _reflection.GeneratedProtocolMessageType('OptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _OPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:OptimizerConfig) )) _sym_db.RegisterMessage(OptimizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/proto/optimizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/classification_tf1/proto/train_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.classification_tf1.proto import visualizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_visualizer__config__pb2 from nvidia_tao_deploy.cv.classification_tf1.proto import lr_config_pb2 as nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_lr__config__pb2 from nvidia_tao_deploy.cv.classification_tf1.proto import optimizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_optimizer__config__pb2 from nvidia_tao_deploy.cv.classification_tf1.proto import regularizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_regularizer__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/classification_tf1/proto/train_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n@nvidia_tao_deploy/cv/classification_tf1/proto/train_config.proto\x1a\x45nvidia_tao_deploy/cv/classification_tf1/proto/visualizer_config.proto\x1a=nvidia_tao_deploy/cv/classification_tf1/proto/lr_config.proto\x1a\x44nvidia_tao_deploy/cv/classification_tf1/proto/optimizer_config.proto\x1a\x46nvidia_tao_deploy/cv/classification_tf1/proto/regularizer_config.proto\"\x83\x05\n\x0bTrainConfig\x12\x1a\n\x12train_dataset_path\x18\x01 \x01(\t\x12\x18\n\x10val_dataset_path\x18\x02 \x01(\t\x12\x1d\n\x15pretrained_model_path\x18\x03 \x01(\t\x12#\n\toptimizer\x18\x04 \x01(\x0b\x32\x10.OptimizerConfig\x12\x1a\n\x12\x62\x61tch_size_per_gpu\x18\x05 \x01(\r\x12\x10\n\x08n_epochs\x18\x06 \x01(\r\x12\x11\n\tn_workers\x18\x07 \x01(\r\x12\x1e\n\nreg_config\x18\x08 \x01(\x0b\x32\n.RegConfig\x12\x1c\n\tlr_config\x18\t \x01(\x0b\x32\t.LRConfig\x12\x13\n\x0brandom_seed\x18\n \x01(\r\x12\x1a\n\x12\x65nable_random_crop\x18\x0b \x01(\x08\x12\x1a\n\x12\x65nable_center_crop\x18\x0e \x01(\x08\x12!\n\x19\x65nable_color_augmentation\x18\x0f \x01(\x08\x12\x17\n\x0flabel_smoothing\x18\x0c \x01(\x02\x12\x17\n\x0fpreprocess_mode\x18\r \x01(\t\x12\x13\n\x0bmixup_alpha\x18\x10 \x01(\x02\x12\x19\n\x11model_parallelism\x18\x11 \x03(\x02\x12/\n\nimage_mean\x18\x12 \x03(\x0b\x32\x1b.TrainConfig.ImageMeanEntry\x12\x1f\n\x17\x64isable_horizontal_flip\x18\x13 \x01(\x08\x12%\n\nvisualizer\x18\x14 \x01(\x0b\x32\x11.VisualizerConfig\x1a\x30\n\x0eImageMeanEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\x62\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_visualizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_lr__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_optimizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_regularizer__config__pb2.DESCRIPTOR,]) _TRAINCONFIG_IMAGEMEANENTRY = _descriptor.Descriptor( name='ImageMeanEntry', full_name='TrainConfig.ImageMeanEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='TrainConfig.ImageMeanEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='TrainConfig.ImageMeanEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=940, serialized_end=988, ) _TRAINCONFIG = _descriptor.Descriptor( name='TrainConfig', full_name='TrainConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='train_dataset_path', full_name='TrainConfig.train_dataset_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='val_dataset_path', full_name='TrainConfig.val_dataset_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pretrained_model_path', full_name='TrainConfig.pretrained_model_path', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='optimizer', full_name='TrainConfig.optimizer', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size_per_gpu', full_name='TrainConfig.batch_size_per_gpu', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_epochs', full_name='TrainConfig.n_epochs', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_workers', full_name='TrainConfig.n_workers', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reg_config', full_name='TrainConfig.reg_config', index=7, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lr_config', full_name='TrainConfig.lr_config', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_seed', full_name='TrainConfig.random_seed', index=9, number=10, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_random_crop', full_name='TrainConfig.enable_random_crop', index=10, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_center_crop', full_name='TrainConfig.enable_center_crop', index=11, number=14, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_color_augmentation', full_name='TrainConfig.enable_color_augmentation', index=12, number=15, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='label_smoothing', full_name='TrainConfig.label_smoothing', index=13, number=12, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='preprocess_mode', full_name='TrainConfig.preprocess_mode', index=14, number=13, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mixup_alpha', full_name='TrainConfig.mixup_alpha', index=15, number=16, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_parallelism', full_name='TrainConfig.model_parallelism', index=16, number=17, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_mean', full_name='TrainConfig.image_mean', index=17, number=18, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='disable_horizontal_flip', full_name='TrainConfig.disable_horizontal_flip', index=18, number=19, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='visualizer', full_name='TrainConfig.visualizer', index=19, number=20, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_TRAINCONFIG_IMAGEMEANENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=345, serialized_end=988, ) _TRAINCONFIG_IMAGEMEANENTRY.containing_type = _TRAINCONFIG _TRAINCONFIG.fields_by_name['optimizer'].message_type = nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_optimizer__config__pb2._OPTIMIZERCONFIG _TRAINCONFIG.fields_by_name['reg_config'].message_type = nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_regularizer__config__pb2._REGCONFIG _TRAINCONFIG.fields_by_name['lr_config'].message_type = nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_lr__config__pb2._LRCONFIG _TRAINCONFIG.fields_by_name['image_mean'].message_type = _TRAINCONFIG_IMAGEMEANENTRY _TRAINCONFIG.fields_by_name['visualizer'].message_type = nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_visualizer__config__pb2._VISUALIZERCONFIG DESCRIPTOR.message_types_by_name['TrainConfig'] = _TRAINCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) TrainConfig = _reflection.GeneratedProtocolMessageType('TrainConfig', (_message.Message,), dict( ImageMeanEntry = _reflection.GeneratedProtocolMessageType('ImageMeanEntry', (_message.Message,), dict( DESCRIPTOR = _TRAINCONFIG_IMAGEMEANENTRY, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.train_config_pb2' # @@protoc_insertion_point(class_scope:TrainConfig.ImageMeanEntry) )) , DESCRIPTOR = _TRAINCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.train_config_pb2' # @@protoc_insertion_point(class_scope:TrainConfig) )) _sym_db.RegisterMessage(TrainConfig) _sym_db.RegisterMessage(TrainConfig.ImageMeanEntry) _TRAINCONFIG_IMAGEMEANENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/proto/train_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/classification_tf1/proto/regularizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/classification_tf1/proto/regularizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nFnvidia_tao_deploy/cv/classification_tf1/proto/regularizer_config.proto\">\n\tRegConfig\x12\x0c\n\x04type\x18\x01 \x01(\t\x12\r\n\x05scope\x18\x02 \x01(\t\x12\x14\n\x0cweight_decay\x18\x03 \x01(\x02\x62\x06proto3') ) _REGCONFIG = _descriptor.Descriptor( name='RegConfig', full_name='RegConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='RegConfig.type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='scope', full_name='RegConfig.scope', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_decay', full_name='RegConfig.weight_decay', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=74, serialized_end=136, ) DESCRIPTOR.message_types_by_name['RegConfig'] = _REGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) RegConfig = _reflection.GeneratedProtocolMessageType('RegConfig', (_message.Message,), dict( DESCRIPTOR = _REGCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.regularizer_config_pb2' # @@protoc_insertion_point(class_scope:RegConfig) )) _sym_db.RegisterMessage(RegConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/proto/regularizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/classification_tf1/proto/lr_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/classification_tf1/proto/lr_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n=nvidia_tao_deploy/cv/classification_tf1/proto/lr_config.proto\"G\n\x0cStepLrConfig\x12\x15\n\rlearning_rate\x18\x01 \x01(\x02\x12\x11\n\tstep_size\x18\x02 \x01(\r\x12\r\n\x05gamma\x18\x03 \x01(\x02\"t\n\x12SoftAnnealLrConfig\x12\x15\n\rlearning_rate\x18\x01 \x01(\x02\x12\x12\n\nsoft_start\x18\x02 \x01(\x02\x12\x19\n\x11\x61nnealing_divider\x18\x03 \x01(\x02\x12\x18\n\x10\x61nnealing_points\x18\x07 \x03(\x02\"Q\n\x0e\x43osineLrConfig\x12\x15\n\rlearning_rate\x18\x01 \x01(\x02\x12\x14\n\x0cmin_lr_ratio\x18\x02 \x01(\x02\x12\x12\n\nsoft_start\x18\x03 \x01(\x02\"\x88\x01\n\x08LRConfig\x12\x1d\n\x04step\x18\x01 \x01(\x0b\x32\r.StepLrConfigH\x00\x12*\n\x0bsoft_anneal\x18\x02 \x01(\x0b\x32\x13.SoftAnnealLrConfigH\x00\x12!\n\x06\x63osine\x18\x03 \x01(\x0b\x32\x0f.CosineLrConfigH\x00\x42\x0e\n\x0clr_schedulerb\x06proto3') ) _STEPLRCONFIG = _descriptor.Descriptor( name='StepLrConfig', full_name='StepLrConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='learning_rate', full_name='StepLrConfig.learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='step_size', full_name='StepLrConfig.step_size', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gamma', full_name='StepLrConfig.gamma', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=65, serialized_end=136, ) _SOFTANNEALLRCONFIG = _descriptor.Descriptor( name='SoftAnnealLrConfig', full_name='SoftAnnealLrConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='learning_rate', full_name='SoftAnnealLrConfig.learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_start', full_name='SoftAnnealLrConfig.soft_start', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='annealing_divider', full_name='SoftAnnealLrConfig.annealing_divider', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='annealing_points', full_name='SoftAnnealLrConfig.annealing_points', index=3, number=7, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=138, serialized_end=254, ) _COSINELRCONFIG = _descriptor.Descriptor( name='CosineLrConfig', full_name='CosineLrConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='learning_rate', full_name='CosineLrConfig.learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_lr_ratio', full_name='CosineLrConfig.min_lr_ratio', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_start', full_name='CosineLrConfig.soft_start', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=256, serialized_end=337, ) _LRCONFIG = _descriptor.Descriptor( name='LRConfig', full_name='LRConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='step', full_name='LRConfig.step', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_anneal', full_name='LRConfig.soft_anneal', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cosine', full_name='LRConfig.cosine', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='lr_scheduler', full_name='LRConfig.lr_scheduler', index=0, containing_type=None, fields=[]), ], serialized_start=340, serialized_end=476, ) _LRCONFIG.fields_by_name['step'].message_type = _STEPLRCONFIG _LRCONFIG.fields_by_name['soft_anneal'].message_type = _SOFTANNEALLRCONFIG _LRCONFIG.fields_by_name['cosine'].message_type = _COSINELRCONFIG _LRCONFIG.oneofs_by_name['lr_scheduler'].fields.append( _LRCONFIG.fields_by_name['step']) _LRCONFIG.fields_by_name['step'].containing_oneof = _LRCONFIG.oneofs_by_name['lr_scheduler'] _LRCONFIG.oneofs_by_name['lr_scheduler'].fields.append( _LRCONFIG.fields_by_name['soft_anneal']) _LRCONFIG.fields_by_name['soft_anneal'].containing_oneof = _LRCONFIG.oneofs_by_name['lr_scheduler'] _LRCONFIG.oneofs_by_name['lr_scheduler'].fields.append( _LRCONFIG.fields_by_name['cosine']) _LRCONFIG.fields_by_name['cosine'].containing_oneof = _LRCONFIG.oneofs_by_name['lr_scheduler'] DESCRIPTOR.message_types_by_name['StepLrConfig'] = _STEPLRCONFIG DESCRIPTOR.message_types_by_name['SoftAnnealLrConfig'] = _SOFTANNEALLRCONFIG DESCRIPTOR.message_types_by_name['CosineLrConfig'] = _COSINELRCONFIG DESCRIPTOR.message_types_by_name['LRConfig'] = _LRCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) StepLrConfig = _reflection.GeneratedProtocolMessageType('StepLrConfig', (_message.Message,), dict( DESCRIPTOR = _STEPLRCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.lr_config_pb2' # @@protoc_insertion_point(class_scope:StepLrConfig) )) _sym_db.RegisterMessage(StepLrConfig) SoftAnnealLrConfig = _reflection.GeneratedProtocolMessageType('SoftAnnealLrConfig', (_message.Message,), dict( DESCRIPTOR = _SOFTANNEALLRCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.lr_config_pb2' # @@protoc_insertion_point(class_scope:SoftAnnealLrConfig) )) _sym_db.RegisterMessage(SoftAnnealLrConfig) CosineLrConfig = _reflection.GeneratedProtocolMessageType('CosineLrConfig', (_message.Message,), dict( DESCRIPTOR = _COSINELRCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.lr_config_pb2' # @@protoc_insertion_point(class_scope:CosineLrConfig) )) _sym_db.RegisterMessage(CosineLrConfig) LRConfig = _reflection.GeneratedProtocolMessageType('LRConfig', (_message.Message,), dict( DESCRIPTOR = _LRCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.lr_config_pb2' # @@protoc_insertion_point(class_scope:LRConfig) )) _sym_db.RegisterMessage(LRConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/proto/lr_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Classification Proto.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/classification_tf1/proto/visualizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/classification_tf1/proto/visualizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nEnvidia_tao_deploy/cv/classification_tf1/proto/visualizer_config.proto\"R\n\x10VisualizerConfig\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\x12\x12\n\nnum_images\x18\x02 \x01(\r\x12\x19\n\x11weight_histograms\x18\x03 \x01(\x08\x62\x06proto3') ) _VISUALIZERCONFIG = _descriptor.Descriptor( name='VisualizerConfig', full_name='VisualizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='enabled', full_name='VisualizerConfig.enabled', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_images', full_name='VisualizerConfig.num_images', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_histograms', full_name='VisualizerConfig.weight_histograms', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=73, serialized_end=155, ) DESCRIPTOR.message_types_by_name['VisualizerConfig'] = _VISUALIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) VisualizerConfig = _reflection.GeneratedProtocolMessageType('VisualizerConfig', (_message.Message,), dict( DESCRIPTOR = _VISUALIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.visualizer_config_pb2' # @@protoc_insertion_point(class_scope:VisualizerConfig) )) _sym_db.RegisterMessage(VisualizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/proto/visualizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/classification_tf1/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.classification_tf1.proto import model_config_pb2 as nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_model__config__pb2 from nvidia_tao_deploy.cv.classification_tf1.proto import eval_config_pb2 as nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_eval__config__pb2 from nvidia_tao_deploy.cv.classification_tf1.proto import train_config_pb2 as nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_train__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/classification_tf1/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n>nvidia_tao_deploy/cv/classification_tf1/proto/experiment.proto\x1a@nvidia_tao_deploy/cv/classification_tf1/proto/model_config.proto\x1a?nvidia_tao_deploy/cv/classification_tf1/proto/eval_config.proto\x1a@nvidia_tao_deploy/cv/classification_tf1/proto/train_config.proto\"v\n\nExperiment\x12 \n\x0b\x65val_config\x18\x01 \x01(\x0b\x32\x0b.EvalConfig\x12\"\n\x0cmodel_config\x18\x02 \x01(\x0b\x32\x0c.ModelConfig\x12\"\n\x0ctrain_config\x18\x03 \x01(\x0b\x32\x0c.TrainConfigb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_model__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_eval__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_train__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='eval_config', full_name='Experiment.eval_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_config', full_name='Experiment.model_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_config', full_name='Experiment.train_config', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=263, serialized_end=381, ) _EXPERIMENT.fields_by_name['eval_config'].message_type = nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_eval__config__pb2._EVALCONFIG _EXPERIMENT.fields_by_name['model_config'].message_type = nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_model__config__pb2._MODELCONFIG _EXPERIMENT.fields_by_name['train_config'].message_type = nvidia__tao__deploy_dot_cv_dot_classification__tf1_dot_proto_dot_train__config__pb2._TRAINCONFIG DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/proto/experiment_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Config Base Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_deploy.cv.classification_tf1.proto.experiment_pb2 import Experiment def load_proto(config): """Load the experiment proto.""" proto = Experiment() def _load_from_file(filename, pb2): if not os.path.exists(filename): raise IOError(f"Specfile not found at: {filename}") with open(filename, "r", encoding="utf-8") as f: merge_text_proto(f.read(), pb2) _load_from_file(config, proto) return proto
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/proto/utils.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/classification_tf1/proto/eval_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/classification_tf1/proto/eval_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n?nvidia_tao_deploy/cv/classification_tf1/proto/eval_config.proto\"\x8d\x01\n\nEvalConfig\x12\r\n\x05top_k\x18\x01 \x01(\r\x12\x19\n\x11\x65val_dataset_path\x18\x02 \x01(\t\x12\x12\n\nmodel_path\x18\x03 \x01(\t\x12\x12\n\nbatch_size\x18\x04 \x01(\r\x12\x11\n\tn_workers\x18\x05 \x01(\r\x12\x1a\n\x12\x65nable_center_crop\x18\x06 \x01(\x08\x62\x06proto3') ) _EVALCONFIG = _descriptor.Descriptor( name='EvalConfig', full_name='EvalConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='top_k', full_name='EvalConfig.top_k', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_dataset_path', full_name='EvalConfig.eval_dataset_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_path', full_name='EvalConfig.model_path', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='EvalConfig.batch_size', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_workers', full_name='EvalConfig.n_workers', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_center_crop', full_name='EvalConfig.enable_center_crop', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=68, serialized_end=209, ) DESCRIPTOR.message_types_by_name['EvalConfig'] = _EVALCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) EvalConfig = _reflection.GeneratedProtocolMessageType('EvalConfig', (_message.Message,), dict( DESCRIPTOR = _EVALCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.eval_config_pb2' # @@protoc_insertion_point(class_scope:EvalConfig) )) _sym_db.RegisterMessage(EvalConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/proto/eval_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/classification_tf1/proto/model_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/classification_tf1/proto/model_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n@nvidia_tao_deploy/cv/classification_tf1/proto/model_config.proto\"4\n\x0f\x42\x61tchNormConfig\x12\x10\n\x08momentum\x18\x01 \x01(\x02\x12\x0f\n\x07\x65psilon\x18\x02 \x01(\x02\"\xa8\x01\n\nActivation\x12\x17\n\x0f\x61\x63tivation_type\x18\x01 \x01(\t\x12\x44\n\x15\x61\x63tivation_parameters\x18\x02 \x03(\x0b\x32%.Activation.ActivationParametersEntry\x1a;\n\x19\x41\x63tivationParametersEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\"\x8c\x03\n\x0bModelConfig\x12\x0c\n\x04\x61rch\x18\x01 \x01(\t\x12\x18\n\x10input_image_size\x18\x02 \x01(\t\x12\x39\n\x1bresize_interpolation_method\x18\x0c \x01(\x0e\x32\x14.InterpolationMethod\x12\x10\n\x08n_layers\x18\x03 \x01(\r\x12\x13\n\x0bretain_head\x18\x04 \x01(\x08\x12\x16\n\x0euse_batch_norm\x18\x05 \x01(\x08\x12\x10\n\x08use_bias\x18\x06 \x01(\x08\x12\x13\n\x0buse_pooling\x18\x07 \x01(\x08\x12\x17\n\x0f\x61ll_projections\x18\x08 \x01(\x08\x12\x11\n\tfreeze_bn\x18\t \x01(\x08\x12\x15\n\rfreeze_blocks\x18\n \x03(\r\x12\x0f\n\x07\x64ropout\x18\x0b \x01(\x02\x12+\n\x11\x62\x61tch_norm_config\x18\r \x01(\x0b\x32\x10.BatchNormConfig\x12\x1f\n\nactivation\x18\x0e \x01(\x0b\x32\x0b.Activation\x12\x12\n\nbyom_model\x18\x0f \x01(\t*0\n\x13InterpolationMethod\x12\x0c\n\x08\x42ILINEAR\x10\x00\x12\x0b\n\x07\x42ICUBIC\x10\x01\x62\x06proto3') ) _INTERPOLATIONMETHOD = _descriptor.EnumDescriptor( name='InterpolationMethod', full_name='InterpolationMethod', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='BILINEAR', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='BICUBIC', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=692, serialized_end=740, ) _sym_db.RegisterEnumDescriptor(_INTERPOLATIONMETHOD) InterpolationMethod = enum_type_wrapper.EnumTypeWrapper(_INTERPOLATIONMETHOD) BILINEAR = 0 BICUBIC = 1 _BATCHNORMCONFIG = _descriptor.Descriptor( name='BatchNormConfig', full_name='BatchNormConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='momentum', full_name='BatchNormConfig.momentum', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='epsilon', full_name='BatchNormConfig.epsilon', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=68, serialized_end=120, ) _ACTIVATION_ACTIVATIONPARAMETERSENTRY = _descriptor.Descriptor( name='ActivationParametersEntry', full_name='Activation.ActivationParametersEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='Activation.ActivationParametersEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='Activation.ActivationParametersEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=232, serialized_end=291, ) _ACTIVATION = _descriptor.Descriptor( name='Activation', full_name='Activation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='activation_type', full_name='Activation.activation_type', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='activation_parameters', full_name='Activation.activation_parameters', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_ACTIVATION_ACTIVATIONPARAMETERSENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=123, serialized_end=291, ) _MODELCONFIG = _descriptor.Descriptor( name='ModelConfig', full_name='ModelConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='arch', full_name='ModelConfig.arch', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input_image_size', full_name='ModelConfig.input_image_size', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='resize_interpolation_method', full_name='ModelConfig.resize_interpolation_method', index=2, number=12, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_layers', full_name='ModelConfig.n_layers', index=3, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='retain_head', full_name='ModelConfig.retain_head', index=4, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_batch_norm', full_name='ModelConfig.use_batch_norm', index=5, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_bias', full_name='ModelConfig.use_bias', index=6, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_pooling', full_name='ModelConfig.use_pooling', index=7, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='all_projections', full_name='ModelConfig.all_projections', index=8, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_bn', full_name='ModelConfig.freeze_bn', index=9, number=9, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_blocks', full_name='ModelConfig.freeze_blocks', index=10, number=10, type=13, cpp_type=3, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dropout', full_name='ModelConfig.dropout', index=11, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_norm_config', full_name='ModelConfig.batch_norm_config', index=12, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='activation', full_name='ModelConfig.activation', index=13, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='byom_model', full_name='ModelConfig.byom_model', index=14, number=15, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=294, serialized_end=690, ) _ACTIVATION_ACTIVATIONPARAMETERSENTRY.containing_type = _ACTIVATION _ACTIVATION.fields_by_name['activation_parameters'].message_type = _ACTIVATION_ACTIVATIONPARAMETERSENTRY _MODELCONFIG.fields_by_name['resize_interpolation_method'].enum_type = _INTERPOLATIONMETHOD _MODELCONFIG.fields_by_name['batch_norm_config'].message_type = _BATCHNORMCONFIG _MODELCONFIG.fields_by_name['activation'].message_type = _ACTIVATION DESCRIPTOR.message_types_by_name['BatchNormConfig'] = _BATCHNORMCONFIG DESCRIPTOR.message_types_by_name['Activation'] = _ACTIVATION DESCRIPTOR.message_types_by_name['ModelConfig'] = _MODELCONFIG DESCRIPTOR.enum_types_by_name['InterpolationMethod'] = _INTERPOLATIONMETHOD _sym_db.RegisterFileDescriptor(DESCRIPTOR) BatchNormConfig = _reflection.GeneratedProtocolMessageType('BatchNormConfig', (_message.Message,), dict( DESCRIPTOR = _BATCHNORMCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:BatchNormConfig) )) _sym_db.RegisterMessage(BatchNormConfig) Activation = _reflection.GeneratedProtocolMessageType('Activation', (_message.Message,), dict( ActivationParametersEntry = _reflection.GeneratedProtocolMessageType('ActivationParametersEntry', (_message.Message,), dict( DESCRIPTOR = _ACTIVATION_ACTIVATIONPARAMETERSENTRY, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:Activation.ActivationParametersEntry) )) , DESCRIPTOR = _ACTIVATION, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:Activation) )) _sym_db.RegisterMessage(Activation) _sym_db.RegisterMessage(Activation.ActivationParametersEntry) ModelConfig = _reflection.GeneratedProtocolMessageType('ModelConfig', (_message.Message,), dict( DESCRIPTOR = _MODELCONFIG, __module__ = 'nvidia_tao_deploy.cv.classification_tf1.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig) )) _sym_db.RegisterMessage(ModelConfig) _ACTIVATION_ACTIVATIONPARAMETERSENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/proto/model_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classification convert etlt/onnx model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import tempfile from nvidia_tao_deploy.cv.classification_tf1.proto.utils import load_proto from nvidia_tao_deploy.cv.classification_tf1.engine_builder import ClassificationEngineBuilder from nvidia_tao_deploy.utils.decoding import decode_model from nvidia_tao_deploy.cv.common.decorators import monitor_status logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) DEFAULT_MAX_BATCH_SIZE = 1 DEFAULT_MIN_BATCH_SIZE = 1 DEFAULT_OPT_BATCH_SIZE = 1 @monitor_status(name='classification_tf1', mode='gen_trt_engine') def main(args): """Classification TRT convert.""" # decrypt etlt tmp_onnx_file, file_format = decode_model(args.model_path, args.key) # Load from proto-based spec file es = load_proto(args.experiment_spec) image_mean = es.train_config.image_mean if image_mean: assert all(c in image_mean for c in ['r', 'g', 'b']), ( "'r', 'g', 'b' should all be present in image_mean " "for images with 3 channels." ) image_mean = [image_mean['b'], image_mean['g'], image_mean['r']] else: image_mean = [103.939, 116.779, 123.68] if args.engine_file is not None or args.data_type == 'int8': if args.engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = args.engine_file builder = ClassificationEngineBuilder(verbose=args.verbose, image_mean=image_mean, workspace=args.max_workspace_size, min_batch_size=args.min_batch_size, opt_batch_size=args.opt_batch_size, max_batch_size=args.max_batch_size, strict_type_constraints=args.strict_type_constraints) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, args.data_type, calib_data_file=args.cal_data_file, calib_input=args.cal_image_dir, calib_cache=args.cal_cache_file, calib_num_images=args.batch_size * args.batches, calib_batch_size=args.batch_size) logging.info("Export finished successfully.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='gen_trt_engine', description='Generate TRT engine of classification model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to a classification .etlt or .onnx model file.' ) parser.add_argument( '-k', '--key', type=str, required=False, help='Key to save or load a .etlt model.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( "--data_type", type=str, default="fp32", help="Data type for the TensorRT export.", choices=["fp32", "fp16", "int8"]) parser.add_argument( "--cal_image_dir", default="", type=str, help="Directory of images to run int8 calibration.") parser.add_argument( "--cal_data_file", default=None, type=str, help="Tensorfile to run calibration for int8 optimization.") parser.add_argument( '--cal_cache_file', default=None, type=str, help='Calibration cache file to write to.') parser.add_argument( "--engine_file", type=str, default=None, help="Path to the exported TRT engine.") parser.add_argument( "--max_batch_size", type=int, default=DEFAULT_MAX_BATCH_SIZE, help="Max batch size for TensorRT engine builder.") parser.add_argument( "--min_batch_size", type=int, default=DEFAULT_MIN_BATCH_SIZE, help="Min batch size for TensorRT engine builder.") parser.add_argument( "--opt_batch_size", type=int, default=DEFAULT_OPT_BATCH_SIZE, help="Opt batch size for TensorRT engine builder.") parser.add_argument( "--batch_size", type=int, default=1, help="Number of images per batch.") parser.add_argument( "--batches", type=int, default=10, help="Number of batches to calibrate over.") parser.add_argument( "--max_workspace_size", type=int, default=2, help="Max memory workspace size to allow in Gb for TensorRT engine builder (default: 2).") parser.add_argument( "-s", "--strict_type_constraints", action="store_true", default=False, help="A Boolean flag indicating whether to apply the \ TensorRT strict type constraints when building the TensorRT engine.") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbosity of the logger.") parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Classification TF1 scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import pandas as pd import json import numpy as np from tqdm.auto import tqdm from nvidia_tao_deploy.cv.classification_tf1.inferencer import ClassificationInferencer from nvidia_tao_deploy.cv.classification_tf1.dataloader import ClassificationLoader from nvidia_tao_deploy.cv.classification_tf1.proto.utils import load_proto from nvidia_tao_deploy.cv.common.decorators import monitor_status logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='classification_tf1', mode='inference') def main(args): """Classification TRT inference.""" # Load from proto-based spec file es = load_proto(args.experiment_spec) interpolation = es.model_config.resize_interpolation_method if es.model_config.resize_interpolation_method else 0 interpolation_map = { 0: "bilinear", 1: "bicubic" } interpolation_method = interpolation_map[interpolation] mode = es.train_config.preprocess_mode if es.train_config.preprocess_mode else "caffe" crop = "center" if es.eval_config.enable_center_crop else None image_mean = es.train_config.image_mean if image_mean: assert all(c in image_mean for c in ['r', 'g', 'b']), ( "'r', 'g', 'b' should all be present in image_mean " "for images with 3 channels." ) image_mean = [image_mean['b'], image_mean['g'], image_mean['r']] else: image_mean = [103.939, 116.779, 123.68] data_format = "channels_first" # TF1 is always channels first batch_size = es.eval_config.batch_size if args.batch_size is None else args.batch_size image_dirs = args.image_dir if args.classmap: # if classmap is provided, we explicitly set the mapping from the json file if not os.path.exists(args.classmap): raise FileNotFoundError(f"{args.classmap} does not exist!") with open(args.classmap, "r", encoding="utf-8") as f: mapping_dict = json.load(f) else: # If not, the order of the classes are alphanumeric as defined by Keras # Ref: https://github.com/keras-team/keras/blob/07e13740fd181fc3ddec7d9a594d8a08666645f6/keras/preprocessing/image.py#L507 mapping_dict = {} for idx, subdir in enumerate(sorted(os.listdir(image_dirs))): if os.path.isdir(os.path.join(image_dirs, subdir)): mapping_dict[subdir] = idx trt_infer = ClassificationInferencer(args.model_path, data_format=data_format, batch_size=batch_size) if trt_infer.etlt_type == "uff" and batch_size != 1: logger.warning("The etlt file was in deprecated UFF format which does not support dynmaic batch size. " "Overriding the batch size to 1") batch_size = 1 dl = ClassificationLoader( trt_infer._input_shape, [image_dirs], mapping_dict, is_inference=True, data_format=data_format, interpolation_method=interpolation_method, mode=mode, crop=crop, batch_size=batch_size, image_mean=image_mean, dtype=trt_infer.inputs[0].host.dtype) if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir os.makedirs(results_dir, exist_ok=True) result_csv_path = os.path.join(results_dir, 'result.csv') with open(result_csv_path, 'w', encoding="utf-8") as csv_f: for i, (imgs, _) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): image_paths = dl.image_paths[np.arange(batch_size) + batch_size * i] y_pred = trt_infer.infer(imgs) # Class output from softmax layer class_indices = np.argmax(y_pred, axis=1) # Map label index to label name class_labels = map(lambda i: list(mapping_dict.keys()) [list(mapping_dict.values()).index(i)], class_indices) conf = np.max(y_pred, axis=1) # Write predictions to file df = pd.DataFrame(zip(image_paths, class_labels, conf)) df.to_csv(csv_f, header=False, index=False) logging.info("Finished inference.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='infer', description='Inference with a Classification TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=True, default=None, help='Input directory of images') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the Classification TensorRT engine.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=None, help='Batch size.') parser.add_argument( '-c', '--classmap', type=str, required=False, default=None, help='File with class mapping.' ) parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import json import numpy as np from tqdm.auto import tqdm from sklearn.metrics import classification_report, confusion_matrix, top_k_accuracy_score from nvidia_tao_deploy.cv.classification_tf1.inferencer import ClassificationInferencer from nvidia_tao_deploy.cv.classification_tf1.dataloader import ClassificationLoader from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.classification_tf1.proto.utils import load_proto logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='classification_tf1', mode='evaluation') def main(args): """Classification TRT evaluation.""" # Load from proto-based spec file es = load_proto(args.experiment_spec) interpolation = es.model_config.resize_interpolation_method if es.model_config.resize_interpolation_method else 0 interpolation_map = { 0: "bilinear", 1: "bicubic" } interpolation_method = interpolation_map[interpolation] mode = es.train_config.preprocess_mode if es.train_config.preprocess_mode else "caffe" crop = "center" if es.eval_config.enable_center_crop else None image_mean = es.train_config.image_mean if image_mean: assert all(c in image_mean for c in ['r', 'g', 'b']), ( "'r', 'g', 'b' should all be present in image_mean " "for images with 3 channels." ) image_mean = [image_mean['b'], image_mean['g'], image_mean['r']] else: image_mean = [103.939, 116.779, 123.68] top_k = es.eval_config.top_k if es.eval_config.top_k else 5 data_format = "channels_first" # TF1 is always channels first batch_size = es.eval_config.batch_size if args.batch_size is None else args.batch_size # Override eval_dataset_path from spec file if image directory is provided image_dirs = args.image_dir if args.image_dir else es.eval_config.eval_dataset_path if args.classmap: # if classmap is provided, we explicitly set the mapping from the json file if not os.path.exists(args.classmap): raise FileNotFoundError(f"{args.classmap} does not exist!") with open(args.classmap, "r", encoding="utf-8") as f: mapping_dict = json.load(f) else: # If not, the order of the classes are alphanumeric as defined by Keras # Ref: https://github.com/keras-team/keras/blob/07e13740fd181fc3ddec7d9a594d8a08666645f6/keras/preprocessing/image.py#L507 mapping_dict = {} for idx, subdir in enumerate(sorted(os.listdir(image_dirs))): if os.path.isdir(os.path.join(image_dirs, subdir)): mapping_dict[subdir] = idx target_names = [c[0] for c in sorted(mapping_dict.items(), key=lambda x:x[1])] trt_infer = ClassificationInferencer(args.model_path, data_format=data_format, batch_size=batch_size) if trt_infer.etlt_type == "uff" and batch_size != 1: logger.warning("The etlt file was in deprecated UFF format which does not support dynmaic batch size. " "Overriding the batch size to 1") batch_size = 1 dl = ClassificationLoader( trt_infer._input_shape, [image_dirs], mapping_dict, data_format=data_format, interpolation_method=interpolation_method, mode=mode, crop=crop, batch_size=batch_size, image_mean=image_mean, dtype=trt_infer.inputs[0].host.dtype) gt_labels = [] pred_labels = [] for imgs, labels in tqdm(dl, total=len(dl), desc="Producing predictions"): gt_labels.extend(labels) y_pred = trt_infer.infer(imgs) pred_labels.extend(y_pred) # Check output classes output_num_classes = pred_labels[0].shape[0] if len(mapping_dict) != output_num_classes: raise ValueError(f"Provided class map has {len(mapping_dict)} classes while the engine expects {output_num_classes} classes.") gt_labels = np.array(gt_labels) pred_labels = np.array(pred_labels) # Metric calculation if pred_labels.shape[-1] == 2: # If there are only two classes, sklearn perceive the problem as binary classification # and requires predictions to be in (num_samples, ) rather than (num_samples, num_classes) scores = top_k_accuracy_score(gt_labels, pred_labels[:, 1], k=top_k) else: scores = top_k_accuracy_score(gt_labels, pred_labels, k=top_k) logging.info("Top %s scores: %s", top_k, scores) logging.info("Confusion Matrix") y_predictions = np.argmax(pred_labels, axis=1) print(confusion_matrix(gt_labels, y_predictions)) logging.info("Classification Report") target_names = [c[0] for c in sorted(mapping_dict.items(), key=lambda x:x[1])] print(classification_report(gt_labels, y_predictions, target_names=target_names)) # Store evaluation results into JSON eval_results = {"top_k_accuracy": scores} if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='eval', description='Evaluate with a Classification TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the Classification TensorRT engine.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-c', '--classmap', type=str, required=False, default=None, help='File with class mapping.' ) parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto import launch_job import nvidia_tao_deploy.cv.classification_tf1.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_deploy.cv.classification_tf1.scripts, "classification_tf1", sys.argv[1:]) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/entrypoint/classification_tf1.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for classification."""
tao_deploy-main
nvidia_tao_deploy/cv/classification_tf1/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """EfficientDet TensorRT inferencer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import pycuda.autoinit # noqa pylint: disable=unused-import import pycuda.driver as cuda import tensorrt as trt from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer class EfficientDetInferencer(TRTInferencer): """Implements inference for the EfficientDet TensorRT engine.""" def __init__(self, engine_path, max_detections_per_image=100): """Init. Args: engine_path (str): The path to the serialized engine to load from disk. max_detections_per_image (int): The maximum number of detections to visualize """ # Load TRT engine super().__init__(engine_path) self.max_detections_per_image = max_detections_per_image # Setup I/O bindings self.inputs = [] self.outputs = [] self.allocations = [] for i in range(self.engine.num_bindings): is_input = False if self.engine.binding_is_input(i): is_input = True name = self.engine.get_binding_name(i) dtype = self.engine.get_binding_dtype(i) shape = self.engine.get_binding_shape(i) if is_input: self.batch_size = shape[0] size = np.dtype(trt.nptype(dtype)).itemsize for s in shape: size *= s allocation = cuda.mem_alloc(size) binding = { 'index': i, 'name': name, 'dtype': np.dtype(trt.nptype(dtype)), 'shape': list(shape), 'allocation': allocation, } self.allocations.append(allocation) if self.engine.binding_is_input(i): self.inputs.append(binding) self._input_shape = shape else: self.outputs.append(binding) assert self.batch_size > 0 assert len(self.inputs) > 0 assert len(self.outputs) > 0 assert len(self.allocations) > 0 def input_spec(self): """Get the specs for the input tensor of the network. Useful to prepare memory allocations. Args: None Returns: the shape of the input tensor. (numpy) datatype of the input tensor. """ return self.inputs[0]['shape'], self.inputs[0]['dtype'] def output_spec(self): """Get the specs for the output tensors of the network. Useful to prepare memory allocations. Args: None Returns: specs: A list with two items per element, the shape and (numpy) datatype of each output tensor. """ specs = [] for o in self.outputs: specs.append((o['shape'], o['dtype'])) return specs def infer(self, imgs, scales=None): """Execute inference on a batch of images. The images should already be batched and preprocessed, as prepared by the ImageBatcher class. Memory copying to and from the GPU device will be performed here. Args: imgs: A numpy array holding the image batch. scales: The image resize scales for each image in this batch. Default: No scale postprocessing applied. Returns: detections: A nested list for each image in the batch and each detection in the list. """ # Prepare the output data outputs = [] for shape, dtype in self.output_spec(): outputs.append(np.zeros(shape, dtype)) # Process I/O and execute the network cuda.memcpy_htod(self.inputs[0]['allocation'], np.ascontiguousarray(imgs)) self.context.execute_v2(self.allocations) for o in range(len(outputs)): cuda.memcpy_dtoh(outputs[o], self.outputs[o]['allocation']) nums = self.max_detections_per_image boxes = outputs[1][:, :nums, :] scores = outputs[2][:, :nums] classes = outputs[3][:, :nums] # Reorganize from y1, x1, y2, x2 to x1, y1, x2, y2 boxes[:, :, [0, 1]] = boxes[:, :, [1, 0]] boxes[:, :, [2, 3]] = boxes[:, :, [3, 2]] # convert x2, y2 to w, h boxes[:, :, 2] -= boxes[:, :, 0] boxes[:, :, 3] -= boxes[:, :, 1] # Scale the box for i in range(len(boxes)): boxes[i] /= scales[i] detections = {} detections['num_detections'] = np.array([nums] * self.batch_size).astype(np.int32) detections['detection_classes'] = classes + 1 detections['detection_scores'] = scores detections['detection_boxes'] = boxes return detections def __del__(self): """Simple function to destroy tensorrt handlers.""" if self.context: del self.context if self.engine: del self.engine if self.allocations: self.allocations.clear()
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """EfficientDet TensorRT engine builder.""" import logging import os import sys import onnx import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class EfficientDetEngineBuilder(EngineBuilder): """Parses an ONNX graph and builds a TensorRT engine from it.""" def get_input_dims(self, model_path): """Get input dimension of UFF model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) def create_network(self, model_path, file_format="onnx"): """Parse the ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the ONNX graph to load. """ if file_format == "onnx": self.get_input_dims(model_path) network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 self.batch_size = input.shape[0] logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) # TF1 EfficientDet only support static batch size assert self.batch_size > 0 else: logger.info("Parsing UFF model") raise NotImplementedError("UFF for EfficientDet is not supported")
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy EfficientDet."""
