python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base TensorRT engine calibrator.""" import logging import os import numpy as np import pycuda.autoinit # noqa pylint: disable=unused-import import pycuda.driver as cuda import tensorrt as trt logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) class EngineCalibrator(trt.IInt8EntropyCalibrator2): """Implements the INT8 Entropy Calibrator2.""" def __init__(self, cache_file): """Init. Args: cache_file (str): The location of the cache file. """ super().__init__() self.cache_file = cache_file self.image_batcher = None self.batch_allocation = None self.batch_generator = None def set_image_batcher(self, image_batcher): """Define the image batcher to use, if any. If using only the cache file, an image batcher doesn't need to be defined. Args: image_batcher (obj): The ImageBatcher object """ self.image_batcher = image_batcher size = int(np.dtype(self.image_batcher.dtype).itemsize * np.prod(self.image_batcher.shape)) self.batch_allocation = cuda.mem_alloc(size) self.batch_generator = self.image_batcher.get_batch() def get_batch_size(self): """Overrides from trt.IInt8EntropyCalibrator2. Get the batch size to use for calibration. Returns: Batch size. """ if self.image_batcher: return self.image_batcher.batch_size return 1 def get_batch(self, names): """Overrides from trt.IInt8EntropyCalibrator2. Get the next batch to use for calibration, as a list of device memory pointers. Args: names (list): The names of the inputs, if useful to define the order of inputs. Returns: A list of int-casted memory pointers. """ if not self.image_batcher: return None try: batch, _, _ = next(self.batch_generator) logger.info("Calibrating image %d / %d", self.image_batcher.image_index, self.image_batcher.num_images) cuda.memcpy_htod(self.batch_allocation, np.ascontiguousarray(batch)) return [int(self.batch_allocation)] except StopIteration: logger.info("Finished calibration batches") return None def read_calibration_cache(self): """Overrides from trt.IInt8EntropyCalibrator2. Read the calibration cache file stored on disk, if it exists. Returns: The contents of the cache file, if any. """ if os.path.exists(self.cache_file): with open(self.cache_file, "rb") as f: logger.info("Using calibration cache file: %s", self.cache_file) return f.read() return None def write_calibration_cache(self, cache): """Overrides from trt.IInt8EntropyCalibrator2. Store the calibration cache to a file on disk. Args cache: The contents of the calibration cache to store. """ with open(self.cache_file, "wb") as f: logger.info("Writing calibration cache data to: %s", self.cache_file) f.write(cache)
tao_deploy-main
nvidia_tao_deploy/engine/calibrator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base TensorRT engine builder.""" from abc import ABC, abstractmethod import json import logging import os import struct import tensorrt as trt from nvidia_tao_deploy.engine.calibrator import EngineCalibrator from nvidia_tao_deploy.utils.image_batcher import ImageBatcher logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) DEFAULT_MAX_WORKSPACE_SIZE = 8 DEFAULT_MAX_BATCH_SIZE = 1 DEFAULT_MIN_BATCH_SIZE = 1 DEFAULT_OPT_BATCH_SIZE = 1 NV_TENSORRT_MAJOR, NV_TENSORRT_MINOR, NV_TENSORRT_PATCH = [ int(item) for item in trt.__version__.split(".") ][:3] class EngineBuilder(ABC): """Parses an ONNX graph and builds a TensorRT engine from it.""" def __init__(self, batch_size=None, verbose=False, max_batch_size=DEFAULT_MAX_BATCH_SIZE, opt_batch_size=DEFAULT_OPT_BATCH_SIZE, min_batch_size=DEFAULT_MIN_BATCH_SIZE, workspace=DEFAULT_MAX_WORKSPACE_SIZE, strict_type_constraints=False, force_ptq=False, is_qat=False): """Create a TensorRT engine. Args: batch_size (int): batch_size used for calibration verbose (bool): If enabled, a higher verbosity level will be set on the TensorRT logger. max_batch_size (int): Maximum batch size. opt_batch_size (int): Optimal batch size. min_batch_size (int): Minimum batch size. workspace (int): Max memory workspace to allow, in Gb. strict_type (bool): Whether or not to apply strict_type_constraints for INT8 mode. force_ptq (bool): Flag to force post training quantization using TensorRT for a QAT trained model. This is required if the inference platform is a Jetson with a DLA. is_qat (bool): Wheter or not the model is a QAT. """ self.trt_logger = trt.Logger(trt.Logger.INFO) if verbose: self.trt_logger.min_severity = trt.Logger.Severity.VERBOSE trt.init_libnvinfer_plugins(self.trt_logger, namespace="") self.builder = trt.Builder(self.trt_logger) self.config = self.builder.create_builder_config() self.config.max_workspace_size = workspace * (2 ** 30) self.batch_size = batch_size self.max_batch_size, self.opt_batch_size, self.min_batch_size = max_batch_size, opt_batch_size, min_batch_size self.network = None self.parser = None # Disable QAT regardless of is_qat flag if force_ptq is True self._is_qat = is_qat if not force_ptq else False self._strict_type = strict_type_constraints self._trt_version_number = NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \ NV_TENSORRT_PATCH # if self._trt_version_number < 8600: # if self._trt_version_number >= 8500: # logger.info("TRT version is lower than 8.6. Setting PreviewFeature.FASTER_DYNAMIC_SHAPES_0805 for better performance") # faster_dynamic_shapes = True # Only supported from TRT 8.5+ # else: # faster_dynamic_shapes = False # self.config.set_preview_feature(trt.PreviewFeature.FASTER_DYNAMIC_SHAPES_0805, faster_dynamic_shapes) @abstractmethod def create_network(self, model_path): """Parse the ONNX or UFF graph and create the corresponding TensorRT network definition. Args: model_path (str): The path to the ONNX or UFF graph to load. """ pass def set_calibrator(self, inputs=None, calib_cache=None, calib_input=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None, image_mean=None): """Simple function to set an int8 calibrator. (Default is ImageBatcher based) Args: inputs (list): Inputs to the network calib_input (str): The path to a directory holding the calibration images. calib_cache (str): The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images (int): The maximum number of images to use for calibration. calib_batch_size (int): The batch size to use for the calibration process. Returns: No explicit returns. """ logger.info("Calibrating using ImageBatcher") self.config.int8_calibrator = EngineCalibrator(calib_cache) if not os.path.exists(calib_cache): calib_shape = [calib_batch_size] + list(inputs[0].shape[1:]) calib_dtype = trt.nptype(inputs[0].dtype) self.config.int8_calibrator.set_image_batcher( ImageBatcher(calib_input, calib_shape, calib_dtype, max_num_images=calib_num_images, exact_batches=True)) def _logger_info_IBuilderConfig(self): """Print tensorrt.tensorrt.IBuilderConfig""" if self.config: logger.info("TensorRT engine build configurations:") opt_prof = self.config.get_calibration_profile() if opt_prof: logger.info(' OptimizationProfile: ') for index in range(self.network.num_inputs): tensor = self.network.get_input(index) if tensor.is_shape_tensor: min_shape, opt_shape, max_shape = opt_prof.get_shape_input(tensor.name) else: min_shape, opt_shape, max_shape = opt_prof.get_shape(tensor.name) logger.info(' \"%s\": %s, %s, %s', tensor.name, min_shape, opt_shape, max_shape) logger.info(' ') if self.config.get_flag(trt.BuilderFlag.FP16): logger.info(' BuilderFlag.FP16') if self.config.get_flag(trt.BuilderFlag.INT8): logger.info(' BuilderFlag.INT8') if self.config.get_flag(trt.BuilderFlag.DEBUG): logger.info(' BuilderFlag.DEBUG') if self.config.get_flag(trt.BuilderFlag.GPU_FALLBACK): logger.info(' BuilderFlag.GPU_FALLBACK') if self.config.get_flag(trt.BuilderFlag.STRICT_TYPES): logger.info(' BuilderFlag.STRICT_TYPES') if self.config.get_flag(trt.BuilderFlag.REFIT): logger.info(' BuilderFlag.REFIT') if self.config.get_flag(trt.BuilderFlag.DISABLE_TIMING_CACHE): logger.info(' BuilderFlag.DISABLE_TIMING_CACHE') if self.config.get_flag(trt.BuilderFlag.TF32): logger.info(' BuilderFlag.TF32') if self.config.get_flag(trt.BuilderFlag.SPARSE_WEIGHTS): logger.info(' BuilderFlag.SPARSE_WEIGHTS') if self.config.get_flag(trt.BuilderFlag.SAFETY_SCOPE): logger.info(' BuilderFlag.SAFETY_SCOPE') if self.config.get_flag(trt.BuilderFlag.OBEY_PRECISION_CONSTRAINTS): logger.info(' BuilderFlag.OBEY_PRECISION_CONSTRAINTS') if self.config.get_flag(trt.BuilderFlag.PREFER_PRECISION_CONSTRAINTS): logger.info(' BuilderFlag.PREFER_PRECISION_CONSTRAINTS') if self.config.get_flag(trt.BuilderFlag.DIRECT_IO): logger.info(' BuilderFlag.DIRECT_IO') if self.config.get_flag(trt.BuilderFlag.REJECT_EMPTY_ALGORITHMS): logger.info(' BuilderFlag.REJECT_EMPTY_ALGORITHMS') if self.config.get_flag(trt.BuilderFlag.ENABLE_TACTIC_HEURISTIC): logger.info(' BuilderFlag.ENABLE_TACTIC_HEURISTIC') logger.info(' ') # Return int32 and thus cannot represent >2GB logger.info(' Note: max representabile value is 2,147,483,648 bytes or 2GB.') pool_limit = self.config.get_memory_pool_limit(trt.MemoryPoolType.WORKSPACE) logger.info(' MemoryPoolType.WORKSPACE = %d bytes', pool_limit) pool_limit = self.config.get_memory_pool_limit(trt.MemoryPoolType.DLA_MANAGED_SRAM) logger.info(' MemoryPoolType.DLA_MANAGED_SRAM = %d bytes', pool_limit) pool_limit = self.config.get_memory_pool_limit(trt.MemoryPoolType.DLA_LOCAL_DRAM) logger.info(' MemoryPoolType.DLA_LOCAL_DRAM = %d bytes', pool_limit) pool_limit = self.config.get_memory_pool_limit(trt.MemoryPoolType.DLA_GLOBAL_DRAM) logger.info(' MemoryPoolType.DLA_GLOBAL_DRAM = %d bytes', pool_limit) logger.info(' ') if self.config.get_preview_feature(trt.PreviewFeature.FASTER_DYNAMIC_SHAPES_0805): logger.info(' PreviewFeature.FASTER_DYNAMIC_SHAPES_0805') if self.config.get_preview_feature(trt.PreviewFeature.DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805): logger.info(' PreviewFeature.DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805') if self.config.get_quantization_flag(trt.QuantizationFlag.CALIBRATE_BEFORE_FUSION): logger.info(' QuantizationFlag.CALIBRATE_BEFORE_FUSION') tactic_sources = self.config.get_tactic_sources() logger.info(' Tactic Sources = %d', tactic_sources) def create_engine(self, engine_path, precision, calib_input=None, calib_cache=None, calib_num_images=5000, calib_batch_size=8, calib_data_file=None, calib_json_file=None): """Build the TensorRT engine and serialize it to disk. Args: engine_path (str): The path where to serialize the engine to. precision (str): The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'. calib_input (str): The path to a directory holding the calibration images. calib_cache (str): The path where to write the calibration cache to, or if it already exists, load it from. calib_num_images (int): The maximum number of images to use for calibration. calib_batch_size (int): The batch size to use for the calibration process. calib_json_file (str): The path to JSON file containing tensor scale dictionary for QAT """ engine_path = os.path.realpath(engine_path) engine_dir = os.path.dirname(engine_path) os.makedirs(engine_dir, exist_ok=True) logger.debug("Building %s Engine in %s", precision, engine_path) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] if self.batch_size is None: self.batch_size = calib_batch_size self.builder.max_batch_size = self.batch_size # This should be only applied for ONNX if self.batch_size != calib_batch_size and self.batch_size > 0: warning_msg = "For ONNX models with static batch size, " \ "calibration is done using the original batch size " \ f"of the ONNX model which is {self.batch_size}. " \ f"Overriding the provided calibration batch size {calib_batch_size}" \ f" to {self.batch_size}" logger.warning(warning_msg) calib_batch_size = self.batch_size if self._is_qat and precision != "int8": raise ValueError(f"QAT model only supports data_type int8 but {precision} was provided.") if precision == "fp16": if not self.builder.platform_has_fast_fp16: logger.warning("FP16 is not supported natively on this platform/device") else: self.config.set_flag(trt.BuilderFlag.FP16) elif precision == "int8": if not self.builder.platform_has_fast_int8: logger.warning("INT8 is not supported natively on this platform/device") elif self._is_qat: self.config.set_flag(trt.BuilderFlag.INT8) if self.builder.platform_has_fast_fp16 and not self._strict_type: # Also enable fp16, as some layers may be even more efficient in fp16 than int8 self.config.set_flag(trt.BuilderFlag.FP16) else: self.config.set_flag(trt.BuilderFlag.STRICT_TYPES) logger.info("Calibrating using tensor scales for QAT model") # Load from calib_json_file self.calibration_cache_from_dict(calib_cache, calib_json_file) # Set dynamic ranges of tensors using scales from QAT self._set_tensor_dynamic_ranges( network=self.network, tensor_scale_dict=self.tensor_scale_dict ) else: if self.builder.platform_has_fast_fp16 and not self._strict_type: # Also enable fp16, as some layers may be even more efficient in fp16 than int8 self.config.set_flag(trt.BuilderFlag.FP16) else: self.config.set_flag(trt.BuilderFlag.STRICT_TYPES) self.config.set_flag(trt.BuilderFlag.INT8) # Set ImageBatcher based calibrator self.set_calibrator(inputs=inputs, calib_cache=calib_cache, calib_input=calib_input, calib_num_images=calib_num_images, calib_batch_size=calib_batch_size, calib_data_file=calib_data_file) self._logger_info_IBuilderConfig() with self.builder.build_engine(self.network, self.config) as engine, \ open(engine_path, "wb") as f: logger.debug("Serializing engine to file: %s", engine_path) f.write(engine.serialize()) def calibration_cache_from_dict(self, calibration_cache=None, calib_json=None): """Write calibration cache file for QAT model. This function converts a tensor scale dictionary generated by processing QAT models to TRT readable format. By default we set it as a trt.IInt8.EntropyCalibrator2 cache file. Args: calibration_cache (str): Path to output calibration cache file. calib_json (str): Path to calibration json file containing scale value Returns: No explicit returns. """ if not os.path.exists(calib_json): raise FileNotFoundError(f"Calibration JSON file is required for QAT \ but {calib_json} does not exist.") with open(calib_json, "r", encoding="utf-8") as f: self.tensor_scale_dict = json.load(f)["tensor_scales"] if calibration_cache is not None: cal_cache_str = f"TRT-{self._trt_version_number}-EntropyCalibration2\n" assert not os.path.exists(calibration_cache), ( "A pre-existing cache file exists. Please delete this " "file and re-run export." ) # Converting float numbers to hex representation. for tensor in self.tensor_scale_dict: scaling_factor = self.tensor_scale_dict[tensor] / 127.0 cal_scale = hex(struct.unpack( "i", struct.pack("f", scaling_factor))[0]) assert cal_scale.startswith( "0x"), "Hex number expected to start with 0x." cal_scale = cal_scale[2:] cal_cache_str += tensor + ": " + cal_scale + "\n" with open(calibration_cache, "w", encoding="utf-8") as f: f.write(cal_cache_str) def _set_tensor_dynamic_ranges(self, network, tensor_scale_dict): """Set the scaling factors obtained from quantization-aware training. Args: network: TensorRT network object. tensor_scale_dict (dict): Dictionary mapping names to tensor scaling factors. """ tensors_found = [] for idx in range(network.num_inputs): input_tensor = network.get_input(idx) if input_tensor.name in tensor_scale_dict: tensors_found.append(input_tensor.name) cal_scale = tensor_scale_dict[input_tensor.name] input_tensor.dynamic_range = (-cal_scale, cal_scale) for layer in network: found_all_outputs = True for idx in range(layer.num_outputs): output_tensor = layer.get_output(idx) if output_tensor.name in tensor_scale_dict: tensors_found.append(output_tensor.name) cal_scale = tensor_scale_dict[output_tensor.name] output_tensor.dynamic_range = (-cal_scale, cal_scale) else: found_all_outputs = False if found_all_outputs: layer.precision = trt.int8 tensors_in_dict = tensor_scale_dict.keys() if set(tensors_in_dict) != set(tensors_found): logger.info("Tensors in scale dictionary but not in network: %s", set(tensors_in_dict) - set(tensors_found))
tao_deploy-main
nvidia_tao_deploy/engine/builder.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Modulus export APIs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import h5py import io import logging import numpy as np """Logger for data export APIs.""" logger = logging.getLogger(__name__) class TensorFile(io.RawIOBase): """Class to read/write multiple tensors to a file. The underlying implementation using an HDF5 database to store data. Note: this class does not support multiple writers to the same file. Args: filename (str): path to file. mode (str): mode to open file in. r Readonly, file must exist r+ Read/write, file must exist w Create file, truncate if exists w- Create file, fail if exists a Read/write if exists, create otherwise (default) enforce_same_shape (bool): whether to enforce that all tensors be the same shape. """ DEFAULT_ARRAY_KEY = "_tensorfile_array_key_" GROUP_NAME_PREFIX = "_tensorfile_array_key_" def __init__( self, filename, mode="a", enforce_same_shape=True, *args, **kwargs ): # pylint: disable=W1113 """Init routine.""" super().__init__(*args, **kwargs) logger.debug("Opening %s with mode=%s", filename, mode) self._enforce_same_shape = enforce_same_shape self._mode = mode # Open or create the HDF5 file. self._db = h5py.File(filename, mode) if "count" not in self._db.attrs: self._db.attrs["count"] = 0 if "r" in mode: self._cursor = 0 else: self._cursor = self._db.attrs["count"] def _get_group_name(cls, cursor): """Return the name of the H5 dataset to create, given a cursor index.""" return f"{cls.GROUP_NAME_PREFIX}_{cursor}" def _write_data(self, group, data): for key, value in data.items(): if isinstance(value, dict): self._write_data(group.create_group(key), value) elif isinstance(value, np.ndarray): if self._enforce_same_shape: if "shape" not in self._db.attrs: self._db.attrs["shape"] = value.shape else: expected_shape = tuple( self._db.attrs["shape"].tolist()) if expected_shape != value.shape: raise ValueError( f"Shape mismatch: {str(expected_shape)} v.s. {str(value.shape)}" ) group.create_dataset(key, data=value, compression="gzip") else: raise ValueError( "Only np.ndarray or dicts can be written into a TensorFile." ) def close(self): """Close this file.""" self._db.close() # For python3. def __next__(self): """Return next element.""" if self._cursor < self._db.attrs["count"]: return self.read() raise StopIteration() def _read_data(self, group): if isinstance(group, h5py.Group): data = {key: self._read_data(value) for key, value in group.items()} else: data = group[()] return data def read(self): """Read from current cursor. Return array assigned to current cursor, or ``None`` to indicate the end of the file. """ if not self.readable(): raise IOError("Instance is not readable.") group_name = self._get_group_name(self._cursor) if group_name in self._db: self._cursor += 1 group = self._db[group_name] data = self._read_data(group) if list(data.keys()) == [self.DEFAULT_ARRAY_KEY]: # The only key in this group is the default key. # Return the numpy array directly. return data[self.DEFAULT_ARRAY_KEY] return data return None def readable(self): """Return whether this instance is readable.""" return self._mode in ["r", "r+", "a"] def seekable(self): """Return whether this instance is seekable.""" return True def seek(self, n): """Move cursor.""" self._cursor = min(n, self._db.attrs["count"]) return self._cursor def tell(self): """Return current cursor index.""" return self._cursor def truncate(self, n): """Truncation is not supported.""" raise IOError("Truncate operation is not supported.") def writable(self): """Return whether this instance is writable.""" return self._mode in ["r+", "w", "w-", "a"] def write(self, data): """Write a Numpy array or a dictionary of numpy arrays into file.""" if not self.writable(): raise IOError("Instance is not writable.") if isinstance(data, np.ndarray): data = {self.DEFAULT_ARRAY_KEY: data} group_name = self._get_group_name(self._cursor) # Delete existing instance of datasets at this cursor position. if group_name in self._db: del self._db[group_name] group = self._db.create_group(group_name) self._write_data(group, data) self._cursor += 1 if self._cursor > self._db.attrs["count"]: self._db.attrs["count"] = self._cursor
tao_deploy-main
nvidia_tao_deploy/engine/tensorfile.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TRT engine building base utilities.""" import logging import numpy as np from PIL import Image from six.moves import xrange from tqdm import tqdm from nvidia_tao_deploy.engine.tensorfile import TensorFile logging.basicConfig(format='%(asctime)s [TAO Toolkit] [%(levelname)s] %(name)s %(lineno)d: %(message)s', level="INFO") logger = logging.getLogger(__name__) def generate_random_tensorfile(data_file_name, input_dims, n_batches=1, batch_size=1): """Generate a random tensorfile. This function generates a random tensorfile containing n_batches of random np.arrays of dimensions (batch_size,) + (input_dims). Args: data_file_name (str): Path to where the data tensorfile will be stored. input_dims (tuple): Input blob dimensions in CHW order. n_batches (int): Number of batches to save. batch_size (int): Number of images per batch. Return: No explicit returns. """ sample_shape = (batch_size, ) + tuple(input_dims) with TensorFile(data_file_name, 'w') as f: for i in tqdm(xrange(n_batches)): logger.debug("Writing batch: %d", i) dump_sample = np.random.sample(sample_shape) f.write(dump_sample) def prepare_chunk(image_ids, image_list, image_width=480, image_height=272, channels=3, scale=1.0, means=None, flip_channel=False, batch_size=1): """Prepare a single batch of data to dump into a Tensorfile.""" dump_placeholder = np.zeros( (batch_size, channels, image_height, image_width)) for i in xrange(len(image_ids)): idx = image_ids[i] im = Image.open(image_list[idx]).resize((image_width, image_height), Image.LANCZOS) if channels == 1: logger.debug("Converting image from RGB to Grayscale") if im.mode in ('RGBA', 'LA') or (im.mode == 'P' and 'transparency' in im.info): bg_colour = (255, 255, 255) # Need to convert to RGBA if LA format due to a bug in PIL alpha = im.convert('RGBA').split()[-1] # Create a new background image of our matt color. # Must be RGBA because paste requires both images have the same format bg = Image.new("RGBA", im.size, bg_colour + (255,)) bg.paste(im, mask=alpha) im = im.convert('L') dump_input = np.asarray(im).astype(np.float32) dump_input = dump_input[:, :, np.newaxis] elif channels == 3: dump_input = np.asarray(im.convert('RGB')).astype(np.float32) else: raise NotImplementedError("Unsupported channel dimensions.") # flip channel: RGB --> BGR if flip_channel: dump_input = dump_input[:, :, ::-1] # means is a list of per-channel means, (H, W, C) - (C) if means is not None: dump_input -= np.array(means) # (H, W, C) --> (C, H, W) dump_input = dump_input.transpose(2, 0, 1) * scale dump_placeholder[i, :, :, :] = dump_input return dump_placeholder
tao_deploy-main
nvidia_tao_deploy/engine/utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base calibrator class for TensorRT INT8 Calibration.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import os import numpy as np import pycuda.autoinit # noqa pylint: disable=unused-import import pycuda.driver as cuda import tensorrt as trt # Simple helper class for calibration. from nvidia_tao_deploy.engine.tensorfile import TensorFile logger = logging.getLogger(__name__) class TensorfileCalibrator(trt.IInt8EntropyCalibrator2): """Calibrator class.""" def __init__(self, data_filename, cache_filename, n_batches, batch_size, *args, **kwargs): """Init routine. This inherits from ``trt.IInt8EntropyCalibrator2`` to implement the calibration interface that TensorRT needs to calibrate the INT8 quantization factors. The data source here is assumed to be a Tensorfile as defined in engine.tensorfile.Tensorfile(), which was pre-generated using the dataloader Args: data_filename (str): ``TensorFile`` data file to use. cache_filename (str): name of calibration file to read/write to. n_batches (int): number of batches for calibrate for. batch_size (int): batch size to use for calibration data. """ super().__init__(*args, **kwargs) self._data_source = None self._cache_filename = cache_filename self._batch_size = batch_size self._n_batches = n_batches self._batch_count = 0 self._data_mem = None self.instantiate_data_source(data_filename) def instantiate_data_source(self, data_filename): """Simple function to instantiate the data_source of the dataloader. Args: data_filename (str): The path to the data file. Returns: No explicit returns. """ if os.path.exists(data_filename): self._data_source = TensorFile(data_filename, "r") else: logger.info( "A valid data source wasn't provided to the calibrator. " "The calibrator will attempt to read from a cache file if provided." ) def get_data_from_source(self): """Simple function to get data from the defined data_source.""" batch = np.array(self._data_source.read()) if batch is not None: # <@vpraveen>: Disabling pylint error check on line below # because of a python3 linting error. To be reverted when # pylint/issues/3139 gets fixed. batch_size = batch.shape[0] # pylint: disable=E1136 if batch_size < self._batch_size: raise ValueError( f"Batch size yielded from data source {batch_size} < requested batch size " "from calibrator {self._batch_size}" ) batch = batch[:self._batch_size] else: raise ValueError( "Batch wasn't yielded from the data source. You may have run " "out of batches. Please set the num batches accordingly") return batch def get_batch_size(self): """Return batch size.""" return self._batch_size def get_batch(self, names): """Return one batch. Args: names (list): list of memory bindings names. """ if self._batch_count < self._n_batches: batch = self.get_data_from_source() if batch is not None: if self._data_mem is None: # 4 bytes per float32. self._data_mem = cuda.mem_alloc(batch.size * 4) self._batch_count += 1 # Transfer input data to device. cuda.memcpy_htod(self._data_mem, np.ascontiguousarray( batch, dtype=np.float32)) return [int(self._data_mem)] if self._data_mem is not None: self._data_mem.free() return None def read_calibration_cache(self): """Read calibration from file.""" logger.debug("read_calibration_cache - no-op") if os.path.isfile(self._cache_filename): logger.warning("Calibration file exists at %s." " Reading this cache.", self._cache_filename) with open(self._cache_filename, "rb") as cal_file: return cal_file.read() return None def write_calibration_cache(self, cache): """Write calibration to file. Args: cache (memoryview): buffer to read calibration data from. """ logger.info("Saving calibration cache (size %d) to %s", len(cache), self._cache_filename) with open(self._cache_filename, 'wb') as f: f.write(cache)
tao_deploy-main
nvidia_tao_deploy/engine/tensorfile_calibrator.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """COCO Loader.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from abc import ABC, abstractmethod import os import numpy as np from pycocotools.coco import COCO class COCOLoader(ABC): """Base Class for COCO dataloader""" def __init__(self, val_json_file, shape, dtype, batch_size=1, data_format='channels_last', image_dir=None, eval_samples=None): """Init. Args: val_json_file (str): validation json file. shape (list): shape of the network. dtype (str): data type. data_format (str): data format (default: channels_last). image_dir (str): directory where images are located. eval_samples (str): total number of samples to evaluate. """ self.image_dir = image_dir self.coco = COCO(val_json_file) self.image_ids = self.coco.getImgIds() self.n_samples = eval_samples or len(self.image_ids) self.batch_size = batch_size self.n_batches = self.n_samples // self.batch_size assert self.n_batches > 0, "empty image dir or batch size too large!" self.load_classes() if data_format == "channels_last": self.height = shape[1] self.width = shape[2] else: self.height = shape[2] self.width = shape[3] self.dtype = dtype self.data_format = data_format @abstractmethod def preprocess_image(self, image_path): """The image preprocessor loads an image from disk and prepares it as needed for batching. This may include padding, resizing, normalization, data type casting, and transposing. """ pass def load_classes(self): """create class mapping.""" # load class names (name -> label) categories = self.coco.loadCats(self.coco.getCatIds()) categories.sort(key=lambda x: x['id']) self.classes = {} self.coco_labels = {} self.coco_labels_inverse = {} for c in categories: self.coco_labels[len(self.classes)] = c['id'] self.coco_labels_inverse[c['id']] = len(self.classes) + 1 self.classes[c['name']] = len(self.classes) + 1 def coco_label_to_label(self, coco_label): """coco label to label mapping.""" return self.coco_labels_inverse[coco_label] def _load_gt_image(self, image_index): """Load image.""" image_info = self.coco.loadImgs(self.image_ids[image_index])[0] if os.path.exists(image_info['file_name']): # Read absolute path from the annotation path = image_info['file_name'] else: # Override the root directory to user provided image_dir path = os.path.join(self.image_dir, image_info['file_name']) if not os.path.exists(path): raise FileNotFoundError(f"Image path {path} does not exist!") return self.preprocess_image(path), image_info['id'] def _load_gt_label(self, image_index): """Load COCO labels. Returns: [class_idx, is_difficult, x_min, y_min, x_max, y_max] where is_diffcult is hardcoded to 0 in the current COCO GT labels. """ # get image info image_info = self.coco.loadImgs(self.image_ids[image_index])[0] h = image_info['height'] w = image_info['width'] # image_id = image_info['id'] # get ground truth annotations annotations_ids = self.coco.getAnnIds(imgIds=self.image_ids[image_index], iscrowd=False) annotations = { 'labels': np.empty((0,)), 'bboxes': np.empty((0, 4)), 'masks': [], } # some images appear to miss annotations (like image with id 257034) if len(annotations_ids) == 0: # return empty annotations return np.empty((0, 6)), [self.height, self.width, h, w] # parse annotations coco_annotations = self.coco.loadAnns(annotations_ids) for _, a in enumerate(coco_annotations): # some annotations have basically no width / height, skip them if a['bbox'][2] < 1 or a['bbox'][3] < 1: continue annotations['labels'] = np.concatenate( [annotations['labels'], [self.coco_label_to_label(a['category_id'])]], axis=0) annotations['bboxes'] = np.concatenate([annotations['bboxes'], [[ a['bbox'][1], a['bbox'][0], a['bbox'][1] + a['bbox'][3], a['bbox'][0] + a['bbox'][2], ]]], axis=0) labels = np.expand_dims(annotations['labels'], axis=-1) return np.concatenate( (annotations['bboxes'], np.full_like(labels, 0), np.full_like(labels, -1), labels), axis=1), [self.height, self.width, h, w] def _get_single_processed_item(self, idx): """Load and process single image and its label.""" gt_image_info, image_id = self._load_gt_image(idx) gt_image, gt_scale = gt_image_info gt_label = self._load_gt_label(idx) return gt_image, gt_scale, image_id, gt_label def __iter__(self): """Iterate.""" self.n = 0 return self def __next__(self): """Load a full batch.""" images = [] labels = [] image_ids = [] scales = [] if self.n < self.n_batches: for idx in range(self.n * self.batch_size, (self.n + 1) * self.batch_size): image, scale, image_id, label = self._get_single_processed_item(idx) images.append(image) labels.append(label) image_ids.append(image_id) scales.append(scale) self.n += 1 return images, scales, image_ids, labels raise StopIteration def __len__(self): """Return length.""" return int(np.ceil(self.n_samples / self.batch_size))
tao_deploy-main
nvidia_tao_deploy/dataloader/coco.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """KITTI loader.""" from abc import ABC, abstractmethod import logging import os import numpy as np from PIL import Image from nvidia_tao_deploy.cv.common.constants import VALID_IMAGE_EXTENSIONS logging.basicConfig(format='%(asctime)s [%(levelname)s] %(name)s: %(message)s', level="DEBUG") logger = logging.getLogger(__name__) class KITTILoader(ABC): """Base Class for KITTI dataloader""" def __init__(self, shape, image_dirs, label_dirs, mapping_dict, exclude_difficult=True, batch_size=10, is_inference=False, image_mean=None, data_format="channels_first", image_depth=8, dtype=None): """Init. Args: shape (list): list of input dimension that is either (c, h, w) or (h, w, c) format. image_dirs (list): list of image directories. label_dirs (list): list of label directories. mapping_dict (dict): class mapping. e.g. {'Person': 'person', 'Crowd': 'person'} exclude_difficult (bool): whether to include difficult samples. batch_size (int): size of the batch. is_inference (bool): If True, no labels will be returned image_mean (list): image mean used for preprocessing. data_format (str): Data format of the input. (Default: channels_first) image_depth(int): Bit depth of images(8 or 16). dtype (str): data type to cast to """ assert len(image_dirs) == len(label_dirs), "Mismatch in the length of image and label dirs!" self.image_paths = [] self.label_paths = [] self.is_inference = is_inference self.dtype = dtype # mapping class to 1-based integer self.mapping_dict = mapping_dict classes = sorted({str(x).lower() for x in mapping_dict.values()}) self.classes = dict(zip(classes, range(1, len(classes) + 1))) self.class_mapping = {key.lower(): self.classes[str(val.lower())] for key, val in mapping_dict.items()} # use numpy array to accelerate self._add_source(image_dirs, label_dirs) self.image_paths = np.array(self.image_paths) self.label_paths = np.array(self.label_paths) self.data_inds = np.arange(len(self.image_paths)) self.batch_size = batch_size if data_format == "channels_first": self.num_channels, self.height, self.width = shape else: self.height, self.width, self.num_channels = shape self.image_depth = image_depth self.exclude_difficult = exclude_difficult self.image_mean = image_mean self.n_samples = len(self.data_inds) self.n_batches = int(len(self.image_paths) // self.batch_size) assert self.n_batches > 0, "empty image dir or batch size too large!" def _add_source(self, image_folders, label_folders): """Add Kitti sources.""" for image_folder, label_folder in zip(image_folders, label_folders): img_paths = os.listdir(image_folder) if not self.is_inference: label_paths = set(os.listdir(label_folder)) else: label_paths = [] for img_path in img_paths: # Only add valid items to paths filename, _ = os.path.splitext(img_path) if img_path.lower().endswith(VALID_IMAGE_EXTENSIONS) and filename + '.txt' in label_paths: self.image_paths.append(os.path.join(image_folder, img_path)) self.label_paths.append(os.path.join(label_folder, filename + '.txt')) elif img_path.lower().endswith(VALID_IMAGE_EXTENSIONS) and self.is_inference: self.image_paths.append(os.path.join(image_folder, img_path)) def __len__(self): """Get length of Sequence.""" return self.n_batches def _load_gt_image(self, image_path): """Load GT image from file.""" img = Image.open(image_path) if self.num_channels == 3: img = img.convert('RGB') # Color Image else: if self.image_depth == 16: img = img.convert('I') # PIL int32 mode for 16-bit images else: img = img.convert('L') # Grayscale Image return img def _load_gt_label(self, label_path): """Load Kitti labels. Returns: [class_idx, is_difficult, x_min, y_min, x_max, y_max] """ with open(label_path, 'r', encoding="utf-8") as f: entries = f.read().strip().split('\n') results = [] for entry in entries: items = entry.strip().split() if len(items) < 9: continue items[0] = items[0].lower() if items[0] not in self.class_mapping: continue label = [self.class_mapping[items[0]], 1 if int( items[2]) != 0 else 0, *items[4:8]] results.append([float(x) for x in label]) return np.array(results).reshape(-1, 6) def _filter_invalid_labels(self, labels): """filter out invalid labels. Arg: labels: size (N, 6). Returns: labels: size (M, 6), filtered bboxes with clipped boxes. """ x_coords = labels[:, [-4, -2]] x_coords = np.clip(x_coords, 0, self.width - 1) labels[:, [-4, -2]] = x_coords y_coords = labels[:, [-3, -1]] y_coords = np.clip(y_coords, 0, self.height - 1) labels[:, [-3, -1]] = y_coords # exclude invalid boxes x_cond = labels[:, -2] - labels[:, -4] > 1e-3 y_cond = labels[:, -1] - labels[:, -3] > 1e-3 return labels[x_cond & y_cond] def _get_single_item_raw(self, idx): """Load single image and its label. Returns: image (PIL.image): image object in original resolution label (np.array): [class_idx, is_difficult, x_min, y_min, x_max, y_max] with normalized coordinates """ image = self._load_gt_image(self.image_paths[self.data_inds[idx]]) if self.is_inference: label = np.zeros((1, 6)) # Random array to label else: label = self._load_gt_label(self.label_paths[self.data_inds[idx]]) return image, label @abstractmethod def preprocessing(self, image, label): """Perform preprocessing on image and label.""" pass def _get_single_processed_item(self, idx): """Load and process single image and its label.""" image, label = self._get_single_item_raw(idx) image, label = self.preprocessing(image, label) return image, label def _batch_post_processing(self, images, labels): """Post processing for a batch.""" images = np.array(images) # For num_channels=1 case, we assume that additional dimension was created in preprocessing. if self.num_channels == 3: images = images[..., [2, 1, 0]] # RGB -> BGR images = images.transpose(0, 3, 1, 2) # channels_last -> channels_first if self.num_channels == 3: if self.image_mean: bb, gg, rr = self.image_mean else: bb, gg, rr = 103.939, 116.779, 123.68 # subtract imagenet mean images -= np.array([[[[bb]], [[gg]], [[rr]]]]) else: if self.image_mean: bb = self.image_mean # grayscale only contains one value elif self.image_depth == 8: bb = 117.3786 elif self.image_depth == 16: # 117.3786 * 256 bb = 30048.9216 else: raise ValueError( f"Unsupported image depth: {self.image_depth}, should be 8 or 16, " "please check `augmentation_config.output_depth` in spec file" ) # subtract imagenet mean images -= np.array([[[bb]]]) # try to make labels a numpy array is_make_array = True x_shape = None for x in labels: if not isinstance(x, np.ndarray): is_make_array = False break if x_shape is None: x_shape = x.shape elif x_shape != x.shape: is_make_array = False break if is_make_array: labels = np.array(labels) return images, labels def __iter__(self): """Iterate.""" self.n = 0 return self def __next__(self): """Load a full batch.""" images = [] labels = [] if self.n < self.n_batches: for idx in range(self.n * self.batch_size, (self.n + 1) * self.batch_size): image, label = self._get_single_processed_item(idx) images.append(image) labels.append(label) self.n += 1 return self._batch_post_processing(images, labels) raise StopIteration
tao_deploy-main
nvidia_tao_deploy/dataloader/kitti.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TAO Deploy DataLoader"""
tao_deploy-main
nvidia_tao_deploy/dataloader/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-speech-data-processor-main
__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import hydra from sdp.run_processors import run_processors @hydra.main(version_base=None) def main(cfg): run_processors(cfg) if __name__ == "__main__": # hacking the arguments to always disable hydra's output # TODO: maybe better to copy-paste hydra_runner from nemo if there are # any problems with this approach sys.argv.extend( ["hydra.run.dir=.", "hydra.output_subdir=null", "hydra/job_logging=none", "hydra/hydra_logging=none"] ) main()
NeMo-speech-data-processor-main
main.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Class which will process the data for Fisher Spanish and create an initial manifest. The raw Fisher Spanish data is provided in .sph files and with 2 channels (1 for each speaker). The data needs to be converted in .wav and trimmed+segmented. This script will do the processing required, and result in the following tree: <ROOT_DATA_DIR> ├── fisher_spa_LDC2010S01.tgz ├── LDC2010T04.tgz ├── downloaded │ ├── fisher_spa │ │ ├── data │ │ │ └── speech │ │ └── docs │ └── fisher_spa_tr │ ├── data │ │ └── transcripts │ └── docs └── processed ├── manifests └── wavs ├── original_duration └── trimmed_and_segmented """ import glob import json import os import subprocess from pathlib import Path from typing import List, Optional from sox import Transformer from tqdm import tqdm from sdp.logging import logger from sdp.processors.base_processor import BaseParallelProcessor, DataEntry from sdp.utils.common import extract_archive AUDIO_TGZ_FILE = "fisher_spa_LDC2010S01.tgz" TRANSCRIPT_TGZ_FILE = "LDC2010T04.tgz" class CreateInitialManifestFisherSpanish(BaseParallelProcessor): """ Class which will create an initial manifest from the initial Fisher Spanish data files, which must be located in root_data_dir. Args: raw_data_dir: path to where the initial data archive files are located. This will also be where the new audio files are processed and where the manifests are saved. path_to_sph2pipe: the path to the sph2pipe tool, which will be used to convert the sph audio files to wav files. """ def __init__(self, raw_data_dir: str, path_to_sph2pipe: str, **kwargs): super().__init__(**kwargs) self.raw_data_dir = Path(raw_data_dir) self.path_to_sph2pipe = path_to_sph2pipe self.extracted_path = str(Path(self.raw_data_dir) / "extracted") self.processed_path = str(Path(self.raw_data_dir) / "processed") def prepare(self): audio_archive_path = self.raw_data_dir / AUDIO_TGZ_FILE transcript_archive_path = self.raw_data_dir / TRANSCRIPT_TGZ_FILE if audio_archive_path.exists() and transcript_archive_path.exists(): extract_archive(audio_archive_path, self.extracted_path) extract_archive(transcript_archive_path, self.extracted_path) else: raise RuntimeError( "Did not find the expected raw data files. Expected to find " f"2 files: {audio_archive_path} and {transcript_archive_path}" ) # convert audio files from .sph to .wav sph_src_dir = os.path.join(self.extracted_path, "fisher_spa/data/speech") wav_tgt_dir = os.path.join(self.processed_path, "wavs/original_duration") if not os.path.exists(wav_tgt_dir): os.makedirs(wav_tgt_dir) logger.info("Converting files from .sph to .wav") sph_list = glob.glob(sph_src_dir + "/*.sph") for sph_path in tqdm(sph_list): file_id = os.path.basename(sph_path).split(".sph")[0] wav_path = os.path.join(wav_tgt_dir, file_id + ".wav") cmd = [self.path_to_sph2pipe, "-f", "wav", "-p", sph_path, wav_path] subprocess.run(cmd) logger.info("Finished converting files from .sph to .wav") def read_manifest(self) -> List[tuple[str]]: transcript_src_dir = os.path.join(self.extracted_path, "fisher_spa_tr/data/transcripts/") logger.info(f"Attempting to read transcription files in dir {transcript_src_dir}") dataset_entries = [] for transcript_file in tqdm(glob.glob(transcript_src_dir + "/*.tdf")): with open(transcript_file, "r") as f_in: f_in.readline() # skip column headings f_in.readline() # skip comments with ;; f_in.readline() # skip comments with ;; for line_i, line in enumerate(f_in): line = line.strip() line = line.split("\t") line = [line_i] + line dataset_entries.append(tuple(line)) return dataset_entries def process_dataset_entry(self, data_entry: tuple[str]): wav_src_dir = os.path.join(self.processed_path, "wavs/original_duration") wav_tgt_dir = os.path.join(self.processed_path, "wavs/trimmed_and_segmented") manifest_dir = os.path.join(self.processed_path, "manifests/") os.makedirs(wav_tgt_dir, exist_ok=True) os.makedirs(manifest_dir, exist_ok=True) ( line_i, file_id, channel, start, end, speaker, speaker_type, speaker_dialect, transcript, section, turn, segment, *other_info, ) = data_entry file_id = file_id.split(".sph")[0] src_wav_file = os.path.join(wav_src_dir, f"{file_id}.wav") tgt_wav_file = os.path.join( wav_tgt_dir, f"{file_id}_line{line_i}_channel{channel}_{section}_{turn}_{segment}.wav", ) if len(transcript) == 0: logger.info(f"Empty transcript. Skipping trying to make wav file {tgt_wav_file}") return [] if float(end) - float(start) < 0.2: logger.info(f"start time: {start}, end time: {end}") logger.info(f"=> (end time) - (start time) is too small. Skipping trying to make wav file {tgt_wav_file}") return [] # make trimmed wave file transformer = Transformer() transformer.trim(float(start), float(end)) transformer.rate(samplerate=16000, quality="v") # pick out 1 speaker and make mono # Note that mapping in remix dictionary is # (output channel):(input channel), with indexing starting from 1 transformer.remix({1: [int(channel) + 1]}, num_output_channels=1) transformer.build(src_wav_file, tgt_wav_file) entry = {} entry["audio_filepath"] = tgt_wav_file # get duration duration = subprocess.check_output("soxi -D {0}".format(entry["audio_filepath"]), shell=True) if float(duration) == 0: logger.info(f"created wave file with duration zero: {tgt_wav_file}") logger.info(f"=> will not add this file to manifest") return [] entry["duration"] = float(duration) entry["text"] = transcript entry["channel"] = channel entry["start"] = start entry["end"] = end entry["speaker"] = speaker entry["speaker_type"] = speaker_type entry["speaker_dialect"] = speaker_dialect entry["section"] = section entry["turn"] = turn entry["segment"] = segment entry["other_info"] = ",".join(other_info) return [DataEntry(data=entry)]
NeMo-speech-data-processor-main
dataset_configs/spanish_pc/fisher/unique_processors/create_initial_manifest_fisher_spanish.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import os import re from typing import List import pandas as pd from sdp.logging import logger from sdp.processors.base_processor import BaseParallelProcessor, DataEntry from sdp.utils.edit_spaces import add_start_end_spaces, remove_extra_spaces class CleanRomanNumerals(BaseParallelProcessor): def __init__( self, king_triggers, queen_triggers, ordinal_masc_triggers, ordinal_fem_triggers, cardinal_triggers, numerals_data_path=None, text_key: str = "text", **kwargs, ): super().__init__(**kwargs) self.numerals_data_path = numerals_data_path self.king_triggers = king_triggers self.queen_triggers = queen_triggers self.ordinal_masc_triggers = ordinal_masc_triggers self.ordinal_fem_triggers = ordinal_fem_triggers self.cardinal_triggers = cardinal_triggers self.text_key = text_key # read csv current_dir = os.path.dirname(os.path.abspath(__file__)) csv_path = os.path.join(current_dir, "1-100_roman_numeral_table.csv") df = pd.read_csv(csv_path, sep="\t", index_col=0) self.roman_numeral_to_ordinal_masc = {} for i, row in df.iterrows(): self.roman_numeral_to_ordinal_masc[row["roman"]] = row["ordinal_masc"].strip() self.roman_numeral_to_ordinal_fem = {} for i, row in df.iterrows(): self.roman_numeral_to_ordinal_fem[row["roman"]] = row["ordinal_fem"].strip() self.roman_numeral_to_cardinal = {} for i, row in df.iterrows(): self.roman_numeral_to_cardinal[row["roman"]] = row["cardinal"].strip() self.roman_numeral_to_king = {} for i, row in df.iterrows(): self.roman_numeral_to_king[row["roman"]] = row["king"].strip() self.roman_numeral_to_queen = {} for i, row in df.iterrows(): self.roman_numeral_to_queen[row["roman"]] = row["queen"].strip() self.clean_roman_numerals_count = collections.defaultdict(int) def process_dataset_entry(self, data_entry) -> List: data_entry[self.text_key] = add_start_end_spaces(data_entry[self.text_key]) data_entry = self.clean_operation(data_entry, self.ordinal_masc_triggers, self.roman_numeral_to_ordinal_masc) data_entry = self.clean_operation(data_entry, self.ordinal_fem_triggers, self.roman_numeral_to_ordinal_fem) data_entry = self.clean_operation(data_entry, self.cardinal_triggers, self.roman_numeral_to_cardinal) data_entry = self.clean_operation(data_entry, self.king_triggers, self.roman_numeral_to_king) data_entry = self.clean_operation(data_entry, self.queen_triggers, self.roman_numeral_to_queen) data_entry[self.text_key] = remove_extra_spaces(data_entry[self.text_key]) return [DataEntry(data=data_entry, metrics=self.clean_roman_numerals_count)] def finalize(self, metrics): total_counter = collections.defaultdict(int) for counter in metrics: for word, count in counter.items(): total_counter[word] += count logger.info("Num of roman numeral substitutions") total_counter_sorted = dict( sorted( total_counter.items(), key=lambda x: x[1], reverse=True, ) ) for word, count in total_counter_sorted.items(): logger.info(f"{word} {count}") super().finalize(metrics) def clean_operation(self, data, triggers, roman_numeral_to_num_written): for trigger in triggers: trigger_match = re.search( pattern=f"({trigger} \S*)\s", string=data[self.text_key], flags=re.IGNORECASE, ) if trigger_match: trigger_numeral = trigger_match.group(0).strip() trigger, numeral = trigger_numeral.split(" ") if numeral.lower() in roman_numeral_to_num_written: number = roman_numeral_to_num_written[numeral.lower()] if trigger[0].isupper(): # 'felipe iv' --> 'felipe cuarto' # 'Felipe iv' --> 'Felipe Cuarto' number = number.capitalize() trigger_number = f"{trigger} {number}" data[self.text_key] = data[self.text_key].replace(trigger_numeral, trigger_number) self.clean_roman_numerals_count[trigger_numeral] += 1 return data
NeMo-speech-data-processor-main
dataset_configs/spanish/mls/unique_processors/clean_roman_numerals.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sdp.processors import DropNonAlphabet def test_empty_test_cases(): """Testing that empty test cases don't raise an error.""" processor = DropNonAlphabet("123", output_manifest_file="tmp") processor.test()
NeMo-speech-data-processor-main
tests/test_modify_manifest.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from sdp.utils.edit_spaces import add_start_end_spaces, remove_extra_spaces @pytest.mark.parametrize("input,expected_output", [("abc xyz abc xyz", "abc xyz abc xyz"), (" abc xyz ", "abc xyz")]) def test_remove_extra_spaces(input, expected_output): assert remove_extra_spaces(input) == expected_output @pytest.mark.parametrize("input,expected_output", [("abc", " abc "), ("abc xyz", " abc xyz ")]) def test_add_start_end_spaces(input, expected_output): assert add_start_end_spaces(input) == expected_output
NeMo-speech-data-processor-main
tests/test_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob from pathlib import Path import hydra import pytest from omegaconf import OmegaConf, open_dict DATASET_CONFIGS_ROOT = Path(__file__).parents[1] / "dataset_configs" def get_test_cases(): """Returns paths to all configs that are checked in.""" for config_path in glob.glob(f"{DATASET_CONFIGS_ROOT}/**/*.yaml", recursive=True): yield config_path @pytest.mark.parametrize("config_path", get_test_cases()) def test_configs(config_path: str): try: # to be able to correctly read some of the configs OmegaConf.register_new_resolver("subfield", lambda node, field: node[field]) OmegaConf.register_new_resolver("not", lambda x: not x) OmegaConf.register_new_resolver("equal", lambda field, value: field == value) except ValueError: # already registered pass cfg = OmegaConf.load(config_path) cfg["data_split"] = "train" # in case it's required for tests for processor_cfg in cfg.processors: if "test_cases" in processor_cfg: # clear input_manifest_file and output_manifest_file to make sure we don't get # a MissingMandatoryValue error when we instantiate the processor with open_dict(processor_cfg): processor_cfg["output_manifest_file"] = None processor_cfg["input_manifest_file"] = None # in case should_run is specified, we need to remove it processor_cfg.pop("should_run", None) processor = hydra.utils.instantiate(processor_cfg) processor.test()
NeMo-speech-data-processor-main
