python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions used for mask visualization.""" import cv2 import numpy as np import math def get_color_id(num_classes): """Function to return a list of color values for each class.""" colors = [] for idx in range(num_classes): np.random.seed(idx) colors.append((np.random.randint(0, 255), np.random.randint(0, 255), np.random.randint(0, 255))) return colors def overlay_seg_image(inp_img, seg_img, resize_padding, resize_method): """The utility function to overlay mask on original image.""" resize_methods_mapping = {'BILINEAR': cv2.INTER_LINEAR, 'AREA': cv2.INTER_AREA, 'BICUBIC': cv2.INTER_CUBIC, 'NEAREST_NEIGHBOR': cv2.INTER_NEAREST} rm = resize_methods_mapping[resize_method] orininal_h = inp_img.shape[0] orininal_w = inp_img.shape[1] seg_h = seg_img.shape[0] seg_w = seg_img.shape[1] if resize_padding: p_height_top, p_height_bottom, p_width_left, p_width_right = \ resize_with_pad(inp_img, seg_w, seg_h) act_seg = seg_img[p_height_top:(seg_h - p_height_bottom), p_width_left:(seg_w - p_width_right)] seg_img = cv2.resize(act_seg, (orininal_w, orininal_h), interpolation=rm) else: seg_img = cv2.resize(seg_img, (orininal_w, orininal_h), interpolation=rm) fused_img = (inp_img / 2 + seg_img / 2).astype('uint8') return fused_img def resize_with_pad(image, f_target_width=None, f_target_height=None): """Function to determine the padding width in all the directions.""" (im_h, im_w) = image.shape[:2] ratio = max(im_w / float(f_target_width), im_h / float(f_target_height)) resized_height_float = im_h / ratio resized_width_float = im_w / ratio resized_height = math.floor(resized_height_float) resized_width = math.floor(resized_width_float) padding_height = (f_target_height - resized_height_float) / 2 padding_width = (f_target_width - resized_width_float) / 2 f_padding_height = math.floor(padding_height) f_padding_width = math.floor(padding_width) p_height_top = max(0, f_padding_height) p_width_left = max(0, f_padding_width) p_height_bottom = max(0, f_target_height - (resized_height + p_height_top)) p_width_right = max(0, f_target_width - (resized_width + p_width_left)) return p_height_top, p_height_bottom, p_width_left, p_width_right
tao_deploy-main
nvidia_tao_deploy/cv/unet/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """UNet loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os from PIL import Image from nvidia_tao_deploy.cv.common.constants import VALID_IMAGE_EXTENSIONS from nvidia_tao_deploy.utils.path_utils import expand_path import numpy as np from abc import ABC logging.basicConfig(format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', level="DEBUG") logger = logging.getLogger(__name__) class UNetLoader(ABC): """UNet Dataloader.""" def __init__(self, shape, image_data_source, label_data_source, num_classes, batch_size=10, is_inference=False, resize_method='bilinear', preprocess="min_max_-1_1", model_arch="shufflenet", resize_padding=False, input_image_type="color", dtype=None): """Init. Args: image_data_source (list): list of image directories. label_data_source (list): list of label directories. num_classes (int): number of classes batch_size (int): size of the batch. is_inference (bool): If True, no labels will be returned resize_method (str): Bilinear / Bicubic. preprocess (str): A way to normalize the image tensor. (Default: min_max_-1_1) model_arch (str): Model architecture (Default: shufflenet). resize_padding (bool): Whether to resize the image with padding. input_image_type (str): color / grayscale. dtype (str): data type to cast to """ self.image_paths, self.label_paths = [], [] self.is_inference = is_inference self._add_source(image_data_source, label_data_source) self.image_paths = np.array(self.image_paths) self.data_inds = np.arange(len(self.image_paths)) self.num_classes = num_classes self.resize_method = Image.BILINEAR if resize_method.lower() == "bilinear" else Image.BICUBIC self.preprocess = preprocess self.model_arch = model_arch self.resize_padding = resize_padding self.input_image_type = input_image_type # Always assume channel first self.num_channels, self.height, self.width = shape[0], shape[1], shape[2] if self.num_channels == 1 and self.input_image_type != "grayscale": raise ValueError("A network with channel size 1 expects grayscale input image type") self.batch_size = batch_size self.n_samples = len(self.data_inds) self.dtype = dtype self.n_batches = int(len(self.image_paths) // self.batch_size) assert self.n_batches > 0, "empty image dir or batch size too large!" def _add_source(self, image_data_source, label_data_source): """Add Image and Mask sources.""" if image_data_source[0].endswith(".txt"): if self.is_inference: for imgs in image_data_source: logger.debug("Reading Imgs : %s", imgs) # Read image files with open(imgs, encoding="utf-8") as f: x_set = f.readlines() for f_im in x_set: # Ensuring all image files are present f_im = f_im.strip() if not os.path.exists(expand_path(f_im)): raise FileNotFoundError(f"{f_im} does not exist!") if f_im.lower().endswith(VALID_IMAGE_EXTENSIONS): self.image_paths.append(f_im) else: for imgs, lbls in zip(image_data_source, label_data_source): logger.debug("Reading Imgs : %s, Reading Lbls : %s", imgs, lbls) # Read image files with open(imgs, encoding="utf-8") as f: x_set = f.readlines() # Read label files with open(lbls, encoding="utf-8") as f: y_set = f.readlines() for f_im, f_label in zip(x_set, y_set): # Ensuring all image files are present f_im = f_im.strip() f_label = f_label.strip() if not os.path.exists(expand_path(f_im)): raise FileNotFoundError(f"{f_im} does not exist!") if not os.path.exists(expand_path(f_label)): raise FileNotFoundError(f"{f_label} does not exist!") if f_im.lower().endswith(VALID_IMAGE_EXTENSIONS): self.image_paths.append(f_im) if f_label.lower().endswith(VALID_IMAGE_EXTENSIONS): self.label_paths.append(f_label) else: self.image_paths = [os.path.join(image_data_source[0], f) for f in os.listdir(image_data_source[0]) if f.lower().endswith(VALID_IMAGE_EXTENSIONS)] if self.is_inference: self.label_paths = [] else: self.label_paths = [os.path.join(label_data_source[0], f) for f in os.listdir(label_data_source[0]) if f.lower().endswith(VALID_IMAGE_EXTENSIONS)] def __len__(self): """Get length of Sequence.""" return self.n_batches def _load_gt_image(self, image_path): """Load GT image from file.""" if self.num_channels == 1: # Set to grayscale only when channel size is 1 img = Image.open(image_path).convert('L') else: img = Image.open(image_path).convert('RGB') return img def _load_gt_label(self, label_path): """Load mask labels.""" mask = Image.open(label_path).convert("L") return mask def __iter__(self): """Iterate.""" self.n = 0 return self def __next__(self): """Load a full batch.""" images = [] labels = [] if self.n < self.n_batches: for idx in range(self.n * self.batch_size, (self.n + 1) * self.batch_size): image, label = self._get_single_processed_item(idx) images.append(image) labels.append(label) self.n += 1 return self._batch_post_processing(images, labels) raise StopIteration def _batch_post_processing(self, images, labels): """Post processing for a batch.""" images = np.array(images) # try to make labels a numpy array is_make_array = True x_shape = None for x in labels: if not isinstance(x, np.ndarray): is_make_array = False break if x_shape is None: x_shape = x.shape elif x_shape != x.shape: is_make_array = False break if is_make_array: labels = np.array(labels) return images, labels def _get_single_processed_item(self, idx): """Load and process single image and its label.""" image, label = self._get_single_item_raw(idx) image, label = self.preprocessing(image, label) return image, label def _get_single_item_raw(self, idx): """Load single image and its label. Returns: image (PIL.image): image object in original resolution label (PIL.image): Mask """ image = self._load_gt_image(self.image_paths[self.data_inds[idx]]) if self.is_inference: label = Image.fromarray(np.zeros(image.size)).convert("L") # Random image to label else: label = self._load_gt_label(self.label_paths[self.data_inds[idx]]) return image, label def preprocessing(self, image, label): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. Args: image (PIL.image): The Pillow image on disk to load. Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch """ # resize based on different configs if self.model_arch in ["vanilla_unet"]: image = self.resize_image_with_crop_or_pad(image, self.height, self.width) else: if self.resize_padding: image = self.resize_pad(image, self.height, self.width, pad_color=(0, 0, 0)) else: image = image.resize((self.width, self.height), resample=self.resize_method) image = np.asarray(image, dtype=self.dtype) # Labels should be always nearest neighbour, as they are integers. label = label.resize((self.width, self.height), resample=Image.NEAREST) label = np.asarray(label, dtype=self.dtype) # Grayscale can either have num_channels 1 or 3 if self.num_channels == 1: image = np.expand_dims(image, axis=2) if self.input_image_type == "grayscale": label /= 255 image = image / 127.5 - 1 # rgb to bgr if self.input_image_type != "grayscale": image = image[..., ::-1] # TF1: normalize_img_tf if self.input_image_type != "grayscale": if self.preprocess == "div_by_255": # A way to normalize an image tensor by dividing them by 255. # This assumes images with max pixel value of # 255. It gives normalized image with pixel values in range of >=0 to <=1. image /= 255.0 elif self.preprocess == "min_max_0_1": image /= 255.0 elif self.preprocess == "min_max_-1_1": image = image / 127.5 - 1 else: raise NotImplementedError(f"{self.preprocess} is not a defined method.") # convert to channel first image = np.transpose(image, (2, 0, 1)) label = label.astype(np.uint8) return image, label def resize_image_with_crop_or_pad(self, img, target_height, target_width): """tf.image.resize_image_with_crop_or_pad() equivalent in Pillow. TF1 center crops if desired size is smaller than image size and pad with 0 if larger than image size Ref: https://github.com/tensorflow/tensorflow/blob/v2.9.1/tensorflow/python/ops/image_ops_impl.py#L1251-L1405 """ img = self.resize_pad(img, target_height, target_width) img = self.center_crop(img, target_height, target_width) return img def center_crop(self, img, target_height, target_width): """Center Crop.""" width, height = img.size # Get dimensions # process crop width and height for max available dimension crop_width = target_width if target_width < width else width crop_height = target_height if target_height < height else height mid_x, mid_y = int(width / 2), int(height / 2) cw2, ch2 = int(crop_width / 2), int(crop_height / 2) left = mid_x - ch2 top = mid_y - ch2 right = mid_x + cw2 bottom = mid_y + cw2 # Crop the center of the image img = img.crop((left, top, right, bottom)) return img def resize_pad(self, image, target_height, target_width, pad_color=(0, 0, 0)): """Resize and Pad. A subroutine to implement padding and resizing. This will resize the image to fit fully within the input size, and pads the remaining bottom-right portions with the value provided. Args: image (PIL.Image): The PIL image object pad_color (list): The RGB values to use for the padded area. Default: Black/Zeros. Returns: pad (PIL.Image): The PIL image object already padded and cropped, scale (list): the resize scale used. """ width, height = image.size width_scale = width / target_width height_scale = height / target_height scale = 1.0 / max(width_scale, height_scale) image = image.resize( (round(width * scale), round(height * scale)), resample=Image.BILINEAR) pad = Image.new("RGB", (target_width, target_height)) pad.paste(pad_color, [0, 0, target_width, target_height]) pad.paste(image) return pad
tao_deploy-main
nvidia_tao_deploy/cv/unet/dataloader.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/data_class_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/data_class_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n7nvidia_tao_deploy/cv/unet/proto/data_class_config.proto\"\xa3\x01\n\x0f\x44\x61taClassConfig\x12\x34\n\x0etarget_classes\x18\x01 \x03(\x0b\x32\x1c.DataClassConfig.TargetClass\x1aZ\n\x0bTargetClass\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x14\n\x0c\x63lass_weight\x18\x02 \x01(\x02\x12\x10\n\x08label_id\x18\x03 \x01(\x05\x12\x15\n\rmapping_class\x18\x04 \x01(\tb\x06proto3') ) _DATACLASSCONFIG_TARGETCLASS = _descriptor.Descriptor( name='TargetClass', full_name='DataClassConfig.TargetClass', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='DataClassConfig.TargetClass.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='class_weight', full_name='DataClassConfig.TargetClass.class_weight', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='label_id', full_name='DataClassConfig.TargetClass.label_id', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mapping_class', full_name='DataClassConfig.TargetClass.mapping_class', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=133, serialized_end=223, ) _DATACLASSCONFIG = _descriptor.Descriptor( name='DataClassConfig', full_name='DataClassConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='target_classes', full_name='DataClassConfig.target_classes', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_DATACLASSCONFIG_TARGETCLASS, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=60, serialized_end=223, ) _DATACLASSCONFIG_TARGETCLASS.containing_type = _DATACLASSCONFIG _DATACLASSCONFIG.fields_by_name['target_classes'].message_type = _DATACLASSCONFIG_TARGETCLASS DESCRIPTOR.message_types_by_name['DataClassConfig'] = _DATACLASSCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) DataClassConfig = _reflection.GeneratedProtocolMessageType('DataClassConfig', (_message.Message,), dict( TargetClass = _reflection.GeneratedProtocolMessageType('TargetClass', (_message.Message,), dict( DESCRIPTOR = _DATACLASSCONFIG_TARGETCLASS, __module__ = 'nvidia_tao_deploy.cv.unet.proto.data_class_config_pb2' # @@protoc_insertion_point(class_scope:DataClassConfig.TargetClass) )) , DESCRIPTOR = _DATACLASSCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.data_class_config_pb2' # @@protoc_insertion_point(class_scope:DataClassConfig) )) _sym_db.RegisterMessage(DataClassConfig) _sym_db.RegisterMessage(DataClassConfig.TargetClass) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/data_class_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/optimizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.unet.proto import adam_optimizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_adam__optimizer__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/optimizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n6nvidia_tao_deploy/cv/unet/proto/optimizer_config.proto\x1a;nvidia_tao_deploy/cv/unet/proto/adam_optimizer_config.proto\"D\n\x0fOptimizerConfig\x12$\n\x04\x61\x64\x61m\x18\x01 \x01(\x0b\x32\x14.AdamOptimizerConfigH\x00\x42\x0b\n\toptimizerb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_adam__optimizer__config__pb2.DESCRIPTOR,]) _OPTIMIZERCONFIG = _descriptor.Descriptor( name='OptimizerConfig', full_name='OptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='adam', full_name='OptimizerConfig.adam', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='optimizer', full_name='OptimizerConfig.optimizer', index=0, containing_type=None, fields=[]), ], serialized_start=119, serialized_end=187, ) _OPTIMIZERCONFIG.fields_by_name['adam'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_adam__optimizer__config__pb2._ADAMOPTIMIZERCONFIG _OPTIMIZERCONFIG.oneofs_by_name['optimizer'].fields.append( _OPTIMIZERCONFIG.fields_by_name['adam']) _OPTIMIZERCONFIG.fields_by_name['adam'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optimizer'] DESCRIPTOR.message_types_by_name['OptimizerConfig'] = _OPTIMIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) OptimizerConfig = _reflection.GeneratedProtocolMessageType('OptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _OPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:OptimizerConfig) )) _sym_db.RegisterMessage(OptimizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/optimizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/adam_optimizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/adam_optimizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n;nvidia_tao_deploy/cv/unet/proto/adam_optimizer_config.proto\"D\n\x13\x41\x64\x61mOptimizerConfig\x12\x0f\n\x07\x65psilon\x18\x01 \x01(\x02\x12\r\n\x05\x62\x65ta1\x18\x02 \x01(\x02\x12\r\n\x05\x62\x65ta2\x18\x03 \x01(\x02\x62\x06proto3') ) _ADAMOPTIMIZERCONFIG = _descriptor.Descriptor( name='AdamOptimizerConfig', full_name='AdamOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='epsilon', full_name='AdamOptimizerConfig.epsilon', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta1', full_name='AdamOptimizerConfig.beta1', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta2', full_name='AdamOptimizerConfig.beta2', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=63, serialized_end=131, ) DESCRIPTOR.message_types_by_name['AdamOptimizerConfig'] = _ADAMOPTIMIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) AdamOptimizerConfig = _reflection.GeneratedProtocolMessageType('AdamOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _ADAMOPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.adam_optimizer_config_pb2' # @@protoc_insertion_point(class_scope:AdamOptimizerConfig) )) _sym_db.RegisterMessage(AdamOptimizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/adam_optimizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/training_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.unet.proto import optimizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_optimizer__config__pb2 from nvidia_tao_deploy.cv.unet.proto import regularizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_regularizer__config__pb2 from nvidia_tao_deploy.cv.unet.proto import visualizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_visualizer__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/training_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n5nvidia_tao_deploy/cv/unet/proto/training_config.proto\x1a\x36nvidia_tao_deploy/cv/unet/proto/optimizer_config.proto\x1a\x38nvidia_tao_deploy/cv/unet/proto/regularizer_config.proto\x1a\x37nvidia_tao_deploy/cv/unet/proto/visualizer_config.proto\"\xd9\x06\n\x0eTrainingConfig\x12\x12\n\nbatch_size\x18\x01 \x01(\r\x12\x12\n\nnum_epochs\x18\x02 \x01(\r\x12\'\n\x0bregularizer\x18\x04 \x01(\x0b\x32\x12.RegularizerConfig\x12#\n\toptimizer\x18\x05 \x01(\x0b\x32\x10.OptimizerConfig\x12\x1b\n\x13\x63heckpoint_interval\x18\x07 \x01(\r\x12\x11\n\tmax_steps\x18\x08 \x01(\r\x12\x0e\n\x06\x65pochs\x18\x13 \x01(\r\x12\x19\n\x11log_summary_steps\x18\t \x01(\r\x12\x0f\n\x07\x61ugment\x18\n \x01(\x08\x12\x0f\n\x07use_xla\x18\x0b \x01(\x08\x12\x14\n\x0cwarmup_steps\x18\x0c \x01(\r\x12\x0f\n\x07use_amp\x18\r \x01(\x08\x12\x15\n\rlearning_rate\x18\x0e \x01(\x02\x12\x14\n\x0cweight_decay\x18\x0f \x01(\x02\x12\x0f\n\x07use_trt\x18\x10 \x01(\x08\x12\x1b\n\x13\x63rossvalidation_idx\x18\x11 \x01(\x08\x12\x0c\n\x04loss\x18\x12 \x01(\t\x12\x17\n\x0fweights_monitor\x18\x17 \x01(\x08\x12\x37\n\x0clr_scheduler\x18\x19 \x01(\x0b\x32!.TrainingConfig.LRSchedulerConfig\x12%\n\nvisualizer\x18\x1b \x01(\x0b\x32\x11.VisualizerConfig\x12\x13\n\x0b\x62uffer_size\x18\x1c \x01(\r\x12\x14\n\x0c\x64\x61ta_options\x18\x1d \x01(\x08\x1a\x37\n\x11\x43osineDecayConfig\x12\r\n\x05\x61lpha\x18\x01 \x01(\x02\x12\x13\n\x0b\x64\x65\x63\x61y_steps\x18\x02 \x01(\x05\x1a\x41\n\x16\x45xponentialDecayConfig\x12\x12\n\ndecay_rate\x18\x01 \x01(\x02\x12\x13\n\x0b\x64\x65\x63\x61y_steps\x18\x02 \x01(\x05\x1a\xa3\x01\n\x11LRSchedulerConfig\x12\x43\n\x11\x65xponential_decay\x18\x01 \x01(\x0b\x32&.TrainingConfig.ExponentialDecayConfigH\x00\x12\x39\n\x0c\x63osine_decay\x18\x02 \x01(\x0b\x32!.TrainingConfig.CosineDecayConfigH\x00\x42\x0e\n\x0clr_schedulerb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_optimizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_regularizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_visualizer__config__pb2.DESCRIPTOR,]) _TRAININGCONFIG_COSINEDECAYCONFIG = _descriptor.Descriptor( name='CosineDecayConfig', full_name='TrainingConfig.CosineDecayConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='alpha', full_name='TrainingConfig.CosineDecayConfig.alpha', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decay_steps', full_name='TrainingConfig.CosineDecayConfig.decay_steps', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=798, serialized_end=853, ) _TRAININGCONFIG_EXPONENTIALDECAYCONFIG = _descriptor.Descriptor( name='ExponentialDecayConfig', full_name='TrainingConfig.ExponentialDecayConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='decay_rate', full_name='TrainingConfig.ExponentialDecayConfig.decay_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decay_steps', full_name='TrainingConfig.ExponentialDecayConfig.decay_steps', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=855, serialized_end=920, ) _TRAININGCONFIG_LRSCHEDULERCONFIG = _descriptor.Descriptor( name='LRSchedulerConfig', full_name='TrainingConfig.LRSchedulerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='exponential_decay', full_name='TrainingConfig.LRSchedulerConfig.exponential_decay', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cosine_decay', full_name='TrainingConfig.LRSchedulerConfig.cosine_decay', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='lr_scheduler', full_name='TrainingConfig.LRSchedulerConfig.lr_scheduler', index=0, containing_type=None, fields=[]), ], serialized_start=923, serialized_end=1086, ) _TRAININGCONFIG = _descriptor.Descriptor( name='TrainingConfig', full_name='TrainingConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='batch_size', full_name='TrainingConfig.batch_size', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_epochs', full_name='TrainingConfig.num_epochs', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='regularizer', full_name='TrainingConfig.regularizer', index=2, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='optimizer', full_name='TrainingConfig.optimizer', index=3, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='checkpoint_interval', full_name='TrainingConfig.checkpoint_interval', index=4, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_steps', full_name='TrainingConfig.max_steps', index=5, number=8, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='epochs', full_name='TrainingConfig.epochs', index=6, number=19, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='log_summary_steps', full_name='TrainingConfig.log_summary_steps', index=7, number=9, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='augment', full_name='TrainingConfig.augment', index=8, number=10, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_xla', full_name='TrainingConfig.use_xla', index=9, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='warmup_steps', full_name='TrainingConfig.warmup_steps', index=10, number=12, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_amp', full_name='TrainingConfig.use_amp', index=11, number=13, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='learning_rate', full_name='TrainingConfig.learning_rate', index=12, number=14, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_decay', full_name='TrainingConfig.weight_decay', index=13, number=15, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_trt', full_name='TrainingConfig.use_trt', index=14, number=16, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crossvalidation_idx', full_name='TrainingConfig.crossvalidation_idx', index=15, number=17, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss', full_name='TrainingConfig.loss', index=16, number=18, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weights_monitor', full_name='TrainingConfig.weights_monitor', index=17, number=23, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='lr_scheduler', full_name='TrainingConfig.lr_scheduler', index=18, number=25, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='visualizer', full_name='TrainingConfig.visualizer', index=19, number=27, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='buffer_size', full_name='TrainingConfig.buffer_size', index=20, number=28, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data_options', full_name='TrainingConfig.data_options', index=21, number=29, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_TRAININGCONFIG_COSINEDECAYCONFIG, _TRAININGCONFIG_EXPONENTIALDECAYCONFIG, _TRAININGCONFIG_LRSCHEDULERCONFIG, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=229, serialized_end=1086, ) _TRAININGCONFIG_COSINEDECAYCONFIG.containing_type = _TRAININGCONFIG _TRAININGCONFIG_EXPONENTIALDECAYCONFIG.containing_type = _TRAININGCONFIG _TRAININGCONFIG_LRSCHEDULERCONFIG.fields_by_name['exponential_decay'].message_type = _TRAININGCONFIG_EXPONENTIALDECAYCONFIG _TRAININGCONFIG_LRSCHEDULERCONFIG.fields_by_name['cosine_decay'].message_type = _TRAININGCONFIG_COSINEDECAYCONFIG _TRAININGCONFIG_LRSCHEDULERCONFIG.containing_type = _TRAININGCONFIG _TRAININGCONFIG_LRSCHEDULERCONFIG.oneofs_by_name['lr_scheduler'].fields.append( _TRAININGCONFIG_LRSCHEDULERCONFIG.fields_by_name['exponential_decay']) _TRAININGCONFIG_LRSCHEDULERCONFIG.fields_by_name['exponential_decay'].containing_oneof = _TRAININGCONFIG_LRSCHEDULERCONFIG.oneofs_by_name['lr_scheduler'] _TRAININGCONFIG_LRSCHEDULERCONFIG.oneofs_by_name['lr_scheduler'].fields.append( _TRAININGCONFIG_LRSCHEDULERCONFIG.fields_by_name['cosine_decay']) _TRAININGCONFIG_LRSCHEDULERCONFIG.fields_by_name['cosine_decay'].containing_oneof = _TRAININGCONFIG_LRSCHEDULERCONFIG.oneofs_by_name['lr_scheduler'] _TRAININGCONFIG.fields_by_name['regularizer'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_regularizer__config__pb2._REGULARIZERCONFIG _TRAININGCONFIG.fields_by_name['optimizer'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_optimizer__config__pb2._OPTIMIZERCONFIG _TRAININGCONFIG.fields_by_name['lr_scheduler'].message_type = _TRAININGCONFIG_LRSCHEDULERCONFIG _TRAININGCONFIG.fields_by_name['visualizer'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_visualizer__config__pb2._VISUALIZERCONFIG DESCRIPTOR.message_types_by_name['TrainingConfig'] = _TRAININGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) TrainingConfig = _reflection.GeneratedProtocolMessageType('TrainingConfig', (_message.Message,), dict( CosineDecayConfig = _reflection.GeneratedProtocolMessageType('CosineDecayConfig', (_message.Message,), dict( DESCRIPTOR = _TRAININGCONFIG_COSINEDECAYCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:TrainingConfig.CosineDecayConfig) )) , ExponentialDecayConfig = _reflection.GeneratedProtocolMessageType('ExponentialDecayConfig', (_message.Message,), dict( DESCRIPTOR = _TRAININGCONFIG_EXPONENTIALDECAYCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:TrainingConfig.ExponentialDecayConfig) )) , LRSchedulerConfig = _reflection.GeneratedProtocolMessageType('LRSchedulerConfig', (_message.Message,), dict( DESCRIPTOR = _TRAININGCONFIG_LRSCHEDULERCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:TrainingConfig.LRSchedulerConfig) )) , DESCRIPTOR = _TRAININGCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:TrainingConfig) )) _sym_db.RegisterMessage(TrainingConfig) _sym_db.RegisterMessage(TrainingConfig.CosineDecayConfig) _sym_db.RegisterMessage(TrainingConfig.ExponentialDecayConfig) _sym_db.RegisterMessage(TrainingConfig.LRSchedulerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/training_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/regularizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/regularizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n8nvidia_tao_deploy/cv/unet/proto/regularizer_config.proto\"\x8a\x01\n\x11RegularizerConfig\x12\x33\n\x04type\x18\x01 \x01(\x0e\x32%.RegularizerConfig.RegularizationType\x12\x0e\n\x06weight\x18\x02 \x01(\x02\"0\n\x12RegularizationType\x12\n\n\x06NO_REG\x10\x00\x12\x06\n\x02L1\x10\x01\x12\x06\n\x02L2\x10\x02\x62\x06proto3') ) _REGULARIZERCONFIG_REGULARIZATIONTYPE = _descriptor.EnumDescriptor( name='RegularizationType', full_name='RegularizerConfig.RegularizationType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NO_REG', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='L1', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='L2', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=151, serialized_end=199, ) _sym_db.RegisterEnumDescriptor(_REGULARIZERCONFIG_REGULARIZATIONTYPE) _REGULARIZERCONFIG = _descriptor.Descriptor( name='RegularizerConfig', full_name='RegularizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='RegularizerConfig.type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight', full_name='RegularizerConfig.weight', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _REGULARIZERCONFIG_REGULARIZATIONTYPE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=61, serialized_end=199, ) _REGULARIZERCONFIG.fields_by_name['type'].enum_type = _REGULARIZERCONFIG_REGULARIZATIONTYPE _REGULARIZERCONFIG_REGULARIZATIONTYPE.containing_type = _REGULARIZERCONFIG DESCRIPTOR.message_types_by_name['RegularizerConfig'] = _REGULARIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) RegularizerConfig = _reflection.GeneratedProtocolMessageType('RegularizerConfig', (_message.Message,), dict( DESCRIPTOR = _REGULARIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.regularizer_config_pb2' # @@protoc_insertion_point(class_scope:RegularizerConfig) )) _sym_db.RegisterMessage(RegularizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/regularizer_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy UNet Proto.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/augmentation_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/augmentation_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n9nvidia_tao_deploy/cv/unet/proto/augmentation_config.proto\"\xdc\x02\n\x12\x41ugmentationConfig\x12\x45\n\x14spatial_augmentation\x18\x02 \x01(\x0b\x32\'.AugmentationConfig.SpatialAugmentation\x12K\n\x17\x62rightness_augmentation\x18\x03 \x01(\x0b\x32*.AugmentationConfig.BrightnessAugmentation\x1a\x88\x01\n\x13SpatialAugmentation\x12\x19\n\x11hflip_probability\x18\x01 \x01(\x02\x12\x19\n\x11vflip_probability\x18\x02 \x01(\x02\x12\x1c\n\x14\x63rop_and_resize_prob\x18\x03 \x01(\x02\x12\x1d\n\x15\x63rop_and_resize_ratio\x18\x04 \x01(\x02\x1a\'\n\x16\x42rightnessAugmentation\x12\r\n\x05\x64\x65lta\x18\x01 \x01(\x02\x62\x06proto3') ) _AUGMENTATIONCONFIG_SPATIALAUGMENTATION = _descriptor.Descriptor( name='SpatialAugmentation', full_name='AugmentationConfig.SpatialAugmentation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='hflip_probability', full_name='AugmentationConfig.SpatialAugmentation.hflip_probability', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='vflip_probability', full_name='AugmentationConfig.SpatialAugmentation.vflip_probability', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_and_resize_prob', full_name='AugmentationConfig.SpatialAugmentation.crop_and_resize_prob', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_and_resize_ratio', full_name='AugmentationConfig.SpatialAugmentation.crop_and_resize_ratio', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=233, serialized_end=369, ) _AUGMENTATIONCONFIG_BRIGHTNESSAUGMENTATION = _descriptor.Descriptor( name='BrightnessAugmentation', full_name='AugmentationConfig.BrightnessAugmentation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='delta', full_name='AugmentationConfig.BrightnessAugmentation.delta', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=371, serialized_end=410, ) _AUGMENTATIONCONFIG = _descriptor.Descriptor( name='AugmentationConfig', full_name='AugmentationConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='spatial_augmentation', full_name='AugmentationConfig.spatial_augmentation', index=0, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='brightness_augmentation', full_name='AugmentationConfig.brightness_augmentation', index=1, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_AUGMENTATIONCONFIG_SPATIALAUGMENTATION, _AUGMENTATIONCONFIG_BRIGHTNESSAUGMENTATION, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=62, serialized_end=410, ) _AUGMENTATIONCONFIG_SPATIALAUGMENTATION.containing_type = _AUGMENTATIONCONFIG _AUGMENTATIONCONFIG_BRIGHTNESSAUGMENTATION.containing_type = _AUGMENTATIONCONFIG _AUGMENTATIONCONFIG.fields_by_name['spatial_augmentation'].message_type = _AUGMENTATIONCONFIG_SPATIALAUGMENTATION _AUGMENTATIONCONFIG.fields_by_name['brightness_augmentation'].message_type = _AUGMENTATIONCONFIG_BRIGHTNESSAUGMENTATION DESCRIPTOR.message_types_by_name['AugmentationConfig'] = _AUGMENTATIONCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) AugmentationConfig = _reflection.GeneratedProtocolMessageType('AugmentationConfig', (_message.Message,), dict( SpatialAugmentation = _reflection.GeneratedProtocolMessageType('SpatialAugmentation', (_message.Message,), dict( DESCRIPTOR = _AUGMENTATIONCONFIG_SPATIALAUGMENTATION, __module__ = 'nvidia_tao_deploy.cv.unet.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig.SpatialAugmentation) )) , BrightnessAugmentation = _reflection.GeneratedProtocolMessageType('BrightnessAugmentation', (_message.Message,), dict( DESCRIPTOR = _AUGMENTATIONCONFIG_BRIGHTNESSAUGMENTATION, __module__ = 'nvidia_tao_deploy.cv.unet.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig.BrightnessAugmentation) )) , DESCRIPTOR = _AUGMENTATIONCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig) )) _sym_db.RegisterMessage(AugmentationConfig) _sym_db.RegisterMessage(AugmentationConfig.SpatialAugmentation) _sym_db.RegisterMessage(AugmentationConfig.BrightnessAugmentation) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/augmentation_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/visualizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/visualizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n7nvidia_tao_deploy/cv/unet/proto/visualizer_config.proto\"f\n\x10VisualizerConfig\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\x12\x1a\n\x12save_summary_steps\x18\x02 \x01(\r\x12%\n\x1dinfrequent_save_summary_steps\x18\x03 \x01(\rb\x06proto3') ) _VISUALIZERCONFIG = _descriptor.Descriptor( name='VisualizerConfig', full_name='VisualizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='enabled', full_name='VisualizerConfig.enabled', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='save_summary_steps', full_name='VisualizerConfig.save_summary_steps', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='infrequent_save_summary_steps', full_name='VisualizerConfig.infrequent_save_summary_steps', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=59, serialized_end=161, ) DESCRIPTOR.message_types_by_name['VisualizerConfig'] = _VISUALIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) VisualizerConfig = _reflection.GeneratedProtocolMessageType('VisualizerConfig', (_message.Message,), dict( DESCRIPTOR = _VISUALIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.visualizer_config_pb2' # @@protoc_insertion_point(class_scope:VisualizerConfig) )) _sym_db.RegisterMessage(VisualizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/visualizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.unet.proto import dataset_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_dataset__config__pb2 from nvidia_tao_deploy.cv.unet.proto import evaluation_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_evaluation__config__pb2 from nvidia_tao_deploy.cv.unet.proto import model_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_model__config__pb2 from nvidia_tao_deploy.cv.unet.proto import training_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_training__config__pb2 from nvidia_tao_deploy.cv.unet.proto import data_class_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_data__class__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n0nvidia_tao_deploy/cv/unet/proto/experiment.proto\x1a\x34nvidia_tao_deploy/cv/unet/proto/dataset_config.proto\x1a\x37nvidia_tao_deploy/cv/unet/proto/evaluation_config.proto\x1a\x32nvidia_tao_deploy/cv/unet/proto/model_config.proto\x1a\x35nvidia_tao_deploy/cv/unet/proto/training_config.proto\x1a\x37nvidia_tao_deploy/cv/unet/proto/data_class_config.proto\"\xf2\x01\n\nExperiment\x12\x13\n\x0brandom_seed\x18\x01 \x01(\r\x12\"\n\x0cmodel_config\x18\x05 \x01(\x0b\x32\x0c.ModelConfig\x12&\n\x0e\x64\x61taset_config\x18\x02 \x01(\x0b\x32\x0e.DatasetConfig\x12,\n\x11\x65valuation_config\x18\x06 \x01(\x0b\x32\x11.EvaluationConfig\x12(\n\x0ftraining_config\x18\t \x01(\x0b\x32\x0f.TrainingConfig\x12+\n\x11\x64\x61ta_class_config\x18\n \x01(\x0b\x32\x10.DataClassConfigb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_dataset__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_evaluation__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_model__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_training__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_data__class__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='random_seed', full_name='Experiment.random_seed', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_config', full_name='Experiment.model_config', index=1, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dataset_config', full_name='Experiment.dataset_config', index=2, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='evaluation_config', full_name='Experiment.evaluation_config', index=3, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_config', full_name='Experiment.training_config', index=4, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data_class_config', full_name='Experiment.data_class_config', index=5, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=328, serialized_end=570, ) _EXPERIMENT.fields_by_name['model_config'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_model__config__pb2._MODELCONFIG _EXPERIMENT.fields_by_name['dataset_config'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_dataset__config__pb2._DATASETCONFIG _EXPERIMENT.fields_by_name['evaluation_config'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_evaluation__config__pb2._EVALUATIONCONFIG _EXPERIMENT.fields_by_name['training_config'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_training__config__pb2._TRAININGCONFIG _EXPERIMENT.fields_by_name['data_class_config'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_data__class__config__pb2._DATACLASSCONFIG DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_deploy.cv.unet.