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """EfficientDet loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from PIL import Image from nvidia_tao_deploy.dataloader.coco import COCOLoader class EfficientDetCOCOLoader(COCOLoader): """EfficientDet DataLoader.""" def preprocess_image(self, image_path): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. This Image Batcher implements one algorithm for now: * EfficientDet: Resizes and pads the image to fit the input size. Args: image_path(str): The path to the image on disk to load. Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch scale (list): the resize scale used, if any. """ def resize_pad(image, pad_color=(0, 0, 0)): """Resize and Pad. A subroutine to implement padding and resizing. This will resize the image to fit fully within the input size, and pads the remaining bottom-right portions with the value provided. Args: image (PIL.Image): The PIL image object pad_color (list): The RGB values to use for the padded area. Default: Black/Zeros. Returns: pad (PIL.Image): The PIL image object already padded and cropped, scale (list): the resize scale used. """ width, height = image.size width_scale = width / self.width height_scale = height / self.height scale = 1.0 / max(width_scale, height_scale) image = image.resize( (round(width * scale), round(height * scale)), resample=Image.BILINEAR) pad = Image.new("RGB", (self.width, self.height)) pad.paste(pad_color, [0, 0, self.width, self.height]) pad.paste(image) return pad, scale scale = None image = Image.open(image_path) image = image.convert(mode='RGB') # For EfficientNet V2: Resize & Pad with ImageNet mean values # and keep as [0,255] Normalization image, scale = resize_pad(image, (124, 116, 104)) image = np.asarray(image, dtype=self.dtype) # [0-1] Normalization, Mean subtraction and Std Dev scaling are # part of the EfficientDet graph, so no need to do it during preprocessing here if self.data_format == "channels_first": image = np.transpose(image, (2, 0, 1)) return image, scale
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/dataloader.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/efficientdet_tf1/proto/training_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/efficientdet_tf1/proto/training_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nAnvidia_tao_deploy/cv/efficientdet_tf1/proto/training_config.proto\"\xf9\x04\n\x0eTrainingConfig\x12\x18\n\x10train_batch_size\x18\x01 \x01(\r\x12\x1b\n\x13iterations_per_loop\x18\x02 \x01(\r\x12\x0f\n\x07use_xla\x18\x03 \x01(\x08\x12\x17\n\x0f\x64isable_logging\x18\x04 \x01(\x08\x12\x12\n\ncheckpoint\x18\x05 \x01(\t\x12\x15\n\rstop_at_epoch\x18\x06 \x01(\r\x12\x0e\n\x06resume\x18\x07 \x01(\x08\x12\x19\n\x11\x63heckpoint_period\x18\x08 \x01(\r\x12\x1b\n\x13keep_checkpoint_max\x18\t \x01(\r\x12\x1e\n\x16num_examples_per_epoch\x18\n \x01(\r\x12\x12\n\nnum_epochs\x18\x0b \x01(\r\x12!\n\x19skip_checkpoint_variables\x18\x0c \x01(\t\x12\x1a\n\x12profile_skip_steps\x18\r \x01(\r\x12\x16\n\x0etf_random_seed\x18\x0e \x01(\r\x12\x1c\n\x14moving_average_decay\x18\x0f \x01(\x02\x12\x17\n\x0flr_warmup_epoch\x18\x10 \x01(\x02\x12\x16\n\x0elr_warmup_init\x18\x11 \x01(\x02\x12\x15\n\rlearning_rate\x18\x12 \x01(\x02\x12\x0b\n\x03\x61mp\x18\x13 \x01(\x08\x12\x17\n\x0fl2_weight_decay\x18\x14 \x01(\x02\x12\x17\n\x0fl1_weight_decay\x18\x15 \x01(\x02\x12\x19\n\x11pruned_model_path\x18\x16 \x01(\t\x12\x1b\n\x13\x63lip_gradients_norm\x18\x17 \x01(\x02\x12\x10\n\x08momentum\x18\x18 \x01(\x02\x12\x19\n\x11logging_frequency\x18\x19 \x01(\rb\x06proto3') ) _TRAININGCONFIG = _descriptor.Descriptor( name='TrainingConfig', full_name='TrainingConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='train_batch_size', full_name='TrainingConfig.train_batch_size', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='iterations_per_loop', full_name='TrainingConfig.iterations_per_loop', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_xla', full_name='TrainingConfig.use_xla', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='disable_logging', full_name='TrainingConfig.disable_logging', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='checkpoint', full_name='TrainingConfig.checkpoint', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='stop_at_epoch', full_name='TrainingConfig.stop_at_epoch', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='resume', full_name='TrainingConfig.resume', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='checkpoint_period', full_name='TrainingConfig.checkpoint_period', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='keep_checkpoint_max', full_name='TrainingConfig.keep_checkpoint_max', index=8, number=9, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_examples_per_epoch', full_name='TrainingConfig.num_examples_per_epoch', index=9, number=10, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_epochs', full_name='TrainingConfig.num_epochs', index=10, number=11, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='skip_checkpoint_variables', full_name='TrainingConfig.skip_checkpoint_variables', index=11, number=12, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='profile_skip_steps', full_name='TrainingConfig.profile_skip_steps', index=12, number=13, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tf_random_seed', full_name='TrainingConfig.tf_random_seed', index=13, number=14, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='moving_average_decay', full_name='TrainingConfig.moving_average_decay', index=14, number=15, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lr_warmup_epoch', full_name='TrainingConfig.lr_warmup_epoch', index=15, number=16, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lr_warmup_init', full_name='TrainingConfig.lr_warmup_init', index=16, number=17, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='learning_rate', full_name='TrainingConfig.learning_rate', index=17, number=18, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='amp', full_name='TrainingConfig.amp', index=18, number=19, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='l2_weight_decay', full_name='TrainingConfig.l2_weight_decay', index=19, number=20, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='l1_weight_decay', full_name='TrainingConfig.l1_weight_decay', index=20, number=21, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pruned_model_path', full_name='TrainingConfig.pruned_model_path', index=21, number=22, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clip_gradients_norm', full_name='TrainingConfig.clip_gradients_norm', index=22, number=23, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='momentum', full_name='TrainingConfig.momentum', index=23, number=24, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='logging_frequency', full_name='TrainingConfig.logging_frequency', index=24, number=25, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=70, serialized_end=703, ) DESCRIPTOR.message_types_by_name['TrainingConfig'] = _TRAININGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) TrainingConfig = _reflection.GeneratedProtocolMessageType('TrainingConfig', (_message.Message,), dict( DESCRIPTOR = _TRAININGCONFIG, __module__ = 'nvidia_tao_deploy.cv.efficientdet_tf1.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:TrainingConfig) )) _sym_db.RegisterMessage(TrainingConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/proto/training_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy EfficientDet TF1 Proto.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/efficientdet_tf1/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.efficientdet_tf1.proto import aug_config_pb2 as nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_aug__config__pb2 from nvidia_tao_deploy.cv.efficientdet_tf1.proto import dataset_config_pb2 as nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_dataset__config__pb2 from nvidia_tao_deploy.cv.efficientdet_tf1.proto import eval_config_pb2 as nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_eval__config__pb2 from nvidia_tao_deploy.cv.efficientdet_tf1.proto import model_config_pb2 as nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_model__config__pb2 from nvidia_tao_deploy.cv.efficientdet_tf1.proto import training_config_pb2 as nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_training__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/efficientdet_tf1/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n<nvidia_tao_deploy/cv/efficientdet_tf1/proto/experiment.proto\x1a<nvidia_tao_deploy/cv/efficientdet_tf1/proto/aug_config.proto\x1a@nvidia_tao_deploy/cv/efficientdet_tf1/proto/dataset_config.proto\x1a=nvidia_tao_deploy/cv/efficientdet_tf1/proto/eval_config.proto\x1a>nvidia_tao_deploy/cv/efficientdet_tf1/proto/model_config.proto\x1a\x41nvidia_tao_deploy/cv/efficientdet_tf1/proto/training_config.proto\"\xcd\x01\n\nExperiment\x12&\n\x0e\x64\x61taset_config\x18\x01 \x01(\x0b\x32\x0e.DatasetConfig\x12(\n\x0ftraining_config\x18\x02 \x01(\x0b\x32\x0f.TrainingConfig\x12 \n\x0b\x65val_config\x18\x03 \x01(\x0b\x32\x0b.EvalConfig\x12\'\n\x13\x61ugmentation_config\x18\x04 \x01(\x0b\x32\n.AugConfig\x12\"\n\x0cmodel_config\x18\x05 \x01(\x0b\x32\x0c.ModelConfigb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_aug__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_dataset__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_eval__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_model__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_training__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dataset_config', full_name='Experiment.dataset_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_config', full_name='Experiment.training_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_config', full_name='Experiment.eval_config', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='augmentation_config', full_name='Experiment.augmentation_config', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_config', full_name='Experiment.model_config', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=387, serialized_end=592, ) _EXPERIMENT.fields_by_name['dataset_config'].message_type = nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_dataset__config__pb2._DATASETCONFIG _EXPERIMENT.fields_by_name['training_config'].message_type = nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_training__config__pb2._TRAININGCONFIG _EXPERIMENT.fields_by_name['eval_config'].message_type = nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_eval__config__pb2._EVALCONFIG _EXPERIMENT.fields_by_name['augmentation_config'].message_type = nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_aug__config__pb2._AUGCONFIG _EXPERIMENT.fields_by_name['model_config'].message_type = nvidia__tao__deploy_dot_cv_dot_efficientdet__tf1_dot_proto_dot_model__config__pb2._MODELCONFIG DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_deploy.cv.efficientdet_tf1.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/proto/experiment_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Config Base Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_deploy.cv.efficientdet_tf1.proto.experiment_pb2 import Experiment def load_proto(config): """Load the experiment proto.""" proto = Experiment() def _load_from_file(filename, pb2): if not os.path.exists(filename): raise IOError(f"Specfile not found at: {filename}") with open(filename, "r", encoding="utf-8") as f: merge_text_proto(f.read(), pb2) _load_from_file(config, proto) return proto
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/proto/utils.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/efficientdet_tf1/proto/eval_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/efficientdet_tf1/proto/eval_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n=nvidia_tao_deploy/cv/efficientdet_tf1/proto/eval_config.proto\"\xdf\x01\n\nEvalConfig\x12\x19\n\x11min_eval_interval\x18\x01 \x01(\r\x12\x14\n\x0c\x65val_timeout\x18\x02 \x01(\r\x12\x17\n\x0f\x65val_batch_size\x18\x03 \x01(\r\x12\x18\n\x10\x65val_epoch_cycle\x18\x04 \x01(\r\x12\x1b\n\x13\x65val_after_training\x18\x05 \x01(\x08\x12\x14\n\x0c\x65val_samples\x18\x06 \x01(\r\x12\x18\n\x10min_score_thresh\x18\x07 \x01(\x02\x12 \n\x18max_detections_per_image\x18\x08 \x01(\rb\x06proto3') ) _EVALCONFIG = _descriptor.Descriptor( name='EvalConfig', full_name='EvalConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='min_eval_interval', full_name='EvalConfig.min_eval_interval', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_timeout', full_name='EvalConfig.eval_timeout', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_batch_size', full_name='EvalConfig.eval_batch_size', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_epoch_cycle', full_name='EvalConfig.eval_epoch_cycle', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_after_training', full_name='EvalConfig.eval_after_training', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_samples', full_name='EvalConfig.eval_samples', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_score_thresh', full_name='EvalConfig.min_score_thresh', index=6, number=7, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_detections_per_image', full_name='EvalConfig.max_detections_per_image', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=66, serialized_end=289, ) DESCRIPTOR.message_types_by_name['EvalConfig'] = _EVALCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) EvalConfig = _reflection.GeneratedProtocolMessageType('EvalConfig', (_message.Message,), dict( DESCRIPTOR = _EVALCONFIG, __module__ = 'nvidia_tao_deploy.cv.efficientdet_tf1.proto.eval_config_pb2' # @@protoc_insertion_point(class_scope:EvalConfig) )) _sym_db.RegisterMessage(EvalConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/proto/eval_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/efficientdet_tf1/proto/model_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/efficientdet_tf1/proto/model_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n>nvidia_tao_deploy/cv/efficientdet_tf1/proto/model_config.proto\"\xb2\x01\n\x0bModelConfig\x12\x12\n\nmodel_name\x18\x01 \x01(\t\x12\x11\n\tfreeze_bn\x18\x02 \x01(\x08\x12\x15\n\rfreeze_blocks\x18\x03 \x01(\t\x12\x15\n\raspect_ratios\x18\x04 \x01(\t\x12\x14\n\x0c\x61nchor_scale\x18\x05 \x01(\x02\x12\x11\n\tmin_level\x18\x06 \x01(\r\x12\x11\n\tmax_level\x18\x07 \x01(\r\x12\x12\n\nnum_scales\x18\x08 \x01(\rb\x06proto3') ) _MODELCONFIG = _descriptor.Descriptor( name='ModelConfig', full_name='ModelConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='model_name', full_name='ModelConfig.model_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_bn', full_name='ModelConfig.freeze_bn', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_blocks', full_name='ModelConfig.freeze_blocks', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='aspect_ratios', full_name='ModelConfig.aspect_ratios', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='anchor_scale', full_name='ModelConfig.anchor_scale', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_level', full_name='ModelConfig.min_level', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_level', full_name='ModelConfig.max_level', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_scales', full_name='ModelConfig.num_scales', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=67, serialized_end=245, ) DESCRIPTOR.message_types_by_name['ModelConfig'] = _MODELCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) ModelConfig = _reflection.GeneratedProtocolMessageType('ModelConfig', (_message.Message,), dict( DESCRIPTOR = _MODELCONFIG, __module__ = 'nvidia_tao_deploy.cv.efficientdet_tf1.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig) )) _sym_db.RegisterMessage(ModelConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/proto/model_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/efficientdet_tf1/proto/aug_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/efficientdet_tf1/proto/aug_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n<nvidia_tao_deploy/cv/efficientdet_tf1/proto/aug_config.proto\"]\n\tAugConfig\x12\x12\n\nrand_hflip\x18\x01 \x01(\x08\x12\x1d\n\x15random_crop_min_scale\x18\x02 \x01(\x02\x12\x1d\n\x15random_crop_max_scale\x18\x03 \x01(\x02\x62\x06proto3') ) _AUGCONFIG = _descriptor.Descriptor( name='AugConfig', full_name='AugConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='rand_hflip', full_name='AugConfig.rand_hflip', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_crop_min_scale', full_name='AugConfig.random_crop_min_scale', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_crop_max_scale', full_name='AugConfig.random_crop_max_scale', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=64, serialized_end=157, ) DESCRIPTOR.message_types_by_name['AugConfig'] = _AUGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) AugConfig = _reflection.GeneratedProtocolMessageType('AugConfig', (_message.Message,), dict( DESCRIPTOR = _AUGCONFIG, __module__ = 'nvidia_tao_deploy.cv.efficientdet_tf1.proto.aug_config_pb2' # @@protoc_insertion_point(class_scope:AugConfig) )) _sym_db.RegisterMessage(AugConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/proto/aug_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/efficientdet_tf1/proto/dataset_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/efficientdet_tf1/proto/dataset_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n@nvidia_tao_deploy/cv/efficientdet_tf1/proto/dataset_config.proto\"\x87\x02\n\rDatasetConfig\x12\x1d\n\x15training_file_pattern\x18\x01 \x01(\t\x12\x1f\n\x17validation_file_pattern\x18\x02 \x01(\t\x12\x1c\n\x14validation_json_file\x18\x03 \x01(\t\x12\x13\n\x0btestdev_dir\x18\x04 \x01(\t\x12\x13\n\x0bnum_classes\x18\x05 \x01(\r\x12\x12\n\nimage_size\x18\x06 \x01(\t\x12\x15\n\ruse_fake_data\x18\x07 \x01(\x08\x12\x1f\n\x17max_instances_per_image\x18\x08 \x01(\r\x12\"\n\x1askip_crowd_during_training\x18\t \x01(\x08\x62\x06proto3') ) _DATASETCONFIG = _descriptor.Descriptor( name='DatasetConfig', full_name='DatasetConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='training_file_pattern', full_name='DatasetConfig.training_file_pattern', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_file_pattern', full_name='DatasetConfig.validation_file_pattern', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_json_file', full_name='DatasetConfig.validation_json_file', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='testdev_dir', full_name='DatasetConfig.testdev_dir', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_classes', full_name='DatasetConfig.num_classes', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_size', full_name='DatasetConfig.image_size', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_fake_data', full_name='DatasetConfig.use_fake_data', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_instances_per_image', full_name='DatasetConfig.max_instances_per_image', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='skip_crowd_during_training', full_name='DatasetConfig.skip_crowd_during_training', index=8, number=9, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=69, serialized_end=332, ) DESCRIPTOR.message_types_by_name['DatasetConfig'] = _DATASETCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) DatasetConfig = _reflection.GeneratedProtocolMessageType('DatasetConfig', (_message.Message,), dict( DESCRIPTOR = _DATASETCONFIG, __module__ = 'nvidia_tao_deploy.cv.efficientdet_tf1.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:DatasetConfig) )) _sym_db.RegisterMessage(DatasetConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/proto/dataset_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """EfficientDet convert etlt/onnx model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import tempfile from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.efficientdet_tf1.engine_builder import EfficientDetEngineBuilder from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) DEFAULT_MAX_BATCH_SIZE = 1 DEFAULT_MIN_BATCH_SIZE = 1 DEFAULT_OPT_BATCH_SIZE = 1 @monitor_status(name='efficientdet_tf1', mode='gen_trt_engine') def main(args): """Convert encrypted uff or onnx model to TRT engine.""" # decrypt etlt tmp_onnx_file, file_format = decode_model(args.model_path, args.key) if args.engine_file is not None or args.data_type == 'int8': if args.engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = args.engine_file builder = EfficientDetEngineBuilder(verbose=args.verbose, workspace=args.max_workspace_size, min_batch_size=args.min_batch_size, opt_batch_size=args.opt_batch_size, max_batch_size=args.max_batch_size, strict_type_constraints=args.strict_type_constraints) builder.create_network(tmp_onnx_file, file_format=file_format) builder.create_engine( output_engine_path, args.data_type, calib_input=args.cal_image_dir, calib_cache=args.cal_cache_file, calib_num_images=args.batch_size * args.batches, calib_batch_size=args.batch_size) logging.info("Export finished successfully.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='gen_trt_engine', description='Generate TRT engine of EfficientDet model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to an EfficientDet .etlt or .onnx model file.' ) parser.add_argument( '-k', '--key', type=str, required=False, help='Key to save or load a .etlt model.' ) parser.add_argument( "--data_type", type=str, default="fp32", help="Data type for the TensorRT export.", choices=["fp32", "fp16", "int8"]) parser.add_argument( "--cal_image_dir", default="", type=str, help="Directory of images to run int8 calibration.") parser.add_argument( '--cal_cache_file', default=None, type=str, help='Calibration cache file to write to.') parser.add_argument( "--engine_file", type=str, default=None, help="Path to the exported TRT engine.") parser.add_argument( "--max_batch_size", type=int, default=DEFAULT_MAX_BATCH_SIZE, help="Max batch size for TensorRT engine builder.") parser.add_argument( "--min_batch_size", type=int, default=DEFAULT_MIN_BATCH_SIZE, help="Min batch size for TensorRT engine builder.") parser.add_argument( "--opt_batch_size", type=int, default=DEFAULT_OPT_BATCH_SIZE, help="Opt batch size for TensorRT engine builder.") parser.add_argument( "--batch_size", type=int, default=1, help="Number of images per batch.") parser.add_argument( "--batches", type=int, default=10, help="Number of batches to calibrate over.") parser.add_argument( "--max_workspace_size", type=int, default=2, help="Max memory workspace size to allow in Gb for TensorRT engine builder (default: 2).") parser.add_argument( "-s", "--strict_type_constraints", action="store_true", default=False, help="A Boolean flag indicating whether to apply the \ TensorRT strict type constraints when building the TensorRT engine.") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbosity of the logger.") parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser() return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy TF1 EfficientDet scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os from PIL import Image import logging import numpy as np from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.efficientdet_tf1.inferencer import EfficientDetInferencer from nvidia_tao_deploy.cv.efficientdet_tf1.proto.utils import load_proto from nvidia_tao_deploy.utils.image_batcher import ImageBatcher logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) def get_label_dict(label_txt): """Create label dict from txt file.""" with open(label_txt, 'r', encoding="utf-8") as f: labels = f.readlines() result = {i + 1: label.strip() for i, label in enumerate(labels)} result[-1] = "background" return result @monitor_status(name='efficientdet_tf1', mode='inference') def main(args): """EfficientDet TRT inference.""" # Load from proto-based spec file es = load_proto(args.experiment_spec) max_detections_per_image = es.eval_config.max_detections_per_image if es.eval_config.max_detections_per_image else 100 trt_infer = EfficientDetInferencer(args.model_path, max_detections_per_image=max_detections_per_image) # Inference may not have labels. Hence, use image batcher batcher = ImageBatcher(args.image_dir, tuple(trt_infer._input_shape), trt_infer.inputs[0]['dtype'], preprocessor="EfficientDet") # Create results directories if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir os.makedirs(results_dir, exist_ok=True) output_annotate_root = os.path.join(results_dir, "images_annotated") output_label_root = os.path.join(results_dir, "labels") os.makedirs(output_annotate_root, exist_ok=True) os.makedirs(output_label_root, exist_ok=True) if args.class_map and not os.path.exists(args.class_map): raise FileNotFoundError(f"Class map at {args.class_map} does not exist.") if args.class_map: inv_classes = get_label_dict(args.class_map) else: inv_classes = None logger.debug("label_map was not provided. Hence, class predictions will not be displayed on the visualization.") for batch, img_paths, scales in tqdm(batcher.get_batch(), total=batcher.num_batches, desc="Producing predictions"): detections = trt_infer.infer(batch, scales) y_pred_valid = np.concatenate([detections['detection_classes'][..., None], detections['detection_scores'][..., None], detections['detection_boxes']], axis=-1) for img_path, pred in zip(img_paths, y_pred_valid): # Load Image img = Image.open(img_path) orig_width, orig_height = img.size # Convert xywh to xyxy pred[:, 4:] += pred[:, 2:4] pred[..., 2::4] = np.clip(pred[..., 2::4], 0.0, orig_width) pred[..., 3::5] = np.clip(pred[..., 3::5], 0.0, orig_height) # Scale back the predictions # pred[:, 2:6] *= sc bbox_img, label_strings = trt_infer.draw_bbox(img, pred, inv_classes, args.threshold) img_filename = os.path.basename(img_path) bbox_img.save(os.path.join(output_annotate_root, img_filename)) # Store labels filename, _ = os.path.splitext(img_filename) label_file_name = os.path.join(output_label_root, filename + ".txt") with open(label_file_name, "w", encoding="utf-8") as f: for l_s in label_strings: f.write(l_s) logging.info("Finished inference.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='infer', description='Inference with an EfficientDet TRT model.') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-i', '--image_dir', type=str, required=True, default=None, help='Input directory of images') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the EfficientDet TensorRT engine.' ) parser.add_argument( '-c', '--class_map', type=str, default=None, required=False, help='The path to the class label file.' ) parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) parser.add_argument( '-t', '--threshold', type=float, default=0.5, help='Confidence threshold for inference.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import operator import copy import logging import json import six import numpy as np from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.efficientdet_tf1.dataloader import EfficientDetCOCOLoader from nvidia_tao_deploy.cv.efficientdet_tf1.inferencer import EfficientDetInferencer from nvidia_tao_deploy.cv.efficientdet_tf1.proto.utils import load_proto from nvidia_tao_deploy.metrics.coco_metric import EvaluationMetric logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='efficientdet_tf1', mode='evaluation') def main(args): """EfficientDet TRT evaluation.""" # Load from proto-based spec file es = load_proto(args.experiment_spec) eval_samples = es.eval_config.eval_samples if es.eval_config.eval_samples else 0 eval_metric = EvaluationMetric(es.dataset_config.validation_json_file, include_mask=False) trt_infer = EfficientDetInferencer(args.model_path) dl = EfficientDetCOCOLoader( es.dataset_config.validation_json_file, shape=trt_infer.inputs[0]['shape'], dtype=trt_infer.inputs[0]['dtype'], batch_size=1, # TF1 EfficentDet only supports bs=1 image_dir=args.image_dir, eval_samples=eval_samples) predictions = { 'detection_scores': [], 'detection_boxes': [], 'detection_classes': [], 'source_id': [], 'image_info': [], 'num_detections': [] } def evaluation_preds(preds): # Essential to avoid modifying the source dict _preds = copy.deepcopy(preds) for k, _ in six.iteritems(_preds): _preds[k] = np.concatenate(_preds[k], axis=0) eval_results = eval_metric.predict_metric_fn(_preds) return eval_results for imgs, scale, source_id, labels in tqdm(dl, total=len(dl), desc="Producing predictions"): image = np.array(imgs) image_info = [] for i, label in enumerate(labels): image_info.append([label[-1][0], label[-1][1], scale[i], label[-1][2], label[-1][3]]) image_info = np.array(image_info) detections = trt_infer.infer(image, scale) predictions['detection_classes'].append(detections['detection_classes']) predictions['detection_scores'].append(detections['detection_scores']) predictions['detection_boxes'].append(detections['detection_boxes']) predictions['num_detections'].append(detections['num_detections']) predictions['image_info'].append(image_info) predictions['source_id'].append(source_id) eval_results = evaluation_preds(preds=predictions) for key, value in sorted(eval_results.items(), key=operator.itemgetter(0)): eval_results[key] = float(value) logging.info("%s: %.9f", key, value) if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='eval', description='Evaluate with an EfficientDet TRT model.') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-i', '--image_dir', type=str, required=True, default=None, help='Input directory of images') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the EfficientDet TensorRT engine.' ) parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto import launch_job import nvidia_tao_deploy.cv.efficientdet_tf1.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_deploy.cv.efficientdet_tf1.scripts, "efficientdet_tf1", sys.argv[1:]) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/entrypoint/efficientdet_tf1.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for efficientdet."""
tao_deploy-main
nvidia_tao_deploy/cv/efficientdet_tf1/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy DINO."""
tao_deploy-main
nvidia_tao_deploy/cv/dino/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy DINO Hydra."""
