python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.np_box_mask_list_test.""" import numpy as np import tensorflow as tf from object_detection.utils import np_box_mask_list class BoxMaskListTest(tf.test.TestCase): def test_invalid_box_mask_data(self): with self.assertRaises(ValueError): np_box_mask_list.BoxMaskList( box_data=[0, 0, 1, 1], mask_data=np.zeros([1, 3, 3], dtype=np.uint8)) with self.assertRaises(ValueError): np_box_mask_list.BoxMaskList( box_data=np.array([[0, 0, 1, 1]], dtype=int), mask_data=np.zeros([1, 3, 3], dtype=np.uint8)) with self.assertRaises(ValueError): np_box_mask_list.BoxMaskList( box_data=np.array([0, 1, 1, 3, 4], dtype=float), mask_data=np.zeros([1, 3, 3], dtype=np.uint8)) with self.assertRaises(ValueError): np_box_mask_list.BoxMaskList( box_data=np.array([[0, 1, 1, 3], [3, 1, 1, 5]], dtype=float), mask_data=np.zeros([2, 3, 3], dtype=np.uint8)) with self.assertRaises(ValueError): np_box_mask_list.BoxMaskList( box_data=np.array([[0, 1, 1, 3], [1, 1, 1, 5]], dtype=float), mask_data=np.zeros([3, 5, 5], dtype=np.uint8)) with self.assertRaises(ValueError): np_box_mask_list.BoxMaskList( box_data=np.array([[0, 1, 1, 3], [1, 1, 1, 5]], dtype=float), mask_data=np.zeros([2, 5], dtype=np.uint8)) with self.assertRaises(ValueError): np_box_mask_list.BoxMaskList( box_data=np.array([[0, 1, 1, 3], [1, 1, 1, 5]], dtype=float), mask_data=np.zeros([2, 5, 5, 5], dtype=np.uint8)) with self.assertRaises(ValueError): np_box_mask_list.BoxMaskList( box_data=np.array([[0, 1, 1, 3], [1, 1, 1, 5]], dtype=float), mask_data=np.zeros([2, 5, 5], dtype=np.int32)) def test_has_field_with_existed_field(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) box_mask_list = np_box_mask_list.BoxMaskList( box_data=boxes, mask_data=np.zeros([3, 5, 5], dtype=np.uint8)) self.assertTrue(box_mask_list.has_field('boxes')) self.assertTrue(box_mask_list.has_field('masks')) def test_has_field_with_nonexisted_field(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) box_mask_list = np_box_mask_list.BoxMaskList( box_data=boxes, mask_data=np.zeros([3, 3, 3], dtype=np.uint8)) self.assertFalse(box_mask_list.has_field('scores')) def test_get_field_with_existed_field(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) masks = np.zeros([3, 3, 3], dtype=np.uint8) box_mask_list = np_box_mask_list.BoxMaskList( box_data=boxes, mask_data=masks) self.assertTrue(np.allclose(box_mask_list.get_field('boxes'), boxes)) self.assertTrue(np.allclose(box_mask_list.get_field('masks'), masks)) def test_get_field_with_nonexited_field(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) masks = np.zeros([3, 3, 3], dtype=np.uint8) box_mask_list = np_box_mask_list.BoxMaskList( box_data=boxes, mask_data=masks) with self.assertRaises(ValueError): box_mask_list.get_field('scores') class AddExtraFieldTest(tf.test.TestCase): def setUp(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) masks = np.zeros([3, 3, 3], dtype=np.uint8) self.box_mask_list = np_box_mask_list.BoxMaskList( box_data=boxes, mask_data=masks) def test_add_already_existed_field_bbox(self): with self.assertRaises(ValueError): self.box_mask_list.add_field('boxes', np.array([[0, 0, 0, 1, 0]], dtype=float)) def test_add_already_existed_field_mask(self): with self.assertRaises(ValueError): self.box_mask_list.add_field('masks', np.zeros([3, 3, 3], dtype=np.uint8)) def test_add_invalid_field_data(self): with self.assertRaises(ValueError): self.box_mask_list.add_field('scores', np.array([0.5, 0.7], dtype=float)) with self.assertRaises(ValueError): self.box_mask_list.add_field('scores', np.array([0.5, 0.7, 0.9, 0.1], dtype=float)) def test_add_single_dimensional_field_data(self): box_mask_list = self.box_mask_list scores = np.array([0.5, 0.7, 0.9], dtype=float) box_mask_list.add_field('scores', scores) self.assertTrue(np.allclose(scores, self.box_mask_list.get_field('scores'))) def test_add_multi_dimensional_field_data(self): box_mask_list = self.box_mask_list labels = np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 1]], dtype=int) box_mask_list.add_field('labels', labels) self.assertTrue(np.allclose(labels, self.box_mask_list.get_field('labels'))) def test_get_extra_fields(self): box_mask_list = self.box_mask_list self.assertItemsEqual(box_mask_list.get_extra_fields(), ['masks']) scores = np.array([0.5, 0.7, 0.9], dtype=float) box_mask_list.add_field('scores', scores) self.assertItemsEqual(box_mask_list.get_extra_fields(), ['masks', 'scores']) labels = np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 1]], dtype=int) box_mask_list.add_field('labels', labels) self.assertItemsEqual(box_mask_list.get_extra_fields(), ['masks', 'scores', 'labels']) def test_get_coordinates(self): y_min, x_min, y_max, x_max = self.box_mask_list.get_coordinates() expected_y_min = np.array([3.0, 14.0, 0.0], dtype=float) expected_x_min = np.array([4.0, 14.0, 0.0], dtype=float) expected_y_max = np.array([6.0, 15.0, 20.0], dtype=float) expected_x_max = np.array([8.0, 15.0, 20.0], dtype=float) self.assertTrue(np.allclose(y_min, expected_y_min)) self.assertTrue(np.allclose(x_min, expected_x_min)) self.assertTrue(np.allclose(y_max, expected_y_max)) self.assertTrue(np.allclose(x_max, expected_x_max)) def test_num_boxes(self): boxes = np.array([[0., 0., 100., 100.], [10., 30., 50., 70.]], dtype=float) masks = np.zeros([2, 5, 5], dtype=np.uint8) box_mask_list = np_box_mask_list.BoxMaskList( box_data=boxes, mask_data=masks) expected_num_boxes = 2 self.assertEquals(box_mask_list.num_boxes(), expected_num_boxes) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/np_box_mask_list_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.per_image_evaluation.""" import numpy as np import tensorflow as tf from object_detection.utils import per_image_evaluation class SingleClassTpFpWithDifficultBoxesTest(tf.test.TestCase): def setUp(self): num_groundtruth_classes = 1 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 self.eval = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) self.detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) self.detected_scores = np.array([0.6, 0.8, 0.5], dtype=float) detected_masks_0 = np.array([[0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_1 = np.array([[1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_2 = np.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8) self.detected_masks = np.stack( [detected_masks_0, detected_masks_1, detected_masks_2], axis=0) self.groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 10, 10]], dtype=float) groundtruth_masks_0 = np.array([[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0]], dtype=np.uint8) groundtruth_masks_1 = np.array([[0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]], dtype=np.uint8) self.groundtruth_masks = np.stack( [groundtruth_masks_0, groundtruth_masks_1], axis=0) def test_match_to_gt_box_0(self): groundtruth_groundtruth_is_difficult_list = np.array([False, True], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [False, False], dtype=bool) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) expected_scores = np.array([0.8, 0.6, 0.5], dtype=float) expected_tp_fp_labels = np.array([False, True, False], dtype=bool) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_mask_match_to_gt_mask_0(self): groundtruth_groundtruth_is_difficult_list = np.array([False, True], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [False, False], dtype=bool) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list, detected_masks=self.detected_masks, groundtruth_masks=self.groundtruth_masks) expected_scores = np.array([0.8, 0.6, 0.5], dtype=float) expected_tp_fp_labels = np.array([True, False, False], dtype=bool) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_match_to_gt_box_1(self): groundtruth_groundtruth_is_difficult_list = np.array([True, False], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [False, False], dtype=bool) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) expected_scores = np.array([0.8, 0.5], dtype=float) expected_tp_fp_labels = np.array([False, False], dtype=bool) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_mask_match_to_gt_mask_1(self): groundtruth_groundtruth_is_difficult_list = np.array([True, False], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [False, False], dtype=bool) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list, detected_masks=self.detected_masks, groundtruth_masks=self.groundtruth_masks) expected_scores = np.array([0.6, 0.5], dtype=float) expected_tp_fp_labels = np.array([False, False], dtype=bool) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) class SingleClassTpFpWithGroupOfBoxesTest(tf.test.TestCase): def setUp(self): num_groundtruth_classes = 1 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 self.eval = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) self.detected_boxes = np.array( [[0, 0, 1, 1], [0, 0, 2, 1], [0, 0, 3, 1]], dtype=float) self.detected_scores = np.array([0.8, 0.6, 0.5], dtype=float) detected_masks_0 = np.array([[0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_1 = np.array([[1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_2 = np.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8) self.detected_masks = np.stack( [detected_masks_0, detected_masks_1, detected_masks_2], axis=0) self.groundtruth_boxes = np.array( [[0, 0, 1, 1], [0, 0, 5, 5], [10, 10, 20, 20]], dtype=float) groundtruth_masks_0 = np.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], dtype=np.uint8) groundtruth_masks_1 = np.array([[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]], dtype=np.uint8) groundtruth_masks_2 = np.array([[0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]], dtype=np.uint8) self.groundtruth_masks = np.stack( [groundtruth_masks_0, groundtruth_masks_1, groundtruth_masks_2], axis=0) def test_match_to_non_group_of_and_group_of_box(self): groundtruth_groundtruth_is_difficult_list = np.array( [False, False, False], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [False, True, True], dtype=bool) expected_scores = np.array([0.8], dtype=float) expected_tp_fp_labels = np.array([True], dtype=bool) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_mask_match_to_non_group_of_and_group_of_box(self): groundtruth_groundtruth_is_difficult_list = np.array( [False, False, False], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [False, True, True], dtype=bool) expected_scores = np.array([0.6], dtype=float) expected_tp_fp_labels = np.array([True], dtype=bool) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list, detected_masks=self.detected_masks, groundtruth_masks=self.groundtruth_masks) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_match_two_to_group_of_box(self): groundtruth_groundtruth_is_difficult_list = np.array( [False, False, False], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [True, False, True], dtype=bool) expected_scores = np.array([0.5], dtype=float) expected_tp_fp_labels = np.array([False], dtype=bool) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_mask_match_two_to_group_of_box(self): groundtruth_groundtruth_is_difficult_list = np.array( [False, False, False], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [True, False, True], dtype=bool) expected_scores = np.array([0.8], dtype=float) expected_tp_fp_labels = np.array([True], dtype=bool) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list, detected_masks=self.detected_masks, groundtruth_masks=self.groundtruth_masks) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) class SingleClassTpFpWithGroupOfBoxesTestWeighted(tf.test.TestCase): def setUp(self): num_groundtruth_classes = 1 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 self.group_of_weight = 0.5 self.eval = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes, self.group_of_weight) self.detected_boxes = np.array( [[0, 0, 1, 1], [0, 0, 2, 1], [0, 0, 3, 1]], dtype=float) self.detected_scores = np.array([0.8, 0.6, 0.5], dtype=float) detected_masks_0 = np.array( [[0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_1 = np.array( [[1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_2 = np.array( [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8) self.detected_masks = np.stack( [detected_masks_0, detected_masks_1, detected_masks_2], axis=0) self.groundtruth_boxes = np.array( [[0, 0, 1, 1], [0, 0, 5, 5], [10, 10, 20, 20]], dtype=float) groundtruth_masks_0 = np.array( [[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], dtype=np.uint8) groundtruth_masks_1 = np.array( [[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]], dtype=np.uint8) groundtruth_masks_2 = np.array( [[0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]], dtype=np.uint8) self.groundtruth_masks = np.stack( [groundtruth_masks_0, groundtruth_masks_1, groundtruth_masks_2], axis=0) def test_match_to_non_group_of_and_group_of_box(self): groundtruth_groundtruth_is_difficult_list = np.array( [False, False, False], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [False, True, True], dtype=bool) expected_scores = np.array([0.8, 0.6], dtype=float) expected_tp_fp_labels = np.array([1.0, self.group_of_weight], dtype=float) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_mask_match_to_non_group_of_and_group_of_box(self): groundtruth_groundtruth_is_difficult_list = np.array( [False, False, False], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [False, True, True], dtype=bool) expected_scores = np.array([0.6, 0.8, 0.5], dtype=float) expected_tp_fp_labels = np.array( [1.0, self.group_of_weight, self.group_of_weight], dtype=float) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list, detected_masks=self.detected_masks, groundtruth_masks=self.groundtruth_masks) tf.logging.info( "test_mask_match_to_non_group_of_and_group_of_box {} {}".format( tp_fp_labels, expected_tp_fp_labels)) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_match_two_to_group_of_box(self): groundtruth_groundtruth_is_difficult_list = np.array( [False, False, False], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [True, False, True], dtype=bool) expected_scores = np.array([0.5, 0.8], dtype=float) expected_tp_fp_labels = np.array([0.0, self.group_of_weight], dtype=float) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) tf.logging.info("test_match_two_to_group_of_box {} {}".format( tp_fp_labels, expected_tp_fp_labels)) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_mask_match_two_to_group_of_box(self): groundtruth_groundtruth_is_difficult_list = np.array( [False, False, False], dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [True, False, True], dtype=bool) expected_scores = np.array([0.8, 0.6, 0.5], dtype=float) expected_tp_fp_labels = np.array( [1.0, self.group_of_weight, self.group_of_weight], dtype=float) scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, self.groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list, detected_masks=self.detected_masks, groundtruth_masks=self.groundtruth_masks) tf.logging.info("test_mask_match_two_to_group_of_box {} {}".format( tp_fp_labels, expected_tp_fp_labels)) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) class SingleClassTpFpNoDifficultBoxesTest(tf.test.TestCase): def setUp(self): num_groundtruth_classes = 1 matching_iou_threshold_high_iou = 0.5 matching_iou_threshold_low_iou = 0.1 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 self.eval_high_iou = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes, matching_iou_threshold_high_iou, nms_iou_threshold, nms_max_output_boxes) self.eval_low_iou = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes, matching_iou_threshold_low_iou, nms_iou_threshold, nms_max_output_boxes) self.detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) self.detected_scores = np.array([0.6, 0.8, 0.5], dtype=float) detected_masks_0 = np.array([[0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_1 = np.array([[1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_2 = np.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8) self.detected_masks = np.stack( [detected_masks_0, detected_masks_1, detected_masks_2], axis=0) def test_no_true_positives(self): groundtruth_boxes = np.array([[100, 100, 105, 105]], dtype=float) groundtruth_groundtruth_is_difficult_list = np.zeros(1, dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array([False], dtype=bool) scores, tp_fp_labels = self.eval_high_iou._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) expected_scores = np.array([0.8, 0.6, 0.5], dtype=float) expected_tp_fp_labels = np.array([False, False, False], dtype=bool) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_mask_no_true_positives(self): groundtruth_boxes = np.array([[100, 100, 105, 105]], dtype=float) groundtruth_masks_0 = np.array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], dtype=np.uint8) groundtruth_masks = np.stack([groundtruth_masks_0], axis=0) groundtruth_groundtruth_is_difficult_list = np.zeros(1, dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array([False], dtype=bool) scores, tp_fp_labels = self.eval_high_iou._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list, detected_masks=self.detected_masks, groundtruth_masks=groundtruth_masks) expected_scores = np.array([0.8, 0.6, 0.5], dtype=float) expected_tp_fp_labels = np.array([False, False, False], dtype=bool) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_one_true_positives_with_large_iou_threshold(self): groundtruth_boxes = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_groundtruth_is_difficult_list = np.zeros(1, dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array([False], dtype=bool) scores, tp_fp_labels = self.eval_high_iou._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) expected_scores = np.array([0.8, 0.6, 0.5], dtype=float) expected_tp_fp_labels = np.array([False, True, False], dtype=bool) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_mask_one_true_positives_with_large_iou_threshold(self): groundtruth_boxes = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_masks_0 = np.array([[1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0]], dtype=np.uint8) groundtruth_masks = np.stack([groundtruth_masks_0], axis=0) groundtruth_groundtruth_is_difficult_list = np.zeros(1, dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array([False], dtype=bool) scores, tp_fp_labels = self.eval_high_iou._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list, detected_masks=self.detected_masks, groundtruth_masks=groundtruth_masks) expected_scores = np.array([0.8, 0.6, 0.5], dtype=float) expected_tp_fp_labels = np.array([True, False, False], dtype=bool) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_one_true_positives_with_very_small_iou_threshold(self): groundtruth_boxes = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_groundtruth_is_difficult_list = np.zeros(1, dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array([False], dtype=bool) scores, tp_fp_labels = self.eval_low_iou._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) expected_scores = np.array([0.8, 0.6, 0.5], dtype=float) expected_tp_fp_labels = np.array([True, False, False], dtype=bool) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_two_true_positives_with_large_iou_threshold(self): groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3.5, 3.5]], dtype=float) groundtruth_groundtruth_is_difficult_list = np.zeros(2, dtype=bool) groundtruth_groundtruth_is_group_of_list = np.array( [False, False], dtype=bool) scores, tp_fp_labels = self.eval_high_iou._compute_tp_fp_for_single_class( self.detected_boxes, self.detected_scores, groundtruth_boxes, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) expected_scores = np.array([0.8, 0.6, 0.5], dtype=float) expected_tp_fp_labels = np.array([False, True, True], dtype=bool) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) class MultiClassesTpFpTest(tf.test.TestCase): def test_tp_fp(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [10, 10, 5, 5], [0, 0, 2, 2], [5, 10, 10, 5], [10, 5, 5, 10], [0, 0, 3, 3]], dtype=float) detected_scores = np.array([0.8, 0.1, 0.8, 0.9, 0.7, 0.8], dtype=float) detected_class_labels = np.array([0, 1, 1, 2, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3.5, 3.5]], dtype=float) groundtruth_class_labels = np.array([0, 2], dtype=int) groundtruth_groundtruth_is_difficult_list = np.zeros(2, dtype=float) groundtruth_groundtruth_is_group_of_list = np.array( [False, False], dtype=bool) scores, tp_fp_labels, _ = eval1.compute_object_detection_metrics( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) expected_scores = [np.array([0.8], dtype=float)] * 3 expected_tp_fp_labels = [np.array([True]), np.array([False]), np.array([True ])] for i in range(len(expected_scores)): self.assertTrue(np.allclose(expected_scores[i], scores[i])) self.assertTrue(np.array_equal(expected_tp_fp_labels[i], tp_fp_labels[i])) class CorLocTest(tf.test.TestCase): def test_compute_corloc_with_normal_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 1], dtype=int) self.assertTrue(np.array_equal(expected_result, is_class_correctly_detected_in_image)) def test_compute_corloc_with_very_large_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.9 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 0], dtype=int) self.assertTrue(np.array_equal(expected_result, is_class_correctly_detected_in_image)) if __name__ == "__main__": tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/per_image_evaluation_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for manipulating collections of variables during training. """ import logging import re import tensorflow as tf slim = tf.contrib.slim # TODO(derekjchow): Consider replacing with tf.contrib.filter_variables in # tensorflow/contrib/framework/python/ops/variables.py def filter_variables(variables, filter_regex_list, invert=False): """Filters out the variables matching the filter_regex. Filter out the variables whose name matches the any of the regular expressions in filter_regex_list and returns the remaining variables. Optionally, if invert=True, the complement set is returned. Args: variables: a list of tensorflow variables. filter_regex_list: a list of string regular expressions. invert: (boolean). If True, returns the complement of the filter set; that is, all variables matching filter_regex are kept and all others discarded. Returns: a list of filtered variables. """ kept_vars = [] variables_to_ignore_patterns = list(filter(None, filter_regex_list)) for var in variables: add = True for pattern in variables_to_ignore_patterns: if re.match(pattern, var.op.name): add = False break if add != invert: kept_vars.append(var) return kept_vars def multiply_gradients_matching_regex(grads_and_vars, regex_list, multiplier): """Multiply gradients whose variable names match a regular expression. Args: grads_and_vars: A list of gradient to variable pairs (tuples). regex_list: A list of string regular expressions. multiplier: A (float) multiplier to apply to each gradient matching the regular expression. Returns: grads_and_vars: A list of gradient to variable pairs (tuples). """ variables = [pair[1] for pair in grads_and_vars] matching_vars = filter_variables(variables, regex_list, invert=True) for var in matching_vars: logging.info('Applying multiplier %f to variable [%s]', multiplier, var.op.name) grad_multipliers = {var: float(multiplier) for var in matching_vars} return slim.learning.multiply_gradients(grads_and_vars, grad_multipliers) def freeze_gradients_matching_regex(grads_and_vars, regex_list): """Freeze gradients whose variable names match a regular expression. Args: grads_and_vars: A list of gradient to variable pairs (tuples). regex_list: A list of string regular expressions. Returns: grads_and_vars: A list of gradient to variable pairs (tuples) that do not contain the variables and gradients matching the regex. """ variables = [pair[1] for pair in grads_and_vars] matching_vars = filter_variables(variables, regex_list, invert=True) kept_grads_and_vars = [pair for pair in grads_and_vars if pair[1] not in matching_vars] for var in matching_vars: logging.info('Freezing variable [%s]', var.op.name) return kept_grads_and_vars def get_variables_available_in_checkpoint(variables, checkpoint_path, include_global_step=True): """Returns the subset of variables available in the checkpoint. Inspects given checkpoint and returns the subset of variables that are available in it. TODO(rathodv): force input and output to be a dictionary. Args: variables: a list or dictionary of variables to find in checkpoint. checkpoint_path: path to the checkpoint to restore variables from. include_global_step: whether to include `global_step` variable, if it exists. Default True. Returns: A list or dictionary of variables. Raises: ValueError: if `variables` is not a list or dict. """ if isinstance(variables, list): variable_names_map = {variable.op.name: variable for variable in variables} elif isinstance(variables, dict): variable_names_map = variables else: raise ValueError('`variables` is expected to be a list or dict.') ckpt_reader = tf.train.NewCheckpointReader(checkpoint_path) ckpt_vars_to_shape_map = ckpt_reader.get_variable_to_shape_map() if not include_global_step: ckpt_vars_to_shape_map.pop(tf.GraphKeys.GLOBAL_STEP, None) vars_in_ckpt = {} for variable_name, variable in sorted(variable_names_map.items()): if variable_name in ckpt_vars_to_shape_map: if ckpt_vars_to_shape_map[variable_name] == variable.shape.as_list(): vars_in_ckpt[variable_name] = variable else: logging.warning('Variable [%s] is available in checkpoint, but has an ' 'incompatible shape with model variable. Checkpoint ' 'shape: [%s], model variable shape: [%s]. This ' 'variable will not be initialized from the checkpoint.', variable_name, ckpt_vars_to_shape_map[variable_name], variable.shape.as_list()) else: logging.warning('Variable [%s] is not available in checkpoint', variable_name) if isinstance(variables, list): return vars_in_ckpt.values() return vars_in_ckpt
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/variables_helper.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.category_util.""" import os import tensorflow as tf from object_detection.utils import category_util class EvalUtilTest(tf.test.TestCase): def test_load_categories_from_csv_file(self): csv_data = """ 0,"cat" 1,"dog" 2,"bird" """.strip(' ') csv_path = os.path.join(self.get_temp_dir(), 'test.csv') with tf.gfile.Open(csv_path, 'wb') as f: f.write(csv_data) categories = category_util.load_categories_from_csv_file(csv_path) self.assertTrue({'id': 0, 'name': 'cat'} in categories) self.assertTrue({'id': 1, 'name': 'dog'} in categories) self.assertTrue({'id': 2, 'name': 'bird'} in categories) def test_save_categories_to_csv_file(self): categories = [ {'id': 0, 'name': 'cat'}, {'id': 1, 'name': 'dog'}, {'id': 2, 'name': 'bird'}, ] csv_path = os.path.join(self.get_temp_dir(), 'test.csv') category_util.save_categories_to_csv_file(categories, csv_path) saved_categories = category_util.load_categories_from_csv_file(csv_path) self.assertEqual(saved_categories, categories) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/category_util_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.np_box_list_ops.""" import numpy as np import tensorflow as tf from object_detection.utils import np_box_list from object_detection.utils import np_box_list_ops class AreaRelatedTest(tf.test.TestCase): def setUp(self): boxes1 = np.array([[4.0, 3.0, 7.0, 5.0], [5.0, 6.0, 10.0, 7.0]], dtype=float) boxes2 = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) self.boxlist1 = np_box_list.BoxList(boxes1) self.boxlist2 = np_box_list.BoxList(boxes2) def test_area(self): areas = np_box_list_ops.area(self.boxlist1) expected_areas = np.array([6.0, 5.0], dtype=float) self.assertAllClose(expected_areas, areas) def test_intersection(self): intersection = np_box_list_ops.intersection(self.boxlist1, self.boxlist2) expected_intersection = np.array([[2.0, 0.0, 6.0], [1.0, 0.0, 5.0]], dtype=float) self.assertAllClose(intersection, expected_intersection) def test_iou(self): iou = np_box_list_ops.iou(self.boxlist1, self.boxlist2) expected_iou = np.array([[2.0 / 16.0, 0.0, 6.0 / 400.0], [1.0 / 16.0, 0.0, 5.0 / 400.0]], dtype=float) self.assertAllClose(iou, expected_iou) def test_ioa(self): boxlist1 = np_box_list.BoxList( np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype= np.float32)) boxlist2 = np_box_list.BoxList( np.array( [[0.5, 0.25, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype=np.float32)) ioa21 = np_box_list_ops.ioa(boxlist2, boxlist1) expected_ioa21 = np.array([[0.5, 0.0], [1.0, 1.0]], dtype=np.float32) self.assertAllClose(ioa21, expected_ioa21) def test_scale(self): boxlist = np_box_list.BoxList( np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype= np.float32)) boxlist_scaled = np_box_list_ops.scale(boxlist, 2.0, 3.0) expected_boxlist_scaled = np_box_list.BoxList( np.array( [[0.5, 0.75, 1.5, 2.25], [0.0, 0.0, 1.0, 2.25]], dtype=np.float32)) self.assertAllClose(expected_boxlist_scaled.get(), boxlist_scaled.get()) def test_clip_to_window(self): boxlist = np_box_list.BoxList( np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75], [-0.2, -0.3, 0.7, 1.5]], dtype=np.float32)) boxlist_clipped = np_box_list_ops.clip_to_window(boxlist, [0.0, 0.0, 1.0, 1.0]) expected_boxlist_clipped = np_box_list.BoxList( np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75], [0.0, 0.0, 0.7, 1.0]], dtype=np.float32)) self.assertAllClose(expected_boxlist_clipped.get(), boxlist_clipped.get()) def test_prune_outside_window(self): boxlist = np_box_list.BoxList( np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75], [-0.2, -0.3, 0.7, 1.5]], dtype=np.float32)) boxlist_pruned, _ = np_box_list_ops.prune_outside_window( boxlist, [0.0, 0.0, 1.0, 1.0]) expected_boxlist_pruned = np_box_list.BoxList( np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype= np.float32)) self.assertAllClose(expected_boxlist_pruned.get(), boxlist_pruned.get()) def test_concatenate(self): boxlist1 = np_box_list.BoxList( np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype= np.float32)) boxlist2 = np_box_list.BoxList( np.array( [[0.5, 0.25, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype=np.float32)) boxlists = [boxlist1, boxlist2] boxlist_concatenated = np_box_list_ops.concatenate(boxlists) boxlist_concatenated_expected = np_box_list.BoxList( np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75], [0.5, 0.25, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype=np.float32)) self.assertAllClose(boxlist_concatenated_expected.get(), boxlist_concatenated.get()) def test_change_coordinate_frame(self): boxlist = np_box_list.BoxList( np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype= np.float32)) boxlist_coord = np_box_list_ops.change_coordinate_frame( boxlist, np.array([0, 0, 0.5, 0.5], dtype=np.float32)) expected_boxlist_coord = np_box_list.BoxList( np.array([[0.5, 0.5, 1.5, 1.5], [0, 0, 1.0, 1.5]], dtype=np.float32)) self.assertAllClose(boxlist_coord.get(), expected_boxlist_coord.get()) def test_filter_scores_greater_than(self): boxlist = np_box_list.BoxList( np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype= np.float32)) boxlist.add_field('scores', np.array([0.8, 0.2], np.float32)) boxlist_greater = np_box_list_ops.filter_scores_greater_than(boxlist, 0.5) expected_boxlist_greater = np_box_list.BoxList( np.array([[0.25, 0.25, 0.75, 0.75]], dtype=np.float32)) self.assertAllClose(boxlist_greater.get(), expected_boxlist_greater.get()) class GatherOpsTest(tf.test.TestCase): def setUp(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) self.boxlist = np_box_list.BoxList(boxes) self.boxlist.add_field('scores', np.array([0.5, 0.7, 0.9], dtype=float)) self.boxlist.add_field('labels', np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 1]], dtype=int)) def test_gather_with_out_of_range_indices(self): indices = np.array([3, 1], dtype=int) boxlist = self.boxlist with self.assertRaises(ValueError): np_box_list_ops.gather(boxlist, indices) def test_gather_with_invalid_multidimensional_indices(self): indices = np.array([[0, 1], [1, 2]], dtype=int) boxlist = self.boxlist with self.assertRaises(ValueError): np_box_list_ops.gather(boxlist, indices) def test_gather_without_fields_specified(self): indices = np.array([2, 0, 1], dtype=int) boxlist = self.boxlist subboxlist = np_box_list_ops.gather(boxlist, indices) expected_scores = np.array([0.9, 0.5, 0.7], dtype=float) self.assertAllClose(expected_scores, subboxlist.get_field('scores')) expected_boxes = np.array([[0.0, 0.0, 20.0, 20.0], [3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0]], dtype=float) self.assertAllClose(expected_boxes, subboxlist.get()) expected_labels = np.array([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 1, 0, 0, 0]], dtype=int) self.assertAllClose(expected_labels, subboxlist.get_field('labels')) def test_gather_with_invalid_field_specified(self): indices = np.array([2, 0, 1], dtype=int) boxlist = self.boxlist with self.assertRaises(ValueError): np_box_list_ops.gather(boxlist, indices, 'labels') with self.assertRaises(ValueError): np_box_list_ops.gather(boxlist, indices, ['objectness']) def test_gather_with_fields_specified(self): indices = np.array([2, 0, 1], dtype=int) boxlist = self.boxlist subboxlist = np_box_list_ops.gather(boxlist, indices, ['labels']) self.assertFalse(subboxlist.has_field('scores')) expected_boxes = np.array([[0.0, 0.0, 20.0, 20.0], [3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0]], dtype=float) self.assertAllClose(expected_boxes, subboxlist.get()) expected_labels = np.array([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0], [0, 1, 0, 0, 0]], dtype=int) self.assertAllClose(expected_labels, subboxlist.get_field('labels')) class SortByFieldTest(tf.test.TestCase): def setUp(self): boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) self.boxlist = np_box_list.BoxList(boxes) self.boxlist.add_field('scores', np.array([0.5, 0.9, 0.4], dtype=float)) self.boxlist.add_field('labels', np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 1]], dtype=int)) def test_with_invalid_field(self): with self.assertRaises(ValueError): np_box_list_ops.sort_by_field(self.boxlist, 'objectness') with self.assertRaises(ValueError): np_box_list_ops.sort_by_field(self.boxlist, 'labels') def test_with_invalid_sorting_order(self): with self.assertRaises(ValueError): np_box_list_ops.sort_by_field(self.boxlist, 'scores', 'Descending') def test_with_descending_sorting(self): sorted_boxlist = np_box_list_ops.sort_by_field(self.boxlist, 'scores') expected_boxes = np.array([[14.0, 14.0, 15.0, 15.0], [3.0, 4.0, 6.0, 8.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) self.assertAllClose(expected_boxes, sorted_boxlist.get()) expected_scores = np.array([0.9, 0.5, 0.4], dtype=float) self.assertAllClose(expected_scores, sorted_boxlist.get_field('scores')) def test_with_ascending_sorting(self): sorted_boxlist = np_box_list_ops.sort_by_field( self.boxlist, 'scores', np_box_list_ops.SortOrder.ASCEND) expected_boxes = np.array([[0.0, 0.0, 20.0, 20.0], [3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0],], dtype=float) self.assertAllClose(expected_boxes, sorted_boxlist.get()) expected_scores = np.array([0.4, 0.5, 0.9], dtype=float) self.assertAllClose(expected_scores, sorted_boxlist.get_field('scores')) class NonMaximumSuppressionTest(tf.test.TestCase): def setUp(self): self._boxes = np.array([[0, 0, 1, 1], [0, 0.1, 1, 1.1], [0, -0.1, 1, 0.9], [0, 10, 1, 11], [0, 10.1, 1, 11.1], [0, 100, 1, 101]], dtype=float) self._boxlist = np_box_list.BoxList(self._boxes) def test_with_no_scores_field(self): boxlist = np_box_list.BoxList(self._boxes) max_output_size = 3 iou_threshold = 0.5 with self.assertRaises(ValueError): np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) def test_nms_disabled_max_output_size_equals_three(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .2, .3], dtype=float)) max_output_size = 3 iou_threshold = 1. # No NMS expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 0.1, 1, 1.1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) def test_select_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .2, .3], dtype=float)) max_output_size = 3 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 100, 1, 101]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) def test_select_at_most_two_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .5, .3], dtype=float)) max_output_size = 2 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) def test_select_at_most_thirty_from_three_clusters(self): boxlist = np_box_list.BoxList(self._boxes) boxlist.add_field('scores', np.array([.9, .75, .6, .95, .5, .3], dtype=float)) max_output_size = 30 iou_threshold = 0.5 expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 100, 1, 101]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) def test_select_from_ten_indentical_boxes(self): boxes = np.array(10 * [[0, 0, 1, 1]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array(10 * [0.8])) iou_threshold = .5 max_output_size = 3 expected_boxes = np.array([[0, 0, 1, 1]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) def test_different_iou_threshold(self): boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) boxlist = np_box_list.BoxList(boxes) boxlist.add_field('scores', np.array([0.9, 0.8, 0.7, 0.6])) max_output_size = 4 iou_threshold = .4 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300],], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .5 expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) iou_threshold = .8 expected_boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300], [200, 200, 210, 250]], dtype=float) nms_boxlist = np_box_list_ops.non_max_suppression( boxlist, max_output_size, iou_threshold) self.assertAllClose(nms_boxlist.get(), expected_boxes) def test_multiclass_nms(self): boxlist = np_box_list.BoxList( np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32)) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) boxlist.add_field('scores', scores) boxlist_clean = np_box_list_ops.multi_class_non_max_suppression( boxlist, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = boxlist_clean.get_field('scores') classes_clean = boxlist_clean.get_field('classes') boxes = boxlist_clean.get() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/np_box_list_ops_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.np_box_ops.""" import numpy as np import tensorflow as tf from object_detection.utils import np_box_ops class BoxOpsTests(tf.test.TestCase): def setUp(self): boxes1 = np.array([[4.0, 3.0, 7.0, 5.0], [5.0, 6.0, 10.0, 7.0]], dtype=float) boxes2 = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) self.boxes1 = boxes1 self.boxes2 = boxes2 def testArea(self): areas = np_box_ops.area(self.boxes1) expected_areas = np.array([6.0, 5.0], dtype=float) self.assertAllClose(expected_areas, areas) def testIntersection(self): intersection = np_box_ops.intersection(self.boxes1, self.boxes2) expected_intersection = np.array([[2.0, 0.0, 6.0], [1.0, 0.0, 5.0]], dtype=float) self.assertAllClose(intersection, expected_intersection) def testIOU(self): iou = np_box_ops.iou(self.boxes1, self.boxes2) expected_iou = np.array([[2.0 / 16.0, 0.0, 6.0 / 400.0], [1.0 / 16.0, 0.0, 5.0 / 400.0]], dtype=float) self.assertAllClose(iou, expected_iou) def testIOA(self): boxes1 = np.array([[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=np.float32) boxes2 = np.array([[0.5, 0.25, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype=np.float32) ioa21 = np_box_ops.ioa(boxes2, boxes1) expected_ioa21 = np.array([[0.5, 0.0], [1.0, 1.0]], dtype=np.float32) self.assertAllClose(ioa21, expected_ioa21) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/np_box_ops_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.config_util.""" import os import tensorflow as tf from google.protobuf import text_format from object_detection.protos import eval_pb2 from object_detection.protos import image_resizer_pb2 from object_detection.protos import input_reader_pb2 from object_detection.protos import model_pb2 from object_detection.protos import pipeline_pb2 from object_detection.protos import train_pb2 from object_detection.utils import config_util def _write_config(config, config_path): """Writes a config object to disk.""" config_text = text_format.MessageToString(config) with tf.gfile.Open(config_path, "wb") as f: f.write(config_text) def _update_optimizer_with_constant_learning_rate(optimizer, learning_rate): """Adds a new constant learning rate.""" constant_lr = optimizer.learning_rate.constant_learning_rate constant_lr.learning_rate = learning_rate def _update_optimizer_with_exponential_decay_learning_rate( optimizer, learning_rate): """Adds a new exponential decay learning rate.""" exponential_lr = optimizer.learning_rate.exponential_decay_learning_rate exponential_lr.initial_learning_rate = learning_rate def _update_optimizer_with_manual_step_learning_rate( optimizer, initial_learning_rate, learning_rate_scaling): """Adds a learning rate schedule.""" manual_lr = optimizer.learning_rate.manual_step_learning_rate manual_lr.initial_learning_rate = initial_learning_rate for i in range(3): schedule = manual_lr.schedule.add() schedule.learning_rate = initial_learning_rate * learning_rate_scaling**i def _update_optimizer_with_cosine_decay_learning_rate( optimizer, learning_rate, warmup_learning_rate): """Adds a new cosine decay learning rate.""" cosine_lr = optimizer.learning_rate.cosine_decay_learning_rate cosine_lr.learning_rate_base = learning_rate cosine_lr.warmup_learning_rate = warmup_learning_rate class ConfigUtilTest(tf.test.TestCase): def _create_and_load_test_configs(self, pipeline_config): pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") _write_config(pipeline_config, pipeline_config_path) return config_util.get_configs_from_pipeline_file(pipeline_config_path) def test_get_configs_from_pipeline_file(self): """Test that proto configs can be read from pipeline config file.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"]) def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"]) def test_create_pipeline_proto_from_configs(self): """Tests that proto can be reconstructed from configs dictionary.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) pipeline_config_reconstructed = ( config_util.create_pipeline_proto_from_configs(configs)) self.assertEqual(pipeline_config, pipeline_config_reconstructed) def test_save_pipeline_config(self): """Tests that the pipeline config is properly saved to disk.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 config_util.save_pipeline_config(pipeline_config, self.get_temp_dir()) configs = config_util.get_configs_from_pipeline_file( os.path.join(self.get_temp_dir(), "pipeline.config")) pipeline_config_reconstructed = ( config_util.create_pipeline_proto_from_configs(configs)) self.assertEqual(pipeline_config, pipeline_config_reconstructed) def test_get_configs_from_multiple_files(self): """Tests that proto configs can be read from multiple files.""" temp_dir = self.get_temp_dir() # Write model config file. model_config_path = os.path.join(temp_dir, "model.config") model = model_pb2.DetectionModel() model.faster_rcnn.num_classes = 10 _write_config(model, model_config_path) # Write train config file. train_config_path = os.path.join(temp_dir, "train.config") train_config = train_config = train_pb2.TrainConfig() train_config.batch_size = 32 _write_config(train_config, train_config_path) # Write train input config file. train_input_config_path = os.path.join(temp_dir, "train_input.config") train_input_config = input_reader_pb2.InputReader() train_input_config.label_map_path = "path/to/label_map" _write_config(train_input_config, train_input_config_path) # Write eval config file. eval_config_path = os.path.join(temp_dir, "eval.config") eval_config = eval_pb2.EvalConfig() eval_config.num_examples = 20 _write_config(eval_config, eval_config_path) # Write eval input config file. eval_input_config_path = os.path.join(temp_dir, "eval_input.config") eval_input_config = input_reader_pb2.InputReader() eval_input_config.label_map_path = "path/to/another/label_map" _write_config(eval_input_config, eval_input_config_path) configs = config_util.get_configs_from_multiple_files( model_config_path=model_config_path, train_config_path=train_config_path, train_input_config_path=train_input_config_path, eval_config_path=eval_config_path, eval_input_config_path=eval_input_config_path) self.assertProtoEquals(model, configs["model"]) self.assertProtoEquals(train_config, configs["train_config"]) self.assertProtoEquals(train_input_config, configs["train_input_config"]) self.assertProtoEquals(eval_config, configs["eval_config"]) self.assertProtoEquals(eval_input_config, configs["eval_input_configs"][0]) def _assertOptimizerWithNewLearningRate(self, optimizer_name): """Asserts successful updating of all learning rate schemes.""" original_learning_rate = 0.7 learning_rate_scaling = 0.1 warmup_learning_rate = 0.07 hparams = tf.contrib.training.HParams(learning_rate=0.15) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") # Constant learning rate. pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name) _update_optimizer_with_constant_learning_rate(optimizer, original_learning_rate) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) optimizer = getattr(configs["train_config"].optimizer, optimizer_name) constant_lr = optimizer.learning_rate.constant_learning_rate self.assertAlmostEqual(hparams.learning_rate, constant_lr.learning_rate) # Exponential decay learning rate. pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name) _update_optimizer_with_exponential_decay_learning_rate( optimizer, original_learning_rate) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) optimizer = getattr(configs["train_config"].optimizer, optimizer_name) exponential_lr = optimizer.learning_rate.exponential_decay_learning_rate self.assertAlmostEqual(hparams.learning_rate, exponential_lr.initial_learning_rate) # Manual step learning rate. pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name) _update_optimizer_with_manual_step_learning_rate( optimizer, original_learning_rate, learning_rate_scaling) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) optimizer = getattr(configs["train_config"].optimizer, optimizer_name) manual_lr = optimizer.learning_rate.manual_step_learning_rate self.assertAlmostEqual(hparams.learning_rate, manual_lr.initial_learning_rate) for i, schedule in enumerate(manual_lr.schedule): self.assertAlmostEqual(hparams.learning_rate * learning_rate_scaling**i, schedule.learning_rate) # Cosine decay learning rate. pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name) _update_optimizer_with_cosine_decay_learning_rate(optimizer, original_learning_rate, warmup_learning_rate) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) optimizer = getattr(configs["train_config"].optimizer, optimizer_name) cosine_lr = optimizer.learning_rate.cosine_decay_learning_rate self.assertAlmostEqual(hparams.learning_rate, cosine_lr.learning_rate_base) warmup_scale_factor = warmup_learning_rate / original_learning_rate self.assertAlmostEqual(hparams.learning_rate * warmup_scale_factor, cosine_lr.warmup_learning_rate) def testRMSPropWithNewLearingRate(self): """Tests new learning rates for RMSProp Optimizer.""" self._assertOptimizerWithNewLearningRate("rms_prop_optimizer") def testMomentumOptimizerWithNewLearningRate(self): """Tests new learning rates for Momentum Optimizer.""" self._assertOptimizerWithNewLearningRate("momentum_optimizer") def testAdamOptimizerWithNewLearningRate(self): """Tests new learning rates for Adam Optimizer.""" self._assertOptimizerWithNewLearningRate("adam_optimizer") def testGenericConfigOverride(self): """Tests generic config overrides for all top-level configs.""" # Set one parameter for each of the top-level pipeline configs: pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.ssd.num_classes = 1 pipeline_config.train_config.batch_size = 1 pipeline_config.eval_config.num_visualizations = 1 pipeline_config.train_input_reader.label_map_path = "/some/path" pipeline_config.eval_input_reader.add().label_map_path = "/some/path" pipeline_config.graph_rewriter.quantization.weight_bits = 1 pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") _write_config(pipeline_config, pipeline_config_path) # Override each of the parameters: configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) hparams = tf.contrib.training.HParams( **{ "model.ssd.num_classes": 2, "train_config.batch_size": 2, "train_input_config.label_map_path": "/some/other/path", "eval_config.num_visualizations": 2, "graph_rewriter_config.quantization.weight_bits": 2 }) configs = config_util.merge_external_params_with_configs(configs, hparams) # Ensure that the parameters have the overridden values: self.assertEqual(2, configs["model"].ssd.num_classes) self.assertEqual(2, configs["train_config"].batch_size) self.assertEqual("/some/other/path", configs["train_input_config"].label_map_path) self.assertEqual(2, configs["eval_config"].num_visualizations) self.assertEqual(2, configs["graph_rewriter_config"].quantization.weight_bits) def testNewBatchSize(self): """Tests that batch size is updated appropriately.""" original_batch_size = 2 hparams = tf.contrib.training.HParams(batch_size=16) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_config.batch_size = original_batch_size _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) new_batch_size = configs["train_config"].batch_size self.assertEqual(16, new_batch_size) def testNewBatchSizeWithClipping(self): """Tests that batch size is clipped to 1 from below.""" original_batch_size = 2 hparams = tf.contrib.training.HParams(batch_size=0.5) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_config.batch_size = original_batch_size _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) new_batch_size = configs["train_config"].batch_size self.assertEqual(1, new_batch_size) # Clipped to 1.0. def testOverwriteBatchSizeWithKeyValue(self): """Tests that batch size is overwritten based on key/value.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_config.batch_size = 2 configs = self._create_and_load_test_configs(pipeline_config) hparams = tf.contrib.training.HParams(**{"train_config.batch_size": 10}) configs = config_util.merge_external_params_with_configs(configs, hparams) new_batch_size = configs["train_config"].batch_size self.assertEqual(10, new_batch_size) def testKeyValueOverrideBadKey(self): """Tests that overwriting with a bad key causes an exception.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() configs = self._create_and_load_test_configs(pipeline_config) hparams = tf.contrib.training.HParams(**{"train_config.no_such_field": 10}) with self.assertRaises(ValueError): config_util.merge_external_params_with_configs(configs, hparams) def testOverwriteBatchSizeWithBadValueType(self): """Tests that overwriting with a bad valuye type causes an exception.