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/experiment_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Config Base Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import numpy as np from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_deploy.cv.unet.proto.experiment_pb2 import Experiment logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) def load_proto(config): """Load the experiment proto.""" proto = Experiment() def _load_from_file(filename, pb2): if not os.path.exists(filename): raise IOError(f"Specfile not found at: {filename}") with open(filename, "r", encoding="utf-8") as f: merge_text_proto(f.read(), pb2) _load_from_file(config, proto) return proto def initialize_params(experiment_spec, phase="val"): """Initialization of the params object to the estimator runtime config. Args: experiment_spec: Loaded Unet Experiment spec. phase: Data source to load from. """ training_config = experiment_spec.training_config dataset_config = experiment_spec.dataset_config model_config = experiment_spec.model_config target_classes = build_target_class_list(dataset_config.data_class_config) num_classes = get_num_unique_train_ids(target_classes) if not model_config.activation: activation = "softmax" elif model_config.activation == 'sigmoid' and num_classes > 2: logging.warning("Sigmoid activation can only be used for binary segmentation. \ Defaulting to softmax activation.") activation = 'softmax' elif model_config.activation == 'sigmoid' and num_classes == 2: num_classes = 1 activation = model_config.activation else: activation = model_config.activation if phase == "val": data_sources = dataset_config.val_data_sources.data_source if data_sources: images_list = [] masks_list = [] for data_source in data_sources: image_path = data_source.image_path if data_source.image_path else None mask_path = data_source.masks_path if data_source.masks_path else None images_list.append(image_path) masks_list.append(mask_path) else: images_list = [dataset_config.val_images_path] masks_list = [dataset_config.val_masks_path] else: data_sources = dataset_config.train_data_sources.data_source if data_sources: images_list = [] masks_list = [] for data_source in data_sources: image_path = data_source.image_path if data_source.image_path else None mask_path = data_source.masks_path if data_source.masks_path else None images_list.append(image_path) masks_list.append(mask_path) else: images_list = [dataset_config.train_images_path] masks_list = [dataset_config.train_masks_path] return { 'batch_size': training_config.batch_size if training_config.batch_size else 1, 'resize_padding': dataset_config.resize_padding if dataset_config.resize_padding else False, 'resize_method': dataset_config.resize_method.upper() if dataset_config.resize_method else 'BILINEAR', 'activation': activation, 'augment': dataset_config.augment if dataset_config.augment else False, 'filter_data': dataset_config.filter_data if dataset_config.filter_data else False, 'num_classes': num_classes, 'num_conf_mat_classes': num_classes, 'train_id_name_mapping': get_train_class_mapping(target_classes), 'label_id_train_id_mapping': get_label_train_dic(target_classes), 'preprocess': dataset_config.preprocess if dataset_config.preprocess else "min_max_-1_1", 'input_image_type': dataset_config.input_image_type if dataset_config.input_image_type else "color", 'images_list': images_list, 'masks_list': masks_list, 'arch': model_config.arch if model_config.arch else "resnet", 'enable_qat': model_config.enable_qat if model_config.enable_qat else False, } def get_label_train_dic(target_classes): """Function to get mapping between class and train ids.""" label_train_dic = {} for target in target_classes: label_train_dic[target.label_id] = target.train_id return label_train_dic def get_train_class_mapping(target_classes): """Utility function that returns the mapping of the train id to orig class.""" train_id_name_mapping = {} for target_class in target_classes: if target_class.train_id not in train_id_name_mapping.keys(): train_id_name_mapping[target_class.train_id] = [target_class.name] else: train_id_name_mapping[target_class.train_id].append(target_class.name) return train_id_name_mapping def get_num_unique_train_ids(target_classes): """Return the final number classes used for training. Arguments: target_classes: The target classes object that contain the train_id and label_id. Returns: Number of classes to be segmented. """ train_ids = [target.train_id for target in target_classes] train_ids = np.array(train_ids) train_ids_unique = np.unique(train_ids) return len(train_ids_unique) def build_target_class_list(data_class_config): """Build a list of TargetClasses based on proto. Arguments: cost_function_config: CostFunctionConfig. Returns: A list of TargetClass instances. """ target_classes = [] orig_class_label_id_map = {} for target_class in data_class_config.target_classes: orig_class_label_id_map[target_class.name] = target_class.label_id class_label_id_calibrated_map = orig_class_label_id_map.copy() for target_class in data_class_config.target_classes: label_name = target_class.name train_name = target_class.mapping_class class_label_id_calibrated_map[label_name] = orig_class_label_id_map[train_name] train_ids = sorted(list(set(class_label_id_calibrated_map.values()))) train_id_calibrated_map = {} for idx, tr_id in enumerate(train_ids): train_id_calibrated_map[tr_id] = idx class_train_id_calibrated_map = {} for label_name, train_id in class_label_id_calibrated_map.items(): class_train_id_calibrated_map[label_name] = train_id_calibrated_map[train_id] for target_class in data_class_config.target_classes: target_classes.append( TargetClass(target_class.name, label_id=target_class.label_id, train_id=class_train_id_calibrated_map[target_class.name])) for target_class in target_classes: logging.debug("Label Id %d: Train Id %d", target_class.label_id, target_class.train_id) return target_classes class TargetClass(object): """Target class parameters.""" def __init__(self, name, label_id, train_id=None): """Constructor. Args: name (str): Name of the target class. label_id (str):original label id of every pixel of the mask train_id (str): The mapped train id of every pixel in the mask Raises: ValueError: On invalid input args. """ self.name = name self.train_id = train_id self.label_id = label_id
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/utils.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/evaluation_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/evaluation_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n7nvidia_tao_deploy/cv/unet/proto/evaluation_config.proto\"\x97\x05\n\x10\x45valuationConfig\x12)\n!validation_period_during_training\x18\x01 \x01(\r\x12\x1e\n\x16\x66irst_validation_epoch\x18\x02 \x01(\r\x12i\n&minimum_detection_ground_truth_overlap\x18\x03 \x03(\x0b\x32\x39.EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry\x12I\n\x15\x65valuation_box_config\x18\x04 \x03(\x0b\x32*.EvaluationConfig.EvaluationBoxConfigEntry\x12\x39\n\x16\x61verage_precision_mode\x18\x05 \x01(\x0e\x32\x19.EvaluationConfig.AP_MODE\x1aI\n\'MinimumDetectionGroundTruthOverlapEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\x1as\n\x13\x45valuationBoxConfig\x12\x16\n\x0eminimum_height\x18\x01 \x01(\x05\x12\x16\n\x0emaximum_height\x18\x02 \x01(\x05\x12\x15\n\rminimum_width\x18\x03 \x01(\x05\x12\x15\n\rmaximum_width\x18\x04 \x01(\x05\x1a\x61\n\x18\x45valuationBoxConfigEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\x34\n\x05value\x18\x02 \x01(\x0b\x32%.EvaluationConfig.EvaluationBoxConfig:\x02\x38\x01\"$\n\x07\x41P_MODE\x12\n\n\x06SAMPLE\x10\x00\x12\r\n\tINTEGRATE\x10\x01\x62\x06proto3') ) _EVALUATIONCONFIG_AP_MODE = _descriptor.EnumDescriptor( name='AP_MODE', full_name='EvaluationConfig.AP_MODE', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SAMPLE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTEGRATE', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=687, serialized_end=723, ) _sym_db.RegisterEnumDescriptor(_EVALUATIONCONFIG_AP_MODE) _EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY = _descriptor.Descriptor( name='MinimumDetectionGroundTruthOverlapEntry', full_name='EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=396, serialized_end=469, ) _EVALUATIONCONFIG_EVALUATIONBOXCONFIG = _descriptor.Descriptor( name='EvaluationBoxConfig', full_name='EvaluationConfig.EvaluationBoxConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='minimum_height', full_name='EvaluationConfig.EvaluationBoxConfig.minimum_height', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='maximum_height', full_name='EvaluationConfig.EvaluationBoxConfig.maximum_height', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='minimum_width', full_name='EvaluationConfig.EvaluationBoxConfig.minimum_width', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='maximum_width', full_name='EvaluationConfig.EvaluationBoxConfig.maximum_width', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=471, serialized_end=586, ) _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY = _descriptor.Descriptor( name='EvaluationBoxConfigEntry', full_name='EvaluationConfig.EvaluationBoxConfigEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='EvaluationConfig.EvaluationBoxConfigEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='EvaluationConfig.EvaluationBoxConfigEntry.value', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=588, serialized_end=685, ) _EVALUATIONCONFIG = _descriptor.Descriptor( name='EvaluationConfig', full_name='EvaluationConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='validation_period_during_training', full_name='EvaluationConfig.validation_period_during_training', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='first_validation_epoch', full_name='EvaluationConfig.first_validation_epoch', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='minimum_detection_ground_truth_overlap', full_name='EvaluationConfig.minimum_detection_ground_truth_overlap', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='evaluation_box_config', full_name='EvaluationConfig.evaluation_box_config', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='average_precision_mode', full_name='EvaluationConfig.average_precision_mode', index=4, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY, _EVALUATIONCONFIG_EVALUATIONBOXCONFIG, _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY, ], enum_types=[ _EVALUATIONCONFIG_AP_MODE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=60, serialized_end=723, ) _EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY.containing_type = _EVALUATIONCONFIG _EVALUATIONCONFIG_EVALUATIONBOXCONFIG.containing_type = _EVALUATIONCONFIG _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY.fields_by_name['value'].message_type = _EVALUATIONCONFIG_EVALUATIONBOXCONFIG _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY.containing_type = _EVALUATIONCONFIG _EVALUATIONCONFIG.fields_by_name['minimum_detection_ground_truth_overlap'].message_type = _EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY _EVALUATIONCONFIG.fields_by_name['evaluation_box_config'].message_type = _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY _EVALUATIONCONFIG.fields_by_name['average_precision_mode'].enum_type = _EVALUATIONCONFIG_AP_MODE _EVALUATIONCONFIG_AP_MODE.containing_type = _EVALUATIONCONFIG DESCRIPTOR.message_types_by_name['EvaluationConfig'] = _EVALUATIONCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) EvaluationConfig = _reflection.GeneratedProtocolMessageType('EvaluationConfig', (_message.Message,), dict( MinimumDetectionGroundTruthOverlapEntry = _reflection.GeneratedProtocolMessageType('MinimumDetectionGroundTruthOverlapEntry', (_message.Message,), dict( DESCRIPTOR = _EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY, __module__ = 'nvidia_tao_deploy.cv.unet.proto.evaluation_config_pb2' # @@protoc_insertion_point(class_scope:EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry) )) , EvaluationBoxConfig = _reflection.GeneratedProtocolMessageType('EvaluationBoxConfig', (_message.Message,), dict( DESCRIPTOR = _EVALUATIONCONFIG_EVALUATIONBOXCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.evaluation_config_pb2' # @@protoc_insertion_point(class_scope:EvaluationConfig.EvaluationBoxConfig) )) , EvaluationBoxConfigEntry = _reflection.GeneratedProtocolMessageType('EvaluationBoxConfigEntry', (_message.Message,), dict( DESCRIPTOR = _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY, __module__ = 'nvidia_tao_deploy.cv.unet.proto.evaluation_config_pb2' # @@protoc_insertion_point(class_scope:EvaluationConfig.EvaluationBoxConfigEntry) )) , DESCRIPTOR = _EVALUATIONCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.evaluation_config_pb2' # @@protoc_insertion_point(class_scope:EvaluationConfig) )) _sym_db.RegisterMessage(EvaluationConfig) _sym_db.RegisterMessage(EvaluationConfig.MinimumDetectionGroundTruthOverlapEntry) _sym_db.RegisterMessage(EvaluationConfig.EvaluationBoxConfig) _sym_db.RegisterMessage(EvaluationConfig.EvaluationBoxConfigEntry) _EVALUATIONCONFIG_MINIMUMDETECTIONGROUNDTRUTHOVERLAPENTRY._options = None _EVALUATIONCONFIG_EVALUATIONBOXCONFIGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/evaluation_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/model_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/model_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n2nvidia_tao_deploy/cv/unet/proto/model_config.proto\"\xc1\x06\n\x0bModelConfig\x12\x1d\n\x15pretrained_model_file\x18\x01 \x01(\t\x12 \n\x18\x66reeze_pretrained_layers\x18\x02 \x01(\x08\x12\'\n\x1f\x61llow_loaded_model_modification\x18\x03 \x01(\x08\x12\x12\n\nnum_layers\x18\x04 \x01(\x05\x12\x13\n\x0buse_pooling\x18\x05 \x01(\x08\x12\x16\n\x0euse_batch_norm\x18\x06 \x01(\x08\x12\x13\n\x0bremove_head\x18# \x01(\x08\x12\x12\n\nbyom_model\x18\x1f \x01(\t\x12\x14\n\x0c\x64ropout_rate\x18\x07 \x01(\x02\x12\x12\n\nactivation\x18\x15 \x01(\t\x12:\n\x12training_precision\x18\n \x01(\x0b\x32\x1e.ModelConfig.TrainingPrecision\x12\x11\n\tfreeze_bn\x18\x0b \x01(\x08\x12\x15\n\rfreeze_blocks\x18\x0c \x03(\x02\x12\x0c\n\x04\x61rch\x18\r \x01(\t\x12\x12\n\nload_graph\x18\x0e \x01(\x08\x12\x17\n\x0f\x61ll_projections\x18\x0f \x01(\x08\x12\x12\n\nenable_qat\x18\x1d \x01(\x08\x12\x1a\n\x12model_input_height\x18\x10 \x01(\x05\x12\x19\n\x11model_input_width\x18\x11 \x01(\x05\x12\x1c\n\x14model_input_channels\x18\x13 \x01(\x05\x12\x19\n\x11pruned_model_path\x18\x14 \x01(\t\x12\x33\n\x0binitializer\x18\x17 \x01(\x0e\x32\x1e.ModelConfig.KernelInitializer\x1a\x91\x01\n\x11TrainingPrecision\x12\x44\n\x0e\x62\x61\x63kend_floatx\x18\x01 \x01(\x0e\x32,.ModelConfig.TrainingPrecision.BackendFloatx\"6\n\rBackendFloatx\x12\x0b\n\x07INVALID\x10\x00\x12\x0b\n\x07\x46LOAT16\x10\x01\x12\x0b\n\x07\x46LOAT32\x10\x02\"F\n\x11KernelInitializer\x12\x12\n\x0eGLOROT_UNIFORM\x10\x00\x12\r\n\tHE_NORMAL\x10\x01\x12\x0e\n\nHE_UNIFORM\x10\x02\x62\x06proto3') ) _MODELCONFIG_TRAININGPRECISION_BACKENDFLOATX = _descriptor.EnumDescriptor( name='BackendFloatx', full_name='ModelConfig.TrainingPrecision.BackendFloatx', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='INVALID', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FLOAT16', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FLOAT32', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=762, serialized_end=816, ) _sym_db.RegisterEnumDescriptor(_MODELCONFIG_TRAININGPRECISION_BACKENDFLOATX) _MODELCONFIG_KERNELINITIALIZER = _descriptor.EnumDescriptor( name='KernelInitializer', full_name='ModelConfig.KernelInitializer', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='GLOROT_UNIFORM', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='HE_NORMAL', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='HE_UNIFORM', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=818, serialized_end=888, ) _sym_db.RegisterEnumDescriptor(_MODELCONFIG_KERNELINITIALIZER) _MODELCONFIG_TRAININGPRECISION = _descriptor.Descriptor( name='TrainingPrecision', full_name='ModelConfig.TrainingPrecision', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='backend_floatx', full_name='ModelConfig.TrainingPrecision.backend_floatx', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _MODELCONFIG_TRAININGPRECISION_BACKENDFLOATX, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=671, serialized_end=816, ) _MODELCONFIG = _descriptor.Descriptor( name='ModelConfig', full_name='ModelConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='pretrained_model_file', full_name='ModelConfig.pretrained_model_file', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_pretrained_layers', full_name='ModelConfig.freeze_pretrained_layers', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='allow_loaded_model_modification', full_name='ModelConfig.allow_loaded_model_modification', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_layers', full_name='ModelConfig.num_layers', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_pooling', full_name='ModelConfig.use_pooling', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_batch_norm', full_name='ModelConfig.use_batch_norm', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='remove_head', full_name='ModelConfig.remove_head', index=6, number=35, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='byom_model', full_name='ModelConfig.byom_model', index=7, number=31, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dropout_rate', full_name='ModelConfig.dropout_rate', index=8, number=7, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='activation', full_name='ModelConfig.activation', index=9, number=21, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_precision', full_name='ModelConfig.training_precision', index=10, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_bn', full_name='ModelConfig.freeze_bn', index=11, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_blocks', full_name='ModelConfig.freeze_blocks', index=12, number=12, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='arch', full_name='ModelConfig.arch', index=13, number=13, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='load_graph', full_name='ModelConfig.load_graph', index=14, number=14, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='all_projections', full_name='ModelConfig.all_projections', index=15, number=15, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_qat', full_name='ModelConfig.enable_qat', index=16, number=29, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_input_height', full_name='ModelConfig.model_input_height', index=17, number=16, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_input_width', full_name='ModelConfig.model_input_width', index=18, number=17, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_input_channels', full_name='ModelConfig.model_input_channels', index=19, number=19, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pruned_model_path', full_name='ModelConfig.pruned_model_path', index=20, number=20, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='initializer', full_name='ModelConfig.initializer', index=21, number=23, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_MODELCONFIG_TRAININGPRECISION, ], enum_types=[ _MODELCONFIG_KERNELINITIALIZER, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=55, serialized_end=888, ) _MODELCONFIG_TRAININGPRECISION.fields_by_name['backend_floatx'].enum_type = _MODELCONFIG_TRAININGPRECISION_BACKENDFLOATX _MODELCONFIG_TRAININGPRECISION.containing_type = _MODELCONFIG _MODELCONFIG_TRAININGPRECISION_BACKENDFLOATX.containing_type = _MODELCONFIG_TRAININGPRECISION _MODELCONFIG.fields_by_name['training_precision'].message_type = _MODELCONFIG_TRAININGPRECISION _MODELCONFIG.fields_by_name['initializer'].enum_type = _MODELCONFIG_KERNELINITIALIZER _MODELCONFIG_KERNELINITIALIZER.containing_type = _MODELCONFIG DESCRIPTOR.message_types_by_name['ModelConfig'] = _MODELCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) ModelConfig = _reflection.GeneratedProtocolMessageType('ModelConfig', (_message.Message,), dict( TrainingPrecision = _reflection.GeneratedProtocolMessageType('TrainingPrecision', (_message.Message,), dict( DESCRIPTOR = _MODELCONFIG_TRAININGPRECISION, __module__ = 'nvidia_tao_deploy.cv.unet.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig.TrainingPrecision) )) , DESCRIPTOR = _MODELCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.model_config_pb2' # @@protoc_insertion_point(class_scope:ModelConfig) )) _sym_db.RegisterMessage(ModelConfig) _sym_db.RegisterMessage(ModelConfig.TrainingPrecision) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/model_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/unet/proto/dataset_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.unet.proto import data_class_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_data__class__config__pb2 from nvidia_tao_deploy.cv.unet.proto import augmentation_config_pb2 as nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_augmentation__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/unet/proto/dataset_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n4nvidia_tao_deploy/cv/unet/proto/dataset_config.proto\x1a\x37nvidia_tao_deploy/cv/unet/proto/data_class_config.proto\x1a\x39nvidia_tao_deploy/cv/unet/proto/augmentation_config.proto\"4\n\nDataSource\x12\x12\n\nimage_path\x18\x01 \x01(\t\x12\x12\n\nmasks_path\x18\x02 \x01(\t\"3\n\x0fTrainDataSource\x12 \n\x0b\x64\x61ta_source\x18\x01 \x03(\x0b\x32\x0b.DataSource\"1\n\rValDataSource\x12 \n\x0b\x64\x61ta_source\x18\x01 \x03(\x0b\x32\x0b.DataSource\"2\n\x0eTestDataSource\x12 \n\x0b\x64\x61ta_source\x18\x01 \x03(\x0b\x32\x0b.DataSource\"\xb3\x04\n\rDatasetConfig\x12\x0f\n\x07\x61ugment\x18\x03 \x01(\x08\x12\x13\n\x0b\x66ilter_data\x18\x1f \x01(\x08\x12\x0f\n\x07\x64\x61taset\x18\n \x01(\t\x12\x12\n\ndataloader\x18\x14 \x01(\t\x12\x12\n\npreprocess\x18\x19 \x01(\t\x12\x16\n\x0eresize_padding\x18\x1d \x01(\x08\x12\x15\n\rresize_method\x18\x1e \x01(\t\x12\x18\n\x10input_image_type\x18\x0b \x01(\t\x12,\n\x12train_data_sources\x18\x01 \x01(\x0b\x32\x10.TrainDataSource\x12(\n\x10val_data_sources\x18\x02 \x01(\x0b\x32\x0e.ValDataSource\x12*\n\x11test_data_sources\x18\x04 \x01(\x0b\x32\x0f.TestDataSource\x12+\n\x11\x64\x61ta_class_config\x18\x12 \x01(\x0b\x32\x10.DataClassConfig\x12\x30\n\x13\x61ugmentation_config\x18\x1c \x01(\x0b\x32\x13.AugmentationConfig\x12\x19\n\x11train_images_path\x18\x0c \x01(\t\x12\x18\n\x10train_masks_path\x18\r \x01(\t\x12\x17\n\x0fval_images_path\x18\x0e \x01(\t\x12\x16\n\x0eval_masks_path\x18\x0f \x01(\t\x12\x18\n\x10test_images_path\x18\x10 \x01(\t\x12\x17\n\x0ftest_masks_path\x18\x11 \x01(\tb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_data__class__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_augmentation__config__pb2.DESCRIPTOR,]) _DATASOURCE = _descriptor.Descriptor( name='DataSource', full_name='DataSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='image_path', full_name='DataSource.image_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='masks_path', full_name='DataSource.masks_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=172, serialized_end=224, ) _TRAINDATASOURCE = _descriptor.Descriptor( name='TrainDataSource', full_name='TrainDataSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data_source', full_name='TrainDataSource.data_source', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=226, serialized_end=277, ) _VALDATASOURCE = _descriptor.Descriptor( name='ValDataSource', full_name='ValDataSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data_source', full_name='ValDataSource.data_source', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=279, serialized_end=328, ) _TESTDATASOURCE = _descriptor.Descriptor( name='TestDataSource', full_name='TestDataSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data_source', full_name='TestDataSource.data_source', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=330, serialized_end=380, ) _DATASETCONFIG = _descriptor.Descriptor( name='DatasetConfig', full_name='DatasetConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='augment', full_name='DatasetConfig.augment', index=0, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='filter_data', full_name='DatasetConfig.filter_data', index=1, number=31, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dataset', full_name='DatasetConfig.dataset', index=2, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dataloader', full_name='DatasetConfig.dataloader', index=3, number=20, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='preprocess', full_name='DatasetConfig.preprocess', index=4, number=25, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='resize_padding', full_name='DatasetConfig.resize_padding', index=5, number=29, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='resize_method', full_name='DatasetConfig.resize_method', index=6, number=30, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='input_image_type', full_name='DatasetConfig.input_image_type', index=7, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_data_sources', full_name='DatasetConfig.train_data_sources', index=8, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='val_data_sources', full_name='DatasetConfig.val_data_sources', index=9, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_data_sources', full_name='DatasetConfig.test_data_sources', index=10, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data_class_config', full_name='DatasetConfig.data_class_config', index=11, number=18, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='augmentation_config', full_name='DatasetConfig.augmentation_config', index=12, number=28, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_images_path', full_name='DatasetConfig.train_images_path', index=13, number=12, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='train_masks_path', full_name='DatasetConfig.train_masks_path', index=14, number=13, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='val_images_path', full_name='DatasetConfig.val_images_path', index=15, number=14, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='val_masks_path', full_name='DatasetConfig.val_masks_path', index=16, number=15, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_images_path', full_name='DatasetConfig.test_images_path', index=17, number=16, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='test_masks_path', full_name='DatasetConfig.test_masks_path', index=18, number=17, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=383, serialized_end=946, ) _TRAINDATASOURCE.fields_by_name['data_source'].message_type = _DATASOURCE _VALDATASOURCE.fields_by_name['data_source'].message_type = _DATASOURCE _TESTDATASOURCE.fields_by_name['data_source'].message_type = _DATASOURCE _DATASETCONFIG.fields_by_name['train_data_sources'].message_type = _TRAINDATASOURCE _DATASETCONFIG.fields_by_name['val_data_sources'].message_type = _VALDATASOURCE _DATASETCONFIG.fields_by_name['test_data_sources'].message_type = _TESTDATASOURCE _DATASETCONFIG.fields_by_name['data_class_config'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_data__class__config__pb2._DATACLASSCONFIG _DATASETCONFIG.fields_by_name['augmentation_config'].message_type = nvidia__tao__deploy_dot_cv_dot_unet_dot_proto_dot_augmentation__config__pb2._AUGMENTATIONCONFIG DESCRIPTOR.message_types_by_name['DataSource'] = _DATASOURCE DESCRIPTOR.message_types_by_name['TrainDataSource'] = _TRAINDATASOURCE DESCRIPTOR.message_types_by_name['ValDataSource'] = _VALDATASOURCE DESCRIPTOR.message_types_by_name['TestDataSource'] = _TESTDATASOURCE DESCRIPTOR.message_types_by_name['DatasetConfig'] = _DATASETCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) DataSource = _reflection.GeneratedProtocolMessageType('DataSource', (_message.Message,), dict( DESCRIPTOR = _DATASOURCE, __module__ = 'nvidia_tao_deploy.cv.unet.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:DataSource) )) _sym_db.RegisterMessage(DataSource) TrainDataSource = _reflection.GeneratedProtocolMessageType('TrainDataSource', (_message.Message,), dict( DESCRIPTOR = _TRAINDATASOURCE, __module__ = 'nvidia_tao_deploy.cv.unet.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:TrainDataSource) )) _sym_db.RegisterMessage(TrainDataSource) ValDataSource = _reflection.GeneratedProtocolMessageType('ValDataSource', (_message.Message,), dict( DESCRIPTOR = _VALDATASOURCE, __module__ = 'nvidia_tao_deploy.cv.unet.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:ValDataSource) )) _sym_db.RegisterMessage(ValDataSource) TestDataSource = _reflection.GeneratedProtocolMessageType('TestDataSource', (_message.Message,), dict( DESCRIPTOR = _TESTDATASOURCE, __module__ = 'nvidia_tao_deploy.cv.unet.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:TestDataSource) )) _sym_db.RegisterMessage(TestDataSource) DatasetConfig = _reflection.GeneratedProtocolMessageType('DatasetConfig', (_message.Message,), dict( DESCRIPTOR = _DATASETCONFIG, __module__ = 'nvidia_tao_deploy.cv.unet.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:DatasetConfig) )) _sym_db.RegisterMessage(DatasetConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/unet/proto/dataset_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """UNet convert etlt/onnx model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import tempfile from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.unet.engine_builder import UNetEngineBuilder from nvidia_tao_deploy.cv.unet.proto.utils import load_proto, initialize_params from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) DEFAULT_MAX_BATCH_SIZE = 1 DEFAULT_MIN_BATCH_SIZE = 1 DEFAULT_OPT_BATCH_SIZE = 1 @monitor_status(name='unet', mode='gen_trt_engine') def main(args): """UNet TRT convert.""" # decrypt etlt tmp_onnx_file, file_format = decode_model(args.model_path, args.key) experiment_spec = load_proto(args.experiment_spec) params = initialize_params(experiment_spec, phase="train") if args.engine_file is not None or args.data_type == 'int8': if args.engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = args.engine_file builder = UNetEngineBuilder(verbose=args.verbose, image_list=params['images_list'], is_qat=params['enable_qat'], workspace=args.max_workspace_size, min_batch_size=args.min_batch_size, opt_batch_size=args.opt_batch_size, max_batch_size=args.max_batch_size, strict_type_constraints=args.strict_type_constraints, force_ptq=args.force_ptq) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, args.data_type, calib_data_file=args.cal_data_file, calib_input=args.cal_image_dir, calib_cache=args.cal_cache_file, calib_num_images=args.batch_size * args.batches, calib_batch_size=args.batch_size, calib_json_file=args.cal_json_file) logging.info("Export finished successfully.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='gen_trt_engine', description='Generate TRT engine of UNet model.') parser.add_argument( '-m', '--model_path', type=str, required=False, help='Path to an UNet .etlt or .onnx model file.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec.' ) parser.add_argument( '-k', '--key', type=str, required=False, help='Key to save or load a .etlt model.' ) parser.add_argument( "--data_type", type=str, default="fp32", help="Data type for the TensorRT export.", choices=["fp32", "fp16", "int8"]) parser.add_argument( "--cal_image_dir", default="", type=str, help="Directory of images to run int8 calibration.") parser.add_argument( "--cal_data_file", default=None, type=str, help="Tensorfile to run calibration for int8 optimization.") parser.add_argument( '--cal_cache_file', default=None, type=str, help='Calibration cache file to write to.') parser.add_argument( '--cal_json_file', default=None, type=str, help='Dictionary containing tensor scale for QAT models.') parser.add_argument( "--engine_file", type=str, default=None, help="Path to the exported TRT engine.") parser.add_argument( "--max_batch_size", type=int, default=DEFAULT_MAX_BATCH_SIZE, help="Max batch size for TensorRT engine builder.") parser.add_argument( "--min_batch_size", type=int, default=DEFAULT_MIN_BATCH_SIZE, help="Min batch size for TensorRT engine builder.") parser.add_argument( "--opt_batch_size", type=int, default=DEFAULT_OPT_BATCH_SIZE, help="Opt batch size for TensorRT engine builder.") parser.add_argument( "--batch_size", type=int, default=1, help="Number of images per batch.") parser.add_argument( "--batches", type=int, default=10, help="Number of batches to calibrate over.") parser.add_argument( "--max_workspace_size", type=int, default=2, help="Max memory workspace size to allow in Gb for TensorRT engine builder (default: 2).") parser.add_argument( "-s", "--strict_type_constraints", action="store_true", default=False, help="A Boolean flag indicating whether to apply the \ TensorRT strict type constraints when building the TensorRT engine.") parser.add_argument( "--force_ptq", action="store_true", default=False, help="Flag to force post training quantization for QAT models.") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbosity of the logger.") parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/unet/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy UNet scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/unet/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import numpy as np import os from tqdm.auto import tqdm import logging from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.unet.dataloader import UNetLoader from nvidia_tao_deploy.cv.unet.inferencer import UNetInferencer from nvidia_tao_deploy.cv.unet.proto.utils import load_proto, initialize_params logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='unet', mode='inference') def main(args): """UNet TRT inference.""" if not os.path.exists(args.experiment_spec): raise FileNotFoundError(f"{args.experiment_spec} does not exist!") experiment_spec = load_proto(args.experiment_spec) params = initialize_params(experiment_spec) # Override params if there are corresponding commandline args params['batch_size'] = args.batch_size if args.batch_size else params['batch_size'] params['images_list'] = [args.image_dir] if args.image_dir else params['images_list'] params['masks_list'] = params['masks_list'] trt_infer = UNetInferencer(args.model_path, batch_size=args.batch_size, activation=params['activation']) dl = UNetLoader( trt_infer._input_shape, params['images_list'], [None], params['num_classes'], batch_size=args.batch_size, is_inference=True, resize_method=params['resize_method'], preprocess=params['preprocess'], resize_padding=params['resize_padding'], model_arch=params['arch'], input_image_type=params['input_image_type'], dtype=trt_infer.inputs[0].host.dtype) if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir os.makedirs(results_dir, exist_ok=True) for i, (imgs, _) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): y_pred = trt_infer.infer(imgs) image_paths = dl.image_paths[np.arange(args.batch_size) + args.batch_size * i] trt_infer.visualize_masks(image_paths, y_pred, results_dir, num_classes=params['num_classes'], input_image_type=params['input_image_type'], resize_padding=params['resize_padding'], resize_method=params['resize_method']) logging.info("Finished inference.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='infer', description='Inference with a UNet TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the UNet TensorRT engine.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/unet/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import json from tqdm.auto import tqdm import logging from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.unet.dataloader import UNetLoader from nvidia_tao_deploy.cv.unet.inferencer import UNetInferencer from nvidia_tao_deploy.cv.unet.proto.utils import load_proto, initialize_params from nvidia_tao_deploy.metrics.semantic_segmentation_metric import SemSegMetric logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='unet', mode='evaluation') def main(args): """UNet TRT evaluation.""" if not os.path.exists(args.experiment_spec): raise FileNotFoundError(f"{args.experiment_spec} does not exist!") experiment_spec = load_proto(args.experiment_spec) params = initialize_params(experiment_spec) # Override params if there are corresponding commandline args params['batch_size'] = args.batch_size if args.batch_size else params['batch_size'] params['images_list'] = [args.image_dir] if args.image_dir else params['images_list'] params['masks_list'] = [args.label_dir] if args.label_dir else params['masks_list'] trt_infer = UNetInferencer(args.model_path, batch_size=args.batch_size, activation=params['activation']) dl = UNetLoader( trt_infer._input_shape, params['images_list'], params['masks_list'], params['num_classes'], batch_size=args.batch_size, resize_method=params['resize_method'], preprocess=params['preprocess'], resize_padding=params['resize_padding'], model_arch=params['arch'], input_image_type=params['input_image_type'], dtype=trt_infer.inputs[0].host.dtype) eval_metric = SemSegMetric(num_classes=params['num_classes'], train_id_name_mapping=params['train_id_name_mapping'], label_id_train_id_mapping=params['label_id_train_id_mapping']) gt_labels = [] pred_labels = [] for imgs, labels in tqdm(dl, total=len(dl), desc="Producing predictions"): gt_labels.extend(labels) y_pred = trt_infer.infer(imgs) pred_labels.extend(y_pred) metrices = eval_metric.get_evaluation_metrics(gt_labels, pred_labels) # Store evaluation results into JSON if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(str(metrices["results_dic"]), f) logging.info("Finished evaluation.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='eval', description='Evaluate with a UNet TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the UNet TensorRT engine.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec.' ) parser.add_argument( '-l', '--label_dir', type=str, required=False, help='Label directory.') parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/unet/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto import launch_job import nvidia_tao_deploy.cv.unet.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_deploy.cv.unet.scripts, "unet", sys.argv[1:]) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/unet/entrypoint/unet.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for unet."""