tests/test_cfg_runtime_tests.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from sdp.processors.modify_manifest.data_to_data import ( InsIfASRInsertion, SubIfASRSubstitution, SubMakeLowercase, SubRegex, ) test_params_list = [] test_params_list.extend( [ ( InsIfASRInsertion, {"insert_words": [" nemo", "nemo ", " nemo "]}, {"text": "i love the toolkit", "pred_text": "i love the nemo toolkit"}, {"text": "i love the nemo toolkit", "pred_text": "i love the nemo toolkit"}, ), ( InsIfASRInsertion, {"insert_words": [" nemo", "nemo ", " nemo "]}, {"text": "i love the toolkit", "pred_text": "i love the new nemo toolkit"}, {"text": "i love the toolkit", "pred_text": "i love the new nemo toolkit"}, ), ] ) test_params_list.extend( [ ( SubIfASRSubstitution, {"sub_words": {"nmo ": "nemo "}}, {"text": "i love the nmo toolkit", "pred_text": "i love the nemo toolkit"}, {"text": "i love the nemo toolkit", "pred_text": "i love the nemo toolkit"}, ), ] ) test_params_list.extend( [ ( SubIfASRSubstitution, {"sub_words": {"nmo ": "nemo "}}, {"text": "i love the nmo toolkit", "pred_text": "i love the nemo toolkit"}, {"text": "i love the nemo toolkit", "pred_text": "i love the nemo toolkit"}, ), ] ) test_params_list.extend( [ ( SubMakeLowercase, {}, {"text": "Hello Привет 123"}, {"text": "hello привет 123"}, ), ( SubMakeLowercase, {"text_key": "text_new"}, {"text_new": "Hello Привет 123"}, {"text_new": "hello привет 123"}, ), ] ) test_params_list.extend( [ ( SubRegex, {"regex_params_list": [{"pattern": "\s<.*>\s", "repl": " "}]}, {"text": "hello <cough> world"}, {"text": "hello world"}, ), ] ) @pytest.mark.parametrize("test_class,class_kwargs,test_input,expected_output", test_params_list, ids=str) def test_data_to_data(test_class, class_kwargs, test_input, expected_output): processor = test_class(**class_kwargs, output_manifest_file=None) output = processor.process_dataset_entry(test_input)[0].data assert output == expected_output
NeMo-speech-data-processor-main
tests/test_data_to_data.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from sdp.processors.modify_manifest.data_to_dropbool import ( DropASRErrorBeginningEnd, DropHighCER, DropHighLowCharrate, DropHighLowDuration, DropHighLowWordrate, DropHighWER, DropIfNoneOfRegexMatch, DropIfRegexMatch, DropIfSubstringInInsertion, DropLowWordMatchRate, DropNonAlphabet, ) test_params_list = [] test_params_list.extend( [ ( DropHighLowCharrate, {"high_charrate_threshold": 9.9, "low_charrate_threshold": 0}, {"text": "0123456789", "duration": 1}, True, ), ( DropHighLowCharrate, {"high_charrate_threshold": 99, "low_charrate_threshold": 10.1}, {"text": "0123456789", "duration": 1}, True, ), ( DropHighLowCharrate, {"high_charrate_threshold": 10.1, "low_charrate_threshold": 9.9}, {"text": "0123456789", "duration": 1}, False, ), ] ) test_params_list.extend( [ ( DropHighLowWordrate, {"high_wordrate_threshold": 3.9, "low_wordrate_threshold": 0}, {"text": "11 22 33 44", "duration": 1}, True, ), ( DropHighLowWordrate, {"high_wordrate_threshold": 99, "low_wordrate_threshold": 4.1}, {"text": "11 22 33 44", "duration": 1}, True, ), ( DropHighLowWordrate, {"high_wordrate_threshold": 4.1, "low_wordrate_threshold": 3.9}, {"text": "11 22 33 44", "duration": 1}, False, ), ] ) test_params_list.extend( [ ( DropHighLowDuration, {"high_duration_threshold": 3.9, "low_duration_threshold": 0}, {"duration": 4}, True, ), ( DropHighLowDuration, {"high_duration_threshold": 99, "low_duration_threshold": 4.1}, {"duration": 4}, True, ), ( DropHighLowDuration, {"high_duration_threshold": 4.1, "low_duration_threshold": 3.9}, {"duration": 4}, False, ), ] ) test_params_list.extend( [ ( DropNonAlphabet, {"alphabet": " abc"}, {"text": "ab ba cab dac"}, True, ), ( DropNonAlphabet, {"alphabet": " abcd"}, {"text": "ab ba cab dac"}, False, ), ] ) test_params_list.extend( [ ( DropASRErrorBeginningEnd, {"beginning_error_char_threshold": 0, "end_error_char_threshold": 2}, {"text": "2", "pred_text": "1 2 3"}, True, ), ( DropASRErrorBeginningEnd, {"beginning_error_char_threshold": 2, "end_error_char_threshold": 0}, {"text": "2", "pred_text": "1 2 3"}, True, ), ( DropASRErrorBeginningEnd, {"beginning_error_char_threshold": 2, "end_error_char_threshold": 2}, {"text": "2", "pred_text": "1 2 3"}, False, ), ( DropASRErrorBeginningEnd, {"beginning_error_char_threshold": 0, "end_error_char_threshold": 2}, {"text": "sentence with some text here", "pred_text": "sentence with some text her"}, False, ), ( DropASRErrorBeginningEnd, {"beginning_error_char_threshold": 0, "end_error_char_threshold": 2}, { "text": "sentence with some text here but actually more text was spoken", "pred_text": "sentence with some text her", }, True, ), ] ) test_params_list.extend( [ ( DropHighCER, {"cer_threshold": 9.9}, {"text": "0123456789", "pred_text": "012345678"}, True, ), ( DropHighCER, {"cer_threshold": 10.1}, {"text": "0123456789", "pred_text": "012345678"}, False, ), ] ) test_params_list.extend( [ ( DropHighWER, {"wer_threshold": 0}, {"text": "11 22", "pred_text": "11 22"}, False, ), ( DropHighWER, {"wer_threshold": 50.1}, {"text": "11 22", "pred_text": "11 22 33"}, False, ), ( DropHighWER, {"wer_threshold": 49.9}, {"text": "11 22", "pred_text": "11 22 33"}, True, ), ] ) test_params_list.extend( [ (DropIfNoneOfRegexMatch, {"regex_patterns": ["keep this", "also this"]}, {"text": "I don't want this"}, True), ( DropIfNoneOfRegexMatch, {"regex_patterns": ["keep this", "also this"]}, {"text": "I want to keep this"}, False, ), ] ) test_params_list.extend( [ (DropIfRegexMatch, {"regex_patterns": ["incorrect_text"]}, {"text": "incorrect_text"}, True), ( DropIfRegexMatch, {"regex_patterns": ["001/002"], "text_key": "audio_filepath"}, {"audio_filepath": "001/002/003.wav"}, True, ), ] ) test_params_list.extend( [ ( DropLowWordMatchRate, {"wmr_threshold": 50.1}, {"text": "hello world i'm nemo", "pred_text": "hello world"}, True, ), ( DropLowWordMatchRate, {"wmr_threshold": 49.9}, {"text": "hello world i'm nemo", "pred_text": "hello world"}, False, ), ] ) test_params_list.extend( [ ( DropIfSubstringInInsertion, {"substrings_in_insertion": ["might "]}, {"text": "we miss certain words", "pred_text": "we might miss certain words"}, True, ), ( DropIfSubstringInInsertion, {"substrings_in_insertion": ["might "]}, {"text": "we may certain words", "pred_text": "we might miss certain words"}, False, ), ] ) @pytest.mark.parametrize("test_class,class_kwargs,test_input,expected_output", test_params_list, ids=str) def test_data_to_data(test_class, class_kwargs, test_input, expected_output): processor = test_class(**class_kwargs, output_manifest_file=None) output = processor.process_dataset_entry(test_input) if output: output = output[0].data if expected_output: assert output is None else: assert output == test_input
NeMo-speech-data-processor-main
tests/test_data_to_dropbool.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tarfile from functools import partial from pathlib import Path import shutil from typing import Callable from unittest import mock import pytest from omegaconf import OmegaConf import sdp.processors.datasets.coraal.create_initial_manifest as coraal_processor from sdp.run_processors import run_processors DATASET_CONFIGS_ROOT = Path(__file__).parents[1] / "dataset_configs" def data_check_fn_mls(raw_data_dir: str, language: str) -> None: """Raises error if do not find expected data""" expected_file = Path(raw_data_dir) / f"mls_{language}.tar.gz" if not expected_file.exists(): raise ValueError(f"No such file {str(expected_file)}") def data_check_fn_mcv(raw_data_dir: str, archive_file_stem: str) -> None: """Raises error if do not find expected data""" expected_file = Path(raw_data_dir) / f"{archive_file_stem}.tar.gz" if not expected_file.exists(): raise ValueError(f"No such file {str(expected_file)}") def data_check_fn_voxpopuli(raw_data_dir: str) -> None: """Raises error if do not find expected data. Will also extract the archive as initial processor expects extracted data. """ if (Path(raw_data_dir) / "transcribed_data").exists(): return expected_file = Path(raw_data_dir) / "transcribed_data.tar.gz" if not expected_file.exists(): raise ValueError(f"No such file {str(expected_file)}") with tarfile.open(Path(raw_data_dir) / "transcribed_data.tar.gz", 'r:gz') as tar: tar.extractall(path=raw_data_dir) coraal_processor.get_coraal_url_list = mock.Mock( return_value=[ 'http://lingtools.uoregon.edu/coraal/les/2021.07/LES_metadata_2021.07.txt', 'http://lingtools.uoregon.edu/coraal/les/2021.07/LES_audio_part01_2021.07.tar.gz', 'http://lingtools.uoregon.edu/coraal/les/2021.07/LES_audio_part02_2021.07.tar.gz', 'http://lingtools.uoregon.edu/coraal/les/2021.07/LES_audio_part03_2021.07.tar.gz', 'http://lingtools.uoregon.edu/coraal/les/2021.07/LES_textfiles_2021.07.tar.gz', ] ) def get_test_cases(): """Returns paths, and data check fn for all configs that we want to test.""" return [ (f"{DATASET_CONFIGS_ROOT}/spanish/mls/config.yaml", partial(data_check_fn_mls, language="spanish")), # above one is without p&c, but it's also important to check p&c version as it's substantially different (f"{DATASET_CONFIGS_ROOT}/italian/mls/config.yaml", partial(data_check_fn_mls, language="italian")), ( f"{DATASET_CONFIGS_ROOT}/spanish_pc/mcv12/config.yaml", partial(data_check_fn_mcv, archive_file_stem="cv-corpus-12.0-2022-12-07-es"), ), (f"{DATASET_CONFIGS_ROOT}/italian/voxpopuli/config.yaml", data_check_fn_voxpopuli), # audio will be downloaded on the fly, so nothing to check here (f"{DATASET_CONFIGS_ROOT}/english/slr83/config.yaml", lambda raw_data_dir: True), # audio will be downloaded on the fly from a subset of files. # No checks, but need to mock the url list function (done above) (f"{DATASET_CONFIGS_ROOT}/english/coraal/config.yaml", lambda raw_data_dir: True), ] def check_e2e_test_data() -> bool: """Checks if required environment variables are defined for e2e data. Either TEST_DATA_ROOT needs to be defined or both AWS_SECRET_KEY and AWS_ACCESS_KEY. """ if os.getenv("TEST_DATA_ROOT"): return True if os.getenv("AWS_SECRET_KEY") and os.getenv("AWS_ACCESS_KEY"): return True return False def get_e2e_test_data_path() -> str: """Returns path to e2e test data (downloading from AWS if necessary). In case of downloading from AWS, will create "test_data" folder in the current folder and set TEST_DATA_ROOT automatically (used by the sdp code to locate test data). """ test_data_root = os.getenv("TEST_DATA_ROOT") if test_data_root: # assume it's present locally return test_data_root import boto3 s3_resource = boto3.resource( "s3", aws_access_key_id=os.getenv("AWS_ACCESS_KEY"), aws_secret_access_key=os.getenv("AWS_SECRET_KEY"), ) bucket = s3_resource.Bucket("sdp-test-data") print("Downloading test data from s3") for obj in bucket.objects.all(): if not os.path.exists(os.path.dirname(obj.key)): os.makedirs(os.path.dirname(obj.key)) bucket.download_file(obj.key, obj.key) print("Test data downloaded to 'test_data' folder.") os.environ["TEST_DATA_ROOT"] = os.path.abspath("test_data") return os.environ["TEST_DATA_ROOT"] @pytest.mark.skipif( not check_e2e_test_data(), reason="Either TEST_DATA_ROOT needs to be defined or both AWS_SECRET_KEY " "and AWS_ACCESS_KEY to run e2e config tests", ) @pytest.mark.parametrize("config_path,data_check_fn", get_test_cases()) def test_configs(config_path: str, data_check_fn: Callable, tmp_path: str): test_data_root = get_e2e_test_data_path() # we expect DATASET_CONFIGS_ROOT and TEST_DATA_ROOT # to have the same structure (e.g. <lang>/<dataset>) rel_path_from_root = os.path.relpath(Path(config_path).parent, DATASET_CONFIGS_ROOT) # run data_check_fn - it will raise error if the expected test data is not found data_check_fn(raw_data_dir=str(Path(test_data_root) / rel_path_from_root)) reference_manifest = str(Path(test_data_root) / rel_path_from_root / "test_data_reference.json") if not os.path.exists(reference_manifest): raise ValueError(f"Did not find reference manifest {reference_manifest}") cfg = OmegaConf.load(config_path) assert "processors" in cfg cfg["processors_to_run"] = "all" cfg["workspace_dir"] = str(tmp_path) cfg["final_manifest"] = str(tmp_path / "final_manifest.json") cfg["data_split"] = "train" cfg["processors"][0]["raw_data_dir"] = str(Path(test_data_root) / rel_path_from_root) run_processors(cfg) # additionally, let's test that final generated manifest matches the # reference file (ignoring the file paths) with open(reference_manifest, "rt", encoding="utf8") as reference_fin, open( cfg["final_manifest"], "rt", encoding="utf8" ) as generated_fin: # sorting to avoid mismatches because of randomness in utterances order reference_lines = sorted(reference_fin.readlines()) generated_lines = sorted(generated_fin.readlines()) assert len(reference_lines) == len(generated_lines) for reference_line, generated_line in zip(reference_lines, generated_lines): reference_data = json.loads(reference_line) generated_data = json.loads(generated_line) reference_data.pop("audio_filepath") generated_data.pop("audio_filepath") assert reference_data == generated_data # if CLEAN_UP_TMP_PATH is set to non-0 value, we will delete tmp_path if os.getenv("CLEAN_UP_TMP_PATH", "0") != "0": shutil.rmtree(tmp_path)
NeMo-speech-data-processor-main
tests/test_cfg_end_to_end_tests.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-speech-data-processor-main
tests/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Will take the downloaded tar file and create a version with only X entries.""" import argparse import os import shutil import tarfile import tempfile from pathlib import Path if __name__ == "__main__": parser = argparse.ArgumentParser("Preparing MLS test data") parser.add_argument("--extracted_data_path", required=True, help="Path to the downloaded and extracted data.") parser.add_argument( "--language", required=True, help="The name of the language, used to determine output file name mls_{language}.tar.gz", ) parser.add_argument("--num_entries", default=200, type=int, help="How many entries to keep (in each split)") parser.add_argument("--test_data_folder", required=True, help="Where to place the prepared data") args = parser.parse_args() with tempfile.TemporaryDirectory() as tmpdir: tmpdir_path = Path(tmpdir) for split in ["train", "dev", "test"]: os.makedirs(tmpdir_path / split / "audio") transcript_path = Path(args.extracted_data_path) / split / "transcripts.txt" with open(transcript_path, "rt", encoding="utf8") as fin, open( tmpdir_path / split / "transcripts.txt", "wt", encoding="utf8" ) as fout: for idx, line in enumerate(fin): if idx == args.num_entries: break utt_id = line.split("\t", 1)[0] src_flac_path = os.path.join( args.extracted_data_path, split, "audio", *utt_id.split("_")[:2], utt_id + ".flac" ) fout.write(line) tgt_flac_dir = os.path.join(tmpdir_path, split, "audio", *utt_id.split("_")[:2]) os.makedirs(tgt_flac_dir, exist_ok=True) shutil.copy(src_flac_path, os.path.join(tgt_flac_dir, utt_id + ".flac")) os.makedirs(args.test_data_folder, exist_ok=True) with tarfile.open(os.path.join(args.test_data_folder, f"mls_{args.language}.tar.gz"), "w:gz") as tar: # has to be the same as what's before .tar.gz tar.add(tmpdir, arcname=f"mls_{args.language}")
NeMo-speech-data-processor-main
tests/prepare_test_data/prepare_mls_data.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Will take the downloaded tar file and create a version with only X entries.""" import argparse import os import shutil import tarfile import tempfile from pathlib import Path if __name__ == "__main__": parser = argparse.ArgumentParser("Preparing VoxPopuli test data") parser.add_argument("--data_path", required=True, help="Path to the processed data.") parser.add_argument( "--language_id", required=True, help="The id of the language", ) parser.add_argument("--num_entries", default=200, type=int, help="How many entries to keep (in each split)") parser.add_argument("--test_data_folder", required=True, help="Where to place the prepared data") args = parser.parse_args() with tempfile.TemporaryDirectory() as tmpdir: tmpdir_path = Path(tmpdir) os.makedirs(tmpdir_path / "transcribed_data" / args.language_id) for split in ["train", "dev", "test"]: transcript_path = Path(args.data_path) / "transcribed_data" / args.language_id / f"asr_{split}.tsv" with open(transcript_path, "rt", encoding="utf8") as fin, open( tmpdir_path / "transcribed_data" / args.language_id / f"asr_{split}.tsv", "wt", encoding="utf8" ) as fout: for idx, line in enumerate(fin): if idx == args.num_entries + 1: break fout.write(line) if idx == 0: # skipping header continue utt_id, raw_text, norm_text, spk_id, _, gender, is_gold_transcript, accent = line.split("\t") year = utt_id[:4] src_audio_path = ( Path(args.data_path) / "transcribed_data" / args.language_id / year / (utt_id + ".ogg") ) target_audio_dir = tmpdir_path / "transcribed_data" / args.language_id / year os.makedirs(target_audio_dir, exist_ok=True) shutil.copy(src_audio_path, target_audio_dir / (utt_id + ".ogg")) # even though the voxpopuli processor expects untarred folder, # we still tar it to save time on the download from s3 with tarfile.open(os.path.join(args.test_data_folder, f"transcribed_data.tar.gz"), "w:gz") as tar: # has to be the same as what's before .tar.gz tar.add(tmpdir_path / "transcribed_data", arcname=f"transcribed_data")
NeMo-speech-data-processor-main
tests/prepare_test_data/prepare_voxpopuli_data.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Will take the downloaded tar file and create a version with only X entries.""" import argparse import os import shutil import tarfile import tempfile from pathlib import Path if __name__ == "__main__": parser = argparse.ArgumentParser("Preparing MCV test data") parser.add_argument("--extracted_data_path", required=True, help="Path to the downloaded and extracted data.") parser.add_argument( "--archive_file_stem", required=True, help="What the stem (ie without the 'tar.gz' bit) of the new archive file should be", ) parser.add_argument("--num_entries", default=200, type=int, help="How many entries to keep (in each split)") parser.add_argument("--test_data_folder", required=True, help="Where to place the prepared data") args = parser.parse_args() with tempfile.TemporaryDirectory() as tmpdir: tmpdir_path = Path(tmpdir) os.makedirs(tmpdir_path / "clips") for split in ["train", "dev", "test"]: transcript_path = Path(args.extracted_data_path) / f"{split}.tsv" with open(transcript_path, "rt", encoding="utf8") as fin, open( tmpdir_path / f"{split}.tsv", "wt", encoding="utf8" ) as fout: fout.write(fin.readline()) # just copy over header line for idx, line in enumerate(fin): if idx == args.num_entries: break utt_id = line.split("\t")[1] src_mp3_path = os.path.join(args.extracted_data_path, "clips", utt_id) fout.write(line) tgt_mp3_path = os.path.join(tmpdir_path, "clips", utt_id) shutil.copy(src_mp3_path, tgt_mp3_path) with tarfile.open(os.path.join(args.test_data_folder, f"{args.archive_file_stem}.tar.gz"), "w:gz") as tar: # has to be the same as what's before .tar.gz tar.add(tmpdir, arcname=args.archive_file_stem)
NeMo-speech-data-processor-main
tests/prepare_test_data/prepare_mcv_data.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run this file to generate documentation for SDP config files. Will parse all the yaml files and include any built-in documentation in the expected format. """ import yaml import os from pathlib import Path ROOT_LINK = "https://github.com/NVIDIA/NeMo-speech-data-processor/blob/main/dataset_configs" # let's ignore some of the configs we don't (yet) want to be exposed in the documentation IGNORE_CONFIGS = [] def gen_docs(): config_dir = str(Path(__file__).absolute().parents[1] / 'dataset_configs') config_docs_dir = str(Path(__file__).parents[0] / 'src' / 'sdp' / 'config-docs') for root, dirs, files in os.walk(config_dir): # Create corresponding directories in the destination directory for directory in dirs: source_path = os.path.join(root, directory) destination_path = source_path.replace(config_dir, config_docs_dir) os.makedirs(destination_path, exist_ok=True) # Copy files and change the file extensions for file in files: if file.endswith('.yaml'): source_path = os.path.join(root, file) config_path = source_path.replace(config_dir, '')[1:] # removing leading / if config_path in IGNORE_CONFIGS: continue destination_path = source_path.replace(config_dir, config_docs_dir).replace('.yaml', '.rst') with open(source_path, "rt", encoding="utf-8") as fin: docs = yaml.safe_load(fin).get('documentation', "Documentation is not yet available.") + "\n\n" link = f"Config link: `dataset_configs/{config_path} <{ROOT_LINK}/{config_path}>`_" with open(destination_path, "wt", encoding="utf-8") as fout: fout.write(docs + link) if __name__ == '__main__': gen_docs()
NeMo-speech-data-processor-main
docs/gen_docs.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import sys import glob # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath("../../")) templates_path = ["_templates"] autodoc_mock_imports = [] _skipped_autodoc_mock_imports = [] for req_path in sorted(list(glob.glob("../../requirements/*.txt"))): if "docs.txt" in req_path: continue req_file = os.path.abspath(os.path.expanduser(req_path)) with open(req_file, 'r') as f: for line in f: line = line.replace("\n", "") req = re.search(r"([a-zA-Z0-9-_]*)", line) if req: req = req.group(1) req = req.replace("-", "_") if req not in autodoc_mock_imports: if req in _skipped_autodoc_mock_imports: print(f"Skipping req : `{req}` (lib {line})") continue if req: autodoc_mock_imports.append(req) print(f"Adding req : `{req}` to autodoc mock requirements (lib {line})") else: print(f"`{req}` already added to autodoc mock requirements (lib {line})") # # -- General configuration ------------------------------------------------ extensions = [ "sphinx.ext.autodoc", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.ifconfig", "sphinx.ext.viewcode", "sphinx.ext.napoleon", "sphinx.ext.githubpages", "sphinx.ext.inheritance_diagram", "sphinx.ext.intersphinx", "sphinx_copybutton", "sphinxext.opengraph", ] intersphinx_mapping = { 'pytorch': ('https://pytorch.org/docs/stable', None), 'pytorch-lightning': ('https://pytorch-lightning.readthedocs.io/en/latest/', None), } # Set default flags for all classes. autodoc_default_options = {'members': None, 'undoc-members': None, 'show-inheritance': True} locale_dirs = ['locale/'] # path is example but recommended. gettext_compact = False # optional. # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = ".rst" # The master toctree document. master_doc = "index" # General information about the project. project = "NVIDIA NeMo Speech Data Processor" copyright = "© 2022-2023 NVIDIA Corporation & Affiliates. All rights reserved." author = "NVIDIA CORPORATION" version = '0.1.0' release = '0.1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = 'en' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "default" # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = "nemosdpdoc" html_theme = "sphinx_book_theme" html_title = 'NVIDIA NeMo SDP' html_theme_options = { 'collapse_navigation': False, 'navigation_depth': 10, 'repository_url': 'https://github.com/NVIDIA/NeMo-speech-data-processor/', 'use_repository_button': True, 'show_navbar_depth': 1, 'show_toc_level': 10, } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_favicon = 'favicon.ico' html_static_path = ['_static'] html_last_updated_fmt = '' def setup(app): app.add_css_file('css/custom.css') app.add_js_file('js/pk_scripts.js') # OpenGraph settings ogp_site_url = 'https://nvidia.github.io/NeMo-speech-data-processor/' ogp_image = 'https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/_static/nv_logo.png' # MathJax CDN mathjax_path = "https://cdn.jsdelivr.net/npm/[email protected]/es5/mml-chtml.min.js" nitpick_ignore = [ ('py:class', 'abc.ABC'), ('py:class', 'sdp.processors.base_processor.DataEntry'), ] # nitpick_ignore_regex = [('py:class', '*')]
NeMo-speech-data-processor-main
docs/src/conf.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging # overriding with the library specific logger, so that it's possible to # customize in any downstream applications logger = logging.getLogger("sdp")
NeMo-speech-data-processor-main
sdp/logging.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-speech-data-processor-main
sdp/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import tempfile import uuid from typing import List import hydra from omegaconf import OmegaConf, open_dict from sdp.logging import logger # registering new resolvers to simplify config files OmegaConf.register_new_resolver("subfield", lambda node, field: node[field]) OmegaConf.register_new_resolver("not", lambda x: not x) OmegaConf.register_new_resolver("equal", lambda field, value: field == value) # customizing logger logger.setLevel(logging.INFO) handler = logging.StreamHandler() handler.setLevel(logging.INFO) formatter = logging.Formatter( '[SDP %(levelname)1.1s %(asctime)s %(module)s:%(lineno)d] %(message)s', datefmt="%Y-%m-%d %H:%M:%S", ) handler.setFormatter(formatter) logger.handlers logger.addHandler(handler) logger.propagate = False def select_subset(input_list: List, select_str: str) -> List: """This function parses a string and selects objects based on that. The string is expected to be a valid representation of Python slice. The only difference with using an actual slice is that we are always returning a list, never a single element. See examples below for more details. Examples:: >>> processors_to_run = [1, 2, 3, 4, 5] >>> select_subset(processors_to_run, "3:") # to exclude first 3 objects [4, 5] >>> select_subset(processors_to_run, ":-1") # to select all but last [1, 2, 3, 4] >>> select_subset(processors_to_run, "2:5") # to select 3rd to 5th [3, 4, 5] >>> # note that unlike normal slice, we still return a list here >>> select_subset(processors_to_run, "0") # to select only the first [1] >>> select_subset(processors_to_run, "-1") # to select only the last [5] Args: input_list (list): input list to select objects from. select_str (str): string representing Python slice. Returns: list: a subset of the input according to the ``select_str`` """ if ":" not in select_str: selected_objects = [input_list[int(select_str)]] else: slice_obj = slice(*map(lambda x: int(x.strip()) if x.strip() else None, select_str.split(":"))) selected_objects = input_list[slice_obj] return selected_objects def run_processors(cfg): logger.info(f"Hydra config: {OmegaConf.to_yaml(cfg)}") processors_to_run = cfg.get("processors_to_run", "all") if processors_to_run == "all": processors_to_run = ":" selected_cfgs = select_subset(cfg.processors, processors_to_run) # filtering out any processors that have should_run=False processors_cfgs = [] for processor_cfg in selected_cfgs: with open_dict(processor_cfg): should_run = processor_cfg.pop("should_run", True) if should_run: processors_cfgs.append(processor_cfg) logger.info( "Specified to run the following processors: %s ", [cfg["_target_"] for cfg in processors_cfgs], ) processors = [] # let's build all processors first to automatically check # for errors in parameters with tempfile.TemporaryDirectory() as tmp_dir: # special check for the first processor. # In case user selected something that does not start from # manifest creation we will try to infer the input from previous # output file if processors_cfgs[0] is not cfg.processors[0] and "input_manifest_file" not in processors_cfgs[0]: # locating starting processor for idx, processor in enumerate(cfg.processors): if processor is processors_cfgs[0]: # we don't do a copy, so can just check object ids if "output_manifest_file" in cfg.processors[idx - 1]: with open_dict(processors_cfgs[0]): processors_cfgs[0]["input_manifest_file"] = cfg.processors[idx - 1]["output_manifest_file"] break for idx, processor_cfg in enumerate(processors_cfgs): logger.info('=> Building processor "%s"', processor_cfg["_target_"]) # we assume that each processor defines "output_manifest_file" # and "input_manifest_file" keys, which can be optional. In case they # are missing, we create tmp files here for them if "output_manifest_file" not in processor_cfg: tmp_file_path = os.path.join(tmp_dir, str(uuid.uuid4())) with open_dict(processor_cfg): processor_cfg["output_manifest_file"] = tmp_file_path if idx != len(processors_cfgs) - 1 and "input_manifest_file" not in processors_cfgs[idx + 1]: with open_dict(processors_cfgs[idx + 1]): processors_cfgs[idx + 1]["input_manifest_file"] = processor_cfg["output_manifest_file"] processor = hydra.utils.instantiate(processor_cfg) # running runtime tests to fail right-away if something is not # matching users expectations processor.test() processors.append(processor) for processor in processors: # TODO: add proper str method to all classes for good display logger.info('=> Running processor "%s"', processor) processor.process()
NeMo-speech-data-processor-main
sdp/run_processors.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import diff_match_patch from sdp.utils.edit_spaces import remove_extra_spaces diff = diff_match_patch.diff_match_patch() diff.Diff_Timeout = 0 def get_diff(orig_words: str, pred_words: str) -> List[tuple]: orig_words = remove_extra_spaces(orig_words) orig_words = orig_words.replace(" ", "\n") + "\n" pred_words = remove_extra_spaces(pred_words) pred_words = pred_words.replace(" ", "\n") + "\n" orig_enc, pred_enc, enc = diff.diff_linesToChars(orig_words, pred_words) diffs = diff.diff_main(orig_enc, pred_enc, False) diff.diff_charsToLines(diffs, enc) diffs_post = [] for d in diffs: diffs_post.append((d[0], d[1].replace("\n", " "))) return diffs_post def get_diff_with_subs_grouped(orig_words: str, pred_words: str) -> List[tuple]: """ Function to produce a list of word-level diffs, but with the substitutions grouped together. e.g. orig_words = "hello there nemo" pred_words = "hello my name is nemo" will give an output of: [(0, 'hello '), ((-1, 'there '), (1, 'my name is ')), (0, 'nemo ')] (note how the 'there' nad 'my name is' entry are grouped together in a tuple) This is to make it easier to find substitutions in the diffs, as dif_match_patch does not show substitutions clearly, only as a deletion followed by an insertion. Args: orig_words: a string containing the ground truth. pred_words: a string containing the text predicted by ASR. Returns: A list of tuples containing the word-level diffs between the ground truth and ASR. """ diffs = get_diff(orig_words, pred_words) diffs_group_subs = [] i = 0 while i < len(diffs): if i < len(diffs) - 1: # if i == len(diffs), line accessing diffs[i+1] will raise error if diffs[i][0] == -1 and diffs[i + 1][0] == 1: diffs_group_subs.append((diffs[i], diffs[i + 1])) i += 1 # skip extra diff entry so we don't append diffs[i+1] again else: diffs_group_subs.append(diffs[i]) else: diffs_group_subs.append(diffs[i]) i += 1 return diffs_group_subs
NeMo-speech-data-processor-main
sdp/utils/get_diff.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import difflib import editdistance sm = difflib.SequenceMatcher() def get_cer(text, pred_text): char_dist = editdistance.eval(text, pred_text) num_chars = len(text) cer = round(char_dist / num_chars * 100.0, 2) return cer def get_wer(text, pred_text): text_words = text.split() pred_text_words = pred_text.split() word_dist = editdistance.eval(text_words, pred_text_words) num_words = len(text_words) wer = round(word_dist / num_words * 100.0, 2) return wer def get_charrate(text, duration): num_chars = len(text) charrate = round(num_chars / duration, 2) return charrate def get_wordrate(text, duration): num_words = len(text.split()) wordrate = round(num_words / duration, 2) return wordrate def get_wmr(text, pred_text): orig = text.strip().split() sm.set_seqs(orig, pred_text.strip().split()) num_matches = 0 for m in sm.get_matching_blocks(): for word_idx in range(m[0], m[0] + m[2]): num_matches += 1 wmr = round(num_matches / len(orig) * 100.0, 2) return wmr
NeMo-speech-data-processor-main
sdp/utils/metrics_computation.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-speech-data-processor-main
sdp/utils/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def remove_extra_spaces(input_string): """ Removes extra spaces in between words and at the start and end of the string. e.g. "abc xyz abc xyz" --> "abc xyz abc xyz" e.g. " abc xyz " --> "abc xyz" """ output_string = " ".join(input_string.split()) return output_string def add_start_end_spaces(input_string): """ Adds spaces at the start and end of the input string. This is useful for when we specify we are looking for a particular word " <word> ". This will ensure we will find the word even if it is at the beginning or end of the utterances (ie. there will definitely be two spaces around the word). e.g. "abc xyz" --> " abc xyz " """ # ensure no extra spaces no_extra_spaces_string = remove_extra_spaces(input_string) output_string = f" {no_extra_spaces_string} " return output_string
NeMo-speech-data-processor-main
sdp/utils/edit_spaces.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tarfile import urllib import zipfile import wget from sdp.logging import logger def download_file(source_url: str, target_directory: str, verbose = True): # make sure target_directory is an absolute path to avoid bugs when we change directories to download data later target_directory = os.path.abspath(target_directory) if verbose: logger.info(f"Trying to download data from {source_url} and save it in this directory: {target_directory}") filename = os.path.basename(urllib.parse.urlparse(source_url).path) target_filepath = os.path.join(target_directory, filename) if os.path.exists(target_filepath): if verbose: logger.info(f"Found file {target_filepath} => will not be attempting download from {source_url}") else: original_dir = os.getcwd() # record current working directory so can cd back to it os.chdir(target_directory) # cd to target dir so that temporary download file will be saved in target dir wget.download(source_url, target_directory) # change back to original directory as the rest of the code may assume that we are in that directory os.chdir(original_dir) if verbose: logger.info("Download completed") return target_filepath def extract_archive(archive_path: str, extract_path: str, force_extract: bool = False) -> str: logger.info(f"Attempting to extract all contents from tar file {archive_path} and save in {extract_path}") if not force_extract: if tarfile.is_tarfile(archive_path): with tarfile.open(archive_path, "r") as archive: archive_extracted_dir = archive.getnames()[0] elif zipfile.is_zipfile(archive_path): with zipfile.ZipFile(archive_path, "r") as archive: archive_extracted_dir = archive.namelist()[0] else: raise RuntimeError(f"Unknown archive format: {archive_path}. We only support tar and zip archives.") archive_contents_dir = os.path.join(extract_path, archive_extracted_dir) if not force_extract and os.path.exists(archive_contents_dir): logger.info(f"Directory {archive_contents_dir} already exists => will not attempt to extract file") else: if tarfile.is_tarfile(archive_path): with tarfile.open(archive_path, "r") as archive: archive.extractall(path=extract_path) elif zipfile.is_zipfile(archive_path): with zipfile.ZipFile(archive_path, "r") as archive: archive.extractall(extract_path) logger.info("Finished extracting") if force_extract: return None return archive_contents_dir
NeMo-speech-data-processor-main
sdp/utils/common.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # let's import all supported processors here to simplify target specification from sdp.processors.datasets.coraal import ( CreateInitialManifestCORAAL, TrainDevTestSplitCORAAL, ) from sdp.processors.datasets.mcv.create_initial_manifest import CreateInitialManifestMCV from sdp.processors.datasets.mls.create_initial_manifest import CreateInitialManifestMLS from sdp.processors.datasets.mls.restore_pc import RestorePCForMLS from sdp.processors.datasets.slr83.create_initial_manifest import ( CreateInitialManifestSLR83, CustomDataSplitSLR83, ) from sdp.processors.datasets.voxpopuli.create_initial_manifest import ( CreateInitialManifestVoxpopuli, ) from sdp.processors.datasets.voxpopuli.normalize_from_non_pc_text import ( NormalizeFromNonPCTextVoxpopuli, ) from sdp.processors.modify_manifest.common import ( AddConstantFields, ChangeToRelativePath, CombineSources, DuplicateFields, RenameFields, SortManifest, SplitOnFixedDuration, KeepOnlySpecifiedFields, ) from sdp.processors.modify_manifest.data_to_data import ( InsIfASRInsertion, SubIfASRSubstitution, SubMakeLowercase, SubRegex, ) from sdp.processors.modify_manifest.data_to_dropbool import ( DropASRError, DropASRErrorBeginningEnd, DropHighCER, DropHighLowCharrate, DropHighLowDuration, DropHighLowWordrate, DropHighWER, DropIfNoneOfRegexMatch, DropIfRegexMatch, DropIfSubstringInInsertion, DropLowWordMatchRate, DropNonAlphabet, DropOnAttribute, ) from sdp.processors.modify_manifest.make_letters_uppercase_after_period import ( MakeLettersUppercaseAfterPeriod, ) from sdp.processors.nemo.asr_inference import ASRInference from sdp.processors.nemo.pc_inference import PCInference
NeMo-speech-data-processor-main
sdp/processors/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import json import multiprocessing import os from abc import ABC, abstractmethod from dataclasses import dataclass from typing import Any, Dict, List, Optional from tqdm import tqdm from tqdm.contrib.concurrent import process_map from sdp.logging import logger @dataclass class DataEntry: """A wrapper for data entry + any additional metrics.""" data: Optional[Dict] # can be None to drop the entry metrics: Any = None class BaseProcessor(ABC): """Abstract class for SDP processors. All processor classes inherit from the ``BaseProcessor`` class. This is a simple abstract class which has 2 empty methods: :meth:`process` and :meth:`test`. These serve to remind us that SDP essentially just runs ``.test()`` on all processors (to implement :ref:`run-time tests <sdp-runtime-tests>`), and then ``.process()`` on all processors. Args: output_manifest_file (str): path of where the output manifest file will be located. input_manifest_file (str): path of where the input manifest file is located. This arg is optional - some processors may not take in an input manifest because they need to create an initial manifest from scratch (ie from some transcript file that is in a format different to the NeMo manifest format). """ def __init__(self, output_manifest_file: str, input_manifest_file: Optional[str] = None): self.output_manifest_file = output_manifest_file self.input_manifest_file = input_manifest_file @abstractmethod def process(self): """Should be overriden by the child classes to implement some data processing.""" pass def test(self): """This method can be used to perform "runtime" tests. This can be any kind of self-consistency tests, but are usually in the form of checking that provided input test data entries match provided output test data entries. There are not tests by default. """ class BaseParallelProcessor(BaseProcessor): """Processor class which allows operations on each utterance to be parallelized. Parallelization is done using ``tqdm.contrib.concurrent.process_map`` inside the :meth:`process` method. Actual processing should be defined on a per-examples bases inside the :meth:`process_dataset_entry` method. See the documentation of all the methods for more details. Args: max_workers (int): maximum number of workers that will be spawned during the parallel processing. chunksize (int): the size of the chunks that will be sent to worker processes. test_cases (list[dict]): an optional list of dicts containing test cases for checking that the processor makes the changes that we are expecting. The dicts must have a key ``input``, the value of which is a dictionary containing data which is our test's input manifest line, and a key ``output``, the value of which is a dictionary containing data which is the expected output manifest line. """ def __init__( self, max_workers: int = -1, chunksize: int = 100, test_cases: Optional[List[Dict]] = None, **kwargs ): super().__init__(**kwargs) if max_workers == -1: max_workers = multiprocessing.cpu_count() self.max_workers = max_workers self.chunksize = chunksize self.number_of_entries = 0 self.total_duration = 0 self.test_cases = test_cases # need to convert to list to avoid errors in iteration over None if self.test_cases is None: self.test_cases = [] def process(self): """Parallelized implementation of the data processing. The execution flow of this method is the following. 1. :meth:`prepare` is called. It's empty by default but can be used to e.g. download the initial data files or compute some aggregates required for subsequent processing. 2. A list of data entries is created by calling :meth:`read_manifest`. Default implementation reads an input manifest file and returns a list of dictionaries for each line (we assume a standard NeMo format of one json per line). 3. :meth:`process_dataset_entry` is called **in parallel** on each element of the list created in the previous step. Note that you cannot create any new counters or modify the attributes of this class in any way inside that function as this will lead to an undefined behavior. Each call to the :meth:`process_dataset_entry` returns a list of ``DataEntry`` objects that are then aggregated together. ``DataEntry`` simply defines a ``data`` and ``metrics`` keys. 4. We loop through all returned data entries and do the following a) All ``metrics`` keys are collected in a separate list and passed over to the :meth:`finalize` method for any desired metric aggregation and reporting. b) If ``data`` is set to None, the objects are ignored (metrics are still collected). c) All non-ignored objects are dumped to the output manifest file with a call to ``json.dump``, one object per-line. Here is a diagram outlining the execution flow of this method: .. can only be viewed in the online documentation .. raw:: html <div align="center"> <img src="https://mermaid.ink/img/pako:eNplUl1r6zAM_SvCFy4pbL3vvaVwu-59sL0tl6LESmqIP7DkjWzsv89O0rVjzosiHR8dHetdtV6T2qg-YjjB0-Fv7SAfTs2cqdWjUGAwDrYiuz0yPWDEYaDhIfqWmH1chzmqVts_GQOW5OR1rWaqcv4916pcZxq6jKaAkRb0tok7IBtkXO5BM4KmDtMgUIotOmgIEpMG8VOK1v0atH91g0cNEV9BoyBgEm9RTJvljbX6D7e3O9hfVOyvVURCfbToTEcs11pKocwbksC5PnWFyhB00VvIE7wYnxiWwY3rgbNNqwlnOpATRQLD4B2dhdxdhNx9t2PiOJYRmORITuJYlb85XEydFGDDErGVL4tn6gNcuA-Zm_GFwCf5McJvwL6P1KNQoYim5SlfTY7-At9BEmHQ0YdAenVucH_hv7_W3hmHg3mj40JWXYudX8lwGHD86rb4d7YtN6hd-Qo1Oa1ulKVo0ei8k-8lXatsps0ubnK47EVZrY8MLQ_-OLpWbSQmulEpZNvoYDDvrlWbDgemj0-10vX9" height=100% /> </div> """ self.prepare() dataset_entries = self.read_manifest() # this will unroll all inner lists data = itertools.chain( *process_map( self.process_dataset_entry, dataset_entries, max_workers=self.max_workers, chunksize=self.chunksize, ) ) metrics = [] os.makedirs(os.path.dirname(self.output_manifest_file), exist_ok=True) with open(self.output_manifest_file, "wt", encoding="utf8") as fout: for data_entry in tqdm(data): metrics.append(data_entry.metrics) if data_entry.data is None: continue json.dump(data_entry.data, fout, ensure_ascii=False) self.number_of_entries += 1 self.total_duration += data_entry.data.get("duration", 0) fout.write("\n") self.finalize(metrics) def prepare(self): """Can be used in derived classes to prepare the processing in any way. E.g., download data or compute some aggregates. Will be called before starting processing the data. """ def read_manifest(self): """Reading the input manifest file. .. note:: This function should be overridden in the "initial" class creating manifest to read from the original source of data. """ if self.input_manifest_file is None: raise NotImplementedError("Override this method if the processor creates initial manifest") # TODO: should we not assume that manifest can fully fit in memory? with open(self.input_manifest_file, "rt", encoding="utf8") as fin: dataset_entries = [json.loads(line) for line in fin.readlines()] return dataset_entries @abstractmethod def process_dataset_entry(self, data_entry) -> List[DataEntry]: """Needs to be implemented in the derived classes. Each returned value should be a ``DataEntry`` object that will hold a dictionary (or anything else that can be json-serialized) with the actual data + any additional metrics required for statistics reporting. Those metrics can be used in :meth:`finalize` to prepare for final reporting. ``DataEntry`` is a simple dataclass defined in the following way:: @dataclass class DataEntry: # can be None to drop the entry data: Optional[Dict] # anything - you'd need to aggregate all # values in the finalize method manually metrics: Any = None .. note:: This method should always return a list of objects to allow a one-to-many mapping. E.g., if you want to cut an utterance into multiple smaller parts, you can return a list of all the produced utterances and they will be handled correctly. The many-to-one mapping is not currently supported by design of this method (but can still be done if you don't inherit from this class and process the data sequentially). Args: data_entry: most often, ``data_entry`` will be a dictionary containing items which represent the JSON manifest entry. Sometimes, such as in :class:`sdp.processors.CreateInitialManifestMLS`, it will be a string containing a line for that utterance from the original raw MLS transcript. In general it is an element of the list returned from the :meth:`read_manifest` method. """ # TODO: it would be more straightforward to use a generator here, but # seems that it's not supported with multiprocessing. Is there a # way to make it work? def finalize(self, metrics: List): """Can be used to output statistics about the processed data. By default outputs new number of entries/hours. Args: metrics (list): a list containing all ``metrics`` keys from the data entries returned from the :meth:`process_dataset_entry` method. """ logger.info("Total number of entries after processing: %d", self.number_of_entries) if self.total_duration != 0: logger.info("Total audio duration (hours) after processing: %.2f", self.total_duration / 3600) def test(self): """Applies processing to "test_cases" and raises an error in case of mismatch.""" for test_case in self.test_cases: generated_outputs = self.process_dataset_entry(test_case["input"].copy()) expected_outputs = ( [test_case["output"]] if not isinstance(test_case["output"], list) else test_case["output"] ) for generated_output, expected_output in zip(generated_outputs, expected_outputs): generated_output = generated_output.data if generated_output != expected_output: raise RuntimeError( "Runtime test failed.\n" f"Test input: {test_case['input']}\n" f"Generated output: {generated_output}\n" f"Expected output: {expected_output}" )
NeMo-speech-data-processor-main
sdp/processors/base_processor.py
NeMo-speech-data-processor-main
sdp/processors/nemo/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess from pathlib import Path from sdp.processors.base_processor import BaseProcessor # Note that we do not re-use base parallel implementation, since the ASR # inference is already run in batches. # TODO: actually, it might still be beneficial to have another level of # parallelization, but that needs to be tested. class ASRInference(BaseProcessor): """This processor performs ASR inference on each utterance of the input manifest. ASR predictions will be saved in the ``pred_text`` key. Args: pretrained_model (str): the name of the pretrained NeMo ASR model which will be used to do inference. batch_size (int): the batch size to use for ASR inference. Defaults to 32. Returns: The same data as in the input manifest with an additional field ``pred_text`` containing ASR model's predictions. """ def __init__( self, pretrained_model: str, batch_size: int = 32, **kwargs, ): super().__init__(**kwargs) self.script_path = Path(__file__).parents[1] / "nemo" / "transcribe_speech.py" self.pretrained_model = pretrained_model self.batch_size = batch_size def process(self): """This will add "pred_text" key into the output manifest.""" os.makedirs(os.path.dirname(self.output_manifest_file), exist_ok=True) subprocess.run( f"python {self.script_path} " f"pretrained_name={self.pretrained_model} " f"dataset_manifest={self.input_manifest_file} " f"output_filename={self.output_manifest_file} " f"batch_size={self.batch_size} ", shell=True, check=True, )
NeMo-speech-data-processor-main
sdp/processors/nemo/asr_inference.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from pathlib import Path from typing import Dict, List, Optional, Union from sdp.processors.base_processor import BaseProcessor def load_manifest(manifest: Path) -> List[Dict[str, Union[str, float]]]: result = [] with manifest.open() as f: for i, line in enumerate(f): data = json.loads(line) result.append(data) return result class PCInference(BaseProcessor): """Adds predictions of a text-based punctuation and capitalization (P&C) model. Operates on the text in the ``input_text_field``, and saves predictions in the ``output_text_field``. Args: input_text_field (str): the text field that will be the input to the P&C model. output_text_field (str): the text field where the output of the PC model will be saved. batch_size (int): the batch sized used by the P&C model. device (str): the device used by the P&C model. Can be skipped to auto-select. pretrained_name (str): the pretrained_name of the P&C model. model_path (str): the model path to the P&C model. .. note:: Either ``pretrained_name`` or ``model_path`` have to be specified. Returns: The same data as in the input manifest with an additional field <output_text_field> containing P&C model's predictions. """ def __init__( self, input_text_field: str, output_text_field: str, batch_size: int, device: Optional[str] = None, pretrained_name: Optional[str] = None, model_path: Optional[str] = None, **kwargs, ): super().__init__(**kwargs) self.pretrained_name = pretrained_name self.model_path = model_path self.input_text_field = input_text_field self.output_text_field = output_text_field self.device = device self.batch_size = batch_size # verify self.pretrained_name/model_path if self.pretrained_name is None and self.model_path is None: raise ValueError("pretrained_name and model_path cannot both be None") if self.pretrained_name is not None and self.model_path is not None: raise ValueError("pretrained_name and model_path cannot both be specified") def process(self): import torch # importing after nemo to make sure users first install nemo, instead of torch, then nemo from nemo.collections.nlp.models import PunctuationCapitalizationModel if self.pretrained_name: model = PunctuationCapitalizationModel.from_pretrained(self.pretrained_name) else: model = PunctuationCapitalizationModel.restore_from(self.model_path) if self.device is None: if torch.cuda.is_available(): model = model.cuda() else: model = model.cpu() else: model = model.to(self.device) manifest = load_manifest(Path(self.input_manifest_file)) texts = [] for item in manifest: texts.append(item[self.input_text_field]) processed_texts = model.add_punctuation_capitalization( texts, batch_size=self.batch_size, ) Path(self.output_manifest_file).parent.mkdir(exist_ok=True, parents=True) with Path(self.output_manifest_file).open('w') as f: for item, t in zip(manifest, processed_texts): item[self.output_text_field] = t f.write(json.dumps(item, ensure_ascii=False) + '\n')
NeMo-speech-data-processor-main