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_config.batch_size = 2 configs = self._create_and_load_test_configs(pipeline_config) # Type should be an integer, but we're passing a string "10". hparams = tf.contrib.training.HParams(**{"train_config.batch_size": "10"}) with self.assertRaises(TypeError): config_util.merge_external_params_with_configs(configs, hparams) def testNewMomentumOptimizerValue(self): """Tests that new momentum value is updated appropriately.""" original_momentum_value = 0.4 hparams = tf.contrib.training.HParams(momentum_optimizer_value=1.1) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() optimizer_config = pipeline_config.train_config.optimizer.rms_prop_optimizer optimizer_config.momentum_optimizer_value = original_momentum_value _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer new_momentum_value = optimizer_config.momentum_optimizer_value self.assertAlmostEqual(1.0, new_momentum_value) # Clipped to 1.0. def testNewClassificationLocalizationWeightRatio(self): """Tests that the loss weight ratio is updated appropriately.""" original_localization_weight = 0.1 original_classification_weight = 0.2 new_weight_ratio = 5.0 hparams = tf.contrib.training.HParams( classification_localization_weight_ratio=new_weight_ratio) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.ssd.loss.localization_weight = ( original_localization_weight) pipeline_config.model.ssd.loss.classification_weight = ( original_classification_weight) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) loss = configs["model"].ssd.loss self.assertAlmostEqual(1.0, loss.localization_weight) self.assertAlmostEqual(new_weight_ratio, loss.classification_weight) def testNewFocalLossParameters(self): """Tests that the loss weight ratio is updated appropriately.""" original_alpha = 1.0 original_gamma = 1.0 new_alpha = 0.3 new_gamma = 2.0 hparams = tf.contrib.training.HParams( focal_loss_alpha=new_alpha, focal_loss_gamma=new_gamma) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() classification_loss = pipeline_config.model.ssd.loss.classification_loss classification_loss.weighted_sigmoid_focal.alpha = original_alpha classification_loss.weighted_sigmoid_focal.gamma = original_gamma _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) classification_loss = configs["model"].ssd.loss.classification_loss self.assertAlmostEqual(new_alpha, classification_loss.weighted_sigmoid_focal.alpha) self.assertAlmostEqual(new_gamma, classification_loss.weighted_sigmoid_focal.gamma) def testMergingKeywordArguments(self): """Tests that keyword arguments get merged as do hyperparameters.""" original_num_train_steps = 100 desired_num_train_steps = 10 pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_config.num_steps = original_num_train_steps _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"train_steps": desired_num_train_steps} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) train_steps = configs["train_config"].num_steps self.assertEqual(desired_num_train_steps, train_steps) def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes) def testNewTrainInputPath(self): """Tests that train input path can be overwritten with single file.""" original_train_path = ["path/to/data"] new_train_path = "another/path/to/data" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() reader_config = pipeline_config.train_input_reader.tf_record_input_reader reader_config.input_path.extend(original_train_path) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"train_input_path": new_train_path} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) reader_config = configs["train_input_config"].tf_record_input_reader final_path = reader_config.input_path self.assertEqual([new_train_path], final_path) def testNewTrainInputPathList(self): """Tests that train input path can be overwritten with multiple files.""" original_train_path = ["path/to/data"] new_train_path = ["another/path/to/data", "yet/another/path/to/data"] pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() reader_config = pipeline_config.train_input_reader.tf_record_input_reader reader_config.input_path.extend(original_train_path) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"train_input_path": new_train_path} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) reader_config = configs["train_input_config"].tf_record_input_reader final_path = reader_config.input_path self.assertEqual(new_train_path, final_path) def testNewLabelMapPath(self): """Tests that label map path can be overwritten in input readers.""" original_label_map_path = "path/to/original/label_map" new_label_map_path = "path//to/new/label_map" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() train_input_reader = pipeline_config.train_input_reader train_input_reader.label_map_path = original_label_map_path eval_input_reader = pipeline_config.eval_input_reader.add() eval_input_reader.label_map_path = original_label_map_path _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"label_map_path": new_label_map_path} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(new_label_map_path, configs["train_input_config"].label_map_path) for eval_input_config in configs["eval_input_configs"]: self.assertEqual(new_label_map_path, eval_input_config.label_map_path) def testDontOverwriteEmptyLabelMapPath(self): """Tests that label map path will not by overwritten with empty string.""" original_label_map_path = "path/to/original/label_map" new_label_map_path = "" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() train_input_reader = pipeline_config.train_input_reader train_input_reader.label_map_path = original_label_map_path eval_input_reader = pipeline_config.eval_input_reader.add() eval_input_reader.label_map_path = original_label_map_path _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"label_map_path": new_label_map_path} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(original_label_map_path, configs["train_input_config"].label_map_path) self.assertEqual(original_label_map_path, configs["eval_input_configs"][0].label_map_path) def testNewMaskType(self): """Tests that mask type can be overwritten in input readers.""" original_mask_type = input_reader_pb2.NUMERICAL_MASKS new_mask_type = input_reader_pb2.PNG_MASKS pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() train_input_reader = pipeline_config.train_input_reader train_input_reader.mask_type = original_mask_type eval_input_reader = pipeline_config.eval_input_reader.add() eval_input_reader.mask_type = original_mask_type _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"mask_type": new_mask_type} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(new_mask_type, configs["train_input_config"].mask_type) self.assertEqual(new_mask_type, configs["eval_input_configs"][0].mask_type) def testUseMovingAverageForEval(self): use_moving_averages_orig = False pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = use_moving_averages_orig _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"eval_with_moving_averages": True} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(True, configs["eval_config"].use_moving_averages) def testGetImageResizerConfig(self): """Tests that number of classes can be retrieved.""" model_config = model_pb2.DetectionModel() model_config.faster_rcnn.image_resizer.fixed_shape_resizer.height = 100 model_config.faster_rcnn.image_resizer.fixed_shape_resizer.width = 300 image_resizer_config = config_util.get_image_resizer_config(model_config) self.assertEqual(image_resizer_config.fixed_shape_resizer.height, 100) self.assertEqual(image_resizer_config.fixed_shape_resizer.width, 300) def testGetSpatialImageSizeFromFixedShapeResizerConfig(self): image_resizer_config = image_resizer_pb2.ImageResizer() image_resizer_config.fixed_shape_resizer.height = 100 image_resizer_config.fixed_shape_resizer.width = 200 image_shape = config_util.get_spatial_image_size(image_resizer_config) self.assertAllEqual(image_shape, [100, 200]) def testGetSpatialImageSizeFromAspectPreservingResizerConfig(self): image_resizer_config = image_resizer_pb2.ImageResizer() image_resizer_config.keep_aspect_ratio_resizer.min_dimension = 100 image_resizer_config.keep_aspect_ratio_resizer.max_dimension = 600 image_resizer_config.keep_aspect_ratio_resizer.pad_to_max_dimension = True image_shape = config_util.get_spatial_image_size(image_resizer_config) self.assertAllEqual(image_shape, [600, 600]) def testGetSpatialImageSizeFromAspectPreservingResizerDynamic(self): image_resizer_config = image_resizer_pb2.ImageResizer() image_resizer_config.keep_aspect_ratio_resizer.min_dimension = 100 image_resizer_config.keep_aspect_ratio_resizer.max_dimension = 600 image_shape = config_util.get_spatial_image_size(image_resizer_config) self.assertAllEqual(image_shape, [-1, -1]) def testEvalShuffle(self): """Tests that `eval_shuffle` keyword arguments are applied correctly.""" original_shuffle = True desired_shuffle = False pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_input_reader.add().shuffle = original_shuffle _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"eval_shuffle": desired_shuffle} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(desired_shuffle, configs["eval_input_configs"][0].shuffle) def testTrainShuffle(self): """Tests that `train_shuffle` keyword arguments are applied correctly.""" original_shuffle = True desired_shuffle = False pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_input_reader.shuffle = original_shuffle _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"train_shuffle": desired_shuffle} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) train_shuffle = configs["train_input_config"].shuffle self.assertEqual(desired_shuffle, train_shuffle) def testOverWriteRetainOriginalImages(self): """Tests that `train_shuffle` keyword arguments are applied correctly.""" original_retain_original_images = True desired_retain_original_images = False pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.retain_original_images = ( original_retain_original_images) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = { "retain_original_images_in_eval": desired_retain_original_images } configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) retain_original_images = configs["eval_config"].retain_original_images self.assertEqual(desired_retain_original_images, retain_original_images) def testOverwriteAllEvalSampling(self): original_num_eval_examples = 1 new_num_eval_examples = 10 pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_input_reader.add().sample_1_of_n_examples = ( original_num_eval_examples) pipeline_config.eval_input_reader.add().sample_1_of_n_examples = ( original_num_eval_examples) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"sample_1_of_n_eval_examples": new_num_eval_examples} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) for eval_input_config in configs["eval_input_configs"]: self.assertEqual(new_num_eval_examples, eval_input_config.sample_1_of_n_examples) def testOverwriteAllEvalNumEpochs(self): original_num_epochs = 10 new_num_epochs = 1 pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_input_reader.add().num_epochs = original_num_epochs pipeline_config.eval_input_reader.add().num_epochs = original_num_epochs _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"eval_num_epochs": new_num_epochs} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) for eval_input_config in configs["eval_input_configs"]: self.assertEqual(new_num_epochs, eval_input_config.num_epochs) def testUpdateMaskTypeForAllInputConfigs(self): original_mask_type = input_reader_pb2.NUMERICAL_MASKS new_mask_type = input_reader_pb2.PNG_MASKS pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() train_config = pipeline_config.train_input_reader train_config.mask_type = original_mask_type eval_1 = pipeline_config.eval_input_reader.add() eval_1.mask_type = original_mask_type eval_1.name = "eval_1" eval_2 = pipeline_config.eval_input_reader.add() eval_2.mask_type = original_mask_type eval_2.name = "eval_2" _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"mask_type": new_mask_type} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(configs["train_input_config"].mask_type, new_mask_type) for eval_input_config in configs["eval_input_configs"]: self.assertEqual(eval_input_config.mask_type, new_mask_type) def testErrorOverwritingMultipleInputConfig(self): original_shuffle = False new_shuffle = True pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() eval_1 = pipeline_config.eval_input_reader.add() eval_1.shuffle = original_shuffle eval_1.name = "eval_1" eval_2 = pipeline_config.eval_input_reader.add() eval_2.shuffle = original_shuffle eval_2.name = "eval_2" _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"eval_shuffle": new_shuffle} with self.assertRaises(ValueError): configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) def testCheckAndParseInputConfigKey(self): pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_input_reader.add().name = "eval_1" pipeline_config.eval_input_reader.add().name = "eval_2" _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) specific_shuffle_update_key = "eval_input_configs:eval_2:shuffle" is_valid_input_config_key, key_name, input_name, field_name = ( config_util.check_and_parse_input_config_key( configs, specific_shuffle_update_key)) self.assertTrue(is_valid_input_config_key) self.assertEqual(key_name, "eval_input_configs") self.assertEqual(input_name, "eval_2") self.assertEqual(field_name, "shuffle") legacy_shuffle_update_key = "eval_shuffle" is_valid_input_config_key, key_name, input_name, field_name = ( config_util.check_and_parse_input_config_key(configs, legacy_shuffle_update_key)) self.assertTrue(is_valid_input_config_key) self.assertEqual(key_name, "eval_input_configs") self.assertEqual(input_name, None) self.assertEqual(field_name, "shuffle") non_input_config_update_key = "label_map_path" is_valid_input_config_key, key_name, input_name, field_name = ( config_util.check_and_parse_input_config_key( configs, non_input_config_update_key)) self.assertFalse(is_valid_input_config_key) self.assertEqual(key_name, None) self.assertEqual(input_name, None) self.assertEqual(field_name, "label_map_path") with self.assertRaisesRegexp(ValueError, "Invalid key format when overriding configs."): config_util.check_and_parse_input_config_key( configs, "train_input_config:shuffle") with self.assertRaisesRegexp( ValueError, "Invalid key_name when overriding input config."): config_util.check_and_parse_input_config_key( configs, "invalid_key_name:train_name:shuffle") with self.assertRaisesRegexp( ValueError, "Invalid input_name when overriding input config."): config_util.check_and_parse_input_config_key( configs, "eval_input_configs:unknown_eval_name:shuffle") with self.assertRaisesRegexp( ValueError, "Invalid field_name when overriding input config."): config_util.check_and_parse_input_config_key( configs, "eval_input_configs:eval_2:unknown_field_name") def testUpdateInputReaderConfigSuccess(self): original_shuffle = False new_shuffle = True pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_input_reader.shuffle = original_shuffle _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) config_util.update_input_reader_config( configs, key_name="train_input_config", input_name=None, field_name="shuffle", value=new_shuffle) self.assertEqual(configs["train_input_config"].shuffle, new_shuffle) config_util.update_input_reader_config( configs, key_name="train_input_config", input_name=None, field_name="shuffle", value=new_shuffle) self.assertEqual(configs["train_input_config"].shuffle, new_shuffle) def testUpdateInputReaderConfigErrors(self): pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_input_reader.add().name = "same_eval_name" pipeline_config.eval_input_reader.add().name = "same_eval_name" _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) with self.assertRaisesRegexp(ValueError, "Duplicate input name found when overriding."): config_util.update_input_reader_config( configs, key_name="eval_input_configs", input_name="same_eval_name", field_name="shuffle", value=False) with self.assertRaisesRegexp( ValueError, "Input name name_not_exist not found when overriding."): config_util.update_input_reader_config( configs, key_name="eval_input_configs", input_name="name_not_exist", field_name="shuffle", value=False) with self.assertRaisesRegexp(ValueError, "Unknown input config overriding."): config_util.update_input_reader_config( configs, key_name="eval_input_configs", input_name=None, field_name="shuffle", value=False) if __name__ == "__main__": tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/config_util_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Numpy BoxList classes and functions.""" import numpy as np class BoxList(object): """Box collection. BoxList represents a list of bounding boxes as numpy array, where each bounding box is represented as a row of 4 numbers, [y_min, x_min, y_max, x_max]. It is assumed that all bounding boxes within a given list correspond to a single image. Optionally, users can add additional related fields (such as objectness/classification scores). """ def __init__(self, data): """Constructs box collection. Args: data: a numpy array of shape [N, 4] representing box coordinates Raises: ValueError: if bbox data is not a numpy array ValueError: if invalid dimensions for bbox data """ if not isinstance(data, np.ndarray): raise ValueError('data must be a numpy array.') if len(data.shape) != 2 or data.shape[1] != 4: raise ValueError('Invalid dimensions for box data.') if data.dtype != np.float32 and data.dtype != np.float64: raise ValueError('Invalid data type for box data: float is required.') if not self._is_valid_boxes(data): raise ValueError('Invalid box data. data must be a numpy array of ' 'N*[y_min, x_min, y_max, x_max]') self.data = {'boxes': data} def num_boxes(self): """Return number of boxes held in collections.""" return self.data['boxes'].shape[0] def get_extra_fields(self): """Return all non-box fields.""" return [k for k in self.data.keys() if k != 'boxes'] def has_field(self, field): return field in self.data def add_field(self, field, field_data): """Add data to a specified field. Args: field: a string parameter used to speficy a related field to be accessed. field_data: a numpy array of [N, ...] representing the data associated with the field. Raises: ValueError: if the field is already exist or the dimension of the field data does not matches the number of boxes. """ if self.has_field(field): raise ValueError('Field ' + field + 'already exists') if len(field_data.shape) < 1 or field_data.shape[0] != self.num_boxes(): raise ValueError('Invalid dimensions for field data') self.data[field] = field_data def get(self): """Convenience function for accesssing box coordinates. Returns: a numpy array of shape [N, 4] representing box corners """ return self.get_field('boxes') def get_field(self, field): """Accesses data associated with the specified field in the box collection. Args: field: a string parameter used to speficy a related field to be accessed. Returns: a numpy 1-d array representing data of an associated field Raises: ValueError: if invalid field """ if not self.has_field(field): raise ValueError('field {} does not exist'.format(field)) return self.data[field] def get_coordinates(self): """Get corner coordinates of boxes. Returns: a list of 4 1-d numpy arrays [y_min, x_min, y_max, x_max] """ box_coordinates = self.get() y_min = box_coordinates[:, 0] x_min = box_coordinates[:, 1] y_max = box_coordinates[:, 2] x_max = box_coordinates[:, 3] return [y_min, x_min, y_max, x_max] def _is_valid_boxes(self, data): """Check whether data fullfills the format of N*[ymin, xmin, ymax, xmin]. Args: data: a numpy array of shape [N, 4] representing box coordinates Returns: a boolean indicating whether all ymax of boxes are equal or greater than ymin, and all xmax of boxes are equal or greater than xmin. """ if data.shape[0] > 0: for i in range(data.shape[0]): if data[i, 0] > data[i, 2] or data[i, 1] > data[i, 3]: return False return True
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/np_box_list.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.object_detection_evaluation.""" from absl.testing import parameterized import numpy as np import tensorflow as tf from object_detection import eval_util from object_detection.core import standard_fields from object_detection.utils import object_detection_evaluation class OpenImagesV2EvaluationTest(tf.test.TestCase): def test_returns_correct_metric_values(self): categories = [{ 'id': 1, 'name': 'cat' }, { 'id': 2, 'name': 'dog' }, { 'id': 3, 'name': 'elephant' }] oiv2_evaluator = object_detection_evaluation.OpenImagesDetectionEvaluator( categories) image_key1 = 'img1' groundtruth_boxes1 = np.array( [[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) oiv2_evaluator.add_single_ground_truth_image_info(image_key1, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels1, standard_fields.InputDataFields.groundtruth_group_of: np.array([], dtype=bool) }) image_key2 = 'img2' groundtruth_boxes2 = np.array( [[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int) groundtruth_is_group_of_list2 = np.array([False, True, False], dtype=bool) oiv2_evaluator.add_single_ground_truth_image_info(image_key2, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels2, standard_fields.InputDataFields.groundtruth_group_of: groundtruth_is_group_of_list2 }) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([2], dtype=int) oiv2_evaluator.add_single_ground_truth_image_info(image_key3, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes3, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels3 }) # Add detections image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([1, 1, 3], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) oiv2_evaluator.add_single_detected_image_info(image_key, { standard_fields.DetectionResultFields.detection_boxes: detected_boxes, standard_fields.DetectionResultFields.detection_scores: detected_scores, standard_fields.DetectionResultFields.detection_classes: detected_class_labels }) metrics = oiv2_evaluator.evaluate() self.assertAlmostEqual( metrics['OpenImagesV2_PerformanceByCategory/[email protected]/dog'], 0.0) self.assertAlmostEqual( metrics['OpenImagesV2_PerformanceByCategory/[email protected]/elephant'], 0.0) self.assertAlmostEqual( metrics['OpenImagesV2_PerformanceByCategory/[email protected]/cat'], 0.16666666) self.assertAlmostEqual(metrics['OpenImagesV2_Precision/[email protected]'], 0.05555555) oiv2_evaluator.clear() self.assertFalse(oiv2_evaluator._image_ids) class OpenImagesDetectionChallengeEvaluatorTest(tf.test.TestCase): def test_returns_correct_metric_values(self): categories = [{ 'id': 1, 'name': 'cat' }, { 'id': 2, 'name': 'dog' }, { 'id': 3, 'name': 'elephant' }] oivchallenge_evaluator = ( object_detection_evaluation.OpenImagesDetectionChallengeEvaluator( categories, group_of_weight=0.5)) image_key = 'img1' groundtruth_boxes = np.array( [[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels = np.array([1, 3, 1], dtype=int) groundtruth_is_group_of_list = np.array([False, False, True], dtype=bool) groundtruth_verified_labels = np.array([1, 2, 3], dtype=int) oivchallenge_evaluator.add_single_ground_truth_image_info( image_key, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels, standard_fields.InputDataFields.groundtruth_group_of: groundtruth_is_group_of_list, standard_fields.InputDataFields.groundtruth_image_classes: groundtruth_verified_labels, }) image_key = 'img2' groundtruth_boxes = np.array( [[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels = np.array([1, 1, 3], dtype=int) groundtruth_is_group_of_list = np.array([False, False, True], dtype=bool) oivchallenge_evaluator.add_single_ground_truth_image_info( image_key, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels, standard_fields.InputDataFields.groundtruth_group_of: groundtruth_is_group_of_list }) image_key = 'img3' groundtruth_boxes = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels = np.array([2], dtype=int) oivchallenge_evaluator.add_single_ground_truth_image_info( image_key, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels }) image_key = 'img1' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120]], dtype=float) detected_class_labels = np.array([2, 2], dtype=int) detected_scores = np.array([0.7, 0.8], dtype=float) oivchallenge_evaluator.add_single_detected_image_info( image_key, { standard_fields.DetectionResultFields.detection_boxes: detected_boxes, standard_fields.DetectionResultFields.detection_scores: detected_scores, standard_fields.DetectionResultFields.detection_classes: detected_class_labels }) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220], [10, 10, 11, 11]], dtype=float) detected_class_labels = np.array([1, 1, 2, 3], dtype=int) detected_scores = np.array([0.7, 0.8, 0.5, 0.9], dtype=float) oivchallenge_evaluator.add_single_detected_image_info( image_key, { standard_fields.DetectionResultFields.detection_boxes: detected_boxes, standard_fields.DetectionResultFields.detection_scores: detected_scores, standard_fields.DetectionResultFields.detection_classes: detected_class_labels }) image_key = 'img3' detected_boxes = np.array([[0, 0, 1, 1]], dtype=float) detected_class_labels = np.array([2], dtype=int) detected_scores = np.array([0.5], dtype=float) oivchallenge_evaluator.add_single_detected_image_info( image_key, { standard_fields.DetectionResultFields.detection_boxes: detected_boxes, standard_fields.DetectionResultFields.detection_scores: detected_scores, standard_fields.DetectionResultFields.detection_classes: detected_class_labels }) metrics = oivchallenge_evaluator.evaluate() self.assertAlmostEqual( metrics['OpenImagesChallenge2018_PerformanceByCategory/[email protected]/dog'], 0.3333333333) self.assertAlmostEqual( metrics[ 'OpenImagesChallenge2018_PerformanceByCategory/[email protected]/elephant'], 0.333333333333) self.assertAlmostEqual( metrics['OpenImagesChallenge2018_PerformanceByCategory/[email protected]/cat'], 0.142857142857) self.assertAlmostEqual( metrics['OpenImagesChallenge2018_Precision/[email protected]'], 0.269841269) oivchallenge_evaluator.clear() self.assertFalse(oivchallenge_evaluator._image_ids) class PascalEvaluationTest(tf.test.TestCase): def test_returns_correct_metric_values_on_boxes(self): categories = [{'id': 1, 'name': 'cat'}, {'id': 2, 'name': 'dog'}, {'id': 3, 'name': 'elephant'}] # Add groundtruth pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator( categories) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) pascal_evaluator.add_single_ground_truth_image_info( image_key1, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels1, standard_fields.InputDataFields.groundtruth_difficult: np.array([], dtype=bool)}) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) pascal_evaluator.add_single_ground_truth_image_info( image_key2, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels2, standard_fields.InputDataFields.groundtruth_difficult: groundtruth_is_difficult_list2}) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([2], dtype=int) pascal_evaluator.add_single_ground_truth_image_info( image_key3, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes3, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels3}) # Add detections image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([1, 1, 3], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) pascal_evaluator.add_single_detected_image_info( image_key, {standard_fields.DetectionResultFields.detection_boxes: detected_boxes, standard_fields.DetectionResultFields.detection_scores: detected_scores, standard_fields.DetectionResultFields.detection_classes: detected_class_labels}) metrics = pascal_evaluator.evaluate() self.assertAlmostEqual( metrics['PascalBoxes_PerformanceByCategory/[email protected]/dog'], 0.0) self.assertAlmostEqual( metrics['PascalBoxes_PerformanceByCategory/[email protected]/elephant'], 0.0) self.assertAlmostEqual( metrics['PascalBoxes_PerformanceByCategory/[email protected]/cat'], 0.16666666) self.assertAlmostEqual(metrics['PascalBoxes_Precision/[email protected]'], 0.05555555) pascal_evaluator.clear() self.assertFalse(pascal_evaluator._image_ids) def test_returns_correct_metric_values_on_masks(self): categories = [{'id': 1, 'name': 'cat'}, {'id': 2, 'name': 'dog'}, {'id': 3, 'name': 'elephant'}] # Add groundtruth pascal_evaluator = ( object_detection_evaluation.PascalInstanceSegmentationEvaluator( categories)) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) groundtruth_masks_1_0 = np.array([[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], dtype=np.uint8) groundtruth_masks_1_1 = np.array([[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]], dtype=np.uint8) groundtruth_masks_1_2 = np.array([[0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]], dtype=np.uint8) groundtruth_masks1 = np.stack( [groundtruth_masks_1_0, groundtruth_masks_1_1, groundtruth_masks_1_2], axis=0) pascal_evaluator.add_single_ground_truth_image_info( image_key1, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, standard_fields.InputDataFields.groundtruth_instance_masks: groundtruth_masks1, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels1, standard_fields.InputDataFields.groundtruth_difficult: np.array([], dtype=bool) }) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_masks_2_0 = np.array([[1, 1, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=np.uint8) groundtruth_masks_2_1 = np.array([[0, 0, 0, 0], [1, 1, 1, 1], [0, 0, 0, 0]], dtype=np.uint8) groundtruth_masks_2_2 = np.array([[0, 0, 0, 0], [0, 0, 0, 0], [1, 1, 1, 1]], dtype=np.uint8) groundtruth_masks2 = np.stack( [groundtruth_masks_2_0, groundtruth_masks_2_1, groundtruth_masks_2_2], axis=0) pascal_evaluator.add_single_ground_truth_image_info( image_key2, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2, standard_fields.InputDataFields.groundtruth_instance_masks: groundtruth_masks2, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels2, standard_fields.InputDataFields.groundtruth_difficult: groundtruth_is_difficult_list2 }) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([2], dtype=int) groundtruth_masks_3_0 = np.array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], dtype=np.uint8) groundtruth_masks3 = np.stack([groundtruth_masks_3_0], axis=0) pascal_evaluator.add_single_ground_truth_image_info( image_key3, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes3, standard_fields.InputDataFields.groundtruth_instance_masks: groundtruth_masks3, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels3 }) # Add detections image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([1, 1, 3], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) detected_masks_0 = np.array([[1, 1, 1, 1], [0, 0, 1, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_1 = np.array([[1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_2 = np.array([[0, 1, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8) detected_masks = np.stack( [detected_masks_0, detected_masks_1, detected_masks_2], axis=0) pascal_evaluator.add_single_detected_image_info( image_key, { standard_fields.DetectionResultFields.detection_boxes: detected_boxes, standard_fields.DetectionResultFields.detection_masks: detected_masks, standard_fields.DetectionResultFields.detection_scores: detected_scores, standard_fields.DetectionResultFields.detection_classes: detected_class_labels }) metrics = pascal_evaluator.evaluate() self.assertAlmostEqual( metrics['PascalMasks_PerformanceByCategory/[email protected]/dog'], 0.0) self.assertAlmostEqual( metrics['PascalMasks_PerformanceByCategory/[email protected]/elephant'], 0.0) self.assertAlmostEqual( metrics['PascalMasks_PerformanceByCategory/[email protected]/cat'], 0.16666666) self.assertAlmostEqual(metrics['PascalMasks_Precision/[email protected]'], 0.05555555) pascal_evaluator.clear() self.assertFalse(pascal_evaluator._image_ids) def test_value_error_on_duplicate_images(self): categories = [{'id': 1, 'name': 'cat'}, {'id': 2, 'name': 'dog'}, {'id': 3, 'name': 'elephant'}] # Add groundtruth pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator( categories) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) pascal_evaluator.add_single_ground_truth_image_info( image_key1, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels1}) with self.assertRaises(ValueError): pascal_evaluator.add_single_ground_truth_image_info( image_key1, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels1}) class WeightedPascalEvaluationTest(tf.test.TestCase): def setUp(self): self.categories = [{'id': 1, 'name': 'cat'}, {'id': 2, 'name': 'dog'}, {'id': 3, 'name': 'elephant'}] def create_and_add_common_ground_truth(self): # Add groundtruth self.wp_eval = ( object_detection_evaluation.WeightedPascalDetectionEvaluator( self.categories)) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) self.wp_eval.add_single_ground_truth_image_info( image_key1, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels1}) # add 'img2' separately image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([2], dtype=int) self.wp_eval.add_single_ground_truth_image_info( image_key3, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes3, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels3}) def add_common_detected(self): image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([1, 1, 3], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.wp_eval.add_single_detected_image_info( image_key, {standard_fields.DetectionResultFields.detection_boxes: detected_boxes, standard_fields.DetectionResultFields.detection_scores: detected_scores, standard_fields.DetectionResultFields.detection_classes: detected_class_labels}) def test_returns_correct_metric_values(self): self.create_and_add_common_ground_truth() image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int) self.wp_eval.add_single_ground_truth_image_info( image_key2, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels2 }) self.add_common_detected() metrics = self.wp_eval.evaluate() self.assertAlmostEqual( metrics[self.wp_eval._metric_prefix + 'PerformanceByCategory/[email protected]/dog'], 0.0) self.assertAlmostEqual( metrics[self.wp_eval._metric_prefix + 'PerformanceByCategory/[email protected]/elephant'], 0.0) self.assertAlmostEqual( metrics[self.wp_eval._metric_prefix + 'PerformanceByCategory/[email protected]/cat'], 0.5 / 4) self.assertAlmostEqual(metrics[self.wp_eval._metric_prefix + 'Precision/[email protected]'], 1. / (4 + 1 + 2) / 3) self.wp_eval.clear() self.assertFalse(self.wp_eval._image_ids) def test_returns_correct_metric_values_with_difficult_list(self): self.create_and_add_common_ground_truth() image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) self.wp_eval.add_single_ground_truth_image_info( image_key2, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels2, standard_fields.InputDataFields.groundtruth_difficult: groundtruth_is_difficult_list2 }) self.add_common_detected() metrics = self.wp_eval.evaluate() self.assertAlmostEqual( metrics[self.wp_eval._metric_prefix + 'PerformanceByCategory/[email protected]/dog'], 0.0) self.assertAlmostEqual( metrics[self.wp_eval._metric_prefix + 'PerformanceByCategory/[email protected]/elephant'], 0.0) self.assertAlmostEqual( metrics[self.wp_eval._metric_prefix + 'PerformanceByCategory/[email protected]/cat'], 0.5 / 3) self.assertAlmostEqual(metrics[self.wp_eval._metric_prefix + 'Precision/[email protected]'], 1. / (3 + 1 + 2) / 3) self.wp_eval.clear() self.assertFalse(self.wp_eval._image_ids) def test_value_error_on_duplicate_images(self): # Add groundtruth self.wp_eval = ( object_detection_evaluation.WeightedPascalDetectionEvaluator( self.categories)) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int) self.wp_eval.add_single_ground_truth_image_info( image_key1, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels1}) with self.assertRaises(ValueError): self.wp_eval.add_single_ground_truth_image_info( image_key1, {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_labels1}) class ObjectDetectionEvaluationTest(tf.test.TestCase): def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels) def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0) def test_add_single_ground_truth_image_info(self): expected_num_gt_instances_per_class = np.array([3, 1, 1], dtype=int) expected_num_gt_imgs_per_class = np.array([2, 1, 2], dtype=int) self.assertTrue(np.array_equal(expected_num_gt_instances_per_class, self.od_eval.num_gt_instances_per_class)) self.assertTrue(np.array_equal(expected_num_gt_imgs_per_class, self.od_eval.num_gt_imgs_per_class)) groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) self.assertTrue(np.allclose(self.od_eval.groundtruth_boxes['img2'], groundtruth_boxes2)) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) self.assertTrue(np.allclose( self.od_eval.groundtruth_is_difficult_list['img2'], groundtruth_is_difficult_list2)) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.assertTrue( np.allclose(self.od_eval.groundtruth_is_group_of_list['img2'], groundtruth_is_group_of_list2)) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.assertTrue(np.array_equal(self.od_eval.groundtruth_class_labels[ 'img1'], groundtruth_class_labels1)) def test_add_single_detected_image_info(self): expected_scores_per_class = [[np.array([0.8, 0.7], dtype=float)], [], [np.array([0.9], dtype=float)]] expected_tp_fp_labels_per_class = [[np.array([0, 1], dtype=bool)], [], [np.array([0], dtype=bool)]] expected_num_images_correctly_detected_per_class = np.array([0, 0, 0], dtype=int) for i in range(self.od_eval.num_class): for j in range(len(expected_scores_per_class[i])): self.assertTrue(np.allclose(expected_scores_per_class[i][j], self.od_eval.scores_per_class[i][j])) self.assertTrue(np.array_equal(expected_tp_fp_labels_per_class[i][ j], self.od_eval.tp_fp_labels_per_class[i][j])) self.assertTrue(np.array_equal( expected_num_images_correctly_detected_per_class, self.od_eval.num_images_correctly_detected_per_class)) def test_evaluate(self): (average_precision_per_class, mean_ap, precisions_per_class, recalls_per_class, corloc_per_class, mean_corloc) = self.od_eval.evaluate() expected_precisions_per_class = [np.array([0, 0.5], dtype=float), np.array([], dtype=float), np.array([0], dtype=float)] expected_recalls_per_class = [ np.array([0, 1. / 3.], dtype=float), np.array([], dtype=float), np.array([0], dtype=float) ] expected_average_precision_per_class = np.array([1. / 6., 0, 0], dtype=float) expected_corloc_per_class = np.array([0, np.divide(0, 0), 0], dtype=float) expected_mean_ap = 1. / 18 expected_mean_corloc = 0.0 for i in range(self.od_eval.num_class): self.assertTrue(np.allclose(expected_precisions_per_class[i], precisions_per_class[i])) self.assertTrue(np.allclose(expected_recalls_per_class[i], recalls_per_class[i])) self.assertTrue(np.allclose(expected_average_precision_per_class, average_precision_per_class)) self.assertTrue(np.allclose(expected_corloc_per_class, corloc_per_class)) self.assertAlmostEqual(expected_mean_ap, mean_ap) self.assertAlmostEqual(expected_mean_corloc, mean_corloc) class ObjectDetectionEvaluatorTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): self.categories = [{ 'id': 1, 'name': 'person' }, { 'id': 2, 'name': 'dog' }, { 'id': 3, 'name': 'cat' }] self.od_eval = object_detection_evaluation.ObjectDetectionEvaluator( categories=self.categories) def _make_evaluation_dict(self, resized_groundtruth_masks=False, batch_size=1, max_gt_boxes=None, scale_to_absolute=False): input_data_fields = standard_fields.InputDataFields detection_fields = standard_fields.DetectionResultFields image = tf.zeros(shape=[batch_size, 20, 20, 3], dtype=tf.uint8) if batch_size == 1: key = tf.constant('image1') else: key = tf.constant([str(i) for i in range(batch_size)]) detection_boxes = tf.concat([ tf.tile( tf.constant([[[0., 0., 1., 1.]]]), multiples=[batch_size - 1, 1, 1 ]), tf.constant([[[0., 0., 0.5, 0.5]]]) ], axis=0) detection_scores = tf.concat([ tf.tile(tf.constant([[0.5]]), multiples=[batch_size - 1, 1]), tf.constant([[0.8]]) ], axis=0) detection_classes = tf.tile(tf.constant([[0]]), multiples=[batch_size, 1]) detection_masks = tf.tile( tf.ones(shape=[1, 2, 20, 20], dtype=tf.float32), multiples=[batch_size, 1, 1, 1]) groundtruth_boxes = tf.constant([[0., 0., 1., 1.]]) groundtruth_classes = tf.constant([1]) groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8) num_detections = tf.ones([batch_size]) if resized_groundtruth_masks: groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8) if batch_size > 1: groundtruth_boxes = tf.tile( tf.expand_dims(groundtruth_boxes, 0), multiples=[batch_size, 1, 1]) groundtruth_classes = tf.tile( tf.expand_dims(groundtruth_classes, 0), multiples=[batch_size, 1]) groundtruth_instance_masks = tf.tile( tf.expand_dims(groundtruth_instance_masks, 0), multiples=[batch_size, 1, 1, 1]) detections = { detection_fields.detection_boxes: detection_boxes, detection_fields.detection_scores: detection_scores, detection_fields.detection_classes: detection_classes, detection_fields.detection_masks: detection_masks, detection_fields.num_detections: num_detections } groundtruth = { input_data_fields.groundtruth_boxes: groundtruth_boxes, input_data_fields.groundtruth_classes: groundtruth_classes, input_data_fields.groundtruth_instance_masks: groundtruth_instance_masks, } if batch_size > 1: return eval_util.result_dict_for_batched_example( image, key, detections, groundtruth, scale_to_absolute=scale_to_absolute, max_gt_boxes=max_gt_boxes) else: return eval_util.result_dict_for_single_example( image, key, detections, groundtruth, scale_to_absolute=scale_to_absolute) @parameterized.parameters({ 'batch_size': 1, 'expected_map': 0, 'max_gt_boxes': None, 'scale_to_absolute': True }, { 'batch_size': 8, 'expected_map': 0.765625, 'max_gt_boxes': [1], 'scale_to_absolute': True }, { 'batch_size': 1, 'expected_map': 0, 'max_gt_boxes': None, 'scale_to_absolute': False }, { 'batch_size': 8, 'expected_map': 0.765625, 'max_gt_boxes': [1], 'scale_to_absolute': False }) def test_get_estimator_eval_metric_ops(self, batch_size=1, expected_map=1, max_gt_boxes=None, scale_to_absolute=False): eval_dict = self._make_evaluation_dict( batch_size=batch_size, max_gt_boxes=max_gt_boxes, scale_to_absolute=scale_to_absolute) tf.logging.info('eval_dict: {}'.format(eval_dict)) metric_ops = self.od_eval.get_estimator_eval_metric_ops(eval_dict) _, update_op = metric_ops['Precision/[email protected]'] with self.test_session() as sess: metrics = {} for key, (value_op, _) in metric_ops.iteritems(): metrics[key] = value_op sess.run(update_op) metrics = sess.run(metrics) self.assertAlmostEqual(expected_map, metrics['Precision/[email protected]']) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/object_detection_evaluation_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.dataset_util.""" import os import tensorflow as tf from object_detection.utils import dataset_util class DatasetUtilTest(tf.test.TestCase): def test_read_examples_list(self): example_list_data = """example1 1\nexample2 2""" example_list_path = os.path.join(self.get_temp_dir(), 'examples.txt') with tf.gfile.Open(example_list_path, 'wb') as f: f.write(example_list_data) examples = dataset_util.read_examples_list(example_list_path) self.assertListEqual(['example1', 'example2'], examples) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/dataset_util_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils used to manipulate tensor shapes.""" import tensorflow as tf from object_detection.utils import static_shape def _is_tensor(t): """Returns a boolean indicating whether the input is a tensor. Args: t: the input to be tested. Returns: a boolean that indicates whether t is a tensor. """ return isinstance(t, (tf.Tensor, tf.SparseTensor, tf.Variable)) def _set_dim_0(t, d0): """Sets the 0-th dimension of the input tensor. Args: t: the input tensor, assuming the rank is at least 1. d0: an integer indicating the 0-th dimension of the input tensor. Returns: the tensor t with the 0-th dimension set. """ t_shape = t.get_shape().as_list() t_shape[0] = d0 t.set_shape(t_shape) return t def pad_tensor(t, length): """Pads the input tensor with 0s along the first dimension up to the length. Args: t: the input tensor, assuming the rank is at least 1. length: a tensor of shape [1] or an integer, indicating the first dimension of the input tensor t after padding, assuming length <= t.shape[0]. Returns: padded_t: the padded tensor, whose first dimension is length. If the length is an integer, the first dimension of padded_t is set to length statically. """ t_rank = tf.rank(t) t_shape = tf.shape(t) t_d0 = t_shape[0] pad_d0 = tf.expand_dims(length - t_d0, 0) pad_shape = tf.cond( tf.greater(t_rank, 1), lambda: tf.concat([pad_d0, t_shape[1:]], 0), lambda: tf.expand_dims(length - t_d0, 0)) padded_t = tf.concat([t, tf.zeros(pad_shape, dtype=t.dtype)], 0) if not _is_tensor(length): padded_t = _set_dim_0(padded_t, length) return padded_t def clip_tensor(t, length): """Clips the input tensor along the first dimension up to the length. Args: t: the input tensor, assuming the rank is at least 1. length: a tensor of shape [1] or an integer, indicating the first dimension of the input tensor t after clipping, assuming length <= t.shape[0]. Returns: clipped_t: the clipped tensor, whose first dimension is length. If the length is an integer, the first dimension of clipped_t is set to length statically. """ clipped_t = tf.gather(t, tf.range(length)) if not _is_tensor(length): clipped_t = _set_dim_0(clipped_t, length) return clipped_t def pad_or_clip_tensor(t, length): """Pad or clip the input tensor along the first dimension. Args: t: the input tensor, assuming the rank is at least 1. length: a tensor of shape [1] or an integer, indicating the first dimension of the input tensor t after processing. Returns: processed_t: the processed tensor, whose first dimension is length. If the length is an integer, the first dimension of the processed tensor is set to length statically. """ return pad_or_clip_nd(t, [length] + t.shape.as_list()[1:]) def pad_or_clip_nd(tensor, output_shape): """Pad or Clip given tensor to the output shape. Args: tensor: Input tensor to pad or clip. output_shape: A list of integers / scalar tensors (or None for dynamic dim) representing the size to pad or clip each dimension of the input tensor. Returns: Input tensor padded and clipped to the output shape. """ tensor_shape = tf.shape(tensor) clip_size = [ tf.where(tensor_shape[i] - shape > 0, shape, -1) if shape is not None else -1 for i, shape in enumerate(output_shape) ] clipped_tensor = tf.slice( tensor, begin=tf.zeros(len(clip_size), dtype=tf.int32), size=clip_size) # Pad tensor if the shape of clipped tensor is smaller than the expected # shape. clipped_tensor_shape = tf.shape(clipped_tensor) trailing_paddings = [ shape - clipped_tensor_shape[i] if shape is not None else 0 for i, shape in enumerate(output_shape) ] paddings = tf.stack( [ tf.zeros(len(trailing_paddings), dtype=tf.int32), trailing_paddings ], axis=1) padded_tensor = tf.pad(clipped_tensor, paddings=paddings) output_static_shape = [ dim if not isinstance(dim, tf.Tensor) else None for dim in output_shape ] padded_tensor.set_shape(output_static_shape) return padded_tensor def combined_static_and_dynamic_shape(tensor): """Returns a list containing static and dynamic values for the dimensions. Returns a list of static and dynamic values for shape dimensions. This is useful to preserve static shapes when available in reshape operation. Args: tensor: A tensor of any type. Returns: A list of size tensor.shape.ndims containing integers or a scalar tensor. """ static_tensor_shape = tensor.shape.as_list() dynamic_tensor_shape = tf.shape(tensor) combined_shape = [] for index, dim in enumerate(static_tensor_shape): if dim is not None: combined_shape.append(dim) else: combined_shape.append(dynamic_tensor_shape[index]) return combined_shape def static_or_dynamic_map_fn(fn, elems, dtype=None, parallel_iterations=32, back_prop=True): """Runs map_fn as a (static) for loop when possible. This function rewrites the map_fn as an explicit unstack input -> for loop over function calls -> stack result combination. This allows our graphs to be acyclic when the batch size is static. For comparison, see https://www.tensorflow.org/api_docs/python/tf/map_fn. Note that `static_or_dynamic_map_fn` currently is not *fully* interchangeable with the default tf.map_fn function as it does not accept nested inputs (only Tensors or lists of Tensors). Likewise, the output of `fn` can only be a Tensor or list of Tensors. TODO(jonathanhuang): make this function fully interchangeable with tf.map_fn. Args: fn: The callable to be performed. It accepts one argument, which will have the same structure as elems. Its output must have the same structure as elems. elems: A tensor or list of tensors, each of which will be unpacked along their first dimension. The sequence of the resulting slices will be applied to fn. dtype: (optional) The output type(s) of fn. If fn returns a structure of Tensors differing from the structure of elems, then dtype is not optional and must have the same structure as the output of fn. parallel_iterations: (optional) number of batch items to process in parallel. This flag is only used if the native tf.map_fn is used and defaults to 32 instead of 10 (unlike the standard tf.map_fn default). back_prop: (optional) True enables support for back propagation. This flag is only used if the native tf.map_fn is used. Returns: A tensor or sequence of tensors. Each tensor packs the results of applying fn to tensors unpacked from elems along the first dimension, from first to last. Raises: ValueError: if `elems` a Tensor or a list of Tensors. ValueError: if `fn` does not return a Tensor or list of Tensors """ if isinstance(elems, list): for elem in elems: if not isinstance(elem, tf.Tensor): raise ValueError('`elems` must be a Tensor or list of Tensors.') elem_shapes = [elem.shape.as_list() for elem in elems] # Fall back on tf.map_fn if shapes of each entry of `elems` are None or fail # to all be the same size along the batch dimension. for elem_shape in elem_shapes: if (not elem_shape or not elem_shape[0] or elem_shape[0] != elem_shapes[0][0]): return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop) arg_tuples = zip(*[tf.unstack(elem) for elem in elems]) outputs = [fn(arg_tuple) for arg_tuple in arg_tuples] else: if not isinstance(elems, tf.Tensor): raise ValueError('`elems` must be a Tensor or list of Tensors.') elems_shape = elems.shape.as_list() if not elems_shape or not elems_shape[0]: return tf.map_fn(fn, elems, dtype, parallel_iterations, back_prop) outputs = [fn(arg) for arg in tf.unstack(elems)] # Stack `outputs`, which is a list of Tensors or list of lists of Tensors if all([isinstance(output, tf.Tensor) for output in outputs]): return tf.stack(outputs) else: if all([isinstance(output, list) for output in outputs]): if all([all( [isinstance(entry, tf.Tensor) for entry in output_list]) for output_list in outputs]): return [tf.stack(output_tuple) for output_tuple in zip(*outputs)] raise ValueError('`fn` should return a Tensor or a list of Tensors.') def check_min_image_dim(min_dim, image_tensor): """Checks that the image width/height are greater than some number. This function is used to check that the width and height of an image are above a certain value. If the image shape is static, this function will perform the check at graph construction time. Otherwise, if the image shape varies, an Assertion control dependency will be added to the graph. Args: min_dim: The minimum number of pixels along the width and height of the image. image_tensor: The image tensor to check size for. Returns: If `image_tensor` has dynamic size, return `image_tensor` with a Assert control dependency. Otherwise returns image_tensor. Raises: ValueError: if `image_tensor`'s' width or height is smaller than `min_dim`. """ image_shape = image_tensor.get_shape() image_height = static_shape.get_height(image_shape) image_width = static_shape.get_width(image_shape) if image_height is None or image_width is None: shape_assert = tf.Assert( tf.logical_and(tf.greater_equal(tf.shape(image_tensor)[1], min_dim), tf.greater_equal(tf.shape(image_tensor)[2], min_dim)), ['image size must be >= {} in both height and width.'.format(min_dim)]) with tf.control_dependencies([shape_assert]): return tf.identity(image_tensor) if image_height < min_dim or image_width < min_dim: raise ValueError( 'image size must be >= %d in both height and width; image dim = %d,%d' % (min_dim, image_height, image_width)) return image_tensor def assert_shape_equal(shape_a, shape_b): """Asserts that shape_a and shape_b are equal. If the shapes are static, raises a ValueError when the shapes mismatch. If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes mismatch. Args: shape_a: a list containing shape of the first tensor. shape_b: a list containing shape of the second tensor. Returns: Either a tf.no_op() when shapes are all static and a tf.assert_equal() op when the shapes are dynamic. Raises: ValueError: When shapes are both static and unequal. """ if (all(isinstance(dim, int) for dim in shape_a) and all(isinstance(dim, int) for dim in shape_b)): if shape_a != shape_b: raise ValueError('Unequal shapes {}, {}'.format(shape_a, shape_b)) else: return tf.no_op() else: return tf.assert_equal(shape_a, shape_b) def assert_shape_equal_along_first_dimension(shape_a, shape_b): """Asserts that shape_a and shape_b are the same along the 0th-dimension. If the shapes are static, raises a ValueError when the shapes mismatch. If the shapes are dynamic, raises a tf InvalidArgumentError when the shapes mismatch. Args: shape_a: a list containing shape of the first tensor. shape_b: a list containing shape of the second tensor. Returns: Either a tf.no_op() when shapes are all static and a tf.assert_equal() op when the shapes are dynamic. Raises: ValueError: When shapes are both static and unequal. """ if isinstance(shape_a[0], int) and isinstance(shape_b[0], int): if shape_a[0] != shape_b[0]: raise ValueError('Unequal first dimension {}, {}'.format( shape_a[0], shape_b[0])) else: return tf.no_op() else: return tf.assert_equal(shape_a[0], shape_b[0]) def assert_box_normalized(boxes, maximum_normalized_coordinate=1.1): """Asserts the input box tensor is normalized. Args: boxes: a tensor of shape [N, 4] where N is the number of boxes. maximum_normalized_coordinate: Maximum coordinate value to be considered as normalized, default to 1.1. Returns: a tf.Assert op which fails when the input box tensor is not normalized. Raises: ValueError: When the input box tensor is not normalized. """ box_minimum = tf.reduce_min(boxes) box_maximum = tf.reduce_max(boxes) return tf.Assert( tf.logical_and( tf.less_equal(box_maximum, maximum_normalized_coordinate), tf.greater_equal(box_minimum, 0)), [boxes])
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/shape_utils.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.variables_helper.""" import os import tensorflow as tf from object_detection.utils import variables_helper class FilterVariablesTest(tf.test.TestCase): def _create_variables(self): return [tf.Variable(1.0, name='FeatureExtractor/InceptionV3/weights'), tf.Variable(1.0, name='FeatureExtractor/InceptionV3/biases'), tf.Variable(1.0, name='StackProposalGenerator/weights'), tf.Variable(1.0, name='StackProposalGenerator/biases')] def test_return_all_variables_when_empty_regex(self): variables = self._create_variables() out_variables = variables_helper.filter_variables(variables, ['']) self.assertItemsEqual(out_variables, variables) def test_return_variables_which_do_not_match_single_regex(self): variables = self._create_variables() out_variables = variables_helper.filter_variables(variables, ['FeatureExtractor/.*']) self.assertItemsEqual(out_variables, variables[2:]) def test_return_variables_which_do_not_match_any_regex_in_list(self): variables = self._create_variables() out_variables = variables_helper.filter_variables(variables, [ 'FeatureExtractor.*biases', 'StackProposalGenerator.*biases' ]) self.assertItemsEqual(out_variables, [variables[0], variables[2]]) def test_return_variables_matching_empty_regex_list(self): variables = self._create_variables() out_variables = variables_helper.filter_variables( variables, [''], invert=True) self.assertItemsEqual(out_variables, []) def test_return_variables_matching_some_regex_in_list(self): variables = self._create_variables() out_variables = variables_helper.filter_variables( variables, ['FeatureExtractor.*biases', 'StackProposalGenerator.*biases'], invert=True) self.assertItemsEqual(out_variables, [variables[1], variables[3]]) class MultiplyGradientsMatchingRegexTest(tf.test.TestCase): def _create_grads_and_vars(self): return [(tf.constant(1.0), tf.Variable(1.0, name='FeatureExtractor/InceptionV3/weights')), (tf.constant(2.0), tf.Variable(2.0, name='FeatureExtractor/InceptionV3/biases')), (tf.constant(3.0), tf.Variable(3.0, name='StackProposalGenerator/weights')), (tf.constant(4.0), tf.Variable(4.0, name='StackProposalGenerator/biases'))] def test_multiply_all_feature_extractor_variables(self): grads_and_vars = self._create_grads_and_vars() regex_list = ['FeatureExtractor/.*'] multiplier = 0.0 grads_and_vars = variables_helper.multiply_gradients_matching_regex( grads_and_vars, regex_list, multiplier) exp_output = [(0.0, 1.0), (0.0, 2.0), (3.0, 3.0), (4.0, 4.0)] init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) output = sess.run(grads_and_vars) self.assertItemsEqual(output, exp_output) def test_multiply_all_bias_variables(self): grads_and_vars = self._create_grads_and_vars() regex_list = ['.*/biases'] multiplier = 0.0 grads_and_vars = variables_helper.multiply_gradients_matching_regex( grads_and_vars, regex_list, multiplier) exp_output = [(1.0, 1.0), (0.0, 2.0), (3.0, 3.0), (0.0, 4.0)] init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) output = sess.run(grads_and_vars) self.assertItemsEqual(output, exp_output) class FreezeGradientsMatchingRegexTest(tf.test.TestCase): def _create_grads_and_vars(self): return [(tf.constant(1.0), tf.Variable(1.0, name='FeatureExtractor/InceptionV3/weights')), (tf.constant(2.0), tf.Variable(2.0, name='FeatureExtractor/InceptionV3/biases')), (tf.constant(3.0), tf.Variable(3.0, name='StackProposalGenerator/weights')), (tf.constant(4.0), tf.Variable(4.0, name='StackProposalGenerator/biases'))] def test_freeze_all_feature_extractor_variables(self): grads_and_vars = self._create_grads_and_vars() regex_list = ['FeatureExtractor/.*'] grads_and_vars = variables_helper.freeze_gradients_matching_regex( grads_and_vars, regex_list) exp_output = [(3.0, 3.0), (4.0, 4.0)] init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) output = sess.run(grads_and_vars) self.assertItemsEqual(output, exp_output) class GetVariablesAvailableInCheckpointTest(tf.test.TestCase): def test_return_all_variables_from_checkpoint(self): with tf.Graph().as_default(): variables = [ tf.Variable(1.0, name='weights'), tf.Variable(1.0, name='biases') ] checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt') init_op = tf.global_variables_initializer() saver = tf.train.Saver(variables) with self.test_session() as sess: sess.run(init_op) saver.save(sess, checkpoint_path) out_variables = variables_helper.get_variables_available_in_checkpoint( variables, checkpoint_path) self.assertItemsEqual(out_variables, variables) def test_return_variables_available_in_checkpoint(self): checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt') with tf.Graph().as_default(): weight_variable = tf.Variable(1.0, name='weights') global_step = tf.train.get_or_create_global_step() graph1_variables = [ weight_variable, global_step ] init_op = tf.global_variables_initializer() saver = tf.train.Saver(graph1_variables) with self.test_session() as sess: sess.run(init_op) saver.save(sess, checkpoint_path) with tf.Graph().as_default(): graph2_variables = graph1_variables + [tf.Variable(1.0, name='biases')] out_variables = variables_helper.get_variables_available_in_checkpoint( graph2_variables, checkpoint_path, include_global_step=False) self.assertItemsEqual(out_variables, [weight_variable]) def test_return_variables_available_an_checkpoint_with_dict_inputs(self): checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt') with tf.Graph().as_default(): graph1_variables = [ tf.Variable(1.0, name='ckpt_weights'), ] init_op = tf.global_variables_initializer() saver = tf.train.Saver(graph1_variables) with self.test_session() as sess: sess.run(init_op) saver.save(sess, checkpoint_path) with tf.Graph().as_default(): graph2_variables_dict = { 'ckpt_weights': tf.Variable(1.0, name='weights'), 'ckpt_biases': tf.Variable(1.0, name='biases') } out_variables = variables_helper.get_variables_available_in_checkpoint( graph2_variables_dict, checkpoint_path) self.assertTrue(isinstance(out_variables, dict)) self.assertItemsEqual(out_variables.keys(), ['ckpt_weights']) self.assertTrue(out_variables['ckpt_weights'].op.name == 'weights') def test_return_variables_with_correct_sizes(self): checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt') with tf.Graph().as_default(): bias_variable = tf.Variable(3.0, name='biases') global_step = tf.train.get_or_create_global_step() graph1_variables = [ tf.Variable([[1.0, 2.0], [3.0, 4.0]], name='weights'), bias_variable, global_step ] init_op = tf.global_variables_initializer() saver = tf.train.Saver(graph1_variables) with self.test_session() as sess: sess.run(init_op) saver.save(sess, checkpoint_path) with tf.Graph().as_default(): graph2_variables = [ tf.Variable([1.0, 2.0], name='weights'), # New variable shape. bias_variable, global_step ] out_variables = variables_helper.get_variables_available_in_checkpoint( graph2_variables, checkpoint_path, include_global_step=True) self.assertItemsEqual(out_variables, [bias_variable, global_step]) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/variables_helper_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Numpy BoxMaskList classes and functions.""" import numpy as np from object_detection.utils import np_box_list class BoxMaskList(np_box_list.BoxList): """Convenience wrapper for BoxList with masks. BoxMaskList extends the np_box_list.BoxList to contain masks as well. In particular, its constructor receives both boxes and masks. Note that the masks correspond to the full image. """ def __init__(self, box_data, mask_data): """Constructs box collection. Args: box_data: a numpy array of shape [N, 4] representing box coordinates mask_data: a numpy array of shape [N, height, width] representing masks with values are in {0,1}. The masks correspond to the full image. The height and the width will be equal to image height and width. Raises: ValueError: if bbox data is not a numpy array ValueError: if invalid dimensions for bbox data ValueError: if mask data is not a numpy array ValueError: if invalid dimension for mask data """ super(BoxMaskList, self).__init__(box_data) if not isinstance(mask_data, np.ndarray): raise ValueError('Mask data must be a numpy array.') if len(mask_data.shape) != 3: raise ValueError('Invalid dimensions for mask data.') if mask_data.dtype != np.uint8: raise ValueError('Invalid data type for mask data: uint8 is required.') if mask_data.shape[0] != box_data.shape[0]: raise ValueError('There should be the same number of boxes and masks.') self.data['masks'] = mask_data def get_masks(self): """Convenience function for accessing masks. Returns: a numpy array of shape [N, height, width] representing masks """ return self.get_field('masks')