tao_deploy-main
nvidia_tao_deploy/cv/unet/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class for performing TensorRT image inference.""" import numpy as np import tensorrt as trt from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference def trt_output_process_fn(y_encoded): """Function to process TRT model output.""" keep_k, boxes, scores, cls_id = y_encoded result = [] for idx, k in enumerate(keep_k.reshape(-1)): loc = boxes[idx].reshape(-1, 4)[:k] cid = cls_id[idx].reshape(-1, 1)[:k] conf = scores[idx].reshape(-1, 1)[:k] result.append(np.concatenate((cid, conf, loc), axis=-1)) return result class YOLOv3Inferencer(TRTInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, input_shape=None, batch_size=None, data_format="channel_first"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine super().__init__(engine_path) self.max_batch_size = self.engine.max_batch_size self.execute_v2 = False # Execution context is needed for inference self.context = None # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): self._input_shape = self.engine.get_binding_shape(binding)[-3:] assert len(self._input_shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[1] self.width = self._input_shape[2] else: self.height = self._input_shape[0] self.width = self._input_shape[1] # set binding_shape for dynamic input if (input_shape is not None) or (batch_size is not None): self.context = self.engine.create_execution_context() if input_shape is not None: self.context.set_binding_shape(0, input_shape) self.max_batch_size = input_shape[0] else: self.context.set_binding_shape(0, [batch_size] + list(self._input_shape)) self.max_batch_size = batch_size self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volume = trt.volume(self._input_shape) self.numpy_array = np.zeros((self.max_batch_size, input_volume)) def infer(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. y_pred = [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] # Process TRT outputs to proper format return trt_output_process_fn(y_pred) def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free()
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """YOLOv3 TensorRT engine builder.""" import logging import os import random from six.moves import xrange import sys import onnx from tqdm import tqdm import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder from nvidia_tao_deploy.engine.tensorfile import TensorFile from nvidia_tao_deploy.engine.tensorfile_calibrator import TensorfileCalibrator from nvidia_tao_deploy.engine.utils import generate_random_tensorfile, prepare_chunk logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class YOLOv3EngineBuilder(EngineBuilder): """Parses an UFF/ONNX graph and builds a TensorRT engine from it.""" def __init__( self, batch_size=None, data_format="channels_first", **kwargs ): """Init. Args: data_format (str): data_format. """ super().__init__(batch_size=batch_size, **kwargs) self._data_format = data_format def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="onnx"): """Parse the UFF/ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: onnx). """ if file_format == "onnx": logger.info("Parsing ONNX model") self._input_dims = self.get_onnx_input_dims(model_path) self.batch_size = self._input_dims[0] network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.batch_size <= 0: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_opt = (self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_max = (self.max_batch_size, input_shape[1], input_shape[2], input_shape[3]) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) else: logger.info("Parsing UFF model") raise NotImplementedError("UFF for YOLO_v3 is not supported") def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None, image_mean=None): """Simple function to set an Tensorfile based int8 calibrator. Args: calib_data_file: Path to the TensorFile. If the tensorfile doesn't exist at this path, then one is created with either n_batches of random tensors, images from the file in calib_input of dimensions (batch_size,) + (input_dims). calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. image_mean: Image mean per channel. Returns: No explicit returns. """ logger.info("Calibrating using TensorfileCalibrator") n_batches = calib_num_images // calib_batch_size if not os.path.exists(calib_data_file): self.generate_tensor_file(calib_data_file, calib_input, self._input_dims[1:], n_batches=n_batches, batch_size=calib_batch_size, image_mean=image_mean) self.config.int8_calibrator = TensorfileCalibrator(calib_data_file, calib_cache, n_batches, calib_batch_size) def generate_tensor_file(self, data_file_name, calibration_images_dir, input_dims, n_batches=10, batch_size=1, image_mean=None): """Generate calibration Tensorfile for int8 calibrator. This function generates a calibration tensorfile from a directory of images, or dumps n_batches of random numpy arrays of shape (batch_size,) + (input_dims). Args: data_file_name (str): Path to the output tensorfile to be saved. calibration_images_dir (str): Path to the images to generate a tensorfile from. input_dims (list): Input shape in CHW order. n_batches (int): Number of batches to be saved. batch_size (int): Number of images per batch. image_mean (list): Image mean per channel. Returns: No explicit returns. """ if not os.path.exists(calibration_images_dir): logger.info("Generating a tensorfile with random tensor images. This may work well as " "a profiling tool, however, it may result in inaccurate results at " "inference. Please generate a tensorfile using the tlt-int8-tensorfile, " "or provide a custom directory of images for best performance.") generate_random_tensorfile(data_file_name, input_dims, n_batches=n_batches, batch_size=batch_size) else: # Preparing the list of images to be saved. num_images = n_batches * batch_size valid_image_ext = ['jpg', 'jpeg', 'png'] image_list = [os.path.join(calibration_images_dir, image) for image in os.listdir(calibration_images_dir) if image.split('.')[-1] in valid_image_ext] if len(image_list) < num_images: raise ValueError('Not enough number of images provided:' f' {len(image_list)} < {num_images}') image_idx = random.sample(xrange(len(image_list)), num_images) self.set_data_preprocessing_parameters(input_dims, image_mean) # Writing out processed dump. with TensorFile(data_file_name, 'w') as f: for chunk in tqdm(image_idx[x:x + batch_size] for x in xrange(0, len(image_idx), batch_size)): dump_data = prepare_chunk(chunk, image_list, image_width=input_dims[2], image_height=input_dims[1], channels=input_dims[0], batch_size=batch_size, **self.preprocessing_arguments) f.write(dump_data) f.closed def set_data_preprocessing_parameters(self, input_dims, image_mean=None): """Set data pre-processing parameters for the int8 calibration.""" num_channels = input_dims[0] if num_channels == 3: if not image_mean: means = [103.939, 116.779, 123.68] else: assert len(image_mean) == 3, "Image mean should have 3 values for RGB inputs." means = image_mean elif num_channels == 1: if not image_mean: means = [117.3786] else: assert len(image_mean) == 1, "Image mean should have 1 value for grayscale inputs." means = image_mean else: raise NotImplementedError( f"Invalid number of dimensions {num_channels}.") self.preprocessing_arguments = {"scale": 1.0, "means": means, "flip_channel": True}
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy YOLOv3.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """YOLOv3 loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import cv2 import numpy as np from nvidia_tao_deploy.dataloader.kitti import KITTILoader logging.basicConfig(format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', level="DEBUG") logger = logging.getLogger(__name__) def aug_letterbox_resize(img, boxes, num_channels=3, resize_shape=(512, 512)): """Apply letter box. resize image to resize_shape, not changing aspect ratio. Args: img (PIL.Image): RGB image boxes (np.array): (N, 4) numpy arrays (xmin, ymin, xmax, ymax) containing bboxes. {x,y}{min,max} is in [0, 1] range. resize_shape (int, int): (w, h) of new image Returns: aug_img: img after resize aug_boxes: boxes after resize """ img = np.array(img).astype(np.float32) if num_channels == 1: new_img = np.zeros((resize_shape[1], resize_shape[0]), dtype=np.float) else: new_img = np.zeros((resize_shape[1], resize_shape[0], 3), dtype=np.float) new_img += np.mean(img, axis=(0, 1), keepdims=True) h, w = img.shape[0], img.shape[1] ratio = min(float(resize_shape[1]) / h, float(resize_shape[0]) / w) new_h = int(round(ratio * h)) new_w = int(round(ratio * w)) l_shift = (resize_shape[0] - new_w) // 2 t_shift = (resize_shape[1] - new_h) // 2 img = cv2.resize(img, (new_w, new_h), cv2.INTER_LINEAR) new_img[t_shift: t_shift + new_h, l_shift: l_shift + new_w] = img.astype(np.float) xmin = (boxes[:, 0] * new_w + l_shift) / float(resize_shape[0]) xmax = (boxes[:, 2] * new_w + l_shift) / float(resize_shape[0]) ymin = (boxes[:, 1] * new_h + t_shift) / float(resize_shape[1]) ymax = (boxes[:, 3] * new_h + t_shift) / float(resize_shape[1]) return new_img, np.stack([xmin, ymin, xmax, ymax], axis=-1), \ [l_shift, t_shift, l_shift + new_w, t_shift + new_h] class YOLOv3KITTILoader(KITTILoader): """YOLOv3 Dataloader.""" def __init__(self, **kwargs): """Init.""" super().__init__(**kwargs) # YOLO series starts label index from 0 classes = sorted({str(x).lower() for x in self.mapping_dict.values()}) self.classes = dict(zip(classes, range(len(classes)))) self.class_mapping = {key.lower(): self.classes[str(val.lower())] for key, val in self.mapping_dict.items()} def _filter_invalid_labels(self, labels): """filter out invalid labels. Arg: labels: size (N, 6), where bboxes is normalized to 0~1. Returns: labels: size (M, 6), filtered bboxes with clipped boxes. """ labels[:, -4:] = np.clip(labels[:, -4:], 0, 1) # exclude invalid boxes difficult_cond = (labels[:, 1] < 0.5) | (not self.exclude_difficult) if np.any(difficult_cond == 0): logger.warning( "Got label marked as difficult(occlusion > 0), " "please set occlusion field in KITTI label to 0 " "or set `dataset_config.include_difficult_in_training` to True " "in spec file, if you want to include it in training." ) x_cond = labels[:, 4] - labels[:, 2] > 1e-3 y_cond = labels[:, 5] - labels[:, 3] > 1e-3 return labels[difficult_cond & x_cond & y_cond] def preprocessing(self, image, label): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. Args: image (PIL.image): The Pillow image on disk to load. label (np.array): labels Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch label (np.array): labels """ # change bbox to 0~1 w, h = image.size label[:, 2] /= w label[:, 3] /= h label[:, 4] /= w label[:, 5] /= h bboxes = label[:, -4:] image, bboxes, _ = aug_letterbox_resize(image, bboxes, num_channels=self.num_channels, resize_shape=(self.width, self.height)) label[:, -4:] = bboxes # Handle Grayscale if self.num_channels == 1: image = np.expand_dims(image, axis=2) # Filter invalid labels label = self._filter_invalid_labels(label) return image, label
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/dataloader.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/yolo_v3/proto/training_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.common.proto import cost_scaling_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_cost__scaling__config__pb2 from nvidia_tao_deploy.cv.common.proto import learning_rate_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_learning__rate__config__pb2 from nvidia_tao_deploy.cv.common.proto import optimizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_optimizer__config__pb2 from nvidia_tao_deploy.cv.common.proto import regularizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_regularizer__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/yolo_v3/proto/training_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n8nvidia_tao_deploy/cv/yolo_v3/proto/training_config.proto\x1a;nvidia_tao_deploy/cv/common/proto/cost_scaling_config.proto\x1a<nvidia_tao_deploy/cv/common/proto/learning_rate_config.proto\x1a\x38nvidia_tao_deploy/cv/common/proto/optimizer_config.proto\x1a:nvidia_tao_deploy/cv/common/proto/regularizer_config.proto\"\xc4\x03\n\x0eTrainingConfig\x12\x1a\n\x12\x62\x61tch_size_per_gpu\x18\x01 \x01(\r\x12\x12\n\nnum_epochs\x18\x02 \x01(\r\x12*\n\rlearning_rate\x18\x03 \x01(\x0b\x32\x13.LearningRateConfig\x12\'\n\x0bregularizer\x18\x04 \x01(\x0b\x32\x12.RegularizerConfig\x12#\n\toptimizer\x18\x05 \x01(\x0b\x32\x10.OptimizerConfig\x12(\n\x0c\x63ost_scaling\x18\x06 \x01(\x0b\x32\x12.CostScalingConfig\x12\x1b\n\x13\x63heckpoint_interval\x18\x07 \x01(\r\x12\x12\n\nenable_qat\x18\x08 \x01(\x08\x12\x1b\n\x11resume_model_path\x18\t \x01(\tH\x00\x12\x1d\n\x13pretrain_model_path\x18\n \x01(\tH\x00\x12\x1b\n\x11pruned_model_path\x18\x0b \x01(\tH\x00\x12\x16\n\x0emax_queue_size\x18\x0c \x01(\r\x12\x11\n\tn_workers\x18\r \x01(\r\x12\x1b\n\x13use_multiprocessing\x18\x0e \x01(\x08\x42\x0c\n\nload_modelb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_cost__scaling__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_learning__rate__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_optimizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_regularizer__config__pb2.DESCRIPTOR,]) _TRAININGCONFIG = _descriptor.Descriptor( name='TrainingConfig', full_name='TrainingConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='batch_size_per_gpu', full_name='TrainingConfig.batch_size_per_gpu', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_epochs', full_name='TrainingConfig.num_epochs', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='learning_rate', full_name='TrainingConfig.learning_rate', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='regularizer', full_name='TrainingConfig.regularizer', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='optimizer', full_name='TrainingConfig.optimizer', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cost_scaling', full_name='TrainingConfig.cost_scaling', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='checkpoint_interval', full_name='TrainingConfig.checkpoint_interval', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_qat', full_name='TrainingConfig.enable_qat', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='resume_model_path', full_name='TrainingConfig.resume_model_path', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pretrain_model_path', full_name='TrainingConfig.pretrain_model_path', index=9, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pruned_model_path', full_name='TrainingConfig.pruned_model_path', index=10, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_queue_size', full_name='TrainingConfig.max_queue_size', index=11, number=12, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_workers', full_name='TrainingConfig.n_workers', index=12, number=13, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_multiprocessing', full_name='TrainingConfig.use_multiprocessing', index=13, number=14, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='load_model', full_name='TrainingConfig.load_model', index=0, containing_type=None, fields=[]), ], serialized_start=302, serialized_end=754, ) _TRAININGCONFIG.fields_by_name['learning_rate'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_learning__rate__config__pb2._LEARNINGRATECONFIG _TRAININGCONFIG.fields_by_name['regularizer'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_regularizer__config__pb2._REGULARIZERCONFIG _TRAININGCONFIG.fields_by_name['optimizer'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_optimizer__config__pb2._OPTIMIZERCONFIG _TRAININGCONFIG.fields_by_name['cost_scaling'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_cost__scaling__config__pb2._COSTSCALINGCONFIG _TRAININGCONFIG.oneofs_by_name['load_model'].fields.append( _TRAININGCONFIG.fields_by_name['resume_model_path']) _TRAININGCONFIG.fields_by_name['resume_model_path'].containing_oneof = _TRAININGCONFIG.oneofs_by_name['load_model'] _TRAININGCONFIG.oneofs_by_name['load_model'].fields.append( _TRAININGCONFIG.fields_by_name['pretrain_model_path']) _TRAININGCONFIG.fields_by_name['pretrain_model_path'].containing_oneof = _TRAININGCONFIG.oneofs_by_name['load_model'] _TRAININGCONFIG.oneofs_by_name['load_model'].fields.append( _TRAININGCONFIG.fields_by_name['pruned_model_path']) _TRAININGCONFIG.fields_by_name['pruned_model_path'].containing_oneof = _TRAININGCONFIG.oneofs_by_name['load_model'] DESCRIPTOR.message_types_by_name['TrainingConfig'] = _TRAININGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) TrainingConfig = _reflection.GeneratedProtocolMessageType('TrainingConfig', (_message.Message,), dict( DESCRIPTOR = _TRAININGCONFIG, __module__ = 'nvidia_tao_deploy.cv.yolo_v3.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:TrainingConfig) )) _sym_db.RegisterMessage(TrainingConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/proto/training_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy YOLOv3 Proto.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/yolo_v3/proto/augmentation_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/yolo_v3/proto/augmentation_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n<nvidia_tao_deploy/cv/yolo_v3/proto/augmentation_config.proto\"\xf2\x02\n\x12\x41ugmentationConfig\x12\x0b\n\x03hue\x18\x01 \x01(\x02\x12\x12\n\nsaturation\x18\x02 \x01(\x02\x12\x10\n\x08\x65xposure\x18\x03 \x01(\x02\x12\x15\n\rvertical_flip\x18\x04 \x01(\x02\x12\x17\n\x0fhorizontal_flip\x18\x05 \x01(\x02\x12\x0e\n\x06jitter\x18\x06 \x01(\x02\x12\x14\n\x0coutput_width\x18\x07 \x01(\x05\x12\x15\n\routput_height\x18\x08 \x01(\x05\x12\x16\n\x0eoutput_channel\x18\t \x01(\x05\x12\x14\n\x0coutput_depth\x18\x0c \x01(\r\x12$\n\x1crandomize_input_shape_period\x18\n \x01(\x05\x12\x36\n\nimage_mean\x18\x0b \x03(\x0b\x32\".AugmentationConfig.ImageMeanEntry\x1a\x30\n\x0eImageMeanEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\x62\x06proto3') ) _AUGMENTATIONCONFIG_IMAGEMEANENTRY = _descriptor.Descriptor( name='ImageMeanEntry', full_name='AugmentationConfig.ImageMeanEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='AugmentationConfig.ImageMeanEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='AugmentationConfig.ImageMeanEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=387, serialized_end=435, ) _AUGMENTATIONCONFIG = _descriptor.Descriptor( name='AugmentationConfig', full_name='AugmentationConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='hue', full_name='AugmentationConfig.hue', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='saturation', full_name='AugmentationConfig.saturation', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='exposure', full_name='AugmentationConfig.exposure', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='vertical_flip', full_name='AugmentationConfig.vertical_flip', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='horizontal_flip', full_name='AugmentationConfig.horizontal_flip', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='jitter', full_name='AugmentationConfig.jitter', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_width', full_name='AugmentationConfig.output_width', index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_height', full_name='AugmentationConfig.output_height', index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_channel', full_name='AugmentationConfig.output_channel', index=8, number=9, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='output_depth', full_name='AugmentationConfig.output_depth', index=9, number=12, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='randomize_input_shape_period', full_name='AugmentationConfig.randomize_input_shape_period', index=10, number=10, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_mean', full_name='AugmentationConfig.image_mean', index=11, number=11, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_AUGMENTATIONCONFIG_IMAGEMEANENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=65, serialized_end=435, ) _AUGMENTATIONCONFIG_IMAGEMEANENTRY.containing_type = _AUGMENTATIONCONFIG _AUGMENTATIONCONFIG.fields_by_name['image_mean'].message_type = _AUGMENTATIONCONFIG_IMAGEMEANENTRY DESCRIPTOR.message_types_by_name['AugmentationConfig'] = _AUGMENTATIONCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) AugmentationConfig = _reflection.GeneratedProtocolMessageType('AugmentationConfig', (_message.Message,), dict( ImageMeanEntry = _reflection.GeneratedProtocolMessageType('ImageMeanEntry', (_message.Message,), dict( DESCRIPTOR = _AUGMENTATIONCONFIG_IMAGEMEANENTRY, __module__ = 'nvidia_tao_deploy.cv.yolo_v3.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig.ImageMeanEntry) )) , DESCRIPTOR = _AUGMENTATIONCONFIG, __module__ = 'nvidia_tao_deploy.cv.yolo_v3.proto.augmentation_config_pb2' # @@protoc_insertion_point(class_scope:AugmentationConfig) )) _sym_db.RegisterMessage(AugmentationConfig) _sym_db.RegisterMessage(AugmentationConfig.ImageMeanEntry) _AUGMENTATIONCONFIG_IMAGEMEANENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/proto/augmentation_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/yolo_v3/proto/yolov3_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/yolo_v3/proto/yolov3_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n6nvidia_tao_deploy/cv/yolo_v3/proto/yolov3_config.proto\"\xca\x02\n\x0cYOLOv3Config\x12\x18\n\x10\x62ig_anchor_shape\x18\x01 \x01(\t\x12\x18\n\x10mid_anchor_shape\x18\x02 \x01(\t\x12\x1a\n\x12small_anchor_shape\x18\x03 \x01(\t\x12 \n\x18matching_neutral_box_iou\x18\x04 \x01(\x02\x12\x0c\n\x04\x61rch\x18\x05 \x01(\t\x12\x0f\n\x07nlayers\x18\x06 \x01(\r\x12\x18\n\x10\x61rch_conv_blocks\x18\x07 \x01(\r\x12\x17\n\x0floss_loc_weight\x18\x08 \x01(\x02\x12\x1c\n\x14loss_neg_obj_weights\x18\t \x01(\x02\x12\x1a\n\x12loss_class_weights\x18\n \x01(\x02\x12\x15\n\rfreeze_blocks\x18\x0b \x03(\x02\x12\x11\n\tfreeze_bn\x18\x0c \x01(\x08\x12\x12\n\nforce_relu\x18\r \x01(\x08\x62\x06proto3') ) _YOLOV3CONFIG = _descriptor.Descriptor( name='YOLOv3Config', full_name='YOLOv3Config', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='big_anchor_shape', full_name='YOLOv3Config.big_anchor_shape', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mid_anchor_shape', full_name='YOLOv3Config.mid_anchor_shape', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='small_anchor_shape', full_name='YOLOv3Config.small_anchor_shape', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='matching_neutral_box_iou', full_name='YOLOv3Config.matching_neutral_box_iou', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='arch', full_name='YOLOv3Config.arch', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nlayers', full_name='YOLOv3Config.nlayers', index=5, number=6, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='arch_conv_blocks', full_name='YOLOv3Config.arch_conv_blocks', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_loc_weight', full_name='YOLOv3Config.loss_loc_weight', index=7, number=8, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_neg_obj_weights', full_name='YOLOv3Config.loss_neg_obj_weights', index=8, number=9, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='loss_class_weights', full_name='YOLOv3Config.loss_class_weights', index=9, number=10, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_blocks', full_name='YOLOv3Config.freeze_blocks', index=10, number=11, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='freeze_bn', full_name='YOLOv3Config.freeze_bn', index=11, number=12, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='force_relu', full_name='YOLOv3Config.force_relu', index=12, number=13, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=59, serialized_end=389, ) DESCRIPTOR.message_types_by_name['YOLOv3Config'] = _YOLOV3CONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) YOLOv3Config = _reflection.GeneratedProtocolMessageType('YOLOv3Config', (_message.Message,), dict( DESCRIPTOR = _YOLOV3CONFIG, __module__ = 'nvidia_tao_deploy.cv.yolo_v3.proto.yolov3_config_pb2' # @@protoc_insertion_point(class_scope:YOLOv3Config) )) _sym_db.RegisterMessage(YOLOv3Config) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/proto/yolov3_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/yolo_v3/proto/experiment.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.yolo_v3.proto import training_config_pb2 as nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_training__config__pb2 from nvidia_tao_deploy.cv.common.proto import eval_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_eval__config__pb2 from nvidia_tao_deploy.cv.common.proto import nms_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_nms__config__pb2 from nvidia_tao_deploy.cv.yolo_v3.proto import yolov3_config_pb2 as nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_yolov3__config__pb2 from nvidia_tao_deploy.cv.yolo_v3.proto import augmentation_config_pb2 as nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_augmentation__config__pb2 from nvidia_tao_deploy.cv.yolo_v3.proto import dataset_config_pb2 as nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_dataset__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/yolo_v3/proto/experiment.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n3nvidia_tao_deploy/cv/yolo_v3/proto/experiment.proto\x1a\x38nvidia_tao_deploy/cv/yolo_v3/proto/training_config.proto\x1a\x33nvidia_tao_deploy/cv/common/proto/eval_config.proto\x1a\x32nvidia_tao_deploy/cv/common/proto/nms_config.proto\x1a\x36nvidia_tao_deploy/cv/yolo_v3/proto/yolov3_config.proto\x1a<nvidia_tao_deploy/cv/yolo_v3/proto/augmentation_config.proto\x1a\x37nvidia_tao_deploy/cv/yolo_v3/proto/dataset_config.proto\"\x93\x02\n\nExperiment\x12,\n\x0e\x64\x61taset_config\x18\x01 \x01(\x0b\x32\x14.YOLOv3DatasetConfig\x12\x30\n\x13\x61ugmentation_config\x18\x02 \x01(\x0b\x32\x13.AugmentationConfig\x12(\n\x0ftraining_config\x18\x03 \x01(\x0b\x32\x0f.TrainingConfig\x12 \n\x0b\x65val_config\x18\x04 \x01(\x0b\x32\x0b.EvalConfig\x12\x1e\n\nnms_config\x18\x05 \x01(\x0b\x32\n.NMSConfig\x12$\n\ryolov3_config\x18\x06 \x01(\x0b\x32\r.YOLOv3Config\x12\x13\n\x0brandom_seed\x18\x07 \x01(\rb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_training__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_eval__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_nms__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_yolov3__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_augmentation__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_dataset__config__pb2.DESCRIPTOR,]) _EXPERIMENT = _descriptor.Descriptor( name='Experiment', full_name='Experiment', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='dataset_config', full_name='Experiment.dataset_config', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='augmentation_config', full_name='Experiment.augmentation_config', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='training_config', full_name='Experiment.training_config', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='eval_config', full_name='Experiment.eval_config', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nms_config', full_name='Experiment.nms_config', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='yolov3_config', full_name='Experiment.yolov3_config', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='random_seed', full_name='Experiment.random_seed', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=394, serialized_end=669, ) _EXPERIMENT.fields_by_name['dataset_config'].message_type = nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_dataset__config__pb2._YOLOV3DATASETCONFIG _EXPERIMENT.fields_by_name['augmentation_config'].message_type = nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_augmentation__config__pb2._AUGMENTATIONCONFIG _EXPERIMENT.fields_by_name['training_config'].message_type = nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_training__config__pb2._TRAININGCONFIG _EXPERIMENT.fields_by_name['eval_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_eval__config__pb2._EVALCONFIG _EXPERIMENT.fields_by_name['nms_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_nms__config__pb2._NMSCONFIG _EXPERIMENT.fields_by_name['yolov3_config'].message_type = nvidia__tao__deploy_dot_cv_dot_yolo__v3_dot_proto_dot_yolov3__config__pb2._YOLOV3CONFIG DESCRIPTOR.message_types_by_name['Experiment'] = _EXPERIMENT _sym_db.RegisterFileDescriptor(DESCRIPTOR) Experiment = _reflection.GeneratedProtocolMessageType('Experiment', (_message.Message,), dict( DESCRIPTOR = _EXPERIMENT, __module__ = 'nvidia_tao_deploy.cv.yolo_v3.proto.experiment_pb2' # @@protoc_insertion_point(class_scope:Experiment) )) _sym_db.RegisterMessage(Experiment) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/proto/experiment_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Config Base Utilities.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from google.protobuf.text_format import Merge as merge_text_proto from nvidia_tao_deploy.cv.yolo_v3.proto.experiment_pb2 import Experiment def load_proto(config): """Load the experiment proto.""" proto = Experiment() def _load_from_file(filename, pb2): if not os.path.exists(filename): raise IOError(f"Specfile not found at: {filename}") with open(filename, "r", encoding="utf-8") as f: merge_text_proto(f.read(), pb2) _load_from_file(config, proto) return proto