sdp/processors/nemo/pc_inference.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import glob import json import os from dataclasses import dataclass, is_dataclass from pathlib import Path from typing import Optional import pytorch_lightning as pl import torch from nemo.collections.asr.metrics.rnnt_wer import RNNTDecodingConfig from nemo.collections.asr.metrics.wer import CTCDecodingConfig from nemo.collections.asr.models import ASRModel from nemo.collections.asr.models.ctc_models import EncDecCTCModel from nemo.collections.asr.parts.utils.transcribe_utils import transcribe_partial_audio from nemo.collections.common.tokenizers.aggregate_tokenizer import AggregateTokenizer from nemo.core.config import hydra_runner from nemo.utils import logging, model_utils from omegaconf import OmegaConf """ Transcribe audio file on a single CPU/GPU. Useful for transcription of moderate amounts of audio data. # Arguments model_path: path to .nemo ASR checkpoint pretrained_name: name of pretrained ASR model (from NGC registry) audio_dir: path to directory with audio files dataset_manifest: path to dataset JSON manifest file (in NeMo format) compute_langs: Bool to request language ID information (if the model supports it) output_filename: Output filename where the transcriptions will be written batch_size: batch size during inference cuda: Optional int to enable or disable execution of model on certain CUDA device. amp: Bool to decide if Automatic Mixed Precision should be used during inference audio_type: Str filetype of the audio. Supported = wav, flac, mp3 overwrite_transcripts: Bool which when set allows repeated transcriptions to overwrite previous results. rnnt_decoding: Decoding sub-config for RNNT. Refer to documentation for specific values. # Usage ASR model can be specified by either "model_path" or "pretrained_name". Data for transcription can be defined with either "audio_dir" or "dataset_manifest". append_pred - optional. Allows you to add more than one prediction to an existing .json pred_name_postfix - optional. The name you want to be written for the current model Results are returned in a JSON manifest file. python transcribe_speech.py \ model_path=null \ pretrained_name=null \ audio_dir="" \ dataset_manifest="" \ output_filename="" \ batch_size=32 \ compute_langs=False \ cuda=0 \ amp=True \ append_pred=False \ pred_name_postfix="" """ @dataclass class TranscriptionConfig: # Required configs model_path: Optional[str] = None # Path to a .nemo file pretrained_name: Optional[str] = None # Name of a pretrained model audio_dir: Optional[str] = None # Path to a directory which contains audio files dataset_manifest: Optional[str] = None # Path to dataset's JSON manifest # General configs output_filename: Optional[str] = None batch_size: int = 32 num_workers: int = 0 append_pred: bool = False # Sets mode of work, if True it will add new field transcriptions. pred_name_postfix: Optional[str] = None # If you need to use another model name, rather than standard one. # Set to True to output language ID information compute_langs: bool = False # Set `cuda` to int to define CUDA device. If 'None', will look for CUDA # device anyway, and do inference on CPU only if CUDA device is not found. # If `cuda` is a negative number, inference will be on CPU only. cuda: Optional[int] = None amp: bool = False audio_type: str = "wav" # Recompute model transcription, even if the output folder exists with scores. overwrite_transcripts: bool = True # Decoding strategy for CTC models ctc_decoding: CTCDecodingConfig = CTCDecodingConfig() # Decoding strategy for RNNT models rnnt_decoding: RNNTDecodingConfig = RNNTDecodingConfig(fused_batch_size=-1) @hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig) def main(cfg: TranscriptionConfig) -> TranscriptionConfig: logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') if is_dataclass(cfg): cfg = OmegaConf.structured(cfg) if cfg.model_path is None and cfg.pretrained_name is None: raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!") if cfg.audio_dir is None and cfg.dataset_manifest is None: raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!") # setup GPU if cfg.cuda is None: if torch.cuda.is_available(): device = [0] # use 0th CUDA device accelerator = 'gpu' else: device = 1 accelerator = 'cpu' else: device = [cfg.cuda] accelerator = 'gpu' map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu') # setup model if cfg.model_path is not None: # restore model from .nemo file path model_cfg = ASRModel.restore_from(restore_path=cfg.model_path, return_config=True) classpath = model_cfg.target # original class path imported_class = model_utils.import_class_by_path(classpath) # type: ASRModel logging.info(f"Restoring model : {imported_class.__name__}") asr_model = imported_class.restore_from( restore_path=cfg.model_path, map_location=map_location ) # type: ASRModel model_name = os.path.splitext(os.path.basename(cfg.model_path))[0] else: # restore model by name asr_model = ASRModel.from_pretrained( model_name=cfg.pretrained_name, map_location=map_location ) # type: ASRModel model_name = cfg.pretrained_name trainer = pl.Trainer(devices=device, accelerator=accelerator) asr_model.set_trainer(trainer) asr_model = asr_model.eval() partial_audio = False # collect additional transcription information return_hypotheses = True # we will adjust this flag is the model does not support it compute_langs = cfg.compute_langs # Setup decoding strategy if hasattr(asr_model, 'change_decoding_strategy'): # Check if ctc or rnnt model if hasattr(asr_model, 'joint'): # RNNT model cfg.rnnt_decoding.fused_batch_size = -1 cfg.rnnt_decoding.compute_langs = cfg.compute_langs asr_model.change_decoding_strategy(cfg.rnnt_decoding) else: asr_model.change_decoding_strategy(cfg.ctc_decoding) if cfg.audio_dir is not None and not cfg.append_pred: filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"**/*.{cfg.audio_type}"), recursive=True)) else: # get filenames from manifest filepaths = [] if os.stat(cfg.dataset_manifest).st_size == 0: logging.error(f"The input dataset_manifest {cfg.dataset_manifest} is empty. Exiting!") return None manifest_dir = Path(cfg.dataset_manifest).parent with open(cfg.dataset_manifest, 'r') as f: has_two_fields = [] for line in f: item = json.loads(line) if "offset" in item and "duration" in item: has_two_fields.append(True) else: has_two_fields.append(False) audio_file = Path(item['audio_filepath']) if not audio_file.is_file() and not audio_file.is_absolute(): audio_file = manifest_dir / audio_file filepaths.append(str(audio_file.absolute())) partial_audio = all(has_two_fields) logging.info(f"\nTranscribing {len(filepaths)} files...\n") # setup AMP (optional) if cfg.amp and torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'): logging.info("AMP enabled!\n") autocast = torch.cuda.amp.autocast else: @contextlib.contextmanager def autocast(): yield # Compute output filename if cfg.output_filename is None: # create default output filename if cfg.audio_dir is not None: cfg.output_filename = os.path.dirname(os.path.join(cfg.audio_dir, '.')) + '.json' elif cfg.pred_name_postfix is not None: cfg.output_filename = cfg.dataset_manifest.replace('.json', f'_{cfg.pred_name_postfix}.json') else: cfg.output_filename = cfg.dataset_manifest.replace('.json', f'_{model_name}.json') # if transcripts should not be overwritten, and already exists, skip re-transcription step and return if not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename): logging.info( f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`" f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text." ) return cfg # transcribe audio with autocast(): with torch.no_grad(): if partial_audio: if isinstance(asr_model, EncDecCTCModel): transcriptions = transcribe_partial_audio( asr_model=asr_model, path2manifest=cfg.dataset_manifest, batch_size=cfg.batch_size, num_workers=cfg.num_workers, return_hypotheses=return_hypotheses, ) else: logging.warning( "RNNT models do not support transcribe partial audio for now. Transcribing full audio." ) transcriptions = asr_model.transcribe( paths2audio_files=filepaths, batch_size=cfg.batch_size, num_workers=cfg.num_workers, return_hypotheses=return_hypotheses, ) else: transcriptions = asr_model.transcribe( paths2audio_files=filepaths, batch_size=cfg.batch_size, num_workers=cfg.num_workers, return_hypotheses=return_hypotheses, ) logging.info(f"Finished transcribing {len(filepaths)} files !") logging.info(f"Writing transcriptions into file: {cfg.output_filename}") # if transcriptions form a tuple (from RNNT), extract just "best" hypothesis if type(transcriptions) == tuple and len(transcriptions) == 2: transcriptions = transcriptions[0] # write audio transcriptions if cfg.append_pred: logging.info(f'Transcripts will be written in "{cfg.output_filename}" file') if cfg.pred_name_postfix is not None: pred_by_model_name = cfg.pred_name_postfix else: pred_by_model_name = model_name pred_text_attr_name = 'pred_text_' + pred_by_model_name else: pred_text_attr_name = 'pred_text' with open(cfg.output_filename, 'w', encoding='utf-8') as f: if cfg.audio_dir is not None: for idx, transcription in enumerate(transcriptions): item = {'audio_filepath': filepaths[idx], pred_text_attr_name: transcription.text} if compute_langs: item['pred_lang'] = transcription.langs item['pred_lang_chars'] = transcription.langs_chars f.write(json.dumps(item, ensure_ascii=False) + "\n") else: with open(cfg.dataset_manifest, 'r') as fr: for idx, line in enumerate(fr): item = json.loads(line) item[pred_text_attr_name] = transcriptions[idx].text if compute_langs: item['pred_lang'] = transcriptions[idx].langs item['pred_lang_chars'] = transcriptions[idx].langs_chars f.write(json.dumps(item, ensure_ascii=False) + "\n") logging.info("Finished writing predictions !") return cfg if __name__ == '__main__': main() # noqa pylint: disable=no-value-for-parameter
NeMo-speech-data-processor-main
sdp/processors/nemo/transcribe_speech.py
NeMo-speech-data-processor-main
sdp/processors/datasets/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from sdp.processors.base_processor import BaseParallelProcessor, DataEntry class TrainDevTestSplitCORAAL(BaseParallelProcessor): """Custom train-dev-test split for CORAAL dataset. Split is done speaker-wise, so the same speakers don't appear in different splits. Args: data_split (str): train, dev or test. Returns: All the same fields as in the input manifest, but only a subset of the data is retained. """ def __init__( self, data_split: str, **kwargs, ): super().__init__(**kwargs) if data_split not in ["train", "dev", "test"]: raise ValueError("data_split has to be either train, dev or test") self.data_split = data_split self.split_map = {} self.split_map["train"] = set( [ 'ATL_se0_ag1_m', 'DCA_se1_ag1_f', 'DCA_se1_ag2_f', 'DCA_se1_ag2_m', 'DCA_se1_ag3_f', 'DCA_se1_ag3_m', 'DCA_se1_ag4_m', 'DCA_se2_ag1_f', 'DCA_se2_ag1_m', 'DCA_se2_ag2_m', 'DCB_se1_ag1_m', 'DCB_se1_ag2_f', 'DCB_se1_ag2_m', 'DCB_se1_ag3_f', 'DCB_se1_ag3_m', 'DCB_se1_ag4_f', 'DCB_se1_ag4_m', 'DCB_se2_ag1_f', 'DCB_se2_ag1_m', 'DCB_se2_ag2_f', 'LES_se0_ag2_f', 'LES_se0_ag2_m', 'PRV_se0_ag1_f', 'PRV_se0_ag2_f', 'ROC_se0_ag1_m', 'ROC_se0_ag2_f', 'VLD_se0_ag2_f', 'VLD_se0_ag2_m', ] ) self.split_map["dev"] = set( [ 'ATL_se0_ag1_f', 'DCA_se1_ag1_m', 'DCB_se1_ag1_f', 'LES_se0_ag3_f', 'PRV_se0_ag1_m', 'ROC_se0_ag1_f', 'VLD_se0_ag3_f', ] ) self.split_map["test"] = set( [ 'ATL_se0_ag2_f', 'ATL_se0_ag2_m', 'DCA_se2_ag3_m', 'DCA_se2_ag4_f', 'DCA_se2_ag4_m', 'DCA_se3_ag1_f', 'DCA_se3_ag1_m', 'DCA_se3_ag2_f', 'DCA_se3_ag2_m', 'DCA_se3_ag3_f', 'DCA_se3_ag3_m', 'DCA_se3_ag4_m', 'DCB_se2_ag2_m', 'DCB_se2_ag3_f', 'DCB_se2_ag3_m', 'DCB_se2_ag4_f', 'DCB_se2_ag4_m', 'DCB_se3_ag1_f', 'DCB_se3_ag1_m', 'DCB_se3_ag2_f', 'DCB_se3_ag3_f', 'DCB_se3_ag3_m', 'DCB_se3_ag4_f', 'DCB_se3_ag4_m', 'LES_se0_ag3_m', 'LES_se0_ag4_f', 'LES_se0_ag4_m', 'PRV_se0_ag2_m', 'PRV_se0_ag3_f', 'PRV_se0_ag3_m', 'ROC_se0_ag2_m', 'ROC_se0_ag3_f', 'ROC_se0_ag3_m', 'VLD_se0_ag3_m', 'VLD_se0_ag4_f', 'VLD_se0_ag4_m', ] ) def process_dataset_entry(self, data_entry): if data_entry["original_file"][:-5] in self.split_map[self.data_split]: return [DataEntry(data=data_entry)] return []
NeMo-speech-data-processor-main
sdp/processors/datasets/coraal/data_splits.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .create_initial_manifest import CreateInitialManifestCORAAL from .data_splits import TrainDevTestSplitCORAAL
NeMo-speech-data-processor-main
sdp/processors/datasets/coraal/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import glob import os import urllib.request from pathlib import Path import pandas as pd from sox import Transformer from sdp.processors.base_processor import BaseParallelProcessor, DataEntry from sdp.utils.common import download_file, extract_archive def get_coraal_url_list(): """Returns url list for CORAAL dataset. There are a few mistakes in the official url list that are fixed here. Can be overridden by tests to select a subset of urls. """ dataset_url = "http://lingtools.uoregon.edu/coraal/coraal_download_list.txt" urls = [] for file_url in urllib.request.urlopen(dataset_url): file_url = file_url.decode('utf-8').strip() # fixing known errors in the urls if file_url == 'http://lingtools.uoregon.edu/coraal/les/2021.07/LES_metadata_2018.10.06.txt': file_url = 'http://lingtools.uoregon.edu/coraal/les/2021.07/LES_metadata_2021.07.txt' if file_url == 'http://lingtools.uoregon.edu/coraal/vld/2021.07/VLD_metadata_2018.10.06.txt': file_url = 'http://lingtools.uoregon.edu/coraal/vld/2021.07/VLD_metadata_2021.07.txt' urls.append(file_url) return urls class CreateInitialManifestCORAAL(BaseParallelProcessor): """Processor to create initial manifest for the Corpus of Regional African American Language (CORAAL) dataset. Dataset link: https://oraal.uoregon.edu/coraal/ Will download all files, extract tars and split wav files based on the provided durations in the transcripts. Args: raw_data_dir (str): where to put raw downloaded data. resampled_audio_dir (str): where to put re-sampled and trimmed wav files. target_samplerate (int): sample rate to resample to. Defaults to 16000. target_nchannels (int): target number of channels. Defaults to 1. drop_pauses (bool): if True, will drop all transcriptions that contain only silence (indicated by ``(pause X)`` in the transcript). Defaults to True. group_duration_threshold (float): can be used to group consecutive utterances from the same speaker to a longer duration. Set to 0 to disable this grouping (but note that many utterances are transcribed with only a few seconds, so grouping is generally advised). Defaults to 20. Returns: This processor generates an initial manifest file with the following fields:: { "audio_filepath": <path to the audio file>, "duration": <duration of the audio in seconds>, "text": <transcription>, "original_file": <name of the original file in the dataset this audio came from>, "speaker": <speaker id>, "is_interviewee": <whether this is an interviewee (accented speech)>, "gender": <speaker gender>, "age": <speaker age>, "education": <speaker education>, "occupation": <speaker occupation>, } """ def __init__( self, raw_data_dir: str, resampled_audio_dir: str, target_samplerate: int = 16000, target_nchannels: int = 1, drop_pauses: bool = True, group_duration_threshold: float = 20.0, **kwargs, ): super().__init__(**kwargs) self.raw_data_dir = Path(raw_data_dir) self.resampled_audio_dir = resampled_audio_dir self.target_samplerate = target_samplerate self.target_nchannels = target_nchannels self.drop_pauses = drop_pauses self.group_duration_threshold = group_duration_threshold def prepare(self): os.makedirs(self.raw_data_dir, exist_ok=True) os.makedirs(self.resampled_audio_dir, exist_ok=True) # downloading all files for file_url in get_coraal_url_list(): download_file(file_url, str(self.raw_data_dir)) os.makedirs(self.raw_data_dir / "audio", exist_ok=True) os.makedirs(self.raw_data_dir / "transcripts", exist_ok=True) # extracting all files for data_file in glob.glob(f'{self.raw_data_dir}/*_audio_*.tar.gz'): # need to set force_extract=True, since there is no folder inside, just a list of files # and we extract data from multiple tars. Ideally, should change the way we check # for extracted data (currently there is an assumption that all data in archive is in a single folder) extract_archive(data_file, self.raw_data_dir / "audio", force_extract=True) for data_file in glob.glob(f'{self.raw_data_dir}/*_textfiles_*.tar.gz'): extract_archive(data_file, self.raw_data_dir / "transcripts", force_extract=True) def read_manifest(self): dfs = [] for data_file in glob.glob(f'{self.raw_data_dir}/transcripts/*.txt'): df = pd.read_csv(data_file, delimiter='\t') df['Basefile'] = os.path.basename(data_file)[:-4] # dropping .wav in the end if self.drop_pauses: df = df[~df['Content'].str.contains(r'\(pause \d+(?:\.\d+)?\)')] # grouping consecutive segments from the same speaker if self.group_duration_threshold > 0: df['Duration'] = df['EnTime'] - df['StTime'] # puts each sequence of same speaker utts in a "bin" speaker_bins = (~df['Spkr'].eq(df['Spkr'].shift())).cumsum() # within each bin, computes cumulative duration and then int-divides by the threshold df['ThresholdMult'] = df.groupby(speaker_bins)['Duration'].transform( lambda x: pd.Series.cumsum(x) // self.group_duration_threshold ) # finally, we take all positions where the int-division changes, # which indicates that cumsum exceded the threshold. And combine those # with speaker-change positions to get the final groups for utterance merging final_bins = ( (~df['Spkr'].eq(df['Spkr'].shift())) | (~df['ThresholdMult'].eq(df['ThresholdMult'].shift())) ).cumsum() df = df.groupby(final_bins).agg( { 'StTime': 'min', 'EnTime': 'max', 'Content': ' '.join, # will be the same in the group 'Spkr': lambda x: x.iloc[0], 'Basefile': lambda x: x.iloc[0], } ) # assigning label for interviewee vs interviewer (can be used to select a subset later) df['is_interviewee'] = df.apply(lambda x: x['Spkr'] in x['Basefile'], axis=1) # matching with metadata (age, gender, etc.) metadata_dfs = [] for data_file in glob.glob(f'{self.raw_data_dir}/*_metadata_*.txt'): metadata_dfs.append(pd.read_csv(data_file, delimiter='\t')) metadata_df = pd.concat(metadata_dfs) # only selecting a subset of columns - can be changed if more are needed # dropping duplicates since there are multiple rows per speaker because of # bit-rate, tar name and other file-specific information metadata_df = metadata_df[['CORAAL.Spkr', 'Gender', 'Age', 'Education', 'Occupation']].drop_duplicates() df = df.merge(metadata_df, left_on='Spkr', right_on='CORAAL.Spkr', how='left') df = df.drop('CORAAL.Spkr', axis=1) dfs.append(df) df = pd.concat(dfs) # would be better to keep it as df, but .values is way faster than .iterrows return df.values def process_dataset_entry(self, data_entry): ( start_time, end_time, content, speaker, basefile, is_interviewee, gender, age, education, occupation, ) = data_entry src_file = str(self.raw_data_dir / 'audio' / (basefile + '.wav')) output_wav_path = os.path.join( self.resampled_audio_dir, f"{basefile}_{int(start_time * 1000)}_{int(end_time * 1000)}.wav", ) if not os.path.exists(output_wav_path): tfm = Transformer() tfm.trim(start_time, end_time) tfm.rate(samplerate=self.target_samplerate) tfm.channels(n_channels=self.target_nchannels) tfm.build(input_filepath=src_file, output_filepath=output_wav_path) data = { "audio_filepath": output_wav_path, "duration": end_time - start_time, "text": content.strip(), "original_file": basefile, "speaker": speaker, "is_interviewee": is_interviewee, "gender": gender, "age": age, "education": education, "occupation": occupation, } return [DataEntry(data=data)]
NeMo-speech-data-processor-main
sdp/processors/datasets/coraal/create_initial_manifest.py
NeMo-speech-data-processor-main
sdp/processors/datasets/slr83/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from pathlib import Path from typing import Dict, List, Optional, Tuple import numpy as np import sox from tqdm import tqdm from sdp.logging import logger from sdp.processors.base_processor import ( BaseParallelProcessor, BaseProcessor, DataEntry, ) from sdp.utils.common import download_file, extract_archive DATASET_URL = "https://www.openslr.org/resources/83/{dialect}.zip" AVAILABLE_DIALECTS = [ 'irish_english_male', 'midlands_english_female', 'midlands_english_male', 'northern_english_female', 'northern_english_male', 'scottish_english_female', 'scottish_english_male', 'southern_english_female', 'southern_english_male', 'welsh_english_female', 'welsh_english_male', ] EXPECTED_SPLIT_STATS = { ('irish_english_male', 'test'): (102, 604.757), ('irish_english_male', 'train'): (293, 1656.917), ('irish_english_male', 'dev'): (53, 302.763), ('midlands_english_female', 'test'): (90, 608.341), ('midlands_english_female', 'train'): (94, 636.843), ('midlands_english_female', 'dev'): (45, 306.261), ('midlands_english_male', 'test'): (106, 604.672), ('midlands_english_male', 'train'): (270, 1568.683), ('midlands_english_male', 'dev'): (52, 301.227), ('northern_english_female', 'test'): (267, 1803.435), ('northern_english_female', 'train'): (330, 2146.816), ('northern_english_female', 'dev'): (145, 906.496), ('northern_english_male', 'test'): (587, 3607.467), ('northern_english_male', 'train'): (1126, 7003.136), ('northern_english_male', 'dev'): (298, 1807.957), ('scottish_english_female', 'test'): (284, 1801.301), ('scottish_english_female', 'train'): (426, 2681.344), ('scottish_english_female', 'dev'): (142, 906.24), ('scottish_english_male', 'test'): (612, 3603.883), ('scottish_english_male', 'train'): (663, 3994.027), ('scottish_english_male', 'dev'): (306, 1800.96), ('southern_english_female', 'test'): (572, 3600.128), ('southern_english_female', 'train'): (3124, 19213.312), ('southern_english_female', 'dev'): (293, 1804.8), ('southern_english_male', 'test'): (582, 3600.555), ('southern_english_male', 'train'): (3295, 20210.773), ('southern_english_male', 'dev'): (296, 1807.445), ('welsh_english_female', 'test'): (239, 1805.739), ('welsh_english_female', 'train'): (774, 5621.675), ('welsh_english_female', 'dev'): (125, 905.387), ('welsh_english_male', 'test'): (557, 3605.931), ('welsh_english_male', 'train'): (726, 4660.651), ('welsh_english_male', 'dev'): (286, 1805.909), } class CreateInitialManifestSLR83(BaseParallelProcessor): """Processor to create initial manifest for the SLR83 dataset. This is a dataset introduced in `Open-source Multi-speaker Corpora of the English Accents in the British Isles <https://aclanthology.org/2020.lrec-1.804/>`_. Args: raw_data_dir (str): where to put raw downloaded data. dialect (str): should be one of the * ``irish_english_male`` * ``midlands_english_female`` * ``midlands_english_male`` * ``northern_english_female`` * ``northern_english_male`` * ``scottish_english_female`` * ``scottish_english_male`` * ``southern_english_female`` * ``southern_english_male`` * ``welsh_english_female`` * ``welsh_english_male`` Returns: This processor generates an initial manifest file with the following fields:: { "audio_filepath": <path to the audio file>, "duration": <duration of the audio in seconds>, "text": <transcription>, } """ def __init__( self, raw_data_dir: str, dialect: str, **kwargs, ): super().__init__(**kwargs) self.raw_data_dir = Path(raw_data_dir) self.dialect = dialect if dialect not in AVAILABLE_DIALECTS: raise ValueError(f"dialect has to be one of {AVAILABLE_DIALECTS}") def prepare(self): """Downloading and extracting data (unless already done).""" os.makedirs(self.raw_data_dir, exist_ok=True) url = DATASET_URL.format(dialect=self.dialect) if not (self.raw_data_dir / f"{self.dialect}.zip").exists(): download_file(url, str(self.raw_data_dir)) extract_archive(str(self.raw_data_dir / os.path.basename(url)), str(self.raw_data_dir)) self.transcription_file = str(self.raw_data_dir / "line_index.csv") def read_manifest(self): if self.transcription_file is None: raise RuntimeError("self.process has to be called before processing the data.") with open(self.transcription_file, "rt", encoding="utf8") as fin: dataset_entries = fin.readlines() return dataset_entries def process_dataset_entry(self, data_entry: str): split_entry = data_entry.split(", ") if len(split_entry) != 3: raise RuntimeError(f"Input data is badly formatted! Bad line: {data_entry}") _, utt_id, transcript_text = split_entry audio_path = str(self.raw_data_dir / (utt_id + ".wav")) data = { "audio_filepath": audio_path, "duration": float(sox.file_info.duration(audio_path)), "text": transcript_text.strip(), } return [DataEntry(data=data)] class CustomDataSplitSLR83(BaseProcessor): """Splits SLR83 data into train, dev or test subset. The original paper does not provide train/dev/test splits, so we include a custom processing that can be used as a standardized split to compare results. For more details on this data split see `Damage Control During Domain Adaptation for Transducer Based Automatic Speech Recognition <https://arxiv.org/abs/2210.03255>`_. .. note:: All data dropping has to be done before the split. We will check the total number of files to be what is expected in the reference split. But if you add any custom pre-processing that changes duration or number of files, your splits will likely be different. Args: dialect (str): same as in the :class:`sdp.processors.CreateInitialManifestSLR83`. data_split (str): "train", "dev" or "test". Returns: All the same fields as in the input manifest, but only a subset of the data is retained. """ def __init__(self, dialect, data_split, **kwargs): super().__init__(**kwargs) self.dialect = dialect self.data_split = data_split def process(self): with open(self.input_manifest_file, "rt", encoding="utf8") as fin: manifest_data = [json.loads(line) for line in fin.readlines()] # sorting and fixing random seed for reproducibility manifest_data = sorted(manifest_data, key=lambda x: x['audio_filepath']) sample_idxs = list(range(len(manifest_data))) rng = np.random.RandomState(0) rng.shuffle(sample_idxs) duration = sum([x['duration'] for x in manifest_data]) validation_duration, test_duration = 1800, 3600 # 30 minutes, 1 hour if duration <= 3600: # 1 hour validation_duration, test_duration = 300, 600 # 5 minutes, 10 minutes elif duration > 3600 and duration <= 9000: # 2.5 hours validation_duration, test_duration = 900, 1800 # 15 minutes, 30 minutes split_data = {} split_data['dev'] = self._accumulate_samples(manifest_data, sample_idxs, validation_duration) split_data['test'] = self._accumulate_samples(manifest_data, sample_idxs, test_duration) split_data['train'] = ( [manifest_data[x] for x in sample_idxs], sum([manifest_data[x]['duration'] for x in sample_idxs]), ) for split in ['train', 'dev', 'test']: actual_stats = (len(split_data[split][0]), round(split_data[split][1], 3)) if EXPECTED_SPLIT_STATS[(self.dialect, split)] != actual_stats: raise RuntimeError( f"Generated split stats (num files, duration) = {actual_stats}. " f"But expected to see {EXPECTED_SPLIT_STATS[(self.dialect, split)]}. " f"Did you add some custom pre-processing that changes number of files or duration?" ) number_of_entries = 0 total_duration = 0 os.makedirs(os.path.dirname(self.output_manifest_file), exist_ok=True) with open(self.output_manifest_file, "wt", encoding="utf8") as fout: for data_entry in tqdm(split_data[self.data_split][0]): json.dump(data_entry, fout, ensure_ascii=False) number_of_entries += 1 total_duration += data_entry["duration"] fout.write("\n") logger.info("Total number of entries after processing: %d", number_of_entries) logger.info("Total audio duration (hours) after processing: %.2f", total_duration / 3600) def _accumulate_samples( self, manifest_data: List[dict], sample_idxs: List[int], duration_threshold: int ) -> Tuple[List[dict], float]: """Create a subset of the manifest data having duration less than duration_threshold. Args: manifest_data: data for the manifest file sample_idxs: list of available indices to pick a sample from the manifest data duration_threshold: maximum duration of the samples to be included in the subset Returns: tuple: The accumulated subset of the manifest data and total accumulated duration """ accumulated_data = [] accumulated_duration = 0 while accumulated_duration <= duration_threshold: sample_idx = sample_idxs.pop(0) accumulated_data.append(manifest_data[sample_idx]) accumulated_duration += manifest_data[sample_idx]['duration'] return accumulated_data, accumulated_duration
NeMo-speech-data-processor-main
sdp/processors/datasets/slr83/create_initial_manifest.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import string from typing import Dict from sdp.logging import logger from sdp.processors.base_processor import BaseParallelProcessor, DataEntry def is_same(orig_word, norm_word): # word is the same, except last symbol, which could indicate punctuation if orig_word[-1] in string.punctuation and orig_word[:-1].lower() == norm_word.lower(): return True, 1 # word is the same, except last symbol, which could indicate punctuation # (but by mistake it's been put in norm text) if norm_word[-1] in string.punctuation and norm_word[:-1].lower() == orig_word.lower(): return True, 0 # word is the same, but casing could be different if orig_word.lower() == norm_word.lower(): return True, 1 return False, None def restore_pc(orig_words, norm_words): # separate out any "¿" so they have a space either side orig_words = orig_words.replace("¿", " ¿ ") orig_words = " ".join(orig_words.split()) norm_words = norm_words.replace("¿", " ¿ ") norm_words = " ".join(norm_words.split()) orig_words_list = orig_words.split() norm_words_list = norm_words.split() # copy so not to corrupt # merging any commas and dots between numbers right away to simplify logic below orig_text = list([re.sub(r'(\d)[\.,](\d)', r"\1\2", word) for word in orig_words_list]) norm_text = list(norm_words_list) # to simplify logic below, so that we can assume last word always matches orig_text.append("end_text") norm_text.append("end_text") idx_orig = 0 idx_norm = 0 merged_text = [] while idx_orig < len(orig_text) and idx_norm < len(norm_text): same, is_orig = is_same(orig_text[idx_orig], norm_text[idx_norm]) if same: merged_text.append(orig_text[idx_orig] if is_orig else norm_text[idx_norm]) idx_orig += 1 idx_norm += 1 continue # add all "¿" 'words' in orig_text (which didnt have match in norm_text) to merged_text if orig_text[idx_orig] == "¿": merged_text.append("¿") idx_orig += 1 continue # checking if first letter is a number, but the whole word is not - that happens # on typos like 37a which should really be 37 a. So fixing those # another case is for number + punctuation, like 2017, - handling separately # another case is for numbers separated by comma, like this "1,5". Those are spelled out # separately in normalized form, so just removing the comma here add_punct = "" if orig_text[idx_orig][0].isdigit() and not orig_text[idx_orig].isdigit(): number, word = re.split('(\d+)', orig_text[idx_orig])[1:] orig_text[idx_orig] = number if word in string.punctuation: add_punct = word else: orig_text.insert(idx_orig + 1, word) # another annoying case is if typo ends with number like here "dell'11" # same logic, but need to go back to the first check, so doing "continue" below if orig_text[idx_orig][-1].isdigit() and not orig_text[idx_orig].isdigit(): word, number = re.split('(\d+)', orig_text[idx_orig])[:-1] orig_text[idx_orig] = word orig_text.insert(idx_orig + 1, number) continue # word is different, but original is a number - take from normalized in this case until # get same word again (as number might be represented with multiple words) # also handling case for number + punctuation while orig_text[idx_orig].isdigit(): idx_orig += 1 while idx_norm < len(norm_text) and not is_same(orig_text[idx_orig], norm_text[idx_norm])[0]: merged_text.append(norm_text[idx_norm]) idx_norm += 1 # if there is any trailing punctuation from last digit, let's add it merged_text[-1] = merged_text[-1] + add_punct if idx_norm != len(norm_text): print(idx_orig, idx_norm, len(orig_text), len(norm_text), orig_text, norm_text, merged_text) raise RuntimeError("Something went wrong during merging") # merging all "¿ " to the next word and removing end_text token norm_text = " ".join(merged_text[:-1]).replace("¿ ", "¿") return norm_text class NormalizeFromNonPCTextVoxpopuli(BaseParallelProcessor): """Tries to restore punctuation and capitalization from the un-normalized text version. VoxPopuli contains two versions of the transcription - original (non-normalized, but with punctuation and capitalization) and normalized (without punctuation or capitalization), but with digits and other forms normalized. This processor can be used to map the normalized and non-normalized versions and produce a normalized version with restored punctuation and capitalization. .. note:: The current map logic is highly heuristical and might not work for all languages. The processor will return ``n/a`` for any text it was not able to restore, so make sure you check how much data was removed and consider updating the heuristics to retain more data. Args: restored_text_field (str): the field where the recovered text (or ``n/a``) will be stored. Defaults to "text". raw_text_key (str): which field contains the original text without normalization. Defaults to "raw_text". norm_text_key (str): which field contains the normalized text. Defaults to "provided_norm_text". Returns: All the same data as in the input manifest with an additional key:: <restored_text_field>: <restored text or n/a if mapping failed>`` """ def __init__( self, restored_text_field: str = "text", raw_text_key: str = "raw_text", norm_text_key: str = "provided_norm_text", **kwargs, ): super().__init__(**kwargs) self.restored_text_field = restored_text_field self.raw_text_key = raw_text_key self.norm_text_key = norm_text_key def process_dataset_entry(self, data_entry: Dict): try: restored_norm_text = restore_pc(data_entry[self.raw_text_key], data_entry[self.norm_text_key]) except: logger.warning( f"Failed to restore normalization.\nRaw text: %s\nNormalized text: %s", data_entry[self.raw_text_key], data_entry[self.norm_text_key], ) restored_norm_text = "n/a" data_entry[self.restored_text_field] = restored_norm_text return [DataEntry(data=data_entry)]
NeMo-speech-data-processor-main
sdp/processors/datasets/voxpopuli/normalize_from_non_pc_text.py
NeMo-speech-data-processor-main
sdp/processors/datasets/voxpopuli/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess from pathlib import Path import sox from sox import Transformer from sdp.logging import logger from sdp.processors.base_processor import BaseParallelProcessor, DataEntry VOXPOPULI_URL = "https://github.com/facebookresearch/voxpopuli" class CreateInitialManifestVoxpopuli(BaseParallelProcessor): """Processor to create initial manifest for the VoxPopuli dataset. Dataset link: https://github.com/facebookresearch/voxpopuli/ Downloads and unzips raw VoxPopuli data for the specified language, and creates an initial manifest using the transcripts provided in the raw data. .. note:: This processor will install a couple of Python packages, including PyTorch, so it might be a good idea to run it in an isolated Python environment. Args: raw_data_dir (str): the directory where the downloaded data will be/is saved. language_id (str): the language of the data you wish to be downloaded. E.g., "en", "es", "it", etc. data_split (str): "train", "dev" or "test". resampled_audio_dir (str): the directory where the resampled wav files will be stored. target_samplerate (int): sample rate (Hz) to use for resampling. Defaults to 16000. target_nchannels (int): number of channels to create during resampling process. Defaults to 1. Returns: This processor generates an initial manifest file with the following fields:: { "audio_filepath": <path to the audio file>, "duration": <duration of the audio in seconds>, "text": <transcription (with provided normalization)>, "raw_text": <original transcription (without normalization)>, "speaker_id": <speaker id>, "gender": <speaker gender>, "age": <speaker age>, "is_gold_transcript": <whether the transcript has been verified>, "accent": <speaker accent, if known>, } """ def __init__( self, raw_data_dir: str, language_id: str, data_split: str, resampled_audio_dir: str, target_samplerate: int = 16000, target_nchannels: int = 1, **kwargs, ): super().__init__(**kwargs) self.raw_data_dir = Path(raw_data_dir) self.language_id = language_id self.data_split = data_split self.resampled_audio_dir = resampled_audio_dir self.target_samplerate = target_samplerate self.target_nchannels = target_nchannels def prepare(self): """Downloading data (unless already done)""" os.makedirs(self.raw_data_dir, exist_ok=True) if not (self.raw_data_dir / "transcribed_data").exists(): # TODO: some kind of isolated environment? if not os.path.exists(self.raw_data_dir / 'voxpopuli'): logger.info("Downloading voxpopuli and installing requirements") subprocess.run(f"git clone {VOXPOPULI_URL} {self.raw_data_dir / 'voxpopuli'}", check=True, shell=True) subprocess.run( f"pip install -r {self.raw_data_dir / 'voxpopuli' / 'requirements.txt'}", check=True, shell=True ) if not os.path.exists(self.raw_data_dir / 'raw_audios'): logger.info("Downloading raw audios") subprocess.run( f"cd {self.raw_data_dir / 'voxpopuli'} && " f"python -m voxpopuli.download_audios --root {self.raw_data_dir} --subset asr", check=True, shell=True, ) if not os.path.exists(self.raw_data_dir / 'transcribed_data' / self.language_id): logger.info("Segmenting and transcribing the data") subprocess.run( f"cd {self.raw_data_dir / 'voxpopuli'} && " f"python -m voxpopuli.get_asr_data --root {self.raw_data_dir} --lang {self.language_id}", check=True, shell=True, ) def read_manifest(self): with open( self.raw_data_dir / "transcribed_data" / self.language_id / f"asr_{self.data_split}.tsv", "rt", encoding="utf8", ) as fin: dataset_entries = fin.readlines()[1:] # skip header line return dataset_entries def process_dataset_entry(self, data_entry: str): if len(data_entry.split("\t")) != 8: raise RuntimeError(f"have more/less than 7 tabs in line {data_entry}") utt_id, raw_text, norm_text, spk_id, _, gender, is_gold_transcript, accent = data_entry.split("\t") year = utt_id[:4] src_audio_path = os.path.join(self.raw_data_dir, "transcribed_data", self.language_id, year, utt_id + ".ogg") tgt_wav_path = os.path.join(self.resampled_audio_dir, utt_id + ".wav") if not os.path.exists(os.path.dirname(tgt_wav_path)): os.makedirs(os.path.dirname(tgt_wav_path), exist_ok=True) if not os.path.exists(tgt_wav_path): tfm = Transformer() tfm.rate(samplerate=self.target_samplerate) tfm.channels(n_channels=self.target_nchannels) tfm.build(input_filepath=src_audio_path, output_filepath=tgt_wav_path) data = { "audio_filepath": tgt_wav_path, "duration": float(sox.file_info.duration(tgt_wav_path)), "text": norm_text, "raw_text": raw_text, "speaker_id": spk_id, "gender": gender, "is_gold_transcript": is_gold_transcript, "accent": accent, } return [DataEntry(data=data)]
NeMo-speech-data-processor-main
sdp/processors/datasets/voxpopuli/create_initial_manifest.py
NeMo-speech-data-processor-main
sdp/processors/datasets/mcv/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # To convert mp3 files to wav using sox, you must have installed sox with mp3 support # For example sudo apt-get install libsox-fmt-mp3 import csv import glob import os from pathlib import Path from typing import Tuple import sox from sox import Transformer from tqdm.contrib.concurrent import process_map from sdp.logging import logger from sdp.processors.base_processor import BaseParallelProcessor, DataEntry from sdp.utils.common import extract_archive class CreateInitialManifestMCV(BaseParallelProcessor): """Processor to create initial manifest for the Mozilla Common Voice (MCV) dataset. Dataset link: https://commonvoice.mozilla.org/ Extracts raw MCV data for the specified language and creates an initial manifest using the transcripts provided in the raw data. Args: raw_data_dir (str): the path to the directory containing the raw data archive file. Needs to be manually downloaded from https://commonvoice.mozilla.org/. extract_archive_dir (str): directory where the extracted data will be saved. resampled_audio_dir (str): directory where the resampled audio will be saved. data_split (str): "train", "dev" or "test". language_id (str): the ID of the language of the data. E.g., "en", "es", "it", etc. already_extracted (bool): if True, we will not try to extract the raw data. Defaults to False. target_samplerate (int): sample rate (Hz) to use for resampling. Defaults to 16000. target_nchannels (int): number of channels to create during resampling process. Defaults to 1. Returns: This processor generates an initial manifest file with the following fields:: { "audio_filepath": <path to the audio file>, "duration": <duration of the audio in seconds>, "text": <transcription (with capitalization and punctuation)>, } """ def __init__( self, raw_data_dir: str, extract_archive_dir: str, resampled_audio_dir: str, data_split: str, language_id: str, already_extracted: bool = False, target_samplerate: int = 16000, target_nchannels: int = 1, **kwargs, ): super().__init__(**kwargs) self.raw_data_dir = Path(raw_data_dir) self.extract_archive_dir = extract_archive_dir self.resampled_audio_dir = resampled_audio_dir self.data_split = data_split self.language_id = language_id self.already_extracted = already_extracted self.target_samplerate = target_samplerate self.target_nchannels = target_nchannels def prepare(self): """Extracting data (unless already done).""" os.makedirs(self.raw_data_dir, exist_ok=True) if not self.already_extracted: tar_gz_files = glob.glob(str(self.raw_data_dir) + f"/*{self.language_id}.tar.gz") if not tar_gz_files: raise RuntimeError( f"Did not find any file matching {self.raw_data_dir}/*.tar.gz. " "For MCV dataset we cannot automatically download the data, so " "make sure to get the data from https://commonvoice.mozilla.org/ " "and put it in the 'raw_data_dir' folder." ) elif len(tar_gz_files) > 1: raise RuntimeError( f"Expecting exactly one *{self.language_id}.tar.gz file in directory {self.raw_data_dir}" ) data_folder = extract_archive(tar_gz_files[0], self.extract_archive_dir) self.transcription_file = Path(data_folder) else: self.transcription_file = Path(self.extract_archive_dir) / self.language_id self.audio_path_prefix = str(self.transcription_file / "clips") self.transcription_file = str(self.transcription_file / (self.data_split + ".tsv")) os.makedirs(self.resampled_audio_dir, exist_ok=True) def read_manifest(self): if self.transcription_file is None: raise RuntimeError("self.process has to be called before processing the data.") with open(self.transcription_file, "rt", encoding="utf8") as csvfile: reader = csv.DictReader(csvfile, delimiter="\t") next(reader, None) # skip the headers dataset_entries = [(row["path"], row["sentence"]) for row in reader] return dataset_entries def process_dataset_entry(self, data_entry: Tuple[str, str]): file_path, text = data_entry file_name = os.path.splitext(os.path.basename(file_path))[0] transcript_text = text.strip() audio_path = os.path.join(self.audio_path_prefix, file_path) output_wav_path = os.path.join(self.resampled_audio_dir, file_name + ".wav") if not os.path.exists(output_wav_path): tfm = Transformer() tfm.rate(samplerate=self.target_samplerate) tfm.channels(n_channels=self.target_nchannels) tfm.build(input_filepath=audio_path, output_filepath=output_wav_path) data = { "audio_filepath": output_wav_path, "duration": float(sox.file_info.duration(output_wav_path)), "text": transcript_text, } return [DataEntry(data=data)]
NeMo-speech-data-processor-main
sdp/processors/datasets/mcv/create_initial_manifest.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import json import os import re import string import sys from glob import glob from pathlib import Path from typing import Optional import regex from joblib import Parallel, delayed from tqdm import tqdm from sdp.logging import logger from sdp.processors.base_processor import BaseProcessor from sdp.utils.common import download_file, extract_archive sys.setrecursionlimit(1000000) NA = "n/a" MLS_TEXT_URL = "https://dl.fbaipublicfiles.com/mls/lv_text.tar.gz" def abbreviations(text): text = ( text.replace("Cap'n", "Captain") .replace("cap'n", "captain") .replace("o'shot", "o shot") .replace("o' shot", "o shot") .replace("on'y", "only") .replace("on' y", "only") .replace(" 'a ", " a ") .replace(" 'em ", " em ") .replace("gen'leman", "gentleman") ) return text def process(text): text = ( text.replace("www.gutenberg.org", "www dot gutenberg dot org") .replace(".txt", "dot txt") .replace(".zip", "dot zip") ) text = ( text.replace("’", "'") .replace("_", " ") .replace("\n", " ") .replace("\t", " ") .replace("…", "...") .replace("»", '"') .replace("«", '"') .replace("\\", "") .replace("”", '"') .replace("„", '"') .replace("´", "'") .replace("-- --", "--") .replace("--", " -- ") .replace(". . .", "...") .replace("’", "'") .replace("“", '"') .replace("“", '"') .replace("‘", "'") .replace("_", " ") .replace("*", " ") .replace("—", "-") .replace("- -", "--") .replace("•", " ") .replace("^", " ") .replace(">", " ") .replace("■", " ") .replace("/", " ") .replace("––––", "...") .replace("W⸺", "W") .replace("`", "'") .replace("<", " ") .replace("{", " ") .replace("Good-night", "Good night") .replace("good-night", "good night") .replace("good-bye", "goodbye") .replace("Good-bye", "Goodbye") .replace(" !", "!") .replace(" ?", "?") .replace(" ,", ",") .replace(" .", ".") .replace(" ;", ";") .replace(" :", ":") .replace("!!", "!") .replace("--", "-") .replace("“", '"') .replace(", , ", ", ") .replace("=", " ") .replace("l,000", "1,000") .replace("–", "-") ) # remove dash in between the words text = re.sub(r"([A-Za-z0-9]+)(-)([A-Za-z0-9]+)", r"\g<1> \g<3>", text) text = re.sub(r"([A-Za-z0-9]+)(\.)([A-Za-z]+)", r"\g<1>\g<2> \g<3>", text) text = re.sub(r"([A-Za-z]+)(\.)([A-Za-z0-9]+)", r"\g<1>\g<2> \g<3>", text) # # remove text inside square brackets # text = re.sub(r"(\[.*?\])", " ", text) def __fix_space(text): # remove commas between digits text = re.sub(r"([0-9]+)(,)(\d\d\d)", r"\g<1>\g<3>", text) text = re.sub(r"([A-Za-z]+)(,)([A-Za-z0-9]+)", r"\g<1>\g<2> \g<3>", text) return text for _ in range(3): text = __fix_space(text) text = re.sub(r" +", " ", text) # make sure the text starts with an alpha start_idx = 0 while not text[start_idx].isalpha(): start_idx += 1 end_text = "END OF THIS PROJECT GUTENBERG" end_idx = len(text) if end_text in text: end_idx = text.find(end_text) end_text = "End of the Project Gutenberg" if end_text in text: end_idx = text.find(end_text) return text[start_idx:end_idx] def read_text(text_f): with open(text_f, "r") as f: text = f.read() return text def remove_punctuation(text: str, remove_spaces=True, do_lower=True, exclude=None, remove_accents=False): all_punct_marks = string.punctuation + "¿¡⸘" if exclude is not None: for p in exclude: all_punct_marks = all_punct_marks.replace(p, "") # a weird bug where commas is getting deleted when dash is present in the list of punct marks all_punct_marks = all_punct_marks.replace("-", "") text = re.sub("[" + all_punct_marks + "]", " ", text) if exclude and "-" not in exclude: text = text.replace("-", " ") text = re.sub(r" +", " ", text) if remove_spaces: text = text.replace(" ", "").replace("\u00A0", "").strip() if do_lower: text = text.lower() if remove_accents: text = text.replace("á", "a") text = text.replace("é", "e") text = text.replace("í", "i") text = text.replace("ó", "o") text = text.replace("ú", "u") text = text.replace("à", "a") text = text.replace("è", "e") text = text.replace("ù", "u") text = text.replace("â", "a") text = text.replace("ê", "e") text = text.replace("î", "i") text = text.replace("ô", "o") text = text.replace("û", "u") return text.strip() def recover_lines(manifest, processed_text, output_dir, restored_text_field): manifest_recovered = f"{output_dir}/{os.path.basename(manifest)}" if os.path.exists(manifest_recovered): return lines = [] with open(manifest, "r") as f: for line in f: line = json.loads(line) lines.append(line["text"]) logger.debug(f"processing {manifest}") logger.debug(f"processing - {len(lines)} lines") last_found_start_idx = 0 recovered_lines = {} for idx, cur_line in enumerate(lines): stop_search_for_line = False cur_word_idx = 0 cur_line = abbreviations(cur_line) cur_line = cur_line.split() end_match_found = False while not stop_search_for_line: cur_word = cur_line[cur_word_idx] pattern = cur_word max_start_match_len = min(4, len(cur_line)) for i in range(1, max_start_match_len): pattern += f"[^A-Za-z]+{cur_line[i]}" pattern = re.compile(pattern) for i, m in enumerate(pattern.finditer(processed_text[last_found_start_idx:].lower())): if end_match_found: break match_idx = m.start() + last_found_start_idx processed_text_list = processed_text[match_idx:].split() raw_text_pointer = ( len(cur_line) - 3 ) # added in case some dash separated words and split into multiple words in the cur_line stop_end_search = False right_offset = 20 while not end_match_found and raw_text_pointer <= len(processed_text_list) and not stop_end_search: if cur_line[-1].replace("'", "") == remove_punctuation( processed_text_list[raw_text_pointer - 1], remove_spaces=True, do_lower=True, remove_accents=False, ): # processed text could contain apostrophes that are parts of quotes, let's remove them from the processed text as well if "'" not in cur_line[-1] and "'" in processed_text_list[raw_text_pointer - 1]: processed_text_list[raw_text_pointer - 1] = processed_text_list[ raw_text_pointer - 1 ].replace("'", "") recovered_line = " ".join(processed_text_list[:raw_text_pointer]) if not is_valid(" ".join(cur_line), recovered_line): raw_text_pointer += 1 else: recovered_lines[idx] = recovered_line end_match_found = True raw_text_pointer += 1 stop_search_for_line = True last_found_start_idx = raw_text_pointer else: raw_text_pointer += 1 if raw_text_pointer > (len(cur_line) + right_offset): stop_end_search = True if not end_match_found: stop_search_for_line = True logger.debug( f"recovered {len(recovered_lines)} lines out of {len(lines)} -- {round(len(recovered_lines)/len(lines)*100, 2)}% -- {os.path.basename(manifest)}" ) with open(manifest_recovered, "w") as f_out, open(manifest, "r") as f_in: for idx, line in enumerate(f_in): line = json.loads(line) if idx in recovered_lines: line[restored_text_field] = recovered_lines[idx] else: line[restored_text_field] = NA f_out.write(json.dumps(line, ensure_ascii=False) + "\n") def split_text_into_sentences(text: str): """ Split text into sentences. Args: text: text Returns list of sentences """ # TODO: should this be filled up and exposed as a parameter? lower_case_unicode = "" upper_case_unicode = "" # end of quoted speech - to be able to split sentences by full stop text = re.sub(r"([\.\?\!])([\"\'])", r"\g<2>\g<1> ", text) # remove extra space text = re.sub(r" +", " ", text) # remove space in the middle of the lower case abbreviation to avoid splitting into separate sentences matches = re.findall(rf"[a-z{lower_case_unicode}]\.\s[a-z{lower_case_unicode}]\.", text) for match in matches: text = text.replace(match, match.replace(". ", ".")) # Read and split transcript by utterance (roughly, sentences) split_pattern = ( rf"(?<!\w\.\w.)(?<![A-Z{upper_case_unicode}][a-z{lower_case_unicode}]+\.)" rf"(?<![A-Z{upper_case_unicode}]\.)(?<=\.|\?|\!|\.”|\?”\!”)\s(?![0-9]+[a-z]*\.)" ) sentences = regex.split(split_pattern, text) return sentences def normalize_text(text_f: str, normalizer: Optional['Normalizer'] = None): """ Pre-process and normalized text_f file. Args: text_f: path to .txt file to normalize normalizer: """ raw_text = read_text(text_f) processed_text = abbreviations(process(raw_text)) if normalizer is not None: processed_text_list = normalizer.split_text_into_sentences(processed_text) else: processed_text_list = split_text_into_sentences(processed_text) processed_text_list_merged = [] last_segment = "" max_len = 7500 for i, text in enumerate(processed_text_list): if len(last_segment) < max_len: last_segment += " " + text else: processed_text_list_merged.append(last_segment.strip()) last_segment = "" if i == len(processed_text_list) - 1 and len(last_segment) > 0: processed_text_list_merged.append(last_segment.strip()) for i, text in enumerate(tqdm(processed_text_list_merged)): if normalizer is not None: processed_text_list_merged[i] = normalizer.normalize( text=text, punct_post_process=True, punct_pre_process=True ) else: processed_text_list_merged[i] = re.sub(r"\d", r"", processed_text_list_merged[i]) processed_text = " ".join(processed_text_list_merged) return processed_text import diff_match_patch as dmp_module dmp = dmp_module.diff_match_patch() dmp.Diff_Timeout = 0 def is_valid(line, recovered_line): """Checks that the restore line matches the original line in everything but casing and punctuation marks""" line = abbreviations(line) line_no_punc = remove_punctuation(line, remove_spaces=True, do_lower=True, remove_accents=True) recovered_line_no_punc = remove_punctuation(recovered_line, remove_spaces=True, do_lower=True, remove_accents=True) is_same = line_no_punc == recovered_line_no_punc return is_same def process_book(book_manifest, texts_dir, submanifests_dir, output_dir, restored_text_field, normalizer): book_id = os.path.basename(book_manifest).split(".")