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/np_box_mask_list.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.static_shape.""" import tensorflow as tf from object_detection.utils import static_shape class StaticShapeTest(tf.test.TestCase): def test_return_correct_batchSize(self): tensor_shape = tf.TensorShape(dims=[32, 299, 384, 3]) self.assertEqual(32, static_shape.get_batch_size(tensor_shape)) def test_return_correct_height(self): tensor_shape = tf.TensorShape(dims=[32, 299, 384, 3]) self.assertEqual(299, static_shape.get_height(tensor_shape)) def test_return_correct_width(self): tensor_shape = tf.TensorShape(dims=[32, 299, 384, 3]) self.assertEqual(384, static_shape.get_width(tensor_shape)) def test_return_correct_depth(self): tensor_shape = tf.TensorShape(dims=[32, 299, 384, 3]) self.assertEqual(3, static_shape.get_depth(tensor_shape)) def test_die_on_tensor_shape_with_rank_three(self): tensor_shape = tf.TensorShape(dims=[32, 299, 384]) with self.assertRaises(ValueError): static_shape.get_batch_size(tensor_shape) static_shape.get_height(tensor_shape) static_shape.get_width(tensor_shape) static_shape.get_depth(tensor_shape) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/static_shape_test.py
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.metrics.""" import numpy as np import tensorflow as tf from object_detection.utils import metrics class MetricsTest(tf.test.TestCase): def test_compute_cor_loc(self): num_gt_imgs_per_class = np.array([100, 1, 5, 1, 1], dtype=int) num_images_correctly_detected_per_class = np.array( [10, 0, 1, 0, 0], dtype=int) corloc = metrics.compute_cor_loc(num_gt_imgs_per_class, num_images_correctly_detected_per_class) expected_corloc = np.array([0.1, 0, 0.2, 0, 0], dtype=float) self.assertTrue(np.allclose(corloc, expected_corloc)) def test_compute_cor_loc_nans(self): num_gt_imgs_per_class = np.array([100, 0, 0, 1, 1], dtype=int) num_images_correctly_detected_per_class = np.array( [10, 0, 1, 0, 0], dtype=int) corloc = metrics.compute_cor_loc(num_gt_imgs_per_class, num_images_correctly_detected_per_class) expected_corloc = np.array([0.1, np.nan, np.nan, 0, 0], dtype=float) self.assertAllClose(corloc, expected_corloc) def test_compute_precision_recall(self): num_gt = 10 scores = np.array([0.4, 0.3, 0.6, 0.2, 0.7, 0.1], dtype=float) labels = np.array([0, 1, 1, 0, 0, 1], dtype=bool) labels_float_type = np.array([0, 1, 1, 0, 0, 1], dtype=float) accumulated_tp_count = np.array([0, 1, 1, 2, 2, 3], dtype=float) expected_precision = accumulated_tp_count / np.array([1, 2, 3, 4, 5, 6]) expected_recall = accumulated_tp_count / num_gt precision, recall = metrics.compute_precision_recall(scores, labels, num_gt) precision_float_type, recall_float_type = metrics.compute_precision_recall( scores, labels_float_type, num_gt) self.assertAllClose(precision, expected_precision) self.assertAllClose(recall, expected_recall) self.assertAllClose(precision_float_type, expected_precision) self.assertAllClose(recall_float_type, expected_recall) def test_compute_precision_recall_float(self): num_gt = 10 scores = np.array([0.4, 0.3, 0.6, 0.2, 0.7, 0.1], dtype=float) labels_float = np.array([0, 1, 1, 0.5, 0, 1], dtype=float) expected_precision = np.array( [0., 0.5, 0.33333333, 0.5, 0.55555556, 0.63636364], dtype=float) expected_recall = np.array([0., 0.1, 0.1, 0.2, 0.25, 0.35], dtype=float) precision, recall = metrics.compute_precision_recall( scores, labels_float, num_gt) self.assertAllClose(precision, expected_precision) self.assertAllClose(recall, expected_recall) def test_compute_average_precision(self): precision = np.array([0.8, 0.76, 0.9, 0.65, 0.7, 0.5, 0.55, 0], dtype=float) recall = np.array([0.3, 0.3, 0.4, 0.4, 0.45, 0.45, 0.5, 0.5], dtype=float) processed_precision = np.array( [0.9, 0.9, 0.9, 0.7, 0.7, 0.55, 0.55, 0], dtype=float) recall_interval = np.array([0.3, 0, 0.1, 0, 0.05, 0, 0.05, 0], dtype=float) expected_mean_ap = np.sum(recall_interval * processed_precision) mean_ap = metrics.compute_average_precision(precision, recall) self.assertAlmostEqual(expected_mean_ap, mean_ap) def test_compute_precision_recall_and_ap_no_groundtruth(self): num_gt = 0 scores = np.array([0.4, 0.3, 0.6, 0.2, 0.7, 0.1], dtype=float) labels = np.array([0, 0, 0, 0, 0, 0], dtype=bool) expected_precision = None expected_recall = None precision, recall = metrics.compute_precision_recall(scores, labels, num_gt) self.assertEquals(precision, expected_precision) self.assertEquals(recall, expected_recall) ap = metrics.compute_average_precision(precision, recall) self.assertTrue(np.isnan(ap)) def test_compute_recall_at_k(self): num_gt = 4 tp_fp = [ np.array([1, 0, 0], dtype=float), np.array([0, 1], dtype=float), np.array([0, 0, 0, 0, 0], dtype=float) ] tp_fp_bool = [ np.array([True, False, False], dtype=bool), np.array([False, True], dtype=float), np.array([False, False, False, False, False], dtype=float) ] recall_1 = metrics.compute_recall_at_k(tp_fp, num_gt, 1) recall_3 = metrics.compute_recall_at_k(tp_fp, num_gt, 3) recall_5 = metrics.compute_recall_at_k(tp_fp, num_gt, 5) recall_3_bool = metrics.compute_recall_at_k(tp_fp_bool, num_gt, 3) self.assertAlmostEqual(recall_1, 0.25) self.assertAlmostEqual(recall_3, 0.5) self.assertAlmostEqual(recall_3_bool, 0.5) self.assertAlmostEqual(recall_5, 0.5) def test_compute_median_rank_at_k(self): tp_fp = [ np.array([1, 0, 0], dtype=float), np.array([0, 0.1], dtype=float), np.array([0, 0, 0, 0, 0], dtype=float) ] tp_fp_bool = [ np.array([True, False, False], dtype=bool), np.array([False, True], dtype=float), np.array([False, False, False, False, False], dtype=float) ] median_ranks_1 = metrics.compute_median_rank_at_k(tp_fp, 1) median_ranks_3 = metrics.compute_median_rank_at_k(tp_fp, 3) median_ranks_5 = metrics.compute_median_rank_at_k(tp_fp, 5) median_ranks_3_bool = metrics.compute_median_rank_at_k(tp_fp_bool, 3) self.assertEquals(median_ranks_1, 0) self.assertEquals(median_ranks_3, 0.5) self.assertEquals(median_ranks_3_bool, 0.5) self.assertEquals(median_ranks_5, 0.5) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/metrics_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for google3.image.understanding.object_detection.utils.json_utils.""" import os import tensorflow as tf from object_detection.utils import json_utils class JsonUtilsTest(tf.test.TestCase): def testDumpReasonablePrecision(self): output_path = os.path.join(tf.test.get_temp_dir(), 'test.json') with tf.gfile.GFile(output_path, 'w') as f: json_utils.Dump(1.0, f, float_digits=2) with tf.gfile.GFile(output_path, 'r') as f: self.assertEqual(f.read(), '1.00') def testDumpPassExtraParams(self): output_path = os.path.join(tf.test.get_temp_dir(), 'test.json') with tf.gfile.GFile(output_path, 'w') as f: json_utils.Dump([1.0], f, float_digits=2, indent=3) with tf.gfile.GFile(output_path, 'r') as f: self.assertEqual(f.read(), '[\n 1.00\n]') def testDumpZeroPrecision(self): output_path = os.path.join(tf.test.get_temp_dir(), 'test.json') with tf.gfile.GFile(output_path, 'w') as f: json_utils.Dump(1.0, f, float_digits=0, indent=3) with tf.gfile.GFile(output_path, 'r') as f: self.assertEqual(f.read(), '1') def testDumpUnspecifiedPrecision(self): output_path = os.path.join(tf.test.get_temp_dir(), 'test.json') with tf.gfile.GFile(output_path, 'w') as f: json_utils.Dump(1.012345, f) with tf.gfile.GFile(output_path, 'r') as f: self.assertEqual(f.read(), '1.012345') def testDumpsReasonablePrecision(self): s = json_utils.Dumps(1.0, float_digits=2) self.assertEqual(s, '1.00') def testDumpsPassExtraParams(self): s = json_utils.Dumps([1.0], float_digits=2, indent=3) self.assertEqual(s, '[\n 1.00\n]') def testDumpsZeroPrecision(self): s = json_utils.Dumps(1.0, float_digits=0) self.assertEqual(s, '1') def testDumpsUnspecifiedPrecision(self): s = json_utils.Dumps(1.012345) self.assertEqual(s, '1.012345') def testPrettyParams(self): s = json_utils.Dumps({'v': 1.012345, 'n': 2}, **json_utils.PrettyParams()) self.assertEqual(s, '{\n "n": 2,\n "v": 1.0123\n}') def testPrettyParamsExtraParamsInside(self): s = json_utils.Dumps( {'v': 1.012345, 'n': float('nan')}, **json_utils.PrettyParams(allow_nan=True)) self.assertEqual(s, '{\n "n": NaN,\n "v": 1.0123\n}') with self.assertRaises(ValueError): s = json_utils.Dumps( {'v': 1.012345, 'n': float('nan')}, **json_utils.PrettyParams(allow_nan=False)) def testPrettyParamsExtraParamsOutside(self): s = json_utils.Dumps( {'v': 1.012345, 'n': float('nan')}, allow_nan=True, **json_utils.PrettyParams()) self.assertEqual(s, '{\n "n": NaN,\n "v": 1.0123\n}') with self.assertRaises(ValueError): s = json_utils.Dumps( {'v': 1.012345, 'n': float('nan')}, allow_nan=False, **json_utils.PrettyParams()) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/json_utils_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Evaluate Object Detection result on a single image. Annotate each detected result as true positives or false positive according to a predefined IOU ratio. Non Maximum Supression is used by default. Multi class detection is supported by default. Based on the settings, per image evaluation is either performed on boxes or on object masks. """ import numpy as np from object_detection.utils import np_box_list from object_detection.utils import np_box_list_ops from object_detection.utils import np_box_mask_list from object_detection.utils import np_box_mask_list_ops class PerImageEvaluation(object): """Evaluate detection result of a single image.""" def __init__(self, num_groundtruth_classes, matching_iou_threshold=0.5, nms_iou_threshold=0.3, nms_max_output_boxes=50, group_of_weight=0.0): """Initialized PerImageEvaluation by evaluation parameters. Args: num_groundtruth_classes: Number of ground truth object classes matching_iou_threshold: A ratio of area intersection to union, which is the threshold to consider whether a detection is true positive or not nms_iou_threshold: IOU threshold used in Non Maximum Suppression. nms_max_output_boxes: Number of maximum output boxes in NMS. group_of_weight: Weight of the group-of boxes. """ self.matching_iou_threshold = matching_iou_threshold self.nms_iou_threshold = nms_iou_threshold self.nms_max_output_boxes = nms_max_output_boxes self.num_groundtruth_classes = num_groundtruth_classes self.group_of_weight = group_of_weight def compute_object_detection_metrics( self, detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels, groundtruth_is_difficult_list, groundtruth_is_group_of_list, detected_masks=None, groundtruth_masks=None): """Evaluates detections as being tp, fp or weighted from a single image. The evaluation is done in two stages: 1. All detections are matched to non group-of boxes; true positives are determined and detections matched to difficult boxes are ignored. 2. Detections that are determined as false positives are matched against group-of boxes and weighted if matched. Args: detected_boxes: A float numpy array of shape [N, 4], representing N regions of detected object regions. Each row is of the format [y_min, x_min, y_max, x_max] detected_scores: A float numpy array of shape [N, 1], representing the confidence scores of the detected N object instances. detected_class_labels: A integer numpy array of shape [N, 1], repreneting the class labels of the detected N object instances. groundtruth_boxes: A float numpy array of shape [M, 4], representing M regions of object instances in ground truth groundtruth_class_labels: An integer numpy array of shape [M, 1], representing M class labels of object instances in ground truth groundtruth_is_difficult_list: A boolean numpy array of length M denoting whether a ground truth box is a difficult instance or not groundtruth_is_group_of_list: A boolean numpy array of length M denoting whether a ground truth box has group-of tag detected_masks: (optional) A uint8 numpy array of shape [N, height, width]. If not None, the metrics will be computed based on masks. groundtruth_masks: (optional) A uint8 numpy array of shape [M, height, width]. Returns: scores: A list of C float numpy arrays. Each numpy array is of shape [K, 1], representing K scores detected with object class label c tp_fp_labels: A list of C boolean numpy arrays. Each numpy array is of shape [K, 1], representing K True/False positive label of object instances detected with class label c is_class_correctly_detected_in_image: a numpy integer array of shape [C, 1], indicating whether the correponding class has a least one instance being correctly detected in the image """ detected_boxes, detected_scores, detected_class_labels, detected_masks = ( self._remove_invalid_boxes(detected_boxes, detected_scores, detected_class_labels, detected_masks)) scores, tp_fp_labels = self._compute_tp_fp( detected_boxes=detected_boxes, detected_scores=detected_scores, detected_class_labels=detected_class_labels, groundtruth_boxes=groundtruth_boxes, groundtruth_class_labels=groundtruth_class_labels, groundtruth_is_difficult_list=groundtruth_is_difficult_list, groundtruth_is_group_of_list=groundtruth_is_group_of_list, detected_masks=detected_masks, groundtruth_masks=groundtruth_masks) is_class_correctly_detected_in_image = self._compute_cor_loc( detected_boxes=detected_boxes, detected_scores=detected_scores, detected_class_labels=detected_class_labels, groundtruth_boxes=groundtruth_boxes, groundtruth_class_labels=groundtruth_class_labels, detected_masks=detected_masks, groundtruth_masks=groundtruth_masks) return scores, tp_fp_labels, is_class_correctly_detected_in_image def _compute_cor_loc(self, detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels, detected_masks=None, groundtruth_masks=None): """Compute CorLoc score for object detection result. Args: detected_boxes: A float numpy array of shape [N, 4], representing N regions of detected object regions. Each row is of the format [y_min, x_min, y_max, x_max] detected_scores: A float numpy array of shape [N, 1], representing the confidence scores of the detected N object instances. detected_class_labels: A integer numpy array of shape [N, 1], repreneting the class labels of the detected N object instances. groundtruth_boxes: A float numpy array of shape [M, 4], representing M regions of object instances in ground truth groundtruth_class_labels: An integer numpy array of shape [M, 1], representing M class labels of object instances in ground truth detected_masks: (optional) A uint8 numpy array of shape [N, height, width]. If not None, the scores will be computed based on masks. groundtruth_masks: (optional) A uint8 numpy array of shape [M, height, width]. Returns: is_class_correctly_detected_in_image: a numpy integer array of shape [C, 1], indicating whether the correponding class has a least one instance being correctly detected in the image Raises: ValueError: If detected masks is not None but groundtruth masks are None, or the other way around. """ if (detected_masks is not None and groundtruth_masks is None) or (detected_masks is None and groundtruth_masks is not None): raise ValueError( 'If `detected_masks` is provided, then `groundtruth_masks` should ' 'also be provided.' ) is_class_correctly_detected_in_image = np.zeros( self.num_groundtruth_classes, dtype=int) for i in range(self.num_groundtruth_classes): (gt_boxes_at_ith_class, gt_masks_at_ith_class, detected_boxes_at_ith_class, detected_scores_at_ith_class, detected_masks_at_ith_class) = self._get_ith_class_arrays( detected_boxes, detected_scores, detected_masks, detected_class_labels, groundtruth_boxes, groundtruth_masks, groundtruth_class_labels, i) is_class_correctly_detected_in_image[i] = ( self._compute_is_class_correctly_detected_in_image( detected_boxes=detected_boxes_at_ith_class, detected_scores=detected_scores_at_ith_class, groundtruth_boxes=gt_boxes_at_ith_class, detected_masks=detected_masks_at_ith_class, groundtruth_masks=gt_masks_at_ith_class)) return is_class_correctly_detected_in_image def _compute_is_class_correctly_detected_in_image( self, detected_boxes, detected_scores, groundtruth_boxes, detected_masks=None, groundtruth_masks=None): """Compute CorLoc score for a single class. Args: detected_boxes: A numpy array of shape [N, 4] representing detected box coordinates detected_scores: A 1-d numpy array of length N representing classification score groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth box coordinates detected_masks: (optional) A np.uint8 numpy array of shape [N, height, width]. If not None, the scores will be computed based on masks. groundtruth_masks: (optional) A np.uint8 numpy array of shape [M, height, width]. Returns: is_class_correctly_detected_in_image: An integer 1 or 0 denoting whether a class is correctly detected in the image or not """ if detected_boxes.size > 0: if groundtruth_boxes.size > 0: max_score_id = np.argmax(detected_scores) mask_mode = False if detected_masks is not None and groundtruth_masks is not None: mask_mode = True if mask_mode: detected_boxlist = np_box_mask_list.BoxMaskList( box_data=np.expand_dims(detected_boxes[max_score_id], axis=0), mask_data=np.expand_dims(detected_masks[max_score_id], axis=0)) gt_boxlist = np_box_mask_list.BoxMaskList( box_data=groundtruth_boxes, mask_data=groundtruth_masks) iou = np_box_mask_list_ops.iou(detected_boxlist, gt_boxlist) else: detected_boxlist = np_box_list.BoxList( np.expand_dims(detected_boxes[max_score_id, :], axis=0)) gt_boxlist = np_box_list.BoxList(groundtruth_boxes) iou = np_box_list_ops.iou(detected_boxlist, gt_boxlist) if np.max(iou) >= self.matching_iou_threshold: return 1 return 0 def _compute_tp_fp(self, detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels, groundtruth_is_difficult_list, groundtruth_is_group_of_list, detected_masks=None, groundtruth_masks=None): """Labels true/false positives of detections of an image across all classes. Args: detected_boxes: A float numpy array of shape [N, 4], representing N regions of detected object regions. Each row is of the format [y_min, x_min, y_max, x_max] detected_scores: A float numpy array of shape [N, 1], representing the confidence scores of the detected N object instances. detected_class_labels: A integer numpy array of shape [N, 1], repreneting the class labels of the detected N object instances. groundtruth_boxes: A float numpy array of shape [M, 4], representing M regions of object instances in ground truth groundtruth_class_labels: An integer numpy array of shape [M, 1], representing M class labels of object instances in ground truth groundtruth_is_difficult_list: A boolean numpy array of length M denoting whether a ground truth box is a difficult instance or not groundtruth_is_group_of_list: A boolean numpy array of length M denoting whether a ground truth box has group-of tag detected_masks: (optional) A np.uint8 numpy array of shape [N, height, width]. If not None, the scores will be computed based on masks. groundtruth_masks: (optional) A np.uint8 numpy array of shape [M, height, width]. Returns: result_scores: A list of float numpy arrays. Each numpy array is of shape [K, 1], representing K scores detected with object class label c result_tp_fp_labels: A list of boolean numpy array. Each numpy array is of shape [K, 1], representing K True/False positive label of object instances detected with class label c Raises: ValueError: If detected masks is not None but groundtruth masks are None, or the other way around. """ if detected_masks is not None and groundtruth_masks is None: raise ValueError( 'Detected masks is available but groundtruth masks is not.') if detected_masks is None and groundtruth_masks is not None: raise ValueError( 'Groundtruth masks is available but detected masks is not.') result_scores = [] result_tp_fp_labels = [] for i in range(self.num_groundtruth_classes): groundtruth_is_difficult_list_at_ith_class = ( groundtruth_is_difficult_list[groundtruth_class_labels == i]) groundtruth_is_group_of_list_at_ith_class = ( groundtruth_is_group_of_list[groundtruth_class_labels == i]) (gt_boxes_at_ith_class, gt_masks_at_ith_class, detected_boxes_at_ith_class, detected_scores_at_ith_class, detected_masks_at_ith_class) = self._get_ith_class_arrays( detected_boxes, detected_scores, detected_masks, detected_class_labels, groundtruth_boxes, groundtruth_masks, groundtruth_class_labels, i) scores, tp_fp_labels = self._compute_tp_fp_for_single_class( detected_boxes=detected_boxes_at_ith_class, detected_scores=detected_scores_at_ith_class, groundtruth_boxes=gt_boxes_at_ith_class, groundtruth_is_difficult_list= groundtruth_is_difficult_list_at_ith_class, groundtruth_is_group_of_list= groundtruth_is_group_of_list_at_ith_class, detected_masks=detected_masks_at_ith_class, groundtruth_masks=gt_masks_at_ith_class) result_scores.append(scores) result_tp_fp_labels.append(tp_fp_labels) return result_scores, result_tp_fp_labels def _get_overlaps_and_scores_mask_mode( self, detected_boxes, detected_scores, detected_masks, groundtruth_boxes, groundtruth_masks, groundtruth_is_group_of_list): """Computes overlaps and scores between detected and groudntruth masks. Args: detected_boxes: A numpy array of shape [N, 4] representing detected box coordinates detected_scores: A 1-d numpy array of length N representing classification score detected_masks: A uint8 numpy array of shape [N, height, width]. If not None, the scores will be computed based on masks. groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth box coordinates groundtruth_masks: A uint8 numpy array of shape [M, height, width]. groundtruth_is_group_of_list: A boolean numpy array of length M denoting whether a ground truth box has group-of tag. If a groundtruth box is group-of box, every detection matching this box is ignored. Returns: iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If gt_non_group_of_boxlist.num_boxes() == 0 it will be None. ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If gt_group_of_boxlist.num_boxes() == 0 it will be None. scores: The score of the detected boxlist. num_boxes: Number of non-maximum suppressed detected boxes. """ detected_boxlist = np_box_mask_list.BoxMaskList( box_data=detected_boxes, mask_data=detected_masks) detected_boxlist.add_field('scores', detected_scores) detected_boxlist = np_box_mask_list_ops.non_max_suppression( detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold) gt_non_group_of_boxlist = np_box_mask_list.BoxMaskList( box_data=groundtruth_boxes[~groundtruth_is_group_of_list], mask_data=groundtruth_masks[~groundtruth_is_group_of_list]) gt_group_of_boxlist = np_box_mask_list.BoxMaskList( box_data=groundtruth_boxes[groundtruth_is_group_of_list], mask_data=groundtruth_masks[groundtruth_is_group_of_list]) iou = np_box_mask_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist) ioa = np.transpose( np_box_mask_list_ops.ioa(gt_group_of_boxlist, detected_boxlist)) scores = detected_boxlist.get_field('scores') num_boxes = detected_boxlist.num_boxes() return iou, ioa, scores, num_boxes def _get_overlaps_and_scores_box_mode( self, detected_boxes, detected_scores, groundtruth_boxes, groundtruth_is_group_of_list): """Computes overlaps and scores between detected and groudntruth boxes. Args: detected_boxes: A numpy array of shape [N, 4] representing detected box coordinates detected_scores: A 1-d numpy array of length N representing classification score groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth box coordinates groundtruth_is_group_of_list: A boolean numpy array of length M denoting whether a ground truth box has group-of tag. If a groundtruth box is group-of box, every detection matching this box is ignored. Returns: iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If gt_non_group_of_boxlist.num_boxes() == 0 it will be None. ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If gt_group_of_boxlist.num_boxes() == 0 it will be None. scores: The score of the detected boxlist. num_boxes: Number of non-maximum suppressed detected boxes. """ detected_boxlist = np_box_list.BoxList(detected_boxes) detected_boxlist.add_field('scores', detected_scores) detected_boxlist = np_box_list_ops.non_max_suppression( detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold) gt_non_group_of_boxlist = np_box_list.BoxList( groundtruth_boxes[~groundtruth_is_group_of_list]) gt_group_of_boxlist = np_box_list.BoxList( groundtruth_boxes[groundtruth_is_group_of_list]) iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist) ioa = np.transpose( np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist)) scores = detected_boxlist.get_field('scores') num_boxes = detected_boxlist.num_boxes() return iou, ioa, scores, num_boxes def _compute_tp_fp_for_single_class( self, detected_boxes, detected_scores, groundtruth_boxes, groundtruth_is_difficult_list, groundtruth_is_group_of_list, detected_masks=None, groundtruth_masks=None): """Labels boxes detected with the same class from the same image as tp/fp. Args: detected_boxes: A numpy array of shape [N, 4] representing detected box coordinates detected_scores: A 1-d numpy array of length N representing classification score groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth box coordinates groundtruth_is_difficult_list: A boolean numpy array of length M denoting whether a ground truth box is a difficult instance or not. If a groundtruth box is difficult, every detection matching this box is ignored. groundtruth_is_group_of_list: A boolean numpy array of length M denoting whether a ground truth box has group-of tag. If a groundtruth box is group-of box, every detection matching this box is ignored. detected_masks: (optional) A uint8 numpy array of shape [N, height, width]. If not None, the scores will be computed based on masks. groundtruth_masks: (optional) A uint8 numpy array of shape [M, height, width]. Returns: Two arrays of the same size, containing all boxes that were evaluated as being true positives or false positives; if a box matched to a difficult box or to a group-of box, it is ignored. scores: A numpy array representing the detection scores. tp_fp_labels: a boolean numpy array indicating whether a detection is a true positive. """ if detected_boxes.size == 0: return np.array([], dtype=float), np.array([], dtype=bool) mask_mode = False if detected_masks is not None and groundtruth_masks is not None: mask_mode = True if mask_mode: (iou, ioa, scores, num_detected_boxes) = self._get_overlaps_and_scores_mask_mode( detected_boxes=detected_boxes, detected_scores=detected_scores, detected_masks=detected_masks, groundtruth_boxes=groundtruth_boxes, groundtruth_masks=groundtruth_masks, groundtruth_is_group_of_list=groundtruth_is_group_of_list) else: (iou, ioa, scores, num_detected_boxes) = self._get_overlaps_and_scores_box_mode( detected_boxes=detected_boxes, detected_scores=detected_scores, groundtruth_boxes=groundtruth_boxes, groundtruth_is_group_of_list=groundtruth_is_group_of_list) if groundtruth_boxes.size == 0: return scores, np.zeros(num_detected_boxes, dtype=bool) tp_fp_labels = np.zeros(num_detected_boxes, dtype=bool) is_matched_to_difficult_box = np.zeros(num_detected_boxes, dtype=bool) is_matched_to_group_of_box = np.zeros(num_detected_boxes, dtype=bool) # The evaluation is done in two stages: # 1. All detections are matched to non group-of boxes; true positives are # determined and detections matched to difficult boxes are ignored. # 2. Detections that are determined as false positives are matched against # group-of boxes and scored with weight w per ground truth box is # matched. # Tp-fp evaluation for non-group of boxes (if any). if iou.shape[1] > 0: groundtruth_nongroup_of_is_difficult_list = groundtruth_is_difficult_list[ ~groundtruth_is_group_of_list] max_overlap_gt_ids = np.argmax(iou, axis=1) is_gt_box_detected = np.zeros(iou.shape[1], dtype=bool) for i in range(num_detected_boxes): gt_id = max_overlap_gt_ids[i] if iou[i, gt_id] >= self.matching_iou_threshold: if not groundtruth_nongroup_of_is_difficult_list[gt_id]: if not is_gt_box_detected[gt_id]: tp_fp_labels[i] = True is_gt_box_detected[gt_id] = True else: is_matched_to_difficult_box[i] = True scores_group_of = np.zeros(ioa.shape[1], dtype=float) tp_fp_labels_group_of = self.group_of_weight * np.ones( ioa.shape[1], dtype=float) # Tp-fp evaluation for group of boxes. if ioa.shape[1] > 0: max_overlap_group_of_gt_ids = np.argmax(ioa, axis=1) for i in range(num_detected_boxes): gt_id = max_overlap_group_of_gt_ids[i] if (not tp_fp_labels[i] and not is_matched_to_difficult_box[i] and ioa[i, gt_id] >= self.matching_iou_threshold): is_matched_to_group_of_box[i] = True scores_group_of[gt_id] = max(scores_group_of[gt_id], scores[i]) selector = np.where((scores_group_of > 0) & (tp_fp_labels_group_of > 0)) scores_group_of = scores_group_of[selector] tp_fp_labels_group_of = tp_fp_labels_group_of[selector] return np.concatenate( (scores[~is_matched_to_difficult_box & ~is_matched_to_group_of_box], scores_group_of)), np.concatenate( (tp_fp_labels[~is_matched_to_difficult_box & ~is_matched_to_group_of_box].astype(float), tp_fp_labels_group_of)) def _get_ith_class_arrays(self, detected_boxes, detected_scores, detected_masks, detected_class_labels, groundtruth_boxes, groundtruth_masks, groundtruth_class_labels, class_index): """Returns numpy arrays belonging to class with index `class_index`. Args: detected_boxes: A numpy array containing detected boxes. detected_scores: A numpy array containing detected scores. detected_masks: A numpy array containing detected masks. detected_class_labels: A numpy array containing detected class labels. groundtruth_boxes: A numpy array containing groundtruth boxes. groundtruth_masks: A numpy array containing groundtruth masks. groundtruth_class_labels: A numpy array containing groundtruth class labels. class_index: An integer index. Returns: gt_boxes_at_ith_class: A numpy array containing groundtruth boxes labeled as ith class. gt_masks_at_ith_class: A numpy array containing groundtruth masks labeled as ith class. detected_boxes_at_ith_class: A numpy array containing detected boxes corresponding to the ith class. detected_scores_at_ith_class: A numpy array containing detected scores corresponding to the ith class. detected_masks_at_ith_class: A numpy array containing detected masks corresponding to the ith class. """ selected_groundtruth = (groundtruth_class_labels == class_index) gt_boxes_at_ith_class = groundtruth_boxes[selected_groundtruth] if groundtruth_masks is not None: gt_masks_at_ith_class = groundtruth_masks[selected_groundtruth] else: gt_masks_at_ith_class = None selected_detections = (detected_class_labels == class_index) detected_boxes_at_ith_class = detected_boxes[selected_detections] detected_scores_at_ith_class = detected_scores[selected_detections] if detected_masks is not None: detected_masks_at_ith_class = detected_masks[selected_detections] else: detected_masks_at_ith_class = None return (gt_boxes_at_ith_class, gt_masks_at_ith_class, detected_boxes_at_ith_class, detected_scores_at_ith_class, detected_masks_at_ith_class) def _remove_invalid_boxes(self, detected_boxes, detected_scores, detected_class_labels, detected_masks=None): """Removes entries with invalid boxes. A box is invalid if either its xmax is smaller than its xmin, or its ymax is smaller than its ymin. Args: detected_boxes: A float numpy array of size [num_boxes, 4] containing box coordinates in [ymin, xmin, ymax, xmax] format. detected_scores: A float numpy array of size [num_boxes]. detected_class_labels: A int32 numpy array of size [num_boxes]. detected_masks: A uint8 numpy array of size [num_boxes, height, width]. Returns: valid_detected_boxes: A float numpy array of size [num_valid_boxes, 4] containing box coordinates in [ymin, xmin, ymax, xmax] format. valid_detected_scores: A float numpy array of size [num_valid_boxes]. valid_detected_class_labels: A int32 numpy array of size [num_valid_boxes]. valid_detected_masks: A uint8 numpy array of size [num_valid_boxes, height, width]. """ valid_indices = np.logical_and(detected_boxes[:, 0] < detected_boxes[:, 2], detected_boxes[:, 1] < detected_boxes[:, 3]) detected_boxes = detected_boxes[valid_indices] detected_scores = detected_scores[valid_indices] detected_class_labels = detected_class_labels[valid_indices] if detected_masks is not None: detected_masks = detected_masks[valid_indices] return [ detected_boxes, detected_scores, detected_class_labels, detected_masks ]
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/per_image_evaluation.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for [N, height, width] numpy arrays representing masks. Example mask operations that are supported: * Areas: compute mask areas * IOU: pairwise intersection-over-union scores """ import numpy as np EPSILON = 1e-7 def area(masks): """Computes area of masks. Args: masks: Numpy array with shape [N, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. Returns: a numpy array with shape [N*1] representing mask areas. Raises: ValueError: If masks.dtype is not np.uint8 """ if masks.dtype != np.uint8: raise ValueError('Masks type should be np.uint8') return np.sum(masks, axis=(1, 2), dtype=np.float32) def intersection(masks1, masks2): """Compute pairwise intersection areas between masks. Args: masks1: a numpy array with shape [N, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. masks2: a numpy array with shape [M, height, width] holding M masks. Masks values are of type np.uint8 and values are in {0,1}. Returns: a numpy array with shape [N*M] representing pairwise intersection area. Raises: ValueError: If masks1 and masks2 are not of type np.uint8. """ if masks1.dtype != np.uint8 or masks2.dtype != np.uint8: raise ValueError('masks1 and masks2 should be of type np.uint8') n = masks1.shape[0] m = masks2.shape[0] answer = np.zeros([n, m], dtype=np.float32) for i in np.arange(n): for j in np.arange(m): answer[i, j] = np.sum(np.minimum(masks1[i], masks2[j]), dtype=np.float32) return answer def iou(masks1, masks2): """Computes pairwise intersection-over-union between mask collections. Args: masks1: a numpy array with shape [N, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. masks2: a numpy array with shape [M, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. Returns: a numpy array with shape [N, M] representing pairwise iou scores. Raises: ValueError: If masks1 and masks2 are not of type np.uint8. """ if masks1.dtype != np.uint8 or masks2.dtype != np.uint8: raise ValueError('masks1 and masks2 should be of type np.uint8') intersect = intersection(masks1, masks2) area1 = area(masks1) area2 = area(masks2) union = np.expand_dims(area1, axis=1) + np.expand_dims( area2, axis=0) - intersect return intersect / np.maximum(union, EPSILON) def ioa(masks1, masks2): """Computes pairwise intersection-over-area between box collections. Intersection-over-area (ioa) between two masks, mask1 and mask2 is defined as their intersection area over mask2's area. Note that ioa is not symmetric, that is, IOA(mask1, mask2) != IOA(mask2, mask1). Args: masks1: a numpy array with shape [N, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. masks2: a numpy array with shape [M, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. Returns: a numpy array with shape [N, M] representing pairwise ioa scores. Raises: ValueError: If masks1 and masks2 are not of type np.uint8. """ if masks1.dtype != np.uint8 or masks2.dtype != np.uint8: raise ValueError('masks1 and masks2 should be of type np.uint8') intersect = intersection(masks1, masks2) areas = np.expand_dims(area(masks2), axis=0) return intersect / (areas + EPSILON)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/np_mask_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for [N, 4] numpy arrays representing bounding boxes. Example box operations that are supported: * Areas: compute bounding box areas * IOU: pairwise intersection-over-union scores """ import numpy as np def area(boxes): """Computes area of boxes. Args: boxes: Numpy array with shape [N, 4] holding N boxes Returns: a numpy array with shape [N*1] representing box areas """ return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) def intersection(boxes1, boxes2): """Compute pairwise intersection areas between boxes. Args: boxes1: a numpy array with shape [N, 4] holding N boxes boxes2: a numpy array with shape [M, 4] holding M boxes Returns: a numpy array with shape [N*M] representing pairwise intersection area """ [y_min1, x_min1, y_max1, x_max1] = np.split(boxes1, 4, axis=1) [y_min2, x_min2, y_max2, x_max2] = np.split(boxes2, 4, axis=1) all_pairs_min_ymax = np.minimum(y_max1, np.transpose(y_max2)) all_pairs_max_ymin = np.maximum(y_min1, np.transpose(y_min2)) intersect_heights = np.maximum( np.zeros(all_pairs_max_ymin.shape), all_pairs_min_ymax - all_pairs_max_ymin) all_pairs_min_xmax = np.minimum(x_max1, np.transpose(x_max2)) all_pairs_max_xmin = np.maximum(x_min1, np.transpose(x_min2)) intersect_widths = np.maximum( np.zeros(all_pairs_max_xmin.shape), all_pairs_min_xmax - all_pairs_max_xmin) return intersect_heights * intersect_widths def iou(boxes1, boxes2): """Computes pairwise intersection-over-union between box collections. Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise iou scores. """ intersect = intersection(boxes1, boxes2) area1 = area(boxes1) area2 = area(boxes2) union = np.expand_dims(area1, axis=1) + np.expand_dims( area2, axis=0) - intersect return intersect / union def ioa(boxes1, boxes2): """Computes pairwise intersection-over-area between box collections. Intersection-over-area (ioa) between two boxes box1 and box2 is defined as their intersection area over box2's area. Note that ioa is not symmetric, that is, IOA(box1, box2) != IOA(box2, box1). Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise ioa scores. """ intersect = intersection(boxes1, boxes2) areas = np.expand_dims(area(boxes2), axis=0) return intersect / areas
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/np_box_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A convenience wrapper around tf.test.TestCase to enable TPU tests.""" import os import tensorflow as tf from tensorflow.contrib import tpu flags = tf.app.flags flags.DEFINE_bool('tpu_test', False, 'Whether to configure test for TPU.') FLAGS = flags.FLAGS class TestCase(tf.test.TestCase): """Extends tf.test.TestCase to optionally allow running tests on TPU.""" def execute_tpu(self, graph_fn, inputs): """Constructs the graph, executes it on TPU and returns the result. Args: graph_fn: a callable that constructs the tensorflow graph to test. The arguments of this function should correspond to `inputs`. inputs: a list of numpy arrays to feed input to the computation graph. Returns: A list of numpy arrays or a scalar returned from executing the tensorflow graph. """ with self.test_session(graph=tf.Graph()) as sess: placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs] tpu_computation = tpu.rewrite(graph_fn, placeholders) sess.run(tpu.initialize_system()) sess.run([tf.global_variables_initializer(), tf.tables_initializer(), tf.local_variables_initializer()]) materialized_results = sess.run(tpu_computation, feed_dict=dict(zip(placeholders, inputs))) sess.run(tpu.shutdown_system()) if (hasattr(materialized_results, '__len__') and len(materialized_results) == 1 and (isinstance(materialized_results, list) or isinstance(materialized_results, tuple))): materialized_results = materialized_results[0] return materialized_results def execute_cpu(self, graph_fn, inputs): """Constructs the graph, executes it on CPU and returns the result. Args: graph_fn: a callable that constructs the tensorflow graph to test. The arguments of this function should correspond to `inputs`. inputs: a list of numpy arrays to feed input to the computation graph. Returns: A list of numpy arrays or a scalar returned from executing the tensorflow graph. """ with self.test_session(graph=tf.Graph()) as sess: placeholders = [tf.placeholder_with_default(v, v.shape) for v in inputs] results = graph_fn(*placeholders) sess.run([tf.global_variables_initializer(), tf.tables_initializer(), tf.local_variables_initializer()]) materialized_results = sess.run(results, feed_dict=dict(zip(placeholders, inputs))) if (hasattr(materialized_results, '__len__') and len(materialized_results) == 1 and (isinstance(materialized_results, list) or isinstance(materialized_results, tuple))): materialized_results = materialized_results[0] return materialized_results def execute(self, graph_fn, inputs): """Constructs the graph, creates a test session and returns the results. The graph is executed either on TPU or CPU based on the `tpu_test` flag. Args: graph_fn: a callable that constructs the tensorflow graph to test. The arguments of this function should correspond to `inputs`. inputs: a list of numpy arrays to feed input to the computation graph. Returns: A list of numpy arrays or a scalar returned from executing the tensorflow graph. """ if FLAGS.tpu_test: return self.execute_tpu(graph_fn, inputs) else: return self.execute_cpu(graph_fn, inputs)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/test_case.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A module for helper tensorflow ops.""" import collections import math import numpy as np import six import tensorflow as tf from object_detection.core import standard_fields as fields from object_detection.utils import shape_utils from object_detection.utils import static_shape def expanded_shape(orig_shape, start_dim, num_dims): """Inserts multiple ones into a shape vector. Inserts an all-1 vector of length num_dims at position start_dim into a shape. Can be combined with tf.reshape to generalize tf.expand_dims. Args: orig_shape: the shape into which the all-1 vector is added (int32 vector) start_dim: insertion position (int scalar) num_dims: length of the inserted all-1 vector (int scalar) Returns: An int32 vector of length tf.size(orig_shape) + num_dims. """ with tf.name_scope('ExpandedShape'): start_dim = tf.expand_dims(start_dim, 0) # scalar to rank-1 before = tf.slice(orig_shape, [0], start_dim) add_shape = tf.ones(tf.reshape(num_dims, [1]), dtype=tf.int32) after = tf.slice(orig_shape, start_dim, [-1]) new_shape = tf.concat([before, add_shape, after], 0) return new_shape def normalized_to_image_coordinates(normalized_boxes, image_shape, parallel_iterations=32): """Converts a batch of boxes from normal to image coordinates. Args: normalized_boxes: a float32 tensor of shape [None, num_boxes, 4] in normalized coordinates. image_shape: a float32 tensor of shape [4] containing the image shape. parallel_iterations: parallelism for the map_fn op. Returns: absolute_boxes: a float32 tensor of shape [None, num_boxes, 4] containing the boxes in image coordinates. """ x_scale = tf.cast(image_shape[2], tf.float32) y_scale = tf.cast(image_shape[1], tf.float32) def _to_absolute_coordinates(normalized_boxes): y_min, x_min, y_max, x_max = tf.split( value=normalized_boxes, num_or_size_splits=4, axis=1) y_min = y_scale * y_min y_max = y_scale * y_max x_min = x_scale * x_min x_max = x_scale * x_max scaled_boxes = tf.concat([y_min, x_min, y_max, x_max], 1) return scaled_boxes absolute_boxes = shape_utils.static_or_dynamic_map_fn( _to_absolute_coordinates, elems=(normalized_boxes), dtype=tf.float32, parallel_iterations=parallel_iterations, back_prop=True) return absolute_boxes def meshgrid(x, y): """Tiles the contents of x and y into a pair of grids. Multidimensional analog of numpy.meshgrid, giving the same behavior if x and y are vectors. Generally, this will give: xgrid(i1, ..., i_m, j_1, ..., j_n) = x(j_1, ..., j_n) ygrid(i1, ..., i_m, j_1, ..., j_n) = y(i_1, ..., i_m) Keep in mind that the order of the arguments and outputs is reverse relative to the order of the indices they go into, done for compatibility with numpy. The output tensors have the same shapes. Specifically: xgrid.get_shape() = y.get_shape().concatenate(x.get_shape()) ygrid.get_shape() = y.get_shape().concatenate(x.get_shape()) Args: x: A tensor of arbitrary shape and rank. xgrid will contain these values varying in its last dimensions. y: A tensor of arbitrary shape and rank. ygrid will contain these values varying in its first dimensions. Returns: A tuple of tensors (xgrid, ygrid). """ with tf.name_scope('Meshgrid'): x = tf.convert_to_tensor(x) y = tf.convert_to_tensor(y) x_exp_shape = expanded_shape(tf.shape(x), 0, tf.rank(y)) y_exp_shape = expanded_shape(tf.shape(y), tf.rank(y), tf.rank(x)) xgrid = tf.tile(tf.reshape(x, x_exp_shape), y_exp_shape) ygrid = tf.tile(tf.reshape(y, y_exp_shape), x_exp_shape) new_shape = y.get_shape().concatenate(x.get_shape()) xgrid.set_shape(new_shape) ygrid.set_shape(new_shape) return xgrid, ygrid def fixed_padding(inputs, kernel_size, rate=1): """Pads the input along the spatial dimensions independently of input size. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. kernel_size: The kernel to be used in the conv2d or max_pool2d operation. Should be a positive integer. rate: An integer, rate for atrous convolution. Returns: output: A tensor of size [batch, height_out, width_out, channels] with the input, either intact (if kernel_size == 1) or padded (if kernel_size > 1). """ kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]]) return padded_inputs def pad_to_multiple(tensor, multiple): """Returns the tensor zero padded to the specified multiple. Appends 0s to the end of the first and second dimension (height and width) of the tensor until both dimensions are a multiple of the input argument 'multiple'. E.g. given an input tensor of shape [1, 3, 5, 1] and an input multiple of 4, PadToMultiple will append 0s so that the resulting tensor will be of shape [1, 4, 8, 1]. Args: tensor: rank 4 float32 tensor, where tensor -> [batch_size, height, width, channels]. multiple: the multiple to pad to. Returns: padded_tensor: the tensor zero padded to the specified multiple. """ if multiple == 1: return tensor tensor_shape = tensor.get_shape() batch_size = static_shape.get_batch_size(tensor_shape) tensor_height = static_shape.get_height(tensor_shape) tensor_width = static_shape.get_width(tensor_shape) tensor_depth = static_shape.get_depth(tensor_shape) if batch_size is None: batch_size = tf.shape(tensor)[0] if tensor_height is None: tensor_height = tf.shape(tensor)[1] padded_tensor_height = tf.to_int32( tf.ceil(tf.to_float(tensor_height) / tf.to_float(multiple))) * multiple else: padded_tensor_height = int( math.ceil(float(tensor_height) / multiple) * multiple) if tensor_width is None: tensor_width = tf.shape(tensor)[2] padded_tensor_width = tf.to_int32( tf.ceil(tf.to_float(tensor_width) / tf.to_float(multiple))) * multiple else: padded_tensor_width = int( math.ceil(float(tensor_width) / multiple) * multiple) if tensor_depth is None: tensor_depth = tf.shape(tensor)[3] # Use tf.concat instead of tf.pad to preserve static shape if padded_tensor_height != tensor_height: height_pad = tf.zeros([ batch_size, padded_tensor_height - tensor_height, tensor_width, tensor_depth ]) tensor = tf.concat([tensor, height_pad], 1) if padded_tensor_width != tensor_width: width_pad = tf.zeros([ batch_size, padded_tensor_height, padded_tensor_width - tensor_width, tensor_depth ]) tensor = tf.concat([tensor, width_pad], 2) return tensor def padded_one_hot_encoding(indices, depth, left_pad): """Returns a zero padded one-hot tensor. This function converts a sparse representation of indices (e.g., [4]) to a zero padded one-hot representation (e.g., [0, 0, 0, 0, 1] with depth = 4 and left_pad = 1). If `indices` is empty, the result will simply be a tensor of shape (0, depth + left_pad). If depth = 0, then this function just returns `None`. Args: indices: an integer tensor of shape [num_indices]. depth: depth for the one-hot tensor (integer). left_pad: number of zeros to left pad the one-hot tensor with (integer). Returns: padded_onehot: a tensor with shape (num_indices, depth + left_pad). Returns `None` if the depth is zero. Raises: ValueError: if `indices` does not have rank 1 or if `left_pad` or `depth are either negative or non-integers. TODO(rathodv): add runtime checks for depth and indices. """ if depth < 0 or not isinstance(depth, six.integer_types): raise ValueError('`depth` must be a non-negative integer.') if left_pad < 0 or not isinstance(left_pad, six.integer_types): raise ValueError('`left_pad` must be a non-negative integer.') if depth == 0: return None rank = len(indices.get_shape().as_list()) if rank != 1: raise ValueError('`indices` must have rank 1, but has rank=%s' % rank) def one_hot_and_pad(): one_hot = tf.cast(tf.one_hot(tf.cast(indices, tf.int64), depth, on_value=1, off_value=0), tf.float32) return tf.pad(one_hot, [[0, 0], [left_pad, 0]], mode='CONSTANT') result = tf.cond(tf.greater(tf.size(indices), 0), one_hot_and_pad, lambda: tf.zeros((depth + left_pad, 0))) return tf.reshape(result, [-1, depth + left_pad]) def dense_to_sparse_boxes(dense_locations, dense_num_boxes, num_classes): """Converts bounding boxes from dense to sparse form. Args: dense_locations: a [max_num_boxes, 4] tensor in which only the first k rows are valid bounding box location coordinates, where k is the sum of elements in dense_num_boxes. dense_num_boxes: a [max_num_classes] tensor indicating the counts of various bounding box classes e.g. [1, 0, 0, 2] means that the first bounding box is of class 0 and the second and third bounding boxes are of class 3. The sum of elements in this tensor is the number of valid bounding boxes. num_classes: number of classes Returns: box_locations: a [num_boxes, 4] tensor containing only valid bounding boxes (i.e. the first num_boxes rows of dense_locations) box_classes: a [num_boxes] tensor containing the classes of each bounding box (e.g. dense_num_boxes = [1, 0, 0, 2] => box_classes = [0, 3, 3] """ num_valid_boxes = tf.reduce_sum(dense_num_boxes) box_locations = tf.slice(dense_locations, tf.constant([0, 0]), tf.stack([num_valid_boxes, 4])) tiled_classes = [tf.tile([i], tf.expand_dims(dense_num_boxes[i], 0)) for i in range(num_classes)] box_classes = tf.concat(tiled_classes, 0) box_locations.set_shape([None, 4]) return box_locations, box_classes def indices_to_dense_vector(indices, size, indices_value=1., default_value=0, dtype=tf.float32): """Creates dense vector with indices set to specific value and rest to zeros. This function exists because it is unclear if it is safe to use tf.sparse_to_dense(indices, [size], 1, validate_indices=False) with indices which are not ordered. This function accepts a dynamic size (e.g. tf.shape(tensor)[0]) Args: indices: 1d Tensor with integer indices which are to be set to indices_values. size: scalar with size (integer) of output Tensor. indices_value: values of elements specified by indices in the output vector default_value: values of other elements in the output vector. dtype: data type. Returns: dense 1D Tensor of shape [size] with indices set to indices_values and the rest set to default_value. """ size = tf.to_int32(size) zeros = tf.ones([size], dtype=dtype) * default_value values = tf.ones_like(indices, dtype=dtype) * indices_value return tf.dynamic_stitch([tf.range(size), tf.to_int32(indices)], [zeros, values]) def reduce_sum_trailing_dimensions(tensor, ndims): """Computes sum across all dimensions following first `ndims` dimensions.""" return tf.reduce_sum(tensor, axis=tuple(range(ndims, tensor.shape.ndims))) def retain_groundtruth(tensor_dict, valid_indices): """Retains groundtruth by valid indices. Args: tensor_dict: a dictionary of following groundtruth tensors - fields.InputDataFields.groundtruth_boxes fields.InputDataFields.groundtruth_classes fields.InputDataFields.groundtruth_keypoints fields.InputDataFields.groundtruth_instance_masks fields.InputDataFields.groundtruth_is_crowd fields.InputDataFields.groundtruth_area fields.InputDataFields.groundtruth_label_types fields.InputDataFields.groundtruth_difficult valid_indices: a tensor with valid indices for the box-level groundtruth. Returns: a dictionary of tensors containing only the groundtruth for valid_indices. Raises: ValueError: If the shape of valid_indices is invalid. ValueError: field fields.InputDataFields.groundtruth_boxes is not present in tensor_dict. """ input_shape = valid_indices.get_shape().as_list() if not (len(input_shape) == 1 or (len(input_shape) == 2 and input_shape[1] == 1)): raise ValueError('The shape of valid_indices is invalid.') valid_indices = tf.reshape(valid_indices, [-1]) valid_dict = {} if fields.InputDataFields.groundtruth_boxes in tensor_dict: # Prevents reshape failure when num_boxes is 0. num_boxes = tf.maximum(tf.shape( tensor_dict[fields.InputDataFields.groundtruth_boxes])[0], 1) for key in tensor_dict: if key in [fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_keypoints, fields.InputDataFields.groundtruth_instance_masks]: valid_dict[key] = tf.gather(tensor_dict[key], valid_indices) # Input decoder returns empty tensor when these fields are not provided. # Needs to reshape into [num_boxes, -1] for tf.gather() to work. elif key in [fields.InputDataFields.groundtruth_is_crowd, fields.InputDataFields.groundtruth_area, fields.InputDataFields.groundtruth_difficult, fields.InputDataFields.groundtruth_label_types]: valid_dict[key] = tf.reshape( tf.gather(tf.reshape(tensor_dict[key], [num_boxes, -1]), valid_indices), [-1]) # Fields that are not associated with boxes. else: valid_dict[key] = tensor_dict[key] else: raise ValueError('%s not present in input tensor dict.' % ( fields.InputDataFields.groundtruth_boxes)) return valid_dict def retain_groundtruth_with_positive_classes(tensor_dict): """Retains only groundtruth with positive class ids. Args: tensor_dict: a dictionary of following groundtruth tensors - fields.InputDataFields.groundtruth_boxes fields.InputDataFields.groundtruth_classes fields.InputDataFields.groundtruth_keypoints fields.InputDataFields.groundtruth_instance_masks fields.InputDataFields.groundtruth_is_crowd fields.InputDataFields.groundtruth_area fields.InputDataFields.groundtruth_label_types fields.InputDataFields.groundtruth_difficult Returns: a dictionary of tensors containing only the groundtruth with positive classes. Raises: ValueError: If groundtruth_classes tensor is not in tensor_dict. """ if fields.InputDataFields.groundtruth_classes not in tensor_dict: raise ValueError('`groundtruth classes` not in tensor_dict.') keep_indices = tf.where(tf.greater( tensor_dict[fields.InputDataFields.groundtruth_classes], 0)) return retain_groundtruth(tensor_dict, keep_indices) def replace_nan_groundtruth_label_scores_with_ones(label_scores): """Replaces nan label scores with 1.0. Args: label_scores: a tensor containing object annoation label scores. Returns: a tensor where NaN label scores have been replaced by ones. """ return tf.where( tf.is_nan(label_scores), tf.ones(tf.shape(label_scores)), label_scores) def filter_groundtruth_with_crowd_boxes(tensor_dict): """Filters out groundtruth with boxes corresponding to crowd. Args: tensor_dict: a dictionary of following groundtruth tensors - fields.InputDataFields.groundtruth_boxes fields.InputDataFields.groundtruth_classes fields.InputDataFields.groundtruth_keypoints fields.InputDataFields.groundtruth_instance_masks fields.InputDataFields.groundtruth_is_crowd fields.InputDataFields.groundtruth_area fields.InputDataFields.groundtruth_label_types Returns: a dictionary of tensors containing only the groundtruth that have bounding boxes. """ if fields.InputDataFields.groundtruth_is_crowd in tensor_dict: is_crowd = tensor_dict[fields.InputDataFields.groundtruth_is_crowd] is_not_crowd = tf.logical_not(is_crowd) is_not_crowd_indices = tf.where(is_not_crowd) tensor_dict = retain_groundtruth(tensor_dict, is_not_crowd_indices) return