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/proto/utils.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/yolo_v3/proto/dataset_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/yolo_v3/proto/dataset_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n7nvidia_tao_deploy/cv/yolo_v3/proto/dataset_config.proto\"\xa5\x01\n\x10YOLOv3DataSource\x12\x1e\n\x14label_directory_path\x18\x01 \x01(\tH\x00\x12\x18\n\x0etfrecords_path\x18\x02 \x01(\tH\x00\x12\x1c\n\x14image_directory_path\x18\x03 \x01(\t\x12\x11\n\troot_path\x18\x04 \x01(\t\x12\x15\n\rsource_weight\x18\x05 \x01(\x02\x42\x0f\n\rlabels_format\"\xf7\x02\n\x13YOLOv3DatasetConfig\x12\'\n\x0c\x64\x61ta_sources\x18\x01 \x03(\x0b\x32\x11.YOLOv3DataSource\x12J\n\x14target_class_mapping\x18\x02 \x03(\x0b\x32,.YOLOv3DatasetConfig.TargetClassMappingEntry\x12\x17\n\x0fvalidation_fold\x18\x04 \x01(\r\x12\x32\n\x17validation_data_sources\x18\x03 \x03(\x0b\x32\x11.YOLOv3DataSource\x12%\n\x1dinclude_difficult_in_training\x18\x07 \x01(\x08\x12\x0c\n\x04type\x18\x05 \x01(\t\x12\x17\n\x0fimage_extension\x18\x06 \x01(\t\x12\x15\n\ris_monochrome\x18\x08 \x01(\x08\x1a\x39\n\x17TargetClassMappingEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\x62\x06proto3') ) _YOLOV3DATASOURCE = _descriptor.Descriptor( name='YOLOv3DataSource', full_name='YOLOv3DataSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='label_directory_path', full_name='YOLOv3DataSource.label_directory_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tfrecords_path', full_name='YOLOv3DataSource.tfrecords_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_directory_path', full_name='YOLOv3DataSource.image_directory_path', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='root_path', full_name='YOLOv3DataSource.root_path', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='source_weight', full_name='YOLOv3DataSource.source_weight', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='labels_format', full_name='YOLOv3DataSource.labels_format', index=0, containing_type=None, fields=[]), ], serialized_start=60, serialized_end=225, ) _YOLOV3DATASETCONFIG_TARGETCLASSMAPPINGENTRY = _descriptor.Descriptor( name='TargetClassMappingEntry', full_name='YOLOv3DatasetConfig.TargetClassMappingEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='YOLOv3DatasetConfig.TargetClassMappingEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='YOLOv3DatasetConfig.TargetClassMappingEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=546, serialized_end=603, ) _YOLOV3DATASETCONFIG = _descriptor.Descriptor( name='YOLOv3DatasetConfig', full_name='YOLOv3DatasetConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data_sources', full_name='YOLOv3DatasetConfig.data_sources', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_class_mapping', full_name='YOLOv3DatasetConfig.target_class_mapping', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_fold', full_name='YOLOv3DatasetConfig.validation_fold', index=2, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_data_sources', full_name='YOLOv3DatasetConfig.validation_data_sources', index=3, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='include_difficult_in_training', full_name='YOLOv3DatasetConfig.include_difficult_in_training', index=4, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='YOLOv3DatasetConfig.type', index=5, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_extension', full_name='YOLOv3DatasetConfig.image_extension', index=6, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='is_monochrome', full_name='YOLOv3DatasetConfig.is_monochrome', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_YOLOV3DATASETCONFIG_TARGETCLASSMAPPINGENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=228, serialized_end=603, ) _YOLOV3DATASOURCE.oneofs_by_name['labels_format'].fields.append( _YOLOV3DATASOURCE.fields_by_name['label_directory_path']) _YOLOV3DATASOURCE.fields_by_name['label_directory_path'].containing_oneof = _YOLOV3DATASOURCE.oneofs_by_name['labels_format'] _YOLOV3DATASOURCE.oneofs_by_name['labels_format'].fields.append( _YOLOV3DATASOURCE.fields_by_name['tfrecords_path']) _YOLOV3DATASOURCE.fields_by_name['tfrecords_path'].containing_oneof = _YOLOV3DATASOURCE.oneofs_by_name['labels_format'] _YOLOV3DATASETCONFIG_TARGETCLASSMAPPINGENTRY.containing_type = _YOLOV3DATASETCONFIG _YOLOV3DATASETCONFIG.fields_by_name['data_sources'].message_type = _YOLOV3DATASOURCE _YOLOV3DATASETCONFIG.fields_by_name['target_class_mapping'].message_type = _YOLOV3DATASETCONFIG_TARGETCLASSMAPPINGENTRY _YOLOV3DATASETCONFIG.fields_by_name['validation_data_sources'].message_type = _YOLOV3DATASOURCE DESCRIPTOR.message_types_by_name['YOLOv3DataSource'] = _YOLOV3DATASOURCE DESCRIPTOR.message_types_by_name['YOLOv3DatasetConfig'] = _YOLOV3DATASETCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) YOLOv3DataSource = _reflection.GeneratedProtocolMessageType('YOLOv3DataSource', (_message.Message,), dict( DESCRIPTOR = _YOLOV3DATASOURCE, __module__ = 'nvidia_tao_deploy.cv.yolo_v3.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:YOLOv3DataSource) )) _sym_db.RegisterMessage(YOLOv3DataSource) YOLOv3DatasetConfig = _reflection.GeneratedProtocolMessageType('YOLOv3DatasetConfig', (_message.Message,), dict( TargetClassMappingEntry = _reflection.GeneratedProtocolMessageType('TargetClassMappingEntry', (_message.Message,), dict( DESCRIPTOR = _YOLOV3DATASETCONFIG_TARGETCLASSMAPPINGENTRY, __module__ = 'nvidia_tao_deploy.cv.yolo_v3.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:YOLOv3DatasetConfig.TargetClassMappingEntry) )) , DESCRIPTOR = _YOLOV3DATASETCONFIG, __module__ = 'nvidia_tao_deploy.cv.yolo_v3.proto.dataset_config_pb2' # @@protoc_insertion_point(class_scope:YOLOv3DatasetConfig) )) _sym_db.RegisterMessage(YOLOv3DatasetConfig) _sym_db.RegisterMessage(YOLOv3DatasetConfig.TargetClassMappingEntry) _YOLOV3DATASETCONFIG_TARGETCLASSMAPPINGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/proto/dataset_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """YOLOv3 convert etlt/onnx model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import logging import os import tempfile from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.yolo_v3.proto.utils import load_proto from nvidia_tao_deploy.cv.yolo_v3.engine_builder import YOLOv3EngineBuilder from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) DEFAULT_MAX_BATCH_SIZE = 1 DEFAULT_MIN_BATCH_SIZE = 1 DEFAULT_OPT_BATCH_SIZE = 1 @monitor_status(name='yolo_v3', mode='gen_trt_engine') def main(args): """YOLOv3 TRT convert.""" # decrypt etlt tmp_onnx_file, file_format = decode_model(args.model_path, args.key) # Load from proto-based spec file es = load_proto(args.experiment_spec) if args.engine_file is not None or args.data_type == 'int8': if args.engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = args.engine_file builder = YOLOv3EngineBuilder(verbose=args.verbose, is_qat=es.training_config.enable_qat, workspace=args.max_workspace_size, min_batch_size=args.min_batch_size, opt_batch_size=args.opt_batch_size, max_batch_size=args.max_batch_size, strict_type_constraints=args.strict_type_constraints, force_ptq=args.force_ptq) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, args.data_type, calib_data_file=args.cal_data_file, calib_input=args.cal_image_dir, calib_cache=args.cal_cache_file, calib_num_images=args.batch_size * args.batches, calib_batch_size=args.batch_size, calib_json_file=args.cal_json_file) logging.info("Export finished successfully.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='gen_trt_engine', description='Generate TRT engine of YOLOv3 model.') parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to a YOLOv3 .etlt or .onnx model file.' ) parser.add_argument( '-k', '--key', type=str, required=False, help='Key to save or load a .etlt model.' ) parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( "--data_type", type=str, default="fp32", help="Data type for the TensorRT export.", choices=["fp32", "fp16", "int8"]) parser.add_argument( "--cal_image_dir", default="", type=str, help="Directory of images to run int8 calibration.") parser.add_argument( "--cal_data_file", default=None, type=str, help="Tensorfile to run calibration for int8 optimization.") parser.add_argument( '--cal_cache_file', default=None, type=str, help='Calibration cache file to write to.') parser.add_argument( '--cal_json_file', default=None, type=str, help='Dictionary containing tensor scale for QAT models.') parser.add_argument( "--engine_file", type=str, default=None, help="Path to the exported TRT engine.") parser.add_argument( "--max_batch_size", type=int, default=DEFAULT_MAX_BATCH_SIZE, help="Max batch size for TensorRT engine builder.") parser.add_argument( "--min_batch_size", type=int, default=DEFAULT_MIN_BATCH_SIZE, help="Min batch size for TensorRT engine builder.") parser.add_argument( "--opt_batch_size", type=int, default=DEFAULT_OPT_BATCH_SIZE, help="Opt batch size for TensorRT engine builder.") parser.add_argument( "--batch_size", type=int, default=1, help="Number of images per batch.") parser.add_argument( "--batches", type=int, default=10, help="Number of batches to calibrate over.") parser.add_argument( "--max_workspace_size", type=int, default=2, help="Max memory workspace size to allow in Gb for TensorRT engine builder (default: 2).") parser.add_argument( "-s", "--strict_type_constraints", action="store_true", default=False, help="A Boolean flag indicating whether to apply the \ TensorRT strict type constraints when building the TensorRT engine.") parser.add_argument( "--force_ptq", action="store_true", default=False, help="Flag to force post training quantization for QAT models.") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Verbosity of the logger.") parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy YOLOv3 scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os from PIL import Image import numpy as np from tqdm.auto import tqdm import logging from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.yolo_v3.dataloader import YOLOv3KITTILoader, aug_letterbox_resize from nvidia_tao_deploy.cv.yolo_v3.inferencer import YOLOv3Inferencer from nvidia_tao_deploy.cv.yolo_v3.proto.utils import load_proto logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='yolo_v3', mode='inference') def main(args): """YOLOv3 TRT inference.""" trt_infer = YOLOv3Inferencer(args.model_path, batch_size=args.batch_size) c, h, w = trt_infer._input_shape # Load from proto-based spec file es = load_proto(args.experiment_spec) conf_thres = es.nms_config.confidence_threshold if es.nms_config.confidence_threshold else 0.01 batch_size = args.batch_size if args.batch_size else es.eval_config.batch_size img_mean = es.augmentation_config.image_mean if c == 3: if img_mean: img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: img_mean = [103.939, 116.779, 123.68] else: if img_mean: img_mean = [img_mean['l']] else: img_mean = [117.3786] # Override path if provided through command line args if args.image_dir: image_dirs = [args.image_dir] else: image_dirs = [d.image_directory_path for d in es.dataset_config.validation_data_sources] # Load mapping_dict from the spec file mapping_dict = dict(es.dataset_config.target_class_mapping) dl = YOLOv3KITTILoader( shape=(c, h, w), image_dirs=image_dirs, label_dirs=[None], mapping_dict=mapping_dict, exclude_difficult=True, batch_size=batch_size, is_inference=True, image_mean=img_mean, dtype=trt_infer.inputs[0].host.dtype) inv_classes = {v: k for k, v in dl.classes.items()} if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir os.makedirs(results_dir, exist_ok=True) output_annotate_root = os.path.join(results_dir, "images_annotated") output_label_root = os.path.join(results_dir, "labels") os.makedirs(output_annotate_root, exist_ok=True) os.makedirs(output_label_root, exist_ok=True) for i, (imgs, _) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): y_pred = trt_infer.infer(imgs) image_paths = dl.image_paths[np.arange(args.batch_size) + args.batch_size * i] for i in range(len(y_pred)): y_pred_valid = y_pred[i][y_pred[i][:, 1] > conf_thres] for i in range(len(y_pred)): y_pred_valid = y_pred[i][y_pred[i][:, 1] > conf_thres] target_size = np.array([w, h, w, h]) # Scale back bounding box coordinates y_pred_valid[:, 2:6] *= target_size[None, :] # Load image img = Image.open(image_paths[i]) orig_width, orig_height = img.size img, _, crop_coord = aug_letterbox_resize(img, y_pred_valid[:, 2:6], num_channels=c, resize_shape=(trt_infer.width, trt_infer.height)) img = Image.fromarray(img.astype('uint8')) # Store images bbox_img, label_strings = trt_infer.draw_bbox(img, y_pred_valid, inv_classes, args.threshold) bbox_img = bbox_img.crop((crop_coord[0], crop_coord[1], crop_coord[2], crop_coord[3])) bbox_img = bbox_img.resize((orig_width, orig_height)) img_filename = os.path.basename(image_paths[i]) bbox_img.save(os.path.join(output_annotate_root, img_filename)) # Store labels filename, _ = os.path.splitext(img_filename) label_file_name = os.path.join(output_label_root, filename + ".txt") with open(label_file_name, "w", encoding="utf-8") as f: for l_s in label_strings: f.write(l_s) logging.info("Finished inference.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='infer', description='Inference with a YOLOv3 TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the YOLOv3 TensorRT engine.' ) parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) parser.add_argument( '-t', '--threshold', type=float, default=0.3, help='Confidence threshold for inference.') return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import json import numpy as np from tqdm.auto import tqdm import logging from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.yolo_v3.dataloader import YOLOv3KITTILoader from nvidia_tao_deploy.cv.yolo_v3.inferencer import YOLOv3Inferencer from nvidia_tao_deploy.cv.yolo_v3.proto.utils import load_proto from nvidia_tao_deploy.metrics.kitti_metric import KITTIMetric logging.getLogger('PIL').setLevel(logging.WARNING) logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) @monitor_status(name='yolo_v3', mode='evaluation') def main(args): """YOLOv3 TRT evaluation.""" trt_infer = YOLOv3Inferencer(args.model_path, batch_size=args.batch_size) c, h, w = trt_infer._input_shape # Load from proto-based spec file es = load_proto(args.experiment_spec) matching_iou_threshold = es.eval_config.matching_iou_threshold if es.eval_config.matching_iou_threshold else 0.5 conf_thres = es.nms_config.confidence_threshold if es.nms_config.confidence_threshold else 0.01 batch_size = args.batch_size if args.batch_size else es.eval_config.batch_size ap_mode = es.eval_config.average_precision_mode ap_mode_dict = {0: "sample", 1: "integrate"} img_mean = es.augmentation_config.image_mean if c == 3: if img_mean: img_mean = [img_mean['b'], img_mean['g'], img_mean['r']] else: img_mean = [103.939, 116.779, 123.68] else: if img_mean: img_mean = [img_mean['l']] else: img_mean = [117.3786] # Override path if provided through command line args if args.image_dir: image_dirs = [args.image_dir] else: image_dirs = [d.image_directory_path for d in es.dataset_config.validation_data_sources] if args.label_dir: label_dirs = [args.label_dir] else: label_dirs = [d.label_directory_path for d in es.dataset_config.validation_data_sources] # Load mapping_dict from the spec file mapping_dict = dict(es.dataset_config.target_class_mapping) dl = YOLOv3KITTILoader( shape=(c, h, w), image_dirs=image_dirs, label_dirs=label_dirs, mapping_dict=mapping_dict, exclude_difficult=True, batch_size=batch_size, image_mean=img_mean, dtype=trt_infer.inputs[0].host.dtype) eval_metric = KITTIMetric(n_classes=len(dl.classes), matching_iou_threshold=matching_iou_threshold, conf_thres=conf_thres, average_precision_mode=ap_mode_dict[ap_mode]) gt_labels = [] pred_labels = [] for i, (imgs, labels) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): gt_labels.extend(labels) y_pred = trt_infer.infer(imgs) for i in range(len(y_pred)): y_pred_valid = y_pred[i][y_pred[i][:, 1] > eval_metric.conf_thres] pred_labels.append(y_pred_valid) m_ap, ap = eval_metric(gt_labels, pred_labels, verbose=True) m_ap = np.mean(ap) logging.info("*******************************") class_mapping = {v: k for k, v in dl.classes.items()} eval_results = {} for i in range(len(dl.classes)): eval_results['AP_' + class_mapping[i]] = np.float64(ap[i]) logging.info("{:<14}{:<6}{}".format(class_mapping[i], 'AP', round(ap[i], 5))) # noqa pylint: disable=C0209 logging.info("{:<14}{:<6}{}".format('', 'mAP', round(m_ap, 3))) # noqa pylint: disable=C0209 logging.info("*******************************") # Store evaluation results into JSON if args.results_dir is None: results_dir = os.path.dirname(args.model_path) else: results_dir = args.results_dir with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") def build_command_line_parser(parser=None): """Build the command line parser using argparse. Args: parser (subparser): Provided from the wrapper script to build a chained parser mechanism. Returns: parser """ if parser is None: parser = argparse.ArgumentParser(prog='eval', description='Evaluate with a YOLOv3 TRT model.') parser.add_argument( '-i', '--image_dir', type=str, required=False, default=None, help='Input directory of images') parser.add_argument( '-e', '--experiment_spec', type=str, required=True, help='Path to the experiment spec file.' ) parser.add_argument( '-m', '--model_path', type=str, required=True, help='Path to the YOLOv3 TensorRT engine.' ) parser.add_argument( '-l', '--label_dir', type=str, required=False, help='Label directory.') parser.add_argument( '-b', '--batch_size', type=int, required=False, default=1, help='Batch size.') parser.add_argument( '-r', '--results_dir', type=str, required=True, default=None, help='Output directory where the log is saved.' ) return parser def parse_command_line_arguments(args=None): """Simple function to parse command line arguments.""" parser = build_command_line_parser(args) return parser.parse_args(args) if __name__ == '__main__': args = parse_command_line_arguments() main(args)
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import sys from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_proto import launch_job import nvidia_tao_deploy.cv.yolo_v3.scripts def main(): """Function to launch the job.""" launch_job(nvidia_tao_deploy.cv.yolo_v3.scripts, "yolo_v3", sys.argv[1:]) if __name__ == "__main__": main()
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/entrypoint/yolo_v3.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for yolo v3."""
tao_deploy-main
nvidia_tao_deploy/cv/yolo_v3/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Set of constants commonly used across cv modules.""" # List of valid image extensions VALID_IMAGE_EXTENSIONS = (".jpg", ".jpeg", ".png", ".bmp", ".JPEG", ".JPG", ".PNG")
tao_deploy-main
nvidia_tao_deploy/cv/common/constants.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Common Modules."""
tao_deploy-main
nvidia_tao_deploy/cv/common/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions.""" import logging import os logger = logging.getLogger(__name__) def update_results_dir(cfg, task): """Update global results_dir based on task.results_dir. This function should be called at the beginning of a pipeline script. Args: cfg (Hydra config): Config object loaded by Hydra task (str): TAO pipeline name Return: Updated cfg """ if cfg[task]['results_dir']: cfg.results_dir = cfg[task]['results_dir'] else: cfg.results_dir = os.path.join(cfg.results_dir, task) cfg[task]['results_dir'] = cfg.results_dir logger.info(f"{task.capitalize()} results will be saved at: %s", cfg.results_dir) return cfg
tao_deploy-main
nvidia_tao_deploy/cv/common/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common decorators used in TAO Toolkit.""" from functools import wraps import inspect import os from nvidia_tao_deploy.cv.common.logging import status_logging def monitor_status(name='efficientdet', mode='training'): """Status monitoring decorator.""" def inner(runner): @wraps(runner) def _func(cfg, **kwargs): # set up status logger if not os.path.exists(cfg.results_dir): os.makedirs(cfg.results_dir) status_file = os.path.join(cfg.results_dir, "status.json") status_logging.set_status_logger( status_logging.StatusLogger( filename=status_file, is_master=True, verbosity=1, append=True ) ) s_logger = status_logging.get_status_logger() try: s_logger.write( status_level=status_logging.Status.STARTED, message=f"Starting {name} {mode}." ) runner(cfg, **kwargs) s_logger.write( status_level=status_logging.Status.SUCCESS, message=f"{mode.capitalize()} finished successfully." ) except (KeyboardInterrupt, SystemError): status_logging.get_status_logger().write( message=f"{mode.capitalize()} was interrupted", verbosity_level=status_logging.Verbosity.INFO, status_level=status_logging.Status.FAILURE ) except Exception as e: status_logging.get_status_logger().write( message=str(e), status_level=status_logging.Status.FAILURE ) raise e return _func return inner def override(method): """Override decorator. Decorator implementing method overriding in python Must also use the @subclass class decorator """ method.override = True return method def subclass(class_object): """Subclass decorator. Verify all @override methods Use a class decorator to find the method's class """ for name, method in class_object.__dict__.items(): if hasattr(method, "override"): found = False for base_class in inspect.getmro(class_object)[1:]: if name in base_class.__dict__: if not method.__doc__: # copy docstring method.__doc__ = base_class.__dict__[name].__doc__ found = True break assert found, f'"{class_object.__name__}.{name}" not found in any base class' return class_object
tao_deploy-main
nvidia_tao_deploy/cv/common/decorators.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/optimizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.common.proto import sgd_optimizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_sgd__optimizer__config__pb2 from nvidia_tao_deploy.cv.common.proto import adam_optimizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_adam__optimizer__config__pb2 from nvidia_tao_deploy.cv.common.proto import rmsprop_optimizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_rmsprop__optimizer__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/optimizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n8nvidia_tao_deploy/cv/common/proto/optimizer_config.proto\x1a<nvidia_tao_deploy/cv/common/proto/sgd_optimizer_config.proto\x1a=nvidia_tao_deploy/cv/common/proto/adam_optimizer_config.proto\x1a@nvidia_tao_deploy/cv/common/proto/rmsprop_optimizer_config.proto\"\x94\x01\n\x0fOptimizerConfig\x12$\n\x04\x61\x64\x61m\x18\x01 \x01(\x0b\x32\x14.AdamOptimizerConfigH\x00\x12\"\n\x03sgd\x18\x02 \x01(\x0b\x32\x13.SGDOptimizerConfigH\x00\x12*\n\x07rmsprop\x18\x03 \x01(\x0b\x32\x17.RMSpropOptimizerConfigH\x00\x42\x0b\n\toptimizerb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_sgd__optimizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_adam__optimizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_rmsprop__optimizer__config__pb2.DESCRIPTOR,]) _OPTIMIZERCONFIG = _descriptor.Descriptor( name='OptimizerConfig', full_name='OptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='adam', full_name='OptimizerConfig.adam', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='sgd', full_name='OptimizerConfig.sgd', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rmsprop', full_name='OptimizerConfig.rmsprop', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='optimizer', full_name='OptimizerConfig.optimizer', index=0, containing_type=None, fields=[]), ], serialized_start=252, serialized_end=400, ) _OPTIMIZERCONFIG.fields_by_name['adam'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_adam__optimizer__config__pb2._ADAMOPTIMIZERCONFIG _OPTIMIZERCONFIG.fields_by_name['sgd'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_sgd__optimizer__config__pb2._SGDOPTIMIZERCONFIG _OPTIMIZERCONFIG.fields_by_name['rmsprop'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_rmsprop__optimizer__config__pb2._RMSPROPOPTIMIZERCONFIG _OPTIMIZERCONFIG.oneofs_by_name['optimizer'].fields.append( _OPTIMIZERCONFIG.fields_by_name['adam']) _OPTIMIZERCONFIG.fields_by_name['adam'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optimizer'] _OPTIMIZERCONFIG.oneofs_by_name['optimizer'].fields.append( _OPTIMIZERCONFIG.fields_by_name['sgd']) _OPTIMIZERCONFIG.fields_by_name['sgd'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optimizer'] _OPTIMIZERCONFIG.oneofs_by_name['optimizer'].fields.append( _OPTIMIZERCONFIG.fields_by_name['rmsprop']) _OPTIMIZERCONFIG.fields_by_name['rmsprop'].containing_oneof = _OPTIMIZERCONFIG.oneofs_by_name['optimizer'] DESCRIPTOR.message_types_by_name['OptimizerConfig'] = _OPTIMIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) OptimizerConfig = _reflection.GeneratedProtocolMessageType('OptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _OPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.optimizer_config_pb2' # @@protoc_insertion_point(class_scope:OptimizerConfig) )) _sym_db.RegisterMessage(OptimizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/optimizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/sgd_optimizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/sgd_optimizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n<nvidia_tao_deploy/cv/common/proto/sgd_optimizer_config.proto\"8\n\x12SGDOptimizerConfig\x12\x10\n\x08momentum\x18\x01 \x01(\x02\x12\x10\n\x08nesterov\x18\x02 \x01(\x08\x62\x06proto3') ) _SGDOPTIMIZERCONFIG = _descriptor.Descriptor( name='SGDOptimizerConfig', full_name='SGDOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='momentum', full_name='SGDOptimizerConfig.momentum', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='nesterov', full_name='SGDOptimizerConfig.nesterov', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=64, serialized_end=120, ) DESCRIPTOR.message_types_by_name['SGDOptimizerConfig'] = _SGDOPTIMIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) SGDOptimizerConfig = _reflection.GeneratedProtocolMessageType('SGDOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _SGDOPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.sgd_optimizer_config_pb2' # @@protoc_insertion_point(class_scope:SGDOptimizerConfig) )) _sym_db.RegisterMessage(SGDOptimizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/sgd_optimizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/wandb_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/wandb_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n4nvidia_tao_deploy/cv/common/proto/wandb_config.proto\"\xea\x01\n\x0bWandBConfig\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\x12\x0b\n\x03key\x18\x02 \x01(\t\x12\x0f\n\x07project\x18\x03 \x01(\t\x12\x0e\n\x06\x65ntity\x18\x04 \x01(\t\x12\x0e\n\x06reinit\x18\x05 \x01(\x08\x12\x0c\n\x04name\x18\x06 \x01(\t\x12\x0c\n\x04tags\x18\x07 \x03(\t\x12\x11\n\twandb_dir\x18\x08 \x01(\t\x12\r\n\x05notes\x18\t \x01(\t\x12\x1f\n\x04mode\x18\n \x01(\x0e\x32\x11.WandBConfig.MODE\"-\n\x04MODE\x12\n\n\x06ONLINE\x10\x00\x12\x0b\n\x07OFFLINE\x10\x01\x12\x0c\n\x08\x44ISABLED\x10\x02\x62\x06proto3') ) _WANDBCONFIG_MODE = _descriptor.EnumDescriptor( name='MODE', full_name='WandBConfig.MODE', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='ONLINE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='OFFLINE', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DISABLED', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=246, serialized_end=291, ) _sym_db.RegisterEnumDescriptor(_WANDBCONFIG_MODE) _WANDBCONFIG = _descriptor.Descriptor( name='WandBConfig', full_name='WandBConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='enabled', full_name='WandBConfig.enabled', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='key', full_name='WandBConfig.key', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='project', full_name='WandBConfig.project', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='entity', full_name='WandBConfig.entity', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reinit', full_name='WandBConfig.reinit', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='WandBConfig.name', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tags', full_name='WandBConfig.tags', index=6, number=7, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='wandb_dir', full_name='WandBConfig.wandb_dir', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='notes', full_name='WandBConfig.notes', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mode', full_name='WandBConfig.mode', index=9, number=10, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _WANDBCONFIG_MODE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=57, serialized_end=291, ) _WANDBCONFIG.fields_by_name['mode'].enum_type = _WANDBCONFIG_MODE _WANDBCONFIG_MODE.containing_type = _WANDBCONFIG DESCRIPTOR.message_types_by_name['WandBConfig'] = _WANDBCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) WandBConfig = _reflection.GeneratedProtocolMessageType('WandBConfig', (_message.Message,), dict( DESCRIPTOR = _WANDBCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.wandb_config_pb2' # @@protoc_insertion_point(class_scope:WandBConfig) )) _sym_db.RegisterMessage(WandBConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/wandb_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/adam_optimizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/adam_optimizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n=nvidia_tao_deploy/cv/common/proto/adam_optimizer_config.proto\"U\n\x13\x41\x64\x61mOptimizerConfig\x12\x0f\n\x07\x65psilon\x18\x01 \x01(\x02\x12\r\n\x05\x62\x65ta1\x18\x02 \x01(\x02\x12\r\n\x05\x62\x65ta2\x18\x03 \x01(\x02\x12\x0f\n\x07\x61msgrad\x18\x04 \x01(\x08\x62\x06proto3') ) _ADAMOPTIMIZERCONFIG = _descriptor.Descriptor( name='AdamOptimizerConfig', full_name='AdamOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='epsilon', full_name='AdamOptimizerConfig.epsilon', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta1', full_name='AdamOptimizerConfig.beta1', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='beta2', full_name='AdamOptimizerConfig.beta2', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='amsgrad', full_name='AdamOptimizerConfig.amsgrad', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=65, serialized_end=150, ) DESCRIPTOR.message_types_by_name['AdamOptimizerConfig'] = _ADAMOPTIMIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) AdamOptimizerConfig = _reflection.GeneratedProtocolMessageType('AdamOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _ADAMOPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.adam_optimizer_config_pb2' # @@protoc_insertion_point(class_scope:AdamOptimizerConfig) )) _sym_db.RegisterMessage(AdamOptimizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/adam_optimizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/training_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.common.proto import cost_scaling_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_cost__scaling__config__pb2 from nvidia_tao_deploy.cv.common.proto import learning_rate_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_learning__rate__config__pb2 from nvidia_tao_deploy.cv.common.proto import optimizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_optimizer__config__pb2 from nvidia_tao_deploy.cv.common.proto import regularizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_regularizer__config__pb2 from nvidia_tao_deploy.cv.common.proto import visualizer_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_visualizer__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/training_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n7nvidia_tao_deploy/cv/common/proto/training_config.proto\x1a;nvidia_tao_deploy/cv/common/proto/cost_scaling_config.proto\x1a<nvidia_tao_deploy/cv/common/proto/learning_rate_config.proto\x1a\x38nvidia_tao_deploy/cv/common/proto/optimizer_config.proto\x1a:nvidia_tao_deploy/cv/common/proto/regularizer_config.proto\x1a\x39nvidia_tao_deploy/cv/common/proto/visualizer_config.proto\"E\n\rEarlyStopping\x12\x0f\n\x07monitor\x18\x01 \x01(\t\x12\x11\n\tmin_delta\x18\x02 \x01(\x02\x12\x10\n\x08patience\x18\x03 \x01(\r\"\xa6\x04\n\x0eTrainingConfig\x12\x1a\n\x12\x62\x61tch_size_per_gpu\x18\x01 \x01(\r\x12\x12\n\nnum_epochs\x18\x02 \x01(\r\x12*\n\rlearning_rate\x18\x03 \x01(\x0b\x32\x13.LearningRateConfig\x12\'\n\x0bregularizer\x18\x04 \x01(\x0b\x32\x12.RegularizerConfig\x12#\n\toptimizer\x18\x05 \x01(\x0b\x32\x10.OptimizerConfig\x12(\n\x0c\x63ost_scaling\x18\x06 \x01(\x0b\x32\x12.CostScalingConfig\x12\x1b\n\x13\x63heckpoint_interval\x18\x07 \x01(\r\x12\x12\n\nenable_qat\x18\x08 \x01(\x08\x12\x1b\n\x11resume_model_path\x18\t \x01(\tH\x00\x12\x1d\n\x13pretrain_model_path\x18\n \x01(\tH\x00\x12\x1b\n\x11pruned_model_path\x18\x0b \x01(\tH\x00\x12\x16\n\x0emax_queue_size\x18\x0c \x01(\r\x12\x11\n\tn_workers\x18\r \x01(\r\x12\x1b\n\x13use_multiprocessing\x18\x0e \x01(\x08\x12&\n\x0e\x65\x61rly_stopping\x18\x0f \x01(\x0b\x32\x0e.EarlyStopping\x12%\n\nvisualizer\x18\x10 \x01(\x0b\x32\x11.VisualizerConfig\x12\x11\n\tmodel_ema\x18\x11 \x01(\x08\x42\x0c\n\nload_modelb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_cost__scaling__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_learning__rate__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_optimizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_regularizer__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_visualizer__config__pb2.DESCRIPTOR,]) _EARLYSTOPPING = _descriptor.Descriptor( name='EarlyStopping', full_name='EarlyStopping', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='monitor', full_name='EarlyStopping.monitor', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_delta', full_name='EarlyStopping.min_delta', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='patience', full_name='EarlyStopping.patience', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=359, serialized_end=428, ) _TRAININGCONFIG = _descriptor.Descriptor( name='TrainingConfig', full_name='TrainingConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='batch_size_per_gpu', full_name='TrainingConfig.batch_size_per_gpu', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_epochs', full_name='TrainingConfig.num_epochs', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='learning_rate', full_name='TrainingConfig.learning_rate', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='regularizer', full_name='TrainingConfig.regularizer', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='optimizer', full_name='TrainingConfig.optimizer', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cost_scaling', full_name='TrainingConfig.cost_scaling', index=5, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='checkpoint_interval', full_name='TrainingConfig.checkpoint_interval', index=6, number=7, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_qat', full_name='TrainingConfig.enable_qat', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='resume_model_path', full_name='TrainingConfig.resume_model_path', index=8, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pretrain_model_path', full_name='TrainingConfig.pretrain_model_path', index=9, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='pruned_model_path', full_name='TrainingConfig.pruned_model_path', index=10, number=11, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_queue_size', full_name='TrainingConfig.max_queue_size', index=11, number=12, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='n_workers', full_name='TrainingConfig.n_workers', index=12, number=13, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_multiprocessing', full_name='TrainingConfig.use_multiprocessing', index=13, number=14, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='early_stopping', full_name='TrainingConfig.early_stopping', index=14, number=15, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='visualizer', full_name='TrainingConfig.visualizer', index=15, number=16, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='model_ema', full_name='TrainingConfig.model_ema', index=16, number=17, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='load_model', full_name='TrainingConfig.load_model', index=0, containing_type=None, fields=[]), ], serialized_start=431, serialized_end=981, ) _TRAININGCONFIG.fields_by_name['learning_rate'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_learning__rate__config__pb2._LEARNINGRATECONFIG _TRAININGCONFIG.fields_by_name['regularizer'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_regularizer__config__pb2._REGULARIZERCONFIG _TRAININGCONFIG.fields_by_name['optimizer'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_optimizer__config__pb2._OPTIMIZERCONFIG _TRAININGCONFIG.fields_by_name['cost_scaling'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_cost__scaling__config__pb2._COSTSCALINGCONFIG _TRAININGCONFIG.fields_by_name['early_stopping'].message_type = _EARLYSTOPPING _TRAININGCONFIG.fields_by_name['visualizer'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_visualizer__config__pb2._VISUALIZERCONFIG _TRAININGCONFIG.oneofs_by_name['load_model'].fields.append( _TRAININGCONFIG.fields_by_name['resume_model_path']) _TRAININGCONFIG.fields_by_name['resume_model_path'].containing_oneof = _TRAININGCONFIG.oneofs_by_name['load_model'] _TRAININGCONFIG.oneofs_by_name['load_model'].fields.append( _TRAININGCONFIG.fields_by_name['pretrain_model_path']) _TRAININGCONFIG.fields_by_name['pretrain_model_path'].containing_oneof = _TRAININGCONFIG.oneofs_by_name['load_model'] _TRAININGCONFIG.oneofs_by_name['load_model'].fields.append( _TRAININGCONFIG.fields_by_name['pruned_model_path']) _TRAININGCONFIG.fields_by_name['pruned_model_path'].containing_oneof = _TRAININGCONFIG.oneofs_by_name['load_model'] DESCRIPTOR.message_types_by_name['EarlyStopping'] = _EARLYSTOPPING DESCRIPTOR.message_types_by_name['TrainingConfig'] = _TRAININGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) EarlyStopping = _reflection.GeneratedProtocolMessageType('EarlyStopping', (_message.Message,), dict( DESCRIPTOR = _EARLYSTOPPING, __module__ = 'nvidia_tao_deploy.cv.common.