tao_deploy-main
nvidia_tao_deploy/cv/dino/hydra_config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file.""" from typing import Optional, List, Dict from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class DINODatasetConvertConfig: """Dataset Convert config.""" input_source: Optional[str] = None data_root: Optional[str] = None results_dir: str = MISSING image_dir_name: Optional[str] = None label_dir_name: Optional[str] = None val_split: int = 0 num_shards: int = 20 num_partitions: int = 1 partition_mode: Optional[str] = None image_extension: str = ".jpg" mapping_path: Optional[str] = None @dataclass class DINOAugmentationConfig: """Augmentation config.""" scales: List[int] = field(default_factory=lambda: [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800], metadata={"description": "Random Scales for Augmentation"}) input_mean: List[float] = field(default_factory=lambda: [0.485, 0.456, 0.406], metadata={"description": "Pixel mean value"}) input_std: List[float] = field(default_factory=lambda: [0.229, 0.224, 0.225], metadata={"description": "Pixel Standard deviation value"}) train_random_resize: List[int] = field(default_factory=lambda: [400, 500, 600], metadata={"description": "Training Randome Resize"}) horizontal_flip_prob: float = 0.5 train_random_crop_min: int = 384 train_random_crop_max: int = 600 random_resize_max_size: int = 1333 test_random_resize: int = 800 fixed_padding: bool = True @dataclass class DINODatasetConfig: """Dataset config.""" train_sampler: str = "default_sampler" train_data_sources: Optional[List[Dict[str, str]]] = None val_data_sources: Optional[List[Dict[str, str]]] = None test_data_sources: Optional[Dict[str, str]] = None infer_data_sources: Optional[Dict[str, str]] = None batch_size: int = 4 workers: int = 8 pin_memory: bool = True dataset_type: str = "serialized" num_classes: int = 91 eval_class_ids: Optional[List[int]] = None augmentation: DINOAugmentationConfig = DINOAugmentationConfig() @dataclass class DINOModelConfig: """DINO model config.""" pretrained_backbone_path: Optional[str] = None backbone: str = "resnet_50" num_queries: int = 300 num_feature_levels: int = 4 cls_loss_coef: float = 2.0 bbox_loss_coef: float = 5.0 giou_loss_coef: float = 2.0 # DINO training specific interm_loss_coef: float = 1.0 num_select: int = 300 no_interm_box_loss: bool = False # DINO model arch specific pre_norm: bool = False # Add layer norm in encoder or not two_stage_type: str = 'standard' decoder_sa_type: str = 'sa' embed_init_tgt: bool = True fix_refpoints_hw: int = -1 pe_temperatureH: int = 20 pe_temperatureW: int = 20 return_interm_indices: List[int] = field(default_factory=lambda: [1, 2, 3, 4], metadata={"description": "Indices to return from backbone"}) # for DN use_dn: bool = True dn_number: int = 100 dn_box_noise_scale: float = 1.0 dn_label_noise_ratio: float = 0.5 focal_alpha: float = 0.25 clip_max_norm: float = 0.1 dropout_ratio: float = 0.0 hidden_dim: int = 256 nheads: int = 8 enc_layers: int = 6 dec_layers: int = 6 dim_feedforward: int = 2048 dec_n_points: int = 4 enc_n_points: int = 4 aux_loss: bool = True dilation: bool = False train_backbone: bool = True loss_types: List[str] = field(default_factory=lambda: ['labels', 'boxes'], metadata={"description": "Losses to be used during training"}) backbone_names: List[str] = field(default_factory=lambda: ["backbone.0"], metadata={"description": "Backbone name"}) linear_proj_names: List[str] = field(default_factory=lambda: ['reference_points', 'sampling_offsets'], metadata={"description": "Linear Projection names"}) @dataclass class OptimConfig: """Optimizer config.""" optimizer: str = "AdamW" monitor_name: str = "val_loss" # {val_loss, train_loss} lr: float = 2e-4 lr_backbone: float = 2e-5 lr_linear_proj_mult: float = 0.1 momentum: float = 0.9 weight_decay: float = 1e-4 lr_scheduler: str = "MultiStep" lr_steps: List[int] = field(default_factory=lambda: [11], # 11, 20, 30 metadata={"description": "learning rate decay steps"}) lr_step_size: int = 11 lr_decay: float = 0.1 @dataclass class DINOTrainExpConfig: """Train experiment config.""" num_gpus: int = 1 num_nodes: int = 1 resume_training_checkpoint_path: Optional[str] = None pretrained_model_path: Optional[str] = None validation_interval: int = 1 clip_grad_norm: float = 0.1 is_dry_run: bool = False conf_threshold: float = 0.0 results_dir: Optional[str] = None num_epochs: int = 12 # 12, 24, 36 checkpoint_interval: int = 1 optim: OptimConfig = OptimConfig() precision: str = "fp32" distributed_strategy: str = "ddp" activation_checkpoint: bool = True @dataclass class DINOInferenceExpConfig: """Inference experiment config.""" num_gpus: int = 1 results_dir: Optional[str] = None checkpoint: Optional[str] = None trt_engine: Optional[str] = None color_map: Dict[str, str] = MISSING conf_threshold: float = 0.5 is_internal: bool = False input_width: Optional[int] = None input_height: Optional[int] = None @dataclass class DINOEvalExpConfig: """Evaluation experiment config.""" num_gpus: int = 1 results_dir: Optional[str] = None input_width: Optional[int] = None input_height: Optional[int] = None checkpoint: Optional[str] = None trt_engine: Optional[str] = None conf_threshold: float = 0.0 @dataclass class CalibrationConfig: """Calibration config.""" cal_image_dir: List[str] = MISSING cal_cache_file: str = MISSING cal_batch_size: int = 1 cal_batches: int = 1 @dataclass class TrtConfig: """Trt config.""" data_type: str = "FP32" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 calibration: CalibrationConfig = CalibrationConfig() @dataclass class DINOExportExpConfig: """Export experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 checkpoint: str = MISSING onnx_file: str = MISSING on_cpu: bool = False input_channel: int = 3 input_width: int = 960 input_height: int = 544 opset_version: int = 12 batch_size: int = -1 verbose: bool = False @dataclass class DINOGenTrtEngineExpConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: str = MISSING trt_engine: Optional[str] = None input_channel: int = 3 input_width: int = 960 input_height: int = 544 opset_version: int = 12 batch_size: int = -1 verbose: bool = False tensorrt: TrtConfig = TrtConfig() @dataclass class ExperimentConfig: """Experiment config.""" model: DINOModelConfig = DINOModelConfig() dataset: DINODatasetConfig = DINODatasetConfig() train: DINOTrainExpConfig = DINOTrainExpConfig() evaluate: DINOEvalExpConfig = DINOEvalExpConfig() inference: DINOInferenceExpConfig = DINOInferenceExpConfig() export: DINOExportExpConfig = DINOExportExpConfig() gen_trt_engine: DINOGenTrtEngineExpConfig = DINOGenTrtEngineExpConfig() encryption_key: Optional[str] = None results_dir: str = MISSING
tao_deploy-main
nvidia_tao_deploy/cv/dino/hydra_config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DINO convert onnx model to TRT engine.""" import logging import os import tempfile from nvidia_tao_deploy.cv.deformable_detr.engine_builder import DDETRDetEngineBuilder from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.dino.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.utils.decoding import decode_model from nvidia_tao_deploy.engine.builder import NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="gen_trt_engine", schema=ExperimentConfig ) @monitor_status(name='dino', mode='gen_trt_engine') def main(cfg: ExperimentConfig) -> None: """Convert encrypted uff or onnx model to TRT engine.""" if cfg.gen_trt_engine.results_dir is not None: results_dir = cfg.gen_trt_engine.results_dir else: results_dir = os.path.join(cfg.results_dir, "gen_trt_engine") os.makedirs(results_dir, exist_ok=True) # decrypt etlt tmp_onnx_file, file_format = decode_model(cfg.gen_trt_engine.onnx_file, cfg.encryption_key) engine_file = cfg.gen_trt_engine.trt_engine data_type = cfg.gen_trt_engine.tensorrt.data_type workspace_size = cfg.gen_trt_engine.tensorrt.workspace_size min_batch_size = cfg.gen_trt_engine.tensorrt.min_batch_size opt_batch_size = cfg.gen_trt_engine.tensorrt.opt_batch_size max_batch_size = cfg.gen_trt_engine.tensorrt.max_batch_size batch_size = cfg.gen_trt_engine.batch_size num_channels = cfg.gen_trt_engine.input_channel input_width = cfg.gen_trt_engine.input_width input_height = cfg.gen_trt_engine.input_height # INT8 related configs img_std = cfg.dataset.augmentation.input_std calib_input = list(cfg.gen_trt_engine.tensorrt.calibration.get('cal_image_dir', [])) calib_cache = cfg.gen_trt_engine.tensorrt.calibration.get('cal_cache_file', None) if batch_size is None or batch_size == -1: input_batch_size = 1 is_dynamic = True else: input_batch_size = batch_size is_dynamic = False # TODO: Remove this when we upgrade to DLFW 23.04+ trt_version_number = NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + NV_TENSORRT_PATCH if data_type.lower() == "fp16" and trt_version_number < 8600: logger.warning("[WARNING]: LayerNorm has overflow issue in FP16 upto TensorRT version 8.5 " "which can lead to mAP drop compared to FP32.\n" "[WARNING]: Please re-export ONNX using opset 17 and use TensorRT version 8.6.\n") if engine_file is not None: if engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = engine_file builder = DDETRDetEngineBuilder(workspace=workspace_size // 1024, # DINO config is not in GB input_dims=(input_batch_size, num_channels, input_height, input_width), is_dynamic=is_dynamic, min_batch_size=min_batch_size, opt_batch_size=opt_batch_size, max_batch_size=max_batch_size, img_std=img_std) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, data_type, calib_input=calib_input, calib_cache=calib_cache, calib_num_images=cfg.gen_trt_engine.tensorrt.calibration.cal_batch_size * cfg.gen_trt_engine.tensorrt.calibration.cal_batches, calib_batch_size=cfg.gen_trt_engine.tensorrt.calibration.cal_batch_size ) logging.info("Export finished successfully.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/dino/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy DINO scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/dino/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" import os import logging import numpy as np from PIL import Image from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.deformable_detr.inferencer import DDETRInferencer from nvidia_tao_deploy.cv.deformable_detr.utils import post_process from nvidia_tao_deploy.cv.dino.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.utils.image_batcher import ImageBatcher from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="infer", schema=ExperimentConfig ) @monitor_status(name='dino', mode='inference') def main(cfg: ExperimentConfig) -> None: """DINO TRT Inference.""" if not os.path.exists(cfg.inference.trt_engine): raise FileNotFoundError(f"Provided inference.trt_engine at {cfg.inference.trt_engine} does not exist!") trt_infer = DDETRInferencer(cfg.inference.trt_engine, batch_size=cfg.dataset.batch_size, num_classes=cfg.dataset.num_classes) c, h, w = trt_infer._input_shape batcher = ImageBatcher(list(cfg.dataset.infer_data_sources.image_dir), (cfg.dataset.batch_size, c, h, w), trt_infer.inputs[0].host.dtype, preprocessor="DDETR") with open(cfg.dataset.infer_data_sources.classmap, "r", encoding="utf-8") as f: classmap = [line.rstrip() for line in f.readlines()] classes = {c: i + 1 for i, c in enumerate(classmap)} # Create results directories if cfg.inference.results_dir is not None: results_dir = cfg.inference.results_dir else: results_dir = os.path.join(cfg.results_dir, "trt_inference") os.makedirs(results_dir, exist_ok=True) output_annotate_root = os.path.join(results_dir, "images_annotated") output_label_root = os.path.join(results_dir, "labels") os.makedirs(output_annotate_root, exist_ok=True) os.makedirs(output_label_root, exist_ok=True) inv_classes = {v: k for k, v in classes.items()} for batches, img_paths, scales in tqdm(batcher.get_batch(), total=batcher.num_batches, desc="Producing predictions"): # Handle last batch as we artifically pad images for the last batch idx if len(img_paths) != len(batches): batches = batches[:len(img_paths)] pred_logits, pred_boxes = trt_infer.infer(batches) target_sizes = [] for batch, scale in zip(batches, scales): _, new_h, new_w = batch.shape orig_h, orig_w = int(scale[0] * new_h), int(scale[1] * new_w) target_sizes.append([orig_w, orig_h, orig_w, orig_h]) class_labels, scores, boxes = post_process(pred_logits, pred_boxes, target_sizes) y_pred_valid = np.concatenate([class_labels[..., None], scores[..., None], boxes], axis=-1) for img_path, pred in zip(img_paths, y_pred_valid): # Load Image img = Image.open(img_path) # Resize of the original input image is not required for D-DETR # as the predictions are rescaled in post_process bbox_img, label_strings = trt_infer.draw_bbox(img, pred, inv_classes, cfg.inference.conf_threshold, cfg.inference.color_map) img_filename = os.path.basename(img_path) bbox_img.save(os.path.join(output_annotate_root, img_filename)) # Store labels filename, _ = os.path.splitext(img_filename) label_file_name = os.path.join(output_label_root, filename + ".txt") with open(label_file_name, "w", encoding="utf-8") as f: for l_s in label_strings: f.write(l_s) logging.info("Finished inference.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/dino/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" import os import operator import copy import logging import json import six import numpy as np from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.deformable_detr.dataloader import DDETRCOCOLoader from nvidia_tao_deploy.cv.deformable_detr.inferencer import DDETRInferencer from nvidia_tao_deploy.cv.deformable_detr.utils import post_process from nvidia_tao_deploy.cv.dino.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.metrics.coco_metric import EvaluationMetric logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="evaluate", schema=ExperimentConfig ) @monitor_status(name='dino', mode='evaluation') def main(cfg: ExperimentConfig) -> None: """DINO TRT evaluation.""" if not os.path.exists(cfg.evaluate.trt_engine): raise FileNotFoundError(f"Provided evaluate.trt_engine at {cfg.evaluate.trt_engine} does not exist!") eval_metric = EvaluationMetric(cfg.dataset.test_data_sources.json_file, eval_class_ids=cfg.dataset.eval_class_ids, include_mask=False) trt_infer = DDETRInferencer(cfg.evaluate.trt_engine, batch_size=cfg.dataset.batch_size, num_classes=cfg.dataset.num_classes) c, h, w = trt_infer._input_shape dl = DDETRCOCOLoader( val_json_file=cfg.dataset.test_data_sources.json_file, shape=(cfg.dataset.batch_size, c, h, w), dtype=trt_infer.inputs[0].host.dtype, batch_size=cfg.dataset.batch_size, data_format="channels_first", image_std=cfg.dataset.augmentation.input_std, image_dir=cfg.dataset.test_data_sources.image_dir, eval_samples=None) predictions = { 'detection_scores': [], 'detection_boxes': [], 'detection_classes': [], 'source_id': [], 'image_info': [], 'num_detections': [] } def evaluation_preds(preds): # Essential to avoid modifying the source dict _preds = copy.deepcopy(preds) for k, _ in six.iteritems(_preds): _preds[k] = np.concatenate(_preds[k], axis=0) eval_results = eval_metric.predict_metric_fn(_preds) return eval_results for imgs, scale, source_id, labels in tqdm(dl, total=len(dl), desc="Producing predictions"): image = np.array(imgs) image_info = [] target_sizes = [] for i, label in enumerate(labels): image_info.append([label[-1][0], label[-1][1], scale[i], label[-1][2], label[-1][3]]) # target_sizes needs to [W, H, W, H] target_sizes.append([label[-1][3], label[-1][2], label[-1][3], label[-1][2]]) image_info = np.array(image_info) pred_logits, pred_boxes = trt_infer.infer(image) class_labels, scores, boxes = post_process(pred_logits, pred_boxes, target_sizes, num_select=cfg.model.num_select) # Convert to xywh boxes[:, :, 2:] -= boxes[:, :, :2] predictions['detection_classes'].append(class_labels) predictions['detection_scores'].append(scores) predictions['detection_boxes'].append(boxes) predictions['num_detections'].append(np.array([100] * cfg.dataset.batch_size).astype(np.int32)) predictions['image_info'].append(image_info) predictions['source_id'].append(source_id) if cfg.evaluate.results_dir is not None: results_dir = cfg.evaluate.results_dir else: results_dir = os.path.join(cfg.results_dir, "trt_evaluate") os.makedirs(results_dir, exist_ok=True) eval_results = evaluation_preds(preds=predictions) for key, value in sorted(eval_results.items(), key=operator.itemgetter(0)): eval_results[key] = float(value) logging.info("%s: %.9f", key, value) with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/dino/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for DINO."""
tao_deploy-main
nvidia_tao_deploy/cv/dino/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import argparse from nvidia_tao_deploy.cv.dino import scripts from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_hydra import get_subtasks, launch def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "dino", add_help=True, description="Train Adapt Optimize Deploy entrypoint for DINO" ) # Build list of subtasks by inspecting the scripts package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch(parser, subtasks, network="dino") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/dino/entrypoint/dino.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class for performing TensorRT image inference.""" import logging import numpy as np import tensorrt as trt from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference logger = logging.getLogger(__name__) class OpticalInspectionInferencer(TRTInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, input_shape=None, batch_size=None, data_format="channel_first"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine logger.info("Loading engine from {}".format(engine_path)) super().__init__(engine_path) self.execute_v2 = True # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): self._input_shape.append(self.engine.get_binding_shape(binding)[-3:]) self.max_batch_size = self.engine.get_binding_shape(binding)[0] for shape in self._input_shape: assert len(shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[0][1] self.width = self._input_shape[0][2] else: self.height = self._input_shape[0][0] self.width = self._input_shape[0][1] # TODO: vpraveen. Temporarily disabling dynamic batch size profiling # till we figure out how to handle multiple inputs and fixing the # export routine in the pytorch container. # set binding_shape for dynamic input # for binding in range(self.engine.num_bindings): # if self.engine.binding_is_input(binding): # binding_id = self.engine.get_binding_index(str(binding)) # if (input_shape is not None) or (batch_size is not None): # self.context = self.engine.create_execution_context() # if input_shape is not None: # for idx, _input_shape in enumerate(input_shape): # self.context.set_binding_shape(binding_id, input_shape[idx]) # self.max_batch_size = input_shape[idx][0] # else: # for idx, _input_shape in enumerate(self._input_shape): # self.context.set_binding_shape(idx, [batch_size] + list(_input_shape)) # self.max_batch_size = batch_size # self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volumes = [trt.volume(shape) for shape in self._input_shape] self.numpy_array = [ np.zeros((self.max_batch_size, volume)) for volume in input_volumes ] def infer(self, input_images): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size for idx, input_image in enumerate(input_images, start=0): actual_batch_size = len(input_image) if actual_batch_size > max_batch_size: raise ValueError( f"image_paths list bigger ({actual_batch_size}) than" f"engine max batch size ({max_batch_size})" ) self.numpy_array[idx][:actual_batch_size] = input_image.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[idx].host, self.numpy_array[idx].ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. return [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free()
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OpticalInpsection TensorRT engine builder.""" import logging import os import sys import onnx import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class OpticalInpsectionEngineBuilder(EngineBuilder): """Parses an ONNX graph and builds a TensorRT engine from it.""" def __init__( self, data_format="channels_first", **kwargs ): """Init. Args: data_format (str): data_format. """ super().__init__(**kwargs) self._data_format = data_format def set_input_output_node_names(self): """Set input output node names.""" self._output_node_names = ["siam_pred", "208"] self._input_node_names = ["input_1", "input_2"] def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') input_dims = {} for idx, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', idx, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) input_dims[inputs.name] = [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] return input_dims def create_network(self, model_path, file_format="onnx"): """Parse the UFF/ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: onnx). """ if file_format == "onnx": logger.info("Parsing ONNX model") self._input_dims = self.get_onnx_input_dims(model_path) batch_sizes = {v[0] for v in self._input_dims.values()} assert len(batch_sizes), ( "All tensors should have the same batch size." ) self.batch_size = list(batch_sizes)[0] for k, v in self._input_dims.items(): self._input_dims[k] = v[1:] network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) network_flags = network_flags | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.batch_size <= 0: # dynamic batch size logger.info("Dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) for i in range(self.network.num_inputs): model_input = self.network.get_input(i) input_shape = model_input.shape input_name = model_input.name real_shape_min = ( self.min_batch_size, input_shape[1], input_shape[2], input_shape[3] ) real_shape_opt = ( self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3] ) real_shape_max = ( self.max_batch_size, input_shape[1], input_shape[2], input_shape[3] ) opt_profile.set_shape( input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max ) self.config.add_optimization_profile(opt_profile) else: logger.info("Parsing UFF model") raise NotImplementedError("UFF for Optical Inspection is not supported") def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None): """Build the TensorRT engine and serialize it to disk. Args: engine_path: The path where to serialize the engine to. precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'. calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. """ engine_path = os.path.realpath(engine_path) engine_dir = os.path.dirname(engine_path) os.makedirs(engine_dir, exist_ok=True) logger.debug("Building %s Engine in %s", precision, engine_path) if self.batch_size is None: self.batch_size = calib_batch_size self.builder.max_batch_size = self.batch_size if precision == "fp16": if not self.builder.platform_has_fast_fp16: logger.warning("FP16 is not supported natively on this platform/device") else: self.config.set_flag(trt.BuilderFlag.FP16) elif precision == "int8": raise NotImplementedError("INT8 is not supported for Optical Inspection!") print(f"Engine path: {engine_path}") with self.builder.build_engine(self.network, self.config) as engine, \ open(engine_path, "wb") as f: logger.debug("Serializing engine to file: %s", engine_path) f.write(engine.serialize())
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy OpticalInpsection.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optical Inspection loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os from abc import ABC import cv2 import numpy as np import pandas as pd from PIL import Image from nvidia_tao_deploy.inferencer.preprocess_input import preprocess_input class OpticalInspectionDataLoader(ABC): """Optical Inpsection Dataloader.""" def __init__( self, csv_file=None, transform=None, input_data_path=None, train=False, data_config=None, dtype=np.float32): """Initialize the Optical Inspection dataloader.""" if not os.path.exists(csv_file): raise FileNotFoundError(f"Inference data csv file wasn't found at {csv_file}") self.merged = pd.read_csv(csv_file) self.transform = transform self.input_image_root = input_data_path self.train = train self.num_inputs = data_config.num_input self.concat_type = data_config.concat_type self.input_map = data_config.input_map self.grid_map = data_config.grid_map self.output_shape = data_config.output_shape self.data_config = data_config self.ext = data_config.image_ext self.batch_size = data_config.batch_size self.dtype = dtype self.n_batches = math.ceil(float(len(self.merged)) / self.batch_size) assert self.n_batches > 0, ( f"There should atleast be 1 batch to load. {self.n_batches}" ) self.n = 0 if self.concat_type == "grid": print( f"Using {self.num_inputs} input and {self.concat_type} type " f"{self.grid_map['x']} X {self.grid_map['y']} for comparison." ) else: print( f"Using {self.num_inputs} input and {self.concat_type} type " f"1 X {self.num_inputs} for comparison." ) def __iter__(self): """Initialize iterator.""" self.n = 0 return self def __next__(self): """Get the next image.""" if self.n < self.n_batches: start_idx = self.batch_size * self.n unit_batch = [] golden_batch = [] end_idx = min(start_idx + self.batch_size, len(self.merged)) for idx in range(start_idx, end_idx): unit_array, golden_array = self.__getitem__(idx) unit_batch.append(unit_array) golden_batch.append(golden_array) self.n += 1 return np.asarray(unit_batch, dtype=unit_array.dtype), np.asarray(golden_batch, dtype=golden_array.dtype) raise StopIteration def get_absolute_image_path(self, prefix, input_map=None): """Get absolute image path.""" image_path = prefix if input_map: image_path += f"_{input_map}" image_path += self.ext if not os.path.exists(image_path): raise FileNotFoundError(f"Image file wasn't found at {image_path}") return image_path def __getitem__(self, index): """Yield a single image.""" image_tuple = self.merged.iloc[index, :] image_0, image_1 = [], [] if self.input_map: for input_map in self.input_map: image_0.append( Image.open( self.get_absolute_image_path( self.get_unit_path(image_tuple), input_map=input_map ) ) ) image_1.append( Image.open( self.get_absolute_image_path( self.get_golden_sample_path(image_tuple), input_map=input_map ) ) ) else: image_0.append( Image.open( self.get_absolute_image_path( self.get_unit_path(image_tuple) ) ) ) image_1.append( Image.open( self.get_absolute_image_path( self.get_golden_sample_path(image_tuple) ) ) ) size = (self.output_shape[0], self.output_shape[1]) preprocessed_image_0 = self.preprocess_single_sample( image_0, size, self.data_config.augmentation_config.rgb_input_mean, self.data_config.augmentation_config.rgb_input_std, self.dtype ) preprocessed_image_1 = self.preprocess_single_sample( image_1, size, self.data_config.augmentation_config.rgb_input_mean, self.data_config.augmentation_config.rgb_input_std, self.dtype ) concatenated_unit_sample = self.concatenate_image(preprocessed_image_0) concatenated_golden_sample = self.concatenate_image(preprocessed_image_1) return concatenated_unit_sample, concatenated_golden_sample def concatenate_image(self, preprocessed_image_array): """Concatenated image array from processed input. Args: preprocessed_image_array (list(PIL.Image)): List of image inputs. Returns: concatenated_image (np.ndarray): Concatenated image input. """ if self.concat_type == "grid" and int(self.num_inputs) % 2 == 0: x, y = int(self.grix_map["x"]), int(self.grid_map["y"]) concatenated_image = np.zeros((3, x * self.output_shape[0], y * self.output_shape[1])) for idx in range(x): for idy in range(y): concatenated_image[ :, idx * self.output_shape[0], idy * self.output_shape[1]] = preprocessed_image_array[idx * x + idy] else: concatenated_image = np.zeros(( 3, self.num_inputs * self.output_shape[0], self.output_shape[1])) for idx in range(self.num_inputs): concatenated_image[ :, idx * self.output_shape[0]: self.output_shape[0] * idx + self.output_shape[0], :] = preprocessed_image_array[idx] return concatenated_image @staticmethod def preprocess_single_sample(image_array, output_shape, mean, std, dtype): """Apply pre-processing to a single image.""" assert isinstance(output_shape, tuple), "Output shape must be a tuple." image_output = [] for image in image_array: resized_image = cv2.resize( np.asarray(image, dtype), output_shape, interpolation=cv2.INTER_LINEAR) resized_image = np.transpose(resized_image, (2, 0, 1)) resized_image = preprocess_input( resized_image, data_format="channels_first", img_mean=mean, img_std=std, mode="torch" ) image_output.append(resized_image) return image_output def __len__(self): """Length of the dataloader.""" return self.n_batches def get_unit_path(self, image_tuple): """Get path to the image file from csv.""" image_path = os.path.join( self.input_image_root, image_tuple["input_path"], image_tuple["object_name"] ) return image_path def get_golden_sample_path(self, image_tuple): """Get path to the corresponding golden sample.""" image_path = os.path.join( self.input_image_root, image_tuple["golden_path"], image_tuple["object_name"] ) return image_path
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/dataloader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy OpticalInpsection config."""