tensor_dict def filter_groundtruth_with_nan_box_coordinates(tensor_dict): """Filters out groundtruth with no bounding boxes. Args: tensor_dict: a dictionary of following groundtruth tensors - fields.InputDataFields.groundtruth_boxes fields.InputDataFields.groundtruth_classes fields.InputDataFields.groundtruth_keypoints fields.InputDataFields.groundtruth_instance_masks fields.InputDataFields.groundtruth_is_crowd fields.InputDataFields.groundtruth_area fields.InputDataFields.groundtruth_label_types Returns: a dictionary of tensors containing only the groundtruth that have bounding boxes. """ groundtruth_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] nan_indicator_vector = tf.greater(tf.reduce_sum(tf.to_int32( tf.is_nan(groundtruth_boxes)), reduction_indices=[1]), 0) valid_indicator_vector = tf.logical_not(nan_indicator_vector) valid_indices = tf.where(valid_indicator_vector) return retain_groundtruth(tensor_dict, valid_indices) def normalize_to_target(inputs, target_norm_value, dim, epsilon=1e-7, trainable=True, scope='NormalizeToTarget', summarize=True): """L2 normalizes the inputs across the specified dimension to a target norm. This op implements the L2 Normalization layer introduced in Liu, Wei, et al. "SSD: Single Shot MultiBox Detector." and Liu, Wei, Andrew Rabinovich, and Alexander C. Berg. "Parsenet: Looking wider to see better." and is useful for bringing activations from multiple layers in a convnet to a standard scale. Note that the rank of `inputs` must be known and the dimension to which normalization is to be applied should be statically defined. TODO(jonathanhuang): Add option to scale by L2 norm of the entire input. Args: inputs: A `Tensor` of arbitrary size. target_norm_value: A float value that specifies an initial target norm or a list of floats (whose length must be equal to the depth along the dimension to be normalized) specifying a per-dimension multiplier after normalization. dim: The dimension along which the input is normalized. epsilon: A small value to add to the inputs to avoid dividing by zero. trainable: Whether the norm is trainable or not scope: Optional scope for variable_scope. summarize: Whether or not to add a tensorflow summary for the op. Returns: The input tensor normalized to the specified target norm. Raises: ValueError: If dim is smaller than the number of dimensions in 'inputs'. ValueError: If target_norm_value is not a float or a list of floats with length equal to the depth along the dimension to be normalized. """ with tf.variable_scope(scope, 'NormalizeToTarget', [inputs]): if not inputs.get_shape(): raise ValueError('The input rank must be known.') input_shape = inputs.get_shape().as_list() input_rank = len(input_shape) if dim < 0 or dim >= input_rank: raise ValueError( 'dim must be non-negative but smaller than the input rank.') if not input_shape[dim]: raise ValueError('input shape should be statically defined along ' 'the specified dimension.') depth = input_shape[dim] if not (isinstance(target_norm_value, float) or (isinstance(target_norm_value, list) and len(target_norm_value) == depth) and all([isinstance(val, float) for val in target_norm_value])): raise ValueError('target_norm_value must be a float or a list of floats ' 'with length equal to the depth along the dimension to ' 'be normalized.') if isinstance(target_norm_value, float): initial_norm = depth * [target_norm_value] else: initial_norm = target_norm_value target_norm = tf.contrib.framework.model_variable( name='weights', dtype=tf.float32, initializer=tf.constant(initial_norm, dtype=tf.float32), trainable=trainable) if summarize: mean = tf.reduce_mean(target_norm) mean = tf.Print(mean, ['NormalizeToTarget:', mean]) tf.summary.scalar(tf.get_variable_scope().name, mean) lengths = epsilon + tf.sqrt(tf.reduce_sum(tf.square(inputs), dim, True)) mult_shape = input_rank*[1] mult_shape[dim] = depth return tf.reshape(target_norm, mult_shape) * tf.truediv(inputs, lengths) def batch_position_sensitive_crop_regions(images, boxes, crop_size, num_spatial_bins, global_pool, parallel_iterations=64): """Position sensitive crop with batches of images and boxes. This op is exactly like `position_sensitive_crop_regions` below but operates on batches of images and boxes. See `position_sensitive_crop_regions` function below for the operation applied per batch element. Args: images: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`. A 4-D tensor of shape `[batch, image_height, image_width, depth]`. Both `image_height` and `image_width` need to be positive. boxes: A `Tensor` of type `float32`. A 3-D tensor of shape `[batch, num_boxes, 4]`. Each box is specified in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image height is mapped to `[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. crop_size: See `position_sensitive_crop_regions` below. num_spatial_bins: See `position_sensitive_crop_regions` below. global_pool: See `position_sensitive_crop_regions` below. parallel_iterations: Number of batch items to process in parallel. Returns: """ def _position_sensitive_crop_fn(inputs): images, boxes = inputs return position_sensitive_crop_regions( images, boxes, crop_size=crop_size, num_spatial_bins=num_spatial_bins, global_pool=global_pool) return shape_utils.static_or_dynamic_map_fn( _position_sensitive_crop_fn, elems=[images, boxes], dtype=tf.float32, parallel_iterations=parallel_iterations) def position_sensitive_crop_regions(image, boxes, crop_size, num_spatial_bins, global_pool): """Position-sensitive crop and pool rectangular regions from a feature grid. The output crops are split into `spatial_bins_y` vertical bins and `spatial_bins_x` horizontal bins. For each intersection of a vertical and a horizontal bin the output values are gathered by performing `tf.image.crop_and_resize` (bilinear resampling) on a a separate subset of channels of the image. This reduces `depth` by a factor of `(spatial_bins_y * spatial_bins_x)`. When global_pool is True, this function implements a differentiable version of position-sensitive RoI pooling used in [R-FCN detection system](https://arxiv.org/abs/1605.06409). When global_pool is False, this function implements a differentiable version of position-sensitive assembling operation used in [instance FCN](https://arxiv.org/abs/1603.08678). Args: image: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, `float32`, `float64`. A 3-D tensor of shape `[image_height, image_width, depth]`. Both `image_height` and `image_width` need to be positive. boxes: A `Tensor` of type `float32`. A 2-D tensor of shape `[num_boxes, 4]`. Each box is specified in normalized coordinates `[y1, x1, y2, x2]`. A normalized coordinate value of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image height is mapped to `[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. crop_size: A list of two integers `[crop_height, crop_width]`. All cropped image patches are resized to this size. The aspect ratio of the image content is not preserved. Both `crop_height` and `crop_width` need to be positive. num_spatial_bins: A list of two integers `[spatial_bins_y, spatial_bins_x]`. Represents the number of position-sensitive bins in y and x directions. Both values should be >= 1. `crop_height` should be divisible by `spatial_bins_y`, and similarly for width. The number of image channels should be divisible by (spatial_bins_y * spatial_bins_x). Suggested value from R-FCN paper: [3, 3]. global_pool: A boolean variable. If True, we perform average global pooling on the features assembled from the position-sensitive score maps. If False, we keep the position-pooled features without global pooling over the spatial coordinates. Note that using global_pool=True is equivalent to but more efficient than running the function with global_pool=False and then performing global average pooling. Returns: position_sensitive_features: A 4-D tensor of shape `[num_boxes, K, K, crop_channels]`, where `crop_channels = depth / (spatial_bins_y * spatial_bins_x)`, where K = 1 when global_pool is True (Average-pooled cropped regions), and K = crop_size when global_pool is False. Raises: ValueError: Raised in four situations: `num_spatial_bins` is not >= 1; `num_spatial_bins` does not divide `crop_size`; `(spatial_bins_y*spatial_bins_x)` does not divide `depth`; `bin_crop_size` is not square when global_pool=False due to the constraint in function space_to_depth. """ total_bins = 1 bin_crop_size = [] for (num_bins, crop_dim) in zip(num_spatial_bins, crop_size): if num_bins < 1: raise ValueError('num_spatial_bins should be >= 1') if crop_dim % num_bins != 0: raise ValueError('crop_size should be divisible by num_spatial_bins') total_bins *= num_bins bin_crop_size.append(crop_dim // num_bins) if not global_pool and bin_crop_size[0] != bin_crop_size[1]: raise ValueError('Only support square bin crop size for now.') ymin, xmin, ymax, xmax = tf.unstack(boxes, axis=1) spatial_bins_y, spatial_bins_x = num_spatial_bins # Split each box into spatial_bins_y * spatial_bins_x bins. position_sensitive_boxes = [] for bin_y in range(spatial_bins_y): step_y = (ymax - ymin) / spatial_bins_y for bin_x in range(spatial_bins_x): step_x = (xmax - xmin) / spatial_bins_x box_coordinates = [ymin + bin_y * step_y, xmin + bin_x * step_x, ymin + (bin_y + 1) * step_y, xmin + (bin_x + 1) * step_x, ] position_sensitive_boxes.append(tf.stack(box_coordinates, axis=1)) image_splits = tf.split(value=image, num_or_size_splits=total_bins, axis=2) image_crops = [] for (split, box) in zip(image_splits, position_sensitive_boxes): if split.shape.is_fully_defined() and box.shape.is_fully_defined(): crop = tf.squeeze( matmul_crop_and_resize( tf.expand_dims(split, axis=0), tf.expand_dims(box, axis=0), bin_crop_size), axis=0) else: crop = tf.image.crop_and_resize( tf.expand_dims(split, 0), box, tf.zeros(tf.shape(boxes)[0], dtype=tf.int32), bin_crop_size) image_crops.append(crop) if global_pool: # Average over all bins. position_sensitive_features = tf.add_n(image_crops) / len(image_crops) # Then average over spatial positions within the bins. position_sensitive_features = tf.reduce_mean( position_sensitive_features, [1, 2], keep_dims=True) else: # Reorder height/width to depth channel. block_size = bin_crop_size[0] if block_size >= 2: image_crops = [tf.space_to_depth( crop, block_size=block_size) for crop in image_crops] # Pack image_crops so that first dimension is for position-senstive boxes. position_sensitive_features = tf.stack(image_crops, axis=0) # Unroll the position-sensitive boxes to spatial positions. position_sensitive_features = tf.squeeze( tf.batch_to_space_nd(position_sensitive_features, block_shape=[1] + num_spatial_bins, crops=tf.zeros((3, 2), dtype=tf.int32)), squeeze_dims=[0]) # Reorder back the depth channel. if block_size >= 2: position_sensitive_features = tf.depth_to_space( position_sensitive_features, block_size=block_size) return position_sensitive_features def reframe_box_masks_to_image_masks(box_masks, boxes, image_height, image_width): """Transforms the box masks back to full image masks. Embeds masks in bounding boxes of larger masks whose shapes correspond to image shape. Args: box_masks: A tf.float32 tensor of size [num_masks, mask_height, mask_width]. boxes: A tf.float32 tensor of size [num_masks, 4] containing the box corners. Row i contains [ymin, xmin, ymax, xmax] of the box corresponding to mask i. Note that the box corners are in normalized coordinates. image_height: Image height. The output mask will have the same height as the image height. image_width: Image width. The output mask will have the same width as the image width. Returns: A tf.float32 tensor of size [num_masks, image_height, image_width]. """ # TODO(rathodv): Make this a public function. def reframe_box_masks_to_image_masks_default(): """The default function when there are more than 0 box masks.""" def transform_boxes_relative_to_boxes(boxes, reference_boxes): boxes = tf.reshape(boxes, [-1, 2, 2]) min_corner = tf.expand_dims(reference_boxes[:, 0:2], 1) max_corner = tf.expand_dims(reference_boxes[:, 2:4], 1) transformed_boxes = (boxes - min_corner) / (max_corner - min_corner) return tf.reshape(transformed_boxes, [-1, 4]) box_masks_expanded = tf.expand_dims(box_masks, axis=3) num_boxes = tf.shape(box_masks_expanded)[0] unit_boxes = tf.concat( [tf.zeros([num_boxes, 2]), tf.ones([num_boxes, 2])], axis=1) reverse_boxes = transform_boxes_relative_to_boxes(unit_boxes, boxes) return tf.image.crop_and_resize( image=box_masks_expanded, boxes=reverse_boxes, box_ind=tf.range(num_boxes), crop_size=[image_height, image_width], extrapolation_value=0.0) image_masks = tf.cond( tf.shape(box_masks)[0] > 0, reframe_box_masks_to_image_masks_default, lambda: tf.zeros([0, image_height, image_width, 1], dtype=tf.float32)) return tf.squeeze(image_masks, axis=3) def merge_boxes_with_multiple_labels(boxes, classes, confidences, num_classes, quantization_bins=10000): """Merges boxes with same coordinates and returns K-hot encoded classes. Args: boxes: A tf.float32 tensor with shape [N, 4] holding N boxes. Only normalized coordinates are allowed. classes: A tf.int32 tensor with shape [N] holding class indices. The class index starts at 0. confidences: A tf.float32 tensor with shape [N] holding class confidences. num_classes: total number of classes to use for K-hot encoding. quantization_bins: the number of bins used to quantize the box coordinate. Returns: merged_boxes: A tf.float32 tensor with shape [N', 4] holding boxes, where N' <= N. class_encodings: A tf.int32 tensor with shape [N', num_classes] holding K-hot encodings for the merged boxes. confidence_encodings: A tf.float32 tensor with shape [N', num_classes] holding encodings of confidences for the merged boxes. merged_box_indices: A tf.int32 tensor with shape [N'] holding original indices of the boxes. """ boxes_shape = tf.shape(boxes) classes_shape = tf.shape(classes) confidences_shape = tf.shape(confidences) box_class_shape_assert = shape_utils.assert_shape_equal_along_first_dimension( boxes_shape, classes_shape) box_confidence_shape_assert = ( shape_utils.assert_shape_equal_along_first_dimension( boxes_shape, confidences_shape)) box_dimension_assert = tf.assert_equal(boxes_shape[1], 4) box_normalized_assert = shape_utils.assert_box_normalized(boxes) with tf.control_dependencies( [box_class_shape_assert, box_confidence_shape_assert, box_dimension_assert, box_normalized_assert]): quantized_boxes = tf.to_int64(boxes * (quantization_bins - 1)) ymin, xmin, ymax, xmax = tf.unstack(quantized_boxes, axis=1) hashcodes = ( ymin + xmin * quantization_bins + ymax * quantization_bins * quantization_bins + xmax * quantization_bins * quantization_bins * quantization_bins) unique_hashcodes, unique_indices = tf.unique(hashcodes) num_boxes = tf.shape(boxes)[0] num_unique_boxes = tf.shape(unique_hashcodes)[0] merged_box_indices = tf.unsorted_segment_min( tf.range(num_boxes), unique_indices, num_unique_boxes) merged_boxes = tf.gather(boxes, merged_box_indices) def map_box_encodings(i): """Produces box K-hot and score encodings for each class index.""" box_mask = tf.equal( unique_indices, i * tf.ones(num_boxes, dtype=tf.int32)) box_mask = tf.reshape(box_mask, [-1]) box_indices = tf.boolean_mask(classes, box_mask) box_confidences = tf.boolean_mask(confidences, box_mask) box_class_encodings = tf.sparse_to_dense( box_indices, [num_classes], 1, validate_indices=False) box_confidence_encodings = tf.sparse_to_dense( box_indices, [num_classes], box_confidences, validate_indices=False) return box_class_encodings, box_confidence_encodings class_encodings, confidence_encodings = tf.map_fn( map_box_encodings, tf.range(num_unique_boxes), back_prop=False, dtype=(tf.int32, tf.float32)) merged_boxes = tf.reshape(merged_boxes, [-1, 4]) class_encodings = tf.reshape(class_encodings, [-1, num_classes]) confidence_encodings = tf.reshape(confidence_encodings, [-1, num_classes]) merged_box_indices = tf.reshape(merged_box_indices, [-1]) return (merged_boxes, class_encodings, confidence_encodings, merged_box_indices) def nearest_neighbor_upsampling(input_tensor, scale=None, height_scale=None, width_scale=None): """Nearest neighbor upsampling implementation. Nearest neighbor upsampling function that maps input tensor with shape [batch_size, height, width, channels] to [batch_size, height * scale , width * scale, channels]. This implementation only uses reshape and broadcasting to make it TPU compatible. Args: input_tensor: A float32 tensor of size [batch, height_in, width_in, channels]. scale: An integer multiple to scale resolution of input data in both height and width dimensions. height_scale: An integer multiple to scale the height of input image. This option when provided overrides `scale` option. width_scale: An integer multiple to scale the width of input image. This option when provided overrides `scale` option. Returns: data_up: A float32 tensor of size [batch, height_in*scale, width_in*scale, channels]. Raises: ValueError: If both scale and height_scale or if both scale and width_scale are None. """ if not scale and (height_scale is None or width_scale is None): raise ValueError('Provide either `scale` or `height_scale` and' ' `width_scale`.') with tf.name_scope('nearest_neighbor_upsampling'): h_scale = scale if height_scale is None else height_scale w_scale = scale if width_scale is None else width_scale (batch_size, height, width, channels) = shape_utils.combined_static_and_dynamic_shape(input_tensor) output_tensor = tf.reshape( input_tensor, [batch_size, height, 1, width, 1, channels]) * tf.ones( [1, 1, h_scale, 1, w_scale, 1], dtype=input_tensor.dtype) return tf.reshape(output_tensor, [batch_size, height * h_scale, width * w_scale, channels]) def matmul_gather_on_zeroth_axis(params, indices, scope=None): """Matrix multiplication based implementation of tf.gather on zeroth axis. TODO(rathodv, jonathanhuang): enable sparse matmul option. Args: params: A float32 Tensor. The tensor from which to gather values. Must be at least rank 1. indices: A Tensor. Must be one of the following types: int32, int64. Must be in range [0, params.shape[0]) scope: A name for the operation (optional). Returns: A Tensor. Has the same type as params. Values from params gathered from indices given by indices, with shape indices.shape + params.shape[1:]. """ with tf.name_scope(scope, 'MatMulGather'): params_shape = shape_utils.combined_static_and_dynamic_shape(params) indices_shape = shape_utils.combined_static_and_dynamic_shape(indices) params2d = tf.reshape(params, [params_shape[0], -1]) indicator_matrix = tf.one_hot(indices, params_shape[0]) gathered_result_flattened = tf.matmul(indicator_matrix, params2d) return tf.reshape(gathered_result_flattened, tf.stack(indices_shape + params_shape[1:])) def matmul_crop_and_resize(image, boxes, crop_size, scope=None): """Matrix multiplication based implementation of the crop and resize op. Extracts crops from the input image tensor and bilinearly resizes them (possibly with aspect ratio change) to a common output size specified by crop_size. This is more general than the crop_to_bounding_box op which extracts a fixed size slice from the input image and does not allow resizing or aspect ratio change. Returns a tensor with crops from the input image at positions defined at the bounding box locations in boxes. The cropped boxes are all resized (with bilinear interpolation) to a fixed size = `[crop_height, crop_width]`. The result is a 5-D tensor `[batch, num_boxes, crop_height, crop_width, depth]`. Running time complexity: O((# channels) * (# boxes) * (crop_size)^2 * M), where M is the number of pixels of the longer edge of the image. Note that this operation is meant to replicate the behavior of the standard tf.image.crop_and_resize operation but there are a few differences. Specifically: 1) The extrapolation value (the values that are interpolated from outside the bounds of the image window) is always zero 2) Only XLA supported operations are used (e.g., matrix multiplication). 3) There is no `box_indices` argument --- to run this op on multiple images, one must currently call this op independently on each image. 4) All shapes and the `crop_size` parameter are assumed to be statically defined. Moreover, the number of boxes must be strictly nonzero. Args: image: A `Tensor`. Must be one of the following types: `uint8`, `int8`, `int16`, `int32`, `int64`, `half`, 'bfloat16', `float32`, `float64`. A 4-D tensor of shape `[batch, image_height, image_width, depth]`. Both `image_height` and `image_width` need to be positive. boxes: A `Tensor` of type `float32` or 'bfloat16'. A 3-D tensor of shape `[batch, num_boxes, 4]`. The boxes are specified in normalized coordinates and are of the form `[y1, x1, y2, x2]`. A normalized coordinate value of `y` is mapped to the image coordinate at `y * (image_height - 1)`, so as the `[0, 1]` interval of normalized image height is mapped to `[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in which case the sampled crop is an up-down flipped version of the original image. The width dimension is treated similarly. Normalized coordinates outside the `[0, 1]` range are allowed, in which case we use `extrapolation_value` to extrapolate the input image values. crop_size: A list of two integers `[crop_height, crop_width]`. All cropped image patches are resized to this size. The aspect ratio of the image content is not preserved. Both `crop_height` and `crop_width` need to be positive. scope: A name for the operation (optional). Returns: A 5-D tensor of shape `[batch, num_boxes, crop_height, crop_width, depth]` Raises: ValueError: if image tensor does not have shape `[batch, image_height, image_width, depth]` and all dimensions statically defined. ValueError: if boxes tensor does not have shape `[batch, num_boxes, 4]` where num_boxes > 0. ValueError: if crop_size is not a list of two positive integers """ img_shape = image.shape.as_list() boxes_shape = boxes.shape.as_list() _, img_height, img_width, _ = img_shape if not isinstance(crop_size, list) or len(crop_size) != 2: raise ValueError('`crop_size` must be a list of length 2') dimensions = img_shape + crop_size + boxes_shape if not all([isinstance(dim, int) for dim in dimensions]): raise ValueError('all input shapes must be statically defined') if len(boxes_shape) != 3 or boxes_shape[2] != 4: raise ValueError('`boxes` should have shape `[batch, num_boxes, 4]`') if len(img_shape) != 4: raise ValueError('image should have shape ' '`[batch, image_height, image_width, depth]`') num_crops = boxes_shape[0] if not num_crops > 0: raise ValueError('number of boxes must be > 0') if not (crop_size[0] > 0 and crop_size[1] > 0): raise ValueError('`crop_size` must be a list of two positive integers.') def _lin_space_weights(num, img_size): if num > 1: start_weights = tf.linspace(img_size - 1.0, 0.0, num) stop_weights = img_size - 1 - start_weights else: start_weights = tf.constant(num * [.5 * (img_size - 1)], dtype=tf.float32) stop_weights = tf.constant(num * [.5 * (img_size - 1)], dtype=tf.float32) return (start_weights, stop_weights) with tf.name_scope(scope, 'MatMulCropAndResize'): y1_weights, y2_weights = _lin_space_weights(crop_size[0], img_height) x1_weights, x2_weights = _lin_space_weights(crop_size[1], img_width) y1_weights = tf.cast(y1_weights, boxes.dtype) y2_weights = tf.cast(y2_weights, boxes.dtype) x1_weights = tf.cast(x1_weights, boxes.dtype) x2_weights = tf.cast(x2_weights, boxes.dtype) [y1, x1, y2, x2] = tf.unstack(boxes, axis=2) # Pixel centers of input image and grid points along height and width image_idx_h = tf.constant( np.reshape(np.arange(img_height), (1, 1, 1, img_height)), dtype=boxes.dtype) image_idx_w = tf.constant( np.reshape(np.arange(img_width), (1, 1, 1, img_width)), dtype=boxes.dtype) grid_pos_h = tf.expand_dims( tf.einsum('ab,c->abc', y1, y1_weights) + tf.einsum( 'ab,c->abc', y2, y2_weights), axis=3) grid_pos_w = tf.expand_dims( tf.einsum('ab,c->abc', x1, x1_weights) + tf.einsum( 'ab,c->abc', x2, x2_weights), axis=3) # Create kernel matrices of pairwise kernel evaluations between pixel # centers of image and grid points. kernel_h = tf.nn.relu(1 - tf.abs(image_idx_h - grid_pos_h)) kernel_w = tf.nn.relu(1 - tf.abs(image_idx_w - grid_pos_w)) # Compute matrix multiplication between the spatial dimensions of the image # and height-wise kernel using einsum. intermediate_image = tf.einsum('abci,aiop->abcop', kernel_h, image) # Compute matrix multiplication between the spatial dimensions of the # intermediate_image and width-wise kernel using einsum. return tf.einsum('abno,abcop->abcnp', kernel_w, intermediate_image) def native_crop_and_resize(image, boxes, crop_size, scope=None): """Same as `matmul_crop_and_resize` but uses tf.image.crop_and_resize.""" def get_box_inds(proposals): proposals_shape = proposals.get_shape().as_list() if any(dim is None for dim in proposals_shape): proposals_shape = tf.shape(proposals) ones_mat = tf.ones(proposals_shape[:2], dtype=tf.int32) multiplier = tf.expand_dims( tf.range(start=0, limit=proposals_shape[0]), 1) return tf.reshape(ones_mat * multiplier, [-1]) with tf.name_scope(scope, 'CropAndResize'): cropped_regions = tf.image.crop_and_resize( image, tf.reshape(boxes, [-1] + boxes.shape.as_list()[2:]), get_box_inds(boxes), crop_size) final_shape = tf.concat([tf.shape(boxes)[:2], tf.shape(cropped_regions)[1:]], axis=0) return tf.reshape(cropped_regions, final_shape) EqualizationLossConfig = collections.namedtuple('EqualizationLossConfig', ['weight', 'exclude_prefixes'])
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Label map utility functions.""" import logging import tensorflow as tf from google.protobuf import text_format from object_detection.protos import string_int_label_map_pb2 def _validate_label_map(label_map): """Checks if a label map is valid. Args: label_map: StringIntLabelMap to validate. Raises: ValueError: if label map is invalid. """ for item in label_map.item: if item.id < 0: raise ValueError('Label map ids should be >= 0.') if (item.id == 0 and item.name != 'background' and item.display_name != 'background'): raise ValueError('Label map id 0 is reserved for the background label') def create_category_index(categories): """Creates dictionary of COCO compatible categories keyed by category id. Args: categories: a list of dicts, each of which has the following keys: 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog', 'pizza'. Returns: category_index: a dict containing the same entries as categories, but keyed by the 'id' field of each category. """ category_index = {} for cat in categories: category_index[cat['id']] = cat return category_index def get_max_label_map_index(label_map): """Get maximum index in label map. Args: label_map: a StringIntLabelMapProto Returns: an integer """ return max([item.id for item in label_map.item]) def convert_label_map_to_categories(label_map, max_num_classes, use_display_name=True): """Given label map proto returns categories list compatible with eval. This function converts label map proto and returns a list of dicts, each of which has the following keys: 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog', 'pizza'. We only allow class into the list if its id-label_id_offset is between 0 (inclusive) and max_num_classes (exclusive). If there are several items mapping to the same id in the label map, we will only keep the first one in the categories list. Args: label_map: a StringIntLabelMapProto or None. If None, a default categories list is created with max_num_classes categories. max_num_classes: maximum number of (consecutive) label indices to include. use_display_name: (boolean) choose whether to load 'display_name' field as category name. If False or if the display_name field does not exist, uses 'name' field as category names instead. Returns: categories: a list of dictionaries representing all possible categories. """ categories = [] list_of_ids_already_added = [] if not label_map: label_id_offset = 1 for class_id in range(max_num_classes): categories.append({ 'id': class_id + label_id_offset, 'name': 'category_{}'.format(class_id + label_id_offset) }) return categories for item in label_map.item: if not 0 < item.id <= max_num_classes: logging.info( 'Ignore item %d since it falls outside of requested ' 'label range.', item.id) continue if use_display_name and item.HasField('display_name'): name = item.display_name else: name = item.name if item.id not in list_of_ids_already_added: list_of_ids_already_added.append(item.id) categories.append({'id': item.id, 'name': name}) return categories def load_labelmap(path): """Loads label map proto. Args: path: path to StringIntLabelMap proto text file. Returns: a StringIntLabelMapProto """ with tf.gfile.GFile(path, 'r') as fid: label_map_string = fid.read() label_map = string_int_label_map_pb2.StringIntLabelMap() try: text_format.Merge(label_map_string, label_map) except text_format.ParseError: label_map.ParseFromString(label_map_string) _validate_label_map(label_map) return label_map def get_label_map_dict(label_map_path, use_display_name=False, fill_in_gaps_and_background=False): """Reads a label map and returns a dictionary of label names to id. Args: label_map_path: path to StringIntLabelMap proto text file. use_display_name: whether to use the label map items' display names as keys. fill_in_gaps_and_background: whether to fill in gaps and background with respect to the id field in the proto. The id: 0 is reserved for the 'background' class and will be added if it is missing. All other missing ids in range(1, max(id)) will be added with a dummy class name ("class_<id>") if they are missing. Returns: A dictionary mapping label names to id. Raises: ValueError: if fill_in_gaps_and_background and label_map has non-integer or negative values. """ label_map = load_labelmap(label_map_path) label_map_dict = {} for item in label_map.item: if use_display_name: label_map_dict[item.display_name] = item.id else: label_map_dict[item.name] = item.id if fill_in_gaps_and_background: values = set(label_map_dict.values()) if 0 not in values: label_map_dict['background'] = 0 if not all(isinstance(value, int) for value in values): raise ValueError('The values in label map must be integers in order to' 'fill_in_gaps_and_background.') if not all(value >= 0 for value in values): raise ValueError('The values in the label map must be positive.') if len(values) != max(values) + 1: # there are gaps in the labels, fill in gaps. for value in range(1, max(values)): if value not in values: label_map_dict['class_' + str(value)] = value return label_map_dict def create_categories_from_labelmap(label_map_path, use_display_name=True): """Reads a label map and returns categories list compatible with eval. This function converts label map proto and returns a list of dicts, each of which has the following keys: 'id': an integer id uniquely identifying this category. 'name': string representing category name e.g., 'cat', 'dog'. Args: label_map_path: Path to `StringIntLabelMap` proto text file. use_display_name: (boolean) choose whether to load 'display_name' field as category name. If False or if the display_name field does not exist, uses 'name' field as category names instead. Returns: categories: a list of dictionaries representing all possible categories. """ label_map = load_labelmap(label_map_path) max_num_classes = max(item.id for item in label_map.item) return convert_label_map_to_categories(label_map, max_num_classes, use_display_name) def create_category_index_from_labelmap(label_map_path, use_display_name=True): """Reads a label map and returns a category index. Args: label_map_path: Path to `StringIntLabelMap` proto text file. use_display_name: (boolean) choose whether to load 'display_name' field as category name. If False or if the display_name field does not exist, uses 'name' field as category names instead. Returns: A category index, which is a dictionary that maps integer ids to dicts containing categories, e.g. {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}, ...} """ categories = create_categories_from_labelmap(label_map_path, use_display_name) return create_category_index(categories) def create_class_agnostic_category_index(): """Creates a category index with a single `object` class.""" return {1: {'id': 1, 'name': 'object'}}
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/label_map_util.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.np_box_mask_list_ops.""" import numpy as np import tensorflow as tf from object_detection.utils import np_box_mask_list from object_detection.utils import np_box_mask_list_ops class AreaRelatedTest(tf.test.TestCase): def setUp(self): boxes1 = np.array([[4.0, 3.0, 7.0, 5.0], [5.0, 6.0, 10.0, 7.0]], dtype=float) masks1_0 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0]], dtype=np.uint8) masks1_1 = np.array([[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) masks1 = np.stack([masks1_0, masks1_1]) boxes2 = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], [0.0, 0.0, 20.0, 20.0]], dtype=float) masks2_0 = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0]], dtype=np.uint8) masks2_1 = np.array([[1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]], dtype=np.uint8) masks2_2 = np.array([[1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0]], dtype=np.uint8) masks2 = np.stack([masks2_0, masks2_1, masks2_2]) self.box_mask_list1 = np_box_mask_list.BoxMaskList( box_data=boxes1, mask_data=masks1) self.box_mask_list2 = np_box_mask_list.BoxMaskList( box_data=boxes2, mask_data=masks2) def test_area(self): areas = np_box_mask_list_ops.area(self.box_mask_list1) expected_areas = np.array([8.0, 10.0], dtype=float) self.assertAllClose(expected_areas, areas) def test_intersection(self): intersection = np_box_mask_list_ops.intersection(self.box_mask_list1, self.box_mask_list2) expected_intersection = np.array([[8.0, 0.0, 8.0], [0.0, 9.0, 7.0]], dtype=float) self.assertAllClose(intersection, expected_intersection) def test_iou(self): iou = np_box_mask_list_ops.iou(self.box_mask_list1, self.box_mask_list2) expected_iou = np.array( [[1.0, 0.0, 8.0 / 25.0], [0.0, 9.0 / 16.0, 7.0 / 28.0]], dtype=float) self.assertAllClose(iou, expected_iou) def test_ioa(self): ioa21 = np_box_mask_list_ops.ioa(self.box_mask_list1, self.box_mask_list2) expected_ioa21 = np.array([[1.0, 0.0, 8.0/25.0], [0.0, 9.0/15.0, 7.0/25.0]], dtype=np.float32) self.assertAllClose(ioa21, expected_ioa21) class NonMaximumSuppressionTest(tf.test.TestCase): def setUp(self): boxes1 = np.array( [[4.0, 3.0, 7.0, 6.0], [5.0, 6.0, 10.0, 10.0]], dtype=float) boxes2 = np.array( [[3.0, 4.0, 6.0, 8.0], [5.0, 6.0, 10.0, 10.0], [1.0, 1.0, 10.0, 10.0]], dtype=float) masks1 = np.array( [[[0, 1, 0], [1, 1, 0], [0, 0, 0]], [[0, 1, 1], [0, 1, 1], [0, 1, 1]]], dtype=np.uint8) masks2 = np.array( [[[0, 1, 0], [1, 1, 1], [0, 0, 0]], [[0, 1, 0], [0, 0, 1], [0, 1, 1]], [[0, 1, 1], [0, 1, 1], [0, 1, 1]]], dtype=np.uint8) self.boxes1 = boxes1 self.boxes2 = boxes2 self.masks1 = masks1 self.masks2 = masks2 def test_with_no_scores_field(self): box_mask_list = np_box_mask_list.BoxMaskList( box_data=self.boxes1, mask_data=self.masks1) max_output_size = 3 iou_threshold = 0.5 with self.assertRaises(ValueError): np_box_mask_list_ops.non_max_suppression( box_mask_list, max_output_size, iou_threshold) def test_nms_disabled_max_output_size_equals_one(self): box_mask_list = np_box_mask_list.BoxMaskList( box_data=self.boxes2, mask_data=self.masks2) box_mask_list.add_field('scores', np.array([.9, .75, .6], dtype=float)) max_output_size = 1 iou_threshold = 1. # No NMS expected_boxes = np.array([[3.0, 4.0, 6.0, 8.0]], dtype=float) expected_masks = np.array( [[[0, 1, 0], [1, 1, 1], [0, 0, 0]]], dtype=np.uint8) nms_box_mask_list = np_box_mask_list_ops.non_max_suppression( box_mask_list, max_output_size, iou_threshold) self.assertAllClose(nms_box_mask_list.get(), expected_boxes) self.assertAllClose(nms_box_mask_list.get_masks(), expected_masks) def test_multiclass_nms(self): boxes = np.array( [[0.2, 0.4, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) mask0 = np.array([[0, 0, 0, 0, 0], [0, 0, 1, 1, 0], [0, 0, 1, 1, 0], [0, 0, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) mask1 = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) mask2 = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], dtype=np.uint8) masks = np.stack([mask0, mask1, mask2]) box_mask_list = np_box_mask_list.BoxMaskList( box_data=boxes, mask_data=masks) scores = np.array([[-0.2, 0.1, 0.5, -0.4, 0.3], [0.7, -0.7, 0.6, 0.2, -0.9], [0.4, 0.34, -0.9, 0.2, 0.31]], dtype=np.float32) box_mask_list.add_field('scores', scores) box_mask_list_clean = np_box_mask_list_ops.multi_class_non_max_suppression( box_mask_list, score_thresh=0.25, iou_thresh=0.1, max_output_size=3) scores_clean = box_mask_list_clean.get_field('scores') classes_clean = box_mask_list_clean.get_field('classes') boxes = box_mask_list_clean.get() masks = box_mask_list_clean.get_masks() expected_scores = np.array([0.7, 0.6, 0.34, 0.31]) expected_classes = np.array([0, 2, 1, 4]) expected_boxes = np.array([[0.4, 0.2, 0.8, 0.8], [0.4, 0.2, 0.8, 0.8], [0.6, 0.0, 1.0, 1.0], [0.6, 0.0, 1.0, 1.0]], dtype=np.float32) self.assertAllClose(scores_clean, expected_scores) self.assertAllClose(classes_clean, expected_classes) self.assertAllClose(boxes, expected_boxes) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/np_box_mask_list_ops_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.per_image_vrd_evaluation.""" import numpy as np import tensorflow as tf from object_detection.utils import per_image_vrd_evaluation class SingleClassPerImageVrdEvaluationTest(tf.test.TestCase): def setUp(self): matching_iou_threshold = 0.5 self.eval = per_image_vrd_evaluation.PerImageVRDEvaluation( matching_iou_threshold) box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))]) self.detected_box_tuples = np.array( [([0, 0, 1.1, 1], [1, 1, 2, 2]), ([0, 0, 1, 1], [1, 1, 2, 2]), ([1, 1, 2, 2], [0, 0, 1.1, 1])], dtype=box_data_type) self.detected_scores = np.array([0.8, 0.2, 0.1], dtype=float) self.groundtruth_box_tuples = np.array( [([0, 0, 1, 1], [1, 1, 2, 2])], dtype=box_data_type) def test_tp_fp_eval(self): tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_box_tuples, self.groundtruth_box_tuples) expected_tp_fp_labels = np.array([True, False, False], dtype=bool) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) def test_tp_fp_eval_empty_gt(self): box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))]) tp_fp_labels = self.eval._compute_tp_fp_for_single_class( self.detected_box_tuples, np.array([], dtype=box_data_type)) expected_tp_fp_labels = np.array([False, False, False], dtype=bool) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) class MultiClassPerImageVrdEvaluationTest(tf.test.TestCase): def setUp(self): matching_iou_threshold = 0.5 self.eval = per_image_vrd_evaluation.PerImageVRDEvaluation( matching_iou_threshold) box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))]) label_data_type = np.dtype([('subject', 'i4'), ('object', 'i4'), ('relation', 'i4')]) self.detected_box_tuples = np.array( [([0, 0, 1, 1], [1, 1, 2, 2]), ([0, 0, 1.1, 1], [1, 1, 2, 2]), ([1, 1, 2, 2], [0, 0, 1.1, 1]), ([0, 0, 1, 1], [3, 4, 5, 6])], dtype=box_data_type) self.detected_class_tuples = np.array( [(1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 4, 5)], dtype=label_data_type) self.detected_scores = np.array([0.2, 0.8, 0.1, 0.5], dtype=float) self.groundtruth_box_tuples = np.array( [([0, 0, 1, 1], [1, 1, 2, 2]), ([1, 1, 2, 2], [0, 0, 1.1, 1]), ([0, 0, 1, 1], [3, 4, 5, 5.5])], dtype=box_data_type) self.groundtruth_class_tuples = np.array( [(1, 2, 3), (1, 7, 3), (1, 4, 5)], dtype=label_data_type) def test_tp_fp_eval(self): scores, tp_fp_labels, mapping = self.eval.compute_detection_tp_fp( self.detected_box_tuples, self.detected_scores, self.detected_class_tuples, self.groundtruth_box_tuples, self.groundtruth_class_tuples) expected_scores = np.array([0.8, 0.5, 0.2, 0.1], dtype=float) expected_tp_fp_labels = np.array([True, True, False, False], dtype=bool) expected_mapping = np.array([1, 3, 0, 2]) self.assertTrue(np.allclose(expected_scores, scores)) self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels)) self.assertTrue(np.allclose(expected_mapping, mapping)) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/per_image_vrd_evaluation_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for np_box_mask_list.BoxMaskList. Example box operations that are supported: * Areas: compute bounding box areas * IOU: pairwise intersection-over-union scores """ import numpy as np from object_detection.utils import np_box_list_ops from object_detection.utils import np_box_mask_list from object_detection.utils import np_mask_ops def box_list_to_box_mask_list(boxlist): """Converts a BoxList containing 'masks' into a BoxMaskList. Args: boxlist: An np_box_list.BoxList object. Returns: An np_box_mask_list.BoxMaskList object. Raises: ValueError: If boxlist does not contain `masks` as a field. """ if not boxlist.has_field('masks'): raise ValueError('boxlist does not contain mask field.') box_mask_list = np_box_mask_list.BoxMaskList( box_data=boxlist.get(), mask_data=boxlist.get_field('masks')) extra_fields = boxlist.get_extra_fields() for key in extra_fields: if key != 'masks': box_mask_list.data[key] = boxlist.get_field(key) return box_mask_list def area(box_mask_list): """Computes area of masks. Args: box_mask_list: np_box_mask_list.BoxMaskList holding N boxes and masks Returns: a numpy array with shape [N*1] representing mask areas """ return np_mask_ops.area(box_mask_list.get_masks()) def intersection(box_mask_list1, box_mask_list2): """Compute pairwise intersection areas between masks. Args: box_mask_list1: BoxMaskList holding N boxes and masks box_mask_list2: BoxMaskList holding M boxes and masks Returns: a numpy array with shape [N*M] representing pairwise intersection area """ return np_mask_ops.intersection(box_mask_list1.get_masks(), box_mask_list2.get_masks()) def iou(box_mask_list1, box_mask_list2): """Computes pairwise intersection-over-union between box and mask collections. Args: box_mask_list1: BoxMaskList holding N boxes and masks box_mask_list2: BoxMaskList holding M boxes and masks Returns: a numpy array with shape [N, M] representing pairwise iou scores. """ return np_mask_ops.iou(box_mask_list1.get_masks(), box_mask_list2.get_masks()) def ioa(box_mask_list1, box_mask_list2): """Computes pairwise intersection-over-area between box and mask collections. Intersection-over-area (ioa) between two masks mask1 and mask2 is defined as their intersection area over mask2's area. Note that ioa is not symmetric, that is, IOA(mask1, mask2) != IOA(mask2, mask1). Args: box_mask_list1: np_box_mask_list.BoxMaskList holding N boxes and masks box_mask_list2: np_box_mask_list.BoxMaskList holding M boxes and masks Returns: a numpy array with shape [N, M] representing pairwise ioa scores. """ return np_mask_ops.ioa(box_mask_list1.get_masks(), box_mask_list2.get_masks()) def gather(box_mask_list, indices, fields=None): """Gather boxes from np_box_mask_list.BoxMaskList according to indices. By default, gather returns boxes corresponding to the input index list, as well as all additional fields stored in the box_mask_list (indexing into the first dimension). However one can optionally only gather from a subset of fields. Args: box_mask_list: np_box_mask_list.BoxMaskList holding N boxes indices: a 1-d numpy array of type int_ fields: (optional) list of fields to also gather from. If None (default), all fields are gathered from. Pass an empty fields list to only gather the box coordinates. Returns: subbox_mask_list: a np_box_mask_list.BoxMaskList corresponding to the subset of the input box_mask_list specified by indices Raises: ValueError: if specified field is not contained in box_mask_list or if the indices are not of type int_ """ if fields is not None: if 'masks' not in fields: fields.append('masks') return box_list_to_box_mask_list( np_box_list_ops.gather( boxlist=box_mask_list, indices=indices, fields=fields)) def sort_by_field(box_mask_list, field, order=np_box_list_ops.SortOrder.DESCEND): """Sort boxes and associated fields according to a scalar field. A common use case is reordering the boxes according to descending scores. Args: box_mask_list: BoxMaskList holding N boxes. field: A BoxMaskList field for sorting and reordering the BoxMaskList. order: (Optional) 'descend' or 'ascend'. Default is descend. Returns: sorted_box_mask_list: A sorted BoxMaskList with the field in the specified order. """ return box_list_to_box_mask_list( np_box_list_ops.sort_by_field( boxlist=box_mask_list, field=field, order=order)) def non_max_suppression(box_mask_list, max_output_size=10000, iou_threshold=1.0, score_threshold=-10.0): """Non maximum suppression. This op greedily selects a subset of detection bounding boxes, pruning away boxes that have high IOU (intersection over union) overlap (> thresh) with already selected boxes. In each iteration, the detected bounding box with highest score in the available pool is selected. Args: box_mask_list: np_box_mask_list.BoxMaskList holding N boxes. Must contain a 'scores' field representing detection scores. All scores belong to the same class. max_output_size: maximum number of retained boxes iou_threshold: intersection over union threshold. score_threshold: minimum score threshold. Remove the boxes with scores less than this value. Default value is set to -10. A very low threshold to pass pretty much all the boxes, unless the user sets a different score threshold. Returns: an np_box_mask_list.BoxMaskList holding M boxes where M <= max_output_size Raises: ValueError: if 'scores' field does not exist ValueError: if threshold is not in [0, 1] ValueError: if max_output_size < 0 """ if not box_mask_list.has_field('scores'): raise ValueError('Field scores does not exist') if iou_threshold < 0. or iou_threshold > 1.0: raise ValueError('IOU threshold must be in [0, 1]') if max_output_size < 0: raise ValueError('max_output_size must be bigger than 0.') box_mask_list = filter_scores_greater_than(box_mask_list, score_threshold) if box_mask_list.num_boxes() == 0: return box_mask_list box_mask_list = sort_by_field(box_mask_list, 'scores') # Prevent further computation if NMS is disabled. if iou_threshold == 1.0: if box_mask_list.num_boxes() > max_output_size: selected_indices = np.arange(max_output_size) return gather(box_mask_list, selected_indices) else: return box_mask_list masks = box_mask_list.get_masks() num_masks = box_mask_list.num_boxes() # is_index_valid is True only for all remaining valid boxes, is_index_valid = np.full(num_masks, 1, dtype=bool) selected_indices = [] num_output = 0 for i in range(num_masks): if num_output < max_output_size: if is_index_valid[i]: num_output += 1 selected_indices.append(i) is_index_valid[i] = False valid_indices = np.where(is_index_valid)[0] if valid_indices.size == 0: break intersect_over_union = np_mask_ops.iou( np.expand_dims(masks[i], axis=0), masks[valid_indices]) intersect_over_union = np.squeeze(intersect_over_union, axis=0) is_index_valid[valid_indices] = np.logical_and( is_index_valid[valid_indices], intersect_over_union <= iou_threshold) return gather(box_mask_list, np.array(selected_indices)) def multi_class_non_max_suppression(box_mask_list, score_thresh, iou_thresh, max_output_size): """Multi-class version of non maximum suppression. This op greedily selects a subset of detection bounding boxes, pruning away boxes that have high IOU (intersection over union) overlap (> thresh) with already selected boxes. It operates independently for each class for which scores are provided (via the scores field of the input box_list), pruning boxes with score less than a provided threshold prior to applying NMS. Args: box_mask_list: np_box_mask_list.BoxMaskList holding N boxes. Must contain a 'scores' field representing detection scores. This scores field is a tensor that can be 1 dimensional (in the case of a single class) or 2-dimensional, in which case we assume that it takes the shape [num_boxes, num_classes]. We further assume that this rank is known statically and that scores.shape[1] is also known (i.e., the number of classes is fixed and known at graph construction time). score_thresh: scalar threshold for score (low scoring boxes are removed). iou_thresh: scalar threshold for IOU (boxes that that high IOU overlap with previously selected boxes are removed). max_output_size: maximum number of retained boxes per class. Returns: a box_mask_list holding M boxes with a rank-1 scores field representing corresponding scores for each box with scores sorted in decreasing order and a rank-1 classes field representing a class label for each box. Raises: ValueError: if iou_thresh is not in [0, 1] or if input box_mask_list does not have a valid scores field. """ if not 0 <= iou_thresh <= 1.0: raise ValueError('thresh must be between 0 and 1') if not isinstance(box_mask_list, np_box_mask_list.BoxMaskList): raise ValueError('box_mask_list must be a box_mask_list') if not box_mask_list.has_field('scores'): raise ValueError('input box_mask_list must have \'scores\' field') scores = box_mask_list.get_field('scores') if len(scores.shape) == 1: scores = np.reshape(scores, [-1, 1]) elif len(scores.shape) == 2: if scores.shape[1] is None: raise ValueError('scores field must have statically defined second ' 'dimension') else: raise ValueError('scores field must be of rank 1 or 2') num_boxes = box_mask_list.num_boxes() num_scores = scores.shape[0] num_classes = scores.shape[1] if num_boxes != num_scores: raise ValueError('Incorrect scores field length: actual vs expected.') selected_boxes_list = [] for class_idx in range(num_classes): box_mask_list_and_class_scores = np_box_mask_list.BoxMaskList( box_data=box_mask_list.get(), mask_data=box_mask_list.get_masks()) class_scores = np.reshape(scores[0:num_scores, class_idx], [-1]) box_mask_list_and_class_scores.add_field('scores', class_scores) box_mask_list_filt = filter_scores_greater_than( box_mask_list_and_class_scores, score_thresh) nms_result = non_max_suppression( box_mask_list_filt, max_output_size=max_output_size, iou_threshold=iou_thresh, score_threshold=score_thresh) nms_result.add_field( 'classes', np.zeros_like(nms_result.get_field('scores')) + class_idx) selected_boxes_list.append(nms_result) selected_boxes = np_box_list_ops.concatenate(selected_boxes_list) sorted_boxes = np_box_list_ops.sort_by_field(selected_boxes, 'scores') return box_list_to_box_mask_list(boxlist=sorted_boxes) def prune_non_overlapping_masks(box_mask_list1, box_mask_list2, minoverlap=0.0): """Prunes the boxes in list1 that overlap less than thresh with list2. For each mask in box_mask_list1, we want its IOA to be more than minoverlap with at least one of the masks in box_mask_list2. If it does not, we remove it. If the masks are not full size image, we do the pruning based on boxes. Args: box_mask_list1: np_box_mask_list.BoxMaskList holding N boxes and masks. box_mask_list2: np_box_mask_list.BoxMaskList holding M boxes and masks. minoverlap: Minimum required overlap between boxes, to count them as overlapping. Returns: A pruned box_mask_list with size [N', 4]. """ intersection_over_area = ioa(box_mask_list2, box_mask_list1) # [M, N] tensor intersection_over_area = np.amax(intersection_over_area, axis=0) # [N] tensor keep_bool = np.greater_equal(intersection_over_area, np.array(minoverlap)) keep_inds = np.nonzero(keep_bool)[0] new_box_mask_list1 = gather(box_mask_list1, keep_inds) return new_box_mask_list1 def concatenate(box_mask_lists, fields=None): """Concatenate list of box_mask_lists. This op concatenates a list of input box_mask_lists into a larger box_mask_list. It also handles concatenation of box_mask_list fields as long as the field tensor shapes are equal except for the first dimension. Args: box_mask_lists: list of np_box_mask_list.BoxMaskList objects fields: optional list of fields to also concatenate. By default, all fields from the first BoxMaskList in the list are included in the concatenation. Returns: a box_mask_list with number of boxes equal to sum([box_mask_list.num_boxes() for box_mask_list in box_mask_list]) Raises: ValueError: if box_mask_lists is invalid (i.e., is not a list, is empty, or contains non box_mask_list objects), or if requested fields are not contained in all box_mask_lists """ if fields is not None: if 'masks' not in fields: fields.append('masks') return box_list_to_box_mask_list( np_box_list_ops.concatenate(boxlists=box_mask_lists, fields=fields)) def filter_scores_greater_than(box_mask_list, thresh): """Filter to keep only boxes and masks with score exceeding a given threshold. This op keeps the collection of boxes and masks whose corresponding scores are greater than the input threshold. Args: box_mask_list: BoxMaskList holding N boxes and masks. Must contain a 'scores' field representing detection scores. thresh: scalar threshold Returns: a BoxMaskList holding M boxes and masks where M <= N Raises: ValueError: if box_mask_list not a np_box_mask_list.BoxMaskList object or if it does not have a scores field """ if not isinstance(box_mask_list, np_box_mask_list.BoxMaskList): raise ValueError('box_mask_list must be a BoxMaskList') if not box_mask_list.has_field('scores'): raise ValueError('input box_mask_list must have \'scores\' field') scores = box_mask_list.get_field('scores') if len(scores.shape) > 2: raise ValueError('Scores should have rank 1 or 2') if len(scores.shape) == 2 and scores.shape[1] != 1: raise ValueError('Scores should have rank 1 or have shape ' 'consistent with [None, 1]') high_score_indices = np.reshape(np.where(np.greater(scores, thresh)), [-1]).astype(np.int32) return gather(box_mask_list, high_score_indices)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/np_box_mask_list_ops.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for creating TFRecord data sets.""" import tensorflow as tf def int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def int64_list_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def bytes_list_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) def float_list_feature(value): return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def read_examples_list(path): """Read list of training or validation examples. The file is assumed to contain a single example per line where the first token in the line is an identifier that allows us to find the image and annotation xml for that example. For example, the line: xyz 3 would allow us to find files xyz.jpg and xyz.xml (the 3 would be ignored). Args: path: absolute path to examples list file. Returns: list of example identifiers (strings). """ with tf.gfile.GFile(path) as fid: lines = fid.readlines() return [line.strip().split(' ')[0] for line in lines] def recursive_parse_xml_to_dict(xml): """Recursively parses XML contents to python dict. We assume that `object` tags are the only ones that can appear multiple times at the same level of a tree. Args: xml: xml tree obtained by parsing XML file contents using lxml.etree Returns: Python dictionary holding XML contents. """ if not xml: return {xml.tag: xml.text} result = {} for child in xml: child_result = recursive_parse_xml_to_dict(child) if child.tag != 'object': result[child.tag] = child_result[child.tag] else: if child.tag not in result: result[child.tag] = [] result[child.tag].append(child_result[child.tag]) return {xml.tag: result}