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:EarlyStopping) )) _sym_db.RegisterMessage(EarlyStopping) TrainingConfig = _reflection.GeneratedProtocolMessageType('TrainingConfig', (_message.Message,), dict( DESCRIPTOR = _TRAININGCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.training_config_pb2' # @@protoc_insertion_point(class_scope:TrainingConfig) )) _sym_db.RegisterMessage(TrainingConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/training_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/cost_scaling_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/cost_scaling_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n;nvidia_tao_deploy/cv/common/proto/cost_scaling_config.proto\"d\n\x11\x43ostScalingConfig\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\x12\x18\n\x10initial_exponent\x18\x02 \x01(\x01\x12\x11\n\tincrement\x18\x03 \x01(\x01\x12\x11\n\tdecrement\x18\x04 \x01(\x01\x62\x06proto3') ) _COSTSCALINGCONFIG = _descriptor.Descriptor( name='CostScalingConfig', full_name='CostScalingConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='enabled', full_name='CostScalingConfig.enabled', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='initial_exponent', full_name='CostScalingConfig.initial_exponent', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='increment', full_name='CostScalingConfig.increment', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='decrement', full_name='CostScalingConfig.decrement', index=3, number=4, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=63, serialized_end=163, ) DESCRIPTOR.message_types_by_name['CostScalingConfig'] = _COSTSCALINGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) CostScalingConfig = _reflection.GeneratedProtocolMessageType('CostScalingConfig', (_message.Message,), dict( DESCRIPTOR = _COSTSCALINGCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.cost_scaling_config_pb2' # @@protoc_insertion_point(class_scope:CostScalingConfig) )) _sym_db.RegisterMessage(CostScalingConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/cost_scaling_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/regularizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/regularizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n:nvidia_tao_deploy/cv/common/proto/regularizer_config.proto\"\x8a\x01\n\x11RegularizerConfig\x12\x33\n\x04type\x18\x01 \x01(\x0e\x32%.RegularizerConfig.RegularizationType\x12\x0e\n\x06weight\x18\x02 \x01(\x02\"0\n\x12RegularizationType\x12\n\n\x06NO_REG\x10\x00\x12\x06\n\x02L1\x10\x01\x12\x06\n\x02L2\x10\x02\x62\x06proto3') ) _REGULARIZERCONFIG_REGULARIZATIONTYPE = _descriptor.EnumDescriptor( name='RegularizationType', full_name='RegularizerConfig.RegularizationType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='NO_REG', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='L1', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='L2', index=2, number=2, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=153, serialized_end=201, ) _sym_db.RegisterEnumDescriptor(_REGULARIZERCONFIG_REGULARIZATIONTYPE) _REGULARIZERCONFIG = _descriptor.Descriptor( name='RegularizerConfig', full_name='RegularizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='type', full_name='RegularizerConfig.type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight', full_name='RegularizerConfig.weight', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _REGULARIZERCONFIG_REGULARIZATIONTYPE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=63, serialized_end=201, ) _REGULARIZERCONFIG.fields_by_name['type'].enum_type = _REGULARIZERCONFIG_REGULARIZATIONTYPE _REGULARIZERCONFIG_REGULARIZATIONTYPE.containing_type = _REGULARIZERCONFIG DESCRIPTOR.message_types_by_name['RegularizerConfig'] = _REGULARIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) RegularizerConfig = _reflection.GeneratedProtocolMessageType('RegularizerConfig', (_message.Message,), dict( DESCRIPTOR = _REGULARIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.regularizer_config_pb2' # @@protoc_insertion_point(class_scope:RegularizerConfig) )) _sym_db.RegisterMessage(RegularizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/regularizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/detection_sequence_dataset_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/detection_sequence_dataset_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nInvidia_tao_deploy/cv/common/proto/detection_sequence_dataset_config.proto\"s\n\nDataSource\x12\x1c\n\x14label_directory_path\x18\x01 \x01(\t\x12\x1c\n\x14image_directory_path\x18\x02 \x01(\t\x12\x11\n\troot_path\x18\x03 \x01(\t\x12\x16\n\x0etfrecords_path\x18\x04 \x01(\t\"\x96\x02\n\rDatasetConfig\x12!\n\x0c\x64\x61ta_sources\x18\x01 \x03(\x0b\x32\x0b.DataSource\x12\x44\n\x14target_class_mapping\x18\x02 \x03(\x0b\x32&.DatasetConfig.TargetClassMappingEntry\x12,\n\x17validation_data_sources\x18\x03 \x03(\x0b\x32\x0b.DataSource\x12%\n\x1dinclude_difficult_in_training\x18\x04 \x01(\x08\x12\x0c\n\x04type\x18\x05 \x01(\t\x1a\x39\n\x17TargetClassMappingEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\x62\x06proto3') ) _DATASOURCE = _descriptor.Descriptor( name='DataSource', full_name='DataSource', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='label_directory_path', full_name='DataSource.label_directory_path', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='image_directory_path', full_name='DataSource.image_directory_path', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='root_path', full_name='DataSource.root_path', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tfrecords_path', full_name='DataSource.tfrecords_path', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=77, serialized_end=192, ) _DATASETCONFIG_TARGETCLASSMAPPINGENTRY = _descriptor.Descriptor( name='TargetClassMappingEntry', full_name='DatasetConfig.TargetClassMappingEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='DatasetConfig.TargetClassMappingEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='DatasetConfig.TargetClassMappingEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=416, serialized_end=473, ) _DATASETCONFIG = _descriptor.Descriptor( name='DatasetConfig', full_name='DatasetConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='data_sources', full_name='DatasetConfig.data_sources', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_class_mapping', full_name='DatasetConfig.target_class_mapping', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='validation_data_sources', full_name='DatasetConfig.validation_data_sources', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='include_difficult_in_training', full_name='DatasetConfig.include_difficult_in_training', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='DatasetConfig.type', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_DATASETCONFIG_TARGETCLASSMAPPINGENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=195, serialized_end=473, ) _DATASETCONFIG_TARGETCLASSMAPPINGENTRY.containing_type = _DATASETCONFIG _DATASETCONFIG.fields_by_name['data_sources'].message_type = _DATASOURCE _DATASETCONFIG.fields_by_name['target_class_mapping'].message_type = _DATASETCONFIG_TARGETCLASSMAPPINGENTRY _DATASETCONFIG.fields_by_name['validation_data_sources'].message_type = _DATASOURCE DESCRIPTOR.message_types_by_name['DataSource'] = _DATASOURCE DESCRIPTOR.message_types_by_name['DatasetConfig'] = _DATASETCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) DataSource = _reflection.GeneratedProtocolMessageType('DataSource', (_message.Message,), dict( DESCRIPTOR = _DATASOURCE, __module__ = 'nvidia_tao_deploy.cv.common.proto.detection_sequence_dataset_config_pb2' # @@protoc_insertion_point(class_scope:DataSource) )) _sym_db.RegisterMessage(DataSource) DatasetConfig = _reflection.GeneratedProtocolMessageType('DatasetConfig', (_message.Message,), dict( TargetClassMappingEntry = _reflection.GeneratedProtocolMessageType('TargetClassMappingEntry', (_message.Message,), dict( DESCRIPTOR = _DATASETCONFIG_TARGETCLASSMAPPINGENTRY, __module__ = 'nvidia_tao_deploy.cv.common.proto.detection_sequence_dataset_config_pb2' # @@protoc_insertion_point(class_scope:DatasetConfig.TargetClassMappingEntry) )) , DESCRIPTOR = _DATASETCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.detection_sequence_dataset_config_pb2' # @@protoc_insertion_point(class_scope:DatasetConfig) )) _sym_db.RegisterMessage(DatasetConfig) _sym_db.RegisterMessage(DatasetConfig.TargetClassMappingEntry) _DATASETCONFIG_TARGETCLASSMAPPINGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/detection_sequence_dataset_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Common Proto Modules."""
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/__init__.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/clearml_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/clearml_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n6nvidia_tao_deploy/cv/common/proto/clearml_config.proto\"\x8b\x01\n\rClearMLConfig\x12\x0f\n\x07project\x18\x01 \x01(\t\x12\x0c\n\x04task\x18\x02 \x01(\t\x12\x0c\n\x04tags\x18\x03 \x03(\t\x12\x1a\n\x12reuse_last_task_id\x18\x04 \x01(\x08\x12\x1a\n\x12\x63ontinue_last_task\x18\x05 \x01(\x08\x12\x15\n\rdeferred_init\x18\x06 \x01(\x08\x62\x06proto3') ) _CLEARMLCONFIG = _descriptor.Descriptor( name='ClearMLConfig', full_name='ClearMLConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='project', full_name='ClearMLConfig.project', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='task', full_name='ClearMLConfig.task', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tags', full_name='ClearMLConfig.tags', index=2, number=3, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='reuse_last_task_id', full_name='ClearMLConfig.reuse_last_task_id', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='continue_last_task', full_name='ClearMLConfig.continue_last_task', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='deferred_init', full_name='ClearMLConfig.deferred_init', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=59, serialized_end=198, ) DESCRIPTOR.message_types_by_name['ClearMLConfig'] = _CLEARMLCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) ClearMLConfig = _reflection.GeneratedProtocolMessageType('ClearMLConfig', (_message.Message,), dict( DESCRIPTOR = _CLEARMLCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.clearml_config_pb2' # @@protoc_insertion_point(class_scope:ClearMLConfig) )) _sym_db.RegisterMessage(ClearMLConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/clearml_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/rmsprop_optimizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/rmsprop_optimizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n@nvidia_tao_deploy/cv/common/proto/rmsprop_optimizer_config.proto\"Z\n\x16RMSpropOptimizerConfig\x12\x0b\n\x03rho\x18\x01 \x01(\x02\x12\x10\n\x08momentum\x18\x02 \x01(\x02\x12\x0f\n\x07\x65psilon\x18\x03 \x01(\x02\x12\x10\n\x08\x63\x65ntered\x18\x04 \x01(\x08\x62\x06proto3') ) _RMSPROPOPTIMIZERCONFIG = _descriptor.Descriptor( name='RMSpropOptimizerConfig', full_name='RMSpropOptimizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='rho', full_name='RMSpropOptimizerConfig.rho', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='momentum', full_name='RMSpropOptimizerConfig.momentum', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='epsilon', full_name='RMSpropOptimizerConfig.epsilon', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='centered', full_name='RMSpropOptimizerConfig.centered', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=68, serialized_end=158, ) DESCRIPTOR.message_types_by_name['RMSpropOptimizerConfig'] = _RMSPROPOPTIMIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) RMSpropOptimizerConfig = _reflection.GeneratedProtocolMessageType('RMSpropOptimizerConfig', (_message.Message,), dict( DESCRIPTOR = _RMSPROPOPTIMIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.rmsprop_optimizer_config_pb2' # @@protoc_insertion_point(class_scope:RMSpropOptimizerConfig) )) _sym_db.RegisterMessage(RMSpropOptimizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/rmsprop_optimizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/visualizer_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.common.proto import wandb_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_wandb__config__pb2 from nvidia_tao_deploy.cv.common.proto import clearml_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_clearml__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/visualizer_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n9nvidia_tao_deploy/cv/common/proto/visualizer_config.proto\x1a\x34nvidia_tao_deploy/cv/common/proto/wandb_config.proto\x1a\x36nvidia_tao_deploy/cv/common/proto/clearml_config.proto\"\x9e\x01\n\x10VisualizerConfig\x12\x0f\n\x07\x65nabled\x18\x01 \x01(\x08\x12\x12\n\nnum_images\x18\x02 \x01(\r\x12\x19\n\x11weight_histograms\x18\x03 \x01(\x08\x12\"\n\x0cwandb_config\x18\x04 \x01(\x0b\x32\x0c.WandBConfig\x12&\n\x0e\x63learml_config\x18\x05 \x01(\x0b\x32\x0e.ClearMLConfigb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_wandb__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_clearml__config__pb2.DESCRIPTOR,]) _VISUALIZERCONFIG = _descriptor.Descriptor( name='VisualizerConfig', full_name='VisualizerConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='enabled', full_name='VisualizerConfig.enabled', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_images', full_name='VisualizerConfig.num_images', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight_histograms', full_name='VisualizerConfig.weight_histograms', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='wandb_config', full_name='VisualizerConfig.wandb_config', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clearml_config', full_name='VisualizerConfig.clearml_config', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=172, serialized_end=330, ) _VISUALIZERCONFIG.fields_by_name['wandb_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_wandb__config__pb2._WANDBCONFIG _VISUALIZERCONFIG.fields_by_name['clearml_config'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_clearml__config__pb2._CLEARMLCONFIG DESCRIPTOR.message_types_by_name['VisualizerConfig'] = _VISUALIZERCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) VisualizerConfig = _reflection.GeneratedProtocolMessageType('VisualizerConfig', (_message.Message,), dict( DESCRIPTOR = _VISUALIZERCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.visualizer_config_pb2' # @@protoc_insertion_point(class_scope:VisualizerConfig) )) _sym_db.RegisterMessage(VisualizerConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/visualizer_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/learning_rate_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from nvidia_tao_deploy.cv.common.proto import soft_start_annealing_schedule_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_soft__start__annealing__schedule__config__pb2 from nvidia_tao_deploy.cv.common.proto import soft_start_cosine_annealing_schedule_config_pb2 as nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_soft__start__cosine__annealing__schedule__config__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/learning_rate_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n<nvidia_tao_deploy/cv/common/proto/learning_rate_config.proto\x1aLnvidia_tao_deploy/cv/common/proto/soft_start_annealing_schedule_config.proto\x1aSnvidia_tao_deploy/cv/common/proto/soft_start_cosine_annealing_schedule_config.proto\"\xca\x01\n\x12LearningRateConfig\x12J\n\x1dsoft_start_annealing_schedule\x18\x01 \x01(\x0b\x32!.SoftStartAnnealingScheduleConfigH\x00\x12W\n$soft_start_cosine_annealing_schedule\x18\x02 \x01(\x0b\x32\'.SoftStartCosineAnnealingScheduleConfigH\x00\x42\x0f\n\rlearning_rateb\x06proto3') , dependencies=[nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_soft__start__annealing__schedule__config__pb2.DESCRIPTOR,nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_soft__start__cosine__annealing__schedule__config__pb2.DESCRIPTOR,]) _LEARNINGRATECONFIG = _descriptor.Descriptor( name='LearningRateConfig', full_name='LearningRateConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='soft_start_annealing_schedule', full_name='LearningRateConfig.soft_start_annealing_schedule', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_start_cosine_annealing_schedule', full_name='LearningRateConfig.soft_start_cosine_annealing_schedule', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='learning_rate', full_name='LearningRateConfig.learning_rate', index=0, containing_type=None, fields=[]), ], serialized_start=228, serialized_end=430, ) _LEARNINGRATECONFIG.fields_by_name['soft_start_annealing_schedule'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_soft__start__annealing__schedule__config__pb2._SOFTSTARTANNEALINGSCHEDULECONFIG _LEARNINGRATECONFIG.fields_by_name['soft_start_cosine_annealing_schedule'].message_type = nvidia__tao__deploy_dot_cv_dot_common_dot_proto_dot_soft__start__cosine__annealing__schedule__config__pb2._SOFTSTARTCOSINEANNEALINGSCHEDULECONFIG _LEARNINGRATECONFIG.oneofs_by_name['learning_rate'].fields.append( _LEARNINGRATECONFIG.fields_by_name['soft_start_annealing_schedule']) _LEARNINGRATECONFIG.fields_by_name['soft_start_annealing_schedule'].containing_oneof = _LEARNINGRATECONFIG.oneofs_by_name['learning_rate'] _LEARNINGRATECONFIG.oneofs_by_name['learning_rate'].fields.append( _LEARNINGRATECONFIG.fields_by_name['soft_start_cosine_annealing_schedule']) _LEARNINGRATECONFIG.fields_by_name['soft_start_cosine_annealing_schedule'].containing_oneof = _LEARNINGRATECONFIG.oneofs_by_name['learning_rate'] DESCRIPTOR.message_types_by_name['LearningRateConfig'] = _LEARNINGRATECONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) LearningRateConfig = _reflection.GeneratedProtocolMessageType('LearningRateConfig', (_message.Message,), dict( DESCRIPTOR = _LEARNINGRATECONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.learning_rate_config_pb2' # @@protoc_insertion_point(class_scope:LearningRateConfig) )) _sym_db.RegisterMessage(LearningRateConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/learning_rate_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/soft_start_annealing_schedule_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/soft_start_annealing_schedule_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nLnvidia_tao_deploy/cv/common/proto/soft_start_annealing_schedule_config.proto\"\x7f\n SoftStartAnnealingScheduleConfig\x12\x19\n\x11min_learning_rate\x18\x01 \x01(\x02\x12\x19\n\x11max_learning_rate\x18\x02 \x01(\x02\x12\x12\n\nsoft_start\x18\x03 \x01(\x02\x12\x11\n\tannealing\x18\x04 \x01(\x02\x62\x06proto3') ) _SOFTSTARTANNEALINGSCHEDULECONFIG = _descriptor.Descriptor( name='SoftStartAnnealingScheduleConfig', full_name='SoftStartAnnealingScheduleConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='min_learning_rate', full_name='SoftStartAnnealingScheduleConfig.min_learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_learning_rate', full_name='SoftStartAnnealingScheduleConfig.max_learning_rate', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_start', full_name='SoftStartAnnealingScheduleConfig.soft_start', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='annealing', full_name='SoftStartAnnealingScheduleConfig.annealing', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=80, serialized_end=207, ) DESCRIPTOR.message_types_by_name['SoftStartAnnealingScheduleConfig'] = _SOFTSTARTANNEALINGSCHEDULECONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) SoftStartAnnealingScheduleConfig = _reflection.GeneratedProtocolMessageType('SoftStartAnnealingScheduleConfig', (_message.Message,), dict( DESCRIPTOR = _SOFTSTARTANNEALINGSCHEDULECONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.soft_start_annealing_schedule_config_pb2' # @@protoc_insertion_point(class_scope:SoftStartAnnealingScheduleConfig) )) _sym_db.RegisterMessage(SoftStartAnnealingScheduleConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/soft_start_annealing_schedule_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/soft_start_cosine_annealing_schedule_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/soft_start_cosine_annealing_schedule_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\nSnvidia_tao_deploy/cv/common/proto/soft_start_cosine_annealing_schedule_config.proto\"r\n&SoftStartCosineAnnealingScheduleConfig\x12\x19\n\x11max_learning_rate\x18\x01 \x01(\x02\x12\x12\n\nsoft_start\x18\x02 \x01(\x02\x12\x19\n\x11min_learning_rate\x18\x03 \x01(\x02\x62\x06proto3') ) _SOFTSTARTCOSINEANNEALINGSCHEDULECONFIG = _descriptor.Descriptor( name='SoftStartCosineAnnealingScheduleConfig', full_name='SoftStartCosineAnnealingScheduleConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='max_learning_rate', full_name='SoftStartCosineAnnealingScheduleConfig.max_learning_rate', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='soft_start', full_name='SoftStartCosineAnnealingScheduleConfig.soft_start', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_learning_rate', full_name='SoftStartCosineAnnealingScheduleConfig.min_learning_rate', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=87, serialized_end=201, ) DESCRIPTOR.message_types_by_name['SoftStartCosineAnnealingScheduleConfig'] = _SOFTSTARTCOSINEANNEALINGSCHEDULECONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) SoftStartCosineAnnealingScheduleConfig = _reflection.GeneratedProtocolMessageType('SoftStartCosineAnnealingScheduleConfig', (_message.Message,), dict( DESCRIPTOR = _SOFTSTARTCOSINEANNEALINGSCHEDULECONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.soft_start_cosine_annealing_schedule_config_pb2' # @@protoc_insertion_point(class_scope:SoftStartCosineAnnealingScheduleConfig) )) _sym_db.RegisterMessage(SoftStartCosineAnnealingScheduleConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/soft_start_cosine_annealing_schedule_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/nms_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/nms_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n2nvidia_tao_deploy/cv/common/proto/nms_config.proto\"\x8e\x01\n\tNMSConfig\x12\x1c\n\x14\x63onfidence_threshold\x18\x01 \x01(\x02\x12 \n\x18\x63lustering_iou_threshold\x18\x02 \x01(\x02\x12\r\n\x05top_k\x18\x03 \x01(\r\x12\x1c\n\x14infer_nms_score_bits\x18\x04 \x01(\r\x12\x14\n\x0c\x66orce_on_cpu\x18\x05 \x01(\x08\x62\x06proto3') ) _NMSCONFIG = _descriptor.Descriptor( name='NMSConfig', full_name='NMSConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='confidence_threshold', full_name='NMSConfig.confidence_threshold', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='clustering_iou_threshold', full_name='NMSConfig.clustering_iou_threshold', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='top_k', full_name='NMSConfig.top_k', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='infer_nms_score_bits', full_name='NMSConfig.infer_nms_score_bits', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='force_on_cpu', full_name='NMSConfig.force_on_cpu', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=55, serialized_end=197, ) DESCRIPTOR.message_types_by_name['NMSConfig'] = _NMSCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) NMSConfig = _reflection.GeneratedProtocolMessageType('NMSConfig', (_message.Message,), dict( DESCRIPTOR = _NMSCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.nms_config_pb2' # @@protoc_insertion_point(class_scope:NMSConfig) )) _sym_db.RegisterMessage(NMSConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/nms_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/class_weighting_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/class_weighting_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n>nvidia_tao_deploy/cv/common/proto/class_weighting_config.proto\"\xa6\x01\n\x14\x43lassWeightingConfig\x12\x42\n\x0f\x63lass_weighting\x18\x01 \x03(\x0b\x32).ClassWeightingConfig.ClassWeightingEntry\x12\x13\n\x0b\x65nable_auto\x18\x02 \x01(\x08\x1a\x35\n\x13\x43lassWeightingEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x02:\x02\x38\x01\x62\x06proto3') ) _CLASSWEIGHTINGCONFIG_CLASSWEIGHTINGENTRY = _descriptor.Descriptor( name='ClassWeightingEntry', full_name='ClassWeightingConfig.ClassWeightingEntry', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='key', full_name='ClassWeightingConfig.ClassWeightingEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='value', full_name='ClassWeightingConfig.ClassWeightingEntry.value', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('8\001'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=180, serialized_end=233, ) _CLASSWEIGHTINGCONFIG = _descriptor.Descriptor( name='ClassWeightingConfig', full_name='ClassWeightingConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='class_weighting', full_name='ClassWeightingConfig.class_weighting', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enable_auto', full_name='ClassWeightingConfig.enable_auto', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_CLASSWEIGHTINGCONFIG_CLASSWEIGHTINGENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=67, serialized_end=233, ) _CLASSWEIGHTINGCONFIG_CLASSWEIGHTINGENTRY.containing_type = _CLASSWEIGHTINGCONFIG _CLASSWEIGHTINGCONFIG.fields_by_name['class_weighting'].message_type = _CLASSWEIGHTINGCONFIG_CLASSWEIGHTINGENTRY DESCRIPTOR.message_types_by_name['ClassWeightingConfig'] = _CLASSWEIGHTINGCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) ClassWeightingConfig = _reflection.GeneratedProtocolMessageType('ClassWeightingConfig', (_message.Message,), dict( ClassWeightingEntry = _reflection.GeneratedProtocolMessageType('ClassWeightingEntry', (_message.Message,), dict( DESCRIPTOR = _CLASSWEIGHTINGCONFIG_CLASSWEIGHTINGENTRY, __module__ = 'nvidia_tao_deploy.cv.common.proto.class_weighting_config_pb2' # @@protoc_insertion_point(class_scope:ClassWeightingConfig.ClassWeightingEntry) )) , DESCRIPTOR = _CLASSWEIGHTINGCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.class_weighting_config_pb2' # @@protoc_insertion_point(class_scope:ClassWeightingConfig) )) _sym_db.RegisterMessage(ClassWeightingConfig) _sym_db.RegisterMessage(ClassWeightingConfig.ClassWeightingEntry) _CLASSWEIGHTINGCONFIG_CLASSWEIGHTINGENTRY._options = None # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/class_weighting_config_pb2.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: nvidia_tao_deploy/cv/common/proto/eval_config.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nvidia_tao_deploy/cv/common/proto/eval_config.proto', package='', syntax='proto3', serialized_options=None, serialized_pb=_b('\n3nvidia_tao_deploy/cv/common/proto/eval_config.proto\"\xb7\x01\n\nEvalConfig\x12\x33\n\x16\x61verage_precision_mode\x18\x01 \x01(\x0e\x32\x13.EvalConfig.AP_MODE\x12\x12\n\nbatch_size\x18\x02 \x01(\r\x12\x1e\n\x16matching_iou_threshold\x18\x03 \x01(\x02\x12\x1a\n\x12visualize_pr_curve\x18\x04 \x01(\x08\"$\n\x07\x41P_MODE\x12\n\n\x06SAMPLE\x10\x00\x12\r\n\tINTEGRATE\x10\x01\x62\x06proto3') ) _EVALCONFIG_AP_MODE = _descriptor.EnumDescriptor( name='AP_MODE', full_name='EvalConfig.AP_MODE', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='SAMPLE', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='INTEGRATE', index=1, number=1, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=203, serialized_end=239, ) _sym_db.RegisterEnumDescriptor(_EVALCONFIG_AP_MODE) _EVALCONFIG = _descriptor.Descriptor( name='EvalConfig', full_name='EvalConfig', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='average_precision_mode', full_name='EvalConfig.average_precision_mode', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='batch_size', full_name='EvalConfig.batch_size', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='matching_iou_threshold', full_name='EvalConfig.matching_iou_threshold', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='visualize_pr_curve', full_name='EvalConfig.visualize_pr_curve', index=3, number=4, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ _EVALCONFIG_AP_MODE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=56, serialized_end=239, ) _EVALCONFIG.fields_by_name['average_precision_mode'].enum_type = _EVALCONFIG_AP_MODE _EVALCONFIG_AP_MODE.containing_type = _EVALCONFIG DESCRIPTOR.message_types_by_name['EvalConfig'] = _EVALCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) EvalConfig = _reflection.GeneratedProtocolMessageType('EvalConfig', (_message.Message,), dict( DESCRIPTOR = _EVALCONFIG, __module__ = 'nvidia_tao_deploy.cv.common.proto.eval_config_pb2' # @@protoc_insertion_point(class_scope:EvalConfig) )) _sym_db.RegisterMessage(EvalConfig) # @@protoc_insertion_point(module_scope)
tao_deploy-main
nvidia_tao_deploy/cv/common/proto/eval_config_pb2.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file""" from typing import List, Optional from dataclasses import dataclass, field @dataclass class WandBConfig: """Configuration element wandb client.""" project: str = "TAO Toolkit" entity: Optional[str] = None tags: List[str] = field(default_factory=lambda: []) reinit: bool = False sync_tensorboard: bool = True save_code: bool = False name: str = None @dataclass class ClearMLConfig: """Configration element for clearml client.""" project: str = "TAO Toolkit" task: str = "train" deferred_init: bool = False reuse_last_task_id: bool = False continue_last_task: bool = False tags: List[str] = field(default_factory=lambda: [])
tao_deploy-main
nvidia_tao_deploy/cv/common/config/mlops.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Common Hydra Modules."""