[0] text_f = f"{texts_dir}/{book_id}.txt" manifests = glob(f"{submanifests_dir}/{book_id}_*.json") logger.info(f"{book_id} -- {len(manifests)} manifests") # only continue (i.e. do not make early 'return') if there are {book_id}_{spk_id}.json files in submanifests_dir # that are not in output dir - else return early for book_id_spk_id in [os.path.basename(x).strip(".json") for x in manifests]: if not os.path.exists(os.path.join(output_dir, f"{book_id_spk_id}.json")): logger.info(f"Did not find {book_id_spk_id} in {output_dir} => will process this book") break else: return try: processed_text = normalize_text(text_f, normalizer) # re-run abbreviations since new are being added processed_text = abbreviations(processed_text) [ recover_lines( manifest=manifest, processed_text=processed_text, output_dir=output_dir, restored_text_field=restored_text_field, ) for manifest in manifests ] except: logger.info(f"{text_f} failed") return class RestorePCForMLS(BaseProcessor): """Recovers original text from the MLS Librivox texts. This processor can be used to restore punctuation and capitalization for the MLS data. Uses the original data in https://dl.fbaipublicfiles.com/mls/lv_text.tar.gz. Saves recovered text in ``restored_text_field`` field. If text was not recovered, ``restored_text_field`` will be equal to ``n/a``. Args: language_long (str): the full name of the language, used for choosing the folder of the contents of "https://dl.fbaipublicfiles.com/mls/lv_text.tar.gz". E.g., "english", "spanish", "italian", etc. language_short (str or None): the short name of the language, used for specifying the normalizer we want to use. E.g., "en", "es", "it", etc. If set to None, we will not try to normalize the provided Librivox text. lv_text_dir (str): the directory where the contents of https://dl.fbaipublicfiles.com/mls/lv_text.tar.gz will be saved. submanifests_dir (str): the directory where submanifests (one for each combo of speaker + book) will be stored. restored_submanifests_dir (str): the directory where restored submanifests (one for each combo of speaker + book) will be stored. restored_text_field (str): the field where the recovered text will be stored. n_jobs (int): number of jobs to use for parallel processing. Defaults to -1. show_conversion_breakdown (bool): whether to show how much of each submanifest was restored. Defaults to True. Returns: All the same data as in the input manifest with an additional key:: <restored_text_field>: <restored text or n/a if match was not found>`` """ def __init__( self, language_long: str, language_short: Optional[str], lv_text_dir: str, submanifests_dir: str, restored_submanifests_dir: str, restored_text_field: str, n_jobs: int = -1, show_conversion_breakdown: bool = True, **kwargs, ): super().__init__(**kwargs) self.language_long = language_long self.language_short = language_short self.lv_text_dir = Path(lv_text_dir) self.submanifests_dir = Path(submanifests_dir) self.restored_submanifests_dir = Path(restored_submanifests_dir) self.restored_text_field = restored_text_field self.n_jobs = n_jobs self.show_conversion_breakdown = show_conversion_breakdown def process(self): """Main processing happens here. * Download & extract lv_text. * Create submanifests. * Restore P&C to submanifests. * Group back submanifests into a single manifest """ from nemo_text_processing.text_normalization.normalize import Normalizer os.makedirs(self.lv_text_dir, exist_ok=True) # Download & extract lv_text. download_file(MLS_TEXT_URL, str(self.lv_text_dir)) lv_text_data_folder = extract_archive( str(self.lv_text_dir / os.path.basename(MLS_TEXT_URL)), str(self.lv_text_dir) ) # Create submanifests os.makedirs(self.submanifests_dir, exist_ok=True) data = {} with open(self.input_manifest_file, "r") as f: for line in tqdm(f): item = json.loads(line) name = Path(item["audio_filepath"]).stem reader_id, lv_book_id, sample_id = name.split("_") key = f"{lv_book_id}_{reader_id}" if key not in data: data[key] = {} data[key][sample_id] = line for key, v in data.items(): with open(f"{self.submanifests_dir}/{key}.json", "w") as f_out: for sample_id in sorted(v.keys()): line = v[sample_id] f_out.write(line) # Restore P&C to submanifests. os.makedirs(str(self.restored_submanifests_dir), exist_ok=True) if self.language_short: try: normalizer = Normalizer( input_case="cased", lang=self.language_short, cache_dir="CACHE_DIR", overwrite_cache=False, post_process=True, ) except NotImplementedError: # some languages don't support text normalization logger.info( f"Could not find NeMo Normalizer for language {self.language_short}, so" " will not normalize the Librivox text before attempting to restore punctuation" " and capitalization." ) normalizer = None else: logger.info( f"`language_short` was not specified, so will not normalize the Librivox" " text before attempting to restore punctuation and capitalization." ) normalizer = None # TODO: rename to maybe books_ids_in_datasplit books_ids_in_submanifests = set([x.split("_")[0] for x in data.keys()]) Parallel(n_jobs=self.n_jobs)( delayed(process_book)( book_id, str(Path(lv_text_data_folder) / self.language_long), str(self.submanifests_dir), str(self.restored_submanifests_dir), self.restored_text_field, normalizer, ) for book_id in tqdm(books_ids_in_submanifests) ) # get stats --- keep track of book/spk ids in our datasplit book_id_spk_ids_in_datasplit = set() # set of tuples (book_id, spk_id), ... original_manifest_duration = 0 with open(self.input_manifest_file, "r") as f: for line in f: line = json.loads(line) book_id, spk_id = Path(line["audio_filepath"]).stem.split("_")[:2] book_id_spk_ids_in_datasplit.add((book_id, spk_id)) original_manifest_duration += line["duration"] logger.info( f"duration ORIGINAL total (for current datasplit): {round(original_manifest_duration / 60 / 60, 2)} hrs" ) # make dicts to record durations of manifests filename_to_sub_manifest_durs = collections.defaultdict(float) filename_to_restored_sub_manifest_durs = collections.defaultdict(float) # duration in submanifests for book_id, spk_id in book_id_spk_ids_in_datasplit: manifest = os.path.join(self.submanifests_dir, f"{spk_id}_{book_id}.json") with open(manifest, "r") as f: for line in f: line = json.loads(line) filename_to_sub_manifest_durs[f"{spk_id}_{book_id}.json"] += line["duration"] # duration in restored_submanifests for book_id, spk_id in book_id_spk_ids_in_datasplit: manifest = os.path.join(self.restored_submanifests_dir, f"{spk_id}_{book_id}.json") if os.path.exists(manifest): with open(manifest, "r") as f: for line in f: line = json.loads(line) if line[self.restored_text_field] != NA: filename_to_restored_sub_manifest_durs[f"{spk_id}_{book_id}.json"] += line["duration"] else: filename_to_restored_sub_manifest_durs[f"{spk_id}_{book_id}.json"] = 0 if self.show_conversion_breakdown: for filename in filename_to_sub_manifest_durs.keys(): orig_dur = filename_to_sub_manifest_durs[filename] restored_dur = filename_to_restored_sub_manifest_durs[filename] pc_restored = 100 * restored_dur / orig_dur logger.info( f"{filename}: {orig_dur/60:.2f} mins -> {restored_dur/60:.2f} mins\t({pc_restored:.2f}% restored)" ) sub_manifest_duration = sum(list(filename_to_sub_manifest_durs.values())) restored_manifest_duration = sum(list(filename_to_restored_sub_manifest_durs.values())) logger.info("duration in submanifests (for current datasplit): %.2f hrs", sub_manifest_duration / 60 / 60) logger.info( "duration restored (for current datasplit): %.2f hrs (%.2f%%), lost: %.2f hrs", restored_manifest_duration / 60 / 60, restored_manifest_duration / sub_manifest_duration * 100, (sub_manifest_duration - restored_manifest_duration) / 60 / 60, ) logger.info( "Combining restored manifest for current datasplit into single manifest at %s", self.output_manifest_file ) # duration in restored_submanifests with open(self.output_manifest_file, 'w') as fout: for book_id, spk_id in book_id_spk_ids_in_datasplit: manifest = os.path.join(self.restored_submanifests_dir, f"{spk_id}_{book_id}.json") if os.path.exists(manifest): with open(manifest, "r") as fin: for line in fin: fout.write(line)
NeMo-speech-data-processor-main
sdp/processors/datasets/mls/restore_pc.py
NeMo-speech-data-processor-main
sdp/processors/datasets/mls/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from pathlib import Path from typing import Optional import librosa from sox import Transformer from sdp.logging import logger from sdp.processors.base_processor import BaseParallelProcessor, DataEntry from sdp.utils.common import download_file, extract_archive MLS_URL_NO_OPUS = "https://dl.fbaipublicfiles.com/mls/mls_{language}.tar.gz" MLS_URL_OPUS = "https://dl.fbaipublicfiles.com/mls/mls_{language}_opus.tar.gz" class CreateInitialManifestMLS(BaseParallelProcessor): """Processor to create initial manifest for the Multilingual LibriSpeech (MLS) dataset. Dataset link: https://www.openslr.org/94/ Downloads and unzips raw MLS data for the specified language, and creates an initial manifest using the transcripts provided in the raw data. Args: raw_data_dir (str): the directory where the downloaded data will be/is saved. This is also where the extracted and processed data will be. language (str): the language of the data you wish to be downloaded. This will be used to format the URL from which we attempt to download the data. E.g., "english", "italian", "spanish", etc. data_split (str): "train", "dev" or "test". resampled_audio_dir (str or None): if specified, the directory where the resampled wav files will be stored. If not specified, the audio will not be resampled and the parameters ``target_samplerate`` and ``target_nchannels`` will be ignored. target_samplerate (int): sample rate (Hz) to use for resampling. This parameter will be ignored if ``resampled_audio_dir`` is ``None``. Defaults to 16000. target_nchannels (int): number of channels to create during resampling process. This parameter will be ignored if ``resampled_audio_dir`` is ``None``. Defaults to 1. use_opus_archive (bool): if ``True``, will use the version of the archive file which contains audio files saved in the OPUS format, instead of FLAC. The OPUS files take up less memory than the FLAC files, at the cost of the OPUS files being lower quality than the FLAC files. If ``True``, the parameter ``resampled_audio_dir`` must be ``None``, as resampling OPUS audio files is currently not supported. Defaults to False. Returns: This processor generates an initial manifest file with the following fields:: { "audio_filepath": <path to the audio file>, "duration": <duration of the audio in seconds>, "text": <transcription>, } """ def __init__( self, raw_data_dir: str, language: str, data_split: str, resampled_audio_dir: Optional[str], target_samplerate: int = 16000, target_nchannels: int = 1, use_opus_archive: bool = False, **kwargs, ): super().__init__(**kwargs) self.raw_data_dir = Path(raw_data_dir) self.language = language self.data_split = data_split self.resampled_audio_dir = Path(resampled_audio_dir) if resampled_audio_dir else None self.target_samplerate = target_samplerate self.target_nchannels = target_nchannels self.use_opus_archive = use_opus_archive # validate params if self.use_opus_archive and self.resampled_audio_dir: raise ValueError( f"`use_opus_archive` is True and `resampled_audio_dir` is not None, but we currently do not" " support resampling OPUS-format audio, please either set `use_opus_archive` to False or" " resampled_audio_dir to None." ) if not resampled_audio_dir: logger.info( "`resampled_audio_dir` is None => will not attempt to resample audio. Please note if you have" " specified `target_samplerate` or `target_nchannels`, they will be ignored." ) # will be initialized in self.prepare method self.audio_path_prefix = None self.transcription_file = None def prepare(self): """Downloading and extracting data (unless already done).""" os.makedirs(self.raw_data_dir, exist_ok=True) if self.use_opus_archive: url = MLS_URL_OPUS.format(language=self.language) if not (self.raw_data_dir / f"mls_{self.language}_opus.tar.gz").exists(): download_file(url, str(self.raw_data_dir)) else: url = MLS_URL_NO_OPUS.format(language=self.language) if not (self.raw_data_dir / f"mls_{self.language}.tar.gz").exists(): download_file(url, str(self.raw_data_dir)) data_folder = extract_archive(str(self.raw_data_dir / os.path.basename(url)), str(self.raw_data_dir)) self.audio_path_prefix = str(Path(data_folder) / self.data_split / "audio") self.transcription_file = str(Path(data_folder) / self.data_split / "transcripts.txt") def read_manifest(self): """Reading the initial data line-by-line.""" if self.transcription_file is None: raise RuntimeError("self.process has to be called before processing the data.") with open(self.transcription_file, "rt", encoding="utf8") as fin: dataset_entries = fin.readlines() return dataset_entries def process_dataset_entry(self, data_entry: str): """Processing the data entries. Converts all audio into wav format and outputs filepath, duration and transcription text. """ if len(data_entry.split("\t")) != 2: raise RuntimeError(f"have more than one tab in line {data_entry}") utt_id, text = data_entry.split("\t") transcript_text = text.strip() # specify src_audio_path if self.use_opus_archive: src_audio_path = os.path.join(self.audio_path_prefix, *utt_id.split("_")[:2], utt_id + ".opus") else: src_audio_path = os.path.join(self.audio_path_prefix, *utt_id.split("_")[:2], utt_id + ".flac") # specify tgt_audio_path if self.resampled_audio_dir: tgt_audio_path = os.path.join(self.resampled_audio_dir, *utt_id.split("_")[:2], utt_id + ".wav") if not os.path.exists(os.path.dirname(tgt_audio_path)): os.makedirs(os.path.dirname(tgt_audio_path), exist_ok=True) if not os.path.exists(tgt_audio_path): tfm = Transformer() tfm.rate(samplerate=self.target_samplerate) tfm.channels(n_channels=self.target_nchannels) tfm.build(input_filepath=src_audio_path, output_filepath=tgt_audio_path) else: tgt_audio_path = src_audio_path data = { "audio_filepath": tgt_audio_path, "duration": float(librosa.get_duration(path=tgt_audio_path)), "text": transcript_text, } return [DataEntry(data=data)]
NeMo-speech-data-processor-main
sdp/processors/datasets/mls/create_initial_manifest.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-speech-data-processor-main
sdp/processors/modify_manifest/__init__.py
import json import os from typing import Dict, List from tqdm import tqdm from sdp.processors.base_processor import ( BaseParallelProcessor, BaseProcessor, DataEntry, ) class CombineSources(BaseParallelProcessor): """Can be used to create a single field from two alternative sources. E.g.:: _target_: sdp.processors.CombineSources sources: - field: text_pc origin_label: original - field: text_pc_pred origin_label: synthetic - field: text origin_label: no_pc target: text will populate the ``text`` field with data from ``text_pc`` field if it's present and not equal to ``n/a`` (can be customized). If ``text_pc`` is not available, it will populate ``text`` from ``text_pc_pred`` field, following the same rules. If both are not available, it will fall back to the ``text`` field itself. In all cases it will specify which source was used in the ``text_origin`` field by using the label from the ``origin_label`` field.. If non of the sources is available, it will populate both the target and the origin fields with ``n/a``. Args: sources (list[dict]): list of the sources to use in order of preference. Each element in the list should be in the following format:: { field: <which field to take the data from> origin_label: <what to write in the "<target>_origin" } target (str): target field that we are populating. na_indicator (str): if any source field has text equal to the ``na_indicator`` it will be considered as not available. If none of the sources are present, this will also be used as the value for the target and origin fields. Defaults to ``n/a``. Returns: The same data as in the input manifest enhanced with the following fields:: <target>: <populated with data from either <source1> or <source2> \ or with <na_indicator> if none are available> <target>_origin: <label that marks where the data came from> """ def __init__( self, sources: List[Dict[str, str]], target: str, na_indicator: str = "n/a", **kwargs, ): super().__init__(**kwargs) self.sources = sources self.target = target self.na_indicator = na_indicator def process_dataset_entry(self, data_entry: Dict): for source_dict in self.sources: if data_entry.get(source_dict['field'], self.na_indicator) != self.na_indicator: data_entry[self.target] = data_entry[source_dict['field']] data_entry[f"{self.target}_origin"] = source_dict['origin_label'] break # breaking out on the first present label else: # going here if no break was triggered data_entry[self.target] = self.na_indicator data_entry[f"{self.target}_origin"] = self.na_indicator return [DataEntry(data=data_entry)] class AddConstantFields(BaseParallelProcessor): """This processor adds constant fields to all manifest entries. E.g., can be useful to add fixed ``label: <language>`` field for downstream language identification model training. Args: fields: dictionary with any additional information to add. E.g.:: fields = { "label": "en", "metadata": "mcv-11.0-2022-09-21", } Returns: The same data as in the input manifest with added fields as specified in the ``fields`` input dictionary. """ def __init__( self, fields: Dict, **kwargs, ): super().__init__(**kwargs) self.fields = fields def process_dataset_entry(self, data_entry: Dict): data_entry.update(self.fields) return [DataEntry(data=data_entry)] class DuplicateFields(BaseParallelProcessor): """This processor duplicates fields in all manifest entries. It is useful for when you want to do downstream processing of a variant of the entry. E.g. make a copy of "text" called "text_no_pc", and remove punctuation from "text_no_pc" in downstream processors. Args: duplicate_fields (dict): dictionary where keys are the original fields to be copied and their values are the new names of the duplicate fields. Returns: The same data as in the input manifest with duplicated fields as specified in the ``duplicate_fields`` input dictionary. """ def __init__( self, duplicate_fields: Dict, **kwargs, ): super().__init__(**kwargs) self.duplicate_fields = duplicate_fields def process_dataset_entry(self, data_entry: Dict): for field_src, field_tgt in self.duplicate_fields.items(): if not field_src in data_entry: raise ValueError(f"Expected field {field_src} in data_entry {data_entry} but there isn't one.") data_entry[field_tgt] = data_entry[field_src] return [DataEntry(data=data_entry)] class RenameFields(BaseParallelProcessor): """This processor renames fields in all manifest entries. Args: rename_fields: dictionary where keys are the fields to be renamed and their values are the new names of the fields. Returns: The same data as in the input manifest with renamed fields as specified in the ``rename_fields`` input dictionary. """ def __init__( self, rename_fields: Dict, **kwargs, ): super().__init__(**kwargs) self.rename_fields = rename_fields def process_dataset_entry(self, data_entry: Dict): for field_src, field_tgt in self.rename_fields.items(): if not field_src in data_entry: raise ValueError(f"Expected field {field_src} in data_entry {data_entry} but there isn't one.") data_entry[field_tgt] = data_entry[field_src] del data_entry[field_src] return [DataEntry(data=data_entry)] class SplitOnFixedDuration(BaseParallelProcessor): """This processor splits audio into a fixed length segments. It does not actually create different audio files, but simply adds corresponding ``offset`` and ``duration`` fields. These fields can be automatically processed by NeMo to split audio on the fly during training. Args: segment_duration (float): fixed desired duration of each segment. drop_last (bool): whether to drop the last segment if total duration is not divisible by desired segment duration. If False, the last segment will be of a different length which is ``< segment_duration``. Defaults to True. drop_text (bool): whether to drop text from entries as it is most likely inaccurate after the split on duration. Defaults to True. Returns: The same data as in the input manifest but all audio that's longer than the ``segment_duration`` will be duplicated multiple times with additional ``offset`` and ``duration`` fields. If ``drop_text=True`` will also drop ``text`` field from all entries. """ def __init__( self, segment_duration: float, drop_last: bool = True, drop_text: bool = True, **kwargs, ): super().__init__(**kwargs) self.segment_duration = segment_duration self.drop_last = drop_last self.drop_text = drop_text def process_dataset_entry(self, data_entry: Dict): total_duration = data_entry["duration"] total_segments = int(total_duration // self.segment_duration) output = [None] * total_segments for segment_idx in range(total_segments): modified_entry = data_entry.copy() # shallow copy should be good enough modified_entry["duration"] = self.segment_duration modified_entry["offset"] = segment_idx * self.segment_duration if self.drop_text: modified_entry.pop("text", None) output[segment_idx] = DataEntry(data=modified_entry) remainder = total_duration - self.segment_duration * total_segments if not self.drop_last and remainder > 0: modified_entry = data_entry.copy() modified_entry["duration"] = remainder modified_entry["offset"] = self.segment_duration * total_segments if self.drop_text: modified_entry.pop("text", None) output.append(DataEntry(data=modified_entry)) return output class ChangeToRelativePath(BaseParallelProcessor): """This processor changes the audio filepaths to be relative. Args: base_dir: typically a folder where manifest file is going to be stored. All passes will be relative to that folder. Returns: The same data as in the input manifest with ``audio_filepath`` key changed to contain relative path to the ``base_dir``. """ def __init__( self, base_dir: str, **kwargs, ): super().__init__(**kwargs) self.base_dir = base_dir def process_dataset_entry(self, data_entry: Dict): data_entry["audio_filepath"] = os.path.relpath(data_entry["audio_filepath"], self.base_dir) return [DataEntry(data=data_entry)] class SortManifest(BaseProcessor): """Processor which will sort the manifest by some specified attribute. Args: attribute_sort_by (str): the attribute by which the manifest will be sorted. descending (bool): if set to False, attribute will be in ascending order. If True, attribute will be in descending order. Defaults to True. Returns: The same entries as in the input manifest, but sorted based on the provided parameters. """ def __init__( self, attribute_sort_by: str, descending: bool = True, **kwargs, ): super().__init__(**kwargs) self.attribute_sort_by = attribute_sort_by self.descending = descending def process(self): with open(self.input_manifest_file, "rt", encoding="utf8") as fin: dataset_entries = [json.loads(line) for line in fin.readlines()] dataset_entries = sorted(dataset_entries, key=lambda x: x[self.attribute_sort_by], reverse=self.descending) with open(self.output_manifest_file, "wt", encoding="utf8") as fout: for line in dataset_entries: fout.write(json.dumps(line, ensure_ascii=False) + "\n") class KeepOnlySpecifiedFields(BaseProcessor): """Saves a copy of a manifest but only with a subset of the fields. Typically will be the final processor to save only relevant fields in the desired location. Args: fields_to_keep (list[str]): list of the fields in the input manifest that we want to retain. The output file will only contain these fields. Returns: The same data as in input manifest, but re-saved in the new location with only ``fields_to_keep`` fields retained. """ def __init__(self, fields_to_keep: List[str], **kwargs): super().__init__(**kwargs) self.fields_to_keep = fields_to_keep def process(self): with open(self.input_manifest_file, "rt", encoding="utf8") as fin, open( self.output_manifest_file, "wt", encoding="utf8" ) as fout: for line in tqdm(fin): line = json.loads(line) new_line = {field: line[field] for field in self.fields_to_keep} fout.write(json.dumps(new_line, ensure_ascii=False) + "\n")
NeMo-speech-data-processor-main
sdp/processors/modify_manifest/common.py
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections from typing import List from sdp.logging import logger from sdp.processors.base_processor import BaseParallelProcessor, DataEntry # TODO: should be done with general sub-regex processor class MakeLettersUppercaseAfterPeriod(BaseParallelProcessor): """Can be used to replace characters with upper-case version after punctuation. Args: punctuation (str): string with all punctuation characters to consider. Defaults to ".!?". text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". Returns: The same data as in the input manifest with ``<text_key>`` field changed. """ def __init__( self, punctuation=".!?", text_key: str = "text", **kwargs, ): super().__init__(**kwargs) self.punctuation = punctuation self.text_key = text_key def process_dataset_entry(self, data_entry) -> List: replace_word_counter = collections.defaultdict(int) # keeping in a list, since strings are immutable new_text = [] idx = 0 while idx < len(data_entry[self.text_key]): character = data_entry[self.text_key][idx] # checking that next is space and then we upper whatever is after that # note that Python's upper correctly does not change anything that's not a letter if ( character in self.punctuation and idx + 2 < len(data_entry[self.text_key]) and data_entry[self.text_key][idx + 1] == " " ): new_text.extend([character, " ", data_entry[self.text_key][idx + 2].upper()]) replace_word_counter[data_entry[self.text_key][idx : idx + 3]] += 1 idx += 2 else: new_text.append(character) idx += 1 data_entry[self.text_key] = "".join(new_text) return [DataEntry(data=data_entry, metrics=replace_word_counter)] def finalize(self, metrics): total_counter = collections.defaultdict(int) for counter in metrics: for word, count in counter.items(): total_counter[word] += count logger.info("Some of the substrings that were uppercased") total_counter_sorted = dict(sorted(total_counter.items(), key=lambda x: x[1], reverse=True)) for word, count in total_counter_sorted.items(): if count > 1: logger.info(f"{word} {count}") super().finalize(metrics)
NeMo-speech-data-processor-main
sdp/processors/modify_manifest/make_letters_uppercase_after_period.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import re from typing import List from sdp.logging import logger from sdp.processors.base_processor import BaseParallelProcessor, DataEntry from sdp.utils.edit_spaces import add_start_end_spaces, remove_extra_spaces from sdp.utils.get_diff import get_diff, get_diff_with_subs_grouped from sdp.utils.metrics_computation import ( get_cer, get_charrate, get_wer, get_wmr, get_wordrate, ) class DropHighLowCharrate(BaseParallelProcessor): """Drops utterances if their character rate is too low or too high. Character rate = ``(num of characters in self.text_key) / (duration of audio)``. A too-low or too-high character rate often implies that the ground truth transcription might be inaccurate. Args: high_charrate_threshold (float): upper character rate threshold. If the character rate of an utterance is higher than this number, the utterance will be dropped. low_charrate_threshold (float): lower character rate threshold. If the character rate of an utterance is lower than this number, the utterance will be dropped. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, high_charrate_threshold: float, low_charrate_threshold: float, text_key: str = "text", **kwargs, ): super().__init__(**kwargs) self.high_charrate_threshold = high_charrate_threshold self.low_charrate_threshold = low_charrate_threshold self.text_key = text_key def process_dataset_entry(self, data_entry) -> List: """Drops utterances based on the provided thresholds.""" charrate = get_charrate(data_entry[self.text_key], data_entry["duration"]) if charrate > self.high_charrate_threshold: return [DataEntry(data=None, metrics=(0, 1))] elif charrate < self.low_charrate_threshold: return [DataEntry(data=None, metrics=(1, 0))] return [DataEntry(data=data_entry, metrics=(0, 0))] def finalize(self, metrics): """Will report how many utterances were dropped for each threshold.""" high_drop_counter = 0 low_drop_counter = 0 for dropped_low, dropped_high in metrics: low_drop_counter += dropped_low high_drop_counter += dropped_high logger.info( "Num of utterances that were dropped due to char rate > %f: %d", self.high_charrate_threshold, high_drop_counter, ) logger.info( "Num of utterances that were dropped due to char rate < %f: %d", self.low_charrate_threshold, low_drop_counter, ) super().finalize(metrics) class DropHighLowWordrate(BaseParallelProcessor): """Drops utterances if their word rate is too low or too high. Word rate = ``(num of words in self.text_key) / (duration of audio)``. A too-low or too-high word rate often implies that the ground truth transcription might be inaccurate. Args: high_wordrate_threshold (float): upper word rate threshold. If the word rate of an utterance is higher than this number, the utterance will be dropped. low_wordrate_threshold (float): lower word rate threshold. If the word rate of an utterance is lower than this number, the utterance will be dropped. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, high_wordrate_threshold: float, low_wordrate_threshold: float, text_key: str = "text", **kwargs, ): super().__init__(**kwargs) self.high_wordrate_threshold = high_wordrate_threshold self.low_wordrate_threshold = low_wordrate_threshold self.text_key = text_key def process_dataset_entry(self, data_entry) -> List: wordrate = get_wordrate(data_entry[self.text_key], data_entry["duration"]) if wordrate > self.high_wordrate_threshold: return [DataEntry(data=None, metrics=(0, 1))] elif wordrate < self.low_wordrate_threshold: return [DataEntry(data=None, metrics=(1, 0))] return [DataEntry(data=data_entry, metrics=(0, 0))] def finalize(self, metrics): high_drop_counter = 0 low_drop_counter = 0 for dropped_low, dropped_high in metrics: low_drop_counter += dropped_low high_drop_counter += dropped_high logger.info( "Num of utterances that were dropped due to word rate > %f: %d", self.high_wordrate_threshold, high_drop_counter, ) logger.info( "Num of utterances that were dropped due to word rate < %f: %d", self.low_wordrate_threshold, low_drop_counter, ) super().finalize(metrics) class DropHighLowDuration(BaseParallelProcessor): """Drops utterances if their duration is too low or too high. Args: high_duration_threshold (float): upper duration threshold (in seconds). If the duration of an utterance's audio is higher than this number, the utterance will be dropped. low_duration_threshold (float): lower duration threshold (in seconds). If the duration of an utterance's audio is lower than this number, the utterance will be dropped. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, high_duration_threshold: float, low_duration_threshold: float, text_key: str = "text", **kwargs, ): super().__init__(**kwargs) self.high_duration_threshold = high_duration_threshold self.low_duration_threshold = low_duration_threshold self.high_drop_counter = 0 self.low_drop_counter = 0 self.text_key = text_key def process_dataset_entry(self, data_entry) -> List: duration = data_entry["duration"] if duration > self.high_duration_threshold: return [DataEntry(data=None, metrics=(0, 1))] elif duration < self.low_duration_threshold: return [DataEntry(data=None, metrics=(1, 0))] return [DataEntry(data=data_entry, metrics=(0, 0))] def finalize(self, metrics): high_drop_counter = 0 low_drop_counter = 0 for dropped_low, dropped_high in metrics: low_drop_counter += dropped_low high_drop_counter += dropped_high logger.info( "Num of utterances that were dropped due to duration > %f: %d", self.high_duration_threshold, high_drop_counter, ) logger.info( "Num of utterances that were dropped due to duration < %f: %d", self.low_duration_threshold, low_drop_counter, ) super().finalize(metrics) class DropIfNoneOfRegexMatch(BaseParallelProcessor): """Drops utterances if ``data[self.text_key]`` does not match any of ``regex_patterns``. Before applying regex checks, we will add a space character to the beginning and end of the ``text`` and ``pred_text`` keys for each data entry. After the the regex checks, assuming the utterance isn't dropped, the extra spaces are removed. This includes the spaces in the beginning and end of the text, as well as any double spaces ``" "``. Args: regex_patterns (list[str]): If ``data_entry[self.text_key]`` does not match any of the regex patterns in the list, that utterance will be dropped. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, regex_patterns: List[str], text_key: str = "text", **kwargs, ): super().__init__(**kwargs) self.regex_patterns = regex_patterns self.text_key = text_key def process_dataset_entry(self, data_entry) -> List: data_entry[self.text_key] = add_start_end_spaces(data_entry[self.text_key]) for regex_pattern in self.regex_patterns: if re.search(regex_pattern, data_entry[self.text_key]): break else: # will only reach this if none of the regex match return [DataEntry(data=None, metrics=1)] # will reach this part of code if at least one of the regexes matches data_entry[self.text_key] = remove_extra_spaces(data_entry[self.text_key]) return [DataEntry(data=data_entry, metrics=0)] def finalize(self, metrics): total_counter = 0 for value in metrics: if value: total_counter += value logger.info("Num of utterances that were dropped due to not containing any of the specified regex patterns") logger.info(f"{total_counter}") super().finalize(metrics) class DropNonAlphabet(BaseParallelProcessor): """Drops utterances if they contain characters that are not in the ``alphabet``. Args: alphabet (str): a string containing all of the characters in our alphabet. If an utterance contains at least one character that is not in the ``alphabet``, then that utterance will be dropped. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". .. note:: Don't forget to include spaces in your alphabet, unless you want to make sure none of the utterances contain spaces. Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, alphabet: str, text_key: str = "text", **kwargs, ): super().__init__(**kwargs) self.alphabet = alphabet self.text_key = text_key def process_dataset_entry(self, data_entry) -> List: drop_this_utt = False non_alphabet_counter = collections.defaultdict(int) for char in data_entry[self.text_key]: if char not in self.alphabet: drop_this_utt = True non_alphabet_counter[char] += 1 if drop_this_utt: return [DataEntry(data=None, metrics=non_alphabet_counter)] return [DataEntry(data=data_entry, metrics=non_alphabet_counter)] def finalize(self, metrics): total_counter = collections.defaultdict(int) for counter in metrics: for char, value in counter.items(): total_counter[char] += value logger.info("Num of non-alphabet characters") for char, count in total_counter.items(): logger.info(f"{char}: {count}") super().finalize(metrics) class DropASRErrorBeginningEnd(BaseParallelProcessor): """Drops utterances if there is a sufficiently long ASR mismatch at the beginning or end of the utterance. Args: beginning_error_char_threshold (int): if there is an insertion or deletion at the beginning of the utterance that has more characters than this number, then the utterance will be dropped. If there is a substitution at the beginning of the utterance, then the utterance will be dropped if ``abs(len(deletion) - len(insertion)) > beginning_error_char_threshold``. end_error_char_threshold (int): if there is an insertion or deletion at the end of the utterance that has more characters than this number, then the utterance will be dropped. If there is a substitution at the end of the utterance, then the utterance will be dropped if ``abs(len(deletion) - len(insertion)) > end_error_char_threshold``. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". pred_text_key (str): a string indicating which key of the data entries should be used to access the ASR predictions. Defaults to "pred_text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, beginning_error_char_threshold: int, end_error_char_threshold: int, text_key: str = "text", pred_text_key: str = "pred_text", **kwargs, ): super().__init__(**kwargs) self.beginning_error_char_threshold = beginning_error_char_threshold self.end_error_char_threshold = end_error_char_threshold self.text_key = text_key self.pred_text_key = pred_text_key def process_dataset_entry(self, data_entry) -> List: orig_words, pred_words = data_entry[self.text_key], data_entry[self.pred_text_key] diff = get_diff_with_subs_grouped(orig_words, pred_words) if len(diff) > 0: # i.e. if there are differences between text and pred_text first_diff_entry = diff[0] if first_diff_entry[0] == 1 or first_diff_entry[0] == -1: # i.e. diff is purely an insertion or deletion if len(first_diff_entry[1]) > self.beginning_error_char_threshold: return [DataEntry(data=None, metrics=(1, 0))] elif first_diff_entry[0] != 0: # i.e. diff should be a tuple representing substitution len_deletion = len(first_diff_entry[0][1]) len_insertion = len(first_diff_entry[1][1]) if abs(len_deletion - len_insertion) > self.beginning_error_char_threshold: return [DataEntry(data=None, metrics=(1, 0))] last_diff_entry = diff[-1] if last_diff_entry[0] == 1 or last_diff_entry[0] == -1: # i.e. diff is purely an insertion or deletion if len(last_diff_entry[1]) > self.end_error_char_threshold: return [DataEntry(data=None, metrics=(0, 1))] elif last_diff_entry[0] != 0: # i.e. diff should be a tuple representing substitution len_deletion = len(last_diff_entry[0][1]) len_insertion = len(last_diff_entry[1][1]) if abs(len_deletion - len_insertion) > self.end_error_char_threshold: return [DataEntry(data=None, metrics=(0, 1))] return [DataEntry(data=data_entry, metrics=(0, 0))] def finalize(self, metrics): beginning_drop_counter = 0 end_drop_counter = 0 for dropped_beginning, dropped_end in metrics: beginning_drop_counter += dropped_beginning end_drop_counter += dropped_end logger.info( "Num of utterances that were dropped due to asr insertions/deletions at the beginning: %d", beginning_drop_counter, ) logger.info( "Num of utterances that were dropped due to asr insertions/deletions at the end: %d", end_drop_counter, ) super().finalize(metrics) # TODO: needs unification with above class in some way class DropASRError(BaseParallelProcessor): """Drops utterances if there is a sufficiently long ASR mismatch anywhere in the utterance. Args: consecutive_words_threshold (int): will drop if there is a mismatch of at least this many words in a row. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". pred_text_key (str): a string indicating which key of the data entries should be used to access the ASR predictions. Defaults to "pred_text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, consecutive_words_threshold: int, text_key: str = "text", pred_text_key: str = "pred_text", **kwargs, ): super().__init__(**kwargs) self.consecutive_words_threshold = consecutive_words_threshold self.text_key = text_key self.pred_text_key = pred_text_key def process_dataset_entry(self, data_entry) -> List: orig_words, pred_words = data_entry[self.text_key], data_entry[self.pred_text_key] diffs = get_diff(orig_words, pred_words) for diff_entry in diffs: if diff_entry[0] == 0: continue if len(diff_entry[1].split()) >= self.consecutive_words_threshold: return [] return [DataEntry(data=data_entry)] class DropHighCER(BaseParallelProcessor): """Drops utterances if there is a sufficiently high character-error-rate (CER). CER is measured between ``data[self.text_key]`` and ``data[self.pred_text_key]``. .. note:: We only drop the utterance if ``CER > threshold`` (i.e. strictly greater than) so that if we set the threshold to 0, we will not remove utterances with ``CER == 0``. Args: cer_threshold (float): CER threshold above which the utterance will be dropped. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". pred_text_key (str): a string indicating which key of the data entries should be used to access the ASR predictions. Defaults to "pred_text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, cer_threshold: float, text_key: str = "text", pred_text_key: str = "pred_text", **kwargs, ): super().__init__(**kwargs) self.cer_threshold = cer_threshold self.text_key = text_key self.pred_text_key = pred_text_key def process_dataset_entry(self, data_entry) -> List: cer = get_cer(data_entry[self.text_key], data_entry[self.pred_text_key]) if cer > self.cer_threshold: return [DataEntry(data=None, metrics=1)] else: return [DataEntry(data=data_entry, metrics=0)] def finalize(self, metrics): drop_counter = 0 for dropped in metrics: drop_counter += dropped logger.info( "Num of utterances that were dropped due to CER > %d: %d", self.cer_threshold, drop_counter, ) super().finalize(metrics) class DropHighWER(BaseParallelProcessor): """Drops utterances if there is a sufficiently high word-error-rate (WER). WER is measured between ``data[self.text_key]`` and ``data[self.pred_text_key]``. .. note:: We only drop the utterance if ``WER > threshold`` (i.e. strictly greater than) so that if we set the threshold to 0, we will not remove utterances with ``WER == 0``. Args: wer_threshold (float): WER threshold above which the utterance will be dropped. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". pred_text_key (str): a string indicating which key of the data entries should be used to access the ASR predictions. Defaults to "pred_text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, wer_threshold: float, text_key: str = "text", pred_text_key: str = "pred_text", **kwargs, ): super().__init__(**kwargs) self.wer_threshold = wer_threshold self.text_key = text_key self.pred_text_key = pred_text_key def process_dataset_entry(self, data_entry) -> List: wer = get_wer(data_entry[self.text_key], data_entry[self.pred_text_key]) if wer > self.wer_threshold: return [DataEntry(data=None, metrics=1)] else: return [DataEntry(data=data_entry, metrics=0)] def finalize(self, metrics): drop_counter = 0 for dropped in metrics: drop_counter += dropped logger.info( "Num of utterances that were dropped due to WER > %d: %d", self.wer_threshold, drop_counter, ) super().finalize(metrics) class DropLowWordMatchRate(BaseParallelProcessor): """Drops utterances if there is a sufficiently low word-match-rate (WMR). WMR is measured between ``data[self.text_key]`` and ``data[self.pred_text_key]``. .. note:: We only drop the utterance if ``WMR < threshold`` (i.e. strictly lower than) so that if we set the threshold to 100, we will not remove utterances with ``WMR == 100``. Args: wmr_threshold (float): WMR threshold below which the utterance will be dropped. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". pred_text_key (str): a string indicating which key of the data entries should be used to access the ASR predictions. Defaults to "pred_text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, wmr_threshold: float, text_key: str = "text", pred_text_key: str = "pred_text", **kwargs, ): super().__init__(**kwargs) self.wmr_threshold = wmr_threshold self.text_key = text_key self.pred_text_key = pred_text_key def process_dataset_entry(self, data_entry) -> List: orig_words, pred_words = data_entry[self.text_key], data_entry[self.pred_text_key] wmr = get_wmr(orig_words, pred_words) if wmr < self.wmr_threshold: return [DataEntry(data=None, metrics=1)] else: return [DataEntry(data=data_entry, metrics=0)] def finalize(self, metrics): drop_counter = 0 for dropped in metrics: drop_counter += dropped logger.info( "Num of utterances that were dropped due to WMR < %d: %d", self.wmr_threshold, drop_counter, ) super().finalize(metrics) class DropIfRegexMatch(BaseParallelProcessor): """Drops utterances if text matches a regex pattern. Before applying regex checks, we will add a space character to the beginning and end of the ``text`` and ``pred_text`` keys for each data entry. After the the regex checks, assuming the utterance isn't dropped, the extra spaces are removed. This includes the spaces in the beginning and end of the text, as well as any double spaces ``" "``. Args: regex_patterns (list[str]): a list of strings. The list will be traversed in order. If ``data_entry.data[self.text_key]`` matches the regex, the entry will be dropped. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, regex_patterns: List[str], text_key: str = "text", **kwargs, ): super().__init__(**kwargs) self.regex_patterns = regex_patterns self.text_key = text_key def process_dataset_entry(self, data_entry) -> List: drop_counter = collections.defaultdict(int) data_entry[self.text_key] = add_start_end_spaces(data_entry[self.text_key]) for regex_pattern in self.regex_patterns: if re.search(regex_pattern, data_entry[self.text_key]): for match in re.finditer(regex_pattern, data_entry[self.text_key]): drop_counter[regex_pattern] += 1 return [DataEntry(data=None, metrics=drop_counter)] data_entry[self.text_key] = remove_extra_spaces(data_entry[self.text_key]) return [DataEntry(data=data_entry, metrics=drop_counter)] def finalize(self, metrics): total_counter = collections.defaultdict(int) for counter in metrics: for attribute, value in counter.items(): total_counter[attribute] += value logger.info("Regex matches that were dropped in attribute") for attribute, matches in total_counter.items(): logger.info(f"{attribute}, {matches}") super().finalize(metrics) class DropOnAttribute(BaseParallelProcessor): """Drops utterances if attribute is set to True/False. Args: key (str): which key to use for dropping utterances. drop_if_false (bool): whether to drop if value is False. Defaults to dropping if True. Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, key: str, drop_if_false: bool = False, **kwargs, ): super().__init__(**kwargs) self.key = key self.drop_if_false = drop_if_false def process_dataset_entry(self, data_entry) -> List: if data_entry[self.key] is not self.drop_if_false: return [DataEntry(data=None, metrics=1)] return [DataEntry(data=data_entry, metrics=0)] def finalize(self, metrics): total_counter = 0 for counter in metrics: total_counter += counter logger.info("Dropped %d utterances", total_counter) super().finalize(metrics) class DropIfSubstringInInsertion(BaseParallelProcessor): """Drops utterances if a substring matches an ASR insertion. Insertions are checked between ``data[self.text_key]`` and ``data[self.pred_text_key]``. .. note:: We check for exact matches, so you need to be mindful of spaces, e.g. you may wish to do ``substrings_in_insertion = ["nemo "]`` instead of ``substrings_in_insertion = ["nemo"]``. Args: substrings_in_insertion (list[str]): a list of strings which might be inserted in predicted ASR text. If the insertion matches a string exactly, the utterance will be dropped. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". pred_text_key (str): a string indicating which key of the data entries should be used to access the ASR predictions. Defaults to "pred_text". Returns: The same data as in the input manifest with some entries dropped. """ def __init__( self, substrings_in_insertion: List[str], text_key: str = "text", pred_text_key: str = "pred_text", **kwargs, ): super().__init__(**kwargs) self.substrings_in_insertion = substrings_in_insertion self.text_key = text_key self.pred_text_key = pred_text_key def process_dataset_entry(self, data_entry) -> List: for substring_in_insertion in self.substrings_in_insertion: if substring_in_insertion in data_entry[self.pred_text_key]: orig_words, pred_words = data_entry[self.text_key], data_entry[self.pred_text_key] diff = get_diff_with_subs_grouped(orig_words, pred_words) for diff_entry in diff: if diff_entry[0] == 1: # insertion in original string if substring_in_insertion in diff_entry[1]: return [DataEntry(data=None, metrics=diff_entry[1])] return [DataEntry(data=data_entry, metrics="")] def finalize(self, metrics): total_counter = collections.defaultdict(int) for diff_entry in metrics: if diff_entry: total_counter[diff_entry] += 1 logger.info("Some of the insertions that cause the utterance to be dropped:") total_counter_sorted = dict(sorted(total_counter.items(), key=lambda x: x[1], reverse=True)) for insertion, count in total_counter_sorted.items(): logger.info(f"{insertion}, {count}") super().finalize(metrics)
NeMo-speech-data-processor-main