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/dataset_util.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.ops.""" import numpy as np import tensorflow as tf from object_detection.core import standard_fields as fields from object_detection.utils import ops from object_detection.utils import test_case slim = tf.contrib.slim class NormalizedToImageCoordinatesTest(tf.test.TestCase): def test_normalized_to_image_coordinates(self): normalized_boxes = tf.placeholder(tf.float32, shape=(None, 1, 4)) normalized_boxes_np = np.array([[[0.0, 0.0, 1.0, 1.0]], [[0.5, 0.5, 1.0, 1.0]]]) image_shape = tf.convert_to_tensor([1, 4, 4, 3], dtype=tf.int32) absolute_boxes = ops.normalized_to_image_coordinates(normalized_boxes, image_shape, parallel_iterations=2) expected_boxes = np.array([[[0, 0, 4, 4]], [[2, 2, 4, 4]]]) with self.test_session() as sess: absolute_boxes = sess.run(absolute_boxes, feed_dict={normalized_boxes: normalized_boxes_np}) self.assertAllEqual(absolute_boxes, expected_boxes) class ReduceSumTrailingDimensions(tf.test.TestCase): def test_reduce_sum_trailing_dimensions(self): input_tensor = tf.placeholder(tf.float32, shape=[None, None, None]) reduced_tensor = ops.reduce_sum_trailing_dimensions(input_tensor, ndims=2) with self.test_session() as sess: reduced_np = sess.run(reduced_tensor, feed_dict={input_tensor: np.ones((2, 2, 2), np.float32)}) self.assertAllClose(reduced_np, 2 * np.ones((2, 2), np.float32)) class MeshgridTest(tf.test.TestCase): def test_meshgrid_numpy_comparison(self): """Tests meshgrid op with vectors, for which it should match numpy.""" x = np.arange(4) y = np.arange(6) exp_xgrid, exp_ygrid = np.meshgrid(x, y) xgrid, ygrid = ops.meshgrid(x, y) with self.test_session() as sess: xgrid_output, ygrid_output = sess.run([xgrid, ygrid]) self.assertAllEqual(xgrid_output, exp_xgrid) self.assertAllEqual(ygrid_output, exp_ygrid) def test_meshgrid_multidimensional(self): np.random.seed(18) x = np.random.rand(4, 1, 2).astype(np.float32) y = np.random.rand(2, 3).astype(np.float32) xgrid, ygrid = ops.meshgrid(x, y) grid_shape = list(y.shape) + list(x.shape) self.assertEqual(xgrid.get_shape().as_list(), grid_shape) self.assertEqual(ygrid.get_shape().as_list(), grid_shape) with self.test_session() as sess: xgrid_output, ygrid_output = sess.run([xgrid, ygrid]) # Check the shape of the output grids self.assertEqual(xgrid_output.shape, tuple(grid_shape)) self.assertEqual(ygrid_output.shape, tuple(grid_shape)) # Check a few elements test_elements = [((3, 0, 0), (1, 2)), ((2, 0, 1), (0, 0)), ((0, 0, 0), (1, 1))] for xind, yind in test_elements: # These are float equality tests, but the meshgrid op should not introduce # rounding. self.assertEqual(xgrid_output[yind + xind], x[xind]) self.assertEqual(ygrid_output[yind + xind], y[yind]) class OpsTestFixedPadding(tf.test.TestCase): def test_3x3_kernel(self): tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) padded_tensor = ops.fixed_padding(tensor, 3) with self.test_session() as sess: padded_tensor_out = sess.run(padded_tensor) self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape) def test_5x5_kernel(self): tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) padded_tensor = ops.fixed_padding(tensor, 5) with self.test_session() as sess: padded_tensor_out = sess.run(padded_tensor) self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape) def test_3x3_atrous_kernel(self): tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) padded_tensor = ops.fixed_padding(tensor, 3, 2) with self.test_session() as sess: padded_tensor_out = sess.run(padded_tensor) self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape) class OpsTestPadToMultiple(tf.test.TestCase): def test_zero_padding(self): tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) padded_tensor = ops.pad_to_multiple(tensor, 1) with self.test_session() as sess: padded_tensor_out = sess.run(padded_tensor) self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape) def test_no_padding(self): tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) padded_tensor = ops.pad_to_multiple(tensor, 2) with self.test_session() as sess: padded_tensor_out = sess.run(padded_tensor) self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape) def test_non_square_padding(self): tensor = tf.constant([[[[0.], [0.]]]]) padded_tensor = ops.pad_to_multiple(tensor, 2) with self.test_session() as sess: padded_tensor_out = sess.run(padded_tensor) self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape) def test_padding(self): tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]]) padded_tensor = ops.pad_to_multiple(tensor, 4) with self.test_session() as sess: padded_tensor_out = sess.run(padded_tensor) self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape) class OpsTestPaddedOneHotEncoding(tf.test.TestCase): def test_correct_one_hot_tensor_with_no_pad(self): indices = tf.constant([1, 2, 3, 5]) one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=0) expected_tensor = np.array([[0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1]], np.float32) with self.test_session() as sess: out_one_hot_tensor = sess.run(one_hot_tensor) self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10, atol=1e-10) def test_correct_one_hot_tensor_with_pad_one(self): indices = tf.constant([1, 2, 3, 5]) one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=1) expected_tensor = np.array([[0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1]], np.float32) with self.test_session() as sess: out_one_hot_tensor = sess.run(one_hot_tensor) self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10, atol=1e-10) def test_correct_one_hot_tensor_with_pad_three(self): indices = tf.constant([1, 2, 3, 5]) one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=3) expected_tensor = np.array([[0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1]], np.float32) with self.test_session() as sess: out_one_hot_tensor = sess.run(one_hot_tensor) self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10, atol=1e-10) def test_correct_padded_one_hot_tensor_with_empty_indices(self): depth = 6 pad = 2 indices = tf.constant([]) one_hot_tensor = ops.padded_one_hot_encoding( indices, depth=depth, left_pad=pad) expected_tensor = np.zeros((0, depth + pad)) with self.test_session() as sess: out_one_hot_tensor = sess.run(one_hot_tensor) self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10, atol=1e-10) def test_return_none_on_zero_depth(self): indices = tf.constant([1, 2, 3, 4, 5]) one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=0, left_pad=2) self.assertEqual(one_hot_tensor, None) def test_raise_value_error_on_rank_two_input(self): indices = tf.constant(1.0, shape=(2, 3)) with self.assertRaises(ValueError): ops.padded_one_hot_encoding(indices, depth=6, left_pad=2) def test_raise_value_error_on_negative_pad(self): indices = tf.constant(1.0, shape=(2, 3)) with self.assertRaises(ValueError): ops.padded_one_hot_encoding(indices, depth=6, left_pad=-1) def test_raise_value_error_on_float_pad(self): indices = tf.constant(1.0, shape=(2, 3)) with self.assertRaises(ValueError): ops.padded_one_hot_encoding(indices, depth=6, left_pad=0.1) def test_raise_value_error_on_float_depth(self): indices = tf.constant(1.0, shape=(2, 3)) with self.assertRaises(ValueError): ops.padded_one_hot_encoding(indices, depth=0.1, left_pad=2) class OpsDenseToSparseBoxesTest(tf.test.TestCase): def test_return_all_boxes_when_all_input_boxes_are_valid(self): num_classes = 4 num_valid_boxes = 3 code_size = 4 dense_location_placeholder = tf.placeholder(tf.float32, shape=(num_valid_boxes, code_size)) dense_num_boxes_placeholder = tf.placeholder(tf.int32, shape=(num_classes)) box_locations, box_classes = ops.dense_to_sparse_boxes( dense_location_placeholder, dense_num_boxes_placeholder, num_classes) feed_dict = {dense_location_placeholder: np.random.uniform( size=[num_valid_boxes, code_size]), dense_num_boxes_placeholder: np.array([1, 0, 0, 2], dtype=np.int32)} expected_box_locations = feed_dict[dense_location_placeholder] expected_box_classses = np.array([0, 3, 3]) with self.test_session() as sess: box_locations, box_classes = sess.run([box_locations, box_classes], feed_dict=feed_dict) self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6, atol=1e-6) self.assertAllEqual(box_classes, expected_box_classses) def test_return_only_valid_boxes_when_input_contains_invalid_boxes(self): num_classes = 4 num_valid_boxes = 3 num_boxes = 10 code_size = 4 dense_location_placeholder = tf.placeholder(tf.float32, shape=(num_boxes, code_size)) dense_num_boxes_placeholder = tf.placeholder(tf.int32, shape=(num_classes)) box_locations, box_classes = ops.dense_to_sparse_boxes( dense_location_placeholder, dense_num_boxes_placeholder, num_classes) feed_dict = {dense_location_placeholder: np.random.uniform( size=[num_boxes, code_size]), dense_num_boxes_placeholder: np.array([1, 0, 0, 2], dtype=np.int32)} expected_box_locations = (feed_dict[dense_location_placeholder] [:num_valid_boxes]) expected_box_classses = np.array([0, 3, 3]) with self.test_session() as sess: box_locations, box_classes = sess.run([box_locations, box_classes], feed_dict=feed_dict) self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6, atol=1e-6) self.assertAllEqual(box_classes, expected_box_classses) class OpsTestIndicesToDenseVector(tf.test.TestCase): def test_indices_to_dense_vector(self): size = 10000 num_indices = np.random.randint(size) rand_indices = np.random.permutation(np.arange(size))[0:num_indices] expected_output = np.zeros(size, dtype=np.float32) expected_output[rand_indices] = 1. tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector(tf_rand_indices, size) with self.test_session() as sess: output = sess.run(indicator) self.assertAllEqual(output, expected_output) self.assertEqual(output.dtype, expected_output.dtype) def test_indices_to_dense_vector_size_at_inference(self): size = 5000 num_indices = 250 all_indices = np.arange(size) rand_indices = np.random.permutation(all_indices)[0:num_indices] expected_output = np.zeros(size, dtype=np.float32) expected_output[rand_indices] = 1. tf_all_indices = tf.placeholder(tf.int32) tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector(tf_rand_indices, tf.shape(tf_all_indices)[0]) feed_dict = {tf_all_indices: all_indices} with self.test_session() as sess: output = sess.run(indicator, feed_dict=feed_dict) self.assertAllEqual(output, expected_output) self.assertEqual(output.dtype, expected_output.dtype) def test_indices_to_dense_vector_int(self): size = 500 num_indices = 25 rand_indices = np.random.permutation(np.arange(size))[0:num_indices] expected_output = np.zeros(size, dtype=np.int64) expected_output[rand_indices] = 1 tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector( tf_rand_indices, size, 1, dtype=tf.int64) with self.test_session() as sess: output = sess.run(indicator) self.assertAllEqual(output, expected_output) self.assertEqual(output.dtype, expected_output.dtype) def test_indices_to_dense_vector_custom_values(self): size = 100 num_indices = 10 rand_indices = np.random.permutation(np.arange(size))[0:num_indices] indices_value = np.random.rand(1) default_value = np.random.rand(1) expected_output = np.float32(np.ones(size) * default_value) expected_output[rand_indices] = indices_value tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector( tf_rand_indices, size, indices_value=indices_value, default_value=default_value) with self.test_session() as sess: output = sess.run(indicator) self.assertAllClose(output, expected_output) self.assertEqual(output.dtype, expected_output.dtype) def test_indices_to_dense_vector_all_indices_as_input(self): size = 500 num_indices = 500 rand_indices = np.random.permutation(np.arange(size))[0:num_indices] expected_output = np.ones(size, dtype=np.float32) tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector(tf_rand_indices, size) with self.test_session() as sess: output = sess.run(indicator) self.assertAllEqual(output, expected_output) self.assertEqual(output.dtype, expected_output.dtype) def test_indices_to_dense_vector_empty_indices_as_input(self): size = 500 rand_indices = [] expected_output = np.zeros(size, dtype=np.float32) tf_rand_indices = tf.constant(rand_indices) indicator = ops.indices_to_dense_vector(tf_rand_indices, size) with self.test_session() as sess: output = sess.run(indicator) self.assertAllEqual(output, expected_output) self.assertEqual(output.dtype, expected_output.dtype) class GroundtruthFilterTest(tf.test.TestCase): def test_filter_groundtruth(self): input_image = tf.placeholder(tf.float32, shape=(None, None, 3)) input_boxes = tf.placeholder(tf.float32, shape=(None, 4)) input_classes = tf.placeholder(tf.int32, shape=(None,)) input_is_crowd = tf.placeholder(tf.bool, shape=(None,)) input_area = tf.placeholder(tf.float32, shape=(None,)) input_difficult = tf.placeholder(tf.float32, shape=(None,)) input_label_types = tf.placeholder(tf.string, shape=(None,)) valid_indices = tf.placeholder(tf.int32, shape=(None,)) input_tensors = { fields.InputDataFields.image: input_image, fields.InputDataFields.groundtruth_boxes: input_boxes, fields.InputDataFields.groundtruth_classes: input_classes, fields.InputDataFields.groundtruth_is_crowd: input_is_crowd, fields.InputDataFields.groundtruth_area: input_area, fields.InputDataFields.groundtruth_difficult: input_difficult, fields.InputDataFields.groundtruth_label_types: input_label_types } output_tensors = ops.retain_groundtruth(input_tensors, valid_indices) image_tensor = np.random.rand(224, 224, 3) feed_dict = { input_image: image_tensor, input_boxes: np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float), input_classes: np.array([1, 2], dtype=np.int32), input_is_crowd: np.array([False, True], dtype=np.bool), input_area: np.array([32, 48], dtype=np.float32), input_difficult: np.array([True, False], dtype=np.bool), input_label_types: np.array(['APPROPRIATE', 'INCORRECT'], dtype=np.string_), valid_indices: np.array([0], dtype=np.int32) } expected_tensors = { fields.InputDataFields.image: image_tensor, fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], fields.InputDataFields.groundtruth_classes: [1], fields.InputDataFields.groundtruth_is_crowd: [False], fields.InputDataFields.groundtruth_area: [32], fields.InputDataFields.groundtruth_difficult: [True], fields.InputDataFields.groundtruth_label_types: ['APPROPRIATE'] } with self.test_session() as sess: output_tensors = sess.run(output_tensors, feed_dict=feed_dict) for key in [fields.InputDataFields.image, fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_area]: self.assertAllClose(expected_tensors[key], output_tensors[key]) for key in [fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_is_crowd, fields.InputDataFields.groundtruth_label_types]: self.assertAllEqual(expected_tensors[key], output_tensors[key]) def test_filter_with_missing_fields(self): input_boxes = tf.placeholder(tf.float32, shape=(None, 4)) input_classes = tf.placeholder(tf.int32, shape=(None,)) input_tensors = { fields.InputDataFields.groundtruth_boxes: input_boxes, fields.InputDataFields.groundtruth_classes: input_classes } valid_indices = tf.placeholder(tf.int32, shape=(None,)) feed_dict = { input_boxes: np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float), input_classes: np.array([1, 2], dtype=np.int32), valid_indices: np.array([0], dtype=np.int32) } expected_tensors = { fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], fields.InputDataFields.groundtruth_classes: [1] } output_tensors = ops.retain_groundtruth(input_tensors, valid_indices) with self.test_session() as sess: output_tensors = sess.run(output_tensors, feed_dict=feed_dict) for key in [fields.InputDataFields.groundtruth_boxes]: self.assertAllClose(expected_tensors[key], output_tensors[key]) for key in [fields.InputDataFields.groundtruth_classes]: self.assertAllEqual(expected_tensors[key], output_tensors[key]) def test_filter_with_empty_fields(self): input_boxes = tf.placeholder(tf.float32, shape=(None, 4)) input_classes = tf.placeholder(tf.int32, shape=(None,)) input_is_crowd = tf.placeholder(tf.bool, shape=(None,)) input_area = tf.placeholder(tf.float32, shape=(None,)) input_difficult = tf.placeholder(tf.float32, shape=(None,)) valid_indices = tf.placeholder(tf.int32, shape=(None,)) input_tensors = { fields.InputDataFields.groundtruth_boxes: input_boxes, fields.InputDataFields.groundtruth_classes: input_classes, fields.InputDataFields.groundtruth_is_crowd: input_is_crowd, fields.InputDataFields.groundtruth_area: input_area, fields.InputDataFields.groundtruth_difficult: input_difficult } output_tensors = ops.retain_groundtruth(input_tensors, valid_indices) feed_dict = { input_boxes: np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float), input_classes: np.array([1, 2], dtype=np.int32), input_is_crowd: np.array([False, True], dtype=np.bool), input_area: np.array([], dtype=np.float32), input_difficult: np.array([], dtype=np.float32), valid_indices: np.array([0], dtype=np.int32) } expected_tensors = { fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], fields.InputDataFields.groundtruth_classes: [1], fields.InputDataFields.groundtruth_is_crowd: [False], fields.InputDataFields.groundtruth_area: [], fields.InputDataFields.groundtruth_difficult: [] } with self.test_session() as sess: output_tensors = sess.run(output_tensors, feed_dict=feed_dict) for key in [fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_area]: self.assertAllClose(expected_tensors[key], output_tensors[key]) for key in [fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_is_crowd]: self.assertAllEqual(expected_tensors[key], output_tensors[key]) def test_filter_with_empty_groundtruth_boxes(self): input_boxes = tf.placeholder(tf.float32, shape=(None, 4)) input_classes = tf.placeholder(tf.int32, shape=(None,)) input_is_crowd = tf.placeholder(tf.bool, shape=(None,)) input_area = tf.placeholder(tf.float32, shape=(None,)) input_difficult = tf.placeholder(tf.float32, shape=(None,)) valid_indices = tf.placeholder(tf.int32, shape=(None,)) input_tensors = { fields.InputDataFields.groundtruth_boxes: input_boxes, fields.InputDataFields.groundtruth_classes: input_classes, fields.InputDataFields.groundtruth_is_crowd: input_is_crowd, fields.InputDataFields.groundtruth_area: input_area, fields.InputDataFields.groundtruth_difficult: input_difficult } output_tensors = ops.retain_groundtruth(input_tensors, valid_indices) feed_dict = { input_boxes: np.array([], dtype=np.float).reshape(0, 4), input_classes: np.array([], dtype=np.int32), input_is_crowd: np.array([], dtype=np.bool), input_area: np.array([], dtype=np.float32), input_difficult: np.array([], dtype=np.float32), valid_indices: np.array([], dtype=np.int32) } with self.test_session() as sess: output_tensors = sess.run(output_tensors, feed_dict=feed_dict) for key in input_tensors: if key == fields.InputDataFields.groundtruth_boxes: self.assertAllEqual([0, 4], output_tensors[key].shape) else: self.assertAllEqual([0], output_tensors[key].shape) class RetainGroundTruthWithPositiveClasses(tf.test.TestCase): def test_filter_groundtruth_with_positive_classes(self): input_image = tf.placeholder(tf.float32, shape=(None, None, 3)) input_boxes = tf.placeholder(tf.float32, shape=(None, 4)) input_classes = tf.placeholder(tf.int32, shape=(None,)) input_is_crowd = tf.placeholder(tf.bool, shape=(None,)) input_area = tf.placeholder(tf.float32, shape=(None,)) input_difficult = tf.placeholder(tf.float32, shape=(None,)) input_label_types = tf.placeholder(tf.string, shape=(None,)) valid_indices = tf.placeholder(tf.int32, shape=(None,)) input_tensors = { fields.InputDataFields.image: input_image, fields.InputDataFields.groundtruth_boxes: input_boxes, fields.InputDataFields.groundtruth_classes: input_classes, fields.InputDataFields.groundtruth_is_crowd: input_is_crowd, fields.InputDataFields.groundtruth_area: input_area, fields.InputDataFields.groundtruth_difficult: input_difficult, fields.InputDataFields.groundtruth_label_types: input_label_types } output_tensors = ops.retain_groundtruth_with_positive_classes(input_tensors) image_tensor = np.random.rand(224, 224, 3) feed_dict = { input_image: image_tensor, input_boxes: np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float), input_classes: np.array([1, 0], dtype=np.int32), input_is_crowd: np.array([False, True], dtype=np.bool), input_area: np.array([32, 48], dtype=np.float32), input_difficult: np.array([True, False], dtype=np.bool), input_label_types: np.array(['APPROPRIATE', 'INCORRECT'], dtype=np.string_), valid_indices: np.array([0], dtype=np.int32) } expected_tensors = { fields.InputDataFields.image: image_tensor, fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], fields.InputDataFields.groundtruth_classes: [1], fields.InputDataFields.groundtruth_is_crowd: [False], fields.InputDataFields.groundtruth_area: [32], fields.InputDataFields.groundtruth_difficult: [True], fields.InputDataFields.groundtruth_label_types: ['APPROPRIATE'] } with self.test_session() as sess: output_tensors = sess.run(output_tensors, feed_dict=feed_dict) for key in [fields.InputDataFields.image, fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_area]: self.assertAllClose(expected_tensors[key], output_tensors[key]) for key in [fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_is_crowd, fields.InputDataFields.groundtruth_label_types]: self.assertAllEqual(expected_tensors[key], output_tensors[key]) class ReplaceNaNGroundtruthLabelScoresWithOnes(tf.test.TestCase): def test_replace_nan_groundtruth_label_scores_with_ones(self): label_scores = tf.constant([np.nan, 1.0, np.nan]) output_tensor = ops.replace_nan_groundtruth_label_scores_with_ones( label_scores) expected_tensor = [1.0, 1.0, 1.0] with self.test_session(): output_tensor = output_tensor.eval() self.assertAllClose(expected_tensor, output_tensor) def test_input_equals_output_when_no_nans(self): input_label_scores = [0.5, 1.0, 1.0] label_scores_tensor = tf.constant(input_label_scores) output_label_scores = ops.replace_nan_groundtruth_label_scores_with_ones( label_scores_tensor) with self.test_session(): output_label_scores = output_label_scores.eval() self.assertAllClose(input_label_scores, output_label_scores) class GroundtruthFilterWithCrowdBoxesTest(tf.test.TestCase): def test_filter_groundtruth_with_crowd_boxes(self): input_tensors = { fields.InputDataFields.groundtruth_boxes: [[0.1, 0.2, 0.6, 0.8], [0.2, 0.4, 0.1, 0.8]], fields.InputDataFields.groundtruth_classes: [1, 2], fields.InputDataFields.groundtruth_is_crowd: [True, False], fields.InputDataFields.groundtruth_area: [100.0, 238.7] } expected_tensors = { fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], fields.InputDataFields.groundtruth_classes: [2], fields.InputDataFields.groundtruth_is_crowd: [False], fields.InputDataFields.groundtruth_area: [238.7] } output_tensors = ops.filter_groundtruth_with_crowd_boxes( input_tensors) with self.test_session() as sess: output_tensors = sess.run(output_tensors) for key in [fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_area]: self.assertAllClose(expected_tensors[key], output_tensors[key]) for key in [fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_is_crowd]: self.assertAllEqual(expected_tensors[key], output_tensors[key]) class GroundtruthFilterWithNanBoxTest(tf.test.TestCase): def test_filter_groundtruth_with_nan_box_coordinates(self): input_tensors = { fields.InputDataFields.groundtruth_boxes: [[np.nan, np.nan, np.nan, np.nan], [0.2, 0.4, 0.1, 0.8]], fields.InputDataFields.groundtruth_classes: [1, 2], fields.InputDataFields.groundtruth_is_crowd: [False, True], fields.InputDataFields.groundtruth_area: [100.0, 238.7] } expected_tensors = { fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]], fields.InputDataFields.groundtruth_classes: [2], fields.InputDataFields.groundtruth_is_crowd: [True], fields.InputDataFields.groundtruth_area: [238.7] } output_tensors = ops.filter_groundtruth_with_nan_box_coordinates( input_tensors) with self.test_session() as sess: output_tensors = sess.run(output_tensors) for key in [fields.InputDataFields.groundtruth_boxes, fields.InputDataFields.groundtruth_area]: self.assertAllClose(expected_tensors[key], output_tensors[key]) for key in [fields.InputDataFields.groundtruth_classes, fields.InputDataFields.groundtruth_is_crowd]: self.assertAllEqual(expected_tensors[key], output_tensors[key]) class OpsTestNormalizeToTarget(tf.test.TestCase): def test_create_normalize_to_target(self): inputs = tf.random_uniform([5, 10, 12, 3]) target_norm_value = 4.0 dim = 3 with self.test_session(): output = ops.normalize_to_target(inputs, target_norm_value, dim) self.assertEqual(output.op.name, 'NormalizeToTarget/mul') var_name = tf.contrib.framework.get_variables()[0].name self.assertEqual(var_name, 'NormalizeToTarget/weights:0') def test_invalid_dim(self): inputs = tf.random_uniform([5, 10, 12, 3]) target_norm_value = 4.0 dim = 10 with self.assertRaisesRegexp( ValueError, 'dim must be non-negative but smaller than the input rank.'): ops.normalize_to_target(inputs, target_norm_value, dim) def test_invalid_target_norm_values(self): inputs = tf.random_uniform([5, 10, 12, 3]) target_norm_value = [4.0, 4.0] dim = 3 with self.assertRaisesRegexp( ValueError, 'target_norm_value must be a float or a list of floats'): ops.normalize_to_target(inputs, target_norm_value, dim) def test_correct_output_shape(self): inputs = tf.random_uniform([5, 10, 12, 3]) target_norm_value = 4.0 dim = 3 with self.test_session(): output = ops.normalize_to_target(inputs, target_norm_value, dim) self.assertEqual(output.get_shape().as_list(), inputs.get_shape().as_list()) def test_correct_initial_output_values(self): inputs = tf.constant([[[[3, 4], [7, 24]], [[5, -12], [-1, 0]]]], tf.float32) target_norm_value = 10.0 dim = 3 expected_output = [[[[30/5.0, 40/5.0], [70/25.0, 240/25.0]], [[50/13.0, -120/13.0], [-10, 0]]]] with self.test_session() as sess: normalized_inputs = ops.normalize_to_target(inputs, target_norm_value, dim) sess.run(tf.global_variables_initializer()) output = normalized_inputs.eval() self.assertAllClose(output, expected_output) def test_multiple_target_norm_values(self): inputs = tf.constant([[[[3, 4], [7, 24]], [[5, -12], [-1, 0]]]], tf.float32) target_norm_value = [10.0, 20.0] dim = 3 expected_output = [[[[30/5.0, 80/5.0], [70/25.0, 480/25.0]], [[50/13.0, -240/13.0], [-10, 0]]]] with self.test_session() as sess: normalized_inputs = ops.normalize_to_target(inputs, target_norm_value, dim) sess.run(tf.global_variables_initializer()) output = normalized_inputs.eval() self.assertAllClose(output, expected_output) class OpsTestPositionSensitiveCropRegions(tf.test.TestCase): def test_position_sensitive(self): num_spatial_bins = [3, 2] image_shape = [3, 2, 6] # First channel is 1's, second channel is 2's, etc. image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32, shape=image_shape) boxes = tf.random_uniform((2, 4)) # The result for both boxes should be [[1, 2], [3, 4], [5, 6]] # before averaging. expected_output = np.array([3.5, 3.5]).reshape([2, 1, 1, 1]) for crop_size_mult in range(1, 3): crop_size = [3 * crop_size_mult, 2 * crop_size_mult] ps_crop_and_pool = ops.position_sensitive_crop_regions( image, boxes, crop_size, num_spatial_bins, global_pool=True) with self.test_session() as sess: output = sess.run(ps_crop_and_pool) self.assertAllClose(output, expected_output) def test_position_sensitive_with_equal_channels(self): num_spatial_bins = [2, 2] image_shape = [3, 3, 4] crop_size = [2, 2] image = tf.constant(range(1, 3 * 3 + 1), dtype=tf.float32, shape=[3, 3, 1]) tiled_image = tf.tile(image, [1, 1, image_shape[2]]) boxes = tf.random_uniform((3, 4)) box_ind = tf.constant([0, 0, 0], dtype=tf.int32) # All channels are equal so position-sensitive crop and resize should # work as the usual crop and resize for just one channel. crop = tf.image.crop_and_resize(tf.expand_dims(image, axis=0), boxes, box_ind, crop_size) crop_and_pool = tf.reduce_mean(crop, [1, 2], keep_dims=True) ps_crop_and_pool = ops.position_sensitive_crop_regions( tiled_image, boxes, crop_size, num_spatial_bins, global_pool=True) with self.test_session() as sess: expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool)) self.assertAllClose(output, expected_output) def test_raise_value_error_on_num_bins_less_than_one(self): num_spatial_bins = [1, -1] image_shape = [1, 1, 2] crop_size = [2, 2] image = tf.constant(1, dtype=tf.float32, shape=image_shape) boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32) with self.assertRaisesRegexp(ValueError, 'num_spatial_bins should be >= 1'): ops.position_sensitive_crop_regions( image, boxes, crop_size, num_spatial_bins, global_pool=True) def test_raise_value_error_on_non_divisible_crop_size(self): num_spatial_bins = [2, 3] image_shape = [1, 1, 6] crop_size = [3, 2] image = tf.constant(1, dtype=tf.float32, shape=image_shape) boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32) with self.assertRaisesRegexp( ValueError, 'crop_size should be divisible by num_spatial_bins'): ops.position_sensitive_crop_regions( image, boxes, crop_size, num_spatial_bins, global_pool=True) def test_raise_value_error_on_non_divisible_num_channels(self): num_spatial_bins = [2, 2] image_shape = [1, 1, 5] crop_size = [2, 2] image = tf.constant(1, dtype=tf.float32, shape=image_shape) boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32) with self.assertRaisesRegexp( ValueError, 'Dimension size must be evenly divisible by 4 but is 5'): ops.position_sensitive_crop_regions( image, boxes, crop_size, num_spatial_bins, global_pool=True) def test_position_sensitive_with_global_pool_false(self): num_spatial_bins = [3, 2] image_shape = [3, 2, 6] num_boxes = 2 # First channel is 1's, second channel is 2's, etc. image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32, shape=image_shape) boxes = tf.random_uniform((num_boxes, 4)) expected_output = [] # Expected output, when crop_size = [3, 2]. expected_output.append(np.expand_dims( np.tile(np.array([[1, 2], [3, 4], [5, 6]]), (num_boxes, 1, 1)), axis=-1)) # Expected output, when crop_size = [6, 4]. expected_output.append(np.expand_dims( np.tile(np.array([[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4], [5, 5, 6, 6], [5, 5, 6, 6]]), (num_boxes, 1, 1)), axis=-1)) for crop_size_mult in range(1, 3): crop_size = [3 * crop_size_mult, 2 * crop_size_mult] ps_crop = ops.position_sensitive_crop_regions( image, boxes, crop_size, num_spatial_bins, global_pool=False) with self.test_session() as sess: output = sess.run(ps_crop) self.assertAllEqual(output, expected_output[crop_size_mult - 1]) def test_position_sensitive_with_global_pool_false_and_do_global_pool(self): num_spatial_bins = [3, 2] image_shape = [3, 2, 6] num_boxes = 2 # First channel is 1's, second channel is 2's, etc. image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32, shape=image_shape) boxes = tf.random_uniform((num_boxes, 4)) expected_output = [] # Expected output, when crop_size = [3, 2]. expected_output.append(np.mean( np.expand_dims( np.tile(np.array([[1, 2], [3, 4], [5, 6]]), (num_boxes, 1, 1)), axis=-1), axis=(1, 2), keepdims=True)) # Expected output, when crop_size = [6, 4]. expected_output.append(np.mean( np.expand_dims( np.tile(np.array([[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4], [5, 5, 6, 6], [5, 5, 6, 6]]), (num_boxes, 1, 1)), axis=-1), axis=(1, 2), keepdims=True)) for crop_size_mult in range(1, 3): crop_size = [3 * crop_size_mult, 2 * crop_size_mult] # Perform global_pooling after running the function with # global_pool=False. ps_crop = ops.position_sensitive_crop_regions( image, boxes, crop_size, num_spatial_bins, global_pool=False) ps_crop_and_pool = tf.reduce_mean( ps_crop, reduction_indices=(1, 2), keep_dims=True) with self.test_session() as sess: output = sess.run(ps_crop_and_pool) self.assertAllEqual(output, expected_output[crop_size_mult - 1]) def test_raise_value_error_on_non_square_block_size(self): num_spatial_bins = [3, 2] image_shape = [3, 2, 6] crop_size = [6, 2] image = tf.constant(1, dtype=tf.float32, shape=image_shape) boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32) with self.assertRaisesRegexp( ValueError, 'Only support square bin crop size for now.'): ops.position_sensitive_crop_regions( image, boxes, crop_size, num_spatial_bins, global_pool=False) class OpsTestBatchPositionSensitiveCropRegions(tf.test.TestCase): def test_position_sensitive_with_single_bin(self): num_spatial_bins = [1, 1] image_shape = [2, 3, 3, 4] crop_size = [2, 2] image = tf.random_uniform(image_shape) boxes = tf.random_uniform((2, 3, 4)) box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32) # When a single bin is used, position-sensitive crop and pool should be # the same as non-position sensitive crop and pool. crop = tf.image.crop_and_resize(image, tf.reshape(boxes, [-1, 4]), box_ind, crop_size) crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True) crop_and_pool = tf.reshape(crop_and_pool, [2, 3, 1, 1, 4]) ps_crop_and_pool = ops.batch_position_sensitive_crop_regions( image, boxes, crop_size, num_spatial_bins, global_pool=True) with self.test_session() as sess: expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool)) self.assertAllClose(output, expected_output) def test_position_sensitive_with_global_pool_false_and_known_boxes(self): num_spatial_bins = [2, 2] image_shape = [2, 2, 2, 4] crop_size = [2, 2] images = tf.constant(range(1, 2 * 2 * 4 + 1) * 2, dtype=tf.float32, shape=image_shape) # First box contains whole image, and second box contains only first row. boxes = tf.constant(np.array([[[0., 0., 1., 1.]], [[0., 0., 0.5, 1.]]]), dtype=tf.float32) # box_ind = tf.constant([0, 1], dtype=tf.int32) expected_output = [] # Expected output, when the box containing whole image. expected_output.append( np.reshape(np.array([[4, 7], [10, 13]]), (1, 2, 2, 1)) ) # Expected output, when the box containing only first row. expected_output.append( np.reshape(np.array([[3, 6], [7, 10]]), (1, 2, 2, 1)) ) expected_output = np.stack(expected_output, axis=0) ps_crop = ops.batch_position_sensitive_crop_regions( images, boxes, crop_size, num_spatial_bins, global_pool=False) with self.test_session() as sess: output = sess.run(ps_crop) self.assertAllEqual(output, expected_output) def test_position_sensitive_with_global_pool_false_and_single_bin(self): num_spatial_bins = [1, 1] image_shape = [2, 3, 3, 4] crop_size = [1, 1] images = tf.random_uniform(image_shape) boxes = tf.random_uniform((2, 3, 4)) # box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32) # Since single_bin is used and crop_size = [1, 1] (i.e., no crop resize), # the outputs are the same whatever the global_pool value is. ps_crop_and_pool = ops.batch_position_sensitive_crop_regions( images, boxes, crop_size, num_spatial_bins, global_pool=True) ps_crop = ops.batch_position_sensitive_crop_regions( images, boxes, crop_size, num_spatial_bins, global_pool=False) with self.test_session() as sess: pooled_output, unpooled_output = sess.run((ps_crop_and_pool, ps_crop)) self.assertAllClose(pooled_output, unpooled_output) class ReframeBoxMasksToImageMasksTest(tf.test.TestCase): def testZeroImageOnEmptyMask(self): box_masks = tf.constant([[[0, 0], [0, 0]]], dtype=tf.float32) boxes = tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32) image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes, image_height=4, image_width=4) np_expected_image_masks = np.array([[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], dtype=np.float32) with self.test_session() as sess: np_image_masks = sess.run(image_masks) self.assertAllClose(np_image_masks, np_expected_image_masks) def testZeroBoxMasks(self): box_masks = tf.zeros([0, 3, 3], dtype=tf.float32) boxes = tf.zeros([0, 4], dtype=tf.float32) image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes, image_height=4, image_width=4) with self.test_session() as sess: np_image_masks = sess.run(image_masks) self.assertAllEqual(np_image_masks.shape, np.array([0, 4, 4])) def testMaskIsCenteredInImageWhenBoxIsCentered(self): box_masks = tf.constant([[[1, 1], [1, 1]]], dtype=tf.float32) boxes = tf.constant([[0.25, 0.25, 0.75, 0.75]], dtype=tf.float32) image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes, image_height=4, image_width=4) np_expected_image_masks = np.array([[[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 1, 0], [0, 0, 0, 0]]], dtype=np.float32) with self.test_session() as sess: np_image_masks = sess.run(image_masks) self.assertAllClose(np_image_masks, np_expected_image_masks) def testMaskOffCenterRemainsOffCenterInImage(self): box_masks = tf.constant([[[1, 0], [0, 1]]], dtype=tf.float32) boxes = tf.constant([[0.25, 0.5, 0.75, 1.0]], dtype=tf.float32) image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes, image_height=4, image_width=4) np_expected_image_masks = np.array([[[0, 0, 0, 0], [0, 0, 0.6111111, 0.16666669], [0, 0, 0.3888889, 0.83333337], [0, 0, 0, 0]]], dtype=np.float32) with self.test_session() as sess: np_image_masks = sess.run(image_masks) self.assertAllClose(np_image_masks, np_expected_image_masks) class MergeBoxesWithMultipleLabelsTest(tf.test.TestCase): def testMergeBoxesWithMultipleLabels(self): boxes = tf.constant( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75], [0.25, 0.25, 0.75, 0.75]], dtype=tf.float32) class_indices = tf.constant([0, 4, 2], dtype=tf.int32) class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32) num_classes = 5 merged_boxes, merged_classes, merged_confidences, merged_box_indices = ( ops.merge_boxes_with_multiple_labels( boxes, class_indices, class_confidences, num_classes)) expected_merged_boxes = np.array( [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=np.float32) expected_merged_classes = np.array( [[1, 0, 1, 0, 0], [0, 0, 0, 0, 1]], dtype=np.int32) expected_merged_confidences = np.array( [[0.8, 0, 0.1, 0, 0], [0, 0, 0, 0, 0.2]], dtype=np.float32) expected_merged_box_indices = np.array([0, 1], dtype=np.int32) with self.test_session() as sess: (np_merged_boxes, np_merged_classes, np_merged_confidences, np_merged_box_indices) = sess.run( [merged_boxes, merged_classes, merged_confidences, merged_box_indices]) self.assertAllClose(np_merged_boxes, expected_merged_boxes) self.assertAllClose(np_merged_classes, expected_merged_classes) self.assertAllClose(np_merged_confidences, expected_merged_confidences) self.assertAllClose(np_merged_box_indices, expected_merged_box_indices) def testMergeBoxesWithMultipleLabelsCornerCase(self): boxes = tf.constant( [[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1]], dtype=tf.float32) class_indices = tf.constant([0, 1, 2, 3, 2, 1, 0, 3], dtype=tf.int32) class_confidences = tf.constant([0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6], dtype=tf.float32) num_classes = 4 merged_boxes, merged_classes, merged_confidences, merged_box_indices = ( ops.merge_boxes_with_multiple_labels( boxes, class_indices, class_confidences, num_classes)) expected_merged_boxes = np.array( [[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]], dtype=np.float32) expected_merged_classes = np.array( [[1, 0, 0, 1], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]], dtype=np.int32) expected_merged_confidences = np.array( [[0.1, 0, 0, 0.6], [0.4, 0.9, 0, 0], [0, 0.7, 0.2, 0], [0, 0, 0.3, 0.8]], dtype=np.float32) expected_merged_box_indices = np.array([0, 1, 2, 3], dtype=np.int32) with self.test_session() as sess: (np_merged_boxes, np_merged_classes, np_merged_confidences, np_merged_box_indices) = sess.run( [merged_boxes, merged_classes, merged_confidences, merged_box_indices]) self.assertAllClose(np_merged_boxes, expected_merged_boxes) self.assertAllClose(np_merged_classes, expected_merged_classes) self.assertAllClose(np_merged_confidences, expected_merged_confidences) self.assertAllClose(np_merged_box_indices, expected_merged_box_indices) def testMergeBoxesWithEmptyInputs(self): boxes = tf.zeros([0, 4], dtype=tf.float32) class_indices = tf.constant([], dtype=tf.int32) class_confidences = tf.constant([], dtype=tf.float32) num_classes = 5 merged_boxes, merged_classes, merged_confidences, merged_box_indices = ( ops.merge_boxes_with_multiple_labels( boxes, class_indices, class_confidences, num_classes)) with self.test_session() as sess: (np_merged_boxes, np_merged_classes, np_merged_confidences, np_merged_box_indices) = sess.run( [merged_boxes, merged_classes, merged_confidences, merged_box_indices]) self.assertAllEqual(np_merged_boxes.shape, [0, 4]) self.assertAllEqual(np_merged_classes.shape, [0, 5]) self.assertAllEqual(np_merged_confidences.shape, [0, 5]) self.assertAllEqual(np_merged_box_indices.shape, [0]) class NearestNeighborUpsamplingTest(test_case.TestCase): def test_upsampling_with_single_scale(self): def graph_fn(inputs): custom_op_output = ops.nearest_neighbor_upsampling(inputs, scale=2) return custom_op_output inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1]) custom_op_output = self.execute(graph_fn, [inputs]) expected_output = [[[[0], [0], [1], [1]], [[0], [0], [1], [1]], [[2], [2], [3], [3]], [[2], [2], [3], [3]]]] self.assertAllClose(custom_op_output, expected_output) def test_upsampling_with_separate_height_width_scales(self): def graph_fn(inputs): custom_op_output = ops.nearest_neighbor_upsampling(inputs, height_scale=2, width_scale=3) return custom_op_output inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1]) custom_op_output = self.execute(graph_fn, [inputs]) expected_output = [[[[0], [0], [0], [1], [1], [1]], [[0], [0], [0], [1], [1], [1]], [[2], [2], [2], [3], [3], [3]], [[2], [2], [2], [3], [3], [3]]]] self.assertAllClose(custom_op_output, expected_output) class MatmulGatherOnZerothAxis(test_case.TestCase): def test_gather_2d(self): def graph_fn(params, indices): return ops.matmul_gather_on_zeroth_axis(params, indices) params = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [0, 1, 0, 0]], dtype=np.float32) indices = np.array([2, 2, 1], dtype=np.int32) expected_output = np.array([[9, 10, 11, 12], [9, 10, 11, 12], [5, 6, 7, 8]]) gather_output = self.execute(graph_fn, [params, indices]) self.assertAllClose(gather_output, expected_output) def test_gather_3d(self): def graph_fn(params, indices): return ops.matmul_gather_on_zeroth_axis(params, indices) params = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]], [[0, 1], [0, 0]]], dtype=np.float32) indices = np.array([0, 3, 1], dtype=np.int32) expected_output = np.array([[[1, 2], [3, 4]], [[0, 1], [0, 0]], [[5, 6], [7, 8]]]) gather_output = self.execute(graph_fn, [params, indices]) self.assertAllClose(gather_output, expected_output) def test_gather_with_many_indices(self): def graph_fn(params, indices): return ops.matmul_gather_on_zeroth_axis(params, indices) params = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [0, 1, 0, 0]], dtype=np.float32) indices = np.array([0, 0, 0, 0, 0, 0], dtype=np.int32) expected_output = np.array(6*[[1, 2, 3, 4]]) gather_output = self.execute(graph_fn, [params, indices]) self.assertAllClose(gather_output, expected_output) def test_gather_with_dynamic_shape_input(self): params_placeholder = tf.placeholder(tf.float32, shape=[None, 4]) indices_placeholder = tf.placeholder(tf.int32, shape=[None]) gather_result = ops.matmul_gather_on_zeroth_axis( params_placeholder, indices_placeholder) params = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [0, 1, 0, 0]], dtype=np.float32) indices = np.array([0, 0, 0, 0, 0, 0]) expected_output = np.array(6*[[1, 2, 3, 4]]) with self.test_session() as sess: gather_output = sess.run(gather_result, feed_dict={ params_placeholder: params, indices_placeholder: indices}) self.assertAllClose(gather_output, expected_output) class OpsTestMatMulCropAndResize(test_case.TestCase): def testMatMulCropAndResize2x2To1x1(self): def graph_fn(image, boxes): return ops.matmul_crop_and_resize(image, boxes, crop_size=[1, 1]) image = np.array([[[[1], [2]], [[3], [4]]]], dtype=np.float32) boxes = np.array([[[0, 0, 1, 1]]], dtype=np.float32) expected_output = [[[[[2.5]]]]] crop_output = self.execute(graph_fn, [image, boxes]) self.assertAllClose(crop_output, expected_output) def testMatMulCropAndResize2x2To1x1Flipped(self): def graph_fn(image, boxes): return ops.matmul_crop_and_resize(image, boxes, crop_size=[1, 1]) image = np.array([[[[1], [2]], [[3], [4]]]], dtype=np.float32) boxes = np.array([[[1, 1, 0, 0]]], dtype=np.float32) expected_output = [[[[[2.5]]]]] crop_output = self.execute(graph_fn, [image, boxes]) self.assertAllClose(crop_output, expected_output) def testMatMulCropAndResize2x2To3x3(self): def graph_fn(image, boxes): return ops.matmul_crop_and_resize(image, boxes, crop_size=[3, 3]) image = np.array([[[[1], [2]], [[3], [4]]]], dtype=np.float32) boxes = np.array([[[0, 0, 1, 1]]], dtype=np.float32) expected_output = [[[[[1.0], [1.5], [2.0]], [[2.0], [2.5], [3.0]], [[3.0], [3.5], [4.0]]]]] crop_output = self.execute(graph_fn, [image, boxes]) self.assertAllClose(crop_output, expected_output) def testMatMulCropAndResize2x2To3x3Flipped(self): def graph_fn(image, boxes): return ops.matmul_crop_and_resize(image, boxes, crop_size=[3, 3]) image = np.array([[[[1], [2]], [[3], [4]]]], dtype=np.float32) boxes = np.array([[[1, 1, 0, 0]]], dtype=np.float32) expected_output = [[[[[4.0], [3.5], [3.0]], [[3.0], [2.5], [2.0]], [[2.0], [1.5], [1.0]]]]] crop_output = self.execute(graph_fn, [image, boxes]) self.assertAllClose(crop_output, expected_output) def testMatMulCropAndResize3x3To2x2(self): def graph_fn(image, boxes): return ops.matmul_crop_and_resize(image, boxes, crop_size=[2, 2]) image = np.array([[[[1], [2], [3]], [[4], [5], [6]], [[7], [8], [9]]]], dtype=np.float32) boxes = np.array([[[0, 0, 1, 1], [0, 0, .5, .5]]], dtype=np.float32) expected_output = [[[[[1], [3]], [[7], [9]]], [[[1], [2]], [[4], [5]]]]] crop_output = self.execute(graph_fn, [image, boxes]) self.assertAllClose(crop_output, expected_output) def testMatMulCropAndResize3x3To2x2_2Channels(self): def graph_fn(image, boxes): return ops.matmul_crop_and_resize(image, boxes, crop_size=[2, 2]) image = np.array([[[[1, 0], [2, 1], [3, 2]], [[4, 3], [5, 4], [6, 5]], [[7, 6], [8, 7], [9, 8]]]], dtype=np.float32) boxes = np.array([[[0, 0, 1, 1], [0, 0, .5, .5]]], dtype=np.float32) expected_output = [[[[[1, 0], [3, 2]], [[7, 6], [9, 8]]], [[[1, 0], [2, 1]], [[4, 3], [5, 4]]]]] crop_output = self.execute(graph_fn, [image, boxes]) self.assertAllClose(crop_output, expected_output) def testBatchMatMulCropAndResize3x3To2x2_2Channels(self): def graph_fn(image, boxes): return ops.matmul_crop_and_resize(image, boxes, crop_size=[2, 2]) image = np.array([[[[1, 0], [2, 1], [3, 2]], [[4, 3], [5, 4], [6, 5]], [[7, 6], [8, 7], [9, 8]]], [[[1, 0], [2, 1], [3, 2]], [[4, 3], [5, 4], [6, 5]], [[7, 6], [8, 7], [9, 8]]]], dtype=np.float32) boxes = np.array([[[0, 0, 1, 1], [0, 0, .5, .5]], [[1, 1, 0, 0], [.5, .5, 0, 0]]], dtype=np.float32) expected_output = [[[[[1, 0], [3, 2]], [[7, 6], [9, 8]]], [[[1, 0], [2, 1]], [[4, 3], [5, 4]]]], [[[[9, 8], [7, 6]], [[3, 2], [1, 0]]], [[[5, 4], [4, 3]], [[2, 1], [1, 0]]]]] crop_output = self.execute(graph_fn, [image, boxes]) self.assertAllClose(crop_output, expected_output) def testMatMulCropAndResize3x3To2x2Flipped(self): def graph_fn(image, boxes): return ops.matmul_crop_and_resize(image, boxes, crop_size=[2, 2]) image = np.array([[[[1], [2], [3]], [[4], [5], [6]], [[7], [8], [9]]]], dtype=np.float32) boxes = np.array([[[1, 1, 0, 0], [.5, .5, 0, 0]]], dtype=np.float32) expected_output = [[[[[9], [7]], [[3], [1]]], [[[5], [4]], [[2], [1]]]]] crop_output = self.execute(graph_fn, [image, boxes]) self.assertAllClose(crop_output, expected_output) def testInvalidInputShape(self): image = tf.constant([[[1], [2]], [[3], [4]]], dtype=tf.float32) boxes = tf.constant([[-1, -1, 1, 1]], dtype=tf.float32) crop_size = [4, 4] with self.assertRaises(ValueError): _ = ops.matmul_crop_and_resize(image, boxes, crop_size) class OpsTestCropAndResize(test_case.TestCase): def testBatchCropAndResize3x3To2x2_2Channels(self): def graph_fn(image, boxes): return ops.native_crop_and_resize(image, boxes, crop_size=[2, 2]) image = np.array([[[[1, 0], [2, 1], [3, 2]], [[4, 3], [5, 4], [6, 5]], [[7, 6], [8, 7], [9, 8]]], [[[1, 0], [2, 1], [3, 2]], [[4, 3], [5, 4], [6, 5]], [[7, 6], [8, 7], [9, 8]]]], dtype=np.float32) boxes = np.array([[[0, 0, 1, 1], [0, 0, .5, .5]], [[1, 1, 0, 0], [.5, .5, 0, 0]]], dtype=np.float32) expected_output = [[[[[1, 0], [3, 2]], [[7, 6], [9, 8]]], [[[1, 0], [2, 1]], [[4, 3], [5, 4]]]], [[[[9, 8], [7, 6]], [[3, 2], [1, 0]]], [[[5, 4], [4, 3]], [[2, 1], [1, 0]]]]] crop_output = self.execute_cpu(graph_fn, [image, boxes]) self.assertAllClose(crop_output, expected_output) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/ops_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.visualization_utils.""" import logging import os import numpy as np import PIL.Image as Image import tensorflow as tf from object_detection.core import standard_fields as fields from object_detection.utils import visualization_utils _TESTDATA_PATH = 'object_detection/test_images' class VisualizationUtilsTest(tf.test.TestCase): def create_colorful_test_image(self): """This function creates an image that can be used to test vis functions. It makes an image composed of four colored rectangles. Returns: colorful test numpy array image. """ ch255 = np.full([100, 200, 1], 255, dtype=np.uint8) ch128 = np.full([100, 200, 1], 128, dtype=np.uint8) ch0 = np.full([100, 200, 1], 0, dtype=np.uint8) imr = np.concatenate((ch255, ch128, ch128), axis=2) img = np.concatenate((ch255, ch255, ch0), axis=2) imb = np.concatenate((ch255, ch0, ch255), axis=2) imw = np.concatenate((ch128, ch128, ch128), axis=2) imu = np.concatenate((imr, img), axis=1) imd = np.concatenate((imb, imw), axis=1) image = np.concatenate((imu, imd), axis=0) return image def create_test_image_with_five_channels(self): return np.full([100, 200, 5], 255, dtype=np.uint8) def create_test_grayscale_image(self): return np.full([100, 200, 1], 255, dtype=np.uint8) def test_draw_bounding_box_on_image(self): test_image = self.create_colorful_test_image() test_image = Image.fromarray(test_image) width_original, height_original = test_image.size ymin = 0.25 ymax = 0.75 xmin = 0.4 xmax = 0.6 visualization_utils.draw_bounding_box_on_image(test_image, ymin, xmin, ymax, xmax) width_final, height_final = test_image.size self.assertEqual(width_original, width_final) self.assertEqual(height_original, height_final) def test_draw_bounding_box_on_image_array(self): test_image = self.create_colorful_test_image() width_original = test_image.shape[0] height_original = test_image.shape[1] ymin = 0.25 ymax = 0.75 xmin = 0.4 xmax = 0.6 visualization_utils.draw_bounding_box_on_image_array( test_image, ymin, xmin, ymax, xmax) width_final = test_image.shape[0] height_final = test_image.shape[1] self.assertEqual(width_original, width_final) self.assertEqual(height_original, height_final) def test_draw_bounding_boxes_on_image(self): test_image = self.create_colorful_test_image() test_image = Image.fromarray(test_image) width_original, height_original = test_image.size boxes = np.array([[0.25, 0.75, 0.4, 0.6], [0.1, 0.1, 0.9, 0.9]]) visualization_utils.draw_bounding_boxes_on_image(test_image, boxes) width_final, height_final = test_image.size self.assertEqual(width_original, width_final) self.assertEqual(height_original, height_final) def test_draw_bounding_boxes_on_image_array(self): test_image = self.create_colorful_test_image() width_original = test_image.shape[0] height_original = test_image.shape[1] boxes = np.array([[0.25, 0.75, 0.4, 0.6], [0.1, 0.1, 0.9, 0.9]]) visualization_utils.draw_bounding_boxes_on_image_array(test_image, boxes) width_final = test_image.shape[0] height_final = test_image.shape[1] self.assertEqual(width_original, width_final) self.assertEqual(height_original, height_final) def test_draw_bounding_boxes_on_image_tensors(self): """Tests that bounding box utility produces reasonable results.""" category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}} fname = os.path.join(_TESTDATA_PATH, 'image1.jpg') image_np = np.array(Image.open(fname)) images_np = np.stack((image_np, image_np), axis=0) original_image_shape = [[636, 512], [636, 512]] with tf.Graph().as_default(): images_tensor = tf.constant(value=images_np, dtype=tf.uint8) image_shape = tf.constant(original_image_shape, dtype=tf.int32) boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]], [[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]]) classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64) scores = tf.constant([[0.8, 0.1], [0.6, 0.5]]) images_with_boxes = ( visualization_utils.draw_bounding_boxes_on_image_tensors( images_tensor, boxes, classes, scores, category_index, original_image_spatial_shape=image_shape, true_image_shape=image_shape, min_score_thresh=0.2)) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) # Write output images for visualization. images_with_boxes_np = sess.run(images_with_boxes) self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0]) self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3]) self.assertEqual( tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3]) for i in range(images_with_boxes_np.shape[0]): img_name = 'image_' + str(i) + '.png' output_file = os.path.join(self.get_temp_dir(), img_name) logging.info('Writing output image %d to %s', i, output_file) image_pil = Image.fromarray(images_with_boxes_np[i, ...]) image_pil.save(output_file) def test_draw_bounding_boxes_on_image_tensors_with_additional_channels(self): """Tests the case where input image tensor has more than 3 channels.""" category_index = {1: {'id': 1, 'name': 'dog'}} image_np = self.create_test_image_with_five_channels() images_np = np.stack((image_np, image_np), axis=0) with tf.Graph().as_default(): images_tensor = tf.constant(value=images_np, dtype=tf.uint8) boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4]) classes = tf.constant(0, dtype=tf.int64, shape=[2, 0]) scores = tf.constant(0, dtype=tf.float32, shape=[2, 0]) images_with_boxes = ( visualization_utils.draw_bounding_boxes_on_image_tensors( images_tensor, boxes, classes, scores, category_index, min_score_thresh=0.2)) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) final_images_np = sess.run(images_with_boxes) self.assertEqual((2, 100, 200, 3), final_images_np.shape) def test_draw_bounding_boxes_on_image_tensors_grayscale(self): """Tests the case where input image tensor has one channel.""" category_index = {1: {'id': 1, 'name': 'dog'}} image_np = self.create_test_grayscale_image() images_np = np.stack((image_np, image_np), axis=0) with tf.Graph().as_default(): images_tensor = tf.constant(value=images_np, dtype=tf.uint8) image_shape = tf.constant([[100, 200], [100, 200]], dtype=tf.int32) boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4]) classes = tf.constant(0, dtype=tf.int64, shape=[2, 0]) scores = tf.constant(0, dtype=tf.float32, shape=[2, 0]) images_with_boxes = ( visualization_utils.draw_bounding_boxes_on_image_tensors( images_tensor, boxes, classes, scores, category_index, original_image_spatial_shape=image_shape, true_image_shape=image_shape, min_score_thresh=0.2)) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) final_images_np = sess.run(images_with_boxes) self.assertEqual((2, 100, 200, 3), final_images_np.shape) def test_draw_keypoints_on_image(self): test_image = self.create_colorful_test_image() test_image = Image.fromarray(test_image) width_original, height_original = test_image.size keypoints = [[0.25, 0.75], [0.4, 0.6], [0.1, 0.1], [0.9, 0.9]] visualization_utils.draw_keypoints_on_image(test_image, keypoints) width_final, height_final = test_image.size self.assertEqual(width_original, width_final) self.assertEqual(height_original, height_final) def test_draw_keypoints_on_image_array(self): test_image = self.create_colorful_test_image() width_original = test_image.shape[0] height_original = test_image.shape[1] keypoints = [[0.25, 0.75], [0.4, 0.6], [0.1, 0.1], [0.9, 0.9]] visualization_utils.draw_keypoints_on_image_array(test_image, keypoints) width_final = test_image.shape[0] height_final = test_image.shape[1] self.assertEqual(width_original, width_final) self.assertEqual(height_original, height_final) def test_draw_mask_on_image_array(self): test_image = np.asarray([[[0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 0]]], dtype=np.uint8) mask = np.asarray([[0, 1], [1, 1]], dtype=np.uint8) expected_result = np.asarray([[[0, 0, 0], [0, 0, 127]], [[0, 0, 127], [0, 0, 127]]], dtype=np.uint8) visualization_utils.draw_mask_on_image_array(test_image, mask, color='Blue', alpha=.5) self.assertAllEqual(test_image, expected_result) def test_add_cdf_image_summary(self): values = [0.1, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48, 0.50] visualization_utils.add_cdf_image_summary(values, 'PositiveAnchorLoss') cdf_image_summary = tf.get_collection(key=tf.GraphKeys.SUMMARIES)[0] with self.test_session(): cdf_image_summary.eval() def test_add_hist_image_summary(self): values = [0.1, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48, 0.50] bins = [0.01 * i for i in range(101)] visualization_utils.add_hist_image_summary(values, bins, 'ScoresDistribution') hist_image_summary = tf.get_collection(key=tf.GraphKeys.SUMMARIES)[0] with self.test_session(): hist_image_summary.eval() def test_eval_metric_ops(self): category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}} max_examples_to_draw = 4 metric_op_base = 'Detections_Left_Groundtruth_Right' eval_metric_ops = visualization_utils.VisualizeSingleFrameDetections( category_index, max_examples_to_draw=max_examples_to_draw, summary_name_prefix=metric_op_base) original_image = tf.placeholder(tf.uint8, [4, None, None, 3]) original_image_spatial_shape = tf.placeholder(tf.int32, [4, 2]) true_image_shape = tf.placeholder(tf.int32, [4, 3]) detection_boxes = tf.random_uniform([4, 20, 4], minval=0.0, maxval=1.0, dtype=tf.float32) detection_classes = tf.random_uniform([4, 20], minval=1, maxval=3, dtype=tf.int64) detection_scores = tf.random_uniform([4, 20], minval=0., maxval=1., dtype=tf.float32) groundtruth_boxes = tf.random_uniform([4, 8, 4], minval=0.0, maxval=1.0, dtype=tf.float32) groundtruth_classes = tf.random_uniform([4, 8], minval=1, maxval=3, dtype=tf.int64) eval_dict = { fields.DetectionResultFields.detection_boxes: detection_boxes, fields.DetectionResultFields.detection_classes: detection_classes, fields.DetectionResultFields.detection_scores: detection_scores, fields.InputDataFields.original_image: original_image, fields.InputDataFields.original_image_spatial_shape: ( original_image_spatial_shape), fields.InputDataFields.true_image_shape: (true_image_shape), fields.InputDataFields.groundtruth_boxes: groundtruth_boxes, fields.InputDataFields.groundtruth_classes: groundtruth_classes } metric_ops = eval_metric_ops.get_estimator_eval_metric_ops(eval_dict) _, update_op = metric_ops[metric_ops.keys()[0]] with self.test_session() as sess: sess.run(tf.global_variables_initializer()) value_ops = {} for key, (value_op, _) in metric_ops.iteritems(): value_ops[key] = value_op # First run enough update steps to surpass `max_examples_to_draw`. for i in range(max_examples_to_draw): # Use a unique image shape on each eval image. sess.run( update_op, feed_dict={ original_image: np.random.randint( low=0, high=256, size=(4, 6 + i, 7 + i, 3), dtype=np.uint8), original_image_spatial_shape: [[6 + i, 7 + i], [6 + i, 7 + i], [6 + i, 7 + i], [6 + i, 7 + i]], true_image_shape: [[6 + i, 7 + i, 3], [6 + i, 7 + i, 3], [6 + i, 7 + i, 3], [6 + i, 7 + i, 3]] }) value_ops_out = sess.run(value_ops) for key, value_op in value_ops_out.iteritems(): self.assertNotEqual('', value_op) # Now run fewer update steps than `max_examples_to_draw`. A single value # op will be the empty string, since not enough image summaries can be # produced. for i in range(max_examples_to_draw - 1): # Use a unique image shape on each eval image. sess.run( update_op, feed_dict={ original_image: np.random.randint( low=0, high=256, size=(4, 6 + i, 7 + i, 3), dtype=np.uint8), original_image_spatial_shape: [[6 + i, 7 + i], [6 + i, 7 + i], [6 + i, 7 + i], [6 + i, 7 + i]], true_image_shape: [[6 + i, 7 + i, 3], [6 + i, 7 + i, 3], [6 + i, 7 + i, 3], [6 + i, 7 + i, 3]] }) value_ops_out = sess.run(value_ops) self.assertEqual( '', value_ops_out[metric_op_base + '/' + str(max_examples_to_draw - 1)]) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/visualization_utils_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Evaluates Visual Relations Detection(VRD) result evaluation on an image. Annotate each VRD result as true positives or false positive according to a predefined IOU ratio. Multi-class detection is supported by default. Based on the settings, per image evaluation is performed either on phrase detection subtask or on relation detection subtask. """ import numpy as np from object_detection.utils import np_box_list from object_detection.utils import np_box_list_ops class PerImageVRDEvaluation(object): """Evaluate vrd result of a single image.""" def __init__(self, matching_iou_threshold=0.5): """Initialized PerImageVRDEvaluation by evaluation parameters. Args: matching_iou_threshold: A ratio of area intersection to union, which is the threshold to consider whether a detection is true positive or not; in phrase detection subtask. """ self.matching_iou_threshold = matching_iou_threshold def compute_detection_tp_fp(self, detected_box_tuples, detected_scores, detected_class_tuples, groundtruth_box_tuples, groundtruth_class_tuples): """Evaluates VRD as being tp, fp from a single image. Args: detected_box_tuples: A numpy array of structures with shape [N,], representing N tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max]. detected_scores: A float numpy array of shape [N,], representing the confidence scores of the detected N object instances. detected_class_tuples: A numpy array of structures shape [N,], representing the class labels of the corresponding bounding boxes and possibly additional classes. groundtruth_box_tuples: A float numpy array of structures with the shape [M,], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max]. groundtruth_class_tuples: A numpy array of structures shape [M,], representing the class labels of the corresponding bounding boxes and possibly additional classes. Returns: scores: A single numpy array with shape [N,], representing N scores detected with object class, sorted in descentent order. tp_fp_labels: A single boolean numpy array of shape [N,], representing N True/False positive label, one label per tuple. The labels are sorted so that the order of the labels matches the order of the scores. result_mapping: A numpy array with shape [N,] with original index of each entry. """ scores, tp_fp_labels, result_mapping = self._compute_tp_fp( detected_box_tuples=detected_box_tuples, detected_scores=detected_scores, detected_class_tuples=detected_class_tuples, groundtruth_box_tuples=groundtruth_box_tuples, groundtruth_class_tuples=groundtruth_class_tuples) return scores, tp_fp_labels, result_mapping def _compute_tp_fp(self, detected_box_tuples, detected_scores, detected_class_tuples, groundtruth_box_tuples, groundtruth_class_tuples): """Labels as true/false positives detection tuples across all classes. Args: detected_box_tuples: A numpy array of structures with shape [N,], representing N tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] detected_scores: A float numpy array of shape [N,], representing the confidence scores of the detected N object instances. detected_class_tuples: A numpy array of structures shape [N,], representing the class labels of the corresponding bounding boxes and possibly additional classes. groundtruth_box_tuples: A float numpy array of structures with the shape [M,], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] groundtruth_class_tuples: A numpy array of structures shape [M,], representing the class labels of the corresponding bounding boxes and possibly additional classes. Returns: scores: A single numpy array with shape [N,], representing N scores detected with object class, sorted in descentent order. tp_fp_labels: A single boolean numpy array of shape [N,], representing N True/False positive label, one label per tuple. The labels are sorted so that the order of the labels matches the order of the scores. result_mapping: A numpy array with shape [N,] with original index of each entry. """ unique_gt_tuples = np.unique( np.concatenate((groundtruth_class_tuples, detected_class_tuples))) result_scores = [] result_tp_fp_labels = [] result_mapping = [] for unique_tuple in unique_gt_tuples: detections_selector = (detected_class_tuples == unique_tuple) gt_selector = (groundtruth_class_tuples == unique_tuple) selector_mapping = np.where(detections_selector)[0] detection_scores_per_tuple = detected_scores[detections_selector] detection_box_per_tuple = detected_box_tuples[detections_selector] sorted_indices = np.argsort(detection_scores_per_tuple) sorted_indices = sorted_indices[::-1] tp_fp_labels = self._compute_tp_fp_for_single_class( detected_box_tuples=detection_box_per_tuple[sorted_indices], groundtruth_box_tuples=groundtruth_box_tuples[gt_selector]) result_scores.append(detection_scores_per_tuple[sorted_indices]) result_tp_fp_labels.append(tp_fp_labels) result_mapping.append(selector_mapping[sorted_indices]) if result_scores: result_scores = np.concatenate(result_scores) result_tp_fp_labels = np.concatenate(result_tp_fp_labels) result_mapping = np.concatenate(result_mapping) else: result_scores = np.array([], dtype=float) result_tp_fp_labels = np.array([], dtype=bool) result_mapping = np.array([], dtype=int) sorted_indices = np.argsort(result_scores) sorted_indices = sorted_indices[::-1] return result_scores[sorted_indices], result_tp_fp_labels[ sorted_indices], result_mapping[sorted_indices] def _get_overlaps_and_scores_relation_tuples(self, detected_box_tuples, groundtruth_box_tuples): """Computes overlaps and scores between detected and groundtruth tuples. Both detections and groundtruth boxes have the same class tuples. Args: detected_box_tuples: A numpy array of structures with shape [N,], representing N tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] groundtruth_box_tuples: A float numpy array of structures with the shape [M,], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] Returns: result_iou: A float numpy array of size [num_detected_tuples, num_gt_box_tuples]. """ result_iou = np.ones( (detected_box_tuples.shape[0], groundtruth_box_tuples.shape[0]), dtype=float) for field in detected_box_tuples.dtype.fields: detected_boxlist_field = np_box_list.BoxList(detected_box_tuples[field]) gt_boxlist_field = np_box_list.BoxList(groundtruth_box_tuples[field]) iou_field = np_box_list_ops.iou(detected_boxlist_field, gt_boxlist_field) result_iou = np.minimum(iou_field, result_iou) return result_iou def _compute_tp_fp_for_single_class(self, detected_box_tuples, groundtruth_box_tuples): """Labels boxes detected with the same class from the same image as tp/fp. Detection boxes are expected to be already sorted by score. Args: detected_box_tuples: A numpy array of structures with shape [N,], representing N tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] groundtruth_box_tuples: A float numpy array of structures with the shape [M,], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] Returns: tp_fp_labels: a boolean numpy array indicating whether a detection is a true positive. """ if detected_box_tuples.size == 0: return np.array([], dtype=bool) min_iou = self._get_overlaps_and_scores_relation_tuples( detected_box_tuples, groundtruth_box_tuples) num_detected_tuples = detected_box_tuples.shape[0] tp_fp_labels = np.zeros(num_detected_tuples, dtype=bool) if min_iou.shape[1] > 0: max_overlap_gt_ids = np.argmax(min_iou, axis=1) is_gt_tuple_detected = np.zeros(min_iou.shape[1], dtype=bool) for i in range(num_detected_tuples): gt_id = max_overlap_gt_ids[i] if min_iou[i, gt_id] >= self.matching_iou_threshold: if not is_gt_tuple_detected[gt_id]: tp_fp_labels[i] = True is_gt_tuple_detected[gt_id] = True return tp_fp_labels
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/per_image_vrd_evaluation.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """object_detection_evaluation module. ObjectDetectionEvaluation is a class which manages ground truth information of a object detection dataset, and computes frequently used detection metrics such as Precision, Recall, CorLoc of the provided detection results. It supports the following operations: 1) Add ground truth information of images sequentially. 2) Add detection result of images sequentially. 3) Evaluate detection metrics on already inserted detection results. 4) Write evaluation result into a pickle file for future processing or visualization. Note: This module operates on numpy boxes and box lists. """ from abc import ABCMeta from abc import abstractmethod import collections import logging import unicodedata import numpy as np import tensorflow as tf from object_detection.core import standard_fields from object_detection.utils import label_map_util from object_detection.utils import metrics from object_detection.utils import per_image_evaluation class DetectionEvaluator(object): """Interface for object detection evalution classes. Example usage of the Evaluator: ------------------------------ evaluator = DetectionEvaluator(categories) # Detections and groundtruth for image 1. evaluator.add_single_groundtruth_image_info(...) evaluator.add_single_detected_image_info(...) # Detections and groundtruth for image 2. evaluator.add_single_groundtruth_image_info(...) evaluator.add_single_detected_image_info(...) metrics_dict = evaluator.evaluate() """ __metaclass__ = ABCMeta def __init__(self, categories): """Constructor. Args: categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. """ self._categories = categories @abstractmethod def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary of groundtruth numpy arrays required for evaluations. """ pass @abstractmethod def add_single_detected_image_info(self, image_id, detections_dict): """Adds detections for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. detections_dict: A dictionary of detection numpy arrays required for evaluation. """ pass def get_estimator_eval_metric_ops(self, eval_dict): """Returns dict of metrics to use with `tf.estimator.EstimatorSpec`. Note that this must only be implemented if performing evaluation with a `tf.estimator.Estimator`. Args: eval_dict: A dictionary that holds tensors for evaluating an object detection model, returned from eval_util.result_dict_for_single_example(). Returns: A dictionary of metric names to tuple of value_op and update_op that can be used as eval metric ops in `tf.estimator.EstimatorSpec`. """ pass @abstractmethod def evaluate(self): """Evaluates detections and returns a dictionary of metrics.""" pass @abstractmethod def clear(self): """Clears the state to prepare for a fresh evaluation.""" pass class ObjectDetectionEvaluator(DetectionEvaluator): """A class to evaluate detections.""" def __init__(self, categories, matching_iou_threshold=0.5, evaluate_corlocs=False, evaluate_precision_recall=False, metric_prefix=None, use_weighted_mean_ap=False, evaluate_masks=False, group_of_weight=0.0): """Constructor. Args: categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. matching_iou_threshold: IOU threshold to use for matching groundtruth boxes to detection boxes. evaluate_corlocs: (optional) boolean which determines if corloc scores are to be returned or not. evaluate_precision_recall: (optional) boolean which determines if precision and recall values are to be returned or not. metric_prefix: (optional) string prefix for metric name; if None, no prefix is used. use_weighted_mean_ap: (optional) boolean which determines if the mean average precision is computed directly from the scores and tp_fp_labels of all classes. evaluate_masks: If False, evaluation will be performed based on boxes. If True, mask evaluation will be performed instead. group_of_weight: Weight of group-of boxes.If set to 0, detections of the correct class within a group-of box are ignored. If weight is > 0, then if at least one detection falls within a group-of box with matching_iou_threshold, weight group_of_weight is added to true positives. Consequently, if no detection falls within a group-of box, weight group_of_weight is added to false negatives. Raises: ValueError: If the category ids are not 1-indexed. """ super(ObjectDetectionEvaluator, self).__init__(categories) self._num_classes = max([cat['id'] for cat in categories]) if min(cat['id'] for cat in categories) < 1: raise ValueError('Classes should be 1-indexed.') self._matching_iou_threshold = matching_iou_threshold self._use_weighted_mean_ap = use_weighted_mean_ap self._label_id_offset = 1 self._evaluate_masks = evaluate_masks self._group_of_weight = group_of_weight self._evaluation = ObjectDetectionEvaluation( num_groundtruth_classes=self._num_classes, matching_iou_threshold=self._matching_iou_threshold, use_weighted_mean_ap=self._use_weighted_mean_ap, label_id_offset=self._label_id_offset, group_of_weight=self._group_of_weight) self._image_ids = set([]) self._evaluate_corlocs = evaluate_corlocs self._evaluate_precision_recall = evaluate_precision_recall self._metric_prefix = (metric_prefix + '_') if metric_prefix else '' self._expected_keys = set([ standard_fields.InputDataFields.key, standard_fields.InputDataFields.groundtruth_boxes, standard_fields.InputDataFields.groundtruth_classes, standard_fields.InputDataFields.groundtruth_difficult, standard_fields.InputDataFields.groundtruth_instance_masks, standard_fields.DetectionResultFields.detection_boxes, standard_fields.DetectionResultFields.detection_scores, standard_fields.DetectionResultFields.detection_classes, standard_fields.DetectionResultFields.detection_masks ]) self._build_metric_names() def _build_metric_names(self): """Builds a list with metric names.""" self._metric_names = [ self._metric_prefix + 'Precision/mAP@{}IOU'.format( self._matching_iou_threshold) ] if self._evaluate_corlocs: self._metric_names.append( self._metric_prefix + 'Precision/meanCorLoc@{}IOU'.format(self._matching_iou_threshold)) category_index = label_map_util.create_category_index(self._categories) for idx in range(self._num_classes): if idx + self._label_id_offset in category_index: category_name = category_index[idx + self._label_id_offset]['name'] try: category_name = unicode(category_name, 'utf-8') except TypeError: pass category_name = unicodedata.normalize('NFKD', category_name).encode( 'ascii', 'ignore') self._metric_names.append( self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format( self._matching_iou_threshold, category_name)) if self._evaluate_corlocs: self._metric_names.append( self._metric_prefix + 'PerformanceByCategory/CorLoc@{}IOU/{}' .format(self._matching_iou_threshold, category_name)) def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.InputDataFields.groundtruth_classes: integer numpy array of shape [num_boxes] containing 1-indexed groundtruth classes for the boxes. standard_fields.InputDataFields.groundtruth_difficult: Optional length M numpy boolean array denoting whether a ground truth box is a difficult instance or not. This field is optional to support the case that no boxes are difficult. standard_fields.InputDataFields.groundtruth_instance_masks: Optional numpy array of shape [num_boxes, height, width] with values in {0, 1}. Raises: ValueError: On adding groundtruth for an image more than once. Will also raise error if instance masks are not in groundtruth dictionary. """ if image_id in self._image_ids: raise ValueError('Image with id {} already added.'.format(image_id)) groundtruth_classes = ( groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] - self._label_id_offset) # If the key is not present in the groundtruth_dict or the array is empty # (unless there are no annotations for the groundtruth on this image) # use values from the dictionary or insert None otherwise. if (standard_fields.InputDataFields.groundtruth_difficult in groundtruth_dict.keys() and (groundtruth_dict[standard_fields.InputDataFields.groundtruth_difficult] .size or not groundtruth_classes.size)): groundtruth_difficult = groundtruth_dict[ standard_fields.InputDataFields.groundtruth_difficult] else: groundtruth_difficult = None if not len(self._image_ids) % 1000: logging.warn( 'image %s does not have groundtruth difficult flag specified', image_id) groundtruth_masks = None if self._evaluate_masks: if (standard_fields.InputDataFields.groundtruth_instance_masks not in groundtruth_dict): raise ValueError('Instance masks not in groundtruth dictionary.') groundtruth_masks = groundtruth_dict[ standard_fields.InputDataFields.groundtruth_instance_masks] self._evaluation.add_single_ground_truth_image_info( image_key=image_id, groundtruth_boxes=groundtruth_dict[ standard_fields.InputDataFields.groundtruth_boxes], groundtruth_class_labels=groundtruth_classes, groundtruth_is_difficult_list=groundtruth_difficult, groundtruth_masks=groundtruth_masks) self._image_ids.update([image_id]) def add_single_detected_image_info(self, image_id, detections_dict): """Adds detections for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. detections_dict: A dictionary containing - standard_fields.DetectionResultFields.detection_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.DetectionResultFields.detection_scores: float32 numpy array of shape [num_boxes] containing detection scores for the boxes. standard_fields.DetectionResultFields.detection_classes: integer numpy array of shape [num_boxes] containing 1-indexed detection classes for the boxes. standard_fields.DetectionResultFields.detection_masks: uint8 numpy array of shape [num_boxes, height, width] containing `num_boxes` masks of values ranging between 0 and 1. Raises: ValueError: If detection masks are not in detections dictionary. """ detection_classes = ( detections_dict[standard_fields.DetectionResultFields.detection_classes] - self._label_id_offset) detection_masks = None if self._evaluate_masks: if (standard_fields.DetectionResultFields.detection_masks not in detections_dict): raise ValueError('Detection masks not in detections dictionary.') detection_masks = detections_dict[ standard_fields.DetectionResultFields.detection_masks] self._evaluation.add_single_detected_image_info( image_key=image_id, detected_boxes=detections_dict[ standard_fields.DetectionResultFields.detection_boxes], detected_scores=detections_dict[ standard_fields.DetectionResultFields.detection_scores], detected_class_labels=detection_classes, detected_masks=detection_masks) def evaluate(self): """Compute evaluation result. Returns: A dictionary of metrics with the following fields - 1. summary_metrics: '<prefix if not empty>_Precision/mAP@<matching_iou_threshold>IOU': mean average precision at the specified IOU threshold. 2. per_category_ap: category specific results with keys of the form '<prefix if not empty>_PerformanceByCategory/ mAP@<matching_iou_threshold>IOU/category'. """ (per_class_ap, mean_ap, per_class_precision, per_class_recall, per_class_corloc, mean_corloc) = ( self._evaluation.evaluate()) pascal_metrics = {self._metric_names[0]: mean_ap} if self._evaluate_corlocs: pascal_metrics[self._metric_names[1]] = mean_corloc category_index = label_map_util.create_category_index(self._categories) for idx in range(per_class_ap.size): if idx + self._label_id_offset in category_index: category_name = category_index[idx + self._label_id_offset]['name'] try: category_name = unicode(category_name, 'utf-8') except TypeError: pass category_name = unicodedata.normalize( 'NFKD', category_name).encode('ascii', 'ignore') display_name = ( self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format( self._matching_iou_threshold, category_name)) pascal_metrics[display_name] = per_class_ap[idx] # Optionally add precision and recall values if self._evaluate_precision_recall: display_name = ( self._metric_prefix + 'PerformanceByCategory/Precision@{}IOU/{}'.format( self._matching_iou_threshold, category_name)) pascal_metrics[display_name] = per_class_precision[idx] display_name = ( self._metric_prefix + 'PerformanceByCategory/Recall@{}IOU/{}'.format( self._matching_iou_threshold, category_name)) pascal_metrics[display_name] = per_class_recall[idx] # Optionally add CorLoc metrics.classes if self._evaluate_corlocs: display_name = ( self._metric_prefix + 'PerformanceByCategory/CorLoc@{}IOU/{}' .format(self._matching_iou_threshold, category_name)) pascal_metrics[display_name] = per_class_corloc[idx] return pascal_metrics def clear(self): """Clears the state to prepare for a fresh evaluation.""" self._evaluation = ObjectDetectionEvaluation( num_groundtruth_classes=self._num_classes, matching_iou_threshold=self._matching_iou_threshold, use_weighted_mean_ap=self._use_weighted_mean_ap, label_id_offset=self._label_id_offset) self._image_ids.clear() def get_estimator_eval_metric_ops(self, eval_dict): """Returns dict of metrics to use with `tf.estimator.EstimatorSpec`. Note that this must only be implemented if performing evaluation with a `tf.estimator.Estimator`. Args: eval_dict: A dictionary that holds tensors for evaluating an object detection model, returned from eval_util.result_dict_for_single_example(). It must contain standard_fields.InputDataFields.key. Returns: A dictionary of metric names to tuple of value_op and update_op that can be used as eval metric ops in `tf.estimator.EstimatorSpec`. """ # remove unexpected fields eval_dict_filtered = dict() for key, value in eval_dict.items(): if key in self._expected_keys: eval_dict_filtered[key] = value eval_dict_keys = eval_dict_filtered.keys() def update_op(image_id, *eval_dict_batched_as_list): """Update operation that adds batch of images to ObjectDetectionEvaluator. Args: image_id: image id (single id or an array) *eval_dict_batched_as_list: the values of the dictionary of tensors. """ if np.isscalar(image_id): single_example_dict = dict( zip(eval_dict_keys, eval_dict_batched_as_list)) self.add_single_ground_truth_image_info(image_id, single_example_dict) self.add_single_detected_image_info(image_id, single_example_dict) else: for unzipped_tuple in zip(*eval_dict_batched_as_list): single_example_dict = dict(zip(eval_dict_keys, unzipped_tuple)) image_id = single_example_dict[standard_fields.InputDataFields.key] self.add_single_ground_truth_image_info(image_id, single_example_dict) self.add_single_detected_image_info(image_id, single_example_dict) args = [eval_dict_filtered[standard_fields.InputDataFields.key]] args.extend(eval_dict_filtered.values()) update_op = tf.py_func(update_op, args, []) def first_value_func(): self._metrics = self.evaluate() self.clear() return np.float32(self._metrics[self._metric_names[0]]) def value_func_factory(metric_name): def value_func(): return np.float32(self._metrics[metric_name]) return value_func # Ensure that the metrics are only evaluated once. first_value_op = tf.py_func(first_value_func, [], tf.float32) eval_metric_ops = {self._metric_names[0]: (first_value_op, update_op)} with tf.control_dependencies([first_value_op]): for metric_name in self._metric_names[1:]: eval_metric_ops[metric_name] = (tf.py_func( value_func_factory(metric_name), [], np.float32), update_op) return eval_metric_ops class PascalDetectionEvaluator(ObjectDetectionEvaluator): """A class to evaluate detections using PASCAL metrics.""" def __init__(self, categories, matching_iou_threshold=0.5): super(PascalDetectionEvaluator, self).__init__( categories, matching_iou_threshold=matching_iou_threshold, evaluate_corlocs=False, metric_prefix='PascalBoxes', use_weighted_mean_ap=False) class WeightedPascalDetectionEvaluator(ObjectDetectionEvaluator): """A class to evaluate detections using weighted PASCAL metrics. Weighted PASCAL metrics computes the mean average precision as the average precision given the scores and tp_fp_labels of all classes. In comparison, PASCAL metrics computes the mean average precision as the mean of the per-class average precisions. This definition is very similar to the mean of the per-class average precisions weighted by class frequency. However, they are typically not the same as the average precision is not a linear function of the scores and tp_fp_labels. """ def __init__(self, categories, matching_iou_threshold=0.5): super(WeightedPascalDetectionEvaluator, self).__init__( categories, matching_iou_threshold=matching_iou_threshold, evaluate_corlocs=False, metric_prefix='WeightedPascalBoxes', use_weighted_mean_ap=True) class PascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator): """A class to evaluate instance masks using PASCAL metrics.""" def __init__(self, categories, matching_iou_threshold=0.5): super(PascalInstanceSegmentationEvaluator, self).__init__( categories, matching_iou_threshold=matching_iou_threshold, evaluate_corlocs=False, metric_prefix='PascalMasks', use_weighted_mean_ap=False, evaluate_masks=True) class WeightedPascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator): """A class to evaluate instance masks using weighted PASCAL metrics. Weighted PASCAL metrics computes the mean average precision as the average precision given the scores and tp_fp_labels of all classes. In comparison, PASCAL metrics computes the mean average precision as the mean of the per-class average precisions. This definition is very similar to the mean of the per-class average precisions weighted by class frequency. However, they are typically not the same as the average precision is not a linear function of the scores and tp_fp_labels. """ def __init__(self, categories, matching_iou_threshold=0.5): super(WeightedPascalInstanceSegmentationEvaluator, self).__init__( categories, matching_iou_threshold=matching_iou_threshold, evaluate_corlocs=False, metric_prefix='WeightedPascalMasks', use_weighted_mean_ap=True, evaluate_masks=True) class OpenImagesDetectionEvaluator(ObjectDetectionEvaluator): """A class to evaluate detections using Open Images V2 metrics. Open Images V2 introduce group_of type of bounding boxes and this metric handles those boxes appropriately. """ def __init__(self, categories, matching_iou_threshold=0.5, evaluate_corlocs=False, metric_prefix='OpenImagesV2', group_of_weight=0.0): """Constructor. Args: categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. matching_iou_threshold: IOU threshold to use for matching groundtruth boxes to detection boxes. evaluate_corlocs: if True, additionally evaluates and returns CorLoc. metric_prefix: Prefix name of the metric. group_of_weight: Weight of the group-of bounding box. If set to 0 (default for Open Images V2 detection protocol), detections of the correct class within a group-of box are ignored. If weight is > 0, then if at least one detection falls within a group-of box with matching_iou_threshold, weight group_of_weight is added to true positives. Consequently, if no detection falls within a group-of box, weight group_of_weight is added to false negatives. """ super(OpenImagesDetectionEvaluator, self).__init__( categories, matching_iou_threshold, evaluate_corlocs, metric_prefix=metric_prefix, group_of_weight=group_of_weight) self._expected_keys = set([ standard_fields.InputDataFields.key, standard_fields.InputDataFields.groundtruth_boxes, standard_fields.InputDataFields.groundtruth_classes, standard_fields.InputDataFields.groundtruth_group_of, standard_fields.DetectionResultFields.detection_boxes, standard_fields.DetectionResultFields.detection_scores, standard_fields.DetectionResultFields.detection_classes, ]) def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.InputDataFields.groundtruth_classes: integer numpy array of shape [num_boxes] containing 1-indexed groundtruth classes for the boxes. standard_fields.InputDataFields.groundtruth_group_of: Optional length M numpy boolean array denoting whether a groundtruth box contains a group of instances. Raises: ValueError: On adding groundtruth for an image more than once. """ if image_id in self._image_ids: raise ValueError('Image with id {} already added.'.format(image_id)) groundtruth_classes = ( groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] - self._label_id_offset) # If the key is not present in the groundtruth_dict or the array is empty # (unless there are no annotations for the groundtruth on this image) # use values from the dictionary or insert None otherwise. if (standard_fields.InputDataFields.groundtruth_group_of in groundtruth_dict.keys() and (groundtruth_dict[standard_fields.InputDataFields.groundtruth_group_of] .size or not groundtruth_classes.size)): groundtruth_group_of = groundtruth_dict[ standard_fields.InputDataFields.groundtruth_group_of] else: groundtruth_group_of = None if not len(self._image_ids) % 1000: logging.warn( 'image %s does not have groundtruth group_of flag specified', image_id) self._evaluation.add_single_ground_truth_image_info( image_id, groundtruth_dict[standard_fields.InputDataFields.groundtruth_boxes], groundtruth_classes, groundtruth_is_difficult_list=None, groundtruth_is_group_of_list=groundtruth_group_of) self._image_ids.update([image_id]) class OpenImagesDetectionChallengeEvaluator(OpenImagesDetectionEvaluator): """A class implements Open Images Challenge Detection metrics. Open Images Challenge Detection metric has two major changes in comparison with Open Images V2 detection metric: - a custom weight might be specified for detecting an object contained in a group-of box. - verified image-level labels should be explicitelly provided for evaluation: in case in image has neither positive nor negative image level label of class c, all detections of this class on this image will be ignored. """ def __init__(self, categories, matching_iou_threshold=0.5, evaluate_corlocs=False, group_of_weight=1.0): """Constructor. Args: categories: A list of dicts, each of which has the following keys - 'id': (required) an integer id uniquely identifying this category. 'name': (required) string representing category name e.g., 'cat', 'dog'. matching_iou_threshold: IOU threshold to use for matching groundtruth boxes to detection boxes. evaluate_corlocs: if True, additionally evaluates and returns CorLoc. group_of_weight: weight of a group-of box. If set to 0, detections of the correct class within a group-of box are ignored. If weight is > 0 (default for Open Images Detection Challenge 2018), then if at least one detection falls within a group-of box with matching_iou_threshold, weight group_of_weight is added to true positives. Consequently, if no detection falls within a group-of box, weight group_of_weight is added to false negatives. """ super(OpenImagesDetectionChallengeEvaluator, self).__init__( categories, matching_iou_threshold, evaluate_corlocs, metric_prefix='OpenImagesChallenge2018', group_of_weight=group_of_weight) self._evaluatable_labels = {} self._expected_keys = set([ standard_fields.InputDataFields.key, standard_fields.InputDataFields.groundtruth_boxes, standard_fields.InputDataFields.groundtruth_classes, standard_fields.InputDataFields.groundtruth_group_of, standard_fields.InputDataFields.groundtruth_image_classes, standard_fields.DetectionResultFields.detection_boxes, standard_fields.DetectionResultFields.detection_scores, standard_fields.DetectionResultFields.detection_classes, ]) def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.InputDataFields.groundtruth_classes: integer numpy array of shape [num_boxes] containing 1-indexed groundtruth classes for the boxes. standard_fields.InputDataFields.groundtruth_image_classes: integer 1D numpy array containing all classes for which labels are verified. standard_fields.InputDataFields.groundtruth_group_of: Optional length M numpy boolean array denoting whether a groundtruth box contains a group of instances. Raises: ValueError: On adding groundtruth for an image more than once. """ super(OpenImagesDetectionChallengeEvaluator, self).add_single_ground_truth_image_info(image_id, groundtruth_dict) groundtruth_classes = ( groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] - self._label_id_offset) self._evaluatable_labels[image_id] = np.unique( np.concatenate(((groundtruth_dict.get( standard_fields.InputDataFields.groundtruth_image_classes, np.array([], dtype=int)) - self._label_id_offset), groundtruth_classes))) def add_single_detected_image_info(self, image_id, detections_dict): """Adds detections for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. detections_dict: A dictionary containing - standard_fields.DetectionResultFields.detection_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. standard_fields.DetectionResultFields.detection_scores: float32 numpy array of shape [num_boxes] containing detection scores for the boxes. standard_fields.DetectionResultFields.detection_classes: integer numpy array of shape [num_boxes] containing 1-indexed detection classes for the boxes. Raises: ValueError: If detection masks are not in detections dictionary. """ if image_id not in self._image_ids: # Since for the correct work of evaluator it is assumed that groundtruth # is inserted first we make sure to break the code if is it not the case. self._image_ids.update([image_id]) self._evaluatable_labels[image_id] = np.array([]) detection_classes = ( detections_dict[standard_fields.DetectionResultFields.detection_classes] - self._label_id_offset) allowed_classes = np.where( np.isin(detection_classes, self._evaluatable_labels[image_id])) detection_classes = detection_classes[allowed_classes] detected_boxes = detections_dict[ standard_fields.DetectionResultFields.detection_boxes][allowed_classes] detected_scores = detections_dict[ standard_fields.DetectionResultFields.detection_scores][allowed_classes] self._evaluation.add_single_detected_image_info( image_key=image_id, detected_boxes=detected_boxes, detected_scores=detected_scores, detected_class_labels=detection_classes) def clear(self): """Clears stored data.""" super(OpenImagesDetectionChallengeEvaluator, self).clear() self._evaluatable_labels.clear() ObjectDetectionEvalMetrics = collections.namedtuple( 'ObjectDetectionEvalMetrics', [ 'average_precisions', 'mean_ap', 'precisions', 'recalls', 'corlocs', 'mean_corloc' ]) class ObjectDetectionEvaluation(object): """Internal implementation of Pascal object detection metrics.""" def __init__(self, num_groundtruth_classes, matching_iou_threshold=0.5, nms_iou_threshold=1.0, nms_max_output_boxes=10000, use_weighted_mean_ap=False, label_id_offset=0, group_of_weight=0.0, per_image_eval_class=per_image_evaluation.PerImageEvaluation): """Constructor. Args: num_groundtruth_classes: Number of ground-truth classes. matching_iou_threshold: IOU threshold used for matching detected boxes to ground-truth boxes. nms_iou_threshold: IOU threshold used for non-maximum suppression. nms_max_output_boxes: Maximum number of boxes returned by non-maximum suppression. use_weighted_mean_ap: (optional) boolean which determines if the mean average precision is computed directly from the scores and tp_fp_labels of all classes. label_id_offset: The label id offset. group_of_weight: Weight of group-of boxes.If set to 0, detections of the correct class within a group-of box are ignored. If weight is > 0, then if at least one detection falls within a group-of box with matching_iou_threshold, weight group_of_weight is added to true positives. Consequently, if no detection falls within a group-of box, weight group_of_weight is added to false negatives. per_image_eval_class: The class that contains functions for computing per image metrics. Raises: ValueError: if num_groundtruth_classes is smaller than 1. """ if num_groundtruth_classes < 1: raise ValueError('Need at least 1 groundtruth class for evaluation.') self.per_image_eval = per_image_eval_class( num_groundtruth_classes=num_groundtruth_classes, matching_iou_threshold=matching_iou_threshold, nms_iou_threshold=nms_iou_threshold, nms_max_output_boxes=nms_max_output_boxes, group_of_weight=group_of_weight) self.group_of_weight = group_of_weight self.num_class = num_groundtruth_classes self.use_weighted_mean_ap = use_weighted_mean_ap self.label_id_offset = label_id_offset self.groundtruth_boxes = {} self.groundtruth_class_labels = {} self.groundtruth_masks = {} self.groundtruth_is_difficult_list = {} self.groundtruth_is_group_of_list = {} self.num_gt_instances_per_class = np.zeros(self.num_class, dtype=float) self.num_gt_imgs_per_class = np.zeros(self.num_class, dtype=int) self._initialize_detections() def _initialize_detections(self): """Initializes internal data structures.""" self.detection_keys = set() self.scores_per_class = [[] for _ in range(self.num_class)] self.tp_fp_labels_per_class = [[] for _ in range(self.num_class)] self.num_images_correctly_detected_per_class = np.zeros(self.num_class) self.average_precision_per_class = np.empty(self.num_class, dtype=float) self.average_precision_per_class.fill(np.nan) self.precisions_per_class = [np.nan] * self.num_class self.recalls_per_class = [np.nan] * self.num_class self.corloc_per_class = np.ones(self.num_class, dtype=float) def clear_detections(self): self._initialize_detections() def add_single_ground_truth_image_info(self, image_key, groundtruth_boxes, groundtruth_class_labels, groundtruth_is_difficult_list=None, groundtruth_is_group_of_list=None, groundtruth_masks=None): """Adds groundtruth for a single image to be used for evaluation. Args: image_key: A unique string/integer identifier for the image. groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. groundtruth_class_labels: integer numpy array of shape [num_boxes] containing 0-indexed groundtruth classes for the boxes. groundtruth_is_difficult_list: A length M numpy boolean array denoting whether a ground truth box is a difficult instance or not. To support the case that no boxes are difficult, it is by default set as None. groundtruth_is_group_of_list: A length M numpy boolean array denoting whether a ground truth box is a group-of box or not. To support the case that no boxes are groups-of, it is by default set as None. groundtruth_masks: uint8 numpy array of shape [num_boxes, height, width] containing `num_boxes` groundtruth masks. The mask values range from 0 to 1. """ if image_key in self.groundtruth_boxes: logging.warn( 'image %s has already been added to the ground truth database.', image_key) return self.groundtruth_boxes[image_key] = groundtruth_boxes self.groundtruth_class_labels[image_key] = groundtruth_class_labels self.groundtruth_masks[image_key] = groundtruth_masks if groundtruth_is_difficult_list is None: num_boxes = groundtruth_boxes.shape[0] groundtruth_is_difficult_list = np.zeros(num_boxes, dtype=bool) self.groundtruth_is_difficult_list[ image_key] = groundtruth_is_difficult_list.astype(dtype=bool) if groundtruth_is_group_of_list is None: num_boxes = groundtruth_boxes.shape[0] groundtruth_is_group_of_list = np.zeros(num_boxes, dtype=bool) self.groundtruth_is_group_of_list[ image_key] = groundtruth_is_group_of_list.astype(dtype=bool) self._update_ground_truth_statistics( groundtruth_class_labels, groundtruth_is_difficult_list.astype(dtype=bool), groundtruth_is_group_of_list.astype(dtype=bool)) def add_single_detected_image_info(self, image_key, detected_boxes, detected_scores, detected_class_labels, detected_masks=None): """Adds detections for a single image to be used for evaluation. Args: image_key: A unique string/integer identifier for the image. detected_boxes: float32 numpy array of shape [num_boxes, 4] containing `num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in absolute image coordinates. detected_scores: float32 numpy array of shape [num_boxes] containing detection scores for the boxes. detected_class_labels: integer numpy array of shape [num_boxes] containing 0-indexed detection classes for the boxes. detected_masks: np.uint8 numpy array of shape [num_boxes, height, width] containing `num_boxes` detection masks with values ranging between 0 and 1. Raises: ValueError: if the number of boxes, scores and class labels differ in length. """ if (len(detected_boxes) != len(detected_scores) or len(detected_boxes) != len(detected_class_labels)): raise ValueError('detected_boxes, detected_scores and ' 'detected_class_labels should all have same lengths. Got' '[%d, %d, %d]' % len(detected_boxes), len(detected_scores), len(detected_class_labels)) if image_key in self.detection_keys: logging.warn( 'image %s has already been added to the detection result database', image_key) return self.detection_keys.add(image_key) if image_key in self.groundtruth_boxes: groundtruth_boxes = self.groundtruth_boxes[image_key] groundtruth_class_labels = self.groundtruth_class_labels[image_key] # Masks are popped instead of look up. The reason is that we do not want # to keep all masks in memory which can cause memory overflow. groundtruth_masks = self.groundtruth_masks.pop( image_key) groundtruth_is_difficult_list = self.groundtruth_is_difficult_list[ image_key] groundtruth_is_group_of_list = self.groundtruth_is_group_of_list[ image_key] else: groundtruth_boxes = np.empty(shape=[0, 4], dtype=float) groundtruth_class_labels = np.array([], dtype=int) if detected_masks is None: groundtruth_masks = None else: groundtruth_masks = np.empty(shape=[0, 1, 1], dtype=float) groundtruth_is_difficult_list = np.array([], dtype=bool) groundtruth_is_group_of_list = np.array([], dtype=bool) scores, tp_fp_labels, is_class_correctly_detected_in_image = ( self.per_image_eval.compute_object_detection_metrics( detected_boxes=detected_boxes, detected_scores=detected_scores, detected_class_labels=detected_class_labels, groundtruth_boxes=groundtruth_boxes, groundtruth_class_labels=groundtruth_class_labels, groundtruth_is_difficult_list=groundtruth_is_difficult_list, groundtruth_is_group_of_list=groundtruth_is_group_of_list, detected_masks=detected_masks, groundtruth_masks=groundtruth_masks)) for i in range(self.num_class): if scores[i].shape[0] > 0: self.scores_per_class[i].append(scores[i]) self.tp_fp_labels_per_class[i].append(tp_fp_labels[i]) (self.num_images_correctly_detected_per_class ) += is_class_correctly_detected_in_image def _update_ground_truth_statistics(self, groundtruth_class_labels, groundtruth_is_difficult_list, groundtruth_is_group_of_list): """Update grouth truth statitistics. 1. Difficult boxes are ignored when counting the number of ground truth instances as done in Pascal VOC devkit. 2. Difficult boxes are treated as normal boxes when computing CorLoc related statitistics. Args: groundtruth_class_labels: An integer numpy array of length M, representing M class labels of object instances in ground truth groundtruth_is_difficult_list: A boolean numpy array of length M denoting whether a ground truth box is a difficult instance or not groundtruth_is_group_of_list: A boolean numpy array of length M denoting whether a ground truth box is a group-of box or not """ for class_index in range(self.num_class): num_gt_instances = np.sum(groundtruth_class_labels[ ~groundtruth_is_difficult_list & ~groundtruth_is_group_of_list] == class_index) num_groupof_gt_instances = self.group_of_weight * np.sum( groundtruth_class_labels[groundtruth_is_group_of_list] == class_index) self.num_gt_instances_per_class[ class_index] += num_gt_instances + num_groupof_gt_instances if np.any(groundtruth_class_labels == class_index): self.num_gt_imgs_per_class[class_index] += 1 def evaluate(self): """Compute evaluation result. Returns: A named tuple with the following fields - average_precision: float numpy array of average precision for each class. mean_ap: mean average precision of all classes, float scalar precisions: List of precisions, each precision is a float numpy array recalls: List of recalls, each recall is a float numpy array corloc: numpy float array mean_corloc: Mean CorLoc score for each class, float scalar """ if (self.num_gt_instances_per_class == 0).any(): logging.warn( 'The following classes have no ground truth examples: %s', np.squeeze(np.argwhere(self.num_gt_instances_per_class == 0)) + self.label_id_offset) if self.use_weighted_mean_ap: all_scores = np.array([], dtype=float) all_tp_fp_labels = np.array([], dtype=bool) for class_index in range(self.num_class): if self.num_gt_instances_per_class[class_index] == 0: continue if not self.scores_per_class[class_index]: scores = np.array([], dtype=float) tp_fp_labels = np.array([], dtype=float) else: scores = np.concatenate(self.scores_per_class[class_index]) tp_fp_labels = np.concatenate(self.tp_fp_labels_per_class[class_index]) if self.use_weighted_mean_ap: all_scores = np.append(all_scores, scores) all_tp_fp_labels = np.append(all_tp_fp_labels, tp_fp_labels) precision, recall = metrics.compute_precision_recall( scores, tp_fp_labels, self.num_gt_instances_per_class[class_index]) self.precisions_per_class[class_index] = precision self.recalls_per_class[class_index] = recall average_precision = metrics.compute_average_precision(precision, recall) self.average_precision_per_class[class_index] = average_precision logging.info('average_precision: %f', average_precision) self.corloc_per_class = metrics.compute_cor_loc( self.num_gt_imgs_per_class, self.num_images_correctly_detected_per_class) if self.use_weighted_mean_ap: num_gt_instances = np.sum(self.num_gt_instances_per_class) precision, recall = metrics.compute_precision_recall( all_scores, all_tp_fp_labels, num_gt_instances) mean_ap = metrics.compute_average_precision(precision, recall) else: mean_ap = np.nanmean(self.average_precision_per_class) mean_corloc = np.nanmean(self.corloc_per_class) return ObjectDetectionEvalMetrics( self.average_precision_per_class, mean_ap, self.precisions_per_class, self.recalls_per_class, self.corloc_per_class, mean_corloc)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/object_detection_evaluation.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for dealing with writing json strings. json_utils wraps json.dump and json.dumps so that they can be used to safely control the precision of floats when writing to json strings or files. """ import json from json import encoder def Dump(obj, fid, float_digits=-1, **params): """Wrapper of json.dump that allows specifying the float precision used. Args: obj: The object to dump. fid: The file id to write to. float_digits: The number of digits of precision when writing floats out. **params: Additional parameters to pass to json.dumps. """ original_encoder = encoder.FLOAT_REPR if float_digits >= 0: encoder.FLOAT_REPR = lambda o: format(o, '.%df' % float_digits) try: json.dump(obj, fid, **params) finally: encoder.FLOAT_REPR = original_encoder def Dumps(obj, float_digits=-1, **params): """Wrapper of json.dumps that allows specifying the float precision used. Args: obj: The object to dump. float_digits: The number of digits of precision when writing floats out. **params: Additional parameters to pass to json.dumps. Returns: output: JSON string representation of obj. """ original_encoder = encoder.FLOAT_REPR original_c_make_encoder = encoder.c_make_encoder if float_digits >= 0: encoder.FLOAT_REPR = lambda o: format(o, '.%df' % float_digits) encoder.c_make_encoder = None try: output = json.dumps(obj, **params) finally: encoder.FLOAT_REPR = original_encoder encoder.c_make_encoder = original_c_make_encoder return output def PrettyParams(**params): """Returns parameters for use with Dump and Dumps to output pretty json. Example usage: ```json_str = json_utils.Dumps(obj, **json_utils.PrettyParams())``` ```json_str = json_utils.Dumps( obj, **json_utils.PrettyParams(allow_nans=False))``` Args: **params: Additional params to pass to json.dump or json.dumps. Returns: params: Parameters that are compatible with json_utils.Dump and json_utils.Dumps. """ params['float_digits'] = 4 params['sort_keys'] = True params['indent'] = 2 params['separators'] = (',', ': ') return params
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/json_utils.py
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dllogger import os class AverageMeter: """ Computes and stores the average and current value """ def __init__(self, warmup=0, keep=False): self.reset() self.warmup = warmup self.keep = keep def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.iters = 0 self.vals = [] def update(self, val, n=1): self.iters += 1 self.val = val if self.iters > self.warmup: self.sum += val * n self.count += n self.avg = self.sum / self.count if self.keep: self.vals.append(val) def setup_dllogger(enabled=True, filename=os.devnull, rank=0): if enabled and rank == 0: backends = [ dllogger.JSONStreamBackend( dllogger.Verbosity.VERBOSE, filename, ), ] dllogger.init(backends) else: dllogger.init([]) dllogger.metadata("infer_throughput", {"unit": "images/s"}) dllogger.metadata("train_throughput", {"unit": "images/s"})
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/exp_utils.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions to access TensorShape values. The rank 4 tensor_shape must be of the form [batch_size, height, width, depth]. """ def get_batch_size(tensor_shape): """Returns batch size from the tensor shape. Args: tensor_shape: A rank 4 TensorShape. Returns: An integer representing the batch size of the tensor. """ tensor_shape.assert_has_rank(rank=4) return tensor_shape[0].value def get_height(tensor_shape): """Returns height from the tensor shape. Args: tensor_shape: A rank 4 TensorShape. Returns: An integer representing the height of the tensor. """ tensor_shape.assert_has_rank(rank=4) return tensor_shape[1].value def get_width(tensor_shape): """Returns width from the tensor shape. Args: tensor_shape: A rank 4 TensorShape. Returns: An integer representing the width of the tensor. """ tensor_shape.assert_has_rank(rank=4) return tensor_shape[2].value def get_depth(tensor_shape): """Returns depth from the tensor shape. Args: tensor_shape: A rank 4 TensorShape. Returns: An integer representing the depth of the tensor. """ tensor_shape.assert_has_rank(rank=4) return tensor_shape[3].value