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file""" from typing import Optional, List, Dict from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class OIModelConfig: """Optical recognition model config.""" model_type: str = "Siamese_3" margin: float = 2.0 model_backbone: str = "custom" embedding_vectors: int = 5 imagenet_pretrained: bool = False @dataclass class OptimConfig: """Optimizer config.""" type: str = "Adam" lr: float = 5e-4 momentum: float = 0.9 weight_decay: float = 5e-4 @dataclass class OIAugmentationConfig: """Augmentation config.""" rgb_input_mean: List[float] = field(default_factory=lambda: [0.485, 0.456, 0.406]) rgb_input_std: List[float] = field(default_factory=lambda: [0.229, 0.224, 0.225]) @dataclass class DataPathFormat: """Dataset Path experiment config.""" csv_path: str = MISSING images_dir: str = MISSING @dataclass class OIDatasetConfig: """Dataset config.""" train_dataset: DataPathFormat = DataPathFormat() validation_dataset: DataPathFormat = DataPathFormat() test_dataset: DataPathFormat = DataPathFormat() infer_dataset: DataPathFormat = DataPathFormat() image_ext: Optional[str] = None batch_size: int = 32 workers: int = 8 fpratio_sampling: float = 0.1 num_input: int = 8 input_map: Optional[Dict[str, int]] = None grid_map: Optional[Dict[str, int]] = None concat_type: Optional[str] = None output_shape: List[int] = field(default_factory=lambda: [100, 100]) augmentation_config: OIAugmentationConfig = OIAugmentationConfig() @dataclass class TensorBoardLogger: """Configuration for the tensorboard logger.""" enabled: bool = False infrequent_logging_frequency: int = 2 # Defined per epoch @dataclass class OITrainExpConfig: """Train experiment config.""" optim: OptimConfig = OptimConfig() num_epochs: int = 10 checkpoint_interval: int = 2 validation_interval: int = 2 loss: Optional[str] = None clip_grad_norm: float = 0.0 gpu_ids: List[int] = field(default_factory=lambda: [0]) results_dir: Optional[str] = None tensorboard: Optional[TensorBoardLogger] = TensorBoardLogger() resume_training_checkpoint_path: Optional[str] = None pretrained_model_path: Optional[str] = None @dataclass class OIInferenceExpConfig: """Inference experiment config.""" checkpoint: str = MISSING trt_engine: str = MISSING gpu_id: int = 0 results_dir: Optional[str] = None batch_size: int = 1 @dataclass class OIEvalExpConfig: """Evaluation experiment config.""" checkpoint: str = MISSING gpu_id: int = 0 batch_size: int = 1 results_dir: Optional[str] = None @dataclass class OIExportExpConfig: """Export experiment config.""" results_dir: Optional[str] = None checkpoint: str = MISSING onnx_file: Optional[str] = None opset_version: Optional[int] = 12 gpu_id: int = 0 on_cpu: bool = False input_height: int = 400 input_width: int = 100 input_channel: int = 3 batch_size: int = -1 do_constant_folding: bool = False @dataclass class CalibrationConfig: """Calibration config.""" cal_image_dir: List[str] = MISSING cal_cache_file: str = MISSING cal_batch_size: int = 1 cal_batches: int = 1 @dataclass class TrtConfig: """Trt config.""" data_type: str = "fp16" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 calibration: CalibrationConfig = CalibrationConfig() @dataclass class OIGenTrtEngineExpConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: str = MISSING trt_engine: Optional[str] = None input_channel: int = 3 input_width: int = 400 input_height: int = 100 opset_version: int = 12 batch_size: int = -1 verbose: bool = False tensorrt: TrtConfig = TrtConfig() @dataclass class OIDatasetConvertConfig: """Dataset Convert experiment config.""" root_dataset_dir: Optional[str] = None data_convert_output_dir: Optional[str] = None train_pcb_dataset_dir: Optional[str] = None val_pcb_dataset_dir: Optional[str] = None all_pcb_dataset_dir: Optional[str] = None golden_csv_dir: Optional[str] = None project_name: Optional[str] = None bot_top: Optional[str] = None @dataclass class OIExperimentConfig: """Experiment config.""" model: OIModelConfig = OIModelConfig() dataset: OIDatasetConfig = OIDatasetConfig() train: OITrainExpConfig = OITrainExpConfig() evaluate: OIEvalExpConfig = OIEvalExpConfig() export: OIExportExpConfig = OIExportExpConfig() inference: OIInferenceExpConfig = OIInferenceExpConfig() dataset_convert: OIDatasetConvertConfig = OIDatasetConvertConfig() gen_trt_engine: OIGenTrtEngineExpConfig = OIGenTrtEngineExpConfig() encryption_key: Optional[str] = None results_dir: str = MISSING
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module containing default specification."""
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/specs/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OpticalInpsection convert etlt model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import tempfile from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.optical_inspection.engine_builder import OpticalInpsectionEngineBuilder from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.optical_inspection.config.default_config import ( OIExperimentConfig as ExperimentConfig ) from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="experiment", schema=ExperimentConfig ) @monitor_status(name="optical_inspection", mode="gen_trt_engine") def main(cfg: ExperimentConfig) -> None: """Convert encrypted uff or onnx model to TRT engine.""" # decrypt etlt trt_cfg = cfg.gen_trt_engine # decrypt onnx or etlt tmp_onnx_file, file_format = decode_model(trt_cfg.onnx_file, cfg['encryption_key']) engine_file = trt_cfg.trt_engine batch_size = trt_cfg.batch_size data_type = trt_cfg.tensorrt['data_type'] workspace_size = trt_cfg.tensorrt['workspace_size'] min_batch_size = trt_cfg.tensorrt['min_batch_size'] opt_batch_size = trt_cfg.tensorrt['opt_batch_size'] max_batch_size = trt_cfg.tensorrt['max_batch_size'] if engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = engine_file builder = OpticalInpsectionEngineBuilder( verbose=trt_cfg.verbose, workspace=workspace_size, batch_size=batch_size, min_batch_size=min_batch_size, opt_batch_size=opt_batch_size, max_batch_size=max_batch_size) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, data_type) logging.info("Engine generation finished successfully.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy OpticalInpsection scripts module."""
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optical Inspection TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.optical_inspection.inferencer import OpticalInspectionInferencer from nvidia_tao_deploy.cv.optical_inspection.dataloader import OpticalInspectionDataLoader from nvidia_tao_deploy.cv.optical_inspection.config.default_config import ( OIExperimentConfig as ExperimentConfig ) from sklearn import metrics from tqdm import tqdm logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="experiment", schema=ExperimentConfig ) @monitor_status(name="optical_inspection", mode="inference") def main(cfg: ExperimentConfig) -> None: """Convert encrypted uff or onnx model to TRT engine.""" logger.info("Running inference") engine_file = cfg.inference.trt_engine batch_size = cfg.inference.batch_size dataset_config = cfg.dataset if cfg.inference.results_dir is not None: results_dir = cfg.inference.results_dir else: results_dir = os.path.join(cfg.results_dir, "inference") os.makedirs(results_dir, exist_ok=True) logger.info("Instantiate the optical inspection inferencer.") optical_inspection_inferencer = OpticalInspectionInferencer( engine_path=engine_file, batch_size=batch_size ) logger.info("Instantiating the optical inspection dataloader.") infer_dataloader = OpticalInspectionDataLoader( csv_file=dataset_config.infer_dataset.csv_path, input_data_path=dataset_config.infer_dataset.images_dir, train=False, data_config=dataset_config, dtype=optical_inspection_inferencer.inputs[0].host.dtype ) inference_score = [] total_num_samples = len(infer_dataloader) logger.info("Number of sample batches: {}".format(total_num_samples)) logger.info("Running inference") for unit_batch, golden_batch in tqdm(infer_dataloader, total=total_num_samples): input_batches = [ unit_batch, golden_batch ] results = optical_inspection_inferencer.infer(input_batches) pairwise_output = metrics.pairwise.paired_distances(results[0], results[1], metric="euclidean") inference_score.extend( [pairwise_output[idx] for idx in range(pairwise_output.shape[0])] ) logger.info("Total number of inference outputs: {}".format(len(inference_score))) infer_dataloader.merged["output_score"] = inference_score[:len(infer_dataloader.merged)] infer_dataloader.merged.to_csv( os.path.join(results_dir, "inference.csv"), header=True, index=False ) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for optical_inspection."""
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import argparse from nvidia_tao_deploy.cv.optical_inspection import scripts from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_hydra import get_subtasks, launch def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "optical_inspection", add_help=True, description="Train Adapt Optimize Deploy entrypoint for OpticalInpsection" ) # Build list of subtasks by inspecting the scripts package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch( parser, subtasks, override_results_dir="results_dir", override_key="encryption_key" ) if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/optical_inspection/entrypoint/optical_inspection.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy YOLOv4.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy YOLOv4 Proto.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/yolo_v4/proto/augmentation_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/yolo_v4/proto/augmentation_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n<nvidia_tao_deploy/cv/yolo_v4/proto/augmentation_config.proto\"\xa1\x03\n\x12\x41ugmentationConfig\x12\x0b\n\x03hue\x18\x01 \x01(\x02\x12\x12\n\nsaturation\x18\x02 \x01(\x02\x12\x10\n\x08\x65xposure\x18\x03 \x01(\x02\x12\x15\n\rvertical_flip\x18\x04 \x01(\x02\x12\x17\n\x0fhorizontal_flip\x18\x05 \x01(\x02\x12\x0e\n\x06jitter\x18\x06 \x01(\x02\x12\x14\n\x0coutput_width\x18\x07 \x01(\x05\x12\x15\n\routput_height\x18\x08 \x01(\x05\x12\x16\n\x0eoutput_channel\x18\t \x01(\x05\x12\x14\n\x0coutput_depth\x18\x0e \x01(\r\x12$\n\x1crandomize_input_shape_period\x18\n \x01(\x05\x12\x13\n\x0bmosaic_prob\x18\x0b \x01(\x02\x12\x18\n\x10mosaic_min_ratio\x18\x0c \x01(\x02\x12\x36\n\nimage_mean\x18\r \x03(\x0b\x32\".AugmentationConfig.ImageMeanEntry\x1a\x30\n\x0eImageMeanEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\x62\x06proto3') ) _AUGMENTATIONCONFIG_IMAGEMEANENTRY = _descriptor.Descriptor( name='ImageMeanEntry', full_name='AugmentationConfig.ImageMeanEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='AugmentationConfig.ImageMeanEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='AugmentationConfig.ImageMeanEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=434, serialized_end=482, ) _AUGMENTATIONCONFIG = _descriptor.Descriptor( name='AugmentationConfig', full_name='AugmentationConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='hue', full_name='AugmentationConfig.hue', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='saturation', full_name='AugmentationConfig.saturation', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='exposure', full_name='AugmentationConfig.exposure', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='vertical_flip', full_name='AugmentationConfig.vertical_flip', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='horizontal_flip', full_name='AugmentationConfig.horizontal_flip', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='jitter', full_name='AugmentationConfig.jitter', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_width', full_name='AugmentationConfig.output_width', index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_height', full_name='AugmentationConfig.output_height', index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_channel', full_name='AugmentationConfig.output_channel', index=8, number=9, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_depth', full_name='AugmentationConfig.output_depth', index=9, number=14, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='randomize_input_shape_period', full_name='AugmentationConfig.randomize_input_shape_period', index=10, number=10, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mosaic_prob', full_name='AugmentationConfig.mosaic_prob', index=11, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mosaic_min_ratio', full_name='AugmentationConfig.mosaic_min_ratio', index=12, number=12, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_mean', full_name='AugmentationConfig.image_mean', index=13, number=13, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_AUGMENTATIONCONFIG_IMAGEMEANENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=65, serialized_end=482, ) _AUGMENTATIONCONFIG_IMAGEMEANENTRY.containing_type = _AUGMENTATIONCONFIG _AUGMENTATIONCONFIG.fields_by_name['image_mean'].message_type = _AUGMENTATIONCONFIG_IMAGEMEANENTRY DESCRIPTOR.message_types_by_name['AugmentationConfig'] = _AUGMENTATIONCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) AugmentationConfig = _reflection.GeneratedProtocolMessageType('AugmentationConfig', (_message.Message,), dict( ImageMeanEntry = _reflection.GeneratedProtocolMessageType('ImageMeanEntry', (_message.Message,), dict( DESCRIPTOR = _AUGMENTATIONCONFIG_IMAGEMEANENTRY, __module__ = 'nvidia_tao_deploy.cv.yolo_v4.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig.ImageMeanEntry) )) , DESCRIPTOR = _AUGMENTATIONCONFIG, __module__ = 'nvidia_tao_deploy.cv.yolo_v4.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig) )) _sym_db.RegisterMessage(AugmentationConfig) _sym_db.RegisterMessage(AugmentationConfig.ImageMeanEntry) _AUGMENTATIONCONFIG_IMAGEMEANENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/proto/augmentation_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/yolo_v4/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.yolo_v4.proto import augmentation_config_pb2 as nvidia__tao__deploy_dot_cv_dot_yolo__v4_dot_proto_dot_augmentation__config__pb2 from nvidia_tao_deploy.cv.yolo_v3.proto import dataset_config_pb2 as nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_dataset__config__pb2 from nvidia_tao_deploy.cv.common.proto import training_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2 from nvidia_tao_deploy.cv.common.proto import eval_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_eval__config__pb2 from nvidia_tao_deploy.cv.common.proto import nms_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_nms__config__pb2 from nvidia_tao_deploy.cv.common.proto import class_weighting_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_class__weighting__config__pb2 from nvidia_tao_deploy.cv.yolo_v4.proto import yolov4_config_pb2 as nvidia__tao__deploy_dot_cv_dot_yolo__v4_dot_proto_dot_yolov4__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/yolo_v4/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n3nvidia_tao_deploy/cv/yolo_v4/proto/experiment.proto\x1a<nvidia_tao_deploy/cv/yolo_v4/proto/augmentation_config.proto\x1a\x37nvidia_tao_deploy/cv/yolo_v3/proto/dataset_config.proto\x1a\x37nvidia_tao_deploy/cv/common/proto/training_config.proto\x1a\x33nvidia_tao_deploy/cv/common/proto/eval_config.proto\x1a\x32nvidia_tao_deploy/cv/common/proto/nms_config.proto\x1a>nvidia_tao_deploy/cv/common/proto/class_weighting_config.proto\x1a\x36nvidia_tao_deploy/cv/yolo_v4/proto/yolov4_config.proto\"\xca\x02\n\nExperiment\x12,\n\x0e\x64\x61taset_config\x18\x01 \x01(\x0b\x32\x14.YOLOv3DatasetConfig\x12\x30\n\x13\x61ugmentation_config\x18\x02 \x01(\x0b\x32\x13.AugmentationConfig\x12(\n\x0ftraining_config\x18\x03 \x01(\x0b\x32\x0f.TrainingConfig\x12 \n\x0b\x65val_config\x18\x04 \x01(\x0b\x32\x0b.EvalConfig\x12\x1e\n\nnms_config\x18\x05 \x01(\x0b\x32\n.NMSConfig\x12$\n\ryolov4_config\x18\x06 \x01(\x0b\x32\r.YOLOv4Config\x12\x35\n\x16\x63lass_weighting_config\x18\x08 \x01(\x0b\x32\x15.ClassWeightingConfig\x12\x13\n\x0brandom_seed\x18\x07 \x01(\rb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_yolo__v4_dot_proto_dot_augmentation__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_dataset__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_eval__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_nms__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_class__weighting__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_yolo__v4_dot_proto_dot_yolov4__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dataset_config', full_name='Experiment.dataset_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='augmentation_config', full_name='Experiment.augmentation_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_config', full_name='Experiment.training_config', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_config', full_name='Experiment.eval_config', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nms_config', full_name='Experiment.nms_config', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='yolov4_config', full_name='Experiment.yolov4_config', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='class_weighting_config', full_name='Experiment.class_weighting_config', index=6, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_seed', full_name='Experiment.random_seed', index=7, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=457, serialized_end=787, ) _EXPERIMENT.fields_by_name['dataset_config'].message_type = nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_dataset__config__pb2._YOLOV3DATASETCONFIG _EXPERIMENT.fields_by_name['augmentation_config'].message_type = nvidia__tao__deploy_dot_cv_dot_yolo__v4_dot_proto_dot_augmentation__config__pb2._AUGMENTATIONCONFIG _EXPERIMENT.fields_by_name['training_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_training__config__pb2._TRAININGCONFIG _EXPERIMENT.fields_by_name['eval_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_eval__config__pb2._EVALCONFIG _EXPERIMENT.fields_by_name['nms_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_nms__config__pb2._NMSCONFIG _EXPERIMENT.fields_by_name['yolov4_config'].message_type = nvidia__tao__deploy_dot_cv_dot_yolo__v4_dot_proto_dot_yolov4__config__pb2._YOLOV4CONFIG _EXPERIMENT.fields_by_name['class_weighting_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_class__weighting__config__pb2._CLASSWEIGHTINGCONFIG DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_deploy.cv.yolo_v4.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/proto/experiment_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Config Base Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_deploy.cv.yolo_v4.proto.experiment_pb2 import Experiment def load_proto(config): """Load the experiment proto.""" proto = Experiment() def _load_from_file(filename, pb2): if not os.path.exists(filename): raise IOError(f"Specfile not found at: {filename}") with open(filename, "r", encoding="utf-8") as f: merge_text_proto(f.read(), pb2) _load_from_file(config, proto) return proto
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/proto/utils.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/yolo_v4/proto/yolov4_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/yolo_v4/proto/yolov4_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n6nvidia_tao_deploy/cv/yolo_v4/proto/yolov4_config.proto\"\x9b\x04\n\x0cYOLOv4Config\x12\x18\n\x10\x62ig_anchor_shape\x18\x01 \x01(\t\x12\x18\n\x10mid_anchor_shape\x18\x02 \x01(\t\x12\x1a\n\x12small_anchor_shape\x18\x03 \x01(\t\x12 \n\x18matching_neutral_box_iou\x18\x04 \x01(\x02\x12\x18\n\x10\x62ox_matching_iou\x18\x05 \x01(\x02\x12\x0c\n\x04\x61rch\x18\x06 \x01(\t\x12\x0f\n\x07nlayers\x18\x07 \x01(\r\x12\x18\n\x10\x61rch_conv_blocks\x18\x08 \x01(\r\x12\x17\n\x0floss_loc_weight\x18\t \x01(\x02\x12\x1c\n\x14loss_neg_obj_weights\x18\n \x01(\x02\x12\x1a\n\x12loss_class_weights\x18\x0b \x01(\x02\x12\x15\n\rfreeze_blocks\x18\x0c \x03(\x02\x12\x11\n\tfreeze_bn\x18\r \x01(\x08\x12\x12\n\nforce_relu\x18\x0e \x01(\x08\x12\x12\n\nactivation\x18\x15 \x01(\t\x12\x18\n\x10\x66ocal_loss_alpha\x18\x0f \x01(\x02\x12\x18\n\x10\x66ocal_loss_gamma\x18\x10 \x01(\x02\x12\x17\n\x0flabel_smoothing\x18\x11 \x01(\x02\x12\x1a\n\x12\x62ig_grid_xy_extend\x18\x12 \x01(\x02\x12\x1a\n\x12mid_grid_xy_extend\x18\x13 \x01(\x02\x12\x1c\n\x14small_grid_xy_extend\x18\x14 \x01(\x02\x62\x06proto3') ) _YOLOV4CONFIG = _descriptor.Descriptor( name='YOLOv4Config', full_name='YOLOv4Config', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='big_anchor_shape', full_name='YOLOv4Config.big_anchor_shape', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mid_anchor_shape', full_name='YOLOv4Config.mid_anchor_shape', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='small_anchor_shape', full_name='YOLOv4Config.small_anchor_shape', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='matching_neutral_box_iou', full_name='YOLOv4Config.matching_neutral_box_iou', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='box_matching_iou', full_name='YOLOv4Config.box_matching_iou', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='arch', full_name='YOLOv4Config.arch', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nlayers', full_name='YOLOv4Config.nlayers', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='arch_conv_blocks', full_name='YOLOv4Config.arch_conv_blocks', index=7, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_loc_weight', full_name='YOLOv4Config.loss_loc_weight', index=8, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_neg_obj_weights', full_name='YOLOv4Config.loss_neg_obj_weights', index=9, number=10, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_class_weights', full_name='YOLOv4Config.loss_class_weights', index=10, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_blocks', full_name='YOLOv4Config.freeze_blocks', index=11, number=12, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_bn', full_name='YOLOv4Config.freeze_bn', index=12, number=13, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='force_relu', full_name='YOLOv4Config.force_relu', index=13, number=14, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='activation', full_name='YOLOv4Config.activation', index=14, number=21, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='focal_loss_alpha', full_name='YOLOv4Config.focal_loss_alpha', index=15, number=15, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='focal_loss_gamma', full_name='YOLOv4Config.focal_loss_gamma', index=16, number=16, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='label_smoothing', full_name='YOLOv4Config.label_smoothing', index=17, number=17, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='big_grid_xy_extend', full_name='YOLOv4Config.big_grid_xy_extend', index=18, number=18, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mid_grid_xy_extend', full_name='YOLOv4Config.mid_grid_xy_extend', index=19, number=19, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='small_grid_xy_extend', full_name='YOLOv4Config.small_grid_xy_extend', index=20, number=20, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=59, serialized_end=598, ) DESCRIPTOR.message_types_by_name['YOLOv4Config'] = _YOLOV4CONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) YOLOv4Config = _reflection.GeneratedProtocolMessageType('YOLOv4Config', (_message.Message,), dict( DESCRIPTOR = _YOLOV4CONFIG, __module__ = 'nvidia_tao_deploy.cv.yolo_v4.proto.yolov4_config_pb2' # @@protoc_insertion_point(class_scope:YOLOv4Config) )) _sym_db.RegisterMessage(YOLOv4Config) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/proto/yolov4_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """YOLOv4 convert etlt/onnx model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import tempfile from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.yolo_v4.proto.utils import load_proto from nvidia_tao_deploy.cv.yolo_v3.engine_builder import YOLOv3EngineBuilder from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) DEFAULT_MAX_BATCH_SIZE = 1 DEFAULT_MIN_BATCH_SIZE = 1 DEFAULT_OPT_BATCH_SIZE = 1 @monitor_status(name='yolo_v4', mode='gen_trt_engine') def main(args): """YOLOv4 TRT convert.""" # decrypt etlt tmp_onnx_file, file_format = decode_model(args.model_path, args.key) # Load from proto-based spec file es = load_proto(args.experiment_spec) if args.engine_file is not None or args.data_type == 'int8': if args.engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = args.engine_file builder = YOLOv3EngineBuilder(verbose=args.verbose, is_qat=es.training_config.enable_qat, workspace=args.max_workspace_size, min_batch_size=args.min_batch_size, opt_batch_size=args.opt_batch_size, max_batch_size=args.max_batch_size, strict_type_constraints=args.strict_type_constraints, force_ptq=args.force_ptq) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, args.data_type, calib_data_file=args.cal_data_file, calib_input=args.cal_image_dir, calib_cache=args.cal_cache_file, calib_num_images=args.batch_size * args.batches, calib_batch_size=args.batch_size, calib_json_file=args.cal_json_file) logging.info("Export finished successfully.