sdp/processors/modify_manifest/data_to_dropbool.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import re from typing import Dict, List from sdp.logging import logger from sdp.processors.base_processor import BaseParallelProcessor, DataEntry from sdp.utils.edit_spaces import add_start_end_spaces, remove_extra_spaces from sdp.utils.get_diff import get_diff_with_subs_grouped class InsIfASRInsertion(BaseParallelProcessor): """Processor that adds substrings to transcription if they are present in ASR predictions. Will insert substrings into ``data[self.text_key]`` if it is present at that location in ``data[self.pred_text_key]``. It is useful if words are systematically missing from ground truth transcriptions. Args: insert_words (list[str]): list of strings that will be inserted into ``data[self.text_key]`` if there is an insertion (containing only that string) in ``data[self.pred_text_key]``. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". pred_text_key (str): a string indicating which key of the data entries should be used to access the ASR predictions. Defaults to "pred_text". .. note:: Because this processor looks for an exact match in the insertion, we recommend including variations with different spaces in ``insert_words``, e.g. ``[' nemo', 'nemo ', ' nemo ']``. Returns: The same data as in the input manifest with ``<text_key>`` field changed. """ def __init__( self, insert_words: List[str], text_key: str = "text", pred_text_key: str = "pred_text", **kwargs, ): super().__init__(**kwargs) self.insert_words = insert_words self.text_key = text_key self.pred_text_key = pred_text_key def process_dataset_entry(self, data_entry) -> List: insert_word_counter = collections.defaultdict(int) for insert_word in self.insert_words: if not insert_word in data_entry[self.pred_text_key]: break orig_words, pred_words = data_entry[self.text_key], data_entry[self.pred_text_key] diff = get_diff_with_subs_grouped(orig_words, pred_words) if len(diff) > 0: # ie if there are differences between text and pred_text new_sent = "" for diff_entry in diff: if diff_entry[0] == 0: # no change new_sent += diff_entry[1] elif diff_entry[0] == -1: # deletion in original string new_sent += diff_entry[1] elif diff_entry[0] == 1: # insertion in original string if diff_entry[1] == insert_word: new_sent += insert_word insert_word_counter[insert_word] += 1 elif isinstance(diff_entry, tuple): # i.e. diff is a substitution new_sent += diff_entry[0][1] else: raise ValueError(f"unexpected item in diff_entry: {diff_entry}") new_sent = " ".join(new_sent.split()) # remove any extra spaces data_entry[self.text_key] = new_sent return [DataEntry(data=data_entry, metrics=insert_word_counter)] def finalize(self, metrics): total_counter = collections.defaultdict(int) for counter in metrics: for word, count in counter.items(): total_counter[word] += count logger.info("Num of words that were inserted") for word, count in total_counter.items(): logger.info(f"{word} {count}") super().finalize(metrics) class SubIfASRSubstitution(BaseParallelProcessor): """Processor that substitutes substrings to transcription if they are present in ASR predictions. Will convert a substring in ``data[self.text_key]`` to a substring in ``data[self.pred_text_key]`` if both are located in the same place (ie are part of a 'substitution' operation) and if the substrings correspond to key-value pairs in ``sub_words``. This is useful if words are systematically incorrect in ground truth transcriptions. Before starting to look for substitution, this processor adds spaces at the beginning and end of ``data[self.text_key]`` and ``data[self.pred_text_key]``, to ensure that an argument like ``sub_words = {"nmo ": "nemo "}`` would cause a substitution to be made even if the original ``data[self.text_key]`` ends with ``"nmo"`` and ``data[self.pred_text_key]`` ends with ``"nemo"``. Args: sub_words (dict): dictionary where a key is a string that might be in ``data[self.text_key]`` and the value is the string that might be in ``data[self.pred_text_key]``. If both are located in the same place (i.e. are part of a 'substitution' operation) then the key string will be converted to the value string in ``data[self.text_key]``. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". pred_text_key (str): a string indicating which key of the data entries should be used to access the ASR predictions. Defaults to "pred_text". .. note:: This processor looks for exact string matches of substitutions, so you may need to be careful with spaces in ``sub_words``. E.g. it is recommended to do ``sub_words = {"nmo ": "nemo "}`` instead of ``sub_words = {"nmo" : "nemo"}``. Returns: The same data as in the input manifest with ``<text_key>`` field changed. """ def __init__( self, sub_words: Dict, text_key: str = "text", pred_text_key: str = "pred_text", **kwargs, ): super().__init__(**kwargs) self.sub_words = sub_words self.text_key = text_key self.pred_text_key = pred_text_key def process_dataset_entry(self, data_entry) -> List: sub_word_counter = collections.defaultdict(int) data_entry[self.text_key] = add_start_end_spaces(data_entry[self.text_key]) data_entry[self.pred_text_key] = add_start_end_spaces(data_entry[self.pred_text_key]) for original_word, new_word in self.sub_words.items(): if not original_word in data_entry[self.text_key]: break orig_words, pred_words = data_entry[self.text_key], data_entry[self.pred_text_key] diff = get_diff_with_subs_grouped(orig_words, pred_words) if len(diff) > 0: # ie if there are differences between text and pred_text new_sent = "" for diff_entry in diff: if diff_entry[0] == 0: # no change new_sent += diff_entry[1] elif diff_entry[0] == -1: # deletion in original string new_sent += diff_entry[1] elif diff_entry[0] == 1: # insertion in original string # don't make changes pass elif isinstance(diff_entry, tuple): # substitution if diff_entry[0][1] == original_word and diff_entry[1][1] == new_word: # ie. substitution is one we want to use to change the original text new_sent += new_word sub_word_counter[original_word] += 1 else: # ie. substitution is one we want to ignore new_sent += diff_entry[0][1] else: raise ValueError(f"unexpected item in diff_entry: {diff_entry}") new_sent = add_start_end_spaces(new_sent) data_entry[self.text_key] = new_sent data_entry[self.text_key] = remove_extra_spaces(data_entry[self.text_key]) data_entry[self.pred_text_key] = remove_extra_spaces(data_entry[self.pred_text_key]) return [DataEntry(data=data_entry, metrics=sub_word_counter)] def finalize(self, metrics): total_counter = collections.defaultdict(int) for counter in metrics: for word, count in counter.items(): total_counter[word] += count logger.info("Num of words that were substituted") for word, count in total_counter.items(): logger.info(f"{word} {count}") super().finalize(metrics) # TODO: replace with generic regex class SubMakeLowercase(BaseParallelProcessor): """Processor to convert text to lowercase. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". Returns: The same data as in the input manifest with ``<text_key>`` field changed. """ def __init__( self, text_key: str = "text", **kwargs, ): super().__init__(**kwargs) self.text_key = text_key def process_dataset_entry(self, data_entry) -> List: data_entry[self.text_key] = data_entry[self.text_key].lower() return [DataEntry(data=data_entry)] def finalize(self, metrics): logger.info("Made all letters lowercase") super().finalize(metrics) class SubRegex(BaseParallelProcessor): """Converts a regex match to a string, as defined by key-value pairs in ``regex_to_sub``. Before applying regex changes, we will add a space character to the beginning and end of the ``text`` and ``pred_text`` keys for each data entry. After the the regex changes, the extra spaces are removed. This includes the spaces in the beginning and end of the text, as well as any double spaces ``" "``. Args: regex_params_list (list[dict]): list of dicts. Each dict must contain a ``pattern`` and a ``repl`` key, and optionally a ``count`` key (by default, ``count`` will be 0). This processor will go through the list in order, and apply a ``re.sub`` operation on the input text in ``data_entry[self.text_key]``, feeding in the specified ``pattern``, ``repl`` and ``count`` parameters to ``re.sub``. text_key (str): a string indicating which key of the data entries should be used to find the utterance transcript. Defaults to "text". Returns: The same data as in the input manifest with ``<text_key>`` field changed. """ def __init__( self, regex_params_list: List[Dict], text_key: str = "text", **kwargs, ): super().__init__(**kwargs) self.regex_params_list = regex_params_list self.text_key = text_key # verify all dicts in regex_params_list have "pattern" and "repl" keys for regex_params_dict in self.regex_params_list: if not "pattern" in regex_params_dict.keys(): raise ValueError( f"Need to have key 'pattern' in all entries of `regex_params_list`: {self.regex_params_list}" ) if not "repl" in regex_params_dict.keys(): raise ValueError( f"Need to have key 'repl' in all entries of `regex_params_list`: {self.regex_params_list}" ) def process_dataset_entry(self, data_entry) -> List: """Replaces each found regex match with a given string.""" replace_word_counter = collections.defaultdict(int) text_in = data_entry[self.text_key] text_in = add_start_end_spaces(text_in) for regex_params in self.regex_params_list: text_out = re.sub( pattern=regex_params["pattern"], repl=regex_params["repl"], string=text_in, # note: this count param is the maximum number of pattern occurrences to be replaced. count=regex_params.get("count", 0), ) if text_in != text_out: replace_word_counter[regex_params["pattern"]] += 1 text_in = text_out text_out = remove_extra_spaces(text_out) data_entry[self.text_key] = text_out return [DataEntry(data=data_entry, metrics=replace_word_counter)] def finalize(self, metrics): """Reports how many substitutions were made for each pattern.""" total_counter = collections.defaultdict(int) for counter in metrics: for word, count in counter.items(): total_counter[word] += count logger.info("Number of utterances which applied substitutions for the following patterns:") total_counter_sorted = dict(sorted(total_counter.items(), key=lambda x: x[1], reverse=True)) for word, count in total_counter_sorted.items(): logger.info(f"{word} {count}") super().finalize(metrics)
NeMo-speech-data-processor-main
sdp/processors/modify_manifest/data_to_data.py
import torch from azure.core.exceptions import ResourceNotFoundError from azure.ai.ml.entities import AmlCompute from monai.transforms import MapTransform class ConvertToMultiChannelBasedOnBratsClassesd(MapTransform): """ Convert labels to multi channels based on brats 2021 classes: label 1 necrotic tumor core (NCR) label 2 peritumoral edematous/invaded tissue label 3 is not used in the new dataset version label 4 GD-enhancing tumor The possible classes are: TC (Tumor core): merge labels 1 and 4 WT (Whole tumor): merge labels 1,2 and 4 ET (Enhancing tumor): label 4 """ def __call__(self, data): d = dict(data) for key in self.keys: result = [] # merge label 1 and label 4 to construct TC result.append(torch.logical_or(d[key] == 1, d[key] == 4)) # merge labels 1, 2 and 4 to construct WT result.append( torch.logical_or( torch.logical_or(d[key] == 1, d[key] == 2), d[key] == 4 ) ) # label 4 is ET result.append(d[key] == 4) d[key] = torch.stack(result, axis=0).float() return d def create_compute_cluster(ml_client, cname, csize): try: ml_client.compute.get(name=cname) print("Found existing compute target {name}.") except ResourceNotFoundError: print("Creating a new compute target...") cluster_low_pri = AmlCompute( name=cname, size=csize, min_instances=0, max_instances=3, idle_time_before_scale_down=120, tier="low_priority", ) ml_client.begin_create_or_update(cluster_low_pri).result()
NVIDIA_AI_Enterprise_AzureML-main
samples/python/3D-image-segmentation/monai/notebooks/helper.py
import os import logging import json import numpy import torch from monai.networks.nets import SegResNet from monai.data import Dataset from monai.transforms import Activations, AsDiscrete, Compose, LoadImaged, ConcatItemsd, NormalizeIntensityd, Orientationd, Spacingd, Spacing, EnsureTyped, EnsureChannelFirstd import torch from monai.inferers import sliding_window_inference import base64 device = 'cuda' if torch.cuda.is_available() else 'cpu' VAL_AMP = True def init(): """ This function is called when the container is initialized/started, typically after create/update of the deployment. You can write the logic here to perform init operations like caching the model in memory """ global device device = 'cuda' if torch.cuda.is_available() else 'cpu' global model model = SegResNet( blocks_down=[1, 2, 2, 4], blocks_up=[1, 1, 1], init_filters=16, in_channels=4, out_channels=3, dropout_prob=0.2, ).to(device) #print(os.getenv("AZUREML_MODEL_DIR")) # AZUREML_MODEL_DIR is an environment variable created during deployment. # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION) # Please provide your model's folder name if there is one # model_path = os.path.join( # # os.getenv("AZUREML_MODEL_DIR"), "model/extra_files/best_metric_model.pth" # ) model_path = os.path.join( os.getenv("AZUREML_MODEL_DIR"), "model/extra_files/", "best_metric_model.pth" ) # model_path = os.path.join( # os.getenv("AZUREML_MODEL_DIR"), "", "best_metric_model.pth" # ) # model_path = os.getenv("AZUREML_MODEL_DIR"); #logging.info('Model path: {model_path}') state_dict = torch.load(model_path, map_location=torch.device(device)) model.load_state_dict(state_dict) logging.info("Init complete") def inference(input): def _compute(input): return sliding_window_inference( inputs=input, roi_size=(240, 240, 160), sw_batch_size=1, predictor=model, overlap=0.5, ) if VAL_AMP: with torch.cuda.amp.autocast(): return _compute(input) else: return _compute(input) def run(raw_data): """ This function is called for every invocation of the endpoint to perform the actual scoring/prediction. In the example we extract the data from the json input and call the scikit-learn model's predict() method and return the result back """ logging.info("model 1: request received") data = json.loads(raw_data)["data"][0] flair_image = base64.b64decode(data['flair']) t1_image = base64.b64decode(data['t1']) t1ce_image = base64.b64decode(data['t1ce']) t2_image = base64.b64decode(data['t2']) # Write binary data to file with appropriate file extension with open('flair.nii.gz', 'wb') as f: f.write(flair_image) with open('t1.nii.gz', 'wb') as f: f.write(t1_image) with open('t1ce.nii.gz', 'wb') as f: f.write(t1ce_image) with open('t2.nii.gz', 'wb') as f: f.write(t2_image) val_transform = Compose( [ LoadImaged(keys=["flair", "t1", "t1ce", "t2"]), EnsureChannelFirstd(keys=["flair", "t1", "t1ce", "t2"]), ConcatItemsd(keys=["flair", "t1", "t1ce", "t2"], name="image", dim=0), EnsureTyped(keys=["image"]), Orientationd(keys=["image"], axcodes="RAS"), Spacingd( keys=["image"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear"), ), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), ]) post_trans = Compose( [Activations(sigmoid=True), AsDiscrete(threshold=0.5)] ) data_list = [{'flair': 'flair.nii.gz', 't1':'t1.nii.gz', 't1ce': 't1ce.nii.gz', 't2': 't2.nii.gz'}] val_ds = Dataset(data=data_list, transform=val_transform) model.eval() with torch.no_grad(): val_input = val_ds[0]['image'].unsqueeze(0).to(device) val_output = inference(val_input) val_output = post_trans(val_output[0]) result = val_output[:, :, :, :].detach().cpu().numpy() logging.info("Request processed") return result.tolist()
NVIDIA_AI_Enterprise_AzureML-main
samples/python/3D-image-segmentation/monai/notebooks/score.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import argparse from copy import deepcopy from functools import partial import logging import os import sys import json from wsgiref import headers from attrdict import AttrDict import numpy as np from PIL import Image from tqdm import tqdm import tritonclient.grpc as grpcclient import tritonclient.grpc.model_config_pb2 as mc import tritonclient.http as httpclient from tritonclient.utils import InferenceServerException from tritonclient.utils import triton_to_np_dtype from tao_triton.python.types import Frame, UserData from tao_triton.python.postprocessing.detectnet_processor import DetectNetPostprocessor from tao_triton.python.postprocessing.classification_postprocessor import ClassificationPostprocessor from tao_triton.python.postprocessing.lprnet_postprocessor import LPRPostprocessor from tao_triton.python.postprocessing.yolov3_postprocessor import YOLOv3Postprocessor from tao_triton.python.postprocessing.peoplesegnet_postprocessor import PeoplesegnetPostprocessor from tao_triton.python.postprocessing.retinanet_postprocessor import RetinanetPostprocessor from tao_triton.python.postprocessing.multitask_classification_postprocessor import MultitaskClassificationPostprocessor from tao_triton.python.postprocessing.pose_classification_postprocessor import PoseClassificationPostprocessor from tao_triton.python.utils.kitti import write_kitti_annotation from tao_triton.python.utils.pose_cls_dataset_convert import pose_cls_dataset_convert from tao_triton.python.model.detectnet_model import DetectnetModel from tao_triton.python.model.classification_model import ClassificationModel from tao_triton.python.model.lprnet_model import LPRModel from tao_triton.python.model.yolov3_model import YOLOv3Model from tao_triton.python.model.peoplesegnet_model import PeoplesegnetModel from tao_triton.python.model.retinanet_model import RetinanetModel from tao_triton.python.model.multitask_classification_model import MultitaskClassificationModel from tao_triton.python.model.pose_classification_model import PoseClassificationModel import gevent.ssl logger = logging.getLogger(__name__) TRITON_MODEL_DICT = { "classification": ClassificationModel, "detectnet_v2": DetectnetModel, "lprnet": LPRModel, "yolov3": YOLOv3Model, "peoplesegnet": PeoplesegnetModel, "retinanet": RetinanetModel, "multitask_classification":MultitaskClassificationModel, "pose_classification":PoseClassificationModel } POSTPROCESSOR_DICT = { "classification": ClassificationPostprocessor, "detectnet_v2": DetectNetPostprocessor, "lprnet": LPRPostprocessor, "yolov3": YOLOv3Postprocessor, "peoplesegnet": PeoplesegnetPostprocessor, "retinanet": RetinanetPostprocessor, "multitask_classification": MultitaskClassificationPostprocessor, "pose_classification": PoseClassificationPostprocessor } def completion_callback(user_data, result, error): """Callback function used for async_stream_infer().""" user_data._completed_requests.put((result, error)) def convert_http_metadata_config(_metadata, _config): """Convert to the http metadata to class Dict.""" _model_metadata = AttrDict(_metadata) _model_config = AttrDict(_config) return _model_metadata, _model_config def requestGenerator(batched_image_data, input_name, output_name, dtype, protocol, num_classes=0): """Generator for triton inference requests. Args: batch_image_data (np.ndarray): Numpy array of a batch of images. input_name (str): Name of the input array output_name (list(str)): Name of the model outputs dtype: Tensor data type for Triton protocol (str): The protocol used to communicated between the Triton server and TAO Toolkit client. num_classes (int): The number of classes in the network. Yields: inputs outputs made_name (str): Name of the triton model model_version (int): Version number """ if protocol == "grpc": client = grpcclient else: client = httpclient # Set the input data inputs = [client.InferInput(input_name, batched_image_data.shape, dtype)] inputs[0].set_data_from_numpy(batched_image_data) outputs = [ client.InferRequestedOutput( out_name, class_count=num_classes ) for out_name in output_name ] yield inputs, outputs def parse_command_line(args=None): """Parsing command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument('-v', '--verbose', action="store_true", required=False, default=False, help='Enable verbose output') parser.add_argument('-a', '--async', dest="async_set", action="store_true", required=False, default=False, help='Use asynchronous inference API') parser.add_argument('--streaming', action="store_true", required=False, default=False, help='Use streaming inference API. ' + 'The flag is only available with gRPC protocol.') parser.add_argument('-m', '--model-name', type=str, required=True, help='Name of model') parser.add_argument('-x', '--model-version', type=str, required=False, default="", help='Version of model. Default is to use latest version.') parser.add_argument('-b', '--batch-size', type=int, required=False, default=1, help='Batch size. Default is 1.') parser.add_argument('--mode', type=str, choices=['Classification', "DetectNet_v2", "LPRNet", "YOLOv3", "Peoplesegnet", "Retinanet", "Multitask_classification", "Pose_classification"], required=False, default='NONE', help='Type of scaling to apply to image pixels. Default is NONE.') parser.add_argument('-u', '--url', type=str, required=False, default='localhost:8000', help='Inference server URL. Default is localhost:8000.') parser.add_argument('-t', '--token', type=str, required=False, help='token if using AzureML endpoint. ') parser.add_argument('-i', '--protocol', type=str, required=False, default='HTTP', help='Protocol (HTTP/gRPC) used to communicate with ' + 'the inference service. Default is HTTP.') parser.add_argument('image_filename', type=str, nargs='?', default=None, help='Input image / Input folder / Input JSON / Input pose sequences.') parser.add_argument('--class_list', type=str, default="person,bag,face", help="Comma separated class names", required=False) parser.add_argument('--output_path', type=str, default=os.path.join(os.getcwd(), "outputs"), help="Path to where the inferenced outputs are stored.", required=True) parser.add_argument("--postprocessing_config", type=str, default="", help="Path to the DetectNet_v2 clustering config.") parser.add_argument("--dataset_convert_config", type=str, default="", help="Path to the Pose Classification dataset conversion config.") return parser.parse_args() def main(): """Running the inferencer client.""" FLAGS = parse_command_line(sys.argv[1:]) if FLAGS.mode.lower() == "detectnet_v2": assert os.path.isfile(FLAGS.postprocessing_config), ( "Clustering config must be defined for DetectNet_v2." ) log_level = "INFO" if FLAGS.verbose: log_level = "DEBUG" # Configure logging to get Maglev log messages. logging.basicConfig(format='%(asctime)s [%(levelname)s] ' '%(name)s: %(message)s', level=log_level) if FLAGS.streaming and FLAGS.protocol.lower() != "grpc": raise Exception("Streaming is only allowed with gRPC protocol") try: if FLAGS.protocol.lower() == "grpc": # Create gRPC client for communicating with the server triton_client = grpcclient.InferenceServerClient( url=FLAGS.url, verbose=FLAGS.verbose) else: # Specify large enough concurrency to handle the # the number of requests. concurrency = 20 if FLAGS.async_set else 1 #AML needs header info api_key = FLAGS.token print ("api key:" + api_key) headers = {'Content-Type':'application/json', 'Authorization':('Bearer '+ api_key), 'azureml-model-deployment': 'triton-tao-deployment-aml-1' } triton_client = httpclient.InferenceServerClient( url=FLAGS.url,verbose=FLAGS.verbose,ssl=True,ssl_context_factory=gevent.ssl._create_default_https_context, concurrency=concurrency) except Exception as e: print("client creation failed: " + str(e)) sys.exit(1) # Make sure the model matches our requirements, and get some # properties of the model that we need for preprocessing try: model_metadata = triton_client.get_model_metadata( model_name=FLAGS.model_name, model_version=FLAGS.model_version, headers=headers) print(model_metadata) except InferenceServerException as e: print("failed to retrieve the metadata: " + str(e)) sys.exit(1) try: model_config = triton_client.get_model_config( model_name=FLAGS.model_name, model_version=FLAGS.model_version, headers=headers) except InferenceServerException as e: print("failed to retrieve the config: " + str(e)) sys.exit(1) if FLAGS.protocol.lower() == "grpc": model_config = model_config.config else: model_metadata, model_config = convert_http_metadata_config( model_metadata, model_config) triton_model = TRITON_MODEL_DICT[FLAGS.mode.lower()].from_metadata(model_metadata, model_config) max_batch_size = triton_model.max_batch_size pose_sequences = None frames = [] if FLAGS.mode.lower() == "pose_classification": # The input is a JSON file of pose metadata. if os.path.splitext(FLAGS.image_filename)[-1] == ".json": if not os.path.isfile(FLAGS.dataset_convert_config): raise FileNotFoundError("Dataset conversion config must be defined for Pose Classification.") pose_sequences, action_data = pose_cls_dataset_convert(FLAGS.image_filename, FLAGS.dataset_convert_config) # The input is a NumPy array of pose sequences. elif os.path.splitext(FLAGS.image_filename)[-1] == ".npy": pose_sequences = np.load(file=FLAGS.image_filename) else: raise NotImplementedError("The input for Pose Classification has to be a JSON file or a NumPy array.") else: target_shape = (triton_model.c, triton_model.h, triton_model.w) npdtype = triton_to_np_dtype(triton_model.triton_dtype) # The input is a folder of images. if os.path.isdir(FLAGS.image_filename): frames = [ Frame(os.path.join(FLAGS.image_filename, f), triton_model.data_format, npdtype, target_shape) for f in os.listdir(FLAGS.image_filename) if os.path.isfile(os.path.join(FLAGS.image_filename, f)) and os.path.splitext(f)[-1] in [".jpg", ".jpeg", ".png"] ] # The input is an image. else: frames = [ Frame(os.path.join(FLAGS.image_filename), triton_model.data_format, npdtype, target_shape) ] # Send requests of FLAGS.batch_size images. If the number of # images isn't an exact multiple of FLAGS.batch_size then just # start over with the first images until the batch is filled. requests = [] responses = [] result_filenames = [] request_ids = [] image_idx = 0 last_request = False user_data = UserData() class_list = FLAGS.class_list.split(",") args_postprocessor = [] if FLAGS.mode.lower() == "pose_classification": args_postprocessor = [ FLAGS.batch_size, pose_sequences, FLAGS.output_path ] else: args_postprocessor = [ FLAGS.batch_size, frames, FLAGS.output_path, triton_model.data_format ] if FLAGS.mode.lower() == "detectnet_v2": args_postprocessor.extend([class_list, FLAGS.postprocessing_config, target_shape]) postprocessor = POSTPROCESSOR_DICT[FLAGS.mode.lower()](*args_postprocessor) # Holds the handles to the ongoing HTTP async requests. async_requests = [] sent_count = 0 if FLAGS.streaming: triton_client.start_stream(partial(completion_callback, user_data)) logger.info("Sending inference request for batches of data") total = len(frames) if FLAGS.mode.lower() == "pose_classification": pbar_total = pose_sequences.shape[0] else: pbar_total = len(frames) with tqdm(total=pbar_total) as pbar: while not last_request: batched_image_data = None if FLAGS.mode.lower() == "pose_classification": repeated_data = None for idx in range(FLAGS.batch_size): pose_sequence = pose_sequences[[image_idx], :, :, :, :] if repeated_data is None: repeated_data = pose_sequence else: repeated_data = np.concatenate((repeated_data, pose_sequence), axis=0) image_idx = (image_idx + 1) % pose_sequences.shape[0] if image_idx == 0: last_request = True if max_batch_size > 0: batched_image_data = repeated_data else: batched_image_data = repeated_data[[0], :, :, :, :] else: repeated_image_data = [] for idx in range(FLAGS.batch_size): frame = frames[image_idx] if FLAGS.mode.lower() == "yolov3" or FLAGS.mode.lower() == "retinanet": img = frame._load_img() repeated_image_data.append(img) elif FLAGS.mode.lower() == "multitask_classification": img = frame._load_img_multitask_classification() repeated_image_data.append(img) elif FLAGS.mode.lower() == "peoplesegnet": img = frame._load_img_maskrcnn() repeated_image_data.append(img) else: img = frame.load_image() repeated_image_data.append( triton_model.preprocess( frame.as_numpy(img) ) ) image_idx = (image_idx + 1) % len(frames) if image_idx == 0: last_request = True if max_batch_size > 0: batched_image_data = np.stack(repeated_image_data, axis=0) else: batched_image_data = repeated_image_data[0] # Send request try: req_gen_args = [batched_image_data, triton_model.input_names, triton_model.output_names, triton_model.triton_dtype, FLAGS.protocol.lower()] req_gen_kwargs = {} if FLAGS.mode.lower() in ["classification", "pose_classification"]: req_gen_kwargs["num_classes"] = model_config.output[0].dims[0] req_generator = requestGenerator(*req_gen_args, **req_gen_kwargs) for inputs, outputs in req_generator: sent_count += 1 if FLAGS.streaming: triton_client.async_stream_infer( FLAGS.model_name, inputs, request_id=str(sent_count), model_version=FLAGS.model_version, headers=headers, outputs=outputs) elif FLAGS.async_set: if FLAGS.protocol.lower() == "grpc": triton_client.async_infer( FLAGS.model_name, inputs, partial(completion_callback, user_data), request_id=str(sent_count), model_version=FLAGS.model_version, headers=headers, outputs=outputs) else: async_requests.append( triton_client.async_infer( FLAGS.model_name, inputs, request_id=str(sent_count), model_version=FLAGS.model_version, headers=headers, outputs=outputs)) else: responses.append( triton_client.infer(FLAGS.model_name, inputs, headers=headers, request_id=str(sent_count), model_version=FLAGS.model_version, outputs=outputs)) except InferenceServerException as e: print("inference failed: " + str(e)) if FLAGS.streaming: triton_client.stop_stream() sys.exit(1) pbar.update(FLAGS.batch_size) if FLAGS.streaming: triton_client.stop_stream() if FLAGS.protocol.lower() == "grpc": if FLAGS.streaming or FLAGS.async_set: processed_count = 0 while processed_count < sent_count: (results, error) = user_data._completed_requests.get() processed_count += 1 if error is not None: print("inference failed: " + str(error)) sys.exit(1) responses.append(results) else: if FLAGS.async_set: # Collect results from the ongoing async requests # for HTTP Async requests. for async_request in async_requests: responses.append(async_request.get_result()) logger.info("Gathering responses from the server and post processing the inferenced outputs.") processed_request = 0 with tqdm(total=len(frames)) as pbar: while processed_request < sent_count: response = responses[processed_request] if FLAGS.protocol.lower() == "grpc": this_id = response.get_response().id else: this_id = response.get_response()["id"] if os.path.splitext(FLAGS.image_filename)[-1] == ".json": postprocessor.apply( response, this_id, render=True, action_data=action_data ) else: postprocessor.apply( response, this_id, render=True ) processed_request += 1 pbar.update(FLAGS.batch_size) if os.path.splitext(FLAGS.image_filename)[-1] == ".json": output_file = os.path.join(FLAGS.output_path, "results.json") for b in range(len(action_data)): for f in range(len(action_data[b]["batches"])): for p in range(len(action_data[b]["batches"][f]["objects"])): action_data[b]["batches"][f]["objects"][p].pop("segment_id", None) with open(output_file, 'w') as f: json.dump(action_data, f, sort_keys=True, indent=2, ensure_ascii=False) logger.info("PASS") if __name__ == '__main__': main()
NVIDIA_AI_Enterprise_AzureML-main
samples/cli/tao/object_detection/detectnet_v2/scripts/auxiliary_files/tao_client_aml.py
import argparse import os from pathlib import Path import cudf import pandas as pd import xgboost import matplotlib.pyplot as plt from cuml.model_selection import train_test_split from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from sklearn.utils._testing import ignore_warnings import optuna import mlflow mlflow.sklearn.autolog() parser = argparse.ArgumentParser("train") parser.add_argument("--training_data", type=str, help="Path to training data") parser.add_argument("--model_output", type=str, help="Path to output model") parser.add_argument("--test_split_ratio", type=float, help="ratio of train test split") args = parser.parse_args() print("Hello training world...") df_list = [] with open(os.path.join(args.training_data), "r") as handle: input_df = cudf.read_csv((Path(args.training_data))) df_list.append(input_df) print(df_list) train_data = df_list[0] #Split the data into input(x) and output(y) target_column = 'tip_amount' y = train_data[target_column] X = train_data.drop(target_column, axis=1) X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=args.test_split_ratio, random_state=42) train_DataAndLabelsGPU = xgboost.DMatrix(X_train,label=y_train) test_DataAndLabelsGPU = xgboost.DMatrix(X_test, label=y_test) #Train once gpuMaxDepth = 1 gpuNTrees = 10 paramsGPU = { 'max_depth': gpuMaxDepth, 'objective': 'reg:squarederror', # Change the objective to regression 'tree_method': 'gpu_hist', 'random_state': 0, }; xgBoostModelGPU = xgboost.train(dtrain=train_DataAndLabelsGPU, params=paramsGPU, num_boost_round=gpuNTrees); nGPUs = 1 gpuMaxDepth = 3 gpuNTrees = 10 for gpuMaxDepth in [1, 3, 4, 5, 10]: for gpuNTrees in [1, 10, 25, 50, 100]: paramsGPU = { 'max_depth': gpuMaxDepth, 'objective': 'reg:squarederror', # Change the objective to regression 'tree_method': 'gpu_hist', 'random_state': 0, }; xgBoostModelGPU = xgboost.train(dtrain=train_DataAndLabelsGPU, params=paramsGPU, num_boost_round=gpuNTrees); # evaluate yPredTrainGPU = xgBoostModelGPU.predict(train_DataAndLabelsGPU) yPredTestGPU = xgBoostModelGPU.predict(test_DataAndLabelsGPU) # Assuming you have yPredTestGPU and y_test (Ground truth labels) mse = mean_squared_error(y_test.to_numpy(), yPredTestGPU) r2 = r2_score(y_test.to_numpy(), yPredTestGPU) # Assuming you have yPredTestGPU and y_test (Ground truth labels) mse_train = mean_squared_error(y_train.to_numpy(), yPredTrainGPU) r2_train = r2_score(y_train.to_numpy(), yPredTrainGPU) print(f"{gpuMaxDepth} -- {gpuNTrees} -- Mean Squared Error: {mse} -- {mse_train} -- R-squared: {r2} -- {r2_train}") # The below section is for optuna HPO def objective(trial): gpuMaxDepth = trial.suggest_int('gpuMaxDepth',1,20) gpuNTrees = trial.suggest_int('gpuNTrees',1,300) paramsGPU = { 'max_depth': gpuMaxDepth, 'objective': 'reg:squarederror', # Change the objective to regression 'tree_method': 'gpu_hist', 'random_state': 0, }; xgBoostModelGPU = xgboost.train(dtrain=train_DataAndLabelsGPU, params=paramsGPU, num_boost_round=gpuNTrees); #evaluate yPredTrainGPU = xgBoostModelGPU.predict(train_DataAndLabelsGPU) yPredTestGPU = xgBoostModelGPU.predict(test_DataAndLabelsGPU) # Assuming you have yPredTestGPU and y_test (Ground truth labels) mse = mean_squared_error(y_test.to_numpy(), yPredTestGPU) return mse study = optuna.create_study(direction='minimize') study.optimize(objective, n_trials=10) print("Number of finished trials:", len(study.trials)) print("Best trial:", study.best_trial.params) best_params = study.best_trial.params xgBoostModelGPU = xgboost.train(dtrain=train_DataAndLabelsGPU, params=best_params, num_boost_round=best_params['gpuNTrees']) #evaluate yPredTrainGPU = xgBoostModelGPU.predict(train_DataAndLabelsGPU) yPredTestGPU = xgBoostModelGPU.predict(test_DataAndLabelsGPU) #Assuming you have yPredTestGPU and y_test (Ground truth labels) mse = mean_squared_error(y_test.to_numpy(), yPredTestGPU) r2 = r2_score(y_test.to_numpy(), yPredTestGPU) print(f"Mean Squared Error: {mse} -- R-squared: {r2}") mlflow.sklearn.save_model(xgBoostModelGPU, args.model_output) # plot the figure plt.figure(figsize=(20,10)) n_samples_to_diff = 200 actual = y_train[0:n_samples_to_diff].to_numpy() predicted = yPredTrainGPU[0:n_samples_to_diff] plt.subplot(3,1,(1,2)) plt.plot(actual, color=(0,.8,0), linewidth=2) plt.plot(predicted, linestyle='-', color=(1,.6,1), linewidth=2) plt.legend(['actual', 'predicted']) plt.ylabel('tip amount $') plt.grid('on',alpha=.25) plt.subplot(3,1,3) plt.plot(actual-predicted,color=(0,0,0)) plt.legend(['diff in actual v/s predicted']) plt.ylabel('predicted error $') plt.xlabel('trip number') plt.grid('on',alpha=0.25) plt.savefig("output-1.jpg") samples = plt.gcf() try: mlflow.log_figure(samples, 'sample-images.png') except Exception as e: print('Exception during mlflow image logging: {e}')
NVIDIA_AI_Enterprise_AzureML-main
src/components/RAPIDS/HPO_with_XGBoost/train_component/src/train.py
import argparse import os from pathlib import Path import cudf import matplotlib.pylab as plt import pandas as pd import numpy as np import json parser = argparse.ArgumentParser("prep") parser.add_argument("--raw_data", type=str, help="Path/URL to the Parquet file") parser.add_argument("--prep_data",type=str, help="Path to the cleaned and filtered data") args = parser.parse_args() columns_to_read = ['passenger_count', 'trip_distance','RatecodeID','PULocationID','DOLocationID','payment_type','fare_amount','extra','mta_tax','tip_amount','tolls_amount','improvement_surcharge','congestion_surcharge'] # Read the Parquet files into the CuDF dataframe cudf_dataframe = cudf.read_parquet(args.raw_data,columns=columns_to_read) print(cudf_dataframe.dtypes) #Remove rows with any missing values #cudf_dataframe_no_total = cudf_dataframe.drop(['tpep_pickup_datetime', 'tpep_dropoff_datetime', 'store_and_fwd_flag', 'total_amount'], axis=1) cudf_dataframe_no_total_no_missing_values = cudf_dataframe.dropna() print(cudf_dataframe_no_total_no_missing_values.shape) print("Dataframe columns") print(cudf_dataframe.columns) print(cudf_dataframe_no_total_no_missing_values) # Save the data clean_data = cudf_dataframe_no_total_no_missing_values.to_csv(Path(args.prep_data))
NVIDIA_AI_Enterprise_AzureML-main
src/components/RAPIDS/HPO_with_XGBoost/prep_data_component/src/prep.py
import os import pandas as pd import cudf parquet_files = ['yellow_tripdata_2023-01.parquet', 'yellow_tripdata_2023-02.parquet', ] dfs = [cudf.read_parquet(file) for file in parquet_files] dfs = cudf.concat(dfs) dfs.to_parquet('merged_data.parquet')
NVIDIA_AI_Enterprise_AzureML-main
src/components/RAPIDS/HPO_with_XGBoost/prep_data_component/src/merge_data.py
import argparse from pathlib import Path from typing_extensions import Concatenate from uuid import uuid4 from datetime import datetime import os import pandas as pd import cudf from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pickle parser = argparse.ArgumentParser("prep") parser.add_argument("--raw_data", type=str, help="Path to raw data") parser.add_argument("--prep_data", type=str, help="Path of prepped data") args = parser.parse_args() print("hello training world...") lines = [f"Raw data path: {args.raw_data}", f"Data output path: {args.prep_data}"] for line in lines: print(line) print("mounted_path files: ") arr = os.listdir(args.raw_data) print(arr) df_list = [] for filename in arr: print("reading file: %s ..." % filename) with open(os.path.join(args.raw_data, filename), "r") as handle: # print (handle.read()) # ('input_df_%s' % filename) = pd.read_csv((Path(args.training_data) / filename)) #input_df = pd.read_csv((Path(args.raw_data) / filename)) input_df = cudf.read_csv((Path(args.raw_data) / filename)) df_list.append(input_df) # Prep the green and yellow taxi data green_data = df_list[0] yellow_data = df_list[1] # Define useful columns needed for the Azure Machine Learning NYC Taxi tutorial useful_columns = str( [ "cost", "distance", "dropoff_datetime", "dropoff_latitude", "dropoff_longitude", "passengers", "pickup_datetime", "pickup_latitude", "pickup_longitude", "store_forward", "vendor", ] ).replace(",", ";") print(useful_columns) # Rename columns as per Azure Machine Learning NYC Taxi tutorial green_columns = str( { "vendorID": "vendor", "lpepPickupDatetime": "pickup_datetime", "lpepDropoffDatetime": "dropoff_datetime", "storeAndFwdFlag": "store_forward", "pickupLongitude": "pickup_longitude", "pickupLatitude": "pickup_latitude", "dropoffLongitude": "dropoff_longitude", "dropoffLatitude": "dropoff_latitude", "passengerCount": "passengers", "fareAmount": "cost", "tripDistance": "distance", } ).replace(",", ";") yellow_columns = str( { "vendorID": "vendor", "tpepPickupDateTime": "pickup_datetime", "tpepDropoffDateTime": "dropoff_datetime", "storeAndFwdFlag": "store_forward", "startLon": "pickup_longitude", "startLat": "pickup_latitude", "endLon": "dropoff_longitude", "endLat": "dropoff_latitude", "passengerCount": "passengers", "fareAmount": "cost", "tripDistance": "distance", } ).replace(",", ";") print("green_columns: " + green_columns) print("yellow_columns: " + yellow_columns) # These functions ensure that null data is removed from the dataset, # which will help increase machine learning model accuracy. def get_dict(dict_str): pairs = dict_str.strip("{}").split(";") new_dict = {} for pair in pairs: print(pair) key, value = pair.strip().split(":") new_dict[key.strip().strip("'")] = value.strip().strip("'") return new_dict def cleanseData(data, columns, useful_columns): useful_columns = [ s.strip().strip("'") for s in useful_columns.strip("[]").split(";") ] new_columns = get_dict(columns) new_df = (data.dropna(how="all").rename(columns=new_columns))[useful_columns] new_df.reset_index(inplace=True, drop=True) return new_df green_data_clean = cleanseData(green_data, green_columns, useful_columns) yellow_data_clean = cleanseData(yellow_data, yellow_columns, useful_columns) # Append yellow data to green data combined_df = green_data_clean.append(yellow_data_clean, ignore_index=True) combined_df.reset_index(inplace=True, drop=True) output_green = green_data_clean.to_csv((Path(args.prep_data) / "green_prep_data.csv")) output_yellow = yellow_data_clean.to_csv( (Path(args.prep_data) / "yellow_prep_data.csv") ) merged_data = combined_df.to_csv((Path(args.prep_data) / "merged_data.csv"))
NVIDIA_AI_Enterprise_AzureML-main
src/components/RAPIDS/NYC_taxi_with_regression/Prep_component/prep_src/prep.py
import argparse from pathlib import Path from uuid import uuid4 from datetime import datetime import os import pandas as pd import cudf import numpy as np parser = argparse.ArgumentParser("transform") parser.add_argument("--clean_data", type=str, help="Path to prepped data") parser.add_argument("--transformed_data", type=str, help="Path of output data") args = parser.parse_args() lines = [ f"Clean data path: {args.clean_data}", f"Transformed data output path: {args.transformed_data}", ] for line in lines: print(line) print("mounted_path files: ") arr = os.listdir(args.clean_data) print(arr) df_list = [] for filename in arr: print("reading file: %s ..." % filename) with open(os.path.join(args.clean_data, filename), "r") as handle: # print (handle.read()) # ('input_df_%s' % filename) = pd.read_csv((Path(args.training_data) / filename)) input_df = pd.read_csv((Path(args.clean_data) / filename)) #input_df = cudf.read_csv((Path(args.clean_data) / filename)) df_list.append(input_df) # Transform the data combined_df = df_list[1] # These functions filter out coordinates for locations that are outside the city border. # Filter out coordinates for locations that are outside the city border. # Chain the column filter commands within the filter() function # and define the minimum and maximum bounds for each field combined_df = combined_df.astype( { "pickup_longitude": "float64", "pickup_latitude": "float64", "dropoff_longitude": "float64", "dropoff_latitude": "float64", } ) latlong_filtered_df = combined_df[ (combined_df.pickup_longitude <= -73.72) & (combined_df.pickup_longitude >= -74.09) & (combined_df.pickup_latitude <= 40.88) & (combined_df.pickup_latitude >= 40.53) & (combined_df.dropoff_longitude <= -73.72) & (combined_df.dropoff_longitude >= -74.72) & (combined_df.dropoff_latitude <= 40.88) & (combined_df.dropoff_latitude >= 40.53) ] latlong_filtered_df.reset_index(inplace=True, drop=True) # These functions replace undefined values and rename to use meaningful names. replaced_stfor_vals_df = latlong_filtered_df.replace( {"store_forward": "0"}, {"store_forward": "N"} ).fillna({"store_forward": "N"}) replaced_distance_vals_df = replaced_stfor_vals_df.replace( {"distance": ".00"}, {"distance": 0} ).fillna({"distance": 0}) normalized_df = replaced_distance_vals_df.astype({"distance": "float64"}) # These functions transform the renamed data to be used finally for training. # Split the pickup and dropoff date further into the day of the week, day of the month, and month values. # To get the day of the week value, use the derive_column_by_example() function. # The function takes an array parameter of example objects that define the input data, # and the preferred output. The function automatically determines your preferred transformation. # For the pickup and dropoff time columns, split the time into the hour, minute, and second by using # the split_column_by_example() function with no example parameter. After you generate the new features, # use the drop_columns() function to delete the original fields as the newly generated features are preferred. # Rename the rest of the fields to use meaningful descriptions. temp = pd.DatetimeIndex(normalized_df["pickup_datetime"], dtype="datetime64[ns]") #temp = cudf.DatetimeIndex(normalized_df["pickup_datetime"], dtype="datetime64[ns]") normalized_df["pickup_date"] = temp.date normalized_df["pickup_weekday"] = temp.dayofweek normalized_df["pickup_month"] = temp.month normalized_df["pickup_monthday"] = temp.day normalized_df["pickup_time"] = temp.time normalized_df["pickup_hour"] = temp.hour normalized_df["pickup_minute"] = temp.minute normalized_df["pickup_second"] = temp.second temp = pd.DatetimeIndex(normalized_df["dropoff_datetime"], dtype="datetime64[ns]") #temp = cudf.DatetimeIndex(normalized_df["dropoff_datetime"], dtype="datetime64[ns]") normalized_df["dropoff_date"] = temp.date normalized_df["dropoff_weekday"] = temp.dayofweek normalized_df["dropoff_month"] = temp.month normalized_df["dropoff_monthday"] = temp.day normalized_df["dropoff_time"] = temp.time normalized_df["dropoff_hour"] = temp.hour normalized_df["dropoff_minute"] = temp.minute normalized_df["dropoff_second"] = temp.second del normalized_df["pickup_datetime"] del normalized_df["dropoff_datetime"] normalized_df.reset_index(inplace=True, drop=True) print(normalized_df.head) print(normalized_df.dtypes) # Drop the pickup_date, dropoff_date, pickup_time, dropoff_time columns because they're # no longer needed (granular time features like hour, # minute and second are more useful for model training). del normalized_df["pickup_date"] del normalized_df["dropoff_date"] del normalized_df["pickup_time"] del normalized_df["dropoff_time"] # Change the store_forward column to binary values normalized_df["store_forward"] = np.where((normalized_df.store_forward == "N"), 0, 1) # Before you package the dataset, run two final filters on the dataset. # To eliminate incorrectly captured data points, # filter the dataset on records where both the cost and distance variable values are greater than zero. # This step will significantly improve machine learning model accuracy, # because data points with a zero cost or distance represent major outliers that throw off prediction accuracy. final_df = normalized_df[(normalized_df.distance > 0) & (normalized_df.cost > 0)] final_df.reset_index(inplace=True, drop=True) print(final_df.head) # Output data transformed_data = final_df.to_csv( (Path(args.transformed_data) / "transformed_data.csv") )
NVIDIA_AI_Enterprise_AzureML-main
src/components/RAPIDS/NYC_taxi_with_regression/Transform_component/transform_src/transform.py
import argparse from pathlib import Path from uuid import uuid4 from datetime import datetime import os import pandas as pd import cudf #from sklearn.linear_model import LinearRegression from cuml.linear_model import LinearRegression #from sklearn.model_selection import train_test_split from cuml.model_selection import train_test_split import mlflow mlflow.sklearn.autolog() parser = argparse.ArgumentParser("train") parser.add_argument("--training_data", type=str, help="Path to training data") parser.add_argument("--test_data", type=str, help="Path to test data") parser.add_argument("--model_output", type=str, help="Path of output model") parser.add_argument("--test_split_ratio", type=float, help="ratio of train test split") args = parser.parse_args() print("hello training world...") lines = [ f"Training data path: {args.training_data}", f"Test data path: {args.test_data}", f"Model output path: {args.model_output}", f"Test split ratio:{args.test_split_ratio}", ] for line in lines: print(line) print("mounted_path files: ") arr = os.listdir(args.training_data) print(arr) df_list = [] for filename in arr: print("reading file: %s ..." % filename) with open(os.path.join(args.training_data, filename), "r") as handle: # print (handle.read()) #input_df = pd.read_csv((Path(args.training_data) / filename)) input_df = cudf.read_csv((Path(args.training_data) / filename)) df_list.append(input_df) train_data = df_list[0] print(train_data.columns) # Split the data into input(X) and output(y) y = train_data["cost"] # X = train_data.drop(['cost'], axis=1) X = train_data[ [ "distance", "dropoff_latitude", "dropoff_longitude", "passengers", "pickup_latitude", "pickup_longitude", "store_forward", "vendor", "pickup_weekday", "pickup_month", "pickup_monthday", "pickup_hour", "pickup_minute", "pickup_second", "dropoff_weekday", "dropoff_month", "dropoff_monthday", "dropoff_hour", "dropoff_minute", "dropoff_second", ] ] # Split the data into train and test sets trainX, testX, trainy, testy = train_test_split( X, y, test_size=args.test_split_ratio, random_state=42 ) print(trainX.shape) print(trainX.columns) # Train a Linear Regression Model with the train set model = LinearRegression().fit(trainX, trainy) print(model.score(trainX, trainy)) mlflow.sklearn.save_model(model, args.model_output) # test_data = pd.DataFrame(testX, columns = ) testX["cost"] = testy print(testX.shape) test_data = testX.to_csv(Path(args.test_data) / "test_data.csv")
NVIDIA_AI_Enterprise_AzureML-main
src/components/RAPIDS/NYC_taxi_with_regression/Train_component/train_src/train.py
import argparse import pandas as pd import cudf import os from pathlib import Path from sklearn.linear_model import LinearRegression #from sklearn.metrics import mean_squared_error, r2_score from cuml.metrics import mean_squared_error, r2_score import mlflow mlflow.sklearn.autolog() parser = argparse.ArgumentParser("score") parser.add_argument( "--predictions", type=str, help="Path of predictions and actual data" ) parser.add_argument("--model", type=str, help="Path to model") parser.add_argument("--score_report", type=str, help="Path to score report") args = parser.parse_args() print("hello scoring world...") lines = [ f"Model path: {args.model}", f"Predictions path: {args.predictions}", f"Scoring output path: {args.score_report}", ] for line in lines: print(line) # Load the test data with predicted values print("mounted_path files: ") arr = os.listdir(args.predictions) print(arr) df_list = [] for filename in arr: print("reading file: %s ..." % filename) with open(os.path.join(args.predictions, filename), "r") as handle: # print (handle.read()) #input_df = pd.read_csv((Path(args.predictions) / filename)) input_df = cudf.read_csv((Path(args.predictions) / filename)) df_list.append(input_df) test_data = df_list[0] # Load the model from input port model = mlflow.sklearn.load_model(args.model) # Print the results of scoring the predictions against actual values in the test data # The coefficients print("Coefficients: \n", model.coef_) actuals = test_data["actual_cost"] predictions = test_data["predicted_cost"] # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(actuals, predictions)) # The coefficient of determination: 1 is perfect prediction print("Coefficient of determination: %.2f" % r2_score(actuals, predictions)) print("Model: ", model) # Print score report to a text file (Path(args.score_report) / "score.txt").write_text( "Scored with the following model:\n{}".format(model) ) with open((Path(args.score_report) / "score.txt"), "a") as f: f.write("\n Coefficients: \n %s \n" % str(model.coef_)) f.write("Mean squared error: %.2f \n" % mean_squared_error(actuals, predictions)) f.write("Coefficient of determination: %.2f \n" % r2_score(actuals, predictions))
NVIDIA_AI_Enterprise_AzureML-main
src/components/RAPIDS/NYC_taxi_with_regression/Score_component/score_src/score.py
import argparse import pandas as pd import cudf import os from pathlib import Path #from sklearn.linear_model import LinearRegression from cuml.linear_model import LinearRegression import mlflow mlflow.sklearn.autolog() parser = argparse.ArgumentParser("predict") parser.add_argument("--model_input", type=str, help="Path of input model") parser.add_argument("--test_data", type=str, help="Path to test data") parser.add_argument("--predictions", type=str, help="Path of predictions") args = parser.parse_args() print("hello scoring world...") lines = [ f"Model path: {args.model_input}", f"Test data path: {args.test_data}", f"Predictions path: {args.predictions}", ] for line in lines: print(line) # Load and split the test data print("mounted_path files: ") arr = os.listdir(args.test_data) print(arr) #test_data = pd.read_csv(Path(args.test_data) / "test_data.csv") test_data = cudf.read_csv(Path(args.test_data) / "test_data.csv") testy = test_data["cost"] # testX = test_data.drop(['cost'], axis=1) testX = test_data[ [ "distance", "dropoff_latitude", "dropoff_longitude", "passengers", "pickup_latitude", "pickup_longitude", "store_forward", "vendor", "pickup_weekday", "pickup_month", "pickup_monthday", "pickup_hour", "pickup_minute", "pickup_second", "dropoff_weekday", "dropoff_month", "dropoff_monthday", "dropoff_hour", "dropoff_minute", "dropoff_second", ] ] print(testX.shape) print(testX.columns) # Load the model from input port model = mlflow.sklearn.load_model(args.model_input) # Make predictions on testX data and record them in a column named predicted_cost predictions = model.predict(testX) testX["predicted_cost"] = predictions print(testX.shape) # Compare predictions to actuals (testy) #output_data = pd.DataFrame(testX) output_data = cudf.DataFrame(testX) output_data["actual_cost"] = testy # Save the output data with feature columns, predicted cost, and actual cost in csv file output_data = output_data.to_csv((Path(args.predictions) / "predictions.csv"))
NVIDIA_AI_Enterprise_AzureML-main
src/components/RAPIDS/NYC_taxi_with_regression/Predict_component/predict_src/predict.py