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/static_shape.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow_models.object_detection.utils.context_manager.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from object_detection.utils import context_manager class ContextManagerTest(tf.test.TestCase): def test_identity_context_manager(self): with context_manager.IdentityContextManager() as identity_context: self.assertIsNone(identity_context) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/context_manager_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for reading and updating configuration files.""" import os import tensorflow as tf from google.protobuf import text_format from tensorflow.python.lib.io import file_io from object_detection.protos import eval_pb2 from object_detection.protos import graph_rewriter_pb2 from object_detection.protos import input_reader_pb2 from object_detection.protos import model_pb2 from object_detection.protos import pipeline_pb2 from object_detection.protos import train_pb2 def get_image_resizer_config(model_config): """Returns the image resizer config from a model config. Args: model_config: A model_pb2.DetectionModel. Returns: An image_resizer_pb2.ImageResizer. Raises: ValueError: If the model type is not recognized. """ meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": return model_config.faster_rcnn.image_resizer if meta_architecture == "ssd": return model_config.ssd.image_resizer raise ValueError("Unknown model type: {}".format(meta_architecture)) def get_spatial_image_size(image_resizer_config): """Returns expected spatial size of the output image from a given config. Args: image_resizer_config: An image_resizer_pb2.ImageResizer. Returns: A list of two integers of the form [height, width]. `height` and `width` are set -1 if they cannot be determined during graph construction. Raises: ValueError: If the model type is not recognized. """ if image_resizer_config.HasField("fixed_shape_resizer"): return [ image_resizer_config.fixed_shape_resizer.height, image_resizer_config.fixed_shape_resizer.width ] if image_resizer_config.HasField("keep_aspect_ratio_resizer"): if image_resizer_config.keep_aspect_ratio_resizer.pad_to_max_dimension: return [image_resizer_config.keep_aspect_ratio_resizer.max_dimension] * 2 else: return [-1, -1] raise ValueError("Unknown image resizer type.") def get_configs_from_pipeline_file(pipeline_config_path, config_override=None): """Reads config from a file containing pipeline_pb2.TrainEvalPipelineConfig. Args: pipeline_config_path: Path to pipeline_pb2.TrainEvalPipelineConfig text proto. config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to override pipeline_config_path. Returns: Dictionary of configuration objects. Keys are `model`, `train_config`, `train_input_config`, `eval_config`, `eval_input_config`. Value are the corresponding config objects. """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(pipeline_config_path, "r") as f: proto_str = f.read() text_format.Merge(proto_str, pipeline_config) if config_override: text_format.Merge(config_override, pipeline_config) return create_configs_from_pipeline_proto(pipeline_config) def create_configs_from_pipeline_proto(pipeline_config): """Creates a configs dictionary from pipeline_pb2.TrainEvalPipelineConfig. Args: pipeline_config: pipeline_pb2.TrainEvalPipelineConfig proto object. Returns: Dictionary of configuration objects. Keys are `model`, `train_config`, `train_input_config`, `eval_config`, `eval_input_configs`. Value are the corresponding config objects or list of config objects (only for eval_input_configs). """ configs = {} configs["model"] = pipeline_config.model configs["train_config"] = pipeline_config.train_config configs["train_input_config"] = pipeline_config.train_input_reader configs["eval_config"] = pipeline_config.eval_config configs["eval_input_configs"] = pipeline_config.eval_input_reader # Keeps eval_input_config only for backwards compatibility. All clients should # read eval_input_configs instead. if configs["eval_input_configs"]: configs["eval_input_config"] = configs["eval_input_configs"][0] if pipeline_config.HasField("graph_rewriter"): configs["graph_rewriter_config"] = pipeline_config.graph_rewriter return configs def get_graph_rewriter_config_from_file(graph_rewriter_config_file): """Parses config for graph rewriter. Args: graph_rewriter_config_file: file path to the graph rewriter config. Returns: graph_rewriter_pb2.GraphRewriter proto """ graph_rewriter_config = graph_rewriter_pb2.GraphRewriter() with tf.gfile.GFile(graph_rewriter_config_file, "r") as f: text_format.Merge(f.read(), graph_rewriter_config) return graph_rewriter_config def create_pipeline_proto_from_configs(configs): """Creates a pipeline_pb2.TrainEvalPipelineConfig from configs dictionary. This function performs the inverse operation of create_configs_from_pipeline_proto(). Args: configs: Dictionary of configs. See get_configs_from_pipeline_file(). Returns: A fully populated pipeline_pb2.TrainEvalPipelineConfig. """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.CopyFrom(configs["model"]) pipeline_config.train_config.CopyFrom(configs["train_config"]) pipeline_config.train_input_reader.CopyFrom(configs["train_input_config"]) pipeline_config.eval_config.CopyFrom(configs["eval_config"]) pipeline_config.eval_input_reader.extend(configs["eval_input_configs"]) if "graph_rewriter_config" in configs: pipeline_config.graph_rewriter.CopyFrom(configs["graph_rewriter_config"]) return pipeline_config def save_pipeline_config(pipeline_config, directory): """Saves a pipeline config text file to disk. Args: pipeline_config: A pipeline_pb2.TrainEvalPipelineConfig. directory: The model directory into which the pipeline config file will be saved. """ if not file_io.file_exists(directory): file_io.recursive_create_dir(directory) pipeline_config_path = os.path.join(directory, "pipeline.config") config_text = text_format.MessageToString(pipeline_config) with tf.gfile.Open(pipeline_config_path, "wb") as f: tf.logging.info("Writing pipeline config file to %s", pipeline_config_path) f.write(config_text) def get_configs_from_multiple_files(model_config_path="", train_config_path="", train_input_config_path="", eval_config_path="", eval_input_config_path="", graph_rewriter_config_path=""): """Reads training configuration from multiple config files. Args: model_config_path: Path to model_pb2.DetectionModel. train_config_path: Path to train_pb2.TrainConfig. train_input_config_path: Path to input_reader_pb2.InputReader. eval_config_path: Path to eval_pb2.EvalConfig. eval_input_config_path: Path to input_reader_pb2.InputReader. graph_rewriter_config_path: Path to graph_rewriter_pb2.GraphRewriter. Returns: Dictionary of configuration objects. Keys are `model`, `train_config`, `train_input_config`, `eval_config`, `eval_input_config`. Key/Values are returned only for valid (non-empty) strings. """ configs = {} if model_config_path: model_config = model_pb2.DetectionModel() with tf.gfile.GFile(model_config_path, "r") as f: text_format.Merge(f.read(), model_config) configs["model"] = model_config if train_config_path: train_config = train_pb2.TrainConfig() with tf.gfile.GFile(train_config_path, "r") as f: text_format.Merge(f.read(), train_config) configs["train_config"] = train_config if train_input_config_path: train_input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(train_input_config_path, "r") as f: text_format.Merge(f.read(), train_input_config) configs["train_input_config"] = train_input_config if eval_config_path: eval_config = eval_pb2.EvalConfig() with tf.gfile.GFile(eval_config_path, "r") as f: text_format.Merge(f.read(), eval_config) configs["eval_config"] = eval_config if eval_input_config_path: eval_input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(eval_input_config_path, "r") as f: text_format.Merge(f.read(), eval_input_config) configs["eval_input_configs"] = [eval_input_config] if graph_rewriter_config_path: configs["graph_rewriter_config"] = get_graph_rewriter_config_from_file( graph_rewriter_config_path) return configs def get_number_of_classes(model_config): """Returns the number of classes for a detection model. Args: model_config: A model_pb2.DetectionModel. Returns: Number of classes. Raises: ValueError: If the model type is not recognized. """ meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": return model_config.faster_rcnn.num_classes if meta_architecture == "ssd": return model_config.ssd.num_classes raise ValueError("Expected the model to be one of 'faster_rcnn' or 'ssd'.") def get_optimizer_type(train_config): """Returns the optimizer type for training. Args: train_config: A train_pb2.TrainConfig. Returns: The type of the optimizer """ return train_config.optimizer.WhichOneof("optimizer") def get_learning_rate_type(optimizer_config): """Returns the learning rate type for training. Args: optimizer_config: An optimizer_pb2.Optimizer. Returns: The type of the learning rate. """ return optimizer_config.learning_rate.WhichOneof("learning_rate") def _is_generic_key(key): """Determines whether the key starts with a generic config dictionary key.""" for prefix in [ "graph_rewriter_config", "model", "train_input_config", "train_config", "eval_config"]: if key.startswith(prefix + "."): return True return False def _check_and_convert_legacy_input_config_key(key): """Checks key and converts legacy input config update to specific update. Args: key: string indicates the target of update operation. Returns: is_valid_input_config_key: A boolean indicating whether the input key is to update input config(s). key_name: 'eval_input_configs' or 'train_input_config' string if is_valid_input_config_key is true. None if is_valid_input_config_key is false. input_name: always returns None since legacy input config key never specifies the target input config. Keeping this output only to match the output form defined for input config update. field_name: the field name in input config. `key` itself if is_valid_input_config_key is false. """ key_name = None input_name = None field_name = key is_valid_input_config_key = True if field_name == "train_shuffle": key_name = "train_input_config" field_name = "shuffle" elif field_name == "eval_shuffle": key_name = "eval_input_configs" field_name = "shuffle" elif field_name == "train_input_path": key_name = "train_input_config" field_name = "input_path" elif field_name == "eval_input_path": key_name = "eval_input_configs" field_name = "input_path" elif field_name == "append_train_input_path": key_name = "train_input_config" field_name = "input_path" elif field_name == "append_eval_input_path": key_name = "eval_input_configs" field_name = "input_path" else: is_valid_input_config_key = False return is_valid_input_config_key, key_name, input_name, field_name def check_and_parse_input_config_key(configs, key): """Checks key and returns specific fields if key is valid input config update. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). key: string indicates the target of update operation. Returns: is_valid_input_config_key: A boolean indicate whether the input key is to update input config(s). key_name: 'eval_input_configs' or 'train_input_config' string if is_valid_input_config_key is true. None if is_valid_input_config_key is false. input_name: the name of the input config to be updated. None if is_valid_input_config_key is false. field_name: the field name in input config. `key` itself if is_valid_input_config_key is false. Raises: ValueError: when the input key format doesn't match any known formats. ValueError: if key_name doesn't match 'eval_input_configs' or 'train_input_config'. ValueError: if input_name doesn't match any name in train or eval input configs. ValueError: if field_name doesn't match any supported fields. """ key_name = None input_name = None field_name = None fields = key.split(":") if len(fields) == 1: field_name = key return _check_and_convert_legacy_input_config_key(key) elif len(fields) == 3: key_name = fields[0] input_name = fields[1] field_name = fields[2] else: raise ValueError("Invalid key format when overriding configs.") # Checks if key_name is valid for specific update. if key_name not in ["eval_input_configs", "train_input_config"]: raise ValueError("Invalid key_name when overriding input config.") # Checks if input_name is valid for specific update. For train input config it # should match configs[key_name].name, for eval input configs it should match # the name field of one of the eval_input_configs. if isinstance(configs[key_name], input_reader_pb2.InputReader): is_valid_input_name = configs[key_name].name == input_name else: is_valid_input_name = input_name in [ eval_input_config.name for eval_input_config in configs[key_name] ] if not is_valid_input_name: raise ValueError("Invalid input_name when overriding input config.") # Checks if field_name is valid for specific update. if field_name not in [ "input_path", "label_map_path", "shuffle", "mask_type", "sample_1_of_n_examples" ]: raise ValueError("Invalid field_name when overriding input config.") return True, key_name, input_name, field_name def merge_external_params_with_configs(configs, hparams=None, kwargs_dict=None): """Updates `configs` dictionary based on supplied parameters. This utility is for modifying specific fields in the object detection configs. Say that one would like to experiment with different learning rates, momentum values, or batch sizes. Rather than creating a new config text file for each experiment, one can use a single base config file, and update particular values. There are two types of field overrides: 1. Strategy-based overrides, which update multiple relevant configuration options. For example, updating `learning_rate` will update both the warmup and final learning rates. In this case key can be one of the following formats: 1. legacy update: single string that indicates the attribute to be updated. E.g. 'label_map_path', 'eval_input_path', 'shuffle'. Note that when updating fields (e.g. eval_input_path, eval_shuffle) in eval_input_configs, the override will only be applied when eval_input_configs has exactly 1 element. 2. specific update: colon separated string that indicates which field in which input_config to update. It should have 3 fields: - key_name: Name of the input config we should update, either 'train_input_config' or 'eval_input_configs' - input_name: a 'name' that can be used to identify elements, especially when configs[key_name] is a repeated field. - field_name: name of the field that you want to override. For example, given configs dict as below: configs = { 'model': {...} 'train_config': {...} 'train_input_config': {...} 'eval_config': {...} 'eval_input_configs': [{ name:"eval_coco", ...}, { name:"eval_voc", ... }] } Assume we want to update the input_path of the eval_input_config whose name is 'eval_coco'. The `key` would then be: 'eval_input_configs:eval_coco:input_path' 2. Generic key/value, which update a specific parameter based on namespaced configuration keys. For example, `model.ssd.loss.hard_example_miner.max_negatives_per_positive` will update the hard example miner configuration for an SSD model config. Generic overrides are automatically detected based on the namespaced keys. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). hparams: A `HParams`. kwargs_dict: Extra keyword arguments that are treated the same way as attribute/value pairs in `hparams`. Note that hyperparameters with the same names will override keyword arguments. Returns: `configs` dictionary. Raises: ValueError: when the key string doesn't match any of its allowed formats. """ if kwargs_dict is None: kwargs_dict = {} if hparams: kwargs_dict.update(hparams.values()) for key, value in kwargs_dict.items(): tf.logging.info("Maybe overwriting %s: %s", key, value) # pylint: disable=g-explicit-bool-comparison if value == "" or value is None: continue # pylint: enable=g-explicit-bool-comparison elif _maybe_update_config_with_key_value(configs, key, value): continue elif _is_generic_key(key): _update_generic(configs, key, value) else: tf.logging.info("Ignoring config override key: %s", key) return configs def _maybe_update_config_with_key_value(configs, key, value): """Checks key type and updates `configs` with the key value pair accordingly. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). key: String indicates the field(s) to be updated. value: Value used to override existing field value. Returns: A boolean value that indicates whether the override succeeds. Raises: ValueError: when the key string doesn't match any of the formats above. """ is_valid_input_config_key, key_name, input_name, field_name = ( check_and_parse_input_config_key(configs, key)) if is_valid_input_config_key: update_input_reader_config( configs, key_name=key_name, input_name=input_name, field_name=field_name, value=value) elif field_name == "learning_rate": _update_initial_learning_rate(configs, value) elif field_name == "batch_size": _update_batch_size(configs, value) elif field_name == "momentum_optimizer_value": _update_momentum_optimizer_value(configs, value) elif field_name == "classification_localization_weight_ratio": # Localization weight is fixed to 1.0. _update_classification_localization_weight_ratio(configs, value) elif field_name == "focal_loss_gamma": _update_focal_loss_gamma(configs, value) elif field_name == "focal_loss_alpha": _update_focal_loss_alpha(configs, value) elif field_name == "train_steps": _update_train_steps(configs, value) elif field_name == "label_map_path": _update_label_map_path(configs, value) elif field_name == "mask_type": _update_mask_type(configs, value) elif field_name == "sample_1_of_n_eval_examples": _update_all_eval_input_configs(configs, "sample_1_of_n_examples", value) elif field_name == "eval_num_epochs": _update_all_eval_input_configs(configs, "num_epochs", value) elif field_name == "eval_with_moving_averages": _update_use_moving_averages(configs, value) elif field_name == "retain_original_images_in_eval": _update_retain_original_images(configs["eval_config"], value) elif field_name == "use_bfloat16": _update_use_bfloat16(configs, value) else: return False return True def _update_tf_record_input_path(input_config, input_path): """Updates input configuration to reflect a new input path. The input_config object is updated in place, and hence not returned. Args: input_config: A input_reader_pb2.InputReader. input_path: A path to data or list of paths. Raises: TypeError: if input reader type is not `tf_record_input_reader`. """ input_reader_type = input_config.WhichOneof("input_reader") if input_reader_type == "tf_record_input_reader": input_config.tf_record_input_reader.ClearField("input_path") if isinstance(input_path, list): input_config.tf_record_input_reader.input_path.extend(input_path) else: input_config.tf_record_input_reader.input_path.append(input_path) else: raise TypeError("Input reader type must be `tf_record_input_reader`.") def update_input_reader_config(configs, key_name=None, input_name=None, field_name=None, value=None, path_updater=_update_tf_record_input_path): """Updates specified input reader config field. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). key_name: Name of the input config we should update, either 'train_input_config' or 'eval_input_configs' input_name: String name used to identify input config to update with. Should be either None or value of the 'name' field in one of the input reader configs. field_name: Field name in input_reader_pb2.InputReader. value: Value used to override existing field value. path_updater: helper function used to update the input path. Only used when field_name is "input_path". Raises: ValueError: when input field_name is None. ValueError: when input_name is None and number of eval_input_readers does not equal to 1. """ if isinstance(configs[key_name], input_reader_pb2.InputReader): # Updates singular input_config object. target_input_config = configs[key_name] if field_name == "input_path": path_updater(input_config=target_input_config, input_path=value) else: setattr(target_input_config, field_name, value) elif input_name is None and len(configs[key_name]) == 1: # Updates first (and the only) object of input_config list. target_input_config = configs[key_name][0] if field_name == "input_path": path_updater(input_config=target_input_config, input_path=value) else: setattr(target_input_config, field_name, value) elif input_name is not None and len(configs[key_name]): # Updates input_config whose name matches input_name. update_count = 0 for input_config in configs[key_name]: if input_config.name == input_name: setattr(input_config, field_name, value) update_count = update_count + 1 if not update_count: raise ValueError( "Input name {} not found when overriding.".format(input_name)) elif update_count > 1: raise ValueError("Duplicate input name found when overriding.") else: key_name = "None" if key_name is None else key_name input_name = "None" if input_name is None else input_name field_name = "None" if field_name is None else field_name raise ValueError("Unknown input config overriding: " "key_name:{}, input_name:{}, field_name:{}.".format( key_name, input_name, field_name)) def _update_initial_learning_rate(configs, learning_rate): """Updates `configs` to reflect the new initial learning rate. This function updates the initial learning rate. For learning rate schedules, all other defined learning rates in the pipeline config are scaled to maintain their same ratio with the initial learning rate. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). learning_rate: Initial learning rate for optimizer. Raises: TypeError: if optimizer type is not supported, or if learning rate type is not supported. """ optimizer_type = get_optimizer_type(configs["train_config"]) if optimizer_type == "rms_prop_optimizer": optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer elif optimizer_type == "momentum_optimizer": optimizer_config = configs["train_config"].optimizer.momentum_optimizer elif optimizer_type == "adam_optimizer": optimizer_config = configs["train_config"].optimizer.adam_optimizer else: raise TypeError("Optimizer %s is not supported." % optimizer_type) learning_rate_type = get_learning_rate_type(optimizer_config) if learning_rate_type == "constant_learning_rate": constant_lr = optimizer_config.learning_rate.constant_learning_rate constant_lr.learning_rate = learning_rate elif learning_rate_type == "exponential_decay_learning_rate": exponential_lr = ( optimizer_config.learning_rate.exponential_decay_learning_rate) exponential_lr.initial_learning_rate = learning_rate elif learning_rate_type == "manual_step_learning_rate": manual_lr = optimizer_config.learning_rate.manual_step_learning_rate original_learning_rate = manual_lr.initial_learning_rate learning_rate_scaling = float(learning_rate) / original_learning_rate manual_lr.initial_learning_rate = learning_rate for schedule in manual_lr.schedule: schedule.learning_rate *= learning_rate_scaling elif learning_rate_type == "cosine_decay_learning_rate": cosine_lr = optimizer_config.learning_rate.cosine_decay_learning_rate learning_rate_base = cosine_lr.learning_rate_base warmup_learning_rate = cosine_lr.warmup_learning_rate warmup_scale_factor = warmup_learning_rate / learning_rate_base cosine_lr.learning_rate_base = learning_rate cosine_lr.warmup_learning_rate = warmup_scale_factor * learning_rate else: raise TypeError("Learning rate %s is not supported." % learning_rate_type) def _update_batch_size(configs, batch_size): """Updates `configs` to reflect the new training batch size. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). batch_size: Batch size to use for training (Ideally a power of 2). Inputs are rounded, and capped to be 1 or greater. """ configs["train_config"].batch_size = max(1, int(round(batch_size))) def _validate_message_has_field(message, field): if not message.HasField(field): raise ValueError("Expecting message to have field %s" % field) def _update_generic(configs, key, value): """Update a pipeline configuration parameter based on a generic key/value. Args: configs: Dictionary of pipeline configuration protos. key: A string key, dot-delimited to represent the argument key. e.g. "model.ssd.train_config.batch_size" value: A value to set the argument to. The type of the value must match the type for the protocol buffer. Note that setting the wrong type will result in a TypeError. e.g. 42 Raises: ValueError if the message key does not match the existing proto fields. TypeError the value type doesn't match the protobuf field type. """ fields = key.split(".") first_field = fields.pop(0) last_field = fields.pop() message = configs[first_field] for field in fields: _validate_message_has_field(message, field) message = getattr(message, field) _validate_message_has_field(message, last_field) setattr(message, last_field, value) def _update_momentum_optimizer_value(configs, momentum): """Updates `configs` to reflect the new momentum value. Momentum is only supported for RMSPropOptimizer and MomentumOptimizer. For any other optimizer, no changes take place. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). momentum: New momentum value. Values are clipped at 0.0 and 1.0. Raises: TypeError: If the optimizer type is not `rms_prop_optimizer` or `momentum_optimizer`. """ optimizer_type = get_optimizer_type(configs["train_config"]) if optimizer_type == "rms_prop_optimizer": optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer elif optimizer_type == "momentum_optimizer": optimizer_config = configs["train_config"].optimizer.momentum_optimizer else: raise TypeError("Optimizer type must be one of `rms_prop_optimizer` or " "`momentum_optimizer`.") optimizer_config.momentum_optimizer_value = min(max(0.0, momentum), 1.0) def _update_classification_localization_weight_ratio(configs, ratio): """Updates the classification/localization weight loss ratio. Detection models usually define a loss weight for both classification and objectness. This function updates the weights such that the ratio between classification weight to localization weight is the ratio provided. Arbitrarily, localization weight is set to 1.0. Note that in the case of Faster R-CNN, this same ratio is applied to the first stage objectness loss weight relative to localization loss weight. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). ratio: Desired ratio of classification (and/or objectness) loss weight to localization loss weight. """ meta_architecture = configs["model"].WhichOneof("model") if meta_architecture == "faster_rcnn": model = configs["model"].faster_rcnn model.first_stage_localization_loss_weight = 1.0 model.first_stage_objectness_loss_weight = ratio model.second_stage_localization_loss_weight = 1.0 model.second_stage_classification_loss_weight = ratio if meta_architecture == "ssd": model = configs["model"].ssd model.loss.localization_weight = 1.0 model.loss.classification_weight = ratio def _get_classification_loss(model_config): """Returns the classification loss for a model.""" meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": model = model_config.faster_rcnn classification_loss = model.second_stage_classification_loss elif meta_architecture == "ssd": model = model_config.ssd classification_loss = model.loss.classification_loss else: raise TypeError("Did not recognize the model architecture.") return classification_loss def _update_focal_loss_gamma(configs, gamma): """Updates the gamma value for a sigmoid focal loss. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). gamma: Exponent term in focal loss. Raises: TypeError: If the classification loss is not `weighted_sigmoid_focal`. """ classification_loss = _get_classification_loss(configs["model"]) classification_loss_type = classification_loss.WhichOneof( "classification_loss") if classification_loss_type != "weighted_sigmoid_focal": raise TypeError("Classification loss must be `weighted_sigmoid_focal`.") classification_loss.weighted_sigmoid_focal.gamma = gamma def _update_focal_loss_alpha(configs, alpha): """Updates the alpha value for a sigmoid focal loss. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). alpha: Class weight multiplier for sigmoid loss. Raises: TypeError: If the classification loss is not `weighted_sigmoid_focal`. """ classification_loss = _get_classification_loss(configs["model"]) classification_loss_type = classification_loss.WhichOneof( "classification_loss") if classification_loss_type != "weighted_sigmoid_focal": raise TypeError("Classification loss must be `weighted_sigmoid_focal`.") classification_loss.weighted_sigmoid_focal.alpha = alpha def _update_train_steps(configs, train_steps): """Updates `configs` to reflect new number of training steps.""" configs["train_config"].num_steps = int(train_steps) def _update_eval_steps(configs, eval_steps): """Updates `configs` to reflect new number of eval steps per evaluation.""" configs["eval_config"].num_examples = int(eval_steps) def _update_all_eval_input_configs(configs, field, value): """Updates the content of `field` with `value` for all eval input configs.""" for eval_input_config in configs["eval_input_configs"]: setattr(eval_input_config, field, value) def _update_label_map_path(configs, label_map_path): """Updates the label map path for both train and eval input readers. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). label_map_path: New path to `StringIntLabelMap` pbtxt file. """ configs["train_input_config"].label_map_path = label_map_path _update_all_eval_input_configs(configs, "label_map_path", label_map_path) def _update_mask_type(configs, mask_type): """Updates the mask type for both train and eval input readers. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). mask_type: A string name representing a value of input_reader_pb2.InstanceMaskType """ configs["train_input_config"].mask_type = mask_type _update_all_eval_input_configs(configs, "mask_type", mask_type) def _update_use_moving_averages(configs, use_moving_averages): """Updates the eval config option to use or not use moving averages. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). use_moving_averages: Boolean indicating whether moving average variables should be loaded during evaluation. """ configs["eval_config"].use_moving_averages = use_moving_averages def _update_retain_original_images(eval_config, retain_original_images): """Updates eval config with option to retain original images. The eval_config object is updated in place, and hence not returned. Args: eval_config: A eval_pb2.EvalConfig. retain_original_images: Boolean indicating whether to retain original images in eval mode. """ eval_config.retain_original_images = retain_original_images def _update_use_bfloat16(configs, use_bfloat16): """Updates `configs` to reflect the new setup on whether to use bfloat16. The configs dictionary is updated in place, and hence not returned. Args: configs: Dictionary of configuration objects. See outputs from get_configs_from_pipeline_file() or get_configs_from_multiple_files(). use_bfloat16: A bool, indicating whether to use bfloat16 for training. """ configs["train_config"].use_bfloat16 = use_bfloat16
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/config_util.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for importing/exporting Object Detection categories.""" import csv import tensorflow as tf def load_categories_from_csv_file(csv_path): """Loads categories from a csv file. The CSV file should have one comma delimited numeric category id and string category name pair per line. For example: 0,"cat" 1,"dog" 2,"bird" ... Args: csv_path: Path to the csv file to be parsed into categories. Returns: categories: A list of dictionaries representing all possible categories. The categories will contain an integer 'id' field and a string 'name' field. Raises: ValueError: If the csv file is incorrectly formatted. """ categories = [] with tf.gfile.Open(csv_path, 'r') as csvfile: reader = csv.reader(csvfile, delimiter=',', quotechar='"') for row in reader: if not row: continue if len(row) != 2: raise ValueError('Expected 2 fields per row in csv: %s' % ','.join(row)) category_id = int(row[0]) category_name = row[1] categories.append({'id': category_id, 'name': category_name}) return categories def save_categories_to_csv_file(categories, csv_path): """Saves categories to a csv file. Args: categories: A list of dictionaries representing categories to save to file. Each category must contain an 'id' and 'name' field. csv_path: Path to the csv file to be parsed into categories. """ categories.sort(key=lambda x: x['id']) with tf.gfile.Open(csv_path, 'w') as csvfile: writer = csv.writer(csvfile, delimiter=',', quotechar='"') for category in categories: writer.writerow([category['id'], category['name']])
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/category_util.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow_models.object_detection.utils.vrd_evaluation.""" import numpy as np import tensorflow as tf from object_detection.core import standard_fields from object_detection.utils import vrd_evaluation class VRDRelationDetectionEvaluatorTest(tf.test.TestCase): def test_vrdrelation_evaluator(self): self.vrd_eval = vrd_evaluation.VRDRelationDetectionEvaluator() image_key1 = 'img1' groundtruth_box_tuples1 = np.array( [([0, 0, 1, 1], [1, 1, 2, 2]), ([0, 0, 1, 1], [1, 2, 2, 3])], dtype=vrd_evaluation.vrd_box_data_type) groundtruth_class_tuples1 = np.array( [(1, 2, 3), (1, 4, 3)], dtype=vrd_evaluation.label_data_type) groundtruth_verified_labels1 = np.array([1, 2, 3, 4, 5], dtype=int) self.vrd_eval.add_single_ground_truth_image_info( image_key1, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_box_tuples1, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_tuples1, standard_fields.InputDataFields.groundtruth_image_classes: groundtruth_verified_labels1 }) image_key2 = 'img2' groundtruth_box_tuples2 = np.array( [([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type) groundtruth_class_tuples2 = np.array( [(1, 4, 3)], dtype=vrd_evaluation.label_data_type) self.vrd_eval.add_single_ground_truth_image_info( image_key2, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_box_tuples2, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_tuples2, }) image_key3 = 'img3' groundtruth_box_tuples3 = np.array( [([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type) groundtruth_class_tuples3 = np.array( [(1, 2, 4)], dtype=vrd_evaluation.label_data_type) self.vrd_eval.add_single_ground_truth_image_info( image_key3, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_box_tuples3, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_tuples3, }) image_key = 'img1' detected_box_tuples = np.array( [([0, 0.3, 1, 1], [1.1, 1, 2, 2]), ([0, 0, 1, 1], [1, 1, 2, 2]), ([0.5, 0, 1, 1], [1, 1, 3, 3])], dtype=vrd_evaluation.vrd_box_data_type) detected_class_tuples = np.array( [(1, 2, 5), (1, 2, 3), (1, 6, 3)], dtype=vrd_evaluation.label_data_type) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.vrd_eval.add_single_detected_image_info( image_key, { standard_fields.DetectionResultFields.detection_boxes: detected_box_tuples, standard_fields.DetectionResultFields.detection_scores: detected_scores, standard_fields.DetectionResultFields.detection_classes: detected_class_tuples }) metrics = self.vrd_eval.evaluate() self.assertAlmostEqual(metrics['[email protected]'], 0.25) self.assertAlmostEqual(metrics['[email protected]'], 0.1666666666666666) self.assertAlmostEqual(metrics['[email protected]/3'], 0.3333333333333333) self.assertAlmostEqual(metrics['[email protected]/4'], 0) self.assertAlmostEqual(metrics['VRDMetric_Relationships_Recall@[email protected]'], 0.25) self.assertAlmostEqual(metrics['VRDMetric_Relationships_Recall@[email protected]'], 0.25) self.vrd_eval.clear() self.assertFalse(self.vrd_eval._image_ids) class VRDPhraseDetectionEvaluatorTest(tf.test.TestCase): def test_vrdphrase_evaluator(self): self.vrd_eval = vrd_evaluation.VRDPhraseDetectionEvaluator() image_key1 = 'img1' groundtruth_box_tuples1 = np.array( [([0, 0, 1, 1], [1, 1, 2, 2]), ([0, 0, 1, 1], [1, 2, 2, 3])], dtype=vrd_evaluation.vrd_box_data_type) groundtruth_class_tuples1 = np.array( [(1, 2, 3), (1, 4, 3)], dtype=vrd_evaluation.label_data_type) groundtruth_verified_labels1 = np.array([1, 2, 3, 4, 5], dtype=int) self.vrd_eval.add_single_ground_truth_image_info( image_key1, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_box_tuples1, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_tuples1, standard_fields.InputDataFields.groundtruth_image_classes: groundtruth_verified_labels1 }) image_key2 = 'img2' groundtruth_box_tuples2 = np.array( [([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type) groundtruth_class_tuples2 = np.array( [(1, 4, 3)], dtype=vrd_evaluation.label_data_type) self.vrd_eval.add_single_ground_truth_image_info( image_key2, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_box_tuples2, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_tuples2, }) image_key3 = 'img3' groundtruth_box_tuples3 = np.array( [([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type) groundtruth_class_tuples3 = np.array( [(1, 2, 4)], dtype=vrd_evaluation.label_data_type) self.vrd_eval.add_single_ground_truth_image_info( image_key3, { standard_fields.InputDataFields.groundtruth_boxes: groundtruth_box_tuples3, standard_fields.InputDataFields.groundtruth_classes: groundtruth_class_tuples3, }) image_key = 'img1' detected_box_tuples = np.array( [([0, 0.3, 0.5, 0.5], [0.3, 0.3, 1.0, 1.0]), ([0, 0, 1.2, 1.2], [0.0, 0.0, 2.0, 2.0]), ([0.5, 0, 1, 1], [1, 1, 3, 3])], dtype=vrd_evaluation.vrd_box_data_type) detected_class_tuples = np.array( [(1, 2, 5), (1, 2, 3), (1, 6, 3)], dtype=vrd_evaluation.label_data_type) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.vrd_eval.add_single_detected_image_info( image_key, { standard_fields.DetectionResultFields.detection_boxes: detected_box_tuples, standard_fields.DetectionResultFields.detection_scores: detected_scores, standard_fields.DetectionResultFields.detection_classes: detected_class_tuples }) metrics = self.vrd_eval.evaluate() self.assertAlmostEqual(metrics['[email protected]'], 0.25) self.assertAlmostEqual(metrics['[email protected]'], 0.1666666666666666) self.assertAlmostEqual(metrics['[email protected]/3'], 0.3333333333333333) self.assertAlmostEqual(metrics['[email protected]/4'], 0) self.assertAlmostEqual(metrics['VRDMetric_Phrases_Recall@[email protected]'], 0.25) self.assertAlmostEqual(metrics['VRDMetric_Phrases_Recall@[email protected]'], 0.25) self.vrd_eval.clear() self.assertFalse(self.vrd_eval._image_ids) class VRDDetectionEvaluationTest(tf.test.TestCase): def setUp(self): self.vrd_eval = vrd_evaluation._VRDDetectionEvaluation( matching_iou_threshold=0.5) image_key1 = 'img1' groundtruth_box_tuples1 = np.array( [([0, 0, 1, 1], [1, 1, 2, 2]), ([0, 0, 1, 1], [1, 2, 2, 3])], dtype=vrd_evaluation.vrd_box_data_type) groundtruth_class_tuples1 = np.array( [(1, 2, 3), (1, 4, 3)], dtype=vrd_evaluation.label_data_type) self.vrd_eval.add_single_ground_truth_image_info( image_key1, groundtruth_box_tuples1, groundtruth_class_tuples1) image_key2 = 'img2' groundtruth_box_tuples2 = np.array( [([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type) groundtruth_class_tuples2 = np.array( [(1, 4, 3)], dtype=vrd_evaluation.label_data_type) self.vrd_eval.add_single_ground_truth_image_info( image_key2, groundtruth_box_tuples2, groundtruth_class_tuples2) image_key3 = 'img3' groundtruth_box_tuples3 = np.array( [([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type) groundtruth_class_tuples3 = np.array( [(1, 2, 4)], dtype=vrd_evaluation.label_data_type) self.vrd_eval.add_single_ground_truth_image_info( image_key3, groundtruth_box_tuples3, groundtruth_class_tuples3) image_key = 'img1' detected_box_tuples = np.array( [([0, 0.3, 1, 1], [1.1, 1, 2, 2]), ([0, 0, 1, 1], [1, 1, 2, 2])], dtype=vrd_evaluation.vrd_box_data_type) detected_class_tuples = np.array( [(1, 2, 3), (1, 2, 3)], dtype=vrd_evaluation.label_data_type) detected_scores = np.array([0.7, 0.8], dtype=float) self.vrd_eval.add_single_detected_image_info( image_key, detected_box_tuples, detected_scores, detected_class_tuples) metrics = self.vrd_eval.evaluate() expected_weighted_average_precision = 0.25 expected_mean_average_precision = 0.16666666666666 expected_precision = np.array([1., 0.5], dtype=float) expected_recall = np.array([0.25, 0.25], dtype=float) expected_recall_50 = 0.25 expected_recall_100 = 0.25 expected_median_rank_50 = 0 expected_median_rank_100 = 0 self.assertAlmostEqual(expected_weighted_average_precision, metrics.weighted_average_precision) self.assertAlmostEqual(expected_mean_average_precision, metrics.mean_average_precision) self.assertAlmostEqual(expected_mean_average_precision, metrics.mean_average_precision) self.assertAllClose(expected_precision, metrics.precisions) self.assertAllClose(expected_recall, metrics.recalls) self.assertAlmostEqual(expected_recall_50, metrics.recall_50) self.assertAlmostEqual(expected_recall_100, metrics.recall_100) self.assertAlmostEqual(expected_median_rank_50, metrics.median_rank_50) self.assertAlmostEqual(expected_median_rank_100, metrics.median_rank_100) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/vrd_evaluation_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Evaluator class for Visual Relations Detection. VRDDetectionEvaluator is a class which manages ground truth information of a visual relations detection (vrd) dataset, and computes frequently used detection metrics such as Precision, Recall, Recall@k, of the provided vrd detection results. It supports the following operations: 1) Adding ground truth information of images sequentially. 2) Adding detection results of images sequentially. 3) Evaluating detection metrics on already inserted detection results. Note1: groundtruth should be inserted before evaluation. Note2: This module operates on numpy boxes and box lists. """ from abc import abstractmethod import collections import logging import numpy as np from object_detection.core import standard_fields from object_detection.utils import metrics from object_detection.utils import object_detection_evaluation from object_detection.utils import per_image_vrd_evaluation # Below standard input numpy datatypes are defined: # box_data_type - datatype of the groundtruth visual relations box annotations; # this datatype consists of two named boxes: subject bounding box and object # bounding box. Each box is of the format [y_min, x_min, y_max, x_max], each # coordinate being of type float32. # label_data_type - corresponding datatype of the visual relations label # annotaions; it consists of three numerical class labels: subject class label, # object class label and relation class label, each class label being of type # int32. vrd_box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))]) single_box_data_type = np.dtype([('box', 'f4', (4,))]) label_data_type = np.dtype([('subject', 'i4'), ('object', 'i4'), ('relation', 'i4')]) class VRDDetectionEvaluator(object_detection_evaluation.DetectionEvaluator): """A class to evaluate VRD detections. This class serves as a base class for VRD evaluation in two settings: - phrase detection - relation detection. """ def __init__(self, matching_iou_threshold=0.5, metric_prefix=None): """Constructor. Args: matching_iou_threshold: IOU threshold to use for matching groundtruth boxes to detection boxes. metric_prefix: (optional) string prefix for metric name; if None, no prefix is used. """ super(VRDDetectionEvaluator, self).__init__([]) self._matching_iou_threshold = matching_iou_threshold self._evaluation = _VRDDetectionEvaluation( matching_iou_threshold=self._matching_iou_threshold) self._image_ids = set([]) self._metric_prefix = (metric_prefix + '_') if metric_prefix else '' self._evaluatable_labels = {} self._negative_labels = {} @abstractmethod def _process_groundtruth_boxes(self, groundtruth_box_tuples): """Pre-processes boxes before adding them to the VRDDetectionEvaluation. Phrase detection and Relation detection subclasses re-implement this method depending on the task. Args: groundtruth_box_tuples: A numpy array of structures with the shape [M, 1], each structure containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] (see datatype vrd_box_data_type, single_box_data_type above). """ raise NotImplementedError( '_process_groundtruth_boxes method should be implemented in subclasses' 'of VRDDetectionEvaluator.') @abstractmethod def _process_detection_boxes(self, detections_box_tuples): """Pre-processes boxes before adding them to the VRDDetectionEvaluation. Phrase detection and Relation detection subclasses re-implement this method depending on the task. Args: detections_box_tuples: A numpy array of structures with the shape [M, 1], each structure containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] (see datatype vrd_box_data_type, single_box_data_type above). """ raise NotImplementedError( '_process_detection_boxes method should be implemented in subclasses' 'of VRDDetectionEvaluator.') def add_single_ground_truth_image_info(self, image_id, groundtruth_dict): """Adds groundtruth for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. groundtruth_dict: A dictionary containing - standard_fields.InputDataFields.groundtruth_boxes: A numpy array of structures with the shape [M, 1], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] (see datatype vrd_box_data_type, single_box_data_type above). standard_fields.InputDataFields.groundtruth_classes: A numpy array of structures shape [M, 1], representing the class labels of the corresponding bounding boxes and possibly additional classes (see datatype label_data_type above). standard_fields.InputDataFields.groundtruth_image_classes: numpy array of shape [K] containing verified labels. Raises: ValueError: On adding groundtruth for an image more than once. """ if image_id in self._image_ids: raise ValueError('Image with id {} already added.'.format(image_id)) groundtruth_class_tuples = ( groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes]) groundtruth_box_tuples = ( groundtruth_dict[standard_fields.InputDataFields.groundtruth_boxes]) self._evaluation.add_single_ground_truth_image_info( image_key=image_id, groundtruth_box_tuples=self._process_groundtruth_boxes( groundtruth_box_tuples), groundtruth_class_tuples=groundtruth_class_tuples) self._image_ids.update([image_id]) all_classes = [] for field in groundtruth_box_tuples.dtype.fields: all_classes.append(groundtruth_class_tuples[field]) groudtruth_positive_classes = np.unique(np.concatenate(all_classes)) verified_labels = groundtruth_dict.get( standard_fields.InputDataFields.groundtruth_image_classes, np.array([], dtype=int)) self._evaluatable_labels[image_id] = np.unique( np.concatenate((verified_labels, groudtruth_positive_classes))) self._negative_labels[image_id] = np.setdiff1d(verified_labels, groudtruth_positive_classes) def add_single_detected_image_info(self, image_id, detections_dict): """Adds detections for a single image to be used for evaluation. Args: image_id: A unique string/integer identifier for the image. detections_dict: A dictionary containing - standard_fields.DetectionResultFields.detection_boxes: A numpy array of structures with shape [N, 1], representing N tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] (as an example see datatype vrd_box_data_type, single_box_data_type above). standard_fields.DetectionResultFields.detection_scores: float32 numpy array of shape [N] containing detection scores for the boxes. standard_fields.DetectionResultFields.detection_classes: A numpy array of structures shape [N, 1], representing the class labels of the corresponding bounding boxes and possibly additional classes (see datatype label_data_type above). """ if image_id not in self._image_ids: logging.warn('No groundtruth for the image with id %s.', image_id) # Since for the correct work of evaluator it is assumed that groundtruth # is inserted first we make sure to break the code if is it not the case. self._image_ids.update([image_id]) self._negative_labels[image_id] = np.array([]) self._evaluatable_labels[image_id] = np.array([]) num_detections = detections_dict[ standard_fields.DetectionResultFields.detection_boxes].shape[0] detection_class_tuples = detections_dict[ standard_fields.DetectionResultFields.detection_classes] detection_box_tuples = detections_dict[ standard_fields.DetectionResultFields.detection_boxes] negative_selector = np.zeros(num_detections, dtype=bool) selector = np.ones(num_detections, dtype=bool) # Only check boxable labels for field in detection_box_tuples.dtype.fields: # Verify if one of the labels is negative (this is sure FP) negative_selector |= np.isin(detection_class_tuples[field], self._negative_labels[image_id]) # Verify if all labels are verified selector &= np.isin(detection_class_tuples[field], self._evaluatable_labels[image_id]) selector |= negative_selector self._evaluation.add_single_detected_image_info( image_key=image_id, detected_box_tuples=self._process_detection_boxes( detection_box_tuples[selector]), detected_scores=detections_dict[ standard_fields.DetectionResultFields.detection_scores][selector], detected_class_tuples=detection_class_tuples[selector]) def evaluate(self, relationships=None): """Compute evaluation result. Args: relationships: A dictionary of numerical label-text label mapping; if specified, returns per-relationship AP. Returns: A dictionary of metrics with the following fields - summary_metrics: 'weightedAP@<matching_iou_threshold>IOU' : weighted average precision at the specified IOU threshold. 'AP@<matching_iou_threshold>IOU/<relationship>' : AP per relationship. 'mAP@<matching_iou_threshold>IOU': mean average precision at the specified IOU threshold. 'Recall@50@<matching_iou_threshold>IOU': recall@50 at the specified IOU threshold. 'Recall@100@<matching_iou_threshold>IOU': recall@100 at the specified IOU threshold. if relationships is specified, returns <relationship> in AP metrics as readable names, otherwise the names correspond to class numbers. """ (weighted_average_precision, mean_average_precision, average_precisions, _, _, recall_50, recall_100, _, _) = ( self._evaluation.evaluate()) vrd_metrics = { (self._metric_prefix + 'weightedAP@{}IOU'.format( self._matching_iou_threshold)): weighted_average_precision, self._metric_prefix + 'mAP@{}IOU'.format(self._matching_iou_threshold): mean_average_precision, self._metric_prefix + 'Recall@50@{}IOU'.format( self._matching_iou_threshold): recall_50, self._metric_prefix + 'Recall@100@{}IOU'.format( self._matching_iou_threshold): recall_100, } if relationships: for key, average_precision in average_precisions.iteritems(): vrd_metrics[self._metric_prefix + 'AP@{}IOU/{}'.format( self._matching_iou_threshold, relationships[key])] = average_precision else: for key, average_precision in average_precisions.iteritems(): vrd_metrics[self._metric_prefix + 'AP@{}IOU/{}'.format( self._matching_iou_threshold, key)] = average_precision return vrd_metrics def clear(self): """Clears the state to prepare for a fresh evaluation.""" self._evaluation = _VRDDetectionEvaluation( matching_iou_threshold=self._matching_iou_threshold) self._image_ids.clear() self._negative_labels.clear() self._evaluatable_labels.clear() class VRDRelationDetectionEvaluator(VRDDetectionEvaluator): """A class to evaluate VRD detections in relations setting. Expected groundtruth box datatype is vrd_box_data_type, expected groudtruth labels datatype is label_data_type. Expected detection box datatype is vrd_box_data_type, expected detection labels datatype is label_data_type. """ def __init__(self, matching_iou_threshold=0.5): super(VRDRelationDetectionEvaluator, self).__init__( matching_iou_threshold=matching_iou_threshold, metric_prefix='VRDMetric_Relationships') def _process_groundtruth_boxes(self, groundtruth_box_tuples): """Pre-processes boxes before adding them to the VRDDetectionEvaluation. Args: groundtruth_box_tuples: A numpy array of structures with the shape [M, 1], each structure containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max]. Returns: Unchanged input. """ return groundtruth_box_tuples def _process_detection_boxes(self, detections_box_tuples): """Pre-processes boxes before adding them to the VRDDetectionEvaluation. Phrase detection and Relation detection subclasses re-implement this method depending on the task. Args: detections_box_tuples: A numpy array of structures with the shape [M, 1], each structure containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max] (see datatype vrd_box_data_type, single_box_data_type above). Returns: Unchanged input. """ return detections_box_tuples class VRDPhraseDetectionEvaluator(VRDDetectionEvaluator): """A class to evaluate VRD detections in phrase setting. Expected groundtruth box datatype is vrd_box_data_type, expected groudtruth labels datatype is label_data_type. Expected detection box datatype is single_box_data_type, expected detection labels datatype is label_data_type. """ def __init__(self, matching_iou_threshold=0.5): super(VRDPhraseDetectionEvaluator, self).__init__( matching_iou_threshold=matching_iou_threshold, metric_prefix='VRDMetric_Phrases') def _process_groundtruth_boxes(self, groundtruth_box_tuples): """Pre-processes boxes before adding them to the VRDDetectionEvaluation. In case of phrase evaluation task, evaluation expects exactly one bounding box containing all objects in the phrase. This bounding box is computed as an enclosing box of all groundtruth boxes of a phrase. Args: groundtruth_box_tuples: A numpy array of structures with the shape [M, 1], each structure containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max]. See vrd_box_data_type for an example of structure. Returns: result: A numpy array of structures with the shape [M, 1], each structure containing exactly one named bounding box. i-th output structure corresponds to the result of processing i-th input structure, where the named bounding box is computed as an enclosing bounding box of all bounding boxes of the i-th input structure. """ first_box_key = groundtruth_box_tuples.dtype.fields.keys()[0] miny = groundtruth_box_tuples[first_box_key][:, 0] minx = groundtruth_box_tuples[first_box_key][:, 1] maxy = groundtruth_box_tuples[first_box_key][:, 2] maxx = groundtruth_box_tuples[first_box_key][:, 3] for fields in groundtruth_box_tuples.dtype.fields: miny = np.minimum(groundtruth_box_tuples[fields][:, 0], miny) minx = np.minimum(groundtruth_box_tuples[fields][:, 1], minx) maxy = np.maximum(groundtruth_box_tuples[fields][:, 2], maxy) maxx = np.maximum(groundtruth_box_tuples[fields][:, 3], maxx) data_result = [] for i in range(groundtruth_box_tuples.shape[0]): data_result.append(([miny[i], minx[i], maxy[i], maxx[i]],)) result = np.array(data_result, dtype=[('box', 'f4', (4,))]) return result def _process_detection_boxes(self, detections_box_tuples): """Pre-processes boxes before adding them to the VRDDetectionEvaluation. In case of phrase evaluation task, evaluation expects exactly one bounding box containing all objects in the phrase. This bounding box is computed as an enclosing box of all groundtruth boxes of a phrase. Args: detections_box_tuples: A numpy array of structures with the shape [M, 1], each structure containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max]. See vrd_box_data_type for an example of this structure. Returns: result: A numpy array of structures with the shape [M, 1], each structure containing exactly one named bounding box. i-th output structure corresponds to the result of processing i-th input structure, where the named bounding box is computed as an enclosing bounding box of all bounding boxes of the i-th input structure. """ first_box_key = detections_box_tuples.dtype.fields.keys()[0] miny = detections_box_tuples[first_box_key][:, 0] minx = detections_box_tuples[first_box_key][:, 1] maxy = detections_box_tuples[first_box_key][:, 2] maxx = detections_box_tuples[first_box_key][:, 3] for fields in detections_box_tuples.dtype.fields: miny = np.minimum(detections_box_tuples[fields][:, 0], miny) minx = np.minimum(detections_box_tuples[fields][:, 1], minx) maxy = np.maximum(detections_box_tuples[fields][:, 2], maxy) maxx = np.maximum(detections_box_tuples[fields][:, 3], maxx) data_result = [] for i in range(detections_box_tuples.shape[0]): data_result.append(([miny[i], minx[i], maxy[i], maxx[i]],)) result = np.array(data_result, dtype=[('box', 'f4', (4,))]) return result VRDDetectionEvalMetrics = collections.namedtuple('VRDDetectionEvalMetrics', [ 'weighted_average_precision', 'mean_average_precision', 'average_precisions', 'precisions', 'recalls', 'recall_50', 'recall_100', 'median_rank_50', 'median_rank_100' ]) class _VRDDetectionEvaluation(object): """Performs metric computation for the VRD task. This class is internal. """ def __init__(self, matching_iou_threshold=0.5): """Constructor. Args: matching_iou_threshold: IOU threshold to use for matching groundtruth boxes to detection boxes. """ self._per_image_eval = per_image_vrd_evaluation.PerImageVRDEvaluation( matching_iou_threshold=matching_iou_threshold) self._groundtruth_box_tuples = {} self._groundtruth_class_tuples = {} self._num_gt_instances = 0 self._num_gt_imgs = 0 self._num_gt_instances_per_relationship = {} self.clear_detections() def clear_detections(self): """Clears detections.""" self._detection_keys = set() self._scores = [] self._relation_field_values = [] self._tp_fp_labels = [] self._average_precisions = {} self._precisions = [] self._recalls = [] def add_single_ground_truth_image_info( self, image_key, groundtruth_box_tuples, groundtruth_class_tuples): """Adds groundtruth for a single image to be used for evaluation. Args: image_key: A unique string/integer identifier for the image. groundtruth_box_tuples: A numpy array of structures with the shape [M, 1], representing M tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max]. groundtruth_class_tuples: A numpy array of structures shape [M, 1], representing the class labels of the corresponding bounding boxes and possibly additional classes. """ if image_key in self._groundtruth_box_tuples: logging.warn( 'image %s has already been added to the ground truth database.', image_key) return self._groundtruth_box_tuples[image_key] = groundtruth_box_tuples self._groundtruth_class_tuples[image_key] = groundtruth_class_tuples self._update_groundtruth_statistics(groundtruth_class_tuples) def add_single_detected_image_info(self, image_key, detected_box_tuples, detected_scores, detected_class_tuples): """Adds detections for a single image to be used for evaluation. Args: image_key: A unique string/integer identifier for the image. detected_box_tuples: A numpy array of structures with shape [N, 1], representing N tuples, each tuple containing the same number of named bounding boxes. Each box is of the format [y_min, x_min, y_max, x_max]. detected_scores: A float numpy array of shape [N, 1], representing the confidence scores of the detected N object instances. detected_class_tuples: A numpy array of structures shape [N, 1], representing the class labels of the corresponding bounding boxes and possibly additional classes. """ self._detection_keys.add(image_key) if image_key in self._groundtruth_box_tuples: groundtruth_box_tuples = self._groundtruth_box_tuples[image_key] groundtruth_class_tuples = self._groundtruth_class_tuples[image_key] else: groundtruth_box_tuples = np.empty( shape=[0, 4], dtype=detected_box_tuples.dtype) groundtruth_class_tuples = np.array([], dtype=detected_class_tuples.dtype) scores, tp_fp_labels, mapping = ( self._per_image_eval.compute_detection_tp_fp( detected_box_tuples=detected_box_tuples, detected_scores=detected_scores, detected_class_tuples=detected_class_tuples, groundtruth_box_tuples=groundtruth_box_tuples, groundtruth_class_tuples=groundtruth_class_tuples)) self._scores += [scores] self._tp_fp_labels += [tp_fp_labels] self._relation_field_values += [detected_class_tuples[mapping]['relation']] def _update_groundtruth_statistics(self, groundtruth_class_tuples): """Updates grouth truth statistics. Args: groundtruth_class_tuples: A numpy array of structures shape [M, 1], representing the class labels of the corresponding bounding boxes and possibly additional classes. """ self._num_gt_instances += groundtruth_class_tuples.shape[0] self._num_gt_imgs += 1 for relation_field_value in np.unique(groundtruth_class_tuples['relation']): if relation_field_value not in self._num_gt_instances_per_relationship: self._num_gt_instances_per_relationship[relation_field_value] = 0 self._num_gt_instances_per_relationship[relation_field_value] += np.sum( groundtruth_class_tuples['relation'] == relation_field_value) def evaluate(self): """Computes evaluation result. Returns: A named tuple with the following fields - average_precision: a float number corresponding to average precision. precisions: an array of precisions. recalls: an array of recalls. recall@50: recall computed on 50 top-scoring samples. recall@100: recall computed on 100 top-scoring samples. median_rank@50: median rank computed on 50 top-scoring samples. median_rank@100: median rank computed on 100 top-scoring samples. """ if self._num_gt_instances == 0: logging.warn('No ground truth instances') if not self._scores: scores = np.array([], dtype=float) tp_fp_labels = np.array([], dtype=bool) else: scores = np.concatenate(self._scores) tp_fp_labels = np.concatenate(self._tp_fp_labels) relation_field_values = np.concatenate(self._relation_field_values) for relation_field_value, _ in ( self._num_gt_instances_per_relationship.iteritems()): precisions, recalls = metrics.compute_precision_recall( scores[relation_field_values == relation_field_value], tp_fp_labels[relation_field_values == relation_field_value], self._num_gt_instances_per_relationship[relation_field_value]) self._average_precisions[ relation_field_value] = metrics.compute_average_precision( precisions, recalls) self._mean_average_precision = np.mean(self._average_precisions.values()) self._precisions, self._recalls = metrics.compute_precision_recall( scores, tp_fp_labels, self._num_gt_instances) self._weighted_average_precision = metrics.compute_average_precision( self._precisions, self._recalls) self._recall_50 = ( metrics.compute_recall_at_k(self._tp_fp_labels, self._num_gt_instances, 50)) self._median_rank_50 = ( metrics.compute_median_rank_at_k(self._tp_fp_labels, 50)) self._recall_100 = ( metrics.compute_recall_at_k(self._tp_fp_labels, self._num_gt_instances, 100)) self._median_rank_100 = ( metrics.compute_median_rank_at_k(self._tp_fp_labels, 100)) return VRDDetectionEvalMetrics( self._weighted_average_precision, self._mean_average_precision, self._average_precisions, self._precisions, self._recalls, self._recall_50, self._recall_100, self._median_rank_50, self._median_rank_100)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/vrd_evaluation.