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='gen_trt_engine', description='Generate TRT engine of YOLOv4 model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to a YOLOv4 .etlt or .onnx model file.' ) parser.add_argument( '-k', '--key', type=str, required=False, help='Key to save or load a .etlt model.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( "--data_type", type=str, default="fp32", help="Data type for the TensorRT export.", choices=["fp32", "fp16", "int8"]) parser.add_argument( "--cal_image_dir", default="", type=str, help="Directory of images to run int8 calibration.") parser.add_argument( "--cal_data_file", default=None, type=str, help="Tensorfile to run calibration for int8 optimization.") parser.add_argument( '--cal_cache_file', default=None, type=str, help='Calibration cache file to write to.') parser.add_argument( '--cal_json_file', default=None, type=str, help='Dictionary containing tensor scale for QAT models.') parser.add_argument( "--engine_file", type=str, default=None, help="Path to the exported TRT engine.") parser.add_argument( "--max_batch_size", type=int, default=DEFAULT_MAX_BATCH_SIZE, help="Max batch size for TensorRT engine builder.") parser.add_argument( "--min_batch_size", type=int, default=DEFAULT_MIN_BATCH_SIZE, help="Min batch size for TensorRT engine builder.") parser.add_argument( "--opt_batch_size", type=int, default=DEFAULT_OPT_BATCH_SIZE, help="Opt batch size for TensorRT engine builder.") parser.add_argument( "--batch_size", type=int, default=1, help="Number of images per batch.") parser.add_argument( "--batches", type=int, default=10, help="Number of batches to calibrate over.") parser.add_argument( "--max_workspace_size", type=int, default=2, help="Max memory workspace size to allow in Gb for TensorRT engine builder (default: 2).") parser.add_argument( "-s", "--strict_type_constraints", action="store_true", default=False, help="A Boolean flag indicating whether to apply the \ TensorRT strict type constraints when building the TensorRT engine.") parser.add_argument( "--force_ptq", action="store_true", default=False, help="Flag to force post training quantization for QAT models.") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbosity of the logger.") parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy YOLOv4 scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os from PIL import Image import numpy as np from tqdm.auto import tqdm import logging from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.yolo_v3.dataloader import YOLOv3KITTILoader, aug_letterbox_resize from nvidia_tao_deploy.cv.yolo_v3.inferencer import YOLOv3Inferencer from nvidia_tao_deploy.cv.yolo_v4.proto.utils import load_proto logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='yolo_v4', mode='inference') def main(args): """YOLOv4 TRT inference.""" trt_infer = YOLOv3Inferencer(args.model_path, batch_size=args.batch_size) c, h, w = trt_infer._input_shape # Load from proto-based spec file es = load_proto(args.experiment_spec) conf_thres = es.nms_config.confidence_threshold if es.nms_config.confidence_threshold else 0.01 batch_size = args.batch_size if args.batch_size else es.eval_config.batch_size img_mean = es.augmentation_config.image_mean if c == 3: if img_mean: img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: img_mean = [103.939, 116.779, 123.68] else: if img_mean: img_mean = [img_mean['l']] else: img_mean = [117.3786] # Override path if provided through command line args if args.image_dir: image_dirs = [args.image_dir] else: image_dirs = [d.image_directory_path for d in es.dataset_config.validation_data_sources] # Load mapping_dict from the spec file mapping_dict = dict(es.dataset_config.target_class_mapping) image_depth = es.augmentation_config.output_depth if es.augmentation_config.output_depth else 8 dl = YOLOv3KITTILoader( shape=(c, h, w), image_dirs=image_dirs, label_dirs=[None], mapping_dict=mapping_dict, exclude_difficult=True, batch_size=batch_size, is_inference=True, image_mean=img_mean, image_depth=image_depth, dtype=trt_infer.inputs[0].host.dtype) inv_classes = {v: k for k, v in dl.classes.items()} if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir os.makedirs(results_dir, exist_ok=True) output_annotate_root = os.path.join(results_dir, "images_annotated") output_label_root = os.path.join(results_dir, "labels") os.makedirs(output_annotate_root, exist_ok=True) os.makedirs(output_label_root, exist_ok=True) for i, (imgs, _) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): y_pred = trt_infer.infer(imgs) image_paths = dl.image_paths[np.arange(args.batch_size) + args.batch_size * i] for i in range(len(y_pred)): y_pred_valid = y_pred[i][y_pred[i][:, 1] > conf_thres] for i in range(len(y_pred)): y_pred_valid = y_pred[i][y_pred[i][:, 1] > conf_thres] target_size = np.array([w, h, w, h]) # Scale back bounding box coordinates y_pred_valid[:, 2:6] *= target_size[None, :] # Load image img = Image.open(image_paths[i]) # Handle grayscale images if c == 1 and image_depth == 8: img = img.convert('L') elif c == 1 and image_depth == 16: img = img.convert('I') orig_width, orig_height = img.size img, _, crop_coord = aug_letterbox_resize(img, y_pred_valid[:, 2:6], num_channels=c, resize_shape=(trt_infer.width, trt_infer.height)) img = Image.fromarray(img.astype('uint8')) # Store images bbox_img, label_strings = trt_infer.draw_bbox(img, y_pred_valid, inv_classes, args.threshold) bbox_img = bbox_img.crop((crop_coord[0], crop_coord[1], crop_coord[2], crop_coord[3])) bbox_img = bbox_img.resize((orig_width, orig_height)) img_filename = os.path.basename(image_paths[i]) bbox_img.save(os.path.join(output_annotate_root, img_filename)) # Store labels filename, _ = os.path.splitext(img_filename) label_file_name = os.path.join(output_label_root, filename + ".txt") with open(label_file_name, "w", encoding="utf-8") as f: for l_s in label_strings: f.write(l_s) logging.info("Finished inference.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='infer', description='Inference with a YOLOv4 TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the YOLOv4 TensorRT engine.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) parser.add_argument( '-t', '--threshold', type=float, default=0.3, help='Confidence threshold for inference.') return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import json import numpy as np from tqdm.auto import tqdm import logging from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.yolo_v3.dataloader import YOLOv3KITTILoader from nvidia_tao_deploy.cv.yolo_v3.inferencer import YOLOv3Inferencer from nvidia_tao_deploy.cv.yolo_v4.proto.utils import load_proto from nvidia_tao_deploy.metrics.kitti_metric import KITTIMetric logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='yolo_v4', mode='evaluation') def main(args): """YOLOv4 TRT evaluation.""" trt_infer = YOLOv3Inferencer(args.model_path, batch_size=args.batch_size) c, h, w = trt_infer._input_shape # Load from proto-based spec file es = load_proto(args.experiment_spec) matching_iou_threshold = es.eval_config.matching_iou_threshold if es.eval_config.matching_iou_threshold else 0.5 conf_thres = es.nms_config.confidence_threshold if es.nms_config.confidence_threshold else 0.01 batch_size = args.batch_size if args.batch_size else es.eval_config.batch_size ap_mode = es.eval_config.average_precision_mode ap_mode_dict = {0: "sample", 1: "integrate"} img_mean = es.augmentation_config.image_mean if c == 3: if img_mean: img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: img_mean = [103.939, 116.779, 123.68] else: if img_mean: img_mean = [img_mean['l']] else: img_mean = [117.3786] # Override path if provided through command line args if args.image_dir: image_dirs = [args.image_dir] else: image_dirs = [d.image_directory_path for d in es.dataset_config.validation_data_sources] if args.label_dir: label_dirs = [args.label_dir] else: label_dirs = [d.label_directory_path for d in es.dataset_config.validation_data_sources] # Load mapping_dict from the spec file mapping_dict = dict(es.dataset_config.target_class_mapping) image_depth = es.augmentation_config.output_depth if es.augmentation_config.output_depth else 8 dl = YOLOv3KITTILoader( shape=(c, h, w), image_dirs=image_dirs, label_dirs=label_dirs, mapping_dict=mapping_dict, exclude_difficult=True, batch_size=batch_size, image_mean=img_mean, image_depth=image_depth, dtype=trt_infer.inputs[0].host.dtype) eval_metric = KITTIMetric(n_classes=len(dl.classes), matching_iou_threshold=matching_iou_threshold, conf_thres=conf_thres, average_precision_mode=ap_mode_dict[ap_mode]) gt_labels = [] pred_labels = [] for i, (imgs, labels) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): gt_labels.extend(labels) y_pred = trt_infer.infer(imgs) for i in range(len(y_pred)): y_pred_valid = y_pred[i][y_pred[i][:, 1] > eval_metric.conf_thres] pred_labels.append(y_pred_valid) m_ap, ap = eval_metric(gt_labels, pred_labels, verbose=True) m_ap = np.mean(ap) logging.info("*******************************") class_mapping = {v: k for k, v in dl.classes.items()} eval_results = {} for i in range(len(dl.classes)): eval_results['AP_' + class_mapping[i]] = np.float64(ap[i]) logging.info("{:<14}{:<6}{}".format(class_mapping[i], 'AP', round(ap[i], 5))) # noqa pylint: disable=C0209 logging.info("{:<14}{:<6}{}".format('', 'mAP', round(m_ap, 3))) # noqa pylint: disable=C0209 logging.info("*******************************") # Store evaluation results into JSON if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='eval', description='Evaluate with a YOLOv4 TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the YOLOv4 TensorRT engine.' ) parser.add_argument( '-l', '--label_dir', type=str, required=False, help='Label directory.') parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for yolo v4."""
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto import launch_job import nvidia_tao_deploy.cv.yolo_v4.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_deploy.cv.yolo_v4.scripts, "yolo_v4", sys.argv[1:]) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v4/entrypoint/yolo_v4.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class for performing TensorRT image inference.""" import numpy as np from PIL import ImageDraw import pycocotools.mask as maskUtils import tensorrt as trt from nvidia_tao_deploy.cv.mask_rcnn.utils import generate_segmentation_from_masks, draw_mask_on_image_array from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference def trt_output_process_fn(y_pred, nms_size, mask_size, n_classes): """Proccess raw output from TRT engine.""" y_detection = y_pred[0].reshape((-1, nms_size, 6)) y_mask = y_pred[1].reshape((-1, nms_size, n_classes, mask_size, mask_size)) y_mask[y_mask < 0] = 0 return [y_detection, y_mask] def process_prediction_for_eval(scales, box_coordinates): """Process the model prediction for COCO eval.""" processed_box_coordinates = np.zeros_like(box_coordinates) # Handle the last batch where the # of images is smaller than the batch size. # Need to pad the scales to be in the correct batch shape if len(scales) != box_coordinates.shape[0]: new_scales = [1.0] * box_coordinates.shape[0] new_scales[:len(scales)] = scales scales = new_scales for image_id in range(box_coordinates.shape[0]): scale = scales[image_id] for box_id in range(box_coordinates.shape[1]): # Map [y1, x1, y2, x2] -> [x1, y1, w, h] and multiply detections # by image scale. y1, x1, y2, x2 = box_coordinates[image_id, box_id, :] new_box = scale * np.array([x1, y1, x2 - x1, y2 - y1]) processed_box_coordinates[image_id, box_id, :] = new_box return processed_box_coordinates class MRCNNInferencer(TRTInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, nms_size=100, n_classes=2, mask_size=28, input_shape=None, batch_size=None, data_format="channel_first"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine super().__init__(engine_path) self.nms_size = nms_size self.n_classes = n_classes self.mask_size = mask_size self.max_batch_size = self.engine.max_batch_size self.execute_v2 = False # Execution context is needed for inference self.context = None # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): self._input_shape = self.engine.get_binding_shape(binding)[-3:] assert len(self._input_shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[1] self.width = self._input_shape[2] else: self.height = self._input_shape[0] self.width = self._input_shape[1] # set binding_shape for dynamic input if (input_shape is not None) or (batch_size is not None): self.context = self.engine.create_execution_context() if input_shape is not None: self.context.set_binding_shape(0, input_shape) self.max_batch_size = input_shape[0] else: self.context.set_binding_shape(0, [batch_size] + list(self._input_shape)) self.max_batch_size = batch_size self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volume = trt.volume(self._input_shape) self.numpy_array = np.zeros((self.max_batch_size, input_volume)) def infer(self, imgs, scales=None): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. y_pred = [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] # Process TRT outputs to proper format processed_outputs = trt_output_process_fn(y_pred, n_classes=self.n_classes, mask_size=self.mask_size, nms_size=self.nms_size) detections = {} bs, nd, _, _, _ = processed_outputs[1].shape masks = np.zeros((bs, nd)).tolist() for b in range(bs): for n in range(nd): class_idx = processed_outputs[0][..., -2][b, n] masks[b][n] = processed_outputs[1][b, n, int(class_idx), ...] # if class_idx = -1 masks = np.array(masks) bboxes = process_prediction_for_eval(scales, processed_outputs[0][..., 0:4]) classes = np.copy(processed_outputs[0][..., -2]) scores = np.copy(processed_outputs[0][..., -1]) detections['detection_classes'] = classes detections['detection_scores'] = scores detections['detection_boxes'] = bboxes detections['detection_masks'] = masks detections['num_detections'] = np.array([self.nms_size] * self.max_batch_size).astype(np.int32) return detections def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free() def draw_bbox_and_segm(self, img, classes, scores, bboxes, masks, class_mapping, threshold=0.3): """Draws bounding box and segmentation on image and dump prediction in KITTI format Args: img (numpy.ndarray): Preprocessed image classes (numpy.ndarray): (N x 100) predictions scores (numpy.ndarray): (N x 100) predictions bboxes (numpy.ndarray): (N x 100 x 4) predictions masks (numpy.ndarray): (N x 100 x mask_height x mask_width) predictions class_mapping (dict): key is the class index and value is the class string threshold (float): value to filter predictions """ draw = ImageDraw.Draw(img) color_list = ['Black', 'Red', 'Blue', 'Gold', 'Purple'] label_strings = [] for idx, (cls, score, bbox, mask) in enumerate(zip(classes, scores, bboxes, masks)): cls_name = class_mapping[int(cls)] if float(score) < threshold: continue x1, y1, w, h = bbox x2, y2 = x1 + w, y1 + h draw.rectangle(((x1, y1), (x2, y2)), outline=color_list[int(cls) % len(color_list)]) # txt pad draw.rectangle(((x1, y1), (x1 + 75, y1 + 10)), fill=color_list[int(cls) % len(color_list)]) draw.text((x1, y1), f"{cls_name}: {score:.2f}") # Overlay segmentations mask = np.expand_dims(mask, axis=0) detected_bbox = np.expand_dims(bbox, axis=0) segms = generate_segmentation_from_masks( mask, detected_bbox, image_width=self.width, image_height=self.height, is_image_mask=False) segms = segms[0, :, :] img = draw_mask_on_image_array(img, segms, color=color_list[int(cls) % len(color_list)], alpha=0.4) draw = ImageDraw.Draw(img) # Dump labels json_obj = {} hhh, www = bbox[3] - bbox[1], bbox[2] - bbox[0] json_obj['area'] = int(www * hhh) json_obj['is_crowd'] = 0 json_obj['bbox'] = [int(bbox[1]), int(bbox[0]), int(hhh), int(www)] json_obj['id'] = idx json_obj['category_id'] = int(cls) json_obj['score'] = float(score) # use RLE encoded_mask = maskUtils.encode( np.asfortranarray(segms.astype(np.uint8))) encoded_mask['counts'] = encoded_mask['counts'].decode('ascii') json_obj["segmentation"] = encoded_mask label_strings.append(json_obj) return img, label_strings
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MRCNN TensorRT engine builder.""" import logging import os import random from six.moves import xrange import sys import traceback from tqdm import tqdm try: from uff.model.uff_pb2 import MetaGraph except ImportError: print("Loading uff directly from the package source code") # @scha: To disable tensorflow import issue import importlib import types import pkgutil package = pkgutil.get_loader("uff") # Returns __init__.py path src_code = package.get_filename().replace('__init__.py', 'model/uff_pb2.py') loader = importlib.machinery.SourceFileLoader('helper', src_code) helper = types.ModuleType(loader.name) loader.exec_module(helper) MetaGraph = helper.MetaGraph import numpy as np import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder from nvidia_tao_deploy.engine.tensorfile import TensorFile from nvidia_tao_deploy.engine.tensorfile_calibrator import TensorfileCalibrator from nvidia_tao_deploy.engine.utils import generate_random_tensorfile, prepare_chunk logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class MRCNNEngineBuilder(EngineBuilder): """Parses an UFF graph and builds a TensorRT engine from it.""" def __init__( self, data_format="channels_first", **kwargs ): """Init. Args: data_format (str): data_format. """ super().__init__(**kwargs) self._data_format = data_format def set_input_output_node_names(self): """Set input output node names.""" self._output_node_names = ["generate_detections", "mask_fcn_logits/BiasAdd"] self._input_node_names = ["Input"] def get_input_dims(self, model_path): """Get input dimension of UFF model.""" metagraph = MetaGraph() with open(model_path, "rb") as f: metagraph.ParseFromString(f.read()) for node in metagraph.graphs[0].nodes: if node.operation == "Input": return np.array(node.fields['shape'].i_list.val)[1:] raise ValueError("Input dimension is not found in the UFF metagraph.") def create_network(self, model_path, file_format="uff"): """Parse the ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. """ if file_format == "uff": logger.info("Parsing UFF model") self.network = self.builder.create_network() self.parser = trt.UffParser() self.set_input_output_node_names() in_tensor_name = self._input_node_names[0] self._input_dims = self.get_input_dims(model_path) input_dict = {in_tensor_name: self._input_dims} for key, value in input_dict.items(): if self._data_format == "channels_first": self.parser.register_input(key, value, trt.UffInputOrder(0)) else: self.parser.register_input(key, value, trt.UffInputOrder(1)) for name in self._output_node_names: self.parser.register_output(name) self.builder.max_batch_size = self.max_batch_size try: assert self.parser.parse(model_path, self.network, trt.DataType.FLOAT) except AssertionError as e: logger.error("Failed to parse UFF File") _, _, tb = sys.exc_info() traceback.print_tb(tb) # Fixed format tb_info = traceback.extract_tb(tb) _, line, _, text = tb_info[-1] raise AssertionError( f"UFF parsing failed on line {line} in statement {text}" ) from e else: logger.info("Parsing UFF model") raise NotImplementedError("UFF for Faster RCNN is not supported") def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None, image_mean=None): """Simple function to set an Tensorfile based int8 calibrator. Args: calib_data_file: Path to the TensorFile. If the tensorfile doesn't exist at this path, then one is created with either n_batches of random tensors, images from the file in calib_input of dimensions (batch_size,) + (input_dims). calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. image_mean: Image mean per channel. Returns: No explicit returns. """ logger.info("Calibrating using TensorfileCalibrator") n_batches = calib_num_images // calib_batch_size if not os.path.exists(calib_data_file): self.generate_tensor_file(calib_data_file, calib_input, self._input_dims, n_batches=n_batches, batch_size=calib_batch_size, image_mean=image_mean) self.config.int8_calibrator = TensorfileCalibrator(calib_data_file, calib_cache, n_batches, calib_batch_size) def generate_tensor_file(self, data_file_name, calibration_images_dir, input_dims, n_batches=10, batch_size=1, image_mean=None): """Generate calibration Tensorfile for int8 calibrator. This function generates a calibration tensorfile from a directory of images, or dumps n_batches of random numpy arrays of shape (batch_size,) + (input_dims). Args: data_file_name (str): Path to the output tensorfile to be saved. calibration_images_dir (str): Path to the images to generate a tensorfile from. input_dims (list): Input shape in CHW order. n_batches (int): Number of batches to be saved. batch_size (int): Number of images per batch. image_mean (list): Image mean per channel. Returns: No explicit returns. """ if not os.path.exists(calibration_images_dir): logger.info("Generating a tensorfile with random tensor images. This may work well as " "a profiling tool, however, it may result in inaccurate results at " "inference. Please generate a tensorfile using the tlt-int8-tensorfile, " "or provide a custom directory of images for best performance.") generate_random_tensorfile(data_file_name, input_dims, n_batches=n_batches, batch_size=batch_size) else: # Preparing the list of images to be saved. num_images = n_batches * batch_size valid_image_ext = ['jpg', 'jpeg', 'png'] image_list = [os.path.join(calibration_images_dir, image) for image in os.listdir(calibration_images_dir) if image.split('.')[-1] in valid_image_ext] if len(image_list) < num_images: raise ValueError('Not enough number of images provided:' f' {len(image_list)} < {num_images}') image_idx = random.sample(xrange(len(image_list)), num_images) self.set_data_preprocessing_parameters(input_dims, image_mean) # Writing out processed dump. with TensorFile(data_file_name, 'w') as f: for chunk in tqdm(image_idx[x:x + batch_size] for x in xrange(0, len(image_idx), batch_size)): dump_data = prepare_chunk(chunk, image_list, image_width=input_dims[2], image_height=input_dims[1], channels=input_dims[0], batch_size=batch_size, **self.preprocessing_arguments) f.write(dump_data) f.closed def set_data_preprocessing_parameters(self, input_dims, image_mean=None): """Set data pre-processing parameters for the int8 calibration.""" num_channels = input_dims[0] if num_channels == 3: means = [123.675, 116.280, 103.53] else: raise NotImplementedError(f"Invalid number of dimensions {num_channels}.") # ([R, G, B]/ 255 - [0.485, 0.456, 0.406]) / 0.224 # (R/G/B - mean) * ratio self.preprocessing_arguments = {"scale": 0.017507, "means": means, "flip_channel": False}