tao_deploy-main
nvidia_tao_deploy/cv/common/config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy (TF1) command line wrapper to invoke CLI scripts.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import importlib import logging import os import pkgutil import shlex import subprocess import sys from time import time import pycuda.driver as cuda from nvidia_tao_deploy.cv.common.telemetry.nvml_utils import get_device_details from nvidia_tao_deploy.cv.common.telemetry.telemetry import send_telemetry_data RELEASE = True logger = logging.getLogger(__name__) def get_modules(package): """Function to get module supported tasks. This function lists out the modules in the iva.X.scripts package where the module subtasks are listed, and walks through it to generate a dictionary of tasks, parser_function and path to the executable. Args: No explicit args. Returns: modules (dict): Dictionary of modules. """ modules = {} module_path = package.__path__ for _, task, _ in pkgutil.walk_packages(module_path): module_name = package.__name__ + '.' + task if hasattr(importlib.import_module(module_name), "build_command_line_parser"): build_parser = getattr(importlib.import_module(module_name), "build_command_line_parser") else: build_parser = None module_details = { "module_name": module_name, "build_parser": build_parser, "runner_path": os.path.abspath( importlib.import_module(module_name).__file__ ) } modules[task] = module_details return modules def build_command_line_parser(package_name, modules=None): """Simple function to build command line parsers. This function scans the dictionary of modules determined by the get_modules routine and builds a chained parser. Args: modules (dict): Dictionary of modules as returned by the get_modules function. Returns: parser (argparse.ArgumentParser): An ArgumentParser class with all the subparser instantiated for chained parsing. """ parser = argparse.ArgumentParser( package_name, add_help=True, description="Transfer Learning Toolkit" ) parser.add_argument( '--gpu_index', type=int, default=0, help="The index of the GPU to be used.", ) parser.add_argument( '--log_file', type=str, default=None, help="Path to the output log file.", required=False, ) # module subparser for the respective tasks. module_subparsers = parser.add_subparsers(title="tasks") for task, details in modules.items(): subparser = module_subparsers.add_parser( task, parents=[parser], add_help=False) subparser = details['build_parser'](subparser) return parser def format_command_line_args(args): """Format command line args from command line. Args: args (dict): Dictionary of parsed command line arguments. Returns: formatted_string (str): Formatted command line string. """ assert isinstance(args, dict), ( "The command line args should be formatted to a dictionary." ) formatted_string = "" for arg, value in args.items(): if arg in ["gpu_index", "log_file"]: continue # Fix arguments that defaults to None, so that they will # not be converted to string "None". Simply drop args # that have value None. # For example, export output_file arg and engine_file arg # same for "" for cal_image_dir in export. if value in [None, ""]: continue if isinstance(value, bool): if value: formatted_string += f"--{arg} " elif isinstance(value, list): formatted_string += f"--{arg} {' '.join(value)} " else: formatted_string += f"--{arg} {value} " return formatted_string def check_valid_gpus(gpu_id): """Check if IDs is valid. This function scans the machine using the nvidia-smi routine to find the number of GPU's and matches the id's accordingly. Once validated, it finally also sets the CUDA_VISIBLE_DEVICES env variable. Args: gpu_id (int): GPU index used by the user. Returns: No explicit returns """ cuda.init() num_gpus_available = cuda.Device.count() assert gpu_id >= 0, ( "GPU id cannot be negative." ) assert gpu_id < num_gpus_available, ( "Checking for valid GPU ids and num_gpus." ) os.environ['CUDA_VISIBLE_DEVICES'] = f"{gpu_id}" def set_gpu_info_single_node(gpu_id): """Set gpu environment variable for single node.""" check_valid_gpus(gpu_id) env_variable = "" visible_devices = os.getenv("CUDA_VISIBLE_DEVICES", None) if visible_devices is not None: env_variable = f" CUDA_VISIBLE_DEVICES={visible_devices}" return env_variable def launch_job(package, package_name, cl_args=None): """Wrap CLI builders. This function should be included inside package entrypoint/*.py import sys import nvidia_tao_deploy.cv.X.scripts from nvidia_tao_deploy.cv.common.entrypoint import launch_job if __name__ == "__main__": launch_job(nvidia_tao_deploy.cv.X.scripts, "X", sys.argv[1:]) """ # Configure the logger. verbosity = "INFO" if not RELEASE: verbosity = "DEBUG" logging.basicConfig(format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', level=verbosity) # build modules modules = get_modules(package) parser = build_command_line_parser(package_name, modules) # parse command line arguments to module entrypoint script. args = vars(parser.parse_args(cl_args)) gpu_ids = args["gpu_index"] log_file = None if args['log_file'] is not None: log_file = os.path.realpath(args['log_file']) log_root = os.path.dirname(log_file) if not os.path.exists(log_root): os.makedirs(log_root) # Get the task to be called from the raw command line arguments. task = None for arg in sys.argv[1:]: if arg in list(modules.keys()): task = arg break # Format final command. env_variables = set_gpu_info_single_node(gpu_ids) formatted_args = format_command_line_args(args) task_command = f"python3 {modules[task]['runner_path']}" run_command = f"bash -c '{env_variables} {task_command} {formatted_args}'" logger.debug("Run command: %s", run_command) process_passed = True start = time() try: if isinstance(log_file, str): with open(log_file, "a", encoding="utf-8") as lf: subprocess.run(shlex.split(run_command), shell=False, stdout=lf, stderr=lf, check=True) else: subprocess.run(shlex.split(run_command), shell=False, stdout=sys.stdout, stderr=sys.stdout, check=True) except (KeyboardInterrupt, SystemExit): logger.info("Command was interrupted.") except subprocess.CalledProcessError as e: if e.output is not None: print(f"TAO Deploy task: {task} failed with error:\n{e.output}") process_passed = False end = time() time_lapsed = end - start try: gpu_data = [] for device in get_device_details(): gpu_data.append(device.get_config()) logger.info("Sending telemetry data.") send_telemetry_data( package_name, task, gpu_data, num_gpus=1, time_lapsed=time_lapsed, pass_status=process_passed ) except Exception as e: logger.warning("Telemetry data couldn't be sent, but the command ran successfully.") logger.warning("[Error]: {}".format(e)) # noqa pylint: disable=C0209 pass if not process_passed: logger.warning("Execution status: FAIL") sys.exit(1) # returning non zero return code from the process. logger.info("Execution status: PASS")
tao_deploy-main
nvidia_tao_deploy/cv/common/entrypoint/entrypoint_proto.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Entrypoint Modules."""
tao_deploy-main
nvidia_tao_deploy/cv/common/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy (TF2) command line wrapper to invoke CLI scripts.""" import importlib import os import pkgutil import shlex import subprocess import sys from time import time import pycuda.driver as cuda from nvidia_tao_deploy.cv.common.telemetry.nvml_utils import get_device_details from nvidia_tao_deploy.cv.common.telemetry.telemetry import send_telemetry_data def get_subtasks(package): """Get supported subtasks for a given task. This function lists out the python tasks in a folder. Returns: subtasks (dict): Dictionary of files. """ module_path = package.__path__ modules = {} # Collect modules dynamically. for _, task, is_package in pkgutil.walk_packages(module_path): if is_package: continue module_name = package.__name__ + '.' + task module_details = { "module_name": module_name, "runner_path": os.path.abspath(importlib.import_module(module_name).__file__), } modules[task] = module_details return modules def check_valid_gpus(gpu_id): """Check if IDs is valid. This function scans the machine using the nvidia-smi routine to find the number of GPU's and matches the id's accordingly. Once validated, it finally also sets the CUDA_VISIBLE_DEVICES env variable. Args: gpu_id (int): GPU index used by the user. Returns: No explicit returns """ cuda.init() num_gpus_available = cuda.Device.count() assert gpu_id >= 0, ( "GPU id cannot be negative." ) assert gpu_id < num_gpus_available, ( "Checking for valid GPU ids and num_gpus." ) os.environ['CUDA_VISIBLE_DEVICES'] = f"{gpu_id}" def set_gpu_info_single_node(gpu_id): """Set gpu environment variable for single node.""" check_valid_gpus(gpu_id) env_variable = "" visible_devices = os.getenv("CUDA_VISIBLE_DEVICES", None) if visible_devices is not None: env_variable = f" CUDA_VISIBLE_DEVICES={visible_devices}" return env_variable def command_line_parser(parser, subtasks): """Build command line parser.""" parser.add_argument( 'subtask', default='gen_trt_engine', choices=subtasks.keys(), help="Subtask for a given task/model.", ) parser.add_argument( "-k", "--key", help="User specific encoding key to load an .etlt model." ) # Add standard TLT arguments. parser.add_argument( "-r", "--results_dir", help="Path to a folder where the experiment outputs should be written. (DEFAULT: ./)", ) parser.add_argument( "-e", "--experiment_spec_file", help="Path to the experiment spec file.", required=True, default=None ) parser.add_argument( '--gpu_index', type=int, default=0, help="The index of the GPU to be used.", ) parser.add_argument( '-t', '--threshold', type=float, default=None, help='Confidence threshold for inference.' ) # Parse the arguments. return parser def launch(parser, subtasks, override_results_dir="result_dir", override_threshold="evaluate.min_score_thresh", override_key="encryption_key", network="tao-deploy"): """Parse the command line and kick off the entrypoint. Args: parser (argparse.ArgumentParser): Parser object to define the command line args. subtasks (list): List of subtasks. """ # Subtasks for a given model. parser = command_line_parser(parser, subtasks) cli_args = sys.argv[1:] args, unknown_args = parser.parse_known_args(cli_args) args = vars(args) scripts_args = "" assert args["experiment_spec_file"], ( f"Experiment spec file needs to be provided for this task: {args['subtask']}" ) if not os.path.exists(args["experiment_spec_file"]): raise FileNotFoundError(f"Experiment spec file doesn't exist at {args['experiment_spec_file']}") path, name = os.path.split(args["experiment_spec_file"]) if path != "": scripts_args += f" --config-path {path}" scripts_args += f" --config-name {name}" if args['subtask'] in ["evaluate", "inference"]: if args['results_dir']: scripts_args += f" {override_results_dir}={args['results_dir']}" if args['subtask'] in ['inference']: if args['threshold'] and override_threshold: scripts_args += f" {override_threshold}={args['threshold']}" # Add encryption key. if args['subtask'] in ["gen_trt_engine"]: if args['key']: scripts_args += f" {override_key}={args['key']}" gpu_ids = args["gpu_index"] script = subtasks[args['subtask']]["runner_path"] unknown_args_string = " ".join(unknown_args) task_command = f"python {script} {scripts_args} {unknown_args_string}" print(task_command) env_variables = set_gpu_info_single_node(gpu_ids) run_command = f"bash -c \'{env_variables} {task_command}\'" process_passed = True start = time() try: subprocess.run( shlex.split(run_command), stdout=sys.stdout, stderr=sys.stderr, check=True ) except (KeyboardInterrupt, SystemExit): print("Command was interrupted.") except subprocess.CalledProcessError as e: process_passed = False if e.output is not None: print(f"TAO Deploy task: {args['subtask']} failed with error:\n{e.output}") end = time() time_lapsed = end - start try: gpu_data = [] for device in get_device_details(): gpu_data.append(device.get_config()) print("Sending telemetry data.") send_telemetry_data( network, args['subtask'], gpu_data, num_gpus=1, time_lapsed=time_lapsed, pass_status=process_passed ) except Exception as e: print("Telemetry data couldn't be sent, but the command ran successfully.") print(f"[WARNING]: {e}") pass if not process_passed: print("Execution status: FAIL") sys.exit(1) # returning non zero return code from the process. print("Execution status: PASS")
tao_deploy-main
nvidia_tao_deploy/cv/common/entrypoint/entrypoint_hydra.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities using the NVML library for GPU devices.""" import json import pynvml BRAND_NAMES = { pynvml.NVML_BRAND_UNKNOWN: "Unknown", pynvml.NVML_BRAND_QUADRO: "Quadro", pynvml.NVML_BRAND_TESLA: "Tesla", pynvml.NVML_BRAND_NVS: "NVS", pynvml.NVML_BRAND_GRID: "Grid", pynvml.NVML_BRAND_TITAN: "Titan", pynvml.NVML_BRAND_GEFORCE: "GeForce", pynvml.NVML_BRAND_NVIDIA_VAPPS: "NVIDIA Virtual Applications", pynvml.NVML_BRAND_NVIDIA_VPC: "NVIDIA Virtual PC", pynvml.NVML_BRAND_NVIDIA_VCS: "NVIDIA Virtual Compute Server", pynvml.NVML_BRAND_NVIDIA_VWS: "NVIDIA RTX Virtual Workstation", pynvml.NVML_BRAND_NVIDIA_VGAMING: "NVIDIA Cloud Gaming", pynvml.NVML_BRAND_QUADRO_RTX: "Quadro RTX", pynvml.NVML_BRAND_NVIDIA_RTX: "NVIDIA RTX", pynvml.NVML_BRAND_NVIDIA: "NVIDIA", pynvml.NVML_BRAND_GEFORCE_RTX: "GeForce RTX", pynvml.NVML_BRAND_TITAN_RTX: "TITAN RTX", } class GPUDevice: """Data structure to represent a GPU device.""" def __init__(self, pci_bus_id, device_name, device_brand, memory, cuda_compute_capability): """Data structure representing a GPU device. Args: pci_bus_id (hex): PCI bus ID of the GPU. device_name (str): Name of the device GPU. device_branch (int): Brand of the GPU. """ self.name = device_name self.pci_bus_id = pci_bus_id if device_brand in BRAND_NAMES.keys(): self.brand = BRAND_NAMES[device_brand] else: self.brand = None self.defined = True self.memory = memory self.cuda_compute_capability = cuda_compute_capability def get_config(self): """Get json config of the device. Returns device_dict (dict): Dictionary containing data about the device. """ assert self.defined, "Device wasn't defined." config_dict = {} config_dict["name"] = self.name.decode().replace(" ", "-") config_dict["pci_bus_id"] = self.pci_bus_id config_dict["brand"] = self.brand config_dict["memory"] = self.memory config_dict["cuda_compute_capability"] = self.cuda_compute_capability return config_dict def __str__(self): """Generate a printable representation of the device.""" config = self.get_config() data_string = json.dumps(config, indent=2) return data_string def pynvml_context(fn): """Simple decorator to setup python nvml context. Args: f: Function pointer. Returns: output of f. """ def _fn_wrapper(*args, **kwargs): """Wrapper setting up nvml context.""" try: pynvml.nvmlInit() return fn(*args, **kwargs) finally: pynvml.nvmlShutdown() return _fn_wrapper @pynvml_context def get_number_gpus_available(): """Get the number of GPU's attached to the machine. Returns: num_gpus (int): Number of GPUs in the machine. """ num_gpus = pynvml.nvmlDeviceGetCount() return num_gpus @pynvml_context def get_device_details(): """Get details about each device. Returns: device_list (list): List of GPUDevice objects. """ num_gpus = pynvml.nvmlDeviceGetCount() device_list = [] assert num_gpus > 0, "Atleast 1 GPU is required for TAO Toolkit to run." for idx in range(num_gpus): handle = pynvml.nvmlDeviceGetHandleByIndex(idx) pci_info = pynvml.nvmlDeviceGetPciInfo(handle) device_name = pynvml.nvmlDeviceGetName(handle) brand_name = pynvml.nvmlDeviceGetBrand(handle) memory = pynvml.nvmlDeviceGetMemoryInfo(handle) cuda_compute_capability = pynvml.nvmlDeviceGetCudaComputeCapability(handle) device_list.append( GPUDevice( pci_info.busId, device_name, brand_name, memory.total, cuda_compute_capability ) ) return device_list
tao_deploy-main
nvidia_tao_deploy/cv/common/telemetry/nvml_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO utils for uploading telemetry data."""
tao_deploy-main
nvidia_tao_deploy/cv/common/telemetry/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilties to send data to the TAO Toolkit Telemetry Remote Service.""" import os import shutil import subprocess import sys import tarfile import tempfile import urllib import requests import urllib3 TELEMETRY_TIMEOUT = int(os.getenv("TELEMETRY_TIMEOUT", "30")) def get_url_from_variable(variable, default=None): """Get the Telemetry Server URL.""" url = os.getenv(variable, default) return url def url_exists(url): """Check if a URL exists. Args: url (str): String to be verified as a URL. Returns: valid (bool): True/Falso """ url_request = urllib.request.Request(url) url_request.get_method = lambda: 'HEAD' try: urllib.request.urlopen(url_request) # noqa pylint: disable=R1732 return True except urllib.request.URLError: return False def get_certificates(): """Download the cacert.pem file and return the path. Returns: path (str): UNIX path to the certificates. """ certificates_url = get_url_from_variable("TAO_CERTIFICATES_URL") if not url_exists(certificates_url): raise urllib.request.URLError("Url for the certificates not found.") tmp_dir = tempfile.mkdtemp() download_command = f"wget {certificates_url} -P {tmp_dir} --quiet" try: subprocess.check_call( download_command, shell=True, stdout=sys.stdout ) except Exception as exc: raise urllib.request.URLError("Download certificates.tar.gz failed.") from exc tarfile_path = os.path.join(tmp_dir, "certificates.tar.gz") assert tarfile.is_tarfile(tarfile_path), ( "The downloaded file isn't a tar file." ) with tarfile.open(name=tarfile_path, mode="r:gz") as tar_file: filenames = tar_file.getnames() for memfile in filenames: member = tar_file.getmember(memfile) tar_file.extract(member, tmp_dir) file_list = [item for item in os.listdir(tmp_dir) if item.endswith(".pem")] assert file_list, ( f"Didn't get pem files. Directory contents {file_list}" ) return tmp_dir def send_telemetry_data(network, action, gpu_data, num_gpus=1, time_lapsed=None, pass_status=False): """Wrapper to send TAO telemetry data. Args: network (str): Name of the network being run. action (str): Subtask of the network called. gpu_data (dict): Dictionary containing data about the GPU's in the machine. num_gpus (int): Number of GPUs used in the job. time_lapsed (int): Time lapsed. pass_status (bool): Job passed or failed. Returns: No explicit returns. """ urllib_major_version = int(urllib3.__version__.split(".", maxsplit=1)[0]) if urllib_major_version < 2: urllib3.disable_warnings(urllib3.exceptions.SubjectAltNameWarning) if os.getenv('TELEMETRY_OPT_OUT', "no").lower() in ["no", "false", "0"]: url = get_url_from_variable("TAO_TELEMETRY_SERVER") data = { "version": os.getenv("TAO_TOOLKIT_VERSION", "4.0.0"), "action": action, "network": network, "gpu": [device["name"] for device in gpu_data[:num_gpus]], "success": pass_status } if time_lapsed is not None: data["time_lapsed"] = time_lapsed certificate_dir = get_certificates() cert = ('client-cert.pem', 'client-key.pem') requests.post( url, json=data, cert=tuple([os.path.join(certificate_dir, item) for item in cert]), # noqa pylint: disable=R1728 timeout=TELEMETRY_TIMEOUT ) shutil.rmtree(certificate_dir)
tao_deploy-main
nvidia_tao_deploy/cv/common/telemetry/telemetry.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Logger class for TAO Deploy models.""" from abc import abstractmethod import atexit from datetime import datetime import json import logging import os logger = logging.getLogger(__name__) class Verbosity(): """Verbosity levels.""" DISABLE = 0 DEBUG = 10 INFO = 20 WARNING = 30 ERROR = 40 CRITICAL = 50 # Defining a log level to name dictionary. log_level_to_name = { Verbosity.DISABLE: "DISABLE", Verbosity.DEBUG: 'DEBUG', Verbosity.INFO: 'INFO', Verbosity.WARNING: 'WARNING', Verbosity.ERROR: 'ERROR', Verbosity.CRITICAL: 'CRITICAL' } class Status(): """Status levels.""" SUCCESS = 0 FAILURE = 1 STARTED = 2 RUNNING = 3 SKIPPED = 4 status_level_to_name = { Status.SUCCESS: 'SUCCESS', Status.FAILURE: 'FAILURE', Status.STARTED: 'STARTED', Status.RUNNING: 'RUNNING', Status.SKIPPED: 'SKIPPED' } class BaseLogger(object): """File logger class.""" def __init__(self, is_master=False, verbosity=Verbosity.DISABLE): """Base logger class.""" self.is_master = is_master self.verbosity = verbosity self.categorical = {} self.graphical = {} self.kpi = {} @property def date(self): """Get date from the status.""" date_time = datetime.now() date_object = date_time.date() return "{}/{}/{}".format( # noqa pylint: disable=C0209 date_object.month, date_object.day, date_object.year ) @property def time(self): """Get date from the status.""" date_time = datetime.now() time_object = date_time.time() return "{}:{}:{}".format( # noqa pylint: disable=C0209 time_object.hour, time_object.minute, time_object.second ) @property def categorical(self): """Categorical data to be logged.""" return self._categorical @categorical.setter def categorical(self, value: dict): """Set categorical data to be logged.""" self._categorical = value @property def graphical(self): """Graphical data to be logged.""" return self._graphical @graphical.setter def graphical(self, value: dict): """Set graphical data to be logged.""" self._graphical = value @property def kpi(self): """Set KPI data.""" return self._kpi @kpi.setter def kpi(self, value: dict): """Set KPI data.""" self._kpi = value def flush(self): """Flush the logger.""" pass def format_data(self, data: dict): """Format the data.""" if isinstance(data, dict): data_string = [] for key, value in data.items(): data_string.append( f"{key}: {self.format_data(value)}" if isinstance(value, dict) else value ) return ", ".join(data_string) def log(self, level, string): """Log the data string.""" if level >= self.verbosity: logging.log(level, string) @abstractmethod def write(self, data=None, status_level=Status.RUNNING, verbosity_level=Verbosity.INFO, message=None): """Write data out to the log file.""" if self.verbosity > Verbosity.DISABLE: if not data: data = {} # Define generic data. data["date"] = self.date data["time"] = self.time data["status"] = status_level_to_name.get(status_level, "RUNNING") data["verbosity"] = log_level_to_name.get(verbosity_level, "INFO") if message: data["message"] = message logging.log(verbosity_level, message) if self.categorical: data["categorical"] = self.categorical if self.graphical: data["graphical"] = self.graphical if self.kpi: data["kpi"] = self.kpi data_string = self.format_data(data) if self.is_master: self.log(verbosity_level, data_string) self.flush() class StatusLogger(BaseLogger): """Simple logger to save the status file.""" def __init__(self, filename=None, is_master=False, verbosity=Verbosity.INFO, append=True): """Logger to write out the status.""" super().__init__(is_master=is_master, verbosity=verbosity) self.log_path = os.path.realpath(filename) if os.path.exists(self.log_path): logger.info("Log file already exists at %s", self.log_path) if is_master: self.l_file = open(self.log_path, "a" if append else "w", encoding='utf-8') # noqa pylint: disable=R1732 atexit.register(self.l_file.close) def log(self, level, string): """Log the data string.""" if level >= self.verbosity: self.l_file.write(string + "\n") def flush(self): """Flush contents of the log file.""" if self.is_master: self.l_file.flush() @staticmethod def format_data(data): """Format the dictionary data.""" if not isinstance(data, dict): raise TypeError(f"Data must be a dictionary and not type {type(data)}.") data_string = json.dumps(data) return data_string # Define the logger here so it's static. _STATUS_LOGGER = BaseLogger() def set_status_logger(status_logger): """Set the status logger. Args: status_logger: An instance of the logger class. """ global _STATUS_LOGGER # pylint: disable=W0603 _STATUS_LOGGER = status_logger def get_status_logger(): """Get the status logger.""" global _STATUS_LOGGER # pylint: disable=W0602,W0603 return _STATUS_LOGGER
tao_deploy-main
nvidia_tao_deploy/cv/common/logging/status_logging.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Common Logging Modules."""
tao_deploy-main
nvidia_tao_deploy/cv/common/logging/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Common Hydra Modules."""
tao_deploy-main
nvidia_tao_deploy/cv/common/hydra/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class to work with hydra config files.""" import functools import os import sys from typing import Any, Callable, Optional from hydra._internal.utils import _run_hydra, get_args_parser from hydra.core.config_store import ConfigStore from hydra.types import TaskFunction from omegaconf import DictConfig def hydra_runner( config_path: Optional[str] = None, config_name: Optional[str] = None, schema: Optional[Any] = None ) -> Callable[[TaskFunction], Any]: """Decorator used for passing the Config paths to main function. Optionally registers a schema used for validation/providing default values. Args: config_path: Optional path that will be added to config search directory. config_name: Pathname of the config file. schema: Structured config type representing the schema used for validation/providing default values. """ def decorator(task_function: TaskFunction) -> Callable[[], None]: @functools.wraps(task_function) def wrapper(cfg_passthrough: Optional[DictConfig] = None) -> Any: # Check it config was passed. if cfg_passthrough is not None: return task_function(cfg_passthrough) args = get_args_parser() # Parse arguments in order to retrieve overrides parsed_args = args.parse_args() # Get overriding args in dot string format overrides = parsed_args.overrides # type: list # Disable the creation of .hydra subdir # https://hydra.cc/docs/tutorials/basic/running_your_app/working_directory overrides.append("hydra.output_subdir=null") # Hydra logging outputs only to stdout (no log file). # https://hydra.cc/docs/configure_hydra/logging overrides.append("hydra/job_logging=stdout") # Set run.dir ONLY for ExpManager "compatibility" - to be removed. overrides.append("hydra.run.dir=.") # Check if user set the schema. if schema is not None: # Create config store. cs = ConfigStore.instance() # Get the correct ConfigStore "path name" to "inject" the schema. if parsed_args.config_name is not None: path, name = os.path.split(parsed_args.config_name) # Make sure the path is not set - as this will disable validation scheme. if path != '': sys.stderr.write( "ERROR Cannot set config file path using `--config-name` when " "using schema. Please set path using `--config-path` and file name using " "`--config-name` separately.\n" ) sys.exit(1) else: name = config_name # Register the configuration as a node under the name in the group. cs.store(name=name, node=schema) # group=group, # Wrap a callable object with name `parse_args` # This is to mimic the ArgParser.parse_args() API. class _argparse_wrapper: def __init__(self, arg_parser): self.arg_parser = arg_parser self._actions = arg_parser._actions def parse_args(self, args=None, namespace=None): return parsed_args # no return value from run_hydra() as it may sometime actually run the task_function # multiple times (--multirun) _run_hydra( args=_argparse_wrapper(args).parse_args(), args_parser=_argparse_wrapper(args), task_function=task_function, config_path=config_path, config_name=config_name, ) return wrapper return decorator
tao_deploy-main
nvidia_tao_deploy/cv/common/hydra/hydra_runner.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorRT Engine class for Deformable DETR.""" from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference import numpy as np from PIL import ImageDraw import tensorrt as trt # pylint: disable=unused-import def trt_output_process_fn(y_encoded, batch_size, num_classes): """Function to process TRT model output. Args: y_encoded (list): list of TRT outputs in numpy batch_size (int): batch size from TRT engine num_classes (int): number of classes that the model was trained on Returns: pred_logits (np.ndarray): (B x NQ x N) logits of the prediction pred_boxes (np.ndarray): (B x NQ x 4) bounding boxes of the prediction """ pred_logits, pred_boxes = y_encoded return pred_logits.reshape((batch_size, -1, num_classes)), pred_boxes.reshape((batch_size, -1, 4)) class DDETRInferencer(TRTInferencer): """Implements inference for the D-DETR TensorRT engine.""" def __init__(self, engine_path, num_classes, input_shape=None, batch_size=None, data_format="channel_first"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored num_classes (int): number of classes that the model was trained on input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine super().__init__(engine_path) self.max_batch_size = self.engine.max_batch_size self.execute_v2 = False # Execution context is needed for inference self.context = None # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): self._input_shape = self.engine.get_binding_shape(binding)[-3:] assert len(self._input_shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[1] self.width = self._input_shape[2] else: self.height = self._input_shape[0] self.width = self._input_shape[1] self.num_classes = num_classes # set binding_shape for dynamic input if (input_shape is not None) or (batch_size is not None): self.context = self.engine.create_execution_context() if input_shape is not None: self.context.set_binding_shape(0, input_shape) self.max_batch_size = input_shape[0] else: self.context.set_binding_shape(0, [batch_size] + list(self._input_shape)) self.max_batch_size = batch_size self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volume = trt.volume(self._input_shape) self.numpy_array = np.zeros((self.max_batch_size, input_volume)) def infer(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. y_pred = [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] # Process TRT outputs to proper format results = trt_output_process_fn(y_pred, actual_batch_size, self.num_classes) return results def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free() def draw_bbox(self, img, prediction, class_mapping, threshold=0.3, color_map=None): # noqa pylint: disable=W0237 """Draws bbox on image and dump prediction in KITTI format Args: img (numpy.ndarray): Preprocessed image prediction (numpy.ndarray): (N x 6) predictions class_mapping (dict): key is the class index and value is the class name threshold (float): value to filter predictions color_map (dict): key is the class name and value is the color to be used """ draw = ImageDraw.Draw(img) label_strings = [] for i in prediction: if int(i[0]) not in class_mapping: continue cls_name = class_mapping[int(i[0])] if float(i[1]) < threshold: continue if cls_name in color_map: draw.rectangle(((i[2], i[3]), (i[4], i[5])), outline=color_map[cls_name]) # txt pad draw.rectangle(((i[2], i[3]), (i[2] + 75, i[3] + 10)), fill=color_map[cls_name]) draw.text((i[2], i[3]), f"{cls_name}: {i[1]:.2f}") x1, y1, x2, y2 = float(i[2]), float(i[3]), float(i[4]), float(i[5]) label_head = cls_name + " 0.00 0 0.00 " bbox_string = f"{x1:.3f} {y1:.3f} {x2:.3f} {y2:.3f}" label_tail = f" 0.00 0.00 0.00 0.00 0.00 0.00 0.00 {float(i[1]):.3f}\n" label_string = label_head + bbox_string + label_tail label_strings.append(label_string) return img, label_strings
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """D-DETR TensorRT engine builder.""" import logging import os import sys import onnx import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder from nvidia_tao_deploy.engine.calibrator import EngineCalibrator from nvidia_tao_deploy.utils.image_batcher import ImageBatcher logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class DDETRDetEngineBuilder(EngineBuilder): """Parses an ONNX graph and builds a TensorRT engine from it.""" def __init__( self, input_dims, is_dynamic=False, data_format="channels_first", img_std=[0.229, 0.224, 0.225], **kwargs ): """Init. Args: data_format (str): data_format. """ super().__init__(**kwargs) self._input_dims = input_dims self._data_format = data_format self.is_dynamic = is_dynamic self._img_std = img_std def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="onnx"): """Parse the UFF/ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: onnx). """ if file_format == "onnx": logger.info("Parsing ONNX model") self.batch_size = self._input_dims[0] self._input_dims = self._input_dims[1:] network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) network_flags = network_flags | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.is_dynamic: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_opt = (self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_max = (self.max_batch_size, input_shape[1], input_shape[2], input_shape[3]) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) self.config.set_calibration_profile(opt_profile) else: logger.info("Parsing UFF model") raise NotImplementedError("UFF for D-DETR is not supported") def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None): """Build the TensorRT engine and serialize it to disk. Args: engine_path: The path where to serialize the engine to. precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'. calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. """ engine_path = os.path.realpath(engine_path) engine_dir = os.path.dirname(engine_path) os.makedirs(engine_dir, exist_ok=True) logger.debug("Building %s Engine in %s", precision, engine_path) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] if self.batch_size is None: self.batch_size = calib_batch_size self.builder.max_batch_size = self.batch_size if precision == "fp16": if not self.builder.platform_has_fast_fp16: logger.warning("FP16 is not supported natively on this platform/device") else: self.config.set_flag(trt.BuilderFlag.FP16) elif precision == "int8": if not self.builder.platform_has_fast_int8: logger.warning("INT8 is not supported natively on this platform/device") else: logger.warning("Enabling INT8 builder") if self.builder.platform_has_fast_fp16 and not self._strict_type: # Also enable fp16, as some layers may be even more efficient in fp16 than int8 self.config.set_flag(trt.BuilderFlag.FP16) else: self.config.set_flag(trt.BuilderFlag.STRICT_TYPES) self.config.set_flag(trt.BuilderFlag.INT8) # Set ImageBatcher based calibrator self.set_calibrator(inputs=inputs, calib_cache=calib_cache, calib_input=calib_input, calib_num_images=calib_num_images, calib_batch_size=calib_batch_size, calib_data_file=calib_data_file) self._logger_info_IBuilderConfig() with self.builder.build_engine(self.network, self.config) as engine, \ open(engine_path, "wb") as f: logger.debug("Serializing engine to file: %s", engine_path) f.write(engine.serialize()) def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None, image_mean=None): """Simple function to set an int8 calibrator. (Default is ImageBatcher based) Args: inputs (list): Inputs to the network calib_input (str): The path to a directory holding the calibration images. calib_cache (str): The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images (int): The maximum number of images to use for calibration. calib_batch_size (int): The batch size to use for the calibration process. Returns: No explicit returns. """ logger.info("Calibrating using ImageBatcher") self.config.int8_calibrator = EngineCalibrator(calib_cache) if not os.path.exists(calib_cache): calib_shape = [calib_batch_size] + list(inputs[0].shape[1:]) calib_dtype = trt.nptype(inputs[0].dtype) self.config.int8_calibrator.set_image_batcher( ImageBatcher(calib_input, calib_shape, calib_dtype, max_num_images=calib_num_images, exact_batches=True, preprocessor='DDETR', img_std=self._img_std))
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy D-DETR."""