import argparse import json import logging import os import time import random import matplotlib.pyplot as plt import mlflow import torch # from torch.utils.tensorboard import SummaryWriter # MONAI imports from monai.config import print_config from monai.data import DataLoader, Dataset, CacheDataset, decollate_batch from monai.inferers import sliding_window_inference from monai.losses import DiceLoss from monai.metrics import DiceMetric from monai.networks.nets import SegResNet from monai.transforms import ( Activations, AsDiscrete, Compose, ConcatItemsd, EnsureChannelFirstd, EnsureTyped, LoadImaged, MapTransform, NormalizeIntensityd, Orientationd, RandFlipd, RandScaleIntensityd, RandShiftIntensityd, RandSpatialCropd, Spacingd, ) from monai.utils import set_determinism # Avoid flooding of debug messages in logs logging.basicConfig(level=logging.WARNING) logging.getLogger("requests").setLevel(logging.WARNING) logging.getLogger("azureml").setLevel(logging.WARNING) logging.getLogger("azure").setLevel(logging.WARNING) logging.getLogger("azure.core").setLevel(logging.WARNING) logging.getLogger("azure.mlflow").setLevel(logging.WARNING) # MONAI config print_config() start_run = time.time() # SET CENTRAL VARIABLES parser = argparse.ArgumentParser() parser.add_argument("--input_data", type=str, help="path to input data") parser.add_argument("--epochs", type=int, default=50, help="no of epochs") parser.add_argument("--initial_lr", type=float, default=0.0001, help="Initial learning rate") parser.add_argument("--best_model_name", type=str, default='best-model', help="Name of best model to register in AzureML") parser.add_argument("--train_batch_size", type=int, default=1, help="Train loader batch size") parser.add_argument("--val_batch_size", type=int, default=1, help="Validation loader batch size") parser.add_argument("--model", type=str, default='model', help="Result name of best model to register in AzureML") args = parser.parse_args() max_epochs = args.epochs initial_lr = args.initial_lr best_model_name = args.best_model_name train_batch_size = args.train_batch_size val_batch_size = args.val_batch_size input_data_dir = args.input_data print(f'Input folder with images: {input_data_dir}') # Select logging targets for metrics. tb for tensorboard and/or mlflow # log_targets = ['tb', 'mlflow'] log_targets = ['mlflow'] # AzureML job asset folder. Will be used to store model checkpoints azureml_output_folder = './outputs' datalist_json_path = os.path.join(input_data_dir, 'dataset.json') VAL_AMP = True # MONAI validation mixed precision # Distributed training: rank = int(os.environ["RANK"]) local_rank = int(os.environ["LOCAL_RANK"]) device = torch.device("cuda", local_rank) if torch.cuda.is_available() else 'cpu' torch.cuda.set_device(device) torch.distributed.init_process_group(backend="nccl", init_method="env://") world_size = torch.distributed.get_world_size() # Init logging for AzureML # if 'tb' in log_targets: # tb_writer = SummaryWriter("./tb_logs") # init mlflow also if not in log_targets because it is needed to register the model mlflow.autolog(silent=True) params = { "Epochs": max_epochs, "Initial lr" : initial_lr, "Train batch size" : train_batch_size, "Validation batch size" : val_batch_size, "Register best model as" : best_model_name, "Val_auto_mixed_prec" : VAL_AMP } # rank == 0 to let only one GPU worker perform the operation if rank == 0 and 'mlflow' in log_targets: try: mlflow.log_params(params) except Exception as e: print('Exception during mlflow parameter logging: {e}') # Set deterministic training for reproducibility set_determinism(seed=0) # Custom transform to convert the multi-classes labels into multi-labels segmentation task in One-Hot format. class ConvertToMultiChannelBasedOnBratsClassesd(MapTransform): """ Convert labels to multi channels based on brats 2021 classes: label 1 necrotic tumor core (NCR) label 2 peritumoral edematous/invaded tissue label 3 is not used in the new dataset version label 4 GD-enhancing tumor The possible classes are: TC (Tumor core): merge labels 1 and 4 WT (Whole tumor): merge labels 1,2 and 4 ET (Enhancing tumor): label 4 """ def __call__(self, data): d = dict(data) for key in self.keys: result = [] # merge label 1 and label 4 to construct TC result.append(torch.logical_or(d[key] == 1, d[key] == 4)) # merge labels 1, 2 and 4 to construct WT result.append( torch.logical_or( torch.logical_or(d[key] == 1, d[key] == 2), d[key] == 4 ) ) # label 4 is ET result.append(d[key] == 4) d[key] = torch.stack(result, axis=0).float() return d # Generate training and validation input lists for dataloaders image_folders = [f for f in os.listdir(input_data_dir) if os.path.isdir(os.path.join(input_data_dir, f))] print(f'{len(image_folders)} images in image_folders.') print(image_folders[:5]) train_frac = 0.8 train_size = int(0.8 * len(image_folders)) train_folders = image_folders[:train_size] val_folders = image_folders[train_size:] def create_datalist(folders): elements = [] for folder in folders: folder_path = os.path.join(input_data_dir, folder) flair_file = next((f for f in os.listdir(folder_path) if f.endswith('flair.nii.gz')), None) t1_file = next((f for f in os.listdir(folder_path) if f.endswith('t1.nii.gz')), None) t1ce_file = next((f for f in os.listdir(folder_path) if f.endswith('t1ce.nii.gz')), None) t2_file = next((f for f in os.listdir(folder_path) if f.endswith('t2.nii.gz')), None) label_file = next((f for f in os.listdir(folder_path) if f.endswith('seg.nii.gz')), None) element = { 'flair' : os.path.join(folder_path, flair_file), 't1' : os.path.join(folder_path, t1_file), 't1ce' : os.path.join(folder_path, t1ce_file), 't2' : os.path.join(folder_path, t2_file), 'label' : os.path.join(folder_path, label_file), } elements.append(element) return elements train_list = create_datalist(train_folders) valid_list = create_datalist(val_folders) print(f'{len(train_list)} training images and {len(valid_list)} validation images found.') # Setup transforms for training and validation train_transform = Compose( [ # load 4 Nifti images and stack them together LoadImaged(keys=["flair", "t1", "t1ce", "t2", "label"]), EnsureChannelFirstd(keys=["flair", "t1", "t1ce", "t2"]), ConcatItemsd(keys=["flair", "t1", "t1ce", "t2"], name="image", dim=0), EnsureTyped(keys=["image", "label"]), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd( keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest"), ), RandSpatialCropd(keys=["image", "label"], roi_size=[224, 224, 144], random_size=False), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=0), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=1), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=2), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), RandScaleIntensityd(keys="image", factors=0.1, prob=1.0), RandShiftIntensityd(keys="image", offsets=0.1, prob=1.0), ] ) val_transform = Compose( [ LoadImaged(keys=["flair", "t1", "t1ce", "t2", "label"]), EnsureChannelFirstd(keys=["flair", "t1", "t1ce", "t2"]), ConcatItemsd(keys=["flair", "t1", "t1ce", "t2"], name="image", dim=0), EnsureTyped(keys=["image", "label"]), ConvertToMultiChannelBasedOnBratsClassesd(keys="label"), Orientationd(keys=["image", "label"], axcodes="RAS"), Spacingd( keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest"), ), NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True), ] ) # Load data # adjust caching rates in case of out of memory issue train_ds = Dataset(data=train_list, transform=train_transform) train_sampler = torch.utils.data.distributed.DistributedSampler(train_ds) train_loader = DataLoader(train_ds, batch_size= train_batch_size, shuffle=False, num_workers=12, sampler=train_sampler) val_ds = Dataset(data=valid_list, transform=val_transform) val_loader = DataLoader(val_ds, batch_size=val_batch_size, shuffle=False, num_workers=12) params = { "train_samples": len(train_ds), "val_samples" : len(val_ds) } if rank == 0 and 'mlflow' in log_targets: try: mlflow.log_params(params) except Exception as e: print('Exception during mlflow parameter logging: {e}') # log sample images val_data_example = val_ds[2] print(f"image shape: {val_data_example['image'].shape}") fig, axs = plt.subplots(2, 4, figsize=(20, 10)) for i in range(4): axs[0, i].set_title(f"image channel {i}") axs[0, i].imshow(val_data_example["image"][i, :, :, 60].detach().cpu(), cmap="gray") # also visualize the 3 channels label corresponding to this image print(f"label shape: {val_data_example['label'].shape}") for i in range(3): axs[1, i].set_title(f"label channel {i}") axs[1, i].imshow(val_data_example["label"][i, :, :, 60].detach().cpu()) # add an empty subplot to align the last label image with the others axs[1, 3].axis('off') # plt.show() samples = plt.gcf() try: mlflow.log_figure(samples, 'sample-images.png') except Exception as e: print('Exception during mlflow image logging: {e}') # Create model, loss and optimizer val_interval = 1 # standard PyTorch program style: create SegResNet, DiceLoss and Adam optimizer # device = 'cuda' if torch.cuda.is_available() else 'cpu' model = torch.nn.parallel.DistributedDataParallel(module= SegResNet( blocks_down=[1, 2, 2, 4], blocks_up=[1, 1, 1], init_filters=16, in_channels=4, out_channels=3, dropout_prob=0.2, ).to(device), device_ids=[local_rank]) loss_function = DiceLoss(smooth_nr=0, smooth_dr=1e-5, squared_pred=True, to_onehot_y=False, sigmoid=True) optimizer = torch.optim.Adam(model.parameters(), initial_lr, weight_decay=1e-5) lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=max_epochs) dice_metric = DiceMetric(include_background=True, reduction="mean") dice_metric_batch = DiceMetric(include_background=True, reduction="mean_batch") post_trans = Compose( [Activations(sigmoid=True), AsDiscrete(threshold=0.5)] ) # define inference method def inference(input): def _compute(input): return sliding_window_inference( inputs=input, roi_size=(240, 240, 160), sw_batch_size=1, predictor=model, overlap=0.5, ) if VAL_AMP: with torch.cuda.amp.autocast(): return _compute(input) else: return _compute(input) # use amp to accelerate training scaler = torch.cuda.amp.GradScaler() # enable cuDNN benchmark torch.backends.cudnn.benchmark = True start_training = time.time() preprocessing_mins = (start_training - start_run) / 60 if 'mlflow' in log_targets: try: mlflow.log_metric("preprocessing_mins", preprocessing_mins, 0) except Exception as e: print(f'Exception occured writing train metrics to mlflow: {e}') # RUN TRAINING best_metric = -1 best_metric_epoch = -1 best_metrics_epochs_and_time = [[], [], []] epoch_loss_values = [] metric_values = [] metric_values_tc = [] metric_values_wt = [] metric_values_et = [] total_start = time.time() for epoch in range(max_epochs): epoch_start = time.time() train_sampler.set_epoch(epoch) # parallel training print("-" * 10) print(f"epoch {epoch + 1}/{max_epochs}") model.train() epoch_loss = 0 step = 0 for batch_data in train_loader: step_start = time.time() step += 1 inputs, labels = ( batch_data["image"].to(device), batch_data["label"].to(device), ) optimizer.zero_grad() with torch.cuda.amp.autocast(): outputs = model(inputs) loss = loss_function(outputs, labels) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() epoch_loss += loss.item() lr_scheduler.step() epoch_loss /= step epoch_loss_values.append(epoch_loss) print(f"Epoch {epoch + 1} average loss: {epoch_loss:.4f}") # Log epoch train metrics # if 'tb' in log_targets: # try: # tb_writer.add_scalar("train_loss", epoch_loss, epoch+1) # except Exception as e: # print(f'Exception occured writing train metrics to tensorboard: {e}') if 'mlflow' in log_targets: try: mlflow.log_metric("train_loss", epoch_loss, epoch+1) except Exception as e: print(f'Exception occured writing train metrics to mlflow: {e}') # VALIDATION if (epoch + 1) % val_interval == 0: val_epoch_loss = 0 val_step = 0 model.eval() with torch.no_grad(): for val_data in val_loader: val_step += 1 val_inputs, val_labels = ( val_data["image"].to(device), val_data["label"].to(device), ) val_outputs = inference(val_inputs) val_loss = loss_function(val_outputs, val_labels) val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)] dice_metric(y_pred=val_outputs, y=val_labels) dice_metric_batch(y_pred=val_outputs, y=val_labels) val_epoch_loss += val_loss.item() val_epoch_loss /= val_step metric = dice_metric.aggregate().item() #metric_values.append(metric) metric_batch = dice_metric_batch.aggregate() metric_tc = metric_batch[0].item() #metric_values_tc.append(metric_tc) metric_wt = metric_batch[1].item() #metric_values_wt.append(metric_wt) metric_et = metric_batch[2].item() #metric_values_et.append(metric_et) dice_metric.reset() dice_metric_batch.reset() # Let one instance 0 save model if validation loss improved if rank == 0: if metric > best_metric: best_metric = metric best_metric_epoch = epoch + 1 model_checkpoint = os.path.join(azureml_output_folder, "best_metric_model.pth") torch.save(model.module.state_dict(), model_checkpoint) print("saved new best metric model") print( f"current epoch: {epoch + 1} current mean dice: {metric:.4f}" f" tc: {metric_tc:.4f} wt: {metric_wt:.4f} et: {metric_et:.4f}" f"\nbest mean dice: {best_metric:.4f}" f" at epoch: {best_metric_epoch}" ) epoch_duration_s = time.time() - epoch_start # Log epoch val metrics: epoch_val_metrics = { 'val_loss' : val_epoch_loss, 'val_mean_dice' : metric, 'val_dice_tc' : metric_tc, 'val_dice_wt' : metric_wt, 'val_dice_et' : metric_et, 'epoch_duration_s' : epoch_duration_s } # if 'tb' in log_targets: # try: # for name, value in epoch_val_metrics.items(): # tb_writer.add_scalar(tag= name, scalar_value= value, global_step= epoch+1) # except: # print(f'Exception occured writing validation metrics to tensorboard: {e}') if 'mlflow' in log_targets: try: mlflow.log_metrics(metrics= epoch_val_metrics, step= epoch+1) except: print(f'Exception occured writing validation metrics to MLFLow: {e}') print(f"time consuming of epoch {epoch + 1} is: {epoch_duration_s:.4f}") total_time_mins = (time.time() - total_start) / 60 if rank == 0: print(f"Training completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}," f"total time: {total_time_mins:.2f} mins ({total_time_mins/max_epochs:.2f} per epoch).") # Load the best model into memory model = SegResNet( blocks_down=[1, 2, 2, 4], blocks_up=[1, 1, 1], init_filters=16, in_channels=4, out_channels=3, dropout_prob=0.2, ).to(device) model.load_state_dict(torch.load(model_checkpoint)) print("Registering the model via MLFlow") args.model = best_model_name try: mlflow.pytorch.log_model( pytorch_model=model, registered_model_name= best_model_name, artifact_path= 'model', extra_files=[model_checkpoint]) except Exception as e: print(e) # End mlflow run and tb writer if mlflow.active_run(): mlflow.end_run() # if tb_writer is not None: # tb_writer.close()
NVIDIA_AI_Enterprise_AzureML-main
src/components/monai/3D_image_segmentation/train_segmentation/src/run.py
import argparse import logging import sys import os import shutil import tarfile def run(args) -> str: # extract with tarfile.open(args.blob_file_location, "r") as tar: tar.extractall(path=args.image_data_folder) def get_arg_parser(parser=None): """Parse the command line arguments for merge using argparse. Args: inputs: blob_file_location: type: uri_folder description: the input blob .tar file location mode: "ro_mount" overwrite: type: boolean description: overwrire local data default: true optional: true outputs: image_data_folder: type: uri_folder description: the output folder where the uncompressed data will be written mode: "rw_mount" mode: "upload" """ # add arguments that are specific to the component if parser is None: parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--blob_file_location", type=str, required=True, help="Azure blob name", ) parser.add_argument( "--overwrite", type=bool, required=False, help="Overwrite files", ) parser.add_argument( "--image_data_folder", type=str, required=True, help="Location of results", ) return parser def main(cli_args=None): """Component main function. It parses arguments and executes run() with the right arguments. Args: cli_args (List[str], optional): list of args to feed script, useful for debugging. Defaults to None. """ # build an arg parser parser = get_arg_parser() # run the parser on cli args args = parser.parse_args(cli_args) logging.info(f"Running script with arguments: {args}") # args.image_data_folder = run(args) run(args) if __name__ == "__main__": # Set logging to sys.out logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) log_format = logging.Formatter("[%(asctime)s] [%(levelname)s] - %(message)s") handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) handler.setFormatter(log_format) logger.addHandler(handler) main()
NVIDIA_AI_Enterprise_AzureML-main
src/components/monai/3D_image_segmentation/upload_from_blob/src/run.py
import argparse import os import time #os.system('pip install azure-storage-blob') parser = argparse.ArgumentParser() parser.add_argument("--input_data", type=str) parser.add_argument("--conn_str", type=str) parser.add_argument("--container_name", type=str) parser.add_argument("--model", type=str) parser.add_argument("--output_data", type=str) args = parser.parse_args() print("sample_input_data path: %s" % args.input_data) print("sample_conn_str path: %s" % args.conn_str) print("sample_container_name path: %s" % args.container_name) print("sample_model path: %s" % args.model) print("sample_output_data path: %s" % args.output_data) os.chdir(args.input_data) os.system('cp -r * /tmp') os.chdir('/tmp') from azure.storage.blob import BlobClient # # Copy Model from Model # os.chdir(args.model) for filename in os.listdir(args.model): print(filename) os.system('cp -r * /tmp/models') os.chdir('/tmp') from azure.storage.blob import BlobServiceClient blob_service_client = BlobServiceClient.from_connection_string(args.conn_str) container_client = blob_service_client.get_container_client(args.container_name) while(True): b = 0 for file in container_client.walk_blobs('inputs/', delimiter='/'): filename = os.path.basename(file.name) filename_no_ext = os.path.splitext(filename)[0] ext = os.path.splitext(filename)[1].lower() if ext == '.end': b = 1 if ext == '.mp4' or ext == '.mov': # Read input file try: blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name=file.name) with open('/tmp/'+ filename, "wb") as f: f.write(blob.download_blob().readall()) except Exception as e: print(e) # Run Deepstream filename_no_ext = filename_no_ext + '_' + time.strftime("%Y%m%d-%H%M%S") os.chdir('/tmp/apps/tao_others/deepstream-bodypose2d-app') os.system('LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/nvidia/deepstream/deepstream/lib/cvcore_libs ./deepstream-bodypose2d-app 1 ../../../configs/bodypose2d_tao/sample_bodypose2d_model_config.txt 0 0 file:///tmp/' + filename + ' /tmp/'+ filename_no_ext) # Copy output to storage blob blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name= 'outputs/'+ filename_no_ext + '.264') try: with open('/tmp/' + filename_no_ext + '.264',"rb") as f: blob.upload_blob(f) print('body2dout.264 uploaded to container: ' + args.container_name + ' successfully') except Exception as e: print(e) blob_client = blob_service_client.get_blob_client(container=args.container_name, blob=file.name) blob_client.delete_blob() time.sleep(1) if b == 1: break time.sleep(10)
NVIDIA_AI_Enterprise_AzureML-main
src/components/DeepStream/faciallandmark/src/run.py
import argparse import os import time parser = argparse.ArgumentParser() parser.add_argument("--input_data", type=str) parser.add_argument("--conn_str", type=str) parser.add_argument("--container_name", type=str) parser.add_argument("--model", type=str) parser.add_argument("--model_name", type=str) parser.add_argument("--output_data", type=str) args = parser.parse_args() print("sample_input_data path: %s" % args.input_data) print("sample_conn_str path: %s" % args.conn_str) print("sample_container_name path: %s" % args.container_name) print("sample_model path: %s" % args.model) print("sample_model_name path: %s" % args.model_name) print("sample_output_data path: %s" % args.output_data) os.chdir(args.input_data) os.system('cp -r * /tmp') os.chdir('/tmp') from azure.storage.blob import BlobClient # # Copy Model from Data Asset # os.chdir(args.model) os.system('cp -r * /tmp/models') os.chdir('/tmp') from azure.storage.blob import BlobServiceClient blob_service_client = BlobServiceClient.from_connection_string(args.conn_str) container_client = blob_service_client.get_container_client(args.container_name) while(True): b = 0 for file in container_client.walk_blobs('inputs/', delimiter='/'): filename = os.path.basename(file.name) filename_no_ext = os.path.splitext(filename)[0] ext = os.path.splitext(filename)[1].lower() if ext == '.end': b = 1 if ext == '.mp4': # Read input file try: blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name=file.name) with open('/tmp/input.mp4', "wb") as f: f.write(blob.download_blob().readall()) except Exception as e: print(e) # Run Deepstream filename_no_ext = filename_no_ext + '_' + time.strftime("%Y%m%d-%H%M%S") os.chdir('/tmp/apps/tao_others/deepstream-mdx-perception-app') if args.model_name == 'retail_object_detection_recognition' : os.system('CUDA_MODULE_LOADING=LAZY LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/nvidia/deepstream/deepstream/lib/cvcore_libs ./deepstream-mdx-perception-app -c ../../../configs/app/retail_object_detection_recognition.txt') elif args.model_name == 'peoplenet_reidentification': os.system('CUDA_MODULE_LOADING=LAZY LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/nvidia/deepstream/deepstream/lib/cvcore_libs ./deepstream-mdx-perception-app -c ../../../configs/app/peoplenet_reidentification.txt') # Copy output to storage blob blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name= 'outputs/'+ filename_no_ext + '.264') try: with open('/tmp/apps/tao_others/deepstream-mdx-perception-app/out.mp4',"rb") as f: blob.upload_blob(f) print('mdx-perception_out.264 uploaded to container: ' + args.container_name + ' successfully') except Exception as e: print(e) blob_client = blob_service_client.get_blob_client(container=args.container_name, blob=file.name) blob_client.delete_blob() time.sleep(1) if b == 1: break time.sleep(10)
NVIDIA_AI_Enterprise_AzureML-main
src/components/DeepStream/mdx-perception/src/run.py
import argparse import os import time parser = argparse.ArgumentParser() parser.add_argument("--input_data", type=str) parser.add_argument("--conn_str", type=str) parser.add_argument("--container_name", type=str) parser.add_argument("--model", type=str) parser.add_argument("--model_name", type=str) parser.add_argument("--output_data", type=str) args = parser.parse_args() print("sample_input_data path: %s" % args.input_data) print("sample_conn_str path: %s" % args.conn_str) print("sample_container_name path: %s" % args.container_name) print("sample_model path: %s" % args.model) print("sample_model_name path: %s" % args.model_name) print("sample_output_data path: %s" % args.output_data) os.chdir(args.input_data) os.system('cp -r * /tmp') os.chdir('/tmp') from azure.storage.blob import BlobClient # # Copy Model from Data Asset # os.chdir(args.model) os.system('cp -r * /tmp/models') os.chdir('/tmp') from azure.storage.blob import BlobServiceClient blob_service_client = BlobServiceClient.from_connection_string(args.conn_str) container_client = blob_service_client.get_container_client(args.container_name) while(True): b = 0 for file in container_client.walk_blobs('inputs/', delimiter='/'): filename = os.path.basename(file.name) filename_no_ext = os.path.splitext(filename)[0] ext = os.path.splitext(filename)[1].lower() if ext == '.end': b = 1 if ext == '.mp4' or ext == '.mov': # Read input file try: blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name=file.name) with open('/tmp/'+ filename, "wb") as f: f.write(blob.download_blob().readall()) except Exception as e: print(e) # Run Deepstream filename_no_ext = filename_no_ext + '_' + time.strftime("%Y%m%d-%H%M%S") os.chdir('/tmp/apps/tao_segmentation') if args.model_name == 'city': os.system('./ds-tao-segmentation -c ../../configs/citysemsegformer_tao/pgie_citysemsegformer_tao_config.txt -i file:///tmp/' + filename) elif args.model_name == 'shuffle_people': os.system('./ds-tao-segmentation -c ../../configs/peopleSemSegNet_tao/shuffle/pgie_peopleSemSegShuffleUnet_tao_config.txt -i file:///tmp/' + filename) elif args.model_name == 'vanilla_people': os.system('./ds-tao-segmentation -c ../../configs/peopleSemSegNet_tao/vanilla/pgie_peopleSemSegVanillaUnet_tao_config.txt -i file:///tmp/' + filename) # Copy output to storage blob blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name= 'outputs/'+ filename_no_ext + '.264') try: with open('/tmp/apps/tao_segmentation/out.mp4',"rb") as f: blob.upload_blob(f) print('segmentationout.264 uploaded to container: ' + args.container_name + ' successfully') except Exception as e: print(e) blob_client = blob_service_client.get_blob_client(container=args.container_name, blob=file.name) blob_client.delete_blob() time.sleep(1) if b == 1: break time.sleep(10)
NVIDIA_AI_Enterprise_AzureML-main
src/components/DeepStream/ds-tao-segmentation/src/run.py
import argparse import os import time #os.system('pip install azure-storage-blob') parser = argparse.ArgumentParser() parser.add_argument("--input_data", type=str) parser.add_argument("--conn_str", type=str) parser.add_argument("--container_name", type=str) parser.add_argument("--model", type=str) parser.add_argument("--output_data", type=str) args = parser.parse_args() print("sample_input_data path: %s" % args.input_data) print("sample_conn_str path: %s" % args.conn_str) print("sample_container_name path: %s" % args.container_name) print("sample_model path: %s" % args.model) print("sample_output_data path: %s" % args.output_data) os.chdir(args.input_data) os.system('cp -r * /tmp') os.chdir('/tmp') from azure.storage.blob import BlobClient # # Copy Model from Model # os.chdir(args.model) for filename in os.listdir(args.model): print(filename) os.system('cp -r * /tmp/models') os.chdir('/tmp') from azure.storage.blob import BlobServiceClient blob_service_client = BlobServiceClient.from_connection_string(args.conn_str) container_client = blob_service_client.get_container_client(args.container_name) while(True): b = 0 for file in container_client.walk_blobs('inputs/', delimiter='/'): filename = os.path.basename(file.name) filename_no_ext = os.path.splitext(filename)[0] ext = os.path.splitext(filename)[1].lower() if ext == '.end': b = 1 if ext == '.mp4' or ext == '.mov': # Read input file try: blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name=file.name) with open('/tmp/'+ filename, "wb") as f: f.write(blob.download_blob().readall()) except Exception as e: print(e) # Run Deepstream filename_no_ext = filename_no_ext + '_' + time.strftime("%Y%m%d-%H%M%S") os.chdir('/tmp/apps/tao_others/deepstream-bodypose2d-app') os.system('LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/nvidia/deepstream/deepstream/lib/cvcore_libs ./deepstream-bodypose2d-app 1 ../../../configs/bodypose2d_tao/sample_bodypose2d_model_config.txt 0 0 file:///tmp/' + filename + ' /tmp/'+ filename_no_ext) # Copy output to storage blob blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name= 'outputs/'+ filename_no_ext + '.264') try: with open('/tmp/' + filename_no_ext + '.264',"rb") as f: blob.upload_blob(f) print('body2dout.264 uploaded to container: ' + args.container_name + ' successfully') except Exception as e: print(e) blob_client = blob_service_client.get_blob_client(container=args.container_name, blob=file.name) blob_client.delete_blob() time.sleep(1) if b == 1: break time.sleep(10)
NVIDIA_AI_Enterprise_AzureML-main
src/components/DeepStream/bodypose2d/src/run.py
import argparse import os import time parser = argparse.ArgumentParser() parser.add_argument("--input_data", type=str) parser.add_argument("--conn_str", type=str) parser.add_argument("--container_name", type=str) parser.add_argument("--model", type=str) parser.add_argument("--model_name", type=str) parser.add_argument("--output_data", type=str) args = parser.parse_args() print("sample_input_data path: %s" % args.input_data) print("sample_conn_str path: %s" % args.conn_str) print("sample_container_name path: %s" % args.container_name) print("sample_model path: %s" % args.model) print("sample_model_name path: %s" % args.model_name) print("sample_output_data path: %s" % args.output_data) os.chdir(args.input_data) os.system('cp -r * /tmp') os.chdir('/tmp') from azure.storage.blob import BlobClient # # Copy Model from Data Asset # os.chdir(args.model) os.system('cp -r * /tmp/models') os.chdir('/tmp') from azure.storage.blob import BlobServiceClient blob_service_client = BlobServiceClient.from_connection_string(args.conn_str) container_client = blob_service_client.get_container_client(args.container_name) while(True): b = 0 for file in container_client.walk_blobs('inputs/', delimiter='/'): filename = os.path.basename(file.name) filename_no_ext = os.path.splitext(filename)[0] ext = os.path.splitext(filename)[1].lower() if ext == '.end': b = 1 if ext == '.mp4' or ext == '.mov': # Read input file try: blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name=file.name) with open('/tmp/'+ filename, "wb") as f: f.write(blob.download_blob().readall()) except Exception as e: print(e) # Run Deepstream filename_no_ext = filename_no_ext + '_' + time.strftime("%Y%m%d-%H%M%S") os.chdir('/tmp/apps/tao_detection') if args.model_name == 'peoplenet_transformer': # os.system('LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/nvidia/deepstream/deepstream/lib/cvcore_libs ./ds-tao-detection -c ../../../configs/peoplenet_transformer_tao/pgie_peoplenet_transformer_tao_config.txt 1 file:///tmp/' + filename + ' /tmp/'+ filename_no_ext) os.system('./ds-tao-detection -c ../../configs/peoplenet_transformer_tao/pgie_peoplenet_transformer_tao_config.txt -i file:///tmp/' + filename) elif args.model_name == 'retail_object_detection': # os.system('LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/nvidia/deepstream/deepstream/lib/cvcore_libs ./ds-tao-detection 1 file:///tmp/' + filename + ' /tmp/'+ filename_no_ext) os.system('./ds-tao-detection -c ../../configs/retail_object_detection_tao/pgie_retail_object_detection_100_tao_config.txt -i file:///tmp/' + filename) elif args.model_name == 'retail_object_detection_binary': # os.system('LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/nvidia/deepstream/deepstream/lib/cvcore_libs ./ds-tao-detection 1 file:///tmp/' + filename + ' /tmp/'+ filename_no_ext) os.system('./ds-tao-detection -c ../../configs/retail_object_detection_tao/pgie_retail_object_detection_binary_tao_config.txt -i file:///tmp/' + filename) # Copy output to storage blob blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name= 'outputs/'+ filename_no_ext + '.264') try: with open('/tmp/apps/tao_detection/out.mp4',"rb") as f: blob.upload_blob(f) print('hardrateout.264 uploaded to container: ' + args.container_name + ' successfully') except Exception as e: print(e) blob_client = blob_service_client.get_blob_client(container=args.container_name, blob=file.name) blob_client.delete_blob() time.sleep(1) if b == 1: break time.sleep(10)
NVIDIA_AI_Enterprise_AzureML-main
src/components/DeepStream/ds-tao-detection/src/run.py
import argparse import os import time parser = argparse.ArgumentParser() parser.add_argument("--input_data", type=str) parser.add_argument("--conn_str", type=str) parser.add_argument("--container_name", type=str) parser.add_argument("--model", type=str) parser.add_argument("--output_data", type=str) args = parser.parse_args() print("sample_input_data path: %s" % args.input_data) print("sample_conn_str path: %s" % args.conn_str) print("sample_container_name path: %s" % args.container_name) print("sample_model path: %s" % args.model) print("sample_output_data path: %s" % args.output_data) os.chdir(args.input_data) os.system('cp -r * /tmp') os.chdir('/tmp') from azure.storage.blob import BlobClient # # Copy Model from Data Asset # os.chdir(args.model) os.system('cp -r * /tmp/models') os.chdir('/tmp') from azure.storage.blob import BlobServiceClient blob_service_client = BlobServiceClient.from_connection_string(args.conn_str) container_client = blob_service_client.get_container_client(args.container_name) while(True): b = 0 for file in container_client.walk_blobs('inputs/', delimiter='/'): filename = os.path.basename(file.name) filename_no_ext = os.path.splitext(filename)[0] ext = os.path.splitext(filename)[1].lower() if ext == '.end': b = 1 if ext == '.mp4' or ext == '.mov': # Read input file try: blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name=file.name) with open('/tmp/'+ filename, "wb") as f: f.write(blob.download_blob().readall()) except Exception as e: print(e) # Run Deepstream filename_no_ext = filename_no_ext + '_' + time.strftime("%Y%m%d-%H%M%S") os.chdir('/tmp/apps/tao_others/deepstream-gesture-app') os.system('LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/nvidia/deepstream/deepstream/lib/cvcore_libs ./deepstream-gesture-app 1 3 ../../../configs/bodypose2d_tao/sample_bodypose2d_model_config.txt file:///tmp/' + filename + ' /tmp/'+ filename_no_ext) # Copy output to storage blob blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name= 'outputs/'+ filename_no_ext + '.264') try: with open('/tmp/' + filename_no_ext + '.264',"rb") as f: blob.upload_blob(f) print('gestureout.264 uploaded to container: ' + args.container_name + ' successfully') except Exception as e: print(e) blob_client = blob_service_client.get_blob_client(container=args.container_name, blob=file.name) blob_client.delete_blob() time.sleep(1) if b == 1: break time.sleep(10)
NVIDIA_AI_Enterprise_AzureML-main
src/components/DeepStream/gesture/src/run.py
NVIDIA_AI_Enterprise_AzureML-main
src/components/DeepStream/deepstream-app/src/run.py
import argparse import os import time parser = argparse.ArgumentParser() parser.add_argument("--input_data", type=str) parser.add_argument("--conn_str", type=str) parser.add_argument("--container_name", type=str) parser.add_argument("--model", type=str) parser.add_argument("--output_data", type=str) args = parser.parse_args() print("sample_input_data path: %s" % args.input_data) print("sample_conn_str path: %s" % args.conn_str) print("sample_container_name path: %s" % args.container_name) print("sample_model path: %s" % args.model) print("sample_output_data path: %s" % args.output_data) os.chdir(args.input_data) os.system('cp -r * /tmp') os.chdir('/tmp') from azure.storage.blob import BlobClient # # Copy Model from Data Asset # os.chdir(args.model) os.system('cp -r * /tmp/models') os.chdir('/tmp') from azure.storage.blob import BlobServiceClient blob_service_client = BlobServiceClient.from_connection_string(args.conn_str) container_client = blob_service_client.get_container_client(args.container_name) while(True): b = 0 for file in container_client.walk_blobs('inputs/', delimiter='/'): filename = os.path.basename(file.name) filename_no_ext = os.path.splitext(filename)[0] ext = os.path.splitext(filename)[1].lower() if ext == '.end': b = 1 if ext == '.mp4' or ext == '.mov': # Read input file try: blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name=file.name) with open('/tmp/'+ filename, "wb") as f: f.write(blob.download_blob().readall()) except Exception as e: print(e) # Run Deepstream filename_no_ext = filename_no_ext + '_' + time.strftime("%Y%m%d-%H%M%S") os.chdir('/tmp/apps/tao_others/deepstream-gaze-app') os.system('LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/nvidia/deepstream/deepstream/lib/cvcore_libs ./deepstream-gaze-app 1 ../../../configs/facial_tao/sample_faciallandmarks_config.txt file:///tmp/' + filename + ' /tmp/'+ filename_no_ext) # Copy output to storage blob blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name= 'outputs/'+ filename_no_ext + '.264') try: with open('/tmp/' + filename_no_ext + '.264',"rb") as f: blob.upload_blob(f) print('gazeout.264 uploaded to container: ' + args.container_name + ' successfully') except Exception as e: print(e) blob_client = blob_service_client.get_blob_client(container=args.container_name, blob=file.name) blob_client.delete_blob() time.sleep(1) if b == 1: break time.sleep(10)
NVIDIA_AI_Enterprise_AzureML-main
src/components/DeepStream/gaze/src/run.py
import argparse import os import time parser = argparse.ArgumentParser() parser.add_argument("--input_data", type=str) parser.add_argument("--conn_str", type=str) parser.add_argument("--container_name", type=str) parser.add_argument("--model", type=str) parser.add_argument("--output_data", type=str) args = parser.parse_args() print("sample_input_data path: %s" % args.input_data) print("sample_conn_str path: %s" % args.conn_str) print("sample_container_name path: %s" % args.container_name) print("sample_model path: %s" % args.model) print("sample_output_data path: %s" % args.output_data) os.chdir(args.input_data) os.system('cp -r * /tmp') os.chdir('/tmp') from azure.storage.blob import BlobClient # # Copy Model from Data Asset # os.chdir(args.model) os.system('cp -r * /tmp/models') os.chdir('/tmp') from azure.storage.blob import BlobServiceClient blob_service_client = BlobServiceClient.from_connection_string(args.conn_str) container_client = blob_service_client.get_container_client(args.container_name) while(True): b = 0 for file in container_client.walk_blobs('inputs/', delimiter='/'): filename = os.path.basename(file.name) filename_no_ext = os.path.splitext(filename)[0] ext = os.path.splitext(filename)[1].lower() if ext == '.end': b = 1 if ext == '.mp4' or ext == '.mov': # Read input file try: blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name=file.name) with open('/tmp/'+ filename, "wb") as f: f.write(blob.download_blob().readall()) except Exception as e: print(e) # Run Deepstream filename_no_ext = filename_no_ext + '_' + time.strftime("%Y%m%d-%H%M%S") os.chdir('/tmp/deepstream-lpr-app') os.system('./deepstream-lpr-app 1 1 0 infer /tmp/' + filename + ' /tmp/'+ filename_no_ext) # Copy output to storage blob blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name= 'outputs/'+ filename_no_ext + '.264') try: with open('/tmp/' + filename_no_ext + '.264',"rb") as f: blob.upload_blob(f) print('lprout.264 uploaded to container: ' + args.container_name + ' successfully') except Exception as e: print(e) blob_client = blob_service_client.get_blob_client(container=args.container_name, blob=file.name) blob_client.delete_blob() time.sleep(1) if b == 1: break time.sleep(10)
NVIDIA_AI_Enterprise_AzureML-main
src/components/DeepStream/lpr/src/run.py
import argparse import os import time parser = argparse.ArgumentParser() parser.add_argument("--input_data", type=str) parser.add_argument("--conn_str", type=str) parser.add_argument("--container_name", type=str) parser.add_argument("--model", type=str) parser.add_argument("--output_data", type=str) args = parser.parse_args() print("sample_input_data path: %s" % args.input_data) print("sample_conn_str path: %s" % args.conn_str) print("sample_container_name path: %s" % args.container_name) print("sample_model path: %s" % args.model) print("sample_output_data path: %s" % args.output_data) os.chdir(args.input_data) os.system('cp -r * /tmp') os.chdir('/tmp') from azure.storage.blob import BlobClient # # Copy Model from Data Asset # os.chdir(args.model) os.system('cp -r * /tmp/models') os.chdir('/tmp') from azure.storage.blob import BlobServiceClient blob_service_client = BlobServiceClient.from_connection_string(args.conn_str) container_client = blob_service_client.get_container_client(args.container_name) while(True): b = 0 for file in container_client.walk_blobs('inputs/', delimiter='/'): filename = os.path.basename(file.name) filename_no_ext = os.path.splitext(filename)[0] ext = os.path.splitext(filename)[1].lower() if ext == '.end': b = 1 if ext == '.mp4' or ext == '.mov': # Read input file try: blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name=file.name) with open('/tmp/'+ filename, "wb") as f: f.write(blob.download_blob().readall()) except Exception as e: print(e) # Run Deepstream filename_no_ext = filename_no_ext + '_' + time.strftime("%Y%m%d-%H%M%S") os.chdir('/tmp/apps/tao_others/deepstream-emotion-app') os.system('LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/nvidia/deepstream/deepstream/lib/cvcore_libs ./deepstream-emotion-app 1 ../../../configs/facial_tao/sample_faciallandmarks_config.txt file:///tmp/' + filename + ' /tmp/'+ filename_no_ext) # Copy output to storage blob blob = BlobClient.from_connection_string(conn_str=args.conn_str,container_name=args.container_name, blob_name= 'outputs/'+ filename_no_ext + '.264') try: with open('/tmp/' + filename_no_ext + '.264',"rb") as f: blob.upload_blob(f) print('emotionout.264 uploaded to container: ' + args.container_name + ' successfully') except Exception as e: print(e) blob_client = blob_service_client.get_blob_client(container=args.container_name, blob=file.name) blob_client.delete_blob() time.sleep(1) if b == 1: break time.sleep(10)
NVIDIA_AI_Enterprise_AzureML-main
src/components/DeepStream/emotion/src/run.py
# Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. """Script to transform Wider face dataset to kitti format for Facenet tutorial.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import cv2 import numpy as np def letterbox_image(image, target_size): """Resize image preserving aspect ratio using padding. Args: image (numpy.ndarray): Input image to be resized target_size (tuple): Target image dimensions in (H,W,C) format. Return: new_image (numpy.ndarray): Output Image post resize. scale (float): Scale factor of resize. dx (int): Padding along x dimension to main aspect ratio. dy (int): Padding along y dimension to main aspect ratio. """ iw, ih = image.shape[0:2][::-1] w, h = target_size[1], target_size[0] scale = min(float(w)/float(iw), float(h)/float(ih)) nw = int(iw*scale) nh = int(ih*scale) image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_CUBIC) new_image = np.zeros(target_size, dtype=np.uint8) dx = (w-nw)//2 dy = (h-nh)//2 new_image[dy:dy+nh, dx:dx+nw, :] = image return new_image, scale, dx, dy def adjust_box_coords(x1, y1, x2, y2, scale, dx, dy, image_height, image_width): """Adjust bounding box coordinates based on resize. Args: x1 (int): Top left x-coordinate of bounding box before resize. y1 (int): Top left y-coordinate of bounding box before resize. x2 (int): Bottom right x-coordinate of bounding box before resize. y2 (int): Bottom right y-coordinate of bounding box before resize. scale (int): Scale factor of resize. dx (int): Padding along x dimension to main aspect ratio. dy (int): Padding along y dimension to main aspect ratio. image_height (int): Height of resized image. image_width (int): Width of resized image. Return: x1 (int): Top left x-coordinate of bounding box after resize. y1 (int): Top left y-coordinate of bounding box after resize. x2 (int): Bottom right x-coordinate of bounding box after resize. y2 (int): Bottom right y-coordinate of bounding box after resize. """ x1 = (int(dx + x1*scale)) x1 = min(max(x1, 0), image_width) y1 = (int(dy + y1*scale)) y1 = min(max(y1, 0), image_height) x2 = (int(dx + x2*scale)) x2 = min(max(x2, 0), image_width) y2 = (int(dy + y2*scale)) y2 = min(max(y2, 0), image_height) return x1, y1, x2, y2 def parse_args(args=None): """parse the arguments.""" parser = argparse.ArgumentParser(description='Transform Wider dataset for Facenet tutorial') parser.add_argument( "--input_image_dir", type=str, required=True, help="Input directory to Wider dataset images." ) parser.add_argument( "--input_label_file", type=str, required=True, help="Input path to Wider dataset labels." ) parser.add_argument( "--output_dir", type=str, required=True, help="Ouput directory to TLT dataset." ) parser.add_argument( "--image_height", type=int, required=True, help="Height of output image." ) parser.add_argument( "--image_width", type=int, required=True, help="Width of output image." ) parser.add_argument( "--grayscale", required=False, action='store_true', help='Convert images to grayscale.' ) return parser.parse_args(args) def main(args=None): """Main function for data preparation.""" args = parse_args(args) target_img_path = os.path.join(args.output_dir, "images") target_label_path = os.path.join(args.output_dir, "labels") target_size = (args.image_height, args.image_width, 3) if not os.path.exists(target_img_path): os.makedirs(target_img_path) else: print("This script will not run as output image path already exists.") return if not os.path.exists(target_label_path): os.makedirs(target_label_path) else: print("This script will not run as output label path already exists.") return # read wider ground truth file fd_gt_file = os.path.join(args.input_label_file) f = open(fd_gt_file, 'r') fd_gt = f.readlines() f.close() total_cnt = 0 i = 0 image_name = None while i < len(fd_gt): line = fd_gt[i].strip() if "jpg" in line: # start of new image total_cnt += 1 image_name = line image_prefix = image_name.split("/")[-1].split(".")[0] image_path = os.path.join(args.input_image_dir, line) if not os.path.exists(image_path): print("Error reading image, Please check data") return # Transform Image img = cv2.imread(image_path) new_image, scale, dx, dy = letterbox_image(img, target_size) if args.grayscale: new_image = cv2.cvtColor(new_image, cv2.COLOR_BGR2GRAY) new_image = np.expand_dims(new_image, axis=-1) new_image = np.repeat(new_image, 3, axis=-1) i += 1 num_bbox_in_image = int(fd_gt[i].strip()) i += 1 labels = [] for k in range(num_bbox_in_image): label = fd_gt[i].strip() label_parts = label.split(" ") kitti_output = [0]*15 kitti_output[0] = "face" kitti_output[2] = label_parts[8] x1 = int(label_parts[0]) y1 = int(label_parts[1]) x2 = int(label_parts[2]) + x1 y2 = int(label_parts[3]) + y1 x1, y1, x2, y2 = adjust_box_coords( x1, y1, x2, y2, scale, dx, dy, args.image_height, args.image_width) kitti_output[4:8] = x1, y1, x2, y2 kitti_output = [str(x) for x in kitti_output] labels.append(" ".join(kitti_output)) i += 1 if len(labels) != num_bbox_in_image: print("Error parsing label, skipping") continue # save image and label cv2.imwrite(os.path.join(target_img_path, image_prefix+".png"), new_image) # save label with open(os.path.join(target_label_path, image_prefix+".txt"), 'w') as f: for item in labels: f.write("%s\n" % item) elif set(line.split(" ")) == {'0'}: # no faces in image, continuing i += 1 else: print("Error parsing labels, Please check data") return print("Total {} samples in dataset".format(total_cnt)) if __name__ == "__main__": main()
NVIDIA_AI_Enterprise_AzureML-main
src/components/tao/tools/convert_multiple_streams_wider_to_kitti/src/convert_wider_to_kitti.py
# Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. import argparse import re import mlflow def parse_args(args=None): """parse the arguments.""" parser = argparse.ArgumentParser(description='Tool to get parameters and variables from train logfile and upload them as AzureML metrics') parser.add_argument( "--logfile", type=str, required=True, help="Full path to train logfile" ) parser.add_argument( "--class_list", type=str, required=True, help="Comma separated list of classes." ) parser.add_argument( "--num_epochs", type=int, required=True, help="Total Number of Epochs." ) return parser.parse_args(args) def buildRegExs(class_list,num_epochs): epochpattern = 'Epoch (?P<current_epoch>\d+)/{}: loss: (?P<loss>\d+\.\d+) learning rate: (?P<learning_rate>\d+\.\d+) '.format(num_epochs) meanavgprecpattern = 'Mean average_precision \(in %\): (?P<mean_average_precision>\d+\.\d+)' class_list = class_list.replace(',','|') classpattern = '(?P<class>{})\s+\|\s+(?P<class_precision>\d+\.\d+) '.format(class_list) return epochpattern, meanavgprecpattern, classpattern def getEpochInfo(epochpattern,line,current_epoch): matches = re.finditer(epochpattern, line) for match in matches: current_epoch = int(match.groupdict()['current_epoch']) loss = float(match.groupdict()['loss']) mlflow.log_metric('loss', loss, step=current_epoch) learning_rate = float(match.groupdict()['learning_rate']) mlflow.log_metric('learning_rate', learning_rate, step=current_epoch) return current_epoch def getClassInfo(classpattern,line,current_epoch): matches = re.finditer(classpattern, line) for match in matches: classs = match.groupdict()['class'] class_precision = float(match.groupdict()['class_precision']) mlflow.log_metric('{}_precision'.format(classs), class_precision, step=current_epoch+1) return def getAveragePrecisionInfo(meanavgprecpattern ,line,current_epoch): matches = re.finditer(meanavgprecpattern, line) for match in matches: mean_average_precision = float(match.groupdict()['mean_average_precision']) mlflow.log_metric('mean_average_precision', mean_average_precision, step=current_epoch+1) return def logMetrics(logfile,class_list,num_epochs): epochpattern, meanavgprecpattern, classpattern = buildRegExs(class_list,num_epochs) logfile = open(logfile, 'r') lines = logfile.readlines() current_epoch = 0 for line in lines: current_epoch = getEpochInfo(epochpattern,line,current_epoch) getAveragePrecisionInfo(meanavgprecpattern,line,current_epoch) getClassInfo(classpattern,line,current_epoch) return def main(args=None): args = parse_args(args) logfile = args.logfile class_list = args.class_list num_epochs = args.num_epochs logMetrics(logfile,class_list,num_epochs) if __name__ == "__main__": main()
NVIDIA_AI_Enterprise_AzureML-main
src/components/tao/object_detection/detectnet_v2/tao_detectnet_v2_train/src/parse_info.py
# Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. import argparse import os from PIL import Image import mlflow def parse_args(args=None): """parse the arguments.""" parser = argparse.ArgumentParser(description='Tool to upload images to be previewed on AzureML') parser.add_argument( "--image_dir", type=str, required=True, help="Directory to find images to upload." ) parser.add_argument( "--num_images", type=int, required=True, help="Number of images to upload." ) return parser.parse_args(args) def getImagesFilenames(dirName,numFiles): listOfFile = os.listdir(dirName) allFiles = list() # Iterate over all the entries until enough have been captured sofar=0 for entry in listOfFile: prefix = entry.split(".")[1] # Create full path if prefix=='png': if sofar<numFiles: # Create full path fullPath = os.path.join(dirName, entry) print(fullPath) allFiles.append(fullPath) sofar = sofar+1 else: return allFiles return allFiles def uploadImages(imagesToUpload): for image in imagesToUpload: img = Image.open(image) filename= image.split("/")[-1] mlflow.log_image(img, filename) def main(args=None): args = parse_args(args) image_dir = args.image_dir num_images = args.num_images if not os.path.exists(image_dir): print("This provided image directory does not exist.") return imagesToUpload = getImagesFilenames(image_dir,num_images) uploadImages(imagesToUpload) if __name__ == "__main__": main()
NVIDIA_AI_Enterprise_AzureML-main
src/components/tao/object_detection/detectnet_v2/tao_detectnet_v2_inference/src/preview_images.py
import unittest import os # run all tests if __name__ == '__main__': loader = unittest.TestLoader() suite = loader.discover(os.path.dirname(os.path.abspath(__file__))) runner = unittest.TextTestRunner() runner.run(suite)
MDL-SDK-master
examples/mdl_python/tests/__init__.py
import pymdlsdk import os class SDK(): neuray: pymdlsdk.INeuray = None transaction: pymdlsdk.ITransaction = None def _get_examples_search_path(self): """Try to get the example search path or returns 'mdl' sub folder of the current directory if it failed.""" # get the environment variable that is used in all MDL SDK examples example_sp = os.getenv('MDL_SAMPLES_ROOT') # fall back to a path relative to this script file if example_sp == None or not os.path.exists(example_sp): example_sp = os.path.join(os.path.dirname(os.path.realpath(__file__))) if example_sp == None or not os.path.exists(example_sp): example_sp = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..') # go down into the mdl folder example_sp = os.path.join(example_sp, 'mdl') # fall back to the current folder if not os.path.exists(example_sp): example_sp = './mdl' return os.path.abspath(example_sp) def load(self, addExampleSearchPath: bool = True, loadImagePlugins: bool = True): """Initialize the SDK and get some common interface for basic testing""" # load neuray self.neuray = pymdlsdk.load_and_get_ineuray('') if not self.neuray.is_valid_interface(): raise Exception('Failed to load the MDL SDK.') # add MDL search paths with self.neuray.get_api_component(pymdlsdk.IMdl_configuration) as cfg: # add default search paths cfg.add_mdl_system_paths() cfg.add_mdl_user_paths() # get the example search path that is used for all MDL SDK examples # falls back to `mdl` in the current working directory if addExampleSearchPath: example_sp: str = self.get_examples_search_path() cfg.add_mdl_path(example_sp) # Load plugins if loadImagePlugins: if not pymdlsdk.load_plugin(self.neuray, 'nv_openimageio'): raise Exception('Failed to load the \'nv_openimageio\' plugin.') if not pymdlsdk.load_plugin(self.neuray, 'dds'): raise Exception('Failed to load the \'dds\' plugin.') # start neuray resultCode = self.neuray.start() if resultCode != 0: raise Exception('Failed to initialize the SDK. Result code: ' + resultCode) # create a DB transaction with self.neuray.get_api_component(pymdlsdk.IDatabase) as database, \ database.get_global_scope() as scope: self.transaction = scope.create_transaction() def unload(self, commitTransaction: bool = True): """Release all components created in the 'load' function""" if commitTransaction: self.transaction.commit() self.transaction = None self.neuray = None pymdlsdk._print_open_handle_statistic() # Unload the MDL SDK if not pymdlsdk.unload(): raise Exception('Failed to unload the SDK.')