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy MRCNN.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions used for mask visualization.""" import cv2 import numpy as np from PIL import Image from PIL import ImageColor def draw_mask_on_image_array(pil_image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: PIL image (img_height, img_width, 3) mask: a uint8 numpy array of shape (img_height, img_width) with values of either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ rgb = ImageColor.getrgb(color) solid_color = np.expand_dims(np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0 * alpha * mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) return pil_image def generate_segmentation_from_masks(masks, detected_boxes, image_height, image_width, is_image_mask=False): """Generates segmentation result from instance masks. Args: masks: a numpy array of shape [N, mask_height, mask_width] representing the instance masks w.r.t. the `detected_boxes`. detected_boxes: a numpy array of shape [N, 4] representing the reference bounding boxes. The expected format is xywh. image_height: an integer representing the height of the image. image_width: an integer representing the width of the image. is_image_mask: bool. True: input masks are whole-image masks. False: input masks are bounding-box level masks. Returns: segms: a numpy array of shape [N, image_height, image_width] representing the instance masks *pasted* on the image canvas. """ def expand_boxes(boxes, scale): """Expands an array of boxes by a given scale.""" # Reference: # https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/boxes.py#L227 # The `boxes` in the reference implementation is in [x1, y1, x2, y2] form, # whereas `boxes` here is in [x1, y1, w, h] form w_half = boxes[:, 2] * .5 h_half = boxes[:, 3] * .5 x_c = boxes[:, 0] + w_half y_c = boxes[:, 1] + h_half w_half *= scale h_half *= scale boxes_exp = np.zeros(boxes.shape) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp # Reference: # https://github.com/facebookresearch/Detectron/blob/master/detectron/core/test.py#L812 # To work around an issue with cv2.resize (it seems to automatically pad # with repeated border values), we manually zero-pad the masks by 1 pixel # prior to resizing back to the original image resolution. This prevents # "top hat" artifacts. We therefore need to expand the reference boxes by an # appropriate factor. _, mask_height, mask_width = masks.shape scale = max((mask_width + 2.0) / mask_width, (mask_height + 2.0) / mask_height) ref_boxes = expand_boxes(detected_boxes, scale) ref_boxes = ref_boxes.astype(np.int32) padded_mask = np.zeros((mask_height + 2, mask_width + 2), dtype=np.float32) segms = [] for mask_ind, mask in enumerate(masks): im_mask = np.zeros((image_height, image_width), dtype=np.uint8) if is_image_mask: # Process whole-image masks. im_mask[:, :] = mask[:, :] else: # Process mask inside bounding boxes. padded_mask[1:-1, 1:-1] = mask[:, :] ref_box = ref_boxes[mask_ind, :] w = ref_box[2] - ref_box[0] + 1 h = ref_box[3] - ref_box[1] + 1 w = np.maximum(w, 1) h = np.maximum(h, 1) mask = cv2.resize(padded_mask, (w, h)) mask = np.array(mask > 0.5, dtype=np.uint8) x_0 = max(ref_box[0], 0) x_1 = min(ref_box[2] + 1, image_width) y_0 = max(ref_box[1], 0) y_1 = min(ref_box[3] + 1, image_height) im_mask[y_0:y_1, x_0:x_1] = \ mask[(y_0 - ref_box[1]):(y_1 - ref_box[1]), (x_0 - ref_box[0]):(x_1 - ref_box[0])] segms.append(im_mask) segms = np.array(segms) assert masks.shape[0] == segms.shape[0] return segms
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MRCNN loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from PIL import Image from nvidia_tao_deploy.dataloader.coco import COCOLoader from nvidia_tao_deploy.inferencer.preprocess_input import preprocess_input class MRCNNCOCOLoader(COCOLoader): """MRCNN DataLoader.""" def preprocess_image(self, image_path): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. This Image Batcher implements one algorithm for now: * MRCNN: Resizes and pads the image to fit the input size. Args: image_path(str): The path to the image on disk to load. Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch scale (list): the resize scale used, if any. """ def resize_pad(image, pad_color=(0, 0, 0)): """Resize and Pad. A subroutine to implement padding and resizing. This will resize the image to fit fully within the input size, and pads the remaining bottom-right portions with the value provided. Args: image (PIL.Image): The PIL image object pad_color (list): The RGB values to use for the padded area. Default: Black/Zeros. Returns: pad (PIL.Image): The PIL image object already padded and cropped, scale (list): the resize scale used. """ width, height = image.size width_scale = width / self.width height_scale = height / self.height scale = 1.0 / max(width_scale, height_scale) image = image.resize( (round(width * scale), round(height * scale)), resample=Image.BILINEAR) pad = Image.new("RGB", (self.width, self.height)) pad.paste(pad_color, [0, 0, self.width, self.height]) pad.paste(image) return pad, scale scale = None image = Image.open(image_path) image = image.convert(mode='RGB') # zero pad image, scale = resize_pad(image, (124, 116, 104)) image = np.asarray(image, dtype=self.dtype) if self.data_format == "channels_first": image = np.transpose(image, (2, 0, 1)) # Normalize and apply imag mean and std image = preprocess_input(image, data_format=self.data_format, mode='torch') return image, scale
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/dataloader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy MRCNN Proto.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/mask_rcnn/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.mask_rcnn.proto import maskrcnn_config_pb2 as nvidia__tao__deploy_dot_cv_dot_mask__rcnn_dot_proto_dot_maskrcnn__config__pb2 from nvidia_tao_deploy.cv.mask_rcnn.proto import data_config_pb2 as nvidia__tao__deploy_dot_cv_dot_mask__rcnn_dot_proto_dot_data__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/mask_rcnn/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n5nvidia_tao_deploy/cv/mask_rcnn/proto/experiment.proto\x1a:nvidia_tao_deploy/cv/mask_rcnn/proto/maskrcnn_config.proto\x1a\x36nvidia_tao_deploy/cv/mask_rcnn/proto/data_config.proto\"\xd1\x05\n\nExperiment\x12(\n\x0fmaskrcnn_config\x18\x01 \x01(\x0b\x32\x0f.MaskRCNNConfig\x12 \n\x0b\x64\x61ta_config\x18\x02 \x01(\x0b\x32\x0b.DataConfig\x12!\n\x19skip_checkpoint_variables\x18\x03 \x01(\t\x12\x18\n\x10train_batch_size\x18\x05 \x01(\r\x12\x1e\n\x16save_checkpoints_steps\x18\x06 \x01(\r\x12\x1a\n\x12num_steps_per_eval\x18\x07 \x01(\r\x12\x10\n\x08momentum\x18\x08 \x01(\x02\x12\x17\n\x0fl2_weight_decay\x18\n \x01(\x02\x12\x1c\n\x14warmup_learning_rate\x18\x0b \x01(\x02\x12\x1a\n\x12init_learning_rate\x18\x0c \x01(\x02\x12\"\n\x1aglobal_gradient_clip_ratio\x18\r \x01(\x02\x12\x13\n\x0btotal_steps\x18\x0e \x01(\r\x12 \n\x18visualize_images_summary\x18\x0f \x01(\x08\x12\x12\n\ncheckpoint\x18\x13 \x01(\t\x12\x17\n\x0f\x65val_batch_size\x18\x14 \x01(\r\x12\x14\n\x0cwarmup_steps\x18\x15 \x01(\r\x12\x1b\n\x13learning_rate_steps\x18\x16 \x01(\t\x12\"\n\x1alearning_rate_decay_levels\x18\x17 \x01(\t\x12\x0c\n\x04seed\x18\x18 \x01(\r\x12\x18\n\x10report_frequency\x18\x19 \x01(\r\x12\x0f\n\x07use_amp\x18\x1a \x01(\x08\x12\x19\n\x11pruned_model_path\x18\x1b \x01(\t\x12\x17\n\x0fl1_weight_decay\x18\x1c \x01(\x02\x12\x12\n\nnum_epochs\x18\x1d \x01(\r\x12\x1e\n\x16num_examples_per_epoch\x18\x1e \x01(\r\x12\x19\n\x11logging_frequency\x18\x1f \x01(\rb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_mask__rcnn_dot_proto_dot_maskrcnn__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_mask__rcnn_dot_proto_dot_data__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='maskrcnn_config', full_name='Experiment.maskrcnn_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data_config', full_name='Experiment.data_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='skip_checkpoint_variables', full_name='Experiment.skip_checkpoint_variables', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_batch_size', full_name='Experiment.train_batch_size', index=3, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='save_checkpoints_steps', full_name='Experiment.save_checkpoints_steps', index=4, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_steps_per_eval', full_name='Experiment.num_steps_per_eval', index=5, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='momentum', full_name='Experiment.momentum', index=6, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='l2_weight_decay', full_name='Experiment.l2_weight_decay', index=7, number=10, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='warmup_learning_rate', full_name='Experiment.warmup_learning_rate', index=8, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='init_learning_rate', full_name='Experiment.init_learning_rate', index=9, number=12, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='global_gradient_clip_ratio', full_name='Experiment.global_gradient_clip_ratio', index=10, number=13, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='total_steps', full_name='Experiment.total_steps', index=11, number=14, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='visualize_images_summary', full_name='Experiment.visualize_images_summary', index=12, number=15, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='checkpoint', full_name='Experiment.checkpoint', index=13, number=19, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_batch_size', full_name='Experiment.eval_batch_size', index=14, number=20, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='warmup_steps', full_name='Experiment.warmup_steps', index=15, number=21, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='learning_rate_steps', full_name='Experiment.learning_rate_steps', index=16, number=22, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='learning_rate_decay_levels', full_name='Experiment.learning_rate_decay_levels', index=17, number=23, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='seed', full_name='Experiment.seed', index=18, number=24, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='report_frequency', full_name='Experiment.report_frequency', index=19, number=25, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_amp', full_name='Experiment.use_amp', index=20, number=26, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pruned_model_path', full_name='Experiment.pruned_model_path', index=21, number=27, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='l1_weight_decay', full_name='Experiment.l1_weight_decay', index=22, number=28, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_epochs', full_name='Experiment.num_epochs', index=23, number=29, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_examples_per_epoch', full_name='Experiment.num_examples_per_epoch', index=24, number=30, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='logging_frequency', full_name='Experiment.logging_frequency', index=25, number=31, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=174, serialized_end=895, ) _EXPERIMENT.fields_by_name['maskrcnn_config'].message_type = nvidia__tao__deploy_dot_cv_dot_mask__rcnn_dot_proto_dot_maskrcnn__config__pb2._MASKRCNNCONFIG _EXPERIMENT.fields_by_name['data_config'].message_type = nvidia__tao__deploy_dot_cv_dot_mask__rcnn_dot_proto_dot_data__config__pb2._DATACONFIG DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_deploy.cv.mask_rcnn.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/proto/experiment_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Config Base Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_deploy.cv.mask_rcnn.proto.experiment_pb2 import Experiment def load_proto(config): """Load the experiment proto.""" proto = Experiment() def _load_from_file(filename, pb2): if not os.path.exists(filename): raise IOError(f"Specfile not found at: {filename}") with open(filename, "r", encoding="utf-8") as f: merge_text_proto(f.read(), pb2) _load_from_file(config, proto) return proto
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/proto/utils.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/mask_rcnn/proto/maskrcnn_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/mask_rcnn/proto/maskrcnn_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n:nvidia_tao_deploy/cv/mask_rcnn/proto/maskrcnn_config.proto\"\x8c\x07\n\x0eMaskRCNNConfig\x12\x1b\n\x13rpn_box_loss_weight\x18\x01 \x01(\x02\x12!\n\x19\x66\x61st_rcnn_box_loss_weight\x18\x02 \x01(\x02\x12\x1e\n\x16mrcnn_weight_loss_mask\x18\x03 \x01(\x02\x12\x11\n\tfreeze_bn\x18\x04 \x01(\x08\x12\x18\n\x10\x62\x62ox_reg_weights\x18\x05 \x01(\t\x12\x15\n\raspect_ratios\x18\x06 \x01(\t\x12\x14\n\x0cgt_mask_size\x18\x07 \x01(\r\x12\x1c\n\x14rpn_positive_overlap\x18\x08 \x01(\x02\x12\x1c\n\x14rpn_negative_overlap\x18\t \x01(\x02\x12\x1d\n\x15rpn_batch_size_per_im\x18\n \x01(\r\x12\x17\n\x0frpn_fg_fraction\x18\x0b \x01(\x02\x12\x14\n\x0crpn_min_size\x18\x0c \x01(\x02\x12\x19\n\x11\x62\x61tch_size_per_im\x18\r \x01(\r\x12\x13\n\x0b\x66g_fraction\x18\x0e \x01(\x02\x12\x11\n\tfg_thresh\x18\x0f \x01(\x02\x12\x14\n\x0c\x62g_thresh_hi\x18\x10 \x01(\x02\x12\x14\n\x0c\x62g_thresh_lo\x18\x11 \x01(\x02\x12\x1e\n\x16\x66\x61st_rcnn_mlp_head_dim\x18\x12 \x01(\r\x12\x14\n\x0cinclude_mask\x18\x13 \x01(\x08\x12\x18\n\x10mrcnn_resolution\x18\x14 \x01(\r\x12\x1e\n\x16train_rpn_pre_nms_topn\x18\x15 \x01(\r\x12\x1f\n\x17train_rpn_post_nms_topn\x18\x16 \x01(\r\x12\x1f\n\x17train_rpn_nms_threshold\x18\x17 \x01(\x02\x12!\n\x19test_detections_per_image\x18\x18 \x01(\r\x12\x10\n\x08test_nms\x18\x19 \x01(\x02\x12\x1d\n\x15test_rpn_pre_nms_topn\x18\x1a \x01(\r\x12\x1e\n\x16test_rpn_post_nms_topn\x18\x1b \x01(\r\x12\x1b\n\x13test_rpn_nms_thresh\x18\x1c \x01(\x02\x12\x11\n\tmin_level\x18\x1d \x01(\r\x12\x11\n\tmax_level\x18\x1e \x01(\r\x12\x12\n\nnum_scales\x18\x1f \x01(\r\x12\x14\n\x0c\x61nchor_scale\x18 \x01(\r\x12\x0c\n\x04\x61rch\x18! \x01(\t\x12\x0f\n\x07nlayers\x18\" \x01(\r\x12\x15\n\rfreeze_blocks\x18# \x01(\tb\x06proto3') ) _MASKRCNNCONFIG = _descriptor.Descriptor( name='MaskRCNNConfig', full_name='MaskRCNNConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='rpn_box_loss_weight', full_name='MaskRCNNConfig.rpn_box_loss_weight', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fast_rcnn_box_loss_weight', full_name='MaskRCNNConfig.fast_rcnn_box_loss_weight', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mrcnn_weight_loss_mask', full_name='MaskRCNNConfig.mrcnn_weight_loss_mask', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_bn', full_name='MaskRCNNConfig.freeze_bn', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bbox_reg_weights', full_name='MaskRCNNConfig.bbox_reg_weights', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='aspect_ratios', full_name='MaskRCNNConfig.aspect_ratios', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gt_mask_size', full_name='MaskRCNNConfig.gt_mask_size', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rpn_positive_overlap', full_name='MaskRCNNConfig.rpn_positive_overlap', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rpn_negative_overlap', full_name='MaskRCNNConfig.rpn_negative_overlap', index=8, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rpn_batch_size_per_im', full_name='MaskRCNNConfig.rpn_batch_size_per_im', index=9, number=10, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rpn_fg_fraction', full_name='MaskRCNNConfig.rpn_fg_fraction', index=10, number=11, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rpn_min_size', full_name='MaskRCNNConfig.rpn_min_size', index=11, number=12, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size_per_im', full_name='MaskRCNNConfig.batch_size_per_im', index=12, number=13, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fg_fraction', full_name='MaskRCNNConfig.fg_fraction', index=13, number=14, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fg_thresh', full_name='MaskRCNNConfig.fg_thresh', index=14, number=15, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bg_thresh_hi', full_name='MaskRCNNConfig.bg_thresh_hi', index=15, number=16, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='bg_thresh_lo', full_name='MaskRCNNConfig.bg_thresh_lo', index=16, number=17, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='fast_rcnn_mlp_head_dim', full_name='MaskRCNNConfig.fast_rcnn_mlp_head_dim', index=17, number=18, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='include_mask', full_name='MaskRCNNConfig.include_mask', index=18, number=19, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mrcnn_resolution', full_name='MaskRCNNConfig.mrcnn_resolution', index=19, number=20, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_rpn_pre_nms_topn', full_name='MaskRCNNConfig.train_rpn_pre_nms_topn', index=20, number=21, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_rpn_post_nms_topn', full_name='MaskRCNNConfig.train_rpn_post_nms_topn', index=21, number=22, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_rpn_nms_threshold', full_name='MaskRCNNConfig.train_rpn_nms_threshold', index=22, number=23, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_detections_per_image', full_name='MaskRCNNConfig.test_detections_per_image', index=23, number=24, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_nms', full_name='MaskRCNNConfig.test_nms', index=24, number=25, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_rpn_pre_nms_topn', full_name='MaskRCNNConfig.test_rpn_pre_nms_topn', index=25, number=26, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_rpn_post_nms_topn', full_name='MaskRCNNConfig.test_rpn_post_nms_topn', index=26, number=27, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_rpn_nms_thresh', full_name='MaskRCNNConfig.test_rpn_nms_thresh', index=27, number=28, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_level', full_name='MaskRCNNConfig.min_level', index=28, number=29, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_level', full_name='MaskRCNNConfig.max_level', index=29, number=30, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_scales', full_name='MaskRCNNConfig.num_scales', index=30, number=31, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='anchor_scale', full_name='MaskRCNNConfig.anchor_scale', index=31, number=32, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='arch', full_name='MaskRCNNConfig.arch', index=32, number=33, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nlayers', full_name='MaskRCNNConfig.nlayers', index=33, number=34, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_blocks', full_name='MaskRCNNConfig.freeze_blocks', index=34, number=35, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=63, serialized_end=971, ) DESCRIPTOR.message_types_by_name['MaskRCNNConfig'] = _MASKRCNNCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) MaskRCNNConfig = _reflection.GeneratedProtocolMessageType('MaskRCNNConfig', (_message.Message,), dict( DESCRIPTOR = _MASKRCNNCONFIG, __module__ = 'nvidia_tao_deploy.cv.mask_rcnn.proto.maskrcnn_config_pb2' # @@protoc_insertion_point(class_scope:MaskRCNNConfig) )) _sym_db.RegisterMessage(MaskRCNNConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/proto/maskrcnn_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/mask_rcnn/proto/data_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/mask_rcnn/proto/data_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n6nvidia_tao_deploy/cv/mask_rcnn/proto/data_config.proto\"\xcb\x02\n\nDataConfig\x12\x12\n\nimage_size\x18\x01 \x01(\t\x12\x1a\n\x12\x61ugment_input_data\x18\x02 \x01(\x08\x12\x13\n\x0bnum_classes\x18\x03 \x01(\r\x12\"\n\x1askip_crowd_during_training\x18\x04 \x01(\x08\x12\x1d\n\x15training_file_pattern\x18\x06 \x01(\t\x12\x1f\n\x17validation_file_pattern\x18\x07 \x01(\t\x12\x15\n\rval_json_file\x18\x08 \x01(\t\x12\x14\n\x0c\x65val_samples\x18\t \x01(\r\x12\x1c\n\x14prefetch_buffer_size\x18\n \x01(\r\x12\x1b\n\x13shuffle_buffer_size\x18\x0b \x01(\r\x12\x11\n\tn_workers\x18\x0c \x01(\r\x12\x19\n\x11max_num_instances\x18\r \x01(\rb\x06proto3') ) _DATACONFIG = _descriptor.Descriptor( name='DataConfig', full_name='DataConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='image_size', full_name='DataConfig.image_size', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='augment_input_data', full_name='DataConfig.augment_input_data', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_classes', full_name='DataConfig.num_classes', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='skip_crowd_during_training', full_name='DataConfig.skip_crowd_during_training', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_file_pattern', full_name='DataConfig.training_file_pattern', index=4, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_file_pattern', full_name='DataConfig.validation_file_pattern', index=5, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='val_json_file', full_name='DataConfig.val_json_file', index=6, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_samples', full_name='DataConfig.eval_samples', index=7, number=9, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='prefetch_buffer_size', full_name='DataConfig.prefetch_buffer_size', index=8, number=10, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='shuffle_buffer_size', full_name='DataConfig.shuffle_buffer_size', index=9, number=11, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_workers', full_name='DataConfig.n_workers', index=10, number=12, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_num_instances', full_name='DataConfig.max_num_instances', index=11, number=13, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=59, serialized_end=390, ) DESCRIPTOR.message_types_by_name['DataConfig'] = _DATACONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) DataConfig = _reflection.GeneratedProtocolMessageType('DataConfig', (_message.Message,), dict( DESCRIPTOR = _DATACONFIG, __module__ = 'nvidia_tao_deploy.cv.mask_rcnn.proto.data_config_pb2' # @@protoc_insertion_point(class_scope:DataConfig) )) _sym_db.RegisterMessage(DataConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/proto/data_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MRCNN convert etlt/onnx model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import tempfile from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.mask_rcnn.engine_builder import MRCNNEngineBuilder from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) DEFAULT_MAX_BATCH_SIZE = 1 DEFAULT_MIN_BATCH_SIZE = 1 DEFAULT_OPT_BATCH_SIZE = 1 @monitor_status(name='mask_rcnn', mode='gen_trt_engine') def main(args): """Convert encrypted uff or onnx model to TRT engine.""" # decrypt etlt tmp_onnx_file, file_format = decode_model(args.model_path, args.key) if args.engine_file is not None or args.data_type == 'int8': if args.engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = args.engine_file builder = MRCNNEngineBuilder(verbose=args.verbose, workspace=args.max_workspace_size, min_batch_size=args.min_batch_size, opt_batch_size=args.opt_batch_size, max_batch_size=args.max_batch_size, strict_type_constraints=args.strict_type_constraints) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, args.data_type, calib_data_file=args.cal_data_file, calib_input=args.cal_image_dir, calib_cache=args.cal_cache_file, calib_num_images=args.batch_size * args.batches, calib_batch_size=args.batch_size) logging.info("Export finished successfully.