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions to be used for D-DETR.""" import numpy as np def box_cxcywh_to_xyxy(x): """Convert box from cxcywh to xyxy.""" x_c, y_c, w, h = x[..., 0], x[..., 1], x[..., 2], x[..., 3] b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return np.stack(b, axis=-1) def sigmoid(x): """Numpy-based sigmoid function.""" return 1 / (1 + np.exp(-x)) def post_process(pred_logits, pred_boxes, target_sizes, num_select=100): """Perform the post-processing. Scale back the boxes to the original size. Args: pred_logits (np.ndarray): (B x NQ x 4) logit values from TRT engine. pred_boxes (np.ndarray): (B x NQ x 4) bbox values from TRT engine. target_sizes (np.ndarray): (B x 4) [w, h, w, h] containing original image dimension. num_select (int): Top-K proposals to choose from. Returns: labels (np.ndarray): (B x NS) class label of top num_select predictions. scores (np.ndarray): (B x NS) class probability of top num_select predictions. boxes (np.ndarray): (B x NS x 4) scaled back bounding boxes of top num_select predictions. """ # Sigmoid prob = sigmoid(pred_logits).reshape((pred_logits.shape[0], -1)) # Get topk scores topk_indices = np.argsort(prob, axis=1)[:, ::-1][:, :num_select] scores = [per_batch_prob[ind] for per_batch_prob, ind in zip(prob, topk_indices)] scores = np.array(scores) # Get corresponding boxes topk_boxes = topk_indices // pred_logits.shape[2] # Get corresponding labels labels = topk_indices % pred_logits.shape[2] # Convert to x1, y1, x2, y2 format boxes = box_cxcywh_to_xyxy(pred_boxes) # Take corresponding topk boxes boxes = np.take_along_axis(boxes, np.repeat(np.expand_dims(topk_boxes, -1), 4, axis=-1), axis=1) # Scale back the bounding boxes to the original image size target_sizes = np.array(target_sizes) boxes = boxes * target_sizes[:, None, :] # Clamp bounding box coordinates for i, target_size in enumerate(target_sizes): w, h = target_size[0], target_size[1] boxes[i, :, 0::2] = np.clip(boxes[i, :, 0::2], 0.0, w) boxes[i, :, 1::2] = np.clip(boxes[i, :, 1::2], 0.0, h) return labels, scores, boxes
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """D-DETR loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from PIL import Image import cv2 from nvidia_tao_deploy.dataloader.coco import COCOLoader from nvidia_tao_deploy.inferencer.preprocess_input import preprocess_input def resize(image, target, size, max_size=None): """resize.""" # size can be min_size (scalar) or (w, h) tuple def get_size_with_aspect_ratio(image_size, size, max_size=None): """get_size_with_aspect_ratio.""" w, h = image_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def get_size(image_size, size, max_size=None): """get_size.""" # Size needs to be (width, height) if isinstance(size, (list, tuple)): return_size = size[::-1] else: return_size = get_size_with_aspect_ratio(image_size, size, max_size) return return_size size = get_size(image.size, size, max_size) # PILLOW bilinear is not same as F.resize from torchvision # PyTorch mimics OpenCV's behavior. # Ref: https://tcapelle.github.io/pytorch/fastai/2021/02/26/image_resizing.html rescaled_image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) if target is None: return rescaled_image, None ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * [ratio_width, ratio_height, ratio_width, ratio_height] target["boxes"] = scaled_boxes h, w = size target["size"] = np.array([h, w]) return rescaled_image, target class DDETRCOCOLoader(COCOLoader): """D-DETR DataLoader.""" def __init__( self, image_std=None, **kwargs ): """Init. Args: image_std (list): image standard deviation. """ super().__init__(**kwargs) self.image_std = image_std def _get_single_processed_item(self, idx): """Load and process single image and its label.""" gt_image_info, image_id = self._load_gt_image(idx) gt_image, gt_scale = gt_image_info gt_label = self._load_gt_label(idx) return gt_image, gt_scale, image_id, gt_label def preprocess_image(self, image_path): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. This Image Batcher implements one algorithm for now: * DDETR: Resizes and pads the image to fit the input size. Args: image_path(str): The path to the image on disk to load. Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch scale (list): the resize scale used, if any. """ scale = None image = Image.open(image_path) image = image.convert(mode='RGB') image = np.asarray(image, dtype=self.dtype) image, _ = resize(image, None, size=(self.height, self.width)) if self.data_format == "channels_first": image = np.transpose(image, (2, 0, 1)) image = preprocess_input(image, data_format=self.data_format, img_std=self.image_std, mode='torch') return image, scale
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/dataloader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy D-DETR Hydra."""
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/hydra_config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file.""" from typing import Optional, List, Dict from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class DDDatasetConvertConfig: """Dataset Convert config.""" input_source: Optional[str] = None data_root: Optional[str] = None results_dir: str = MISSING image_dir_name: Optional[str] = None label_dir_name: Optional[str] = None val_split: int = 0 num_shards: int = 20 num_partitions: int = 1 partition_mode: Optional[str] = None image_extension: str = ".jpg" mapping_path: Optional[str] = None @dataclass class DDAugmentationConfig: """Augmentation config.""" scales: List[int] = field(default_factory=lambda: [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800], metadata={"description": "Random Scales for Augmentation"}) input_mean: List[float] = field(default_factory=lambda: [0.485, 0.456, 0.406], metadata={"description": "Pixel mean value"}) input_std: List[float] = field(default_factory=lambda: [0.229, 0.224, 0.225], metadata={"description": "Pixel Standard deviation value"}) train_random_resize: List[int] = field(default_factory=lambda: [400, 500, 600], metadata={"description": "Training Random Resize"}) horizontal_flip_prob: float = 0.5 train_random_crop_min: int = 384 train_random_crop_max: int = 600 random_resize_max_size: int = 1333 test_random_resize: int = 800 fixed_padding: bool = True @dataclass class DDDatasetConfig: """Dataset config.""" train_sampler: str = "default_sampler" train_data_sources: Optional[List[Dict[str, str]]] = None val_data_sources: Optional[List[Dict[str, str]]] = None test_data_sources: Optional[Dict[str, str]] = None infer_data_sources: Optional[Dict[str, str]] = None batch_size: int = 4 workers: int = 8 pin_memory: bool = True num_classes: int = 91 dataset_type: str = "serialized" eval_class_ids: Optional[List[int]] = None augmentation: DDAugmentationConfig = DDAugmentationConfig() @dataclass class DDModelConfig: """Deformable DETR model config.""" pretrained_backbone_path: Optional[str] = None backbone: str = "resnet_50" num_queries: int = 300 num_feature_levels: int = 4 return_interm_indices: List[int] = field(default_factory=lambda: [1, 2, 3, 4], metadata={"description": "Indices to return from backbone"}) with_box_refine: bool = True cls_loss_coef: float = 2.0 bbox_loss_coef: float = 5.0 giou_loss_coef: float = 2.0 focal_alpha: float = 0.25 clip_max_norm: float = 0.1 dropout_ratio: float = 0.3 hidden_dim: int = 256 nheads: int = 8 enc_layers: int = 6 dec_layers: int = 6 dim_feedforward: int = 1024 dec_n_points: int = 4 enc_n_points: int = 4 aux_loss: bool = True dilation: bool = False train_backbone: bool = True loss_types: List[str] = field(default_factory=lambda: ['labels', 'boxes'], metadata={"description": "Losses to be used during training"}) backbone_names: List[str] = field(default_factory=lambda: ["backbone.0"], metadata={"description": "Backbone name"}) linear_proj_names: List[str] = field(default_factory=lambda: ['reference_points', 'sampling_offsets'], metadata={"description": "Linear Projection names"}) @dataclass class OptimConfig: """Optimizer config.""" optimizer: str = "AdamW" monitor_name: str = "val_loss" # {val_loss, train_loss} lr: float = 2e-4 lr_backbone: float = 2e-5 lr_linear_proj_mult: float = 0.1 momentum: float = 0.9 weight_decay: float = 1e-4 lr_scheduler: str = "MultiStep" lr_steps: List[int] = field(default_factory=lambda: [40], metadata={"description": "learning rate decay steps"}) lr_step_size: int = 40 lr_decay: float = 0.1 @dataclass class DDTrainExpConfig: """Train experiment config.""" num_gpus: int = 1 num_nodes: int = 1 resume_training_checkpoint_path: Optional[str] = None pretrained_model_path: Optional[str] = None validation_interval: int = 1 clip_grad_norm: float = 0.1 is_dry_run: bool = False results_dir: Optional[str] = None num_epochs: int = 50 checkpoint_interval: int = 1 optim: OptimConfig = OptimConfig() precision: str = "fp32" distributed_strategy: str = "ddp" activation_checkpoint: bool = True @dataclass class DDInferenceExpConfig: """Inference experiment config.""" num_gpus: int = 1 results_dir: Optional[str] = None checkpoint: Optional[str] = None trt_engine: Optional[str] = None color_map: Dict[str, str] = MISSING conf_threshold: float = 0.5 is_internal: bool = False input_width: Optional[int] = None input_height: Optional[int] = None @dataclass class DDEvalExpConfig: """Evaluation experiment config.""" num_gpus: int = 1 results_dir: Optional[str] = None input_width: Optional[int] = None input_height: Optional[int] = None checkpoint: Optional[str] = None trt_engine: Optional[str] = None conf_threshold: float = 0.0 @dataclass class CalibrationConfig: """Calibration config.""" cal_image_dir: List[str] = MISSING cal_cache_file: str = MISSING cal_batch_size: int = 1 cal_batches: int = 1 @dataclass class TrtConfig: """Trt config.""" data_type: str = "FP32" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 calibration: CalibrationConfig = CalibrationConfig() @dataclass class DDExportExpConfig: """Export experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 checkpoint: str = MISSING onnx_file: str = MISSING on_cpu: bool = False input_channel: int = 3 input_width: int = 960 input_height: int = 544 opset_version: int = 12 batch_size: int = -1 verbose: bool = False @dataclass class DDGenTrtEngineExpConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: str = MISSING trt_engine: Optional[str] = None input_channel: int = 3 input_width: int = 960 input_height: int = 544 opset_version: int = 12 batch_size: int = -1 verbose: bool = False tensorrt: TrtConfig = TrtConfig() @dataclass class ExperimentConfig: """Experiment config.""" model: DDModelConfig = DDModelConfig() dataset: DDDatasetConfig = DDDatasetConfig() train: DDTrainExpConfig = DDTrainExpConfig() evaluate: DDEvalExpConfig = DDEvalExpConfig() inference: DDInferenceExpConfig = DDInferenceExpConfig() export: DDExportExpConfig = DDExportExpConfig() gen_trt_engine: DDGenTrtEngineExpConfig = DDGenTrtEngineExpConfig() encryption_key: Optional[str] = None results_dir: str = MISSING
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/hydra_config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """D-DETR convert onnx model to TRT engine.""" import logging import os import tempfile from nvidia_tao_deploy.cv.deformable_detr.engine_builder import DDETRDetEngineBuilder from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.deformable_detr.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.utils.decoding import decode_model from nvidia_tao_deploy.engine.builder import NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="gen_trt_engine", schema=ExperimentConfig ) @monitor_status(name='deformable_detr', mode='gen_trt_engine') def main(cfg: ExperimentConfig) -> None: """Convert encrypted uff or onnx model to TRT engine.""" if cfg.gen_trt_engine.results_dir is not None: results_dir = cfg.gen_trt_engine.results_dir else: results_dir = os.path.join(cfg.results_dir, "gen_trt_engine") os.makedirs(results_dir, exist_ok=True) # decrypt etlt tmp_onnx_file, file_format = decode_model(cfg.gen_trt_engine.onnx_file, cfg.encryption_key) engine_file = cfg.gen_trt_engine.trt_engine data_type = cfg.gen_trt_engine.tensorrt.data_type workspace_size = cfg.gen_trt_engine.tensorrt.workspace_size min_batch_size = cfg.gen_trt_engine.tensorrt.min_batch_size opt_batch_size = cfg.gen_trt_engine.tensorrt.opt_batch_size max_batch_size = cfg.gen_trt_engine.tensorrt.max_batch_size batch_size = cfg.gen_trt_engine.batch_size num_channels = cfg.gen_trt_engine.input_channel input_width = cfg.gen_trt_engine.input_width input_height = cfg.gen_trt_engine.input_height # INT8 related configs img_std = cfg.dataset.augmentation.input_std calib_input = list(cfg.gen_trt_engine.tensorrt.calibration.get('cal_image_dir', [])) calib_cache = cfg.gen_trt_engine.tensorrt.calibration.get('cal_cache_file', None) if batch_size is None or batch_size == -1: input_batch_size = 1 is_dynamic = True else: input_batch_size = batch_size is_dynamic = False # TODO: Remove this when we upgrade to DLFW 23.04+ trt_version_number = NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + NV_TENSORRT_PATCH if data_type.lower() == "fp16" and trt_version_number < 8600: logger.warning("[WARNING]: LayerNorm has overflow issue in FP16 upto TensorRT version 8.5 " "which can lead to mAP drop compared to FP32.\n" "[WARNING]: Please re-export ONNX using opset 17 and use TensorRT version 8.6.\n") if engine_file is not None: if engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = engine_file builder = DDETRDetEngineBuilder(workspace=workspace_size // 1024, # DD config is not in GB input_dims=(input_batch_size, num_channels, input_height, input_width), is_dynamic=is_dynamic, min_batch_size=min_batch_size, opt_batch_size=opt_batch_size, max_batch_size=max_batch_size, img_std=img_std) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, data_type, calib_input=calib_input, calib_cache=calib_cache, calib_num_images=cfg.gen_trt_engine.tensorrt.calibration.cal_batch_size * cfg.gen_trt_engine.tensorrt.calibration.cal_batches, calib_batch_size=cfg.gen_trt_engine.tensorrt.calibration.cal_batch_size ) logging.info("Export finished successfully.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy D-DETR scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" import os import logging import numpy as np from PIL import Image from tqdm.auto import tqdm from nvidia_tao_deploy.cv.deformable_detr.inferencer import DDETRInferencer from nvidia_tao_deploy.cv.deformable_detr.utils import post_process from nvidia_tao_deploy.cv.deformable_detr.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.utils.image_batcher import ImageBatcher from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="infer", schema=ExperimentConfig ) @monitor_status(name='deformable_detr', mode='inference') def main(cfg: ExperimentConfig) -> None: """D-DETR TRT Inference.""" if not os.path.exists(cfg.inference.trt_engine): raise FileNotFoundError(f"Provided inference.trt_engine at {cfg.inference.trt_engine} does not exist!") trt_infer = DDETRInferencer(cfg.inference.trt_engine, batch_size=cfg.dataset.batch_size, num_classes=cfg.dataset.num_classes) c, h, w = trt_infer._input_shape batcher = ImageBatcher(list(cfg.dataset.infer_data_sources.image_dir), (cfg.dataset.batch_size, c, h, w), trt_infer.inputs[0].host.dtype, preprocessor="DDETR") with open(cfg.dataset.infer_data_sources.classmap, "r", encoding="utf-8") as f: classmap = [line.rstrip() for line in f.readlines()] classes = {c: i + 1 for i, c in enumerate(classmap)} # Create results directories if cfg.inference.results_dir is not None: results_dir = cfg.inference.results_dir else: results_dir = os.path.join(cfg.results_dir, "trt_inference") os.makedirs(results_dir, exist_ok=True) output_annotate_root = os.path.join(results_dir, "images_annotated") output_label_root = os.path.join(results_dir, "labels") os.makedirs(output_annotate_root, exist_ok=True) os.makedirs(output_label_root, exist_ok=True) inv_classes = {v: k for k, v in classes.items()} for batches, img_paths, scales in tqdm(batcher.get_batch(), total=batcher.num_batches, desc="Producing predictions"): # Handle last batch as we artifically pad images for the last batch idx if len(img_paths) != len(batches): batches = batches[:len(img_paths)] pred_logits, pred_boxes = trt_infer.infer(batches) target_sizes = [] for batch, scale in zip(batches, scales): _, new_h, new_w = batch.shape orig_h, orig_w = int(scale[0] * new_h), int(scale[1] * new_w) target_sizes.append([orig_w, orig_h, orig_w, orig_h]) class_labels, scores, boxes = post_process(pred_logits, pred_boxes, target_sizes) y_pred_valid = np.concatenate([class_labels[..., None], scores[..., None], boxes], axis=-1) for img_path, pred in zip(img_paths, y_pred_valid): # Load Image img = Image.open(img_path) # Resize of the original input image is not required for D-DETR # as the predictions are rescaled in post_process bbox_img, label_strings = trt_infer.draw_bbox(img, pred, inv_classes, cfg.inference.conf_threshold, cfg.inference.color_map) img_filename = os.path.basename(img_path) bbox_img.save(os.path.join(output_annotate_root, img_filename)) # Store labels filename, _ = os.path.splitext(img_filename) label_file_name = os.path.join(output_label_root, filename + ".txt") with open(label_file_name, "w", encoding="utf-8") as f: for l_s in label_strings: f.write(l_s) logging.info("Finished inference.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" import os import operator import copy import logging import json import six import numpy as np from tqdm.auto import tqdm from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.deformable_detr.dataloader import DDETRCOCOLoader from nvidia_tao_deploy.cv.deformable_detr.inferencer import DDETRInferencer from nvidia_tao_deploy.cv.deformable_detr.utils import post_process from nvidia_tao_deploy.cv.deformable_detr.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.metrics.coco_metric import EvaluationMetric logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="evaluate", schema=ExperimentConfig ) @monitor_status(name='deformable_detr', mode='evaluation') def main(cfg: ExperimentConfig) -> None: """D-DETR TRT evaluation.""" if not os.path.exists(cfg.evaluate.trt_engine): raise FileNotFoundError(f"Provided evaluate.trt_engine at {cfg.evaluate.trt_engine} does not exist!") eval_metric = EvaluationMetric(cfg.dataset.test_data_sources.json_file, eval_class_ids=cfg.dataset.eval_class_ids, include_mask=False) trt_infer = DDETRInferencer(cfg.evaluate.trt_engine, batch_size=cfg.dataset.batch_size, num_classes=cfg.dataset.num_classes) c, h, w = trt_infer._input_shape dl = DDETRCOCOLoader( val_json_file=cfg.dataset.test_data_sources.json_file, shape=(cfg.dataset.batch_size, c, h, w), dtype=trt_infer.inputs[0].host.dtype, batch_size=cfg.dataset.batch_size, data_format="channels_first", image_std=cfg.dataset.augmentation.input_std, image_dir=cfg.dataset.test_data_sources.image_dir, eval_samples=None) predictions = { 'detection_scores': [], 'detection_boxes': [], 'detection_classes': [], 'source_id': [], 'image_info': [], 'num_detections': [] } def evaluation_preds(preds): # Essential to avoid modifying the source dict _preds = copy.deepcopy(preds) for k, _ in six.iteritems(_preds): _preds[k] = np.concatenate(_preds[k], axis=0) eval_results = eval_metric.predict_metric_fn(_preds) return eval_results for imgs, scale, source_id, labels in tqdm(dl, total=len(dl), desc="Producing predictions"): image = np.array(imgs) image_info = [] target_sizes = [] for i, label in enumerate(labels): image_info.append([label[-1][0], label[-1][1], scale[i], label[-1][2], label[-1][3]]) # target_sizes needs to [W, H, W, H] target_sizes.append([label[-1][3], label[-1][2], label[-1][3], label[-1][2]]) image_info = np.array(image_info) pred_logits, pred_boxes = trt_infer.infer(image) class_labels, scores, boxes = post_process(pred_logits, pred_boxes, target_sizes) # Convert to xywh boxes[:, :, 2:] -= boxes[:, :, :2] predictions['detection_classes'].append(class_labels) predictions['detection_scores'].append(scores) predictions['detection_boxes'].append(boxes) predictions['num_detections'].append(np.array([100] * cfg.dataset.batch_size).astype(np.int32)) predictions['image_info'].append(image_info) predictions['source_id'].append(source_id) if cfg.evaluate.results_dir is not None: results_dir = cfg.evaluate.results_dir else: results_dir = os.path.join(cfg.results_dir, "trt_evaluate") os.makedirs(results_dir, exist_ok=True) eval_results = evaluation_preds(preds=predictions) for key, value in sorted(eval_results.items(), key=operator.itemgetter(0)): eval_results[key] = float(value) logging.info("%s: %.9f", key, value) with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(eval_results, f) logging.info("Finished evaluation.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for D-DETR."""
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import argparse from nvidia_tao_deploy.cv.deformable_detr import scripts from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_hydra import get_subtasks, launch def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "deformable_detr", add_help=True, description="Train Adapt Optimize Deploy entrypoint for D-DETR" ) # Build list of subtasks by inspecting the scripts package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch(parser, subtasks, network="deformable_detr") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/deformable_detr/entrypoint/deformable_detr.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility class for performing TensorRT image inference.""" import numpy as np import tensorrt as trt from nvidia_tao_deploy.inferencer.trt_inferencer import TRTInferencer from nvidia_tao_deploy.inferencer.utils import allocate_buffers, do_inference def trt_output_process_fn(y_encoded, model_output_width, model_output_height): """Function to process TRT model output.""" predictions_batch = [] for idx in range(y_encoded[0].shape[0]): pred = np.reshape(y_encoded[0][idx, ...], (model_output_height, model_output_width, 1)) pred = np.squeeze(pred, axis=-1) predictions_batch.append(pred) return np.array(predictions_batch) class SegformerInferencer(TRTInferencer): """Manages TensorRT objects for model inference.""" def __init__(self, engine_path, input_shape=None, batch_size=None, data_format="channel_first"): """Initializes TensorRT objects needed for model inference. Args: engine_path (str): path where TensorRT engine should be stored input_shape (tuple): (batch, channel, height, width) for dynamic shape engine batch_size (int): batch size for dynamic shape engine data_format (str): either channel_first or channel_last """ # Load TRT engine super().__init__(engine_path) self.max_batch_size = self.engine.max_batch_size self.execute_v2 = False # Execution context is needed for inference self.context = None # Allocate memory for multiple usage [e.g. multiple batch inference] self._input_shape = [] for binding in range(self.engine.num_bindings): if self.engine.binding_is_input(binding): self._input_shape = self.engine.get_binding_shape(binding)[-3:] assert len(self._input_shape) == 3, "Engine doesn't have valid input dimensions" if data_format == "channel_first": self.height = self._input_shape[1] self.width = self._input_shape[2] else: self.height = self._input_shape[0] self.width = self._input_shape[1] # set binding_shape for dynamic input if (input_shape is not None) or (batch_size is not None): self.context = self.engine.create_execution_context() if input_shape is not None: self.context.set_binding_shape(0, input_shape) self.max_batch_size = input_shape[0] else: self.context.set_binding_shape(0, [batch_size] + list(self._input_shape)) self.max_batch_size = batch_size self.execute_v2 = True # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = allocate_buffers(self.engine, self.context) if self.context is None: self.context = self.engine.create_execution_context() input_volume = trt.volume(self._input_shape) self.numpy_array = np.zeros((self.max_batch_size, input_volume)) def infer(self, imgs): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.max_batch_size actual_batch_size = len(imgs) if actual_batch_size > max_batch_size: raise ValueError(f"image_paths list bigger ({actual_batch_size}) than \ engine max batch size ({max_batch_size})") self.numpy_array[:actual_batch_size] = imgs.reshape(actual_batch_size, -1) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, self.numpy_array.ravel()) # ...fetch model outputs... results = do_inference( self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size, execute_v2=self.execute_v2) # ...and return results up to the actual batch size. y_pred = [i.reshape(max_batch_size, -1)[:actual_batch_size] for i in results] # Process TRT outputs to proper format return trt_output_process_fn(y_pred, self.width, self.height) def __del__(self): """Clear things up on object deletion.""" # Clear session and buffer if self.trt_runtime: del self.trt_runtime if self.context: del self.context if self.engine: del self.engine if self.stream: del self.stream # Loop through inputs and free inputs. for inp in self.inputs: inp.device.free() # Loop through outputs and free them. for out in self.outputs: out.device.free()
tao_deploy-main
nvidia_tao_deploy/cv/segformer/inferencer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Segformer TensorRT engine builder.""" import logging import os import sys import onnx import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class SegformerEngineBuilder(EngineBuilder): """Parses an UFF/ONNX graph and builds a TensorRT engine from it.""" def __init__( self, input_dims, is_dynamic=False, data_format="channels_first", **kwargs ): """Init. Args: data_format (str): data_format. """ super().__init__(**kwargs) self._input_dims = input_dims self._data_format = data_format self.is_dynamic = is_dynamic def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) try: onnx.checker.check_model(onnx_model) except onnx.checker.ValidationError as e: logger.error('The ONNX model file is invalid: %s', e) onnx_inputs = onnx_model.graph.input logger.info('List inputs:') for i, inputs in enumerate(onnx_inputs): logger.info('Input %s -> %s.', i, inputs.name) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][1:]) logger.info('%s.', [i.dim_value for i in inputs.type.tensor_type.shape.dim][0]) return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="onnx"): """Parse the UFF/ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: onnx). """ if file_format == "onnx": logger.info("Parsing ONNX model") self.batch_size = self._input_dims[0] self._input_dims = self._input_dims[1:] network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) network_flags = network_flags | (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_PRECISION)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.is_dynamic: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_opt = (self.opt_batch_size, input_shape[1], input_shape[2], input_shape[3]) real_shape_max = (self.max_batch_size, input_shape[1], input_shape[2], input_shape[3]) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) else: logger.info("Parsing UFF model") raise NotImplementedError("UFF for Segformer is not supported") def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None): """Build the TensorRT engine and serialize it to disk. Args: engine_path: The path where to serialize the engine to. precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'. calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. """ engine_path = os.path.realpath(engine_path) engine_dir = os.path.dirname(engine_path) os.makedirs(engine_dir, exist_ok=True) logger.debug("Building %s Engine in %s", precision, engine_path) if self.batch_size is None: self.batch_size = calib_batch_size self.builder.max_batch_size = self.batch_size if precision == "fp16": if not self.builder.platform_has_fast_fp16: logger.warning("FP16 is not supported natively on this platform/device") else: self.config.set_flag(trt.BuilderFlag.FP16) elif precision == "fp32" and self.builder.platform_has_tf32: self.config.set_flag(trt.BuilderFlag.TF32) elif precision == "int8": raise NotImplementedError("INT8 is not supported for Segformer!") self._logger_info_IBuilderConfig() with self.builder.build_engine(self.network, self.config) as engine, \ open(engine_path, "wb") as f: logger.debug("Serializing engine to file: %s", engine_path) f.write(engine.serialize())
tao_deploy-main
nvidia_tao_deploy/cv/segformer/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Segformer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/segformer/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MMCV image preprocessing.""" import cv2 from PIL import Image import numpy as np pillow_interp_codes = { 'nearest': Image.NEAREST, 'bilinear': Image.BILINEAR, 'bicubic': Image.BICUBIC, 'box': Image.BOX, 'lanczos': Image.LANCZOS, 'hamming': Image.HAMMING } cv2_interp_codes = { 'nearest': cv2.INTER_NEAREST, 'bilinear': cv2.INTER_LINEAR, 'bicubic': cv2.INTER_CUBIC, 'area': cv2.INTER_AREA, 'lanczos': cv2.INTER_LANCZOS4 } def _scale_size(size, scale): """Rescale a size by a ratio. Args: size (tuple[int]): (w, h). scale (float | tuple(float)): Scaling factor. Returns: tuple[int]: scaled size. """ if isinstance(scale, (float, int)): scale = (scale, scale) w, h = size return int(w * float(scale[0]) + 0.5), int(h * float(scale[1]) + 0.5) def rescale_size(old_size, scale, return_scale=False): """Calculate the new size to be rescaled to. Args: old_size (tuple[int]): The old size (w, h) of image. scale (float | tuple[int]): The scaling factor or maximum size. If it is a float number, then the image will be rescaled by this factor, else if it is a tuple of 2 integers, then the image will be rescaled as large as possible within the scale. return_scale (bool): Whether to return the scaling factor besides the rescaled image size. Returns: tuple[int]: The new rescaled image size. """ w, h = old_size if isinstance(scale, (float, int)): if scale <= 0: raise ValueError(f'Invalid scale {scale}, must be positive.') scale_factor = scale elif isinstance(scale, tuple): max_long_edge = max(scale) max_short_edge = min(scale) scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w)) else: raise TypeError( f'Scale must be a number or tuple of int, but got {type(scale)}') new_size = _scale_size((w, h), scale_factor) if return_scale: return new_size, scale_factor return new_size def imresize(img, size, return_scale=False, interpolation='bilinear'): """Resize image to a given size. Args: img (ndarray): The input image. size (tuple[int]): Target size (w, h). return_scale (bool): Whether to return `w_scale` and `h_scale`. interpolation (str): Interpolation method, accepted values are "nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2' backend, "nearest", "bilinear" for 'pillow' backend. Returns: tuple | ndarray: (`resized_img`, `w_scale`, `h_scale`) or `resized_img`. """ h, w = img.shape[:2] assert img.dtype == np.uint8, 'Pillow backend only support uint8 type' pil_image = Image.fromarray(img) pil_image = pil_image.resize(size, pillow_interp_codes[interpolation]) resized_img = np.array(pil_image) if not return_scale: return resized_img w_scale = size[0] / w h_scale = size[1] / h return resized_img, w_scale, h_scale def imrescale(img, scale, return_scale=False, interpolation='bilinear'): """Resize image while keeping the aspect ratio. Args: img (ndarray): The input image. scale (float | tuple[int]): The scaling factor or maximum size. If it is a float number, then the image will be rescaled by this factor, else if it is a tuple of 2 integers, then the image will be rescaled as large as possible within the scale. return_scale (bool): Whether to return the scaling factor besides the rescaled image. interpolation (str): Same as :func:`resize`. Returns: ndarray: The rescaled image. """ h, w = img.shape[:2] new_size, scale_factor = rescale_size((w, h), scale, return_scale=True) rescaled_img = imresize( img, new_size, interpolation=interpolation) if return_scale: return rescaled_img, scale_factor return rescaled_img def impad(img, shape=None, padding=None, pad_val=None, padding_mode='constant'): """Pad the given image to a certain shape or pad on all sides with specified padding mode and padding value. Args: img (ndarray): Image to be padded. shape (tuple[int]): Expected padding shape (h, w). Default: None. padding (int or tuple[int]): Padding on each border. If a single int is provided this is used to pad all borders. If tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. If a tuple of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. Default: None. Note that `shape` and `padding` can not be both set. pad_val (Number | Sequence[Number]): Values to be filled in padding areas when padding_mode is 'constant'. Default: 0. padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default: constant. - constant: pads with a constant value, this value is specified with pad_val. - edge: pads with the last value at the edge of the image. - reflect: pads with reflection of image without repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2]. - symmetric: pads with reflection of image repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3] Returns: ndarray: The padded image. """ assert (shape is not None) ^ (padding is not None) if shape is not None: width = max(shape[1] - img.shape[1], 0) height = max(shape[0] - img.shape[0], 0) padding = (0, 0, width, height) # check padding if isinstance(padding, tuple) and len(padding) in [2, 4]: if len(padding) == 2: padding = (padding[0], padding[1], padding[0], padding[1]) # check padding mode assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'] border_type = { 'constant': cv2.BORDER_CONSTANT, 'edge': cv2.BORDER_REPLICATE, 'reflect': cv2.BORDER_REFLECT_101, 'symmetric': cv2.BORDER_REFLECT } img = cv2.copyMakeBorder( img, padding[1], padding[3], padding[0], padding[2], border_type[padding_mode], value=pad_val) return img, padding
tao_deploy-main
nvidia_tao_deploy/cv/segformer/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Segformer loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from PIL import Image import logging import numpy as np from nvidia_tao_deploy.cv.segformer.utils import imrescale, impad from nvidia_tao_deploy.cv.unet.dataloader import UNetLoader logging.basicConfig(format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', level="DEBUG") logger = logging.getLogger(__name__) class SegformerLoader(UNetLoader): """Segformer Dataloader.""" def __init__(self, keep_ratio=True, pad_val=0, image_mean=None, image_std=None, **kwargs): """Init. Args: keep_ratio (bool): To keep the aspect ratio of image (padding will be used). pad_val (int): Per-channel pixel value to pad for input image. image_mean (list): image mean. image_std (list): image standard deviation. """ super().__init__(**kwargs) self.pad_val = pad_val self.keep_ratio = keep_ratio self.image_mean = image_mean self.image_std = image_std def preprocessing(self, image, label): """The image preprocessor loads an image from disk and prepares it as needed for batching. This includes padding, resizing, normalization, data type casting, and transposing. Args: image (PIL.image): The Pillow image on disk to load. Returns: image (np.array): A numpy array holding the image sample, ready to be concatenated into the rest of the batch """ if self.keep_ratio: # mmcv style resize for image image = np.asarray(image) image = imrescale(image, (self.width, self.height)) image, _ = impad(image, shape=(self.height, self.width), pad_val=self.pad_val) image = image.astype(self.dtype) else: image = image.resize((self.width, self.height), Image.BILINEAR) image = np.asarray(image).astype(self.dtype) # Segformer does not follow regular PyT preprocessing. No divide by 255 for i in range(len(self.image_mean)): image[..., i] -= self.image_mean[i] image[..., i] /= self.image_std[i] image = np.transpose(image, (2, 0, 1)) if self.keep_ratio: label = np.asarray(label) label = imrescale(label, (self.width, self.height), interpolation='nearest') # We always pad with 0 for labels label, _ = impad(label, shape=(self.height, self.width), pad_val=0) else: label = label.resize((self.width, self.height), Image.BILINEAR) label = np.asarray(label) if self.input_image_type == "grayscale": label = label / 255 label = np.where(label > 0.5, 1, 0) label = label.astype(np.uint8) return image, label
tao_deploy-main
nvidia_tao_deploy/cv/segformer/dataloader.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Segformer Hydra."""