MDL-SDK-master
examples/mdl_python/tests/setup.py
import unittest import pymdlsdk from setup import SDK class Main(unittest.TestCase): sdk: SDK = None @classmethod def setUpClass(self): print(f"Running tests in {__file__}") self.sdk = SDK() self.sdk.load(addExampleSearchPath=False, loadImagePlugins=False) @classmethod def tearDownClass(self): self.sdk.unload() self.sdk = None print(f"\nFinished tests in {__file__}\n") def test_setupIsDone(self): self.assertIsNotNone(self.sdk) self.assertIsNotNone(self.sdk.neuray) self.assertIsNotNone(self.sdk.transaction) def test_IString(self): i: pymdlsdk.IInterface = self.sdk.transaction.create("String", 0, None) # using 'create' at least once self.assertTrue(i.is_valid_interface(), "Invalid IInterface") # returns an IInterface a: pymdlsdk.IString = i.get_interface(pymdlsdk.IString) # needs casting self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_c_str() self.assertEqual(value, "") value = "MDL" a.set_c_str(value) value2 = a.get_c_str() self.assertEqual(value, value2) def test_ISize(self): a: pymdlsdk.ISize = self.sdk.transaction.create_as(pymdlsdk.ISize, "Size", 0, None) self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_value() self.assertEqual(value, 0) value = 12345 a.set_value(value) value2 = a.get_value() self.assertEqual(value, value2) def test_IFloat32(self): a: pymdlsdk.IFloat32 = self.sdk.transaction.create_as(pymdlsdk.IFloat32, "Float32") self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_value() self.assertEqual(value, 0) value = -1.2 a.set_value(value) value2 = a.get_value() self.assertAlmostEqual(value, value2) # floating point off by 0.0000000476837158 def test_IUint8(self): a: pymdlsdk.IUint8 = self.sdk.transaction.create_as(pymdlsdk.IUint8, "Uint8") self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_value() self.assertEqual(value, 0) value = 234 a.set_value(value) value2 = a.get_value() self.assertEqual(value, value2) def test_IColor(self): a: pymdlsdk.IColor = self.sdk.transaction.create_as(pymdlsdk.IColor, "Color") self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_value() self.assertEqual(value.r, 0) self.assertEqual(value.g, 0) self.assertEqual(value.b, 0) self.assertEqual(value.a, 0) value.r = 0.25 value.g = 0.5 value.b = 0.75 value.a = 1.0 a.set_value(value) value2 = a.get_value() self.assertEqual(value.r, value2.r) self.assertEqual(value.g, value2.g) self.assertEqual(value.b, value2.b) self.assertEqual(value.a, value2.a) def test_IColor3(self): a: pymdlsdk.IColor3 = self.sdk.transaction.create_as(pymdlsdk.IColor3, "Color3") self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_value() self.assertEqual(value.r, 0) self.assertEqual(value.g, 0) self.assertEqual(value.b, 0) self.assertEqual(value.a, 1) value.r = 0.25 value.g = 0.5 value.b = 0.75 a.set_value(value) value2 = a.get_value() self.assertEqual(value.r, value2.r) self.assertEqual(value.g, value2.g) self.assertEqual(value.b, value2.b) def test_IFloat32_3(self): a: pymdlsdk.IFloat32_3 = self.sdk.transaction.create_as(pymdlsdk.IFloat32_3, "Float32<3>") self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_value() self.assertEqual(value.x, 0) self.assertEqual(value.y, 0) self.assertEqual(value.z, 0) value.x = 1.2 value.y = 3.4 value.z = -5.6 a.set_value(value) value2 = a.get_value() self.assertEqual(value.x, value2.x) self.assertEqual(value.y, value2.y) self.assertEqual(value.z, value2.z) def test_IFloat64_2(self): a: pymdlsdk.IFloat64_2 = self.sdk.transaction.create_as(pymdlsdk.IFloat64_2, "Float64<2>") self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_value() self.assertEqual(value.x, 0) self.assertEqual(value.y, 0) value.x = 1.2 value.y = 3.4 a.set_value(value) value2 = a.get_value() self.assertEqual(value.x, value2.x) self.assertEqual(value.y, value2.y) def test_IBoolean_4(self): a: pymdlsdk.IBoolean_4 = self.sdk.transaction.create_as(pymdlsdk.IBoolean_4, "Boolean<4>") self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_value() self.assertFalse(value.x) self.assertFalse(value.y) self.assertFalse(value.z) self.assertFalse(value.w) value.x = True value.y = False value.z = True value.w = False a.set_value(value) value2 = a.get_value() self.assertEqual(value.x, value2.x) self.assertEqual(value.y, value2.y) self.assertEqual(value.z, value2.z) self.assertEqual(value.w, value2.w) def test_ISint32_2_3(self): a: pymdlsdk.ISint32_2_3 = self.sdk.transaction.create_as(pymdlsdk.ISint32_2_3, "Sint32<2,3>") self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_value() self.assertEqual(value.xx, 0) self.assertEqual(value.xy, 0) self.assertEqual(value.xz, 0) self.assertEqual(value.yx, 0) self.assertEqual(value.yy, 0) self.assertEqual(value.yz, 0) value.xx = -11 value.xy = 12 value.xz = -13 value.yx = 14 value.yy = -15 value.yz = 16 a.set_value(value) value2 = a.get_value() self.assertEqual(value.xx, value2.xx) self.assertEqual(value.xy, value2.xy) self.assertEqual(value.xz, value2.xz) self.assertEqual(value.yx, value2.yx) self.assertEqual(value.yy, value2.yy) self.assertEqual(value.yz, value2.yz) def test_IFloat32_3_3(self): a: pymdlsdk.IFloat32_3_3 = self.sdk.transaction.create_as(pymdlsdk.IFloat32_3_3, "Float32<3,3>") self.assertTrue(a.is_valid_interface(), "Invalid IInterface") value = a.get_value() self.assertEqual(value.xx, 0) self.assertEqual(value.xy, 0) self.assertEqual(value.xz, 0) self.assertEqual(value.yx, 0) self.assertEqual(value.yy, 0) self.assertEqual(value.yz, 0) self.assertEqual(value.zx, 0) self.assertEqual(value.zy, 0) self.assertEqual(value.zz, 0) value.xx = -11.0 value.xy = 12.0 value.xz = -13.0 value.yx = 14.0 value.yy = -15.0 value.yz = 16.0 value.zx = -17.0 value.zy = 18.0 value.zz = -19.0 a.set_value(value) value2 = a.get_value() self.assertEqual(value.xx, value2.xx) self.assertEqual(value.xy, value2.xy) self.assertEqual(value.xz, value2.xz) self.assertEqual(value.yx, value2.yx) self.assertEqual(value.yy, value2.yy) self.assertEqual(value.yz, value2.yz) self.assertEqual(value.zx, value2.zx) self.assertEqual(value.zy, value2.zy) self.assertEqual(value.zz, value2.zz) def test_IArray(self): array: pymdlsdk.IArray = self.sdk.transaction.create_as(pymdlsdk.IArray, "Float32[4]") self.assertTrue(array.is_valid_interface(), "Invalid IInterface") self.assertEqual(array.get_length(), 4) element0: pymdlsdk.IFloat32 = array.get_element_as(pymdlsdk.IFloat32, 0) element1: pymdlsdk.IFloat32 = array.get_element(1).get_interface(pymdlsdk.IFloat32) element2: pymdlsdk.IFloat32 = array.get_element(2).get_interface(pymdlsdk.IFloat32) element3: pymdlsdk.IFloat32 = array.get_element(3).get_interface(pymdlsdk.IFloat32) self.assertTrue(element0.is_valid_interface(), "Invalid IInterface") self.assertTrue(element1.is_valid_interface(), "Invalid IInterface") self.assertTrue(element2.is_valid_interface(), "Invalid IInterface") self.assertTrue(element3.is_valid_interface(), "Invalid IInterface") self.assertEqual(element0.get_value(), 0) self.assertEqual(element1.get_value(), 0) self.assertEqual(element2.get_value(), 0) self.assertEqual(element3.get_value(), 0) element0.set_value(-1.0) element1.set_value(2.0) element2.set_value(-3.0) element3.set_value(-4.0) array.set_element(0, element0) array.set_element(1, element1) array.set_element(2, element2) array.set_element(3, element3) self.assertEqual(element0.get_value(), array.get_element(0).get_interface(pymdlsdk.IFloat32).get_value()) self.assertEqual(element1.get_value(), array.get_element_as(pymdlsdk.IFloat32, 1).get_value()) self.assertEqual(element2.get_value(), array.get_element_as(pymdlsdk.IFloat32, 2).get_value()) self.assertEqual(element3.get_value(), array.get_element_as(pymdlsdk.IFloat32, 3).get_value()) def test_IDynamic_array(self): array: pymdlsdk.IDynamic_array = self.sdk.transaction.create_as(pymdlsdk.IDynamic_array, "String[]") self.assertTrue(array.is_valid_interface(), "Invalid IInterface") element0: pymdlsdk.IString = self.sdk.transaction.create_as(pymdlsdk.IString, "String") element1: pymdlsdk.IString = self.sdk.transaction.create_as(pymdlsdk.IString, "String") element0.set_c_str("foo") element1.set_c_str("bar") array.push_back(element0) array.push_back(element1) self.assertEqual(array.get_length(), 2) self.assertEqual(element0.get_c_str(), array.front().get_interface(pymdlsdk.IString).get_c_str()) self.assertEqual(element0.get_c_str(), array.front_as(pymdlsdk.IString).get_c_str()) self.assertEqual(element1.get_c_str(), array.back().get_interface(pymdlsdk.IString).get_c_str()) self.assertEqual(element1.get_c_str(), array.back_as(pymdlsdk.IString).get_c_str()) self.assertEqual(element0.get_c_str(), array.get_element(0).get_interface(pymdlsdk.IString).get_c_str()) self.assertEqual(element1.get_c_str(), array.get_element_as(pymdlsdk.IString, 1).get_c_str()) array.clear() self.assertEqual(array.get_length(), 0) def test_IStructure(self): tile: pymdlsdk.IStructure = self.sdk.transaction.create_as(pymdlsdk.IStructure, "Uvtile") self.assertTrue(tile.is_valid_interface(), "Invalid IInterface") u: pymdlsdk.ISint32 = self.sdk.transaction.create_as(pymdlsdk.ISint32, "Sint32") u.set_value(1) self.assertEqual(u.get_value(), 1) v: pymdlsdk.ISint32 = self.sdk.transaction.create_as(pymdlsdk.ISint32, "Sint32") v.set_value(2) self.assertEqual(v.get_value(), 2) tile.set_value("u", u) tile.set_value("v", v) self.assertTrue(tile.has_key("u")) self.assertTrue(tile.has_key("v")) self.assertFalse(tile.has_key("not_a_member")) self.assertEqual(u.get_value(), tile.get_value("u").get_interface(pymdlsdk.ISint32).get_value()) self.assertEqual(v.get_value(), tile.get_value_as(pymdlsdk.ISint32, "v").get_value()) # run all tests of this file if __name__ == '__main__': unittest.main()
MDL-SDK-master
examples/mdl_python/tests/test_mi_idata.py
#***************************************************************************** # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** import sys import os import gc import traceback import time # load the binding module print("About to load the MDL Python Bindings") import pymdlsdk print("Loaded the MDL Python Bindings") #-------------------------------------------------------------------------------------------------- # Utilities #-------------------------------------------------------------------------------------------------- def get_examples_search_path(): """Try to get the example search path or returns 'mdl' sub folder of the current directory if it failed.""" # get the environment variable that is used in all MDL SDK examples example_sp = os.getenv('MDL_SAMPLES_ROOT') # fall back to a path relative to this script file if example_sp == None or not os.path.exists(example_sp): example_sp = os.path.join(os.path.dirname(os.path.realpath(__file__))) if example_sp == None or not os.path.exists(example_sp): example_sp = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..') # go down into the mdl folder example_sp = os.path.join(example_sp, 'mdl') # fall back to the current folder if not os.path.exists(example_sp): example_sp = './mdl' return os.path.abspath(example_sp) #-------------------------------------------------------------------------------------------------- # MDL Python Example #-------------------------------------------------------------------------------------------------- def load_module(neuray: pymdlsdk.INeuray, transaction: pymdlsdk.ITransaction, mdl_module_name: str) -> str: """Load the module given it's db name""" with neuray.get_api_component(pymdlsdk.IMdl_impexp_api) as imp_exp, \ neuray.get_api_component(pymdlsdk.IMdl_factory) as mdl_factory, \ mdl_factory.create_execution_context() as context: if imp_exp.load_module(transaction, mdl_module_name, context) < 0: return "" # loading failed with mdl_factory.get_db_module_name(mdl_module_name) as istring: return istring.get_c_str() #-------------------------------------------------------------------------------------------------- def get_function_by_name(neuray: pymdlsdk.INeuray, transaction: pymdlsdk.ITransaction, module_db_name: str, mdl_function_name: str) -> str: """Access an MDL module and find the first function that matches a given name""" with transaction.access_as(pymdlsdk.IModule, module_db_name) as mdl_module: if not mdl_module.is_valid_interface(): return "" # check if the function name is provided with signature (we don't do overload resolution then) if mdl_function_name[-1] == ')': function_db_name: str = module_db_name + "::" + mdl_function_name with transaction.access_as(pymdlsdk.IFunction_definition, function_db_name) as mdl_function: if not mdl_function.is_valid_interface(): return "" else: return function_db_name # do overload resolution otherwise and return the first function with that name # if more than overload is expected this function should be extended to narrow down a unique # function by specifying parameter types and names. here we simply return the first with mdl_module.get_function_overloads(mdl_function_name, None) as overloads: if overloads.get_length() == 0: return "" if overloads.get_length() != 1: print(f"WARNING: the selected function `{mdl_function}` is not unique in module `{mdl_module.get_mdl_name()}`") with overloads.get_element(0) as element: with element.get_interface(pymdlsdk.IString) as istring_db_name: return istring_db_name.get_c_str() #-------------------------------------------------------------------------------------------------- def run_example(neuray): # since the MDL SDK has limited database with no scopes and only one transaction # we access the transaction in the beginning and keep it open with neuray.get_api_component(pymdlsdk.IDatabase) as database, \ database.get_global_scope() as scope, \ scope.create_transaction() as transaction: # load the two modules we want to use core_definitions_module_db_name: str = load_module(neuray, transaction, "::nvidia::core_definitions") tutorials_module_db_name: str = load_module(neuray, transaction, "::nvidia::sdk_examples::tutorials") if not core_definitions_module_db_name or not tutorials_module_db_name: print("Failed to load MDL modules.") return # get the function definition names plastic_db_name: str = get_function_by_name(neuray, transaction, core_definitions_module_db_name, "scratched_plastic_v2") checker_db_name: str = get_function_by_name(neuray, transaction, tutorials_module_db_name, "color_checker(float,color,color)") # get the actual function definitions with transaction.access_as(pymdlsdk.IFunction_definition, plastic_db_name) as plastic_definition, \ transaction.access_as(pymdlsdk.IFunction_definition, checker_db_name) as checker_definition, \ neuray.get_api_component(pymdlsdk.IMdl_factory) as mdl_factory, \ mdl_factory.create_expression_factory(transaction) as ef, \ mdl_factory.create_value_factory(transaction) as vf: # create the color_checker call checker_call_db_name = "mdlexample::color_checker" with ef.create_expression_list() as parameters, \ vf.create_float(5.0) as scale_value, \ ef.create_constant(scale_value) as scale_arg, \ vf.create_color(0.25, 0.5, 0.75) as b_value, \ ef.create_constant(b_value) as b_arg: # we leave the parameter 'a' at its default value (white) # add the created constant expressions to the new parameter list parameters.add_expression("scale", scale_arg) parameters.add_expression("b", b_arg) # create a function call and pass the parameter list. # Values that are not specified stay at their defaults. # Parameter without default need to be specified (visible in the definitions). with checker_definition.create_function_call(parameters) as checker_call: transaction.store(checker_call, checker_call_db_name) # create the plastic call plastic_call_db_name = "mdlexample::pastic" with ef.create_expression_list() as parameters, \ ef.create_call(checker_call_db_name) as call_arg: # connect the checker_call # add the call expression to the new parameter list and create a function call parameters.add_expression("diffuse_color", call_arg) with plastic_definition.create_function_call(parameters) as plastic_call: transaction.store(plastic_call, plastic_call_db_name) # access the call with transaction.access_as(pymdlsdk.IFunction_call, plastic_call_db_name) as plastic_call: if not plastic_call.is_valid_interface(): return # from here we can trigger compilation and code generation # alternatively, we can write out the created material graph as an MDL # Create the module builder. # Note, the MDL modules have a `mdl::` prefix and the module name has to be unique module_name = "mdl::new_module_9339b384_b05c_11ec_b909_0242ac120002" with neuray.get_api_component(pymdlsdk.IMdl_factory) as mdl_factory, \ mdl_factory.create_execution_context() as execution_context, \ mdl_factory.create_expression_factory(transaction) as ef, \ ef.create_annotation_block() as empty_anno_block: # create a module builder and add the material as a variant with mdl_factory.create_module_builder(transaction, module_name, pymdlsdk.MDL_VERSION_1_6, pymdlsdk.MDL_VERSION_LATEST, execution_context) as module_builder: if not module_builder.is_valid_interface(): print("Error: Failed to create a module builder.") return if module_builder.add_variant( "MyGraphMaterial", # material/function name plastic_call.get_function_definition(), # prototype plastic_call.get_arguments(), # default arguments, basically our graph empty_anno_block, # drop annotations empty_anno_block, # drop annotations True, # export the material/function execution_context) != 0: print("Error: Failed to add variant to module builder") for i in range(execution_context.get_messages_count()): print(execution_context.get_message(i).get_string()) return # export to file filename = os.path.join(os.getcwd(), "MyGraphModule.mdl") with neuray.get_api_component(pymdlsdk.IMdl_impexp_api) as imp_exp: execution_context.set_option("bundle_resources", True) if imp_exp.export_module(transaction, module_name, filename, execution_context) != 0: print(f"Error: Could not export material graph to module '{filename}'") else: print(f"Success: exported material graph to module '{filename}'") # close the transaction transaction.commit() #-------------------------------------------------------------------------------------------------- # Entry Point #-------------------------------------------------------------------------------------------------- def main(): # Get the INeuray interface in a suitable smart pointer that works as context manager with pymdlsdk.load_and_get_ineuray('') as neuray: if not neuray.is_valid_interface(): raise Exception('Failed to load the MDL SDK.') # configuration settings go here # get the component using a context manager with neuray.get_api_component(pymdlsdk.IMdl_configuration) as cfg: # get the example search path that is used for all MDL SDK examples # falls back to `mdl` in the current working directory cfg.add_mdl_system_paths() cfg.add_mdl_user_paths() example_sp = get_examples_search_path() cfg.add_mdl_path(example_sp) # Load the 'nv_openimageio' and 'dds' plug-ins if not pymdlsdk.load_plugin(neuray, 'nv_openimageio'): raise Exception('Failed to load the \'nv_openimageio\' plugin.') if not pymdlsdk.load_plugin(neuray, 'dds'): raise Exception('Failed to load the \'dds\' plugin.') # after the configuration is done, start neuray. resultCode = neuray.start() if resultCode != 0: raise Exception('Failed to initialize the SDK. Result code: ' + resultCode) # the actual example that should be illustrated run_example(neuray) # Shutting the MDL SDK down. Again, a return code of 0 indicates success. resultCode = neuray.shutdown() if resultCode != 0: raise Exception('Failed to shutdown the SDK. Result code: ' + resultCode) # Unload the MDL SDK if not pymdlsdk.unload(): raise Exception('Failed to unload the SDK.') print('Unloaded the MDL SDK.') if __name__ == "__main__": try: # optional binding debugging: # some more simple memory debugging output # pymdlsdk._enable_print_ref_counts(False) main() # optional binding debugging: # some more simple memory debugging output # unreachable = gc.collect() # print("\n%d unreachable objects detected during garbage collection.\n" % unreachable) # pymdlsdk._print_open_handle_statistic() # sleep to be able to read the output when starting from VS time.sleep(2.0) except Exception as e: print("Unexpected error: ", sys.exc_info()[0]) print("Exception: ", e) print("Traceback: ", traceback.format_exc()) input("\nPress Enter to continue...")
MDL-SDK-master
examples/mdl_python/create_expression_graph/example_create_expression_graph.py
#***************************************************************************** # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** import sys import os import gc import traceback import time print("Current working directory: " + os.getcwd()) print("\n") # load the binding module print("About to load the MDL Python Bindings") # Note, if that import fails. Make sure you have selected the same python runtime version as # you have used while building the binding. import pymdlsdk print("Loaded the MDL Python Bindings") #-------------------------------------------------------------------------------------------------- # Utilities #-------------------------------------------------------------------------------------------------- def get_examples_search_path(): """Try to get the example search path or returns 'mdl' sub folder of the current directory if it failed.""" # get the environment variable that is used in all MDL SDK examples example_sp = os.getenv('MDL_SAMPLES_ROOT') # fall back to a path relative to this script file if example_sp == None or not os.path.exists(example_sp): example_sp = os.path.join(os.path.dirname(os.path.realpath(__file__))) if example_sp == None or not os.path.exists(example_sp): example_sp = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..') # go down into the mdl folder example_sp = os.path.join(example_sp, 'mdl') # fall back to the current folder if not os.path.exists(example_sp): example_sp = './mdl' return os.path.abspath(example_sp) #-------------------------------------------------------------------------------------------------- # MDL Python Example #-------------------------------------------------------------------------------------------------- def inspect_definition(neuray, transaction, function_db_name): # Here, we don't use the `with`-blocks in order see what happens # without the `with`s or manual releases the objects are to be disposed by the garbage collection # assuming that for instance the `function_def` object is disposed when leaving the # current function as python ref-counting should be able to see that there is no variable that # points to the object anymore. # access the module by querying it from the DB function_def = transaction.access_as(pymdlsdk.IFunction_definition, function_db_name) if not function_def.is_valid_interface(): return print("\nThe Functions is a material: %s" % ("true" if function_def.is_material() else "false")) # get some factories that allow to dump values and types as strings to the console mdl_factory = neuray.get_api_component(pymdlsdk.IMdl_factory) expression_factory = mdl_factory.create_expression_factory(transaction) # iterate over parameters and get some info on them param_count = function_def.get_parameter_count() types = function_def.get_parameter_types() defaults = function_def.get_defaults() function_annotations = function_def.get_annotations() # not used here parameter_annotations = function_def.get_parameter_annotations() print("\nThe Functions has %d parameters:" % param_count) for i in range(param_count): # get parameter name param_name = function_def.get_parameter_name(i) print("* Name: %s" % param_name) # get the parameter type param_type = types.get_type(param_name).skip_all_type_aliases() kind = param_type.get_kind() print(" Type Kind: %s" % kind) # get annotations for this parameter anno_block = parameter_annotations.get_annotation_block(param_name) # check if the block is valid, if not it means there are no annotations for this parameter if anno_block.is_valid_interface(): print(" Parameter has %d Annotations" % anno_block.get_size()) # loop over the annotations, same schema as always, get name, use the name access details for a in range(anno_block.get_size()): anno = anno_block.get_annotation(a) print(" + Name: %s" % anno.get_name()) anno_arguments = anno.get_arguments() # not every annotation has arguments, in that case the object is invalid if anno_arguments.is_valid_interface(): # loop over the arguments, get name, get details for p in range(anno_arguments.get_size()): anno_arg_name = anno_arguments.get_name(p) print(" - Argument: %s" % anno_arg_name) anno_arg_expr = anno_arguments.get_expression(anno_arg_name) # Assuming constants here if anno_arg_expr.get_kind() == pymdlsdk.IExpression.Kind.EK_CONSTANT: anno_arg_value = anno_arg_expr.get_interface(pymdlsdk.IExpression_constant).get_value() anno_arg_value_kind = anno_arg_value.get_kind() print(" Value Kind: %s" % anno_arg_value_kind) if anno_arg_value_kind == pymdlsdk.IValue.Kind.VK_FLOAT: v = anno_arg_value.get_interface(pymdlsdk.IValue_float).get_value() print(" Value: %f" % v) # get the default value # Note, compared to C++ API we can return the specialized value directly so # manual casting based on the kind is not required, handling based on the kind is of course param_default = defaults.get_expression(param_name) if param_default.is_valid_interface(): # the simplest default value is a constant value expr_kind = param_default.get_kind() print(" Default Expression Kind: %s" % expr_kind) if expr_kind == pymdlsdk.IExpression.Kind.EK_CONSTANT: param_default_value = param_default.get_interface(pymdlsdk.IExpression_constant).get_value() param_default_value_kind = param_default_value.get_kind() # Note, calling get_interface() is not required here, just like for the expressions print(" Default Value Kind: %s" % param_default_value_kind) dump = False if param_default_value_kind == pymdlsdk.IValue.Kind.VK_BOOL: print(" Value: %s" % ("true" if param_default_value.get_interface(pymdlsdk.IValue_bool).get_value() else "false")) elif param_default_value_kind == pymdlsdk.IValue.Kind.VK_INT: print(" Value: %d" % param_default_value.get_interface(pymdlsdk.IValue_int).get_value()) # ... elif param_default_value_kind == pymdlsdk.IValue.Kind.VK_FLOAT: print(" Value: %f" % param_default_value.get_interface(pymdlsdk.IValue_float).get_value()) elif param_default_value_kind == pymdlsdk.IValue.Kind.VK_DOUBLE: print(" Value: %f" % param_default_value.get_interface(pymdlsdk.IValue_double).get_value()) # ... elif param_default_value_kind == pymdlsdk.IValue.Kind.VK_COLOR: param_default_value_color = param_default_value.get_interface(pymdlsdk.IValue_color) r = param_default_value_color.get_value(0).get_interface(pymdlsdk.IValue_float).get_value() g = param_default_value_color.get_value(1).get_interface(pymdlsdk.IValue_float).get_value() b = param_default_value_color.get_value(2).get_interface(pymdlsdk.IValue_float).get_value() print(" Value: %f / %f / %f" % (r, g, b)) # ... else: dump = True # if the default value is a function call we get a database name of that call elif expr_kind == pymdlsdk.IExpression.Kind.EK_CALL: function_call_db_name = param_default.get_interface(pymdlsdk.IExpression_call).get_call() print(" Default Attached Call: %s" % function_call_db_name) if dump: # Note, this dumping of defaults here is very primitive # There are more sophisticated ways to deal with parameters, defaults and annotations to come default_text = expression_factory.dump(param_default, None, 1) print(" Default (dump): %s" % default_text.get_c_str()) else: print(" Default: (None)") #-------------------------------------------------------------------------------------------------- def inspect_module(neuray, transaction, module_db_name): # access the module by querying it from the DB # also get some factories that allow to dump values and types as strings to the console with transaction.access_as(pymdlsdk.IModule, module_db_name) as module, \ neuray.get_api_component(pymdlsdk.IMdl_factory) as mdl_factory, \ mdl_factory.create_type_factory(transaction) as type_factory, \ mdl_factory.create_value_factory(transaction) as value_factory: if not module.is_valid_interface(): # little caveat here, there is no break in a 'with'-block (language short coming?) return # so return will exit the `inspect_module` function print("MDL Module filename: %s" % module.get_filename()) print("\nThe Module imports the following %d modules:" % module.get_import_count()) for i in range(module.get_import_count()): print("* %s" % module.get_import(i)) # Dump exported types. with module.get_types() as types: print("\nThe module contains the following %d types:" % types.get_size()) for i in range(types.get_size()): with types.get_type(i) as ttype: with type_factory.dump(ttype, 1) as istring: print("* %s" % istring.get_c_str()) # Dump exported constants. with module.get_constants() as constants: print("\nThe module contains the following %d constants:" % constants.get_size()) for i in range(constants.get_size()): name = constants.get_name(i) with constants.get_value(i) as constant: with value_factory.dump(constant, None, 1) as result: print("* {} = {}".format(name, result.get_c_str())) # Dump annotation definitions of the module. print("\nThe module contains the following %d annotations:" % module.get_annotation_definition_count()) for i in range(module.get_annotation_definition_count()): with module.get_annotation_definition(i) as anno_def: print("* %s" % anno_def.get_mdl_simple_name()) print(" MDL Name: %s" % anno_def.get_name()) for p in range(anno_def.get_parameter_count()): if p == 0: print(" Parameters:") print(" - '{}' of type '{}'".format(anno_def.get_parameter_name(p), anno_def.get_mdl_parameter_type_name(p))) # Dump function definitions of the module. print("\nThe module contains the following %d function definitions:" % module.get_function_count()) for i in range(module.get_function_count()): print("* %s" % module.get_function(i)) # Dump material definitions of the module. print("\nThe module contains the following %d material definitions:" % module.get_material_count()) for i in range(module.get_material_count()): matdbname = module.get_material(i) material_def = transaction.access_as(pymdlsdk.IFunction_definition, matdbname) simple_name = material_def.get_mdl_simple_name() print("* {}: {}".format(simple_name, matdbname)) #-------------------------------------------------------------------------------------------------- def get_db_module_name(neuray, module_mdl_name): """Return the db name of the given module.""" # When the module is loaded we can access it and all its definitions by accessing the DB # for that we need to get a the database name of the module using the factory with neuray.get_api_component(pymdlsdk.IMdl_factory) as mdl_factory: with mdl_factory.get_db_module_name(module_mdl_name) as istring: module_db_name = istring.get_c_str() # note, even though this name is simple and could # be constructed by string operations, use the # factory to be save in case of unicode encodings # and potential upcoming changes in the future # shortcut for the function above # this chaining is a bit special. In the C++ interface it's not possible without # leaking memory. Here we create the smart pointer automatically. However, the IString # which is created temporary here is released at the end the `load_module` function, right? # This might be unexpected, especially when we rely on the RAII pattern and that # objects are disposed at certain points in time (usually before committing a transaction) module_db_name_2 = mdl_factory.get_db_module_name(module_mdl_name).get_c_str() # note, we plan to map compatible types to python. E.g. the IString class may disappear return module_db_name_2 #-------------------------------------------------------------------------------------------------- def get_db_definition_name(neuray, function_mdl_name): """Return the db name of the given function definition.""" with neuray.get_api_component(pymdlsdk.IMdl_factory) as mdl_factory: with mdl_factory.get_db_definition_name(function_mdl_name) as istring: return istring.get_c_str() #-------------------------------------------------------------------------------------------------- def load_module(neuray, transaction, module_mdl_name): """Load the module given its name. Returns true if the module is loaded to database""" with neuray.get_api_component(pymdlsdk.IMdl_impexp_api) as imp_exp: with neuray.get_api_component(pymdlsdk.IMdl_factory) as mdl_factory: # for illustration, we don't use a `with` block for the `context`, instead we release manually context = mdl_factory.create_execution_context() res = imp_exp.load_module(transaction, module_mdl_name, context) context.release() # same as: context = None return res >= 0 #-------------------------------------------------------------------------------------------------- def run_example(neuray): # since the MDL SDK has limited database with no scopes and only one transaction # we access the transaction in the beginning and keep it open with neuray.get_api_component(pymdlsdk.IDatabase) as database: with database.get_global_scope() as scope: # this transaction is not used in a `with`-block so it lives in the function scope # see the end of the function for the `release()` function transaction = scope.create_transaction() print("Expectation: 'transaction' handle is not freed and still valid. [Actually: is valid = {}]".format(transaction.is_valid_interface())) # load an MDL module, wrapped in a function # the module is loaded using it's MDL name # in OV the module would be loaded on the C++ side (rtx.neuraylib.plugin) module_mdl_name = "::nvidia::sdk_examples::tutorials" if load_module(neuray, transaction, module_mdl_name): # When the module is loaded we can access it and all its definitions by accessing the DB module_db_name = get_db_module_name(neuray, module_mdl_name) print("\nMDL Module name: %s" % module_mdl_name) print("MDL Module DB name: %s" % module_db_name) # after loading was successful, we can inspect materials, functions and other stuff inspect_module(neuray, transaction, module_db_name) # lets look at a definition # lets go for a functions, soon material definitions will behave exactly like functions # function_mdl_name = module_mdl_name + "::example_function(color,float)" function_mdl_name = module_mdl_name + "::example_df(float,float,color,float,color,float,float,float,float,::nvidia::sdk_examples::tutorials::Options,color,float,string,texture_2d)" function_db_name = get_db_definition_name(neuray, function_mdl_name) print("\nMDL Function name: %s" % function_mdl_name) print("MDL Function DB name: %s" % function_db_name) inspect_definition(neuray, transaction, function_db_name) print("Inspection Done") # load an invalid MDL module if load_module(neuray, transaction, "::invalid"): # this will not be reached... inspect_module(neuray, transaction, "::invalid") # changes made with this transaction are committed (here currently we did not edit anything) # if that is not done, you will get a warning when the transaction is released # Note, we run garbage collection here first in order to release MDL objects that have not been # freed after a `with` or released manually. For instance the `function_def` in `inspect_definition` # seems to still live, especially when a debugger is attached. # Question would be if we should run `gc.collect()` internally before committing a transaction # (or calling pymdlsdk.shutdown) or if that is very bad practice. gc.collect() transaction.commit() # this manually releases the transaction. It has the same effect as the __exit__ function that # is called at the end of a `with`-block # if release is not called, python would clean up the object when all references to the object # go out of scope, the GC finds out the object is not used anymore or when the application exits # transaction.release() # this behaves like calling release() transaction = None #-------------------------------------------------------------------------------------------------- # Entry Point #-------------------------------------------------------------------------------------------------- def main(): # Get the INeuray interface in a suitable smart pointer that works as context manager with pymdlsdk.load_and_get_ineuray('') as neuray: if not neuray.is_valid_interface(): raise Exception('Failed to load the MDL SDK.') # configuration settings go here # get the component using a context manager with neuray.get_api_component(pymdlsdk.IMdl_configuration) as cfg: # get the example search path that is used for all MDL SDK examples # falls back to `mdl` in the current working directory example_sp = get_examples_search_path() cfg.add_mdl_path(example_sp) # Load the 'nv_openimageio' and 'dds' plug-ins if not pymdlsdk.load_plugin(neuray, 'nv_openimageio'): raise Exception('Failed to load the \'nv_openimageio\' plugin.') if not pymdlsdk.load_plugin(neuray, 'dds'): raise Exception('Failed to load the \'dds\' plugin.') # after the configuration is done, start neuray. resultCode = neuray.start() if resultCode != 0: raise Exception('Failed to initialize the SDK. Result code: ' + resultCode) # the actual example that should be illustrated run_example(neuray) # Shutting the MDL SDK down. Again, a return code of 0 indicates success. resultCode = neuray.shutdown() if resultCode != 0: raise Exception('Failed to shutdown the SDK. Result code: ' + resultCode) # Unload the MDL SDK if not pymdlsdk.unload(): raise Exception('Failed to unload the SDK.') print('Unloaded the MDL SDK.') if __name__ == "__main__": try: # optional binding debugging: # some more simple memory debugging output # pymdlsdk._enable_print_ref_counts(False) main() # optional binding debugging: # some more simple memory debugging output # unreachable = gc.collect() # print("\n%d unreachable objects detected during garbage collection.\n" % unreachable) # pymdlsdk._print_open_handle_statistic() # sleep to be able to read the output when starting from VS time.sleep(2.0) except Exception as e: print("Unexpected error: ", sys.exc_info()[0]) print("Exception: ", e) print("Traceback: ", traceback.format_exc()) input("\nPress Enter to continue...")
MDL-SDK-master
examples/mdl_python/modules/example_modules.py
#***************************************************************************** # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** import sys import os import gc import traceback import time print("Current working directory: " + os.getcwd()) print("\n") # load the binding module print("About to load the MDL Python Bindings") # Note, if that import fails. Make sure you have selected the same python runtime version as # you have used while building the binding. import pymdlsdk print("Loaded the MDL Python Bindings") #-------------------------------------------------------------------------------------------------- # Entry Point #-------------------------------------------------------------------------------------------------- def main(): # Get the INeuray interface in a suitable smart pointer. neuray = pymdlsdk.load_and_get_ineuray('') if not neuray.is_valid_interface(): raise Exception('Failed to load the MDL SDK.') print('Loaded the MDL SDK.') # configuration settings go here, none in this example # after the configuration is done, start neuray. resultCode = neuray.start() if resultCode != 0: raise Exception('Failed to initialize the SDK. Result code: ' + resultCode) print('Started the MDL SDK. Status: ' + str(neuray.get_status())) # scene graph manipulations and rendering calls go here, none in this example. # ... # Shutting the MDL SDK down. Again, a return code of 0 indicates success. resultCode = neuray.shutdown() if resultCode != 0: raise Exception('Failed to shutdown the SDK. Result code: ' + resultCode) print('Shutdown the MDL SDK.') # make sure the object is disposed. neuray = None # alternatively, neuray as well as other pymdlsdk objects can be created using a context # manager by wrapping them in with-statements, e.g.: # # with pymdlsdk.INeuray.load_and_get_ineuray() as neuray: # # do something with neuray # before shutting down, we might have objects not collected yet by the garbage collection # this can lead to crashes as shutdown can potentially make C++ objects invalid without # Python noticing it. Using context managers or setting objects to 'None' should make # this unnecessary. # gc.collect() # Unload the MDL SDK if not pymdlsdk.unload(): raise Exception('Failed to unload the SDK.') print('Unloaded the MDL SDK.') if __name__ == "__main__": try: # optional binding debugging: # some more simple memory debugging output # pymdlsdk._enable_print_ref_counts(False) main() # optional binding debugging: # some more simple memory debugging output # unreachable = gc.collect() # print("\n%d unreachable objects detected during garbage collection.\n" % unreachable) # pymdlsdk._print_open_handle_statistic() # sleep to be able to read the output when starting from VS time.sleep(2.0) except Exception as e: print("Unexpected error: ", sys.exc_info()[0]) print("Exception: ", e) print("Traceback: ", traceback.format_exc()) input("\nPress Enter to continue...")
MDL-SDK-master
examples/mdl_python/start_shutdown/example_start_shutdown.py
#***************************************************************************** # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** import sys import os import gc import traceback import time print("Current working directory: " + os.getcwd()) print("\n") # load the binding module print("About to load the MDL Python Bindings") # Note, if that import fails. Make sure you have selected the same python runtime version as # you have used while building the binding. import pymdlsdk import pymdl print("Loaded the MDL Python Bindings") #-------------------------------------------------------------------------------------------------- # Utilities #-------------------------------------------------------------------------------------------------- def get_examples_search_path(): """Try to get the example search path or returns 'mdl' sub folder of the current directory if it failed.""" # get the environment variable that is used in all MDL SDK examples example_sp = os.getenv('MDL_SAMPLES_ROOT') # fall back to a path relative to this script file if example_sp == None or not os.path.exists(example_sp): example_sp = os.path.join(os.path.dirname(os.path.realpath(__file__))) if example_sp == None or not os.path.exists(example_sp): example_sp = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', '..') # go down into the mdl folder example_sp = os.path.join(example_sp, 'mdl') # fall back to the current folder if not os.path.exists(example_sp): example_sp = './mdl' return os.path.abspath(example_sp) #-------------------------------------------------------------------------------------------------- # MDL Python Example #-------------------------------------------------------------------------------------------------- def get_db_module_name(neuray, module_mdl_name): """Return the db name of the given module.""" # When the module is loaded we can access it and all its definitions by accessing the DB # for that we need to get a the database name of the module using the factory with neuray.get_api_component(pymdlsdk.IMdl_factory) as mdl_factory: with mdl_factory.get_db_module_name(module_mdl_name) as istring: module_db_name = istring.get_c_str() # note, even though this name is simple and could # be constructed by string operations, use the # factory to be save in case of unicode encodings # and potential upcoming changes in the future # shortcut for the function above # this chaining is a bit special. In the C++ interface it's not possible without # leaking memory. Here we create the smart pointer automatically. However, the IString # which is created temporary here is released at the end the `load_module` function, right? # This might be unexpected, especially when we rely on the RAII pattern and that # objects are disposed at certain points in time (usually before committing a transaction) module_db_name_2 = mdl_factory.get_db_module_name(module_mdl_name).get_c_str() # note, we plan to map compatible types to python. E.g. the IString class may disappear return module_db_name_2 #-------------------------------------------------------------------------------------------------- def get_db_definition_name(neuray, function_mdl_name): """Return the db name of the given function definition.""" with neuray.get_api_component(pymdlsdk.IMdl_factory) as mdl_factory: with mdl_factory.get_db_definition_name(function_mdl_name) as istring: return istring.get_c_str() #-------------------------------------------------------------------------------------------------- def load_module(neuray, transaction, module_mdl_name): """Load the module given its name. Returns true if the module is loaded to database""" with neuray.get_api_component(pymdlsdk.IMdl_impexp_api) as imp_exp: with neuray.get_api_component(pymdlsdk.IMdl_factory) as mdl_factory: # for illustration, we don't use a `with` block for the `context`, instead we release manually context = mdl_factory.create_execution_context() res = imp_exp.load_module(transaction, module_mdl_name, context) context.release() # same as: context = None return res >= 0 #-------------------------------------------------------------------------------------------------- def run_example(neuray): # since the MDL SDK has limited database with no scopes and only one transaction # we access the transaction in the beginning and keep it open with neuray.get_api_component(pymdlsdk.IDatabase) as database, \ database.get_global_scope() as scope, \ scope.create_transaction() as transaction: # load an MDL module, wrapped in a function # the module is loaded using it's MDL name # in OV the module would be loaded on the C++ side (rtx.neuraylib.plugin) module_mdl_name = "::nvidia::sdk_examples::tutorials" if load_module(neuray, transaction, module_mdl_name): # When the module is loaded we can access it and all its definitions by accessing the DB module_db_name = get_db_module_name(neuray, module_mdl_name) print("\nMDL Module name: %s" % module_mdl_name) print("MDL Module DB name: %s" % module_db_name) # when the module is loaded we can use the high-level python binding to inspect the module module: pymdl.Module = pymdl.Module._fetchFromDb(transaction, module_db_name) # inspect the module if module: print(f" filename: {module.filename}") print(f" dbName: {module.dbName}") print(f" mdlName: {module.mdlName}") print(f" mdlSimpleName: {module.mdlSimpleName}") print(f" types:") for type in module.types: # exported types are structs or enums print(f" - type name: {type.name}") print(f" kind: {type.kind}") if type.kind == pymdlsdk.IType.Kind.TK_ENUM: print(f" enum values: {type.enumValues}") print(f" functions:") for funcName in module.functions: print(f" * simple name: {funcName}") overloads = module.functions[funcName] for func in overloads: print(f" - name with signature (overload): {funcName}{func.parameterTypeNames}") matOrFunc = "Material" if func.isMaterial else "Function" print(f" material or function: {matOrFunc}") print(f" isExported: {func.isExported}") print(f" semantics: {func.semantics}") print(f" returns: ") print(f" kind: {func.returnValue.type.kind}") print(f" type name: {func.returnValue.type.name}") print(f" uniform: {func.returnValue.type.uniform}") print(f" varying: {func.returnValue.type.varying}") print(f" parameters:") for param in func.parameters.items(): argument = param[1] print(f" [{param[0]}] parameter name tuple: {func.parameterTypeNames}") print(f" kind: {argument.type.kind}") print(f" type name: {argument.type.name}") print(f" uniform: {argument.type.uniform}") print(f" varying: {argument.type.varying}") continue ### ONLY TO REDUCE THE AMOUNT OF OUTPUT, feel free to remove the 'continue' # Annotations if func.annotations: print(f" Annotations:") anno: pymdl.Annotation for anno in func.annotations: print(f" - Simple Name: {anno.simpleName}") print(f" Qualified Name: {anno.name}") arg: pymdl.Argument for arg_name, arg in anno.arguments.items(): print(f" ({arg.type.kind}) {arg_name}: {arg.value}") # close transaction before destroying it transaction.commit() #-------------------------------------------------------------------------------------------------- # Entry Point #-------------------------------------------------------------------------------------------------- def main(): # Get the INeuray interface in a suitable smart pointer that works as context manager with pymdlsdk.load_and_get_ineuray('') as neuray: if not neuray.is_valid_interface(): raise Exception('Failed to load the MDL SDK.') # configuration settings go here # get the component using a context manager with neuray.get_api_component(pymdlsdk.IMdl_configuration) as cfg: # add default search paths cfg.add_mdl_system_paths() cfg.add_mdl_user_paths() # get the example search path that is used for all MDL SDK examples # falls back to `mdl` in the current working directory example_sp = get_examples_search_path() cfg.add_mdl_path(example_sp) # Load the 'nv_openimageio' and 'dds' plug-ins if not pymdlsdk.load_plugin(neuray, 'nv_openimageio'): raise Exception('Failed to load the \'nv_openimageio\' plugin.') if not pymdlsdk.load_plugin(neuray, 'dds'): raise Exception('Failed to load the \'dds\' plugin.') # after the configuration is done, start neuray. resultCode = neuray.start() if resultCode != 0: raise Exception('Failed to initialize the SDK. Result code: ' + resultCode) # the actual example that should be illustrated run_example(neuray) # Shutting the MDL SDK down. Again, a return code of 0 indicates success. resultCode = neuray.shutdown() if resultCode != 0: raise Exception('Failed to shutdown the SDK. Result code: ' + resultCode) # Unload the MDL SDK if not pymdlsdk.unload(): raise Exception('Failed to unload the SDK.') print('Unloaded the MDL SDK.') if __name__ == "__main__": try: # optional binding debugging: # some more simple memory debugging output # pymdlsdk._enable_print_ref_counts(True) main() # optional binding debugging: # some more simple memory debugging output unreachable = gc.collect() print("\n%d unreachable objects detected during garbage collection.\n" % unreachable) # pymdlsdk._print_open_handle_statistic() # sleep to be able to read the output when starting from VS time.sleep(2.0) except Exception as e: print("Unexpected error: ", sys.exc_info()[0]) print("Exception: ", e) print("Traceback: ", traceback.format_exc()) input("\nPress Enter to continue...")