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='gen_trt_engine', description='Generate TRT engine of MRCNN model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to a MRCNN .etlt or .onnx model file.' ) parser.add_argument( '-k', '--key', type=str, required=False, help='Key to save or load a .etlt model.' ) parser.add_argument( "--data_type", type=str, default="fp32", help="Data type for the TensorRT export.", choices=["fp32", "fp16", "int8"]) parser.add_argument( "--cal_image_dir", default="", type=str, help="Directory of images to run int8 calibration.") parser.add_argument( "--cal_data_file", default=None, type=str, help="Tensorfile to run calibration for int8 optimization.") parser.add_argument( '--cal_cache_file', default=None, type=str, help='Calibration cache file to write to.') parser.add_argument( "--engine_file", type=str, default=None, help="Path to the exported TRT engine.") parser.add_argument( "--max_batch_size", type=int, default=DEFAULT_MAX_BATCH_SIZE, help="Max batch size for TensorRT engine builder.") parser.add_argument( "--min_batch_size", type=int, default=DEFAULT_MIN_BATCH_SIZE, help="Min batch size for TensorRT engine builder.") parser.add_argument( "--opt_batch_size", type=int, default=DEFAULT_OPT_BATCH_SIZE, help="Opt batch size for TensorRT engine builder.") parser.add_argument( "--batch_size", type=int, default=1, help="Number of images per batch.") parser.add_argument( "--batches", type=int, default=10, help="Number of batches to calibrate over.") parser.add_argument( "--max_workspace_size", type=int, default=2, help="Max memory workspace size to allow in Gb for TensorRT engine builder (default: 2).") parser.add_argument( "-s", "--strict_type_constraints", action="store_true", default=False, help="A Boolean flag indicating whether to apply the \ TensorRT strict type constraints when building the TensorRT engine.") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbosity of the logger.") parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser() return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Mask RCNN scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os from PIL import Image import logging import json from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.mask_rcnn.inferencer import MRCNNInferencer from nvidia_tao_deploy.cv.mask_rcnn.proto.utils import load_proto from nvidia_tao_deploy.utils.image_batcher import ImageBatcher logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) def resize_pad(image, model_width, model_height, pad_color=(0, 0, 0)): """Resize and Pad. A subroutine to implement padding and resizing. This will resize the image to fit fully within the input size, and pads the remaining bottom-right portions with the value provided. Args: image (PIL.Image): The PIL image object pad_color (list): The RGB values to use for the padded area. Default: Black/Zeros. Returns: pad (PIL.Image): The PIL image object already padded and cropped, scale (list): the resize scale used. """ width, height = image.size width_scale = width / model_width height_scale = height / model_height scale = 1.0 / max(width_scale, height_scale) image = image.resize( (round(width * scale), round(height * scale)), resample=Image.BILINEAR) pad = Image.new("RGB", (model_width, model_height)) pad.paste(pad_color, [0, 0, model_width, model_height]) pad.paste(image) padded = (abs(round(width * scale) - model_width), abs(round(height * scale) - model_height)) return pad, scale, padded def get_label_dict(label_txt): """Create label dict from txt file.""" with open(label_txt, 'r', encoding="utf-8") as f: labels = f.readlines() result = {i + 1: label.strip() for i, label in enumerate(labels)} result[-1] = "background" return result @monitor_status(name='mask_rcnn', mode='inference') def main(args): """MRCNN TRT inference.""" # Load from proto-based spec file es = load_proto(args.experiment_spec) mask_size = es.maskrcnn_config.mrcnn_resolution if es.maskrcnn_config.mrcnn_resolution else 28 nms_size = es.maskrcnn_config.test_detections_per_image if es.maskrcnn_config.test_detections_per_image else 100 trt_infer = MRCNNInferencer(args.model_path, nms_size=nms_size, n_classes=es.data_config.num_classes, mask_size=mask_size) # Inference may not have labels. Hence, use image batcher batch_size = trt_infer.max_batch_size batcher = ImageBatcher(args.image_dir, (batch_size,) + trt_infer._input_shape, trt_infer.inputs[0].host.dtype, preprocessor="MRCNN") # Create results directories if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir os.makedirs(results_dir, exist_ok=True) output_annotate_root = os.path.join(results_dir, "images_annotated") output_label_root = os.path.join(results_dir, "labels") os.makedirs(output_annotate_root, exist_ok=True) os.makedirs(output_label_root, exist_ok=True) if not os.path.exists(args.class_map): raise FileNotFoundError(f"Class map is required for inference! {args.class_map} does not exist.") inv_classes = get_label_dict(args.class_map) for batch, img_paths, scales in tqdm(batcher.get_batch(), total=batcher.num_batches, desc="Producing predictions"): detections = trt_infer.infer(batch, scales) for idx, img_path in enumerate(img_paths): # Load Image img = Image.open(img_path) orig_width, orig_height = img.size img, sc, padding = resize_pad(img, trt_infer.width, trt_infer.height) detections['detection_boxes'][idx] /= sc bbox_img, label_strings = trt_infer.draw_bbox_and_segm(img, detections['detection_classes'][idx], detections['detection_scores'][idx], detections['detection_boxes'][idx], detections['detection_masks'][idx], inv_classes, args.threshold) # Crop out padded region and resize to original image bbox_img = bbox_img.crop((0, 0, trt_infer.width - padding[0], trt_infer.height - padding[1])) bbox_img = bbox_img.resize((orig_width, orig_height)) img_filename = os.path.basename(img_path) bbox_img.save(os.path.join(output_annotate_root, img_filename)) # Store labels filename, _ = os.path.splitext(img_filename) label_file_name = os.path.join(output_label_root, filename + ".json") # Add image path in label dump for i in range(len(label_strings)): label_strings[i]['image_id'] = img_path with open(label_file_name, "w", encoding="utf-8") as f: json.dump(label_strings, f, indent=4, sort_keys=True) logging.info("Finished inference.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='infer', description='Inference with a MRCNN TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the MRCNN TensorRT engine.' ) parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) parser.add_argument( '-c', '--class_map', type=str, default=None, required=True, help='The path to the class label file.' ) parser.add_argument( '-t', '--threshold', type=float, default=0.6, help='Confidence threshold for inference.' ) parser.add_argument( '--include_mask', action='store_true', required=False, default=None, help=argparse.SUPPRESS ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import operator import copy import logging import json import six import numpy as np from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.mask_rcnn.dataloader import MRCNNCOCOLoader from nvidia_tao_deploy.cv.mask_rcnn.inferencer import MRCNNInferencer from nvidia_tao_deploy.cv.mask_rcnn.proto.utils import load_proto from nvidia_tao_deploy.metrics.coco_metric import EvaluationMetric logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='mask_rcnn', mode='evaluation') def main(args): """MRCNN TRT evaluation.""" # Load from proto-based spec file es = load_proto(args.experiment_spec) val_json_file = es.data_config.val_json_file mask_size = es.maskrcnn_config.mrcnn_resolution if es.maskrcnn_config.mrcnn_resolution else 28 nms_size = es.maskrcnn_config.test_detections_per_image if es.maskrcnn_config.test_detections_per_image else 100 eval_samples = es.data_config.eval_samples if es.data_config.eval_samples else 0 eval_metric = EvaluationMetric(val_json_file, include_mask=True) # Only True is supported trt_infer = MRCNNInferencer(args.model_path, nms_size=nms_size, n_classes=es.data_config.num_classes, mask_size=mask_size) dl = MRCNNCOCOLoader( val_json_file, batch_size=trt_infer.max_batch_size, data_format="channels_first", shape=[trt_infer.max_batch_size] + list(trt_infer._input_shape), dtype=trt_infer.inputs[0].host.dtype, image_dir=args.image_dir, eval_samples=eval_samples) predictions = { 'detection_scores': [], 'detection_boxes': [], 'detection_classes': [], 'detection_masks': [], 'source_id': [], 'image_info': [], 'num_detections': [] } def evaluation_preds(preds): # Essential to avoid modifying the source dict _preds = copy.deepcopy(preds) for k, _ in six.iteritems(_preds): _preds[k] = np.concatenate(_preds[k], axis=0) eval_results = eval_metric.predict_metric_fn(_preds) return eval_results for imgs, scale, source_id, labels in tqdm(dl, total=len(dl), desc="Producing predictions"): image = np.array(imgs) image_info = [] for i, label in enumerate(labels): image_info.append([label[-1][0], label[-1][1], scale[i], label[-1][2], label[-1][3]]) image_info = np.array(image_info) detections = trt_infer.infer(image, scale) predictions['detection_classes'].append(detections['detection_classes']) predictions['detection_scores'].append(detections['detection_scores']) predictions['detection_boxes'].append(detections['detection_boxes']) predictions['detection_masks'].append(detections['detection_masks']) predictions['num_detections'].append(detections['num_detections']) predictions['image_info'].append(image_info) predictions['source_id'].append(source_id) eval_results = evaluation_preds(preds=predictions) for key, value in sorted(eval_results.items(), key=operator.itemgetter(0)): eval_results[key] = float(value) logging.info("%s: %.9f", key, value) if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='eval', description='Evaluate with a MRCNN TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the MRCNN TensorRT engine.' ) parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for mask rcnn."""
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto import launch_job import nvidia_tao_deploy.cv.mask_rcnn.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_deploy.cv.mask_rcnn.scripts, "mask_rcnn", sys.argv[1:]) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/mask_rcnn/entrypoint/mask_rcnn.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class for performing TensorRT image inference.""" import os import cv2 from PIL import Image import numpy as np import tensorrt as trt from nvidia_tao_deploy.cv.unet.utils import get_color_id, overlay_seg_image from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference def trt_output_process_fn(y_encoded, model_output_width, model_output_height, activation="softmax"): """Function to process TRT model output.""" predictions_batch = [] for idx in range(y_encoded[0].shape[0]): pred = np.reshape(y_encoded[0][idx, ...], (model_output_height, model_output_width, 1)) pred = np.squeeze(pred, axis=-1) if activation == "sigmoid": pred = np.where(pred > 0.5, 1, 0) pred = pred.astype(np.int32) predictions_batch.append(pred) return np.array(predictions_batch) class UNetInferencer(TRTInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, input_shape=None, batch_size=None, data_format="channel_first", activation="softmax"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine super().__init__(engine_path) self.max_batch_size = self.engine.max_batch_size self.execute_v2 = False self.activation = activation # Execution context is needed for inference self.context = None # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): self._input_shape = self.engine.get_binding_shape(binding)[-3:] assert len(self._input_shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[1] self.width = self._input_shape[2] else: self.height = self._input_shape[0] self.width = self._input_shape[1] # set binding_shape for dynamic input if (input_shape is not None) or (batch_size is not None): self.context = self.engine.create_execution_context() if input_shape is not None: self.context.set_binding_shape(0, input_shape) self.max_batch_size = input_shape[0] else: self.context.set_binding_shape(0, [batch_size] + list(self._input_shape)) self.max_batch_size = batch_size self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volume = trt.volume(self._input_shape) self.numpy_array = np.zeros((self.max_batch_size, input_volume)) def infer(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. y_pred = [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] # Process TRT outputs to proper format return trt_output_process_fn(y_pred, self.width, self.height, self.activation) def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free() def visualize_masks(self, img_paths, predictions, out_dir, num_classes=2, input_image_type="rgb", resize_padding=False, resize_method='BILINEAR'): """Store overlaid image and predictions to png format. Args: img_paths: The input image names. predictions: Predicted masks numpy arrays. out_dir: Output dir where the visualization is saved. num_classes: Number of classes used. input_image_type: The input type of image (color/ grayscale). resize_padding: If padding was used or not. resize_method: Resize method used (Default: BILINEAR). """ colors = get_color_id(num_classes) vis_dir = os.path.join(out_dir, "vis_overlay") label_dir = os.path.join(out_dir, "mask_labels") os.makedirs(vis_dir, exist_ok=True) os.makedirs(label_dir, exist_ok=True) for pred, img_path in zip(predictions, img_paths): segmented_img = np.zeros((self.height, self.width, 3)) img_file_name = os.path.basename(img_path) for c in range(len(colors)): seg_arr_c = pred[:, :] == c segmented_img[:, :, 0] += ((seg_arr_c) * (colors[c][0])).astype('uint8') segmented_img[:, :, 1] += ((seg_arr_c) * (colors[c][1])).astype('uint8') segmented_img[:, :, 2] += ((seg_arr_c) * (colors[c][2])).astype('uint8') orig_image = cv2.imread(img_path) if input_image_type == "grayscale": pred = pred.astype(np.uint8) * 255 fused_img = Image.fromarray(pred).resize(size=(self.width, self.height), resample=Image.BILINEAR) # Save overlaid image fused_img.save(os.path.join(vis_dir, img_file_name)) else: segmented_img = np.zeros((self.height, self.width, 3)) for c in range(len(colors)): seg_arr_c = pred[:, :] == c segmented_img[:, :, 0] += ((seg_arr_c) * (colors[c][0])).astype('uint8') segmented_img[:, :, 1] += ((seg_arr_c) * (colors[c][1])).astype('uint8') segmented_img[:, :, 2] += ((seg_arr_c) * (colors[c][2])).astype('uint8') orig_image = cv2.imread(img_path) fused_img = overlay_seg_image(orig_image, segmented_img, resize_padding, resize_method) # Save overlaid image cv2.imwrite(os.path.join(vis_dir, img_file_name), fused_img) mask_name = f"{os.path.splitext(img_file_name)[0]}.png" # Save predictions cv2.imwrite(os.path.join(label_dir, mask_name), pred)
tao_deploy-main
nvidia_tao_deploy/cv/unet/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """UNet TensorRT engine builder.""" import logging import os import random from six.moves import xrange import sys import onnx from tqdm import tqdm import tensorrt as trt from nvidia_tao_deploy.cv.common.constants import VALID_IMAGE_EXTENSIONS from nvidia_tao_deploy.engine.builder import EngineBuilder from nvidia_tao_deploy.engine.tensorfile import TensorFile from nvidia_tao_deploy.engine.tensorfile_calibrator import TensorfileCalibrator from nvidia_tao_deploy.engine.utils import prepare_chunk logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class UNetEngineBuilder(EngineBuilder): """Parses an UFF/ONNX graph and builds a TensorRT engine from it.""" def __init__( self, image_list=None, data_format="channels_first", **kwargs ): """Init. Args: data_format (str): data_format. image_list (list): list of training image list from the experiment spec. """ super().__init__(**kwargs) self._data_format = data_format self.training_image_list = image_list def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="onnx"): """Parse the UFF/ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: onnx). """ if file_format == "onnx": logger.info("Parsing ONNX model") self._input_dims = self.get_onnx_input_dims(model_path) self.batch_size = self._input_dims[0] network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.batch_size <= 0: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_opt = (self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_max = (self.max_batch_size, input_shape[1], input_shape[2], input_shape[3]) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) else: logger.info("Parsing UFF model") raise NotImplementedError("UFF for YOLO_v3 is not supported") def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None, image_mean=None): """Simple function to set an Tensorfile based int8 calibrator. Args: calib_data_file: Path to the TensorFile. If the tensorfile doesn't exist at this path, then one is created with either n_batches of random tensors, images from the file in calib_input of dimensions (batch_size,) + (input_dims). calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. image_mean: Image mean per channel. Returns: No explicit returns. """ logger.info("Calibrating using TensorfileCalibrator") n_batches = calib_num_images // calib_batch_size if not os.path.exists(calib_data_file): self.generate_tensor_file(calib_data_file, calib_input, self._input_dims[1:], n_batches=n_batches, batch_size=calib_batch_size, image_mean=image_mean) self.config.int8_calibrator = TensorfileCalibrator(calib_data_file, calib_cache, n_batches, calib_batch_size) def generate_tensor_file(self, data_file_name, calibration_images_dir, input_dims, n_batches=10, batch_size=1, image_mean=None): """Generate calibration Tensorfile for int8 calibrator. This function generates a calibration tensorfile from a directory of images, or dumps n_batches of random numpy arrays of shape (batch_size,) + (input_dims). Args: data_file_name (str): Path to the output tensorfile to be saved. calibration_images_dir (str): Path to the images to generate a tensorfile from. input_dims (list): Input shape in CHW order. n_batches (int): Number of batches to be saved. batch_size (int): Number of images per batch. image_mean (list): Image mean per channel. Returns: No explicit returns. """ # Preparing the list of images to be saved. num_images = n_batches * batch_size if os.path.exists(calibration_images_dir): image_list = [] for image in os.listdir(calibration_images_dir): if image.lower().endswith(VALID_IMAGE_EXTENSIONS): image_list.append(os.path.join(calibration_images_dir, image)) else: logger.info("Calibration image directory is not specified. Using training images from experiment spec!") if self.training_image_list[0].endswith(".txt"): image_list = [] for imgs in self.training_image_list: # Read image files with open(imgs, encoding="utf-8") as f: x_set = f.readlines() for f_im in x_set: # Ensuring all image files are present f_im = f_im.strip() if f_im.lower().endswith(VALID_IMAGE_EXTENSIONS): image_list.append(f_im) else: image_list = [os.path.join(self.training_image_list[0], f) for f in os.listdir(self.training_image_list[0]) if f.lower().endswith(VALID_IMAGE_EXTENSIONS)] if len(image_list) < num_images: raise ValueError('Not enough number of images provided:' f' {len(image_list)} < {num_images}') image_idx = random.sample(xrange(len(image_list)), num_images) self.set_data_preprocessing_parameters(input_dims, image_mean) # Writing out processed dump. with TensorFile(data_file_name, 'w') as f: for chunk in tqdm(image_idx[x:x + batch_size] for x in xrange(0, len(image_idx), batch_size)): dump_data = prepare_chunk(chunk, image_list, image_width=input_dims[2], image_height=input_dims[1], channels=input_dims[0], batch_size=batch_size, **self.preprocessing_arguments) f.write(dump_data) f.closed def set_data_preprocessing_parameters(self, input_dims, image_mean=None): """Set data pre-processing parameters for the int8 calibration.""" num_channels = input_dims[0] if num_channels == 3: if not image_mean: means = [127.5, 127.5, 127.5] else: assert len(image_mean) == 3, "Image mean should have 3 values for RGB inputs." means = image_mean elif num_channels == 1: if not image_mean: means = [127] else: assert len(image_mean) == 1, "Image mean should have 1 value for grayscale inputs." means = image_mean else: raise NotImplementedError( f"Invalid number of dimensions {num_channels}.") self.preprocessing_arguments = {"scale": 1.0 / 127.5, "means": means, "flip_channel": True}
tao_deploy-main
nvidia_tao_deploy/cv/unet/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy UNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/unet/__init__.py