tao_deploy-main
nvidia_tao_deploy/cv/segformer/hydra_config/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Default config file""" from typing import Optional, List, Dict, Any from dataclasses import dataclass, field from omegaconf import MISSING @dataclass class NormConfig: """Configuration parameters for Normalization Preprocessing.""" type: str = "SyncBN" # Can be BN or SyncBN requires_grad: bool = True # Whether to train the gamma beta parameters of BN @dataclass class TestModelConfig: """Configuration parameters for Inference.""" mode: str = "whole" crop_size: Optional[List[int]] = None # Configurable stride: Optional[List[int]] = None # Configurable @dataclass class LossDecodeConfig: """Configuration parameters for Loss.""" type: str = "CrossEntropyLoss" use_sigmoid: bool = False loss_weight: float = 1.0 @dataclass class SegformerHeadConfig: """Configuration parameters for Segformer Head.""" # @subha TO DO: Look into align corners in_channels: List[int] = field(default_factory=lambda: [64, 128, 320, 512]) # [64, 128, 320, 512], [32, 64, 160, 256] in_index: List[int] = field(default_factory=lambda: [0, 1, 2, 3]) # No change feature_strides: List[int] = field(default_factory=lambda: [4, 8, 16, 32]) # No change channels: int = 128 # No change dropout_ratio: float = 0.1 norm_cfg: NormConfig = NormConfig() align_corners: bool = False decoder_params: Dict[str, int] = field(default_factory=lambda: {"embed_dim": 768}) # 256, 512, 768 -> Configurable loss_decode: LossDecodeConfig = LossDecodeConfig() # Non-configurable since there is only one loss @dataclass class MultiStepLRConfig: """Configuration parameters for Multi Step Optimizer.""" lr_steps: List[int] = field(default_factory=lambda: [15, 25]) lr_decay: float = 0.1 @dataclass class PolyConfig: """Configuration parameters for Polynomial LR decay.""" # Check what is _delete_ is policy: str = "poly" warmup: str = 'linear' warmup_iters: int = 1500 warmup_ratio: float = 1e-6 power: float = 1.0 min_lr: float = 0.0 by_epoch: bool = False @dataclass class LRConfig: """Configuration parameters for LR Scheduler.""" # Check what is _delete_ is policy: str = "poly" # Non-configurable warmup: str = 'linear' # Non-configurable warmup_iters: int = 1500 warmup_ratio: float = 1e-6 power: float = 1.0 min_lr: float = 0.0 by_epoch: bool = False @dataclass class ParamwiseConfig: """Configuration parameters for Parameters.""" pos_block: Dict[str, float] = field(default_factory=lambda: {"decay_mult": 0.0}) norm: Dict[str, float] = field(default_factory=lambda: {"decay_mult": 0.0}) head: Dict[str, float] = field(default_factory=lambda: {"lr_mult": 10.0}) @dataclass class SFOptimConfig: """Optimizer config.""" type: str = "AdamW" lr: float = 0.00006 betas: List[float] = field(default_factory=lambda: [0.9, 0.999]) weight_decay: float = 0.01 paramwise_cfg: ParamwiseConfig = ParamwiseConfig() weight_decay: float = 5e-4 @dataclass class BackboneConfig: """Configuration parameters for Backbone.""" type: str = "mit_b5" @dataclass class SFModelConfig: """SF model config.""" pretrained_model_path: Optional[str] = None backbone: BackboneConfig = BackboneConfig() decode_head: SegformerHeadConfig = SegformerHeadConfig() test_cfg: TestModelConfig = TestModelConfig() input_width: int = 512 input_height: int = 512 # Use the field parameter in order to define as dictionaries @dataclass class RandomCropCfg: """Configuration parameters for Random Crop Aug.""" crop_size: List[int] = field(default_factory=lambda: [512, 512]) # Non - configurable cat_max_ratio: float = 0.75 @dataclass class ResizeCfg: """Configuration parameters for Resize Preprocessing.""" img_scale: Optional[List[int]] = None # configurable ratio_range: List[float] = field(default_factory=lambda: [0.5, 2.0]) keep_ratio: bool = True @dataclass class SFAugmentationConfig: """Augmentation config.""" # @subha: TO Do: Add some more augmentation configurations which were not used in Segformer (later) random_crop: RandomCropCfg = RandomCropCfg() resize: ResizeCfg = ResizeCfg() random_flip: Dict[str, float] = field(default_factory=lambda: {'prob': 0.5}) color_aug: Dict[str, str] = field(default_factory=lambda: {'type': 'PhotoMetricDistortion'}) @dataclass class ImgNormConfig: """Configuration parameters for Img Normalization.""" mean: List[float] = field(default_factory=lambda: [123.675, 116.28, 103.53]) std: List[float] = field(default_factory=lambda: [58.395, 57.12, 57.375]) to_rgb: bool = True @dataclass class PipelineConfig: """Configuration parameters for Validation Pipe.""" img_norm_cfg: ImgNormConfig = ImgNormConfig() multi_scale: Optional[List[int]] = None augmentation_config: SFAugmentationConfig = SFAugmentationConfig() Pad: Dict[str, int] = field(default_factory=lambda: {'size_ht': 1024, 'size_wd': 1024, 'pad_val': 0, 'seg_pad_val': 255}) # Non-configurable. Set based on model_input CollectKeys: List[str] = field(default_factory=lambda: ['img', 'gt_semantic_seg']) @dataclass class seg_class: """Indiv color.""" seg_class: str = "background" mapping_class: str = "background" label_id: int = 0 rgb: List[int] = field(default_factory=lambda: [255, 255, 255]) @dataclass class SFDatasetConfig: """Dataset Config.""" img_dir: Any = MISSING ann_dir: Any = MISSING pipeline: PipelineConfig = PipelineConfig() @dataclass class SFDatasetExpConfig: """Dataset config.""" data_root: str = MISSING img_norm_cfg: ImgNormConfig = ImgNormConfig() train_dataset: SFDatasetConfig = SFDatasetConfig() val_dataset: SFDatasetConfig = SFDatasetConfig() test_dataset: SFDatasetConfig = SFDatasetConfig() palette: Optional[List[seg_class]] = None seg_class_default: seg_class = seg_class() dataloader: str = "Dataloader" img_suffix: Optional[str] = None seg_map_suffix: Optional[str] = None repeat_data_times: int = 2 batch_size: int = 2 workers_per_gpu: int = 2 shuffle: bool = True input_type: str = "rgb" @dataclass class SFExpConfig: """Overall Exp Config for Segformer.""" manual_seed: int = 47 distributed: bool = True # If needed, the next line can be commented gpu_ids: List[int] = field(default_factory=lambda: [0]) MASTER_ADDR: str = "127.0.0.1" MASTER_PORT: int = 631 @dataclass class TrainerConfig: """Train Config.""" sf_optim: SFOptimConfig = SFOptimConfig() lr_config: LRConfig = LRConfig() grad_clip: float = 0.0 find_unused_parameters: bool = True @dataclass class SFTrainExpConfig: """Train experiment config.""" results_dir: Optional[str] = None encryption_key: str = MISSING exp_config: SFExpConfig = SFExpConfig() trainer: TrainerConfig = TrainerConfig() num_gpus: int = 1 # non configurable here max_iters: int = 10 logging_interval: int = 1 checkpoint_interval: int = 1 resume_training_checkpoint_path: Optional[str] = None validation_interval: Optional[int] = 1 validate: bool = False @dataclass class SFInferenceExpConfig: """Inference experiment config.""" encryption_key: str = MISSING results_dir: Optional[str] = None gpu_id: int = 0 checkpoint: Optional[str] = None exp_config: SFExpConfig = SFExpConfig() num_gpus: int = 1 # non configurable here trt_engine: Optional[str] = None @dataclass class SFEvalExpConfig: """Inference experiment config.""" results_dir: Optional[str] = None encryption_key: str = MISSING gpu_id: int = 0 checkpoint: Optional[str] = None exp_config: SFExpConfig = SFExpConfig() num_gpus: int = 1 # non configurable here trt_engine: Optional[str] = None @dataclass class TrtConfig: """Trt config.""" data_type: str = "FP32" workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1 @dataclass class SFExportExpConfig: """Export experiment config.""" results_dir: Optional[str] = None encryption_key: str = MISSING verify: bool = True simplify: bool = False batch_size: int = 1 opset_version: int = 11 trt_engine: Optional[str] = None checkpoint: Optional[str] = None onnx_file: Optional[str] = None exp_config: SFExpConfig = SFExpConfig() trt_config: TrtConfig = TrtConfig() num_gpus: int = 1 # non configurable here input_channel: int = 3 input_width: int = 1024 input_height: int = 1024 @dataclass class GenTrtEngineExpConfig: """Gen TRT Engine experiment config.""" results_dir: Optional[str] = None gpu_id: int = 0 onnx_file: Optional[str] = None trt_engine: Optional[str] = None input_channel: int = 3 # Non-configurable input_width: int = 224 input_height: int = 224 opset_version: int = 12 batch_size: int = -1 verbose: bool = False tensorrt: TrtConfig = TrtConfig() @dataclass class ExperimentConfig: """Experiment config.""" model: SFModelConfig = SFModelConfig() dataset: SFDatasetExpConfig = SFDatasetExpConfig() train: SFTrainExpConfig = SFTrainExpConfig() evaluate: SFEvalExpConfig = SFEvalExpConfig() inference: SFInferenceExpConfig = SFInferenceExpConfig() gen_trt_engine: GenTrtEngineExpConfig = GenTrtEngineExpConfig() export: SFExportExpConfig = SFExportExpConfig() encryption_key: Optional[str] = None results_dir: str = MISSING
tao_deploy-main
nvidia_tao_deploy/cv/segformer/hydra_config/default_config.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Segformer convert etlt model to TRT engine.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import tempfile from nvidia_tao_deploy.cv.segformer.engine_builder import SegformerEngineBuilder from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.segformer.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.utils.decoding import decode_model logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="export", schema=ExperimentConfig ) @monitor_status(name='segformer', mode='gen_trt_engine') def main(cfg: ExperimentConfig) -> None: """Convert encrypted uff or onnx model to TRT engine.""" trt_cfg = cfg.gen_trt_engine # decrypt onnx or etlt tmp_onnx_file, file_format = decode_model(trt_cfg['onnx_file'], cfg['encryption_key']) engine_file = trt_cfg['trt_engine'] data_type = trt_cfg['tensorrt']['data_type'] workspace_size = trt_cfg['tensorrt']['workspace_size'] min_batch_size = trt_cfg['tensorrt']['min_batch_size'] opt_batch_size = trt_cfg['tensorrt']['opt_batch_size'] max_batch_size = trt_cfg['tensorrt']['max_batch_size'] batch_size = trt_cfg['batch_size'] num_channels = 3 # @scha: Segformer always has channel size 3 input_height, input_width = trt_cfg['input_height'], trt_cfg['input_width'] if batch_size is None or batch_size == -1: input_batch_size = 1 is_dynamic = True else: input_batch_size = batch_size is_dynamic = False if engine_file is not None or data_type == 'int8': if engine_file is None: engine_handle, temp_engine_path = tempfile.mkstemp() os.close(engine_handle) output_engine_path = temp_engine_path else: output_engine_path = engine_file builder = SegformerEngineBuilder(workspace=workspace_size, input_dims=(input_batch_size, num_channels, input_height, input_width), is_dynamic=is_dynamic, min_batch_size=min_batch_size, opt_batch_size=opt_batch_size, max_batch_size=max_batch_size) builder.create_network(tmp_onnx_file, file_format) builder.create_engine( output_engine_path, data_type) logging.info("Export finished successfully.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/segformer/scripts/gen_trt_engine.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy Segformer scripts module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/segformer/scripts/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT inference.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import numpy as np from PIL import Image from tqdm.auto import tqdm from nvidia_tao_deploy.cv.segformer.inferencer import SegformerInferencer from nvidia_tao_deploy.cv.segformer.dataloader import SegformerLoader from nvidia_tao_deploy.cv.segformer.utils import imrescale, impad from nvidia_tao_deploy.cv.segformer.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.cv.unet.proto.utils import TargetClass, get_num_unique_train_ids from nvidia_tao_deploy.cv.common.decorators import monitor_status from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def build_target_class_list(dataset): """Build a list of TargetClasses based on proto. Arguments: cost_function_config: CostFunctionConfig. Returns: A list of TargetClass instances. """ target_classes = [] orig_class_label_id_map = {} for target_class in dataset.palette: orig_class_label_id_map[target_class.seg_class] = target_class.label_id class_label_id_calibrated_map = orig_class_label_id_map.copy() for target_class in dataset.palette: label_name = target_class.seg_class train_name = target_class.mapping_class class_label_id_calibrated_map[label_name] = orig_class_label_id_map[train_name] train_ids = sorted(list(set(class_label_id_calibrated_map.values()))) train_id_calibrated_map = {} for idx, tr_id in enumerate(train_ids): train_id_calibrated_map[tr_id] = idx class_train_id_calibrated_map = {} for label_name, train_id in class_label_id_calibrated_map.items(): class_train_id_calibrated_map[label_name] = train_id_calibrated_map[train_id] for target_class in dataset.palette: target_classes.append( TargetClass(target_class.seg_class, label_id=target_class.label_id, train_id=class_train_id_calibrated_map[target_class.seg_class])) for target_class in target_classes: logging.debug("Label Id %d: Train Id %d", target_class.label_id, target_class.train_id) return target_classes @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="infer", schema=ExperimentConfig ) @monitor_status(name='segformer', mode='inference') def main(cfg: ExperimentConfig) -> None: """Segformer TRT Inference.""" trt_infer = SegformerInferencer(cfg.inference.trt_engine, batch_size=cfg.dataset.batch_size) c, h, w = trt_infer._input_shape # Calculate number of classes from the spec file target_classes = build_target_class_list(cfg.dataset) num_classes = get_num_unique_train_ids(target_classes) dl = SegformerLoader( shape=(c, h, w), image_data_source=[cfg.dataset.test_dataset.img_dir], label_data_source=[cfg.dataset.test_dataset.ann_dir], num_classes=num_classes, dtype=trt_infer.inputs[0].host.dtype, batch_size=cfg.dataset.batch_size, is_inference=True, input_image_type=cfg.dataset.input_type, keep_ratio=cfg.dataset.test_dataset.pipeline.augmentation_config.resize.keep_ratio, pad_val=cfg.dataset.test_dataset.pipeline.Pad['pad_val'], image_mean=cfg.dataset.img_norm_cfg.mean, image_std=cfg.dataset.img_norm_cfg.std) # Create results directories if cfg.inference.results_dir is not None: results_dir = cfg.inference.results_dir else: results_dir = os.path.join(cfg.results_dir, "trt_inference") os.makedirs(results_dir, exist_ok=True) vis_dir = os.path.join(results_dir, "vis_overlay") os.makedirs(vis_dir, exist_ok=True) mask_dir = os.path.join(results_dir, "mask_labels") os.makedirs(mask_dir, exist_ok=True) # Load classwise rgb value from palette id_color_map = {} for p in cfg.dataset.palette: id_color_map[p['label_id']] = p['rgb'] for i, (imgs, _) in tqdm(enumerate(dl), total=len(dl), desc="Producing predictions"): y_pred = trt_infer.infer(imgs) image_paths = dl.image_paths[np.arange(cfg.dataset.batch_size) + cfg.dataset.batch_size * i] for img_path, pred in zip(image_paths, y_pred): img_file_name = os.path.basename(img_path) # Store predictions as mask output = Image.fromarray(pred.astype(np.uint8)).convert('P') output.save(os.path.join(mask_dir, img_file_name)) output_palette = np.zeros((num_classes, 3), dtype=np.uint8) for c_id, color in id_color_map.items(): output_palette[c_id] = color output.putpalette(output_palette) output = output.convert("RGB") input_img = Image.open(img_path).convert('RGB') orig_width, orig_height = input_img.size input_img = np.asarray(input_img) input_img = imrescale(input_img, (w, h)) input_img, padding = impad(input_img, shape=(h, w), pad_val=cfg.dataset.test_dataset.pipeline.Pad['pad_val']) if cfg.dataset.input_type == "grayscale": output = Image.fromarray(np.asarray(output).astype('uint8')) else: overlay_img = (np.asarray(input_img) / 2 + np.asarray(output) / 2).astype('uint8') output = Image.fromarray(overlay_img) # Crop out padded region and resize to original image output = output.crop((0, 0, w - padding[2], h - padding[3])) output = output.resize((orig_width, orig_height)) output = Image.fromarray(np.asarray(output).astype('uint8')) output.save(os.path.join(vis_dir, img_file_name)) logging.info("Finished inference.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/segformer/scripts/inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Standalone TensorRT evaluation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import json from tqdm.auto import tqdm from collections import defaultdict from nvidia_tao_deploy.cv.segformer.inferencer import SegformerInferencer from nvidia_tao_deploy.cv.segformer.dataloader import SegformerLoader from nvidia_tao_deploy.cv.segformer.hydra_config.default_config import ExperimentConfig from nvidia_tao_deploy.cv.common.hydra.hydra_runner import hydra_runner from nvidia_tao_deploy.cv.unet.proto.utils import TargetClass, get_num_unique_train_ids from nvidia_tao_deploy.metrics.semantic_segmentation_metric import SemSegMetric from nvidia_tao_deploy.cv.common.decorators import monitor_status logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) spec_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def get_label_train_dic(target_classes): """Function to get mapping between class and train ids.""" label_train_dic = {} for target in target_classes: label_train_dic[target.label_id] = target.train_id return label_train_dic def build_target_class_list(dataset): """Build a list of TargetClasses based on proto. Arguments: cost_function_config: CostFunctionConfig. Returns: A list of TargetClass instances. """ target_classes = [] orig_class_label_id_map = {} for target_class in dataset.palette: orig_class_label_id_map[target_class.seg_class] = target_class.label_id class_label_id_calibrated_map = orig_class_label_id_map.copy() for target_class in dataset.palette: label_name = target_class.seg_class train_name = target_class.mapping_class class_label_id_calibrated_map[label_name] = orig_class_label_id_map[train_name] train_ids = sorted(list(set(class_label_id_calibrated_map.values()))) train_id_calibrated_map = {} for idx, tr_id in enumerate(train_ids): train_id_calibrated_map[tr_id] = idx class_train_id_calibrated_map = {} for label_name, train_id in class_label_id_calibrated_map.items(): class_train_id_calibrated_map[label_name] = train_id_calibrated_map[train_id] for target_class in dataset.palette: target_classes.append( TargetClass(target_class.seg_class, label_id=target_class.label_id, train_id=class_train_id_calibrated_map[target_class.seg_class])) for target_class in target_classes: logging.debug("Label Id %d: Train Id %d", target_class.label_id, target_class.train_id) return target_classes @hydra_runner( config_path=os.path.join(spec_root, "specs"), config_name="infer", schema=ExperimentConfig ) @monitor_status(name='segformer', mode='evaluation') def main(cfg: ExperimentConfig) -> None: """Segformer TRT Evaluation.""" trt_infer = SegformerInferencer(cfg.evaluate.trt_engine, batch_size=cfg.dataset.batch_size) c, h, w = trt_infer._input_shape # Calculate number of classes from the spec file target_classes = build_target_class_list(cfg.dataset) label_id_train_id_mapping = get_label_train_dic(target_classes) num_classes = get_num_unique_train_ids(target_classes) dl = SegformerLoader( shape=(c, h, w), image_data_source=[cfg.dataset.test_dataset.img_dir], label_data_source=[cfg.dataset.test_dataset.ann_dir], num_classes=num_classes, dtype=trt_infer.inputs[0].host.dtype, batch_size=cfg.dataset.batch_size, is_inference=False, input_image_type=cfg.dataset.input_type, keep_ratio=cfg.dataset.test_dataset.pipeline.augmentation_config.resize.keep_ratio, pad_val=cfg.dataset.test_dataset.pipeline.Pad['pad_val'], image_mean=cfg.dataset.img_norm_cfg.mean, image_std=cfg.dataset.img_norm_cfg.std) # Create results directories if cfg.evaluate.results_dir is not None: results_dir = cfg.evaluate.results_dir else: results_dir = os.path.join(cfg.results_dir, "trt_evaluate") os.makedirs(results_dir, exist_ok=True) # Load label mapping label_mapping = defaultdict(list) for p in cfg.dataset.palette: label_mapping[p['label_id']].append(p['seg_class']) eval_metric = SemSegMetric(num_classes=num_classes, train_id_name_mapping=label_mapping, label_id_train_id_mapping=label_id_train_id_mapping) gt_labels = [] pred_labels = [] for imgs, labels in tqdm(dl, total=len(dl), desc="Producing predictions"): gt_labels.extend(labels) y_pred = trt_infer.infer(imgs) pred_labels.extend(y_pred) metrices = eval_metric.get_evaluation_metrics(gt_labels, pred_labels) with open(os.path.join(results_dir, "results.json"), "w", encoding="utf-8") as f: json.dump(str(metrices["results_dic"]), f) logging.info("Finished evaluation.") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/segformer/scripts/evaluate.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Entrypoint module for segformer."""
tao_deploy-main
nvidia_tao_deploy/cv/segformer/entrypoint/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy command line wrapper to invoke CLI scripts.""" import argparse from nvidia_tao_deploy.cv.segformer import scripts from nvidia_tao_deploy.cv.common.entrypoint.entrypoint_hydra import get_subtasks, launch def main(): """Main entrypoint wrapper.""" # Create parser for a given task. parser = argparse.ArgumentParser( "segformer", add_help=True, description="Train Adapt Optimize Deploy entrypoint for Segformer" ) # Build list of subtasks by inspecting the scripts package. subtasks = get_subtasks(scripts) # Parse the arguments and launch the subtask. launch(parser, subtasks, network="segformer") if __name__ == '__main__': main()
tao_deploy-main
nvidia_tao_deploy/cv/segformer/entrypoint/segformer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OCDNet TensorRT engine builder.""" import logging import os import sys import onnx import tensorrt as trt from nvidia_tao_deploy.engine.builder import EngineBuilder from nvidia_tao_deploy.engine.calibrator import EngineCalibrator from nvidia_tao_deploy.utils.image_batcher import ImageBatcher logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class OCDNetEngineBuilder(EngineBuilder): """Parses an UFF/ONNX graph and builds a TensorRT engine from it.""" def __init__( self, width, height, img_mode, batch_size=None, data_format="channels_first", **kwargs ): """Init. Args: data_format (str): data_format. """ super().__init__(batch_size=batch_size, **kwargs) self._data_format = data_format self.width = width self.height = height self.img_mode = img_mode def get_onnx_input_dims(self, model_path): """Get input dimension of ONNX model.""" onnx_model = onnx.load(model_path) onnx_inputs = onnx_model.graph.input for i, inputs in enumerate(onnx_inputs): return [i.dim_value for i in inputs.type.tensor_type.shape.dim][:] def create_network(self, model_path, file_format="onnx"): """Parse the UFF/ONNX graph and create the corresponding TensorRT network definition. Args: model_path: The path to the UFF/ONNX graph to load. file_format: The file format of the decrypted etlt file (default: onnx). """ if file_format == "onnx": logger.info("Parsing ONNX model") self._input_dims = self.get_onnx_input_dims(model_path) self.batch_size = self._input_dims[0] network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) model_path = os.path.realpath(model_path) with open(model_path, "rb") as f: if not self.parser.parse(f.read()): logger.error("Failed to load ONNX file: %s", model_path) for error in range(self.parser.num_errors): logger.error(self.parser.get_error(error)) sys.exit(1) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] logger.info("Network Description") for input in inputs: # noqa pylint: disable=W0622 logger.info("Input '%s' with shape %s and dtype %s", input.name, input.shape, input.dtype) for output in outputs: logger.info("Output '%s' with shape %s and dtype %s", output.name, output.shape, output.dtype) if self.batch_size <= 0: # dynamic batch size logger.info("dynamic batch size handling") opt_profile = self.builder.create_optimization_profile() model_input = self.network.get_input(0) input_shape = model_input.shape input_name = model_input.name real_shape_min = (self.min_batch_size, input_shape[1], self.height, self.width) real_shape_opt = (self.opt_batch_size, input_shape[1], self.height, self.width) real_shape_max = (self.max_batch_size, input_shape[1], self.height, self.width) opt_profile.set_shape(input=input_name, min=real_shape_min, opt=real_shape_opt, max=real_shape_max) self.config.add_optimization_profile(opt_profile) else: logger.info("Parsing UFF model") raise NotImplementedError("UFF for OCDNet is not supported") def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=1, calib_batch_size=8, calib_data_file=None, image_mean=None): """Simple function to set an Tensorfile based int8 calibrator. Args: calib_input: The path to a directory holding the calibration images. calib_cache: The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images: The maximum number of images to use for calibration. calib_batch_size: The batch size to use for the calibration process. image_mean: Image mean per channel. Returns: No explicit returns. """ if not calib_data_file: logger.info("Calibrating using ImageBatcher") self.config.int8_calibrator = EngineCalibrator(calib_cache) if not os.path.exists(calib_cache): calib_shape = [calib_batch_size] + [self.network.get_input(0).shape[1]] + [self.height] + [self.width] calib_dtype = trt.nptype(inputs[0].dtype) logger.info(calib_shape) logger.info(calib_dtype) self.config.int8_calibrator.set_image_batcher( ImageBatcher(calib_input, calib_shape, calib_dtype, max_num_images=calib_num_images, exact_batches=True, preprocessor="OCDNet"))
tao_deploy-main
nvidia_tao_deploy/cv/ocdnet/engine_builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy OCDNet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
tao_deploy-main
nvidia_tao_deploy/cv/ocdnet/__init__.py