MDL-SDK-master
examples/mdl_python/pymdl_inspection/example_pymdl_inspection.py
#!/usr/bin/env python3 #***************************************************************************** # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** '''Remove font-related CSS directives such that the directives in doxygen_custom_stylesheet_1_9_4.css can take effect.''' import os import re import sys for filename in 'html/doxygen.css html/tabs.css html/navtree.css'.split(): if os.path.exists(filename): buffer = open(filename, 'r', encoding="utf-8").readlines() text = ''.join(buffer) text = re.compile('font-family:.*?;', re.S|re.M).sub('', text) text = re.compile('font-size:.*?;', re.S|re.M).sub('', text) text = re.compile('font:.*?;', re.S|re.M).sub('', text) open(filename, 'w', encoding="utf-8").write(text)
MDL-SDK-master
doc/build/doxygen_postprocess_css.py
#!/usr/bin/env python3 #***************************************************************************** # Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** '''Modify some settings in Doxyfile according to dot availability and directory structure.''' import re import sys assert len(sys.argv) >= 1+5 input_file = sys.argv[1] output_file = sys.argv[2] have_dot_arg = sys.argv[3] dot_path_arg = sys.argv[4] image_path_arg = sys.argv[5] # A non-empty path causes a warning, even if dot support itself is disabled. if have_dot_arg == "NO": dot_path_arg = "" buffer = open(input_file, 'r', encoding="utf-8").readlines() text = ''.join(buffer) text = re.compile('(HAVE_DOT\\s*=).*$', re.M).sub('\\1 %s' % have_dot_arg, text) text = re.compile('(DOT_PATH\\s*=).*$', re.M).sub('\\1 %s' % dot_path_arg, text) text = re.compile('(IMAGE_PATH\\s*=).*$', re.M).sub('\\1 %s' % image_path_arg, text) open(output_file, 'w', encoding="utf-8").write(text)
MDL-SDK-master
doc/build/doxygen_configure_doxyfile.py
#!/bin/env python #***************************************************************************** # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** # This script generates the get_semantics_name() function to get enum names for enum values. import os import sys class EnumParser: def __init__(self, header_path, enum_name, imported_enum=None, import_prefix=None): self.header_path = header_path self.enum_name = enum_name self.enum_values = [] self.enum_value_map = {} if imported_enum: for name, val in imported_enum.enum_values: self.enum_value_map[import_prefix + name] = val self.parse() # Normalize an enum entry into the form "<name>['='<value>('+'<value>)*]" def normalize_entry(self, line, f): comment_idx = line.find("//") if comment_idx != -1: line = line[:comment_idx].strip() # ignore directives so far if line.startswith("#"): line = "" end_of_enum = False while True: # end of entry? if line.endswith(","): line = line[:-1].strip() break # end of enum? rbrace_idx = line.find("}") if rbrace_idx != -1: line = line[:rbrace_idx].strip() end_of_enum = True break # add next line nextline = next(f, "") #.next() # ignore directives so far if nextline.startswith("#"): nextline = "" comment_idx = nextline.find("//") if comment_idx != -1: nextline = nextline[:comment_idx].strip() line += " " + nextline.strip() # remove any spaces line = line.replace(" ","") return line, end_of_enum # Parse the header and extract the name/value mapping of the enum name given in the constructor. def parse(self): in_enum = False cur_val = 0 with open(self.header_path, "rt") as f: for line in f: line = line.strip() if not in_enum and line.startswith("enum " + self.enum_name): in_enum = True elif in_enum: entry, end_of_enum = self.normalize_entry(line, f) if entry: if "=" in entry: # "<name>'='<value>('+'<value>)*" case name, val = entry.split("=") cur_val = 0 for added_val_name in val.split("+"): try: cur_val += int(added_val_name, 0) except: # not a number, so it should be a known enum cur_val += self.enum_value_map[added_val_name] else: # "<name>" case name = entry val = cur_val cur_val += 1 self.enum_value_map[name] = val self.enum_values.append((name, val)) if end_of_enum: break # # Main function # def main(): if len(sys.argv) < 3 or len(sys.argv) > 4 or (len(sys.argv) == 4 and sys.argv[3] != "--include-nvidia-dfs"): print("Usage: %s public_header_dir output_file [--include-nvidia-dfs]" % sys.argv[0]) sys.exit(1) public_header_dir = sys.argv[1] output_file = sys.argv[2] include_nvidia_dfs = len(sys.argv) == 4 expressions_path = os.path.join(public_header_dir, "mi", "mdl", "mdl_expressions.h") definitions_path = os.path.join(public_header_dir, "mi", "mdl", "mdl_definitions.h") if not os.path.exists(expressions_path) or not os.path.exists(definitions_path): print('Invalid public_header_dir parameter, "%s" or "%s" not found!' % (expressions_path, definitions_path)) sys.exit(1) # IDefintion::Semantics depends of IExpression::Operator, so parse "Operator" first # and use it when parsing "Semantics". # Note: this will use the first "Operator" enum it finds in mdl_expresions.h. operator_enums = EnumParser(expressions_path, "Operator") semantics_enums = EnumParser(definitions_path, "Semantics", operator_enums, "IExpression::") with open(output_file, "wt") as f: f.write( "//*****************************************************************************\n" "// Copyright 2023 NVIDIA Corporation. All rights reserved.\n" "//*****************************************************************************\n" "// Generated by gen_mdltlc_enum_names.py\n" "\n" "#include <mi/mdl/mdl_definitions.h> // mi::mdl::IDefinition::Semantics\n" "\n" "char const *get_semantics_name(mi::mdl::IDefinition::Semantics semantics)\n" "{\n" " switch (semantics) {\n") for name, val in semantics_enums.enum_values: # ignore enum entries ending with "_FIRST" or "_LAST" in entry list # to avoid duplicate switch cases if not name.endswith("_FIRST") and not name.endswith("_LAST") and (include_nvidia_dfs or (not ("NVIDIA_DF" in name))): f.write(' case mi::mdl::IDefinition::%s: return "%s";\n' % (name, name)) f.write(' default: return "<INVALID SEMANTICS>";\n'); # let mdltlc generate invalid code for unknown semantics f.write( " }\n" ' return "<INVALID SEMANTICS>";\n' "}\n") if __name__ == '__main__': main()
MDL-SDK-master
src/prod/bin/mdltlc/gen_mdltl_enum_names.py
#***************************************************************************** # Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** import pymel.core as pm import mtoa.utils as utils import mtoa.ui.ae.utils as aeUtils from mtoa.ui.ae.shaderTemplate import ShaderAETemplate class AEaiMDLTemplate(ShaderAETemplate): def setup(self): # Add the shader swatch to the AE self.addSwatch() self.beginScrollLayout() # Add a list that allows to replace the shader for other one self.addCustom('message', 'AEshaderTypeNew', 'AEshaderTypeReplace') self.beginLayout("Material Selection", collapse=False) self.addControl("mdl_module_name", label="MDL Module Name") self.addControl("mdl_function_name", label="MDL Function Name") self.addControl("qualified_name", label="Qualified Name (deprecated)") self.endLayout() # include/call base class/node attributes pm.mel.AEdependNodeTemplate(self.nodeName) # Add Section for the extra controls not displayed before self.addExtraControls() self.endScrollLayout()
MDL-SDK-master
src/prod/lib/mdl_arnold/aiMDLTemplate.py
#***************************************************************************** # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** """MDL Python Bindings - a high-level wrapper for a more efficient and user-friendly usage. Note, this is an experimental library to simply a few of the use cases of the MDL SDK. For a complete access to the MDL SDK API, please refer to the low-level binding, `pymdlsdk.py`. """ # low level MDL Python Binding if __package__ or "." in __name__: from . import pymdlsdk else: import pymdlsdk try: # used to represent Vectors, Matrices, and Colors import numpy except ImportError as e: print("`numpy` is not installed but required by pymdl.") raise e # Type annotation improves type safety and supports code completing in IDEs like VS Code from typing import List, Set, Dict, Tuple, FrozenSet, Optional #-------------------------------------------------------------------------------------------------- # Value Conversions #-------------------------------------------------------------------------------------------------- def DowncastIType(itype : pymdlsdk.IType) -> pymdlsdk.IType: # or derived type r""" Cast the input type into the proper derived interface depending on the kind of type. Here is the mapping from the type kind to the returned interface: - TK_ALIAS --> IType_alias - TK_BOOL --> IType_bool - TK_INT --> IType_int - TK_ENUM --> IType_enumeration - TK_FLOAT --> IType_float - TK_DOUBLE --> IType_double - TK_STRING --> IType_string - TK_VECTOR --> IType_vector - TK_MATRIX --> IType_matrix - TK_COLOR --> IType_color - TK_ARRAY --> IType_array - TK_STRUCT --> IType_structure - TK_TEXTURE --> IType_texture - TK_LIGHT_PROFILE --> IType_light_profile - TK_BSDF_MEASUREMENT --> IType_bsdf_measurement - TK_BSDF --> IType_bsdf - TK_HAIR_BSDF --> IType_hair_bsdf - TK_EDF --> IType_edf - TK_VDF --> IType_vdf """ if not itype.is_valid_interface(): return itype k = itype.get_kind() if k == pymdlsdk.IType.Kind.TK_ALIAS: t = itype.get_interface(pymdlsdk.IType_alias) elif k == pymdlsdk.IType.Kind.TK_BOOL: t = itype.get_interface(pymdlsdk.IType_bool) elif k == pymdlsdk.IType.Kind.TK_INT: t = itype.get_interface(pymdlsdk.IType_int) elif k == pymdlsdk.IType.Kind.TK_ENUM: t = itype.get_interface(pymdlsdk.IType_enumeration) elif k == pymdlsdk.IType.Kind.TK_FLOAT: t = itype.get_interface(pymdlsdk.IType_float) elif k == pymdlsdk.IType.Kind.TK_DOUBLE: t = itype.get_interface(pymdlsdk.IType_double) elif k == pymdlsdk.IType.Kind.TK_STRING: t = itype.get_interface(pymdlsdk.IType_string) elif k == pymdlsdk.IType.Kind.TK_VECTOR: t = itype.get_interface(pymdlsdk.IType_vector) elif k == pymdlsdk.IType.Kind.TK_MATRIX: t = itype.get_interface(pymdlsdk.IType_matrix) elif k == pymdlsdk.IType.Kind.TK_COLOR: t = itype.get_interface(pymdlsdk.IType_color) elif k == pymdlsdk.IType.Kind.TK_ARRAY: t = itype.get_interface(pymdlsdk.IType_array) elif k == pymdlsdk.IType.Kind.TK_STRUCT: t = itype.get_interface(pymdlsdk.IType_structure) elif k == pymdlsdk.IType.Kind.TK_TEXTURE: t = itype.get_interface(pymdlsdk.IType_texture) elif k == pymdlsdk.IType.Kind.TK_LIGHT_PROFILE: t = itype.get_interface(pymdlsdk.IType_light_profile) elif k == pymdlsdk.IType.Kind.TK_BSDF_MEASUREMENT: t = itype.get_interface(pymdlsdk.IType_bsdf_measurement) elif k == pymdlsdk.IType.Kind.TK_BSDF: t = itype.get_interface(pymdlsdk.IType_bsdf) elif k == pymdlsdk.IType.Kind.TK_HAIR_BSDF: t = itype.get_interface(pymdlsdk.IType_hair_bsdf) elif k == pymdlsdk.IType.Kind.TK_EDF: t = itype.get_interface(pymdlsdk.IType_edf) elif k == pymdlsdk.IType.Kind.TK_VDF: t = itype.get_interface(pymdlsdk.IType_vdf) itype = None return t def DowncastIExpression(iexpression : pymdlsdk.IExpression) -> pymdlsdk.IExpression: # or derived type r""" Cast the input expression into the proper derived interface depending on the kind of expression. Here is the mapping from the expression kind to the returned interface: - EK_CONSTANT --> IExpression_constant - EK_CALL --> IExpression_call - EK_PARAMETER --> IExpression_parameter - EK_DIRECT_CALL --> IExpression_direct_call - EK_TEMPORARY --> IExpression_temporary """ if not iexpression.is_valid_interface(): return iexpression k = iexpression.get_kind() if k == pymdlsdk.IExpression.Kind.EK_CONSTANT: t = iexpression.get_interface(pymdlsdk.IExpression_constant) elif k == pymdlsdk.IExpression.Kind.EK_CALL: t = iexpression.get_interface(pymdlsdk.IExpression_call) elif k == pymdlsdk.IExpression.Kind.EK_PARAMETER: t = iexpression.get_interface(pymdlsdk.IExpression_parameter) elif k == pymdlsdk.IExpression.Kind.EK_DIRECT_CALL: t = iexpression.get_interface(pymdlsdk.IExpression_direct_call) elif k == pymdlsdk.IExpression.Kind.EK_TEMPORARY: t = iexpression.get_interface(pymdlsdk.IExpression_temporary) iexpression = None return t def DowncastIValue(ivalue : pymdlsdk.IValue) -> pymdlsdk.IValue: # or derived type r""" Cast the input value into the proper derived interface depending on the kind of value. Here is the mapping from the ivalue kind to the returned interface: - VK_BOOL --> IValue_bool - VK_INT --> IValue_int - VK_ENUM --> IValue_enumeration - VK_FLOAT --> IValue_float - VK_DOUBLE --> IValue_double - VK_STRING --> IValue_string - VK_VECTOR --> IValue_vector - VK_MATRIX --> IValue_matrix - VK_COLOR --> IValue_color - VK_ARRAY --> IValue_array - VK_STRUCT --> IValue_structure - VK_INVALID_DF --> IValue_invalid_df - VK_TEXTURE --> IValue_texture - VK_LIGHT_PROFILE --> IValue_light_profile - VK_BSDF_MEASUREMENT --> IValue_bsdf_measurement """ if not ivalue.is_valid_interface(): return ivalue k = ivalue.get_kind() if k == pymdlsdk.IValue.Kind.VK_BOOL: t = ivalue.get_interface(pymdlsdk.IValue_bool) elif k == pymdlsdk.IValue.Kind.VK_INT: t = ivalue.get_interface(pymdlsdk.IValue_int) elif k == pymdlsdk.IValue.Kind.VK_ENUM: t = ivalue.get_interface(pymdlsdk.IValue_enumeration) elif k == pymdlsdk.IValue.Kind.VK_FLOAT: t = ivalue.get_interface(pymdlsdk.IValue_float) elif k == pymdlsdk.IValue.Kind.VK_DOUBLE: t = ivalue.get_interface(pymdlsdk.IValue_double) elif k == pymdlsdk.IValue.Kind.VK_STRING: t = ivalue.get_interface(pymdlsdk.IValue_string) elif k == pymdlsdk.IValue.Kind.VK_VECTOR: t = ivalue.get_interface(pymdlsdk.IValue_vector) elif k == pymdlsdk.IValue.Kind.VK_MATRIX: t = ivalue.get_interface(pymdlsdk.IValue_matrix) elif k == pymdlsdk.IValue.Kind.VK_COLOR: t = ivalue.get_interface(pymdlsdk.IValue_color) elif k == pymdlsdk.IValue.Kind.VK_ARRAY: t = ivalue.get_interface(pymdlsdk.IValue_array) elif k == pymdlsdk.IValue.Kind.VK_STRUCT: t = ivalue.get_interface(pymdlsdk.IValue_structure) elif k == pymdlsdk.IValue.Kind.VK_INVALID_DF: t = ivalue.get_interface(pymdlsdk.IValue_invalid_df) elif k == pymdlsdk.IValue.Kind.VK_TEXTURE: t = ivalue.get_interface(pymdlsdk.IValue_texture) elif k == pymdlsdk.IValue.Kind.VK_LIGHT_PROFILE: t = ivalue.get_interface(pymdlsdk.IValue_light_profile) elif k == pymdlsdk.IValue.Kind.VK_BSDF_MEASUREMENT: t = ivalue.get_interface(pymdlsdk.IValue_bsdf_measurement) ivalue = None return t def IValueToPyValues(ivalue : pymdlsdk.IValue): r""" Converts low level IValues to python friendly data types. Here is the mapping from the ivalue kind to the returned values: - VK_BOOL --> ivalue.get_value() - VK_INT --> ivalue.get_value() - VK_FLOAT --> ivalue.get_value() - VK_DOUBLE --> ivalue.get_value() - VK_STRING --> ivalue.get_value() - VK_LIGHT_PROFILE --> ivalue.get_value() - VK_BSDF_MEASUREMENT --> ivalue.get_value() - VK_ENUM --> (ivalue.get_name(), ivalue.get_value()) - VK_TEXTURE --> (ivalue.get_value(), ivalue.get_gamma()) - VK_COLOR --> numpy.array(color components) - VK_ARRAY --> [IValueToPyValues(array values)] - VK_STRUCT --> dict(structure field names, ArgumentConstant(structure fields)) - VK_INVALID_DF --> None For vectors (kind is VK_VECTOR), each value is converted using IValueToPyValues(). A numpy.array is returned with type depending on the vector element kind. Here is the mapping between the vector element kind and the array type. - TK_FLOAT --> numpy.float32 - TK_DOUBLE --> numpy.float64 - TK_INT --> numpy.int32 - TK_BOOL --> bool For matrices (kind is VK_MATRIX), each value is converted using IValueToPyValues(). A numpy.array is returned with type depending on the vector element kind. Here is the mapping between the matrix element kind and the array type. - TK_FLOAT --> numpy.float32 - TK_DOUBLE --> numpy.float64 - TK_INT --> numpy.int32 - TK_BOOL --> bool """ ivalue = DowncastIValue(ivalue) kind = ivalue.get_kind() if kind == pymdlsdk.IValue.Kind.VK_BOOL or \ kind == pymdlsdk.IValue.Kind.VK_INT or \ kind == pymdlsdk.IValue.Kind.VK_FLOAT or \ kind == pymdlsdk.IValue.Kind.VK_DOUBLE or \ kind == pymdlsdk.IValue.Kind.VK_STRING: return ivalue.get_value() elif kind == pymdlsdk.IValue.Kind.VK_ENUM: name = ivalue.get_name() code = ivalue.get_value() return (name, code) elif kind == pymdlsdk.IValue.Kind.VK_VECTOR: element_kind = ivalue.get_type().get_element_type().get_kind() if element_kind == pymdlsdk.IType.Kind.TK_FLOAT: dtype = numpy.float32 elif element_kind == pymdlsdk.IType.Kind.TK_DOUBLE: dtype = numpy.float64 elif element_kind == pymdlsdk.IType.Kind.TK_INT: dtype = numpy.int32 elif element_kind == pymdlsdk.IType.Kind.TK_BOOL: dtype = bool components = [] rows = ivalue.get_size() for i in range(rows): components.append(IValueToPyValues(ivalue.get_value(i))) return numpy.array(components, dtype = dtype).reshape(rows, 1) elif kind == pymdlsdk.IValue.Kind.VK_MATRIX: col_type = DowncastIType(ivalue.get_type().get_element_type()) rows = col_type.get_size() cols = ivalue.get_size() col_kind = col_type.get_kind() if col_kind == pymdlsdk.IType.Kind.TK_VECTOR: element_kind = col_type.get_component_type(0).get_kind() if element_kind == pymdlsdk.IType.Kind.TK_FLOAT: dtype = numpy.float32 elif element_kind == pymdlsdk.IType.Kind.TK_DOUBLE: dtype = numpy.float64 elif element_kind == pymdlsdk.IType.Kind.TK_INT: dtype = numpy.int32 elif element_kind == pymdlsdk.IType.Kind.TK_BOOL: dtype = bool components = [] for c in range(cols): column = ivalue.get_value(c) for r in range(rows): components.append(IValueToPyValues(column.get_value(r))) return numpy.transpose(numpy.array(components, dtype = dtype).reshape(cols, rows)) elif kind == pymdlsdk.IValue.Kind.VK_COLOR: components = [] for i in range(ivalue.get_size()): components.append(ivalue.get_value(i).get_interface(pymdlsdk.IValue_float).get_value()) return numpy.array(components) elif kind == pymdlsdk.IValue.Kind.VK_ARRAY: array = [] for i in range(ivalue.get_size()): elem = ivalue.get_value(i) array.append(IValueToPyValues(elem)) return array elif kind == pymdlsdk.IValue.Kind.VK_STRUCT: struct = {} type = DowncastIType(ivalue.get_type()) for e in range(type.get_size()): e_name = type.get_field_name(e) e_value = ivalue.get_field(e_name) struct[e_name] = ArgumentConstant(e_value) return struct elif kind == pymdlsdk.IValue.Kind.VK_INVALID_DF: return None elif kind == pymdlsdk.IValue.Kind.VK_TEXTURE: return ( ivalue.get_value(), ivalue.get_gamma() ) elif kind == pymdlsdk.IValue.Kind.VK_LIGHT_PROFILE or \ kind == pymdlsdk.IValue.Kind.VK_BSDF_MEASUREMENT: return ivalue.get_value() return None #-------------------------------------------------------------------------------------------------- # High Level Wrappers #-------------------------------------------------------------------------------------------------- class Type(object): r""" Wrapper around MDL type. Type gives access to: kind: Kind The kind of type. uniform: bool True if the type has a uniform modifier. varying: bool True if the type has a varying modifier. symbol: str If type is enum or struct, this is the qualified name of the enum or struct type. Otherwise this is None. name: str In case of enums or structs, this is equal to the symbol name. Scalar, vector, matrix, array and resource types that don't have a symbol name can use this type name. enumValues: (str,int) If type is enum, this list of pairs holds the enum values along with their numeric value. Otherwise this is empty. """ def __init__(self, itype: pymdlsdk.IType) -> None: super().__init__() modifierMask = itype.get_all_type_modifiers() self.uniform = (modifierMask & 2) > 0 self.varying = (modifierMask & 4) > 0 # drops all modifiers itype = DowncastIType(itype.skip_all_type_aliases()) self.kind = itype.get_kind() self.symbol = None self.enumValues = [] if self.kind == pymdlsdk.IType.Kind.TK_ENUM: self.symbol = itype.get_symbol() for i in range(itype.get_size()): name = itype.get_value_name(i) code = itype.get_value_code(i) self.enumValues.append((name, code)) elif self.kind == pymdlsdk.IType.Kind.TK_STRUCT: self.symbol = itype.get_symbol() self.name = self.__printName(itype) r""" Helper function to print a type. Note, this will be moved into the MDL SDK soon. """ def __printName(self, itype: pymdlsdk.IType) -> str: itype = DowncastIType(itype) if itype.get_kind() == pymdlsdk.IType.Kind.TK_BOOL: return 'bool' if itype.get_kind() == pymdlsdk.IType.Kind.TK_INT: return 'int' if itype.get_kind() == pymdlsdk.IType.Kind.TK_FLOAT: return 'float' if itype.get_kind() == pymdlsdk.IType.Kind.TK_DOUBLE: return 'double' if itype.get_kind() == pymdlsdk.IType.Kind.TK_STRING: return 'string' if itype.get_kind() == pymdlsdk.IType.Kind.TK_COLOR: return 'color' if itype.get_kind() == pymdlsdk.IType.Kind.TK_LIGHT_PROFILE: return 'light_profile' if itype.get_kind() == pymdlsdk.IType.Kind.TK_BSDF_MEASUREMENT: return 'bsdf_measurement' if itype.get_kind() == pymdlsdk.IType.Kind.TK_ENUM or \ itype.get_kind() == pymdlsdk.IType.Kind.TK_STRUCT: return itype.get_symbol() if itype.get_kind() == pymdlsdk.IType.Kind.TK_VECTOR: with itype.get_element_type() as elementType: return self.__printName(elementType) + str(itype.get_size()) if itype.get_kind() == pymdlsdk.IType.Kind.TK_MATRIX: with itype.get_element_type() as rowType, \ DowncastIType(rowType) as rowTypeVector, \ rowTypeVector.get_element_type() as elementType: return self.__printName(elementType) + str(itype.get_size()) + 'x' + str(rowType.get_size()) if itype.get_kind() == pymdlsdk.IType.Kind.TK_ARRAY: with itype.get_element_type() as elementType: if itype.is_immediate_sized(): return self.__printName(elementType) + '[' + str(itype.get_size()) + ']' else: return self.__printName(elementType) + '[N]' if itype.get_kind() == pymdlsdk.IType.Kind.TK_TEXTURE: shape = itype.get_shape() if shape == pymdlsdk.IType_texture.Shape.TS_2D: return 'texture_2d' elif shape == pymdlsdk.IType_texture.Shape.TS_3D: return 'texture_3d' elif shape == pymdlsdk.IType_texture.Shape.TS_CUBE: return 'texture_cube' elif shape == pymdlsdk.IType_texture.Shape.TS_PTEX: return 'texture_ptex' elif shape == pymdlsdk.IType_texture.Shape.TS_BSDF_DATA: return 'texture_bsdf_data' class Argument(object): r""" Wrapper around an MDL parameter. Argument combines type information, annotations, and optionally the value of an MDL parameter. Argument is used: - To describe the parameters of a FunctionCall. The value of the Argument is the value of the corresponding function call parameter. - To describe the parameters of a FunctionDefinition. In this case, the value of the Argument is the default value of the corresponding definition parameter if applicable (i.e. default value exists.) - To describe the Parameters of an Annotation along with its value. - To describe return types of functions and their annotations. In this case, the value is not used. There are two kinds of Argument: ArgumentConstant and ArgumentCall. ArgumentConstant holds an actual value. ArgumentCall refers to other function calls which allows to construct expression graphs. Argument gives access to: type: Type The parameter type. annotations: tuple(Annotation) The parameter annotations. """ def __init__(self, type: Type, annotations: tuple() = tuple()): self.type = type self.value = None self.annotations = annotations class ArgumentConstant(Argument): r""" Wrapper around an MDL parameter value. Type gives access to: value: See IValueToPyValues() Holds an actual parameter value. The MDL value is transformed using IValueToPyValues() """ def __init__(self, ivalue: pymdlsdk.IValue, annotations: tuple() = tuple()): super(ArgumentConstant, self).__init__(Type(ivalue.get_type()), annotations) self.value = IValueToPyValues(ivalue) class ArgumentCall(Argument): r""" Wrapper around an MDL FunctionCall parameter. ArgumentCall gives access to: value: str The DB name of the referenced function call. """ def __init__(self, iexpression: pymdlsdk.IExpression_call, annotations = tuple()): super(ArgumentCall, self).__init__(Type(iexpression.get_type()), annotations) self.value = iexpression.get_call() #-------------------------------------------------------------------------------------------------- # High Level Wrappers - Annotations #-------------------------------------------------------------------------------------------------- class Annotation(object): """Wrapper around an MDL annotation.""" def __init__(self, iannotation: pymdlsdk.IAnnotation): arguments = {} with iannotation.get_arguments() as expr_list: for i in range(expr_list.get_size()): arg_name = expr_list.get_name(i) with expr_list.get_expression(arg_name) as arg_expr: if arg_expr.get_kind() == pymdlsdk.IExpression.Kind.EK_CONSTANT: arguments[arg_name] = ArgumentConstant(arg_expr.get_interface(pymdlsdk.IExpression_constant).get_value()) else: pass # should not happen self._name = iannotation.get_name() #TODO make immutable self._arguments = arguments paramTypeNames = [] with iannotation.get_definition() as definition: for p in range(definition.get_parameter_count()): paramTypeNames.append(definition.get_mdl_parameter_type_name(p)) self._simpleName = definition.get_mdl_simple_name() self._parameterTypeNames = tuple(paramTypeNames) self._moduleDbName = definition.get_module() @property def name(self): """The full name of the annotation consisting of the module name, the simple name and the parameter list.""" return self._name @property def moduleDbName(self)-> str: """The database of the module in which the annotation is defined.""" return self._moduleDbName @property def simpleName(self)-> str: """The name of the annotation within the module it is defined in without its parameter list.""" return self._simpleName @property def parameterTypeNames(self) -> List[str]: """The list of parameter type names of the signature of this annotation.""" return self._parameterTypeNames @property def arguments(self) -> Dict[str, Argument]: """Dictionary with the annotations arguments and their values.""" return self._arguments def AnnotationBlock(iannotation_block: pymdlsdk.IAnnotation_block) -> Tuple[Annotation, ...]: r""" Creates an immutable list of annotations from an MDL annotation block. Parameters ---------- iannotation_block : pymdlsdk.IAnnotation_block Low level MDL annotation block proxy generated for the Python binding. Returns ------- tuple(Annotation) A list of high level wrapped annotation information read from the annotation block. """ annos = [] if iannotation_block and iannotation_block.is_valid_interface(): for i in range(iannotation_block.get_size()) : with iannotation_block.get_annotation(i) as anno: if anno.is_valid_interface(): a = Annotation(anno) annos.append(a) return tuple(annos) #-------------------------------------------------------------------------------------------------- # High Level Wrappers - Functions #-------------------------------------------------------------------------------------------------- class FunctionCall(object): r""" Wrapper around MDL function call. FunctionCall gives access to: functionDefinition: str The DB name of the corresponding function definition. mdlFunctionDefinition: str The MDL name of the corresponding function definition. parameters: Dict[str, Argument] Dictionary of the function call parameters as Argument. Key is parameter name corresponding to the Argument. """ def __init__(self, func: pymdlsdk.IFunction_call, dbName: str) -> None: super(FunctionCall, self).__init__() parameters = {} param_anno_block = None with func.get_arguments() as arguments, \ func.get_parameter_types() as param_types: for i in range(func.get_parameter_count()): param_name = func.get_parameter_name(i) with arguments.get_expression(i) as param_default: if param_default.is_valid_interface(): if param_default.get_kind() == pymdlsdk.IExpression.Kind.EK_CONSTANT: with param_default.get_interface(pymdlsdk.IExpression_constant) as param_default_constant, \ param_default_constant.get_value() as param_default_value: parameters[param_name] = ArgumentConstant(param_default_value, AnnotationBlock(param_anno_block)) elif param_default.get_kind() == pymdlsdk.IExpression.Kind.EK_CALL: parameters[param_name] = ArgumentCall(param_default.get_interface(pymdlsdk.IExpression_call), AnnotationBlock(param_anno_block)) else: with param_types.get_type(param_name) as param_default_type: parameters[param_name] = Argument(Type(param_default_type), AnnotationBlock(param_anno_block)) param_anno_block = None self.parameters: Dict[Argument] self.parameters = parameters #TODO make immutable self.functionDefinition = func.get_function_definition() self.mdlFunctionDefinition = func.get_mdl_function_definition() @staticmethod def _fetchFromDb(transaction: pymdlsdk.ITransaction, dbName) -> "FunctionCall": with transaction.access_as(pymdlsdk.IFunction_call, dbName) as f: if f.is_valid_interface(): return FunctionCall(f, dbName) return None class FunctionDefinition(object): r""" Wrapper around MDL function definition. FunctionDefinition gives access to: annotations: AnnotationBlock The annotations of the function definition itself, or None if there are no such annotations. dbName: str DB name of the function definitions. mdlModuleName:str The MDL name of the module containing this function definition. mdlName: str The MDL name of the function definition. mdlSimpleName: str The simple MDL name of the function definition. The simple name is the last component of the MDL name, i.e., without any packages and scope qualifiers, and without the parameter type names. moduleDbName: str The DB name of the module containing this function definition. isExported: bool Indicates whether the function definition is exported by its module. isMaterial: bool True in case the function is a material, i.e., the return type is a material structure. semantics: IFunction_definition.Semantics Get the semantic of known function. User-defined functions an all materials will return DS_UNKNOWN (0). Note, do not rely on the numeric values of the enumerators since they may change without further notice. parameters: Dict[str, Argument] Dictionary of the function definition parameters as Argument. Key is parameter name corresponding to the Argument. parameterTypeNames: tuple(str) The type name of all the parameters. returnValue: Argument The return type as an Argument. """ def __init__(self, func: pymdlsdk.IFunction_definition, dbName: str) -> None: super(FunctionDefinition, self).__init__() parameters = {} with func.get_parameter_annotations() as param_annotations, \ func.get_defaults() as param_defaults, \ func.get_parameter_types() as param_types: paramTypeNames = [] for i in range(func.get_parameter_count()): param_name = func.get_parameter_name(i) paramTypeNames.append(func.get_mdl_parameter_type_name(i)) if param_annotations.is_valid_interface(): param_anno_block = param_annotations.get_annotation_block(param_name) else: param_anno_block = None with param_defaults.get_expression(param_name) as param_default: if param_default.is_valid_interface(): if param_default.get_kind() == pymdlsdk.IExpression.Kind.EK_CONSTANT: with param_default.get_interface(pymdlsdk.IExpression_constant) as param_default_constant, \ param_default_constant.get_value() as param_default_value: parameters[param_name] = ArgumentConstant(param_default_value, AnnotationBlock(param_anno_block)) elif param_default.get_kind() == pymdlsdk.IExpression.Kind.EK_CALL: parameters[param_name] = ArgumentCall(param_default.get_interface(pymdlsdk.IExpression_call), AnnotationBlock(param_anno_block)) else: with param_types.get_type(param_name) as param_default_type: parameters[param_name] = Argument(Type(param_default_type), AnnotationBlock(param_anno_block)) param_anno_block = None self.isMaterial = func.is_material() self.isExported = func.is_exported() self.semantics = func.get_semantic() with func.get_return_type() as ret_type, \ func.get_return_annotations() as ret_annos: self.returnValue = Argument(Type(ret_type), AnnotationBlock(ret_annos)) self.parameters: Dict[Argument] self.parameters = parameters #TODO make immutable with func.get_annotations() as func_annos: self.annotations = AnnotationBlock(func_annos) self.mdlName = func.get_mdl_name() self.dbName = dbName self.mdlSimpleName = func.get_mdl_simple_name() self.parameterTypeNames = tuple(paramTypeNames) self.mdlModuleName = func.get_mdl_module_name() self.moduleDbName = func.get_module() @staticmethod def _fetchFromDb(transaction: pymdlsdk.ITransaction, dbName) -> "FunctionDefinition": with transaction.access_as(pymdlsdk.IFunction_definition, dbName) as f: if f.is_valid_interface(): return FunctionDefinition(f, dbName) return None #-------------------------------------------------------------------------------------------------- # High Level Wrappers - Modules #-------------------------------------------------------------------------------------------------- class Module(object): r""" Wrapper around an MDL module. Module gives access to: dbName: str The DB name of the module. filename: str The name of the MDL source file from which the module was created. functionDbNames: tuple(str) DB names of all the function definitions and the material definitions from this module. functions: Dict[str, FunctionDefinition] Dictionary of FunctionDefinition. Keys is FunctionDefinition simple name. mdlName: str The MDL name of the module. mdlSimpleName: str The simple MDL name of the module. The simple name is the last component of the MDL name, i.e., without any packages and scope qualifiers. """ def __init__(self, transaction: pymdlsdk.ITransaction, module: pymdlsdk.IModule, dbName: str) -> None: super(Module, self).__init__() self.filename = module.get_filename() self.dbName = dbName self.mdlName = module.get_mdl_name() self.mdlSimpleName = module.get_mdl_simple_name() moduleTypes = [] with module.get_types() as moduleTypeList: for i in range(moduleTypeList.get_size()): moduleTypes.append(Type(moduleTypeList.get_type(i))) self.types = moduleTypes #TODO make immutable functionDbNames = [] for i in range(module.get_function_count()): functionDbNames.append(module.get_function(i)) for i in range(module.get_material_count()): functionDbNames.append(module.get_material(i)) self.functionDbNames = tuple(functionDbNames) functionMap = {} if transaction and transaction.is_valid_interface(): for dbName in self.functionDbNames: func = FunctionDefinition._fetchFromDb(transaction, dbName) if not func.mdlSimpleName in functionMap: functionMap[func.mdlSimpleName] = [] functionMap[func.mdlSimpleName].append(func) self.functions: Dict[str, FunctionDefinition] self.functions = functionMap #TODO make immutable with module.get_annotations() as module_annos: self.annotations = AnnotationBlock(module_annos) @staticmethod def _fetchFromDb(transaction: pymdlsdk.ITransaction, dbName) -> "Module": with transaction.access_as(pymdlsdk.IModule, dbName) as m: if m.is_valid_interface(): return Module(transaction, m, dbName) return None
MDL-SDK-master
src/prod/bindings/mdl_python/pymdl.py
#!/usr/bin/env python #***************************************************************************** # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #***************************************************************************** # Preprocessing script for DiCE and IndeX header files to handle SWIG template # instantiation. It parses SWIG .i files recursively, looking for definitions of # interfaces (using "NVINDEX_INTERFACE()") as well as for all .h files that are # included. It then searches the class declarations of these interfaces in the # .h files and inserts SWIG "%template" statements, writing the modified .h # files to a separate output directory. from __future__ import print_function import errno import os import os.path import re import sys # Creates directories recursively, does not fail when they already exist (same # functionality as exists_ok=True in Python 3.5) def makedirs_safe(path): try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise class Processor: start_file = None base_path_index = None base_path_dice = None output_path = None output_dependency_file = None headers = set() nvindex_interfaces = {} dice_interfaces = {} log = set() dependencies = [] # .i files provided by SWIG, these will be ignored SWIG_FILES = [ "exception.i", "typemaps.i", "carrays.i" ] # Matches the UUID template argument to "Interface_declare" with optional base class as last parameter RE_UUID = '([0-9a-fxA-FX,\s]+)([^0-9\s][\w_:<>,\s]*)?' def __init__(self, start_file, base_path_index, base_path_dice, output_path, output_dependency_file): self.start_file = start_file self.base_path_index = base_path_index self.base_path_dice = base_path_dice self.output_path = output_path self.output_dependency_file = output_dependency_file def process_swig_file(self, filename, level = 0): if not os.path.exists(filename): if filename in self.SWIG_FILES: return # skip standard .i files from SWIG sys.stderr.write("Included file not found: %s\n" % filename) if filename.endswith(".i"): sys.stderr.write("If this is a file provided by SWIG then please adapt 'swig_files'.") sys.exit(1) self.dependencies.append(filename) regex_swig_include = re.compile('^\s*%include\s*"([^"]+\.i)"') regex_header_include = re.compile('^\s*%include\s*"([^"]+\.h)"') regex_header_include_nvindex = re.compile('^\s*NVINDEX_INCLUDE\(([^\)]+\.h)\)') regex_nvindex_interface = re.compile('^\s*NVINDEX_INTERFACE[1]?\s*\(([\w_]+)\s*\)') regex_dice_interface = re.compile('^\s*DICE_INTERFACE(_BASE|_MI)?\s*\(([\w_]+)\s*\)') regex_dice_implement = re.compile('^\s*DICE_IMPLEMENT\s*\(([\w_]+)\s*,\s*([\w_:]+)\)') regex_index_implement = re.compile('^\s*NVINDEX_IMPLEMENT\s*\(([\w_]+)\s*,\s*([\w_:]+)\)') lines = open(filename).readlines() for line in lines: match = regex_swig_include.match(line) if match: self.process_swig_file(match.group(1), level + 1) match = regex_header_include.match(line) if match: self.headers.add(match.group(1)) match = regex_header_include_nvindex.match(line) if match: self.headers.add("nv/index/" + match.group(1)) match = regex_nvindex_interface.match(line) if match and match.group(1) != "CLASS_TYPE": # skip internal definition self.nvindex_interfaces[match.group(1)] = 'nv::index' match = regex_dice_interface.match(line) if match: cmd = match.group(1) if not cmd: prefix = 'mi::neuraylib' elif cmd == '_BASE': prefix = 'mi::base' elif cmd == '_MI': prefix = 'mi' self.dice_interfaces[match.group(2)] = prefix match = regex_dice_implement.match(line) if match: self.dice_interfaces[match.group(1)] = 'mi::neuraylib' match = regex_index_implement.match(line) if match: self.nvindex_interfaces[match.group(1)] = 'nv::index' def process_header_file(self, filename, base_dir, interfaces): self.dependencies.append(base_dir + "/" + filename) RE_CLASS = 'class\s*([\w_]+)' # Matches the beginning of a template declaration regex_template = re.compile('^\s*template\s*<') # Matches the beginning of a class declaration (but not a forward declaration) regex_class_only = re.compile('^\s*' + RE_CLASS + '\s*[^;]*\s*$') # Matches a class declaration using "Interface_declare" regex_class_interface_declare = re.compile('^\s*' + RE_CLASS + '\s*:\s*public\s+' + '([\w::]*)Interface_declare<\s*' + self.RE_UUID + '\s*>' ) # Matches a class declaration using "Interface_implement" regex_class_interface_implement = re.compile('^\s*' + RE_CLASS + '\s*:\s*public\s+' + '([\w::]*)Interface_implement<\s*([\w_:]+)\s*>' ) # Matche the start of a "{"-block regex_block_begin = re.compile('^([^{]*){') class_declaration = "" class_name = "" class_prefix = "" template = "" namespace_begin = ""; namespace_end = ""; namespace_prefix = ""; output = "" file_modified = False # skip neuraylib.h or mdl_sdk.h filename_to_open = base_dir + "/" + filename if filename_to_open.endswith("/mi/neuraylib.h") or filename_to_open.endswith("/mi/mdl_sdk.h"): return # Iterate over the lines in the header files lines = open(base_dir + "/" + filename).readlines() for line in lines: # We are currently not inside a class declaration if class_name == "": # Look for class declaration match = regex_class_only.match(line) if match and match.group(1) in interfaces: # Found declaration of a class that should be wrapped class_declaration = line class_name = match.group(1) class_prefix = interfaces[class_name] # e.g. "nv::index" or "mi::base" # Set up the current namespace namespace_prefix = class_prefix + "::" namespace_begin = "" namespace_end = "" for i in class_prefix.split("::"): namespace_begin += "namespace " + i + " {\n"; namespace_end += "}\n"; else: # Look for a template declaration match = regex_template.match(line) if match: # Template declaration found: Delay output, as a # relevant class declaration may follow, and the SWIG # statements need to be added before the template output += template template = line else: # Neither class not template declaration, just output directly. # First output any previous template declaration. if template != "": output += template template = "" output += line; else: # We are inside a class declaration for a class that should be wrapped # Look for first "{" after "class" match = regex_block_begin.match(line) if match: # Collect everything starting at "class" output_todo = class_declaration + line class_declaration += match.group(1) done = False def fixup_base(base): if not base: base = "" if base.startswith("base::"): #FIXME: remove base = "mi::" + base if base.startswith("neuraylib::"): #FIXME: remove base = "mi::" + base if base != "" and not (base.startswith("mi::") or base.startswith("nv::")): base = namespace_prefix + base return base def remove_extra_whitespace(s): return re.sub('\s+', ' ', s).strip() # # Handle Interface_declare # match = regex_class_interface_declare.match(class_declaration) if match and not done: (name, uuid, base) = match.group(1, 3, 4) base = fixup_base(base) uuid = remove_extra_whitespace(uuid) instantiation = "" if "<" in base: instantiation += "%template(Interface_declare_" + name + "_base_template) " + base + ";\n" instantiation += "%nodefaultctor Interface_declare_" + name + "_base_template;\n" instantiation += "%nodefaultdtor Interface_declare_" + name + "_base_template;\n" instantiation += "%template(Interface_declare_" + name + ") mi::base::Interface_declare<" + uuid + base + ">;\n" instantiation += "%nodefaultctor Interface_declare_" + name + ";\n" instantiation += "%nodefaultdtor Interface_declare_" + name + ";\n" # #instantiation += "%ignore " + name + ";\n" instantiation += "%rename(_" + name + ") " + name + ";\n" instantiation += "%nodefaultctor " + name + ";\n" instantiation += "%nodefaultdtor " + name + ";\n" # # if base: # # #instantiation += "%ignore mi::base::Interface_declare<" + uuid + base + ">;\n" # # base_wo_prefix = base[len(class_prefix) + 2:] # prefix_current = "" # for i in reversed(class_prefix.split("::")): # prefix_current = i + "::" + prefix_current # instantiation += "%ignore mi::base::Interface_declare<" + uuid + prefix_current + base_wo_prefix + ">;\n" # # instantiation += "%rename(\"%s\", %$isenum) " + class_prefix + "::" + name + "::Kind;\n" # instantiation += "%template(Interface_declare_" + name + ") mi::base::Interface_declare<" + uuid + base + ">;\n" self.log.add(instantiation) output += namespace_end + instantiation + namespace_begin; file_modified = True done = True # # Handle Interface_implement # match = regex_class_interface_implement.match(class_declaration) if match and not done: (name, base) = match.group(1, 3) base = fixup_base(base) base = remove_extra_whitespace(base) implementation = "%template(Interface_implement_" + name + ") mi::base::Interface_implement<" + base + ">;\n" instantiation += "%nodefaultctor Interface_implement_" + name + ";\n" instantiation += "%nodefaultdtor Interface_implement_" + name + ";\n" # implementation = "%ignore mi::base::Interface_implement<" + base + ">;\n" self.log.add(implementation) output += namespace_end + implementation + namespace_begin; file_modified = True done = True if not done: # Found "class" but couldn't understand declaration raise Exception("Could not parse declaration of class '" + class_name + "' in file '" + filename + "': " + class_declaration) del interfaces[class_name] # This has been handled class_declaration = "" class_name = "" # Output any previous template declaration. if template != "": output += template template = "" output += output_todo else: # Still inside the class declaration, before "{" class_declaration += line # Write file if it was modified if file_modified: output_filename = self.output_path + "/" + filename makedirs_safe(os.path.dirname(output_filename)) open(output_filename, "w").write(output) def process(self): self.process_swig_file(self.start_file) # Iterate over all found headers for h in self.headers: if h.startswith("nv/"): # Handle IndeX headers interfaces = self.nvindex_interfaces base = self.base_path_index elif h.startswith("mi/"): # Handle DiCE headers interfaces = self.dice_interfaces base = self.base_path_dice else: # Skip other headers (i.e. headers defined as part of the SWIG wrapper) continue self.process_header_file(h, base, interfaces) # Debug info about what interfaces haven been found sys.stderr.write("\nprocessed interfaces\n") self.log = sorted(self.log) # for interface in self.log: # sys.stderr.write("\n%s" % interface) # Check for interfaces that were defined (e.g. with NVINDEX_INTERFACE()) but not found in the header files if self.nvindex_interfaces: sys.stderr.write("Warning: Defined IndeX interfaces not found in headers: %s\n" % self.nvindex_interfaces) if self.dice_interfaces: sys.stderr.write("Warning: Defined DiCE interfaces not found in headers: %s\n" % self.dice_interfaces) # Write dependency file with open(self.output_dependency_file + ".d", "w") as f: f.write("# dependency file generated by " + sys.argv[0] + "\n") f.write(os.path.abspath(self.output_dependency_file) + ": \\\n") for d in self.dependencies: f.write(" " + os.path.abspath(d) + " \\\n") f.write("\n\n") # Placeholder file must be written after dependency file with open(self.output_dependency_file, "w") as f: f.write("/* placeholder file generated by " + sys.argv[0] + " */\n") if __name__ == "__main__": if len(sys.argv) != 6: sys.stderr.write("usage: %s <swig-file> <index-header-dir> <dice-header-dir> <output-dir> <output-dependencies>\n" % sys.argv[0]) sys.exit(1) # pass parameters unpacked from argument list Processor(*sys.argv[1:]).process()
MDL-SDK-master
src/prod/bindings/mdl_python/instantiate_templates_inline.py
#===- gen-msvc-exports.py - Generate C API export file -------*- python -*--===# # # Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # #===------------------------------------------------------------------------===# # # Generate an export file from a list of given LIB files. This only exports symbols # that start with LLVM, so it only exports the LLVM C API. # # To have CMake run this, set LLVM_BUILD_LLVM_C_DYLIB to on while # building on Windows. # # To run manually, build LLVM with Visual Studio, use a Command prompt # to navigate to the directory with the .lib files (Debug\lib etc). Then run # python C:\Path\To\gen-msvc-exports.py --nm ..\bin\llvm-nm.exe LLVM*.lib # # If you're generating a 32 bit DLL, use the `--underscore` flag. # If you want to use a different `llvm-nm` executable, pass the path # with the `--nm` flag. # # You can use the --output flag to set the name of the export file. # #===------------------------------------------------------------------------===# from tempfile import mkstemp from contextlib import contextmanager from subprocess import check_call import argparse import os import re _UNDERSCORE_REGEX = { False: re.compile(r"^\w+\s+T\s+(LLVM.*)$"), True: re.compile(r"^\w+\s+T\s+_(LLVM.*)$") } @contextmanager def removing(path): try: yield path finally: os.unlink(path) def touch_tempfile(*args, **kwargs): fd, name = mkstemp(*args, **kwargs) os.close(fd) return name def gen_llvm_c_export(output, underscore, libs, nm): """Generate the export file for the LLVM-C DLL. Run `nm` for each lib in `libs`, and output an export file to `output`. If `underscore` is true, symbols will be assumed to be prefixed with an underscore. """ with removing(touch_tempfile(prefix='dumpout', suffix='.txt')) as dumpout: # Get the right regex. p = _UNDERSCORE_REGEX[underscore] with open(output, 'w+t') as output_f: # For each lib get the LLVM* functions it exports. for lib in libs: # Call dumpbin. with open(dumpout, 'w+t') as dumpout_f: check_call([nm, '-g', lib], stdout=dumpout_f) # Get the matching lines. with open(dumpout) as dumpbin: for line in dumpbin: m = p.match(line) if m is not None: output_f.write(m.group(1) + '\n') def main(): parser = argparse.ArgumentParser('gen-msvc-exports') parser.add_argument( '-i', '--libsfile', help='file with list of libs, new line separated', action='store', default=None ) parser.add_argument( '-o', '--output', help='output filename', default='LLVM-C.exports' ) parser.add_argument('-u', '--underscore', help='labels are prefixed with an underscore (use for 32 bit DLLs)', action='store_true' ) parser.add_argument( '--nm', help='path to the llvm-nm executable', default='llvm-nm' ) parser.add_argument( 'libs', metavar='LIBS', nargs='*', help='list of libraries to generate export from' ) ns = parser.parse_args() libs = ns.libs # Add if we where given a libsfile add it to the libs. if ns.libsfile: with open(ns.libsfile) as f: libs.extend(f.read().splitlines()) gen_llvm_c_export(ns.output, ns.underscore, libs, ns.nm) if __name__ == '__main__': main()
MDL-SDK-master
src/mdl/jit/llvm/dist/tools/llvm-shlib/gen-msvc-exports.py
#!/usr/bin/env python3 #===- symcov-report-server.py - Coverage Reports HTTP Serve --*- python -*--===# # # Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # #===------------------------------------------------------------------------===# '''(EXPERIMENTAL) HTTP server to browse coverage reports from .symcov files. Coverage reports for big binaries are too huge, generating them statically makes no sense. Start the server and go to localhost:8001 instead. Usage: ./tools/sancov/symcov-report-server.py \ --symcov coverage_data.symcov \ --srcpath root_src_dir Other options: --port port_number - specifies the port to use (8001) --host host_name - host name to bind server to (127.0.0.1) ''' from __future__ import print_function import argparse import http.server import json import socketserver import time import html import os import string import math import urllib INDEX_PAGE_TMPL = """ <html> <head> <title>Coverage Report</title> <style> .lz { color: lightgray; } </style> </head> <body> <table> <tr><th>File</th><th>Coverage</th></tr> <tr><td><em>Files with 0 coverage are not shown.</em></td></tr> $filenames </table> </body> </html> """ CONTENT_PAGE_TMPL = """ <html> <head> <title>$path</title> <style> .covered { background: lightgreen; } .not-covered { background: lightcoral; } .partially-covered { background: navajowhite; } .lz { color: lightgray; } </style> </head> <body> <pre> $content </pre> </body> </html> """ class SymcovData: def __init__(self, symcov_json): self.covered_points = frozenset(symcov_json['covered-points']) self.point_symbol_info = symcov_json['point-symbol-info'] self.file_coverage = self.compute_filecoverage() def filenames(self): return self.point_symbol_info.keys() def has_file(self, filename): return filename in self.point_symbol_info def compute_linemap(self, filename): """Build a line_number->css_class map.""" points = self.point_symbol_info.get(filename, dict()) line_to_points = dict() for fn, points in points.items(): for point, loc in points.items(): line = int(loc.split(":")[0]) line_to_points.setdefault(line, []).append(point) result = dict() for line, points in line_to_points.items(): status = "covered" covered_points = self.covered_points & set(points) if not len(covered_points): status = "not-covered" elif len(covered_points) != len(points): status = "partially-covered" result[line] = status return result def compute_filecoverage(self): """Build a filename->pct coverage.""" result = dict() for filename, fns in self.point_symbol_info.items(): file_points = [] for fn, points in fns.items(): file_points.extend(points.keys()) covered_points = self.covered_points & set(file_points) result[filename] = int(math.ceil( len(covered_points) * 100 / len(file_points))) return result def format_pct(pct): pct_str = str(max(0, min(100, pct))) zeroes = '0' * (3 - len(pct_str)) if zeroes: zeroes = '<span class="lz">{0}</span>'.format(zeroes) return zeroes + pct_str class ServerHandler(http.server.BaseHTTPRequestHandler): symcov_data = None src_path = None def do_GET(self): norm_path = os.path.normpath(urllib.parse.unquote(self.path[1:])) if self.path == '/': self.send_response(200) self.send_header("Content-type", "text/html; charset=utf-8") self.end_headers() filelist = [] for filename in sorted(self.symcov_data.filenames()): file_coverage = self.symcov_data.file_coverage[filename] if not file_coverage: continue filelist.append( "<tr><td><a href=\"./{name}\">{name}</a></td>" "<td>{coverage}%</td></tr>".format( name=html.escape(filename, quote=True), coverage=format_pct(file_coverage))) response = string.Template(INDEX_PAGE_TMPL).safe_substitute( filenames='\n'.join(filelist)) self.wfile.write(response.encode('UTF-8', 'replace')) elif self.symcov_data.has_file(norm_path): filename = norm_path filepath = os.path.join(self.src_path, filename) if not os.path.exists(filepath): self.send_response(404) self.end_headers() return self.send_response(200) self.send_header("Content-type", "text/html; charset=utf-8") self.end_headers() linemap = self.symcov_data.compute_linemap(filename) with open(filepath, 'r', encoding='utf8') as f: content = "\n".join( ["<span class='{cls}'>{line}&nbsp;</span>".format( line=html.escape(line.rstrip()), cls=linemap.get(line_no, "")) for line_no, line in enumerate(f, start=1)]) response = string.Template(CONTENT_PAGE_TMPL).safe_substitute( path=self.path[1:], content=content) self.wfile.write(response.encode('UTF-8', 'replace')) else: self.send_response(404) self.end_headers() def main(): parser = argparse.ArgumentParser(description="symcov report http server.") parser.add_argument('--host', default='127.0.0.1') parser.add_argument('--port', default=8001) parser.add_argument('--symcov', required=True, type=argparse.FileType('r')) parser.add_argument('--srcpath', required=True) args = parser.parse_args() print("Loading coverage...") symcov_json = json.load(args.symcov) ServerHandler.symcov_data = SymcovData(symcov_json) ServerHandler.src_path = args.srcpath socketserver.TCPServer.allow_reuse_address = True httpd = socketserver.TCPServer((args.host, args.port), ServerHandler) print("Serving at {host}:{port}".format(host=args.host, port=args.port)) try: httpd.serve_forever() except KeyboardInterrupt: pass httpd.server_close() if __name__ == '__main__': main()
MDL-SDK-master
src/mdl/jit/llvm/dist/tools/sancov/coverage-report-server.py
#!/usr/bin/env python from __future__ import print_function desc = '''Generate statistics about optimization records from the YAML files generated with -fsave-optimization-record and -fdiagnostics-show-hotness. The tools requires PyYAML and Pygments Python packages.''' import optrecord import argparse import operator from collections import defaultdict from multiprocessing import cpu_count, Pool try: from guppy import hpy hp = hpy() except ImportError: print("Memory consumption not shown because guppy is not installed") hp = None if __name__ == '__main__': parser = argparse.ArgumentParser(description=desc) parser.add_argument( 'yaml_dirs_or_files', nargs='+', help='List of optimization record files or directories searched ' 'for optimization record files.') parser.add_argument( '--jobs', '-j', default=None, type=int, help='Max job count (defaults to %(default)s, the current CPU count)') parser.add_argument( '--no-progress-indicator', '-n', action='store_true', default=False, help='Do not display any indicator of how many YAML files were read.') args = parser.parse_args() print_progress = not args.no_progress_indicator files = optrecord.find_opt_files(*args.yaml_dirs_or_files) if not files: parser.error("No *.opt.yaml files found") sys.exit(1) all_remarks, file_remarks, _ = optrecord.gather_results( files, args.jobs, print_progress) if print_progress: print('\n') bypass = defaultdict(int) byname = defaultdict(int) for r in optrecord.itervalues(all_remarks): bypass[r.Pass] += 1 byname[r.Pass + "/" + r.Name] += 1 total = len(all_remarks) print("{:24s} {:10d}".format("Total number of remarks", total)) if hp: h = hp.heap() print("{:24s} {:10d}".format("Memory per remark", h.size / len(all_remarks))) print('\n') print("Top 10 remarks by pass:") for (passname, count) in sorted(bypass.items(), key=operator.itemgetter(1), reverse=True)[:10]: print(" {:30s} {:2.0f}%". format(passname, count * 100. / total)) print("\nTop 10 remarks:") for (name, count) in sorted(byname.items(), key=operator.itemgetter(1), reverse=True)[:10]: print(" {:30s} {:2.0f}%". format(name, count * 100. / total))
MDL-SDK-master
src/mdl/jit/llvm/dist/tools/opt-viewer/opt-stats.py
#!/usr/bin/env python from __future__ import print_function desc = '''Generate the difference of two YAML files into a new YAML file (works on pair of directories too). A new attribute 'Added' is set to True or False depending whether the entry is added or removed from the first input to the next. The tools requires PyYAML.''' import yaml # Try to use the C parser. try: from yaml import CLoader as Loader except ImportError: from yaml import Loader import optrecord import argparse from collections import defaultdict if __name__ == '__main__': parser = argparse.ArgumentParser(description=desc) parser.add_argument( 'yaml_dir_or_file_1', help='An optimization record file or a directory searched for optimization ' 'record files that are used as the old version for the comparison') parser.add_argument( 'yaml_dir_or_file_2', help='An optimization record file or a directory searched for optimization ' 'record files that are used as the new version for the comparison') parser.add_argument( '--jobs', '-j', default=None, type=int, help='Max job count (defaults to %(default)s, the current CPU count)') parser.add_argument( '--max-size', '-m', default=100000, type=int, help='Maximum number of remarks stored in an output file') parser.add_argument( '--no-progress-indicator', '-n', action='store_true', default=False, help='Do not display any indicator of how many YAML files were read.') parser.add_argument('--output', '-o', default='diff{}.opt.yaml') args = parser.parse_args() files1 = optrecord.find_opt_files(args.yaml_dir_or_file_1) files2 = optrecord.find_opt_files(args.yaml_dir_or_file_2) print_progress = not args.no_progress_indicator all_remarks1, _, _ = optrecord.gather_results(files1, args.jobs, print_progress) all_remarks2, _, _ = optrecord.gather_results(files2, args.jobs, print_progress) added = set(all_remarks2.values()) - set(all_remarks1.values()) removed = set(all_remarks1.values()) - set(all_remarks2.values()) for r in added: r.Added = True for r in removed: r.Added = False result = list(added | removed) for r in result: r.recover_yaml_structure() for i in range(0, len(result), args.max_size): with open(args.output.format(i / args.max_size), 'w') as stream: yaml.dump_all(result[i:i + args.max_size], stream)
MDL-SDK-master
src/mdl/jit/llvm/dist/tools/opt-viewer/opt-diff.py