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.test_utils.""" import numpy as np import tensorflow as tf from object_detection.utils import test_utils class TestUtilsTest(tf.test.TestCase): def test_diagonal_gradient_image(self): """Tests if a good pyramid image is created.""" pyramid_image = test_utils.create_diagonal_gradient_image(3, 4, 2) # Test which is easy to understand. expected_first_channel = np.array([[3, 2, 1, 0], [4, 3, 2, 1], [5, 4, 3, 2]], dtype=np.float32) self.assertAllEqual(np.squeeze(pyramid_image[:, :, 0]), expected_first_channel) # Actual test. expected_image = np.array([[[3, 30], [2, 20], [1, 10], [0, 0]], [[4, 40], [3, 30], [2, 20], [1, 10]], [[5, 50], [4, 40], [3, 30], [2, 20]]], dtype=np.float32) self.assertAllEqual(pyramid_image, expected_image) def test_random_boxes(self): """Tests if valid random boxes are created.""" num_boxes = 1000 max_height = 3 max_width = 5 boxes = test_utils.create_random_boxes(num_boxes, max_height, max_width) true_column = np.ones(shape=(num_boxes)) == 1 self.assertAllEqual(boxes[:, 0] < boxes[:, 2], true_column) self.assertAllEqual(boxes[:, 1] < boxes[:, 3], true_column) self.assertTrue(boxes[:, 0].min() >= 0) self.assertTrue(boxes[:, 1].min() >= 0) self.assertTrue(boxes[:, 2].max() <= max_height) self.assertTrue(boxes[:, 3].max() <= max_width) def test_first_rows_close_as_set(self): a = [1, 2, 3, 0, 0] b = [3, 2, 1, 0, 0] k = 3 self.assertTrue(test_utils.first_rows_close_as_set(a, b, k)) a = [[1, 2], [1, 4], [0, 0]] b = [[1, 4 + 1e-9], [1, 2], [0, 0]] k = 2 self.assertTrue(test_utils.first_rows_close_as_set(a, b, k)) a = [[1, 2], [1, 4], [0, 0]] b = [[1, 4 + 1e-9], [2, 2], [0, 0]] k = 2 self.assertFalse(test_utils.first_rows_close_as_set(a, b, k)) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/test_utils_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.shape_utils.""" import numpy as np import tensorflow as tf from object_detection.utils import shape_utils class UtilTest(tf.test.TestCase): def test_pad_tensor_using_integer_input(self): t1 = tf.constant([1], dtype=tf.int32) pad_t1 = shape_utils.pad_tensor(t1, 2) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) pad_t2 = shape_utils.pad_tensor(t2, 2) self.assertEqual(2, pad_t1.get_shape()[0]) self.assertEqual(2, pad_t2.get_shape()[0]) with self.test_session() as sess: pad_t1_result, pad_t2_result = sess.run([pad_t1, pad_t2]) self.assertAllEqual([1, 0], pad_t1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result) def test_pad_tensor_using_tensor_input(self): t1 = tf.constant([1], dtype=tf.int32) pad_t1 = shape_utils.pad_tensor(t1, tf.constant(2)) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) pad_t2 = shape_utils.pad_tensor(t2, tf.constant(2)) with self.test_session() as sess: pad_t1_result, pad_t2_result = sess.run([pad_t1, pad_t2]) self.assertAllEqual([1, 0], pad_t1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result) def test_clip_tensor_using_integer_input(self): t1 = tf.constant([1, 2, 3], dtype=tf.int32) clip_t1 = shape_utils.clip_tensor(t1, 2) t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) clip_t2 = shape_utils.clip_tensor(t2, 2) self.assertEqual(2, clip_t1.get_shape()[0]) self.assertEqual(2, clip_t2.get_shape()[0]) with self.test_session() as sess: clip_t1_result, clip_t2_result = sess.run([clip_t1, clip_t2]) self.assertAllEqual([1, 2], clip_t1_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result) def test_clip_tensor_using_tensor_input(self): t1 = tf.constant([1, 2, 3], dtype=tf.int32) clip_t1 = shape_utils.clip_tensor(t1, tf.constant(2)) t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) clip_t2 = shape_utils.clip_tensor(t2, tf.constant(2)) with self.test_session() as sess: clip_t1_result, clip_t2_result = sess.run([clip_t1, clip_t2]) self.assertAllEqual([1, 2], clip_t1_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result) def test_pad_or_clip_tensor_using_integer_input(self): t1 = tf.constant([1], dtype=tf.int32) tt1 = shape_utils.pad_or_clip_tensor(t1, 2) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) tt2 = shape_utils.pad_or_clip_tensor(t2, 2) t3 = tf.constant([1, 2, 3], dtype=tf.int32) tt3 = shape_utils.clip_tensor(t3, 2) t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) tt4 = shape_utils.clip_tensor(t4, 2) self.assertEqual(2, tt1.get_shape()[0]) self.assertEqual(2, tt2.get_shape()[0]) self.assertEqual(2, tt3.get_shape()[0]) self.assertEqual(2, tt4.get_shape()[0]) with self.test_session() as sess: tt1_result, tt2_result, tt3_result, tt4_result = sess.run( [tt1, tt2, tt3, tt4]) self.assertAllEqual([1, 0], tt1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result) self.assertAllEqual([1, 2], tt3_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result) def test_pad_or_clip_tensor_using_tensor_input(self): t1 = tf.constant([1], dtype=tf.int32) tt1 = shape_utils.pad_or_clip_tensor(t1, tf.constant(2)) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) tt2 = shape_utils.pad_or_clip_tensor(t2, tf.constant(2)) t3 = tf.constant([1, 2, 3], dtype=tf.int32) tt3 = shape_utils.clip_tensor(t3, tf.constant(2)) t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) tt4 = shape_utils.clip_tensor(t4, tf.constant(2)) with self.test_session() as sess: tt1_result, tt2_result, tt3_result, tt4_result = sess.run( [tt1, tt2, tt3, tt4]) self.assertAllEqual([1, 0], tt1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result) self.assertAllEqual([1, 2], tt3_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result) def test_combines_static_dynamic_shape(self): tensor = tf.placeholder(tf.float32, shape=(None, 2, 3)) combined_shape = shape_utils.combined_static_and_dynamic_shape( tensor) self.assertTrue(tf.contrib.framework.is_tensor(combined_shape[0])) self.assertListEqual(combined_shape[1:], [2, 3]) def test_pad_or_clip_nd_tensor(self): tensor_placeholder = tf.placeholder(tf.float32, [None, 5, 4, 7]) output_tensor = shape_utils.pad_or_clip_nd( tensor_placeholder, [None, 3, 5, tf.constant(6)]) self.assertAllEqual(output_tensor.shape.as_list(), [None, 3, 5, None]) with self.test_session() as sess: output_tensor_np = sess.run( output_tensor, feed_dict={ tensor_placeholder: np.random.rand(2, 5, 4, 7), }) self.assertAllEqual(output_tensor_np.shape, [2, 3, 5, 6]) class StaticOrDynamicMapFnTest(tf.test.TestCase): def test_with_dynamic_shape(self): def fn(input_tensor): return tf.reduce_sum(input_tensor) input_tensor = tf.placeholder(tf.float32, shape=(None, 2)) map_fn_output = shape_utils.static_or_dynamic_map_fn(fn, input_tensor) op_names = [op.name for op in tf.get_default_graph().get_operations()] self.assertTrue(any(['map' == op_name[:3] for op_name in op_names])) with self.test_session() as sess: result1 = sess.run( map_fn_output, feed_dict={ input_tensor: [[1, 2], [3, 1], [0, 4]]}) result2 = sess.run( map_fn_output, feed_dict={ input_tensor: [[-1, 1], [0, 9]]}) self.assertAllEqual(result1, [3, 4, 4]) self.assertAllEqual(result2, [0, 9]) def test_with_static_shape(self): def fn(input_tensor): return tf.reduce_sum(input_tensor) input_tensor = tf.constant([[1, 2], [3, 1], [0, 4]], dtype=tf.float32) map_fn_output = shape_utils.static_or_dynamic_map_fn(fn, input_tensor) op_names = [op.name for op in tf.get_default_graph().get_operations()] self.assertTrue(all(['map' != op_name[:3] for op_name in op_names])) with self.test_session() as sess: result = sess.run(map_fn_output) self.assertAllEqual(result, [3, 4, 4]) def test_with_multiple_dynamic_shapes(self): def fn(elems): input_tensor, scalar_index_tensor = elems return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), []) input_tensor = tf.placeholder(tf.float32, shape=(None, 3)) scalar_index_tensor = tf.placeholder(tf.int32, shape=(None, 1)) map_fn_output = shape_utils.static_or_dynamic_map_fn( fn, [input_tensor, scalar_index_tensor], dtype=tf.float32) op_names = [op.name for op in tf.get_default_graph().get_operations()] self.assertTrue(any(['map' == op_name[:3] for op_name in op_names])) with self.test_session() as sess: result1 = sess.run( map_fn_output, feed_dict={ input_tensor: [[1, 2, 3], [4, 5, -1], [0, 6, 9]], scalar_index_tensor: [[0], [2], [1]], }) result2 = sess.run( map_fn_output, feed_dict={ input_tensor: [[-1, 1, 0], [3, 9, 30]], scalar_index_tensor: [[1], [0]] }) self.assertAllEqual(result1, [1, -1, 6]) self.assertAllEqual(result2, [1, 3]) def test_with_multiple_static_shapes(self): def fn(elems): input_tensor, scalar_index_tensor = elems return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), []) input_tensor = tf.constant([[1, 2, 3], [4, 5, -1], [0, 6, 9]], dtype=tf.float32) scalar_index_tensor = tf.constant([[0], [2], [1]], dtype=tf.int32) map_fn_output = shape_utils.static_or_dynamic_map_fn( fn, [input_tensor, scalar_index_tensor], dtype=tf.float32) op_names = [op.name for op in tf.get_default_graph().get_operations()] self.assertTrue(all(['map' != op_name[:3] for op_name in op_names])) with self.test_session() as sess: result = sess.run(map_fn_output) self.assertAllEqual(result, [1, -1, 6]) def test_fails_with_nested_input(self): def fn(input_tensor): return input_tensor input_tensor1 = tf.constant([1]) input_tensor2 = tf.constant([2]) with self.assertRaisesRegexp( ValueError, '`elems` must be a Tensor or list of Tensors.'): shape_utils.static_or_dynamic_map_fn( fn, [input_tensor1, [input_tensor2]], dtype=tf.float32) class CheckMinImageShapeTest(tf.test.TestCase): def test_check_min_image_dim_static_shape(self): input_tensor = tf.constant(np.zeros([1, 42, 42, 3])) _ = shape_utils.check_min_image_dim(33, input_tensor) with self.assertRaisesRegexp( ValueError, 'image size must be >= 64 in both height and width.'): _ = shape_utils.check_min_image_dim(64, input_tensor) def test_check_min_image_dim_dynamic_shape(self): input_placeholder = tf.placeholder(tf.float32, shape=[1, None, None, 3]) image_tensor = shape_utils.check_min_image_dim(33, input_placeholder) with self.test_session() as sess: sess.run(image_tensor, feed_dict={input_placeholder: np.zeros([1, 42, 42, 3])}) with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(image_tensor, feed_dict={input_placeholder: np.zeros([1, 32, 32, 3])}) class AssertShapeEqualTest(tf.test.TestCase): def test_unequal_static_shape_raises_exception(self): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([4, 2, 3, 1])) with self.assertRaisesRegexp( ValueError, 'Unequal shapes'): shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b)) def test_equal_static_shape_succeeds(self): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([4, 2, 2, 1])) with self.test_session() as sess: op = shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b)) sess.run(op) def test_unequal_dynamic_shape_raises_tf_assert(self): tensor_a = tf.placeholder(tf.float32, shape=[1, None, None, 3]) tensor_b = tf.placeholder(tf.float32, shape=[1, None, None, 3]) op = shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) with self.test_session() as sess: with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]), tensor_b: np.zeros([1, 4, 4, 3])}) def test_equal_dynamic_shape_succeeds(self): tensor_a = tf.placeholder(tf.float32, shape=[1, None, None, 3]) tensor_b = tf.placeholder(tf.float32, shape=[1, None, None, 3]) op = shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) with self.test_session() as sess: sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]), tensor_b: np.zeros([1, 2, 2, 3])}) def test_unequal_static_shape_along_first_dim_raises_exception(self): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([6, 2, 3, 1])) with self.assertRaisesRegexp( ValueError, 'Unequal first dimension'): shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b)) def test_equal_static_shape_along_first_dim_succeeds(self): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([4, 7, 2])) with self.test_session() as sess: op = shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b)) sess.run(op) def test_unequal_dynamic_shape_along_first_dim_raises_tf_assert(self): tensor_a = tf.placeholder(tf.float32, shape=[None, None, None, 3]) tensor_b = tf.placeholder(tf.float32, shape=[None, None, 3]) op = shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) with self.test_session() as sess: with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]), tensor_b: np.zeros([2, 4, 3])}) def test_equal_dynamic_shape_along_first_dim_succeeds(self): tensor_a = tf.placeholder(tf.float32, shape=[None, None, None, 3]) tensor_b = tf.placeholder(tf.float32, shape=[None]) op = shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) with self.test_session() as sess: sess.run(op, feed_dict={tensor_a: np.zeros([5, 2, 2, 3]), tensor_b: np.zeros([5])}) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/utils/shape_utils_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSDFeatureExtractor for MobilenetV1 PPN features.""" import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from object_detection.utils import shape_utils from nets import mobilenet_v1 slim = tf.contrib.slim class SSDMobileNetV1PpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD Feature Extractor using MobilenetV1 PPN features.""" def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope( is_training=None, regularize_depthwise=True)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.pooling_pyramid_feature_maps( base_feature_map_depth=0, num_layers=6, image_features={ 'image_features': image_features['Conv2d_11_pointwise'] }) return feature_maps.values()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v1_ppn_feature_extractor.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSDFeatureExtractor for MobilenetV2 features.""" import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.models.keras_applications import mobilenet_v2 from object_detection.utils import ops from object_detection.utils import shape_utils class SSDMobileNetV2KerasFeatureExtractor( ssd_meta_arch.SSDKerasFeatureExtractor): """SSD Feature Extractor using MobilenetV2 features.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams, freeze_batchnorm, inplace_batchnorm_update, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False, name=None): """MobileNetV2 Feature Extractor for SSD Models. Mobilenet v2 (experimental), designed by sandler@. More details can be found in //knowledge/cerebra/brain/compression/mobilenet/mobilenet_experimental.py Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor (Functions as a width multiplier for the mobilenet_v2 network itself). min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams: `hyperparams_builder.KerasLayerHyperparams` object containing convolution hyperparameters for the layers added on top of the base feature extractor. freeze_batchnorm: Whether to freeze batch norm parameters during training or not. When training with a small batch size (e.g. 1), it is desirable to freeze batch norm update and use pretrained batch norm params. inplace_batchnorm_update: Whether to update batch norm moving average values inplace. When this is false train op must add a control dependency on tf.graphkeys.UPDATE_OPS collection in order to update batch norm statistics. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. name: A string name scope to assign to the model. If 'None', Keras will auto-generate one from the class name. """ super(SSDMobileNetV2KerasFeatureExtractor, self).__init__( is_training=is_training, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams=conv_hyperparams, freeze_batchnorm=freeze_batchnorm, inplace_batchnorm_update=inplace_batchnorm_update, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams, name=name) self._feature_map_layout = { 'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''], 'layer_depth': [-1, -1, 512, 256, 256, 128], 'use_depthwise': self._use_depthwise, 'use_explicit_padding': self._use_explicit_padding, } self.mobilenet_v2 = None self.feature_map_generator = None def build(self, input_shape): full_mobilenet_v2 = mobilenet_v2.mobilenet_v2( batchnorm_training=(self._is_training and not self._freeze_batchnorm), conv_hyperparams=(self._conv_hyperparams if self._override_base_feature_extractor_hyperparams else None), weights=None, use_explicit_padding=self._use_explicit_padding, alpha=self._depth_multiplier, min_depth=self._min_depth, include_top=False) conv2d_11_pointwise = full_mobilenet_v2.get_layer( name='block_13_expand_relu').output conv2d_13_pointwise = full_mobilenet_v2.get_layer(name='out_relu').output self.mobilenet_v2 = tf.keras.Model( inputs=full_mobilenet_v2.inputs, outputs=[conv2d_11_pointwise, conv2d_13_pointwise]) self.feature_map_generator = ( feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=self._feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, is_training=self._is_training, conv_hyperparams=self._conv_hyperparams, freeze_batchnorm=self._freeze_batchnorm, name='FeatureMaps')) self.built = True def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def _extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) image_features = self.mobilenet_v2( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple)) feature_maps = self.feature_map_generator({ 'layer_15/expansion_output': image_features[0], 'layer_19': image_features[1]}) return feature_maps.values()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v2_keras_feature_extractor.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for faster_rcnn_mobilenet_v1_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import faster_rcnn_mobilenet_v1_feature_extractor as faster_rcnn_mobilenet_v1 class FasterRcnnMobilenetV1FeatureExtractorTest(tf.test.TestCase): def _build_feature_extractor(self, first_stage_features_stride): return faster_rcnn_mobilenet_v1.FasterRCNNMobilenetV1FeatureExtractor( is_training=False, first_stage_features_stride=first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0) def test_extract_proposal_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [4, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [4, 14, 14, 512]) def test_extract_proposal_features_stride_eight(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=8) preprocessed_inputs = tf.random_uniform( [4, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [4, 14, 14, 512]) def test_extract_proposal_features_half_size_input(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 112, 112, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 7, 7, 512]) def test_extract_proposal_features_dies_on_invalid_stride(self): with self.assertRaises(ValueError): self._build_feature_extractor(first_stage_features_stride=99) def test_extract_proposal_features_dies_on_very_small_images(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.placeholder(tf.float32, (4, None, None, 3)) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) with self.assertRaises(tf.errors.InvalidArgumentError): sess.run( features_shape, feed_dict={preprocessed_inputs: np.random.rand(4, 32, 32, 3)}) def test_extract_proposal_features_dies_with_incorrect_rank_inputs(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [224, 224, 3], maxval=255, dtype=tf.float32) with self.assertRaises(ValueError): feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') def test_extract_box_classifier_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) proposal_feature_maps = tf.random_uniform( [3, 14, 14, 576], maxval=255, dtype=tf.float32) proposal_classifier_features = ( feature_extractor.extract_box_classifier_features( proposal_feature_maps, scope='TestScope')) features_shape = tf.shape(proposal_classifier_features) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [3, 7, 7, 1024]) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_mobilenet_v1_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd_pnas_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import ssd_feature_extractor_test from object_detection.models import ssd_pnasnet_feature_extractor slim = tf.contrib.slim class SsdPnasNetFeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, use_explicit_padding=False): """Constructs a new feature extractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. Returns: an ssd_meta_arch.SSDFeatureExtractor object. """ min_depth = 32 return ssd_pnasnet_feature_extractor.SSDPNASNetFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding) def test_extract_features_returns_correct_shapes_128(self): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 8, 8, 2160), (2, 4, 4, 4320), (2, 2, 2, 512), (2, 1, 1, 256), (2, 1, 1, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_299(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 19, 19, 2160), (2, 10, 10, 4320), (2, 5, 5, 512), (2, 3, 3, 256), (2, 2, 2, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_preprocess_returns_correct_value_range(self): image_height = 128 image_width = 128 depth_multiplier = 1 pad_to_multiple = 1 test_image = np.random.rand(2, image_height, image_width, 3) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_pnasnet_feature_extractor_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd_mobilenet_v2_fpn_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import ssd_feature_extractor_test from object_detection.models import ssd_mobilenet_v2_fpn_feature_extractor slim = tf.contrib.slim class SsdMobilenetV2FpnFeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, use_explicit_padding=False): """Constructs a new feature extractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. Returns: an ssd_meta_arch.SSDFeatureExtractor object. """ min_depth = 32 return (ssd_mobilenet_v2_fpn_feature_extractor. SSDMobileNetV2FpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding)) def test_extract_features_returns_correct_shapes_256(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 32, 32, 256), (2, 16, 16, 256), (2, 8, 8, 256), (2, 4, 4, 256), (2, 2, 2, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_384(self): image_height = 320 image_width = 320 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 40, 40, 256), (2, 20, 20, 256), (2, 10, 10, 256), (2, 5, 5, 256), (2, 3, 3, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_with_dynamic_image_shape(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 32, 32, 256), (2, 16, 16, 256), (2, 8, 8, 256), (2, 4, 4, 256), (2, 2, 2, 256)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_with_pad_to_multiple(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 32 expected_feature_map_shape = [(2, 40, 40, 256), (2, 20, 20, 256), (2, 10, 10, 256), (2, 5, 5, 256), (2, 3, 3, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_enforcing_min_depth(self): image_height = 256 image_width = 256 depth_multiplier = 0.5**12 pad_to_multiple = 1 expected_feature_map_shape = [(2, 32, 32, 32), (2, 16, 16, 32), (2, 8, 8, 32), (2, 4, 4, 32), (2, 2, 2, 32)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_raises_error_with_invalid_image_size(self): image_height = 32 image_width = 32 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple) def test_preprocess_returns_correct_value_range(self): image_height = 256 image_width = 256 depth_multiplier = 1 pad_to_multiple = 1 test_image = np.random.rand(2, image_height, image_width, 3) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) def test_variables_only_created_in_scope(self): depth_multiplier = 1 pad_to_multiple = 1 scope_name = 'MobilenetV2' self.check_feature_extractor_variables_under_scope( depth_multiplier, pad_to_multiple, scope_name) def test_fused_batchnorm(self): image_height = 256 image_width = 256 depth_multiplier = 1 pad_to_multiple = 1 image_placeholder = tf.placeholder(tf.float32, [1, image_height, image_width, 3]) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(image_placeholder) _ = feature_extractor.extract_features(preprocessed_image) self.assertTrue( any(op.type == 'FusedBatchNorm' for op in tf.get_default_graph().get_operations())) def test_get_expected_feature_map_variable_names(self): depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_maps_variables = set([ # Mobilenet V2 feature maps 'MobilenetV2/expanded_conv_4/depthwise/depthwise_weights', 'MobilenetV2/expanded_conv_7/depthwise/depthwise_weights', 'MobilenetV2/expanded_conv_14/depthwise/depthwise_weights', 'MobilenetV2/Conv_1/weights', # FPN layers 'MobilenetV2/fpn/bottom_up_Conv2d_20/weights', 'MobilenetV2/fpn/bottom_up_Conv2d_21/weights', 'MobilenetV2/fpn/smoothing_1/weights', 'MobilenetV2/fpn/smoothing_2/weights', 'MobilenetV2/fpn/projection_1/weights', 'MobilenetV2/fpn/projection_2/weights', 'MobilenetV2/fpn/projection_3/weights', ]) g = tf.Graph() with g.as_default(): preprocessed_inputs = tf.placeholder(tf.float32, (4, None, None, 3)) feature_extractor = self._create_feature_extractor( depth_multiplier, pad_to_multiple) feature_extractor.extract_features(preprocessed_inputs) actual_variable_set = set([ var.op.name for var in g.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) ]) variable_intersection = expected_feature_maps_variables.intersection( actual_variable_set) self.assertSetEqual(expected_feature_maps_variables, variable_intersection) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v2_fpn_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for models.faster_rcnn_pnas_feature_extractor.""" import tensorflow as tf from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas class FasterRcnnPNASFeatureExtractorTest(tf.test.TestCase): def _build_feature_extractor(self, first_stage_features_stride): return frcnn_pnas.FasterRCNNPNASFeatureExtractor( is_training=False, first_stage_features_stride=first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0) def test_extract_proposal_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 299, 299, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 19, 19, 4320]) def test_extract_proposal_features_input_size_224(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 14, 14, 4320]) def test_extract_proposal_features_input_size_112(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 112, 112, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 7, 7, 4320]) def test_extract_proposal_features_dies_on_invalid_stride(self): with self.assertRaises(ValueError): self._build_feature_extractor(first_stage_features_stride=99) def test_extract_proposal_features_dies_with_incorrect_rank_inputs(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [224, 224, 3], maxval=255, dtype=tf.float32) with self.assertRaises(ValueError): feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') def test_extract_box_classifier_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) proposal_feature_maps = tf.random_uniform( [2, 17, 17, 1088], maxval=255, dtype=tf.float32) proposal_classifier_features = ( feature_extractor.extract_box_classifier_features( proposal_feature_maps, scope='TestScope')) features_shape = tf.shape(proposal_classifier_features) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [2, 9, 9, 4320]) def test_filter_scaling_computation(self): expected_filter_scaling = { ((4, 8), 2): 1.0, ((4, 8), 7): 2.0, ((4, 8), 8): 2.0, ((4, 8), 9): 4.0 } for args, filter_scaling in expected_filter_scaling.items(): reduction_indices, start_cell_num = args self.assertAlmostEqual( frcnn_pnas._filter_scaling(reduction_indices, start_cell_num), filter_scaling) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_pnas_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSDFeatureExtractor for InceptionV3 features.""" import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import ops from object_detection.utils import shape_utils from nets import inception_v3 slim = tf.contrib.slim class SSDInceptionV3FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD Feature Extractor using InceptionV3 features.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """InceptionV3 Feature Extractor for SSD Models. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. Raises: ValueError: If `override_base_feature_extractor_hyperparams` is False. """ super(SSDInceptionV3FeatureExtractor, self).__init__( is_training=is_training, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams_fn=conv_hyperparams_fn, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) if not self._override_base_feature_extractor_hyperparams: raise ValueError('SSD Inception V3 feature extractor always uses' 'scope returned by `conv_hyperparams_fn` for both the ' 'base feature extractor and the additional layers ' 'added since there is no arg_scope defined for the base ' 'feature extractor.') def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) feature_map_layout = { 'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 128], 'use_explicit_padding': self._use_explicit_padding, 'use_depthwise': self._use_depthwise, } with slim.arg_scope(self._conv_hyperparams_fn()): with tf.variable_scope('InceptionV3', reuse=self._reuse_weights) as scope: _, image_features = inception_v3.inception_v3_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Mixed_7c', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, scope=scope) feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_inception_v3_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Resnet V1 Faster R-CNN implementation. See "Deep Residual Learning for Image Recognition" by He et al., 2015. https://arxiv.org/abs/1512.03385 Note: this implementation assumes that the classification checkpoint used to finetune this model is trained using the same configuration as that of the MSRA provided checkpoints (see https://github.com/KaimingHe/deep-residual-networks), e.g., with same preprocessing, batch norm scaling, etc. """ import tensorflow as tf from object_detection.meta_architectures import faster_rcnn_meta_arch from nets import resnet_utils from nets import resnet_v1 slim = tf.contrib.slim class FasterRCNNResnetV1FeatureExtractor( faster_rcnn_meta_arch.FasterRCNNFeatureExtractor): """Faster R-CNN Resnet V1 feature extractor implementation.""" def __init__(self, architecture, resnet_model, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: architecture: Architecture name of the Resnet V1 model. resnet_model: Definition of the Resnet V1 model. is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16. """ if first_stage_features_stride != 8 and first_stage_features_stride != 16: raise ValueError('`first_stage_features_stride` must be 8 or 16.') self._architecture = architecture self._resnet_model = resnet_model super(FasterRCNNResnetV1FeatureExtractor, self).__init__( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) def preprocess(self, resized_inputs): """Faster R-CNN Resnet V1 preprocessing. VGG style channel mean subtraction as described here: https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md Note that if the number of channels is not equal to 3, the mean subtraction will be skipped and the original resized_inputs will be returned. Args: resized_inputs: A [batch, height_in, width_in, channels] float32 tensor representing a batch of images with values between 0 and 255.0. Returns: preprocessed_inputs: A [batch, height_out, width_out, channels] float32 tensor representing a batch of images. """ if resized_inputs.shape.as_list()[3] == 3: channel_means = [123.68, 116.779, 103.939] return resized_inputs - [[channel_means]] else: return resized_inputs def _extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features. Args: preprocessed_inputs: A [batch, height, width, channels] float32 tensor representing a batch of images. scope: A scope name. Returns: rpn_feature_map: A tensor with shape [batch, height, width, depth] activations: A dictionary mapping feature extractor tensor names to tensors Raises: InvalidArgumentError: If the spatial size of `preprocessed_inputs` (height or width) is less than 33. ValueError: If the created network is missing the required activation. """ if len(preprocessed_inputs.get_shape().as_list()) != 4: raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a ' 'tensor of shape %s' % preprocessed_inputs.get_shape()) shape_assert = tf.Assert( tf.logical_and( tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33), tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)), ['image size must at least be 33 in both height and width.']) with tf.control_dependencies([shape_assert]): # Disables batchnorm for fine-tuning with smaller batch sizes. # TODO(chensun): Figure out if it is needed when image # batch size is bigger. with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with tf.variable_scope( self._architecture, reuse=self._reuse_weights) as var_scope: _, activations = self._resnet_model( preprocessed_inputs, num_classes=None, is_training=self._train_batch_norm, global_pool=False, output_stride=self._first_stage_features_stride, spatial_squeeze=False, scope=var_scope) handle = scope + '/%s/block3' % self._architecture return activations[handle], activations def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=self._train_batch_norm): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features class FasterRCNNResnet50FeatureExtractor(FasterRCNNResnetV1FeatureExtractor): """Faster R-CNN Resnet 50 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16, or if `architecture` is not supported. """ super(FasterRCNNResnet50FeatureExtractor, self).__init__( 'resnet_v1_50', resnet_v1.resnet_v1_50, is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) class FasterRCNNResnet101FeatureExtractor(FasterRCNNResnetV1FeatureExtractor): """Faster R-CNN Resnet 101 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16, or if `architecture` is not supported. """ super(FasterRCNNResnet101FeatureExtractor, self).__init__( 'resnet_v1_101', resnet_v1.resnet_v1_101, is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) class FasterRCNNResnet152FeatureExtractor(FasterRCNNResnetV1FeatureExtractor): """Faster R-CNN Resnet 152 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16, or if `architecture` is not supported. """ super(FasterRCNNResnet152FeatureExtractor, self).__init__( 'resnet_v1_152', resnet_v1.resnet_v1_152, is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_resnet_v1_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.models.ssd_inception_v3_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import ssd_feature_extractor_test from object_detection.models import ssd_inception_v3_feature_extractor class SsdInceptionV3FeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a SsdInceptionV3FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_inception_v3_feature_extractor.SsdInceptionV3FeatureExtractor. """ min_depth = 32 return ssd_inception_v3_feature_extractor.SSDInceptionV3FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True) def test_extract_features_returns_correct_shapes_128(self): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 13, 13, 288), (2, 6, 6, 768), (2, 2, 2, 2048), (2, 1, 1, 512), (2, 1, 1, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_dynamic_inputs(self): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 13, 13, 288), (2, 6, 6, 768), (2, 2, 2, 2048), (2, 1, 1, 512), (2, 1, 1, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_299(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 35, 35, 288), (2, 17, 17, 768), (2, 8, 8, 2048), (2, 4, 4, 512), (2, 2, 2, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_enforcing_min_depth(self): image_height = 299 image_width = 299 depth_multiplier = 0.5**12 pad_to_multiple = 1 expected_feature_map_shape = [(2, 35, 35, 128), (2, 17, 17, 128), (2, 8, 8, 192), (2, 4, 4, 32), (2, 2, 2, 32), (2, 1, 1, 32)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_pad_to_multiple(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 32 expected_feature_map_shape = [(2, 37, 37, 288), (2, 18, 18, 768), (2, 8, 8, 2048), (2, 4, 4, 512), (2, 2, 2, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_raises_error_with_invalid_image_size(self): image_height = 32 image_width = 32 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple) def test_preprocess_returns_correct_value_range(self): image_height = 128 image_width = 128 depth_multiplier = 1 pad_to_multiple = 1 test_image = np.random.rand(4, image_height, image_width, 3) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) def test_variables_only_created_in_scope(self): depth_multiplier = 1 pad_to_multiple = 1 scope_name = 'InceptionV3' self.check_feature_extractor_variables_under_scope( depth_multiplier, pad_to_multiple, scope_name) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_inception_v3_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Embedded-friendly SSDFeatureExtractor for MobilenetV1 features.""" import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from nets import mobilenet_v1 slim = tf.contrib.slim class EmbeddedSSDMobileNetV1FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """Embedded-friendly SSD Feature Extractor using MobilenetV1 features. This feature extractor is similar to SSD MobileNetV1 feature extractor, and it fixes input resolution to be 256x256, reduces the number of feature maps used for box prediction and ensures convolution kernel to be no larger than input tensor in spatial dimensions. This feature extractor requires support of the following ops if used in embedded devices: - Conv - DepthwiseConv - Relu6 All conv/depthwiseconv use SAME padding, and no additional spatial padding is needed. """ def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """MobileNetV1 Feature Extractor for Embedded-friendly SSD Models. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. For EmbeddedSSD it must be set to 1. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. Raises: ValueError: upon invalid `pad_to_multiple` values. """ if pad_to_multiple != 1: raise ValueError('Embedded-specific SSD only supports `pad_to_multiple` ' 'of 1.') super(EmbeddedSSDMobileNetV1FeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights, use_explicit_padding, use_depthwise, override_base_feature_extractor_hyperparams) def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] Raises: ValueError: if image height or width are not 256 pixels. """ image_shape = preprocessed_inputs.get_shape() image_shape.assert_has_rank(4) image_height = image_shape[1].value image_width = image_shape[2].value if image_height is None or image_width is None: shape_assert = tf.Assert( tf.logical_and(tf.equal(tf.shape(preprocessed_inputs)[1], 256), tf.equal(tf.shape(preprocessed_inputs)[2], 256)), ['image size must be 256 in both height and width.']) with tf.control_dependencies([shape_assert]): preprocessed_inputs = tf.identity(preprocessed_inputs) elif image_height != 256 or image_width != 256: raise ValueError('image size must be = 256 in both height and width;' ' image dim = %d,%d' % (image_height, image_width)) feature_map_layout = { 'from_layer': [ 'Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', '' ], 'layer_depth': [-1, -1, 512, 256, 256], 'conv_kernel_size': [-1, -1, 3, 3, 2], 'use_explicit_padding': self._use_explicit_padding, 'use_depthwise': self._use_depthwise, } with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope(is_training=None)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/embedded_ssd_mobilenet_v1_feature_extractor.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSD MobilenetV2 FPN Feature Extractor.""" import copy import functools import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from object_detection.utils import shape_utils from nets.mobilenet import mobilenet from nets.mobilenet import mobilenet_v2 slim = tf.contrib.slim # A modified config of mobilenet v2 that makes it more detection friendly. def _create_modified_mobilenet_config(): conv_defs = copy.deepcopy(mobilenet_v2.V2_DEF) conv_defs['spec'][-1] = mobilenet.op( slim.conv2d, stride=1, kernel_size=[1, 1], num_outputs=256) return conv_defs class SSDMobileNetV2FpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD Feature Extractor using MobilenetV2 FPN features.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, fpn_min_level=3, fpn_max_level=7, additional_layer_depth=256, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """SSD FPN feature extractor based on Mobilenet v2 architecture. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. fpn_min_level: the highest resolution feature map to use in FPN. The valid values are {2, 3, 4, 5} which map to MobileNet v2 layers {layer_4, layer_7, layer_14, layer_19}, respectively. fpn_max_level: the smallest resolution feature map to construct or use in FPN. FPN constructions uses features maps starting from fpn_min_level upto the fpn_max_level. In the case that there are not enough feature maps in the backbone network, additional feature maps are created by applying stride 2 convolutions until we get the desired number of fpn levels. additional_layer_depth: additional feature map layer channel depth. reuse_weights: whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDMobileNetV2FpnFeatureExtractor, self).__init__( is_training=is_training, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams_fn=conv_hyperparams_fn, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) self._fpn_min_level = fpn_min_level self._fpn_max_level = fpn_max_level self._additional_layer_depth = additional_layer_depth self._conv_defs = None if self._use_depthwise: self._conv_defs = _create_modified_mobilenet_config() def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \ slim.arg_scope( [mobilenet.depth_multiplier], min_depth=self._min_depth): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v2.mobilenet_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='layer_19', depth_multiplier=self._depth_multiplier, conv_defs=self._conv_defs, use_explicit_padding=self._use_explicit_padding, scope=scope) depth_fn = lambda d: max(int(d * self._depth_multiplier), self._min_depth) with slim.arg_scope(self._conv_hyperparams_fn()): with tf.variable_scope('fpn', reuse=self._reuse_weights): feature_blocks = [ 'layer_4', 'layer_7', 'layer_14', 'layer_19' ] base_fpn_max_level = min(self._fpn_max_level, 5) feature_block_list = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_block_list.append(feature_blocks[level - 2]) fpn_features = feature_map_generators.fpn_top_down_feature_maps( [(key, image_features[key]) for key in feature_block_list], depth=depth_fn(self._additional_layer_depth), use_depthwise=self._use_depthwise, use_explicit_padding=self._use_explicit_padding) feature_maps = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_maps.append(fpn_features['top_down_{}'.format( feature_blocks[level - 2])]) last_feature_map = fpn_features['top_down_{}'.format( feature_blocks[base_fpn_max_level - 2])] # Construct coarse features padding = 'VALID' if self._use_explicit_padding else 'SAME' kernel_size = 3 for i in range(base_fpn_max_level + 1, self._fpn_max_level + 1): if self._use_depthwise: conv_op = functools.partial( slim.separable_conv2d, depth_multiplier=1) else: conv_op = slim.conv2d if self._use_explicit_padding: last_feature_map = ops.fixed_padding( last_feature_map, kernel_size) last_feature_map = conv_op( last_feature_map, num_outputs=depth_fn(self._additional_layer_depth), kernel_size=[kernel_size, kernel_size], stride=2, padding=padding, scope='bottom_up_Conv2d_{}'.format(i - base_fpn_max_level + 19)) feature_maps.append(last_feature_map) return feature_maps
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v2_fpn_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSDFeatureExtractor for MobilenetV1 features.""" import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from object_detection.utils import shape_utils from nets import mobilenet_v1 slim = tf.contrib.slim class SSDMobileNetV1FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD Feature Extractor using MobilenetV1 features.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """MobileNetV1 Feature Extractor for SSD Models. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDMobileNetV1FeatureExtractor, self).__init__( is_training=is_training, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams_fn=conv_hyperparams_fn, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) feature_map_layout = { 'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', '', ''], 'layer_depth': [-1, -1, 512, 256, 256, 128], 'use_explicit_padding': self._use_explicit_padding, 'use_depthwise': self._use_depthwise, } with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope( is_training=None, regularize_depthwise=True)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v1_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd_mobilenet_v1_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import ssd_feature_extractor_test from object_detection.models import ssd_mobilenet_v1_feature_extractor slim = tf.contrib.slim class SsdMobilenetV1FeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, use_explicit_padding=False): """Constructs a new feature extractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. Returns: an ssd_meta_arch.SSDFeatureExtractor object. """ min_depth = 32 return ssd_mobilenet_v1_feature_extractor.SSDMobileNetV1FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding) def test_extract_features_returns_correct_shapes_128(self): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 8, 8, 512), (2, 4, 4, 1024), (2, 2, 2, 512), (2, 1, 1, 256), (2, 1, 1, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_299(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 19, 19, 512), (2, 10, 10, 1024), (2, 5, 5, 512), (2, 3, 3, 256), (2, 2, 2, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_with_dynamic_image_shape(self): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 8, 8, 512), (2, 4, 4, 1024), (2, 2, 2, 512), (2, 1, 1, 256), (2, 1, 1, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_enforcing_min_depth(self): image_height = 299 image_width = 299 depth_multiplier = 0.5**12 pad_to_multiple = 1 expected_feature_map_shape = [(2, 19, 19, 32), (2, 10, 10, 32), (2, 5, 5, 32), (2, 3, 3, 32), (2, 2, 2, 32), (2, 1, 1, 32)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_with_pad_to_multiple(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 32 expected_feature_map_shape = [(2, 20, 20, 512), (2, 10, 10, 1024), (2, 5, 5, 512), (2, 3, 3, 256), (2, 2, 2, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_raises_error_with_invalid_image_size(self): image_height = 32 image_width = 32 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple) def test_preprocess_returns_correct_value_range(self): image_height = 128 image_width = 128 depth_multiplier = 1 pad_to_multiple = 1 test_image = np.random.rand(2, image_height, image_width, 3) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) def test_variables_only_created_in_scope(self): depth_multiplier = 1 pad_to_multiple = 1 scope_name = 'MobilenetV1' self.check_feature_extractor_variables_under_scope( depth_multiplier, pad_to_multiple, scope_name) def test_has_fused_batchnorm(self): image_height = 40 image_width = 40 depth_multiplier = 1 pad_to_multiple = 1 image_placeholder = tf.placeholder(tf.float32, [1, image_height, image_width, 3]) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(image_placeholder) _ = feature_extractor.extract_features(preprocessed_image) self.assertTrue(any(op.type == 'FusedBatchNorm' for op in tf.get_default_graph().get_operations())) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v1_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSDFeatureExtractor for PNASNet features. Based on PNASNet ImageNet model: https://arxiv.org/abs/1712.00559 """ import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from nets.nasnet import pnasnet slim = tf.contrib.slim def pnasnet_large_arg_scope_for_detection(is_batch_norm_training=False): """Defines the default arg scope for the PNASNet Large for object detection. This provides a small edit to switch batch norm training on and off. Args: is_batch_norm_training: Boolean indicating whether to train with batch norm. Default is False. Returns: An `arg_scope` to use for the PNASNet Large Model. """ imagenet_scope = pnasnet.pnasnet_large_arg_scope() with slim.arg_scope(imagenet_scope): with slim.arg_scope([slim.batch_norm], is_training=is_batch_norm_training) as sc: return sc class SSDPNASNetFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD Feature Extractor using PNASNet features.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """PNASNet Feature Extractor for SSD Models. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. use_depthwise: Whether to use depthwise convolutions. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDPNASNetFeatureExtractor, self).__init__( is_training=is_training, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams_fn=conv_hyperparams_fn, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ feature_map_layout = { 'from_layer': ['Cell_7', 'Cell_11', '', '', '', ''], 'layer_depth': [-1, -1, 512, 256, 256, 128], 'use_explicit_padding': self._use_explicit_padding, 'use_depthwise': self._use_depthwise, } with slim.arg_scope( pnasnet_large_arg_scope_for_detection( is_batch_norm_training=self._is_training)): with slim.arg_scope([slim.conv2d, slim.batch_norm, slim.separable_conv2d], reuse=self._reuse_weights): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = pnasnet.build_pnasnet_large( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), num_classes=None, is_training=self._is_training, final_endpoint='Cell_11') with tf.variable_scope('SSD_feature_maps', reuse=self._reuse_weights): with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values() def restore_from_classification_checkpoint_fn(self, feature_extractor_scope): """Returns a map of variables to load from a foreign checkpoint. Note that this overrides the default implementation in ssd_meta_arch.SSDFeatureExtractor which does not work for PNASNet checkpoints. Args: feature_extractor_scope: A scope name for the first stage feature extractor. Returns: A dict mapping variable names (to load from a checkpoint) to variables in the model graph. """ variables_to_restore = {} for variable in tf.global_variables(): if variable.op.name.startswith(feature_extractor_scope): var_name = variable.op.name.replace(feature_extractor_scope + '/', '') var_name += '/ExponentialMovingAverage' variables_to_restore[var_name] = variable return variables_to_restore
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_pnasnet_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for feature map generators.""" from absl.testing import parameterized import tensorflow as tf from google.protobuf import text_format from object_detection.builders import hyperparams_builder from object_detection.models import feature_map_generators from object_detection.protos import hyperparams_pb2 INCEPTION_V2_LAYOUT = { 'from_layer': ['Mixed_3c', 'Mixed_4c', 'Mixed_5c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 256], 'anchor_strides': [16, 32, 64, -1, -1, -1], 'layer_target_norm': [20.0, -1, -1, -1, -1, -1], } INCEPTION_V3_LAYOUT = { 'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 128], 'anchor_strides': [16, 32, 64, -1, -1, -1], 'aspect_ratios': [1.0, 2.0, 1.0/2, 3.0, 1.0/3] } EMBEDDED_SSD_MOBILENET_V1_LAYOUT = { 'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '', ''], 'layer_depth': [-1, -1, 512, 256, 256], 'conv_kernel_size': [-1, -1, 3, 3, 2], } SSD_MOBILENET_V1_WEIGHT_SHARED_LAYOUT = { 'from_layer': ['Conv2d_13_pointwise', '', '', ''], 'layer_depth': [-1, 256, 256, 256], } @parameterized.parameters( {'use_keras': False}, {'use_keras': True}, ) class MultiResolutionFeatureMapGeneratorTest(tf.test.TestCase): def _build_conv_hyperparams(self): conv_hyperparams = hyperparams_pb2.Hyperparams() conv_hyperparams_text_proto = """ regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } """ text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams) return hyperparams_builder.KerasLayerHyperparams(conv_hyperparams) def _build_feature_map_generator(self, feature_map_layout, use_keras, pool_residual=False): if use_keras: return feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, freeze_batchnorm=False, is_training=True, conv_hyperparams=self._build_conv_hyperparams(), name='FeatureMaps' ) else: def feature_map_generator(image_features): return feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, image_features=image_features, pool_residual=pool_residual) return feature_map_generator def test_get_expected_feature_map_shapes_with_inception_v2(self, use_keras): image_features = { 'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32), 'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32), 'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32) } feature_map_generator = self._build_feature_map_generator( feature_map_layout=INCEPTION_V2_LAYOUT, use_keras=use_keras ) feature_maps = feature_map_generator(image_features) expected_feature_map_shapes = { 'Mixed_3c': (4, 28, 28, 256), 'Mixed_4c': (4, 14, 14, 576), 'Mixed_5c': (4, 7, 7, 1024), 'Mixed_5c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512), 'Mixed_5c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256), 'Mixed_5c_2_Conv2d_5_3x3_s2_256': (4, 1, 1, 256)} init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = dict( (key, value.shape) for key, value in out_feature_maps.items()) self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes) # TODO(kaftan): Remove conditional after CMLE moves to TF 1.10 def test_get_expected_feature_map_shapes_use_explicit_padding( self, use_keras): image_features = { 'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32), 'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32), 'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32) } layout_copy = INCEPTION_V2_LAYOUT.copy() layout_copy['use_explicit_padding'] = True feature_map_generator = self._build_feature_map_generator( feature_map_layout=layout_copy, use_keras=use_keras ) feature_maps = feature_map_generator(image_features) expected_feature_map_shapes = { 'Mixed_3c': (4, 28, 28, 256), 'Mixed_4c': (4, 14, 14, 576), 'Mixed_5c': (4, 7, 7, 1024), 'Mixed_5c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512), 'Mixed_5c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256), 'Mixed_5c_2_Conv2d_5_3x3_s2_256': (4, 1, 1, 256)} init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = dict( (key, value.shape) for key, value in out_feature_maps.items()) self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes) def test_get_expected_feature_map_shapes_with_inception_v3(self, use_keras): image_features = { 'Mixed_5d': tf.random_uniform([4, 35, 35, 256], dtype=tf.float32), 'Mixed_6e': tf.random_uniform([4, 17, 17, 576], dtype=tf.float32), 'Mixed_7c': tf.random_uniform([4, 8, 8, 1024], dtype=tf.float32) } feature_map_generator = self._build_feature_map_generator( feature_map_layout=INCEPTION_V3_LAYOUT, use_keras=use_keras ) feature_maps = feature_map_generator(image_features) expected_feature_map_shapes = { 'Mixed_5d': (4, 35, 35, 256), 'Mixed_6e': (4, 17, 17, 576), 'Mixed_7c': (4, 8, 8, 1024), 'Mixed_7c_2_Conv2d_3_3x3_s2_512': (4, 4, 4, 512), 'Mixed_7c_2_Conv2d_4_3x3_s2_256': (4, 2, 2, 256), 'Mixed_7c_2_Conv2d_5_3x3_s2_128': (4, 1, 1, 128)} init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = dict( (key, value.shape) for key, value in out_feature_maps.items()) self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes) def test_get_expected_feature_map_shapes_with_embedded_ssd_mobilenet_v1( self, use_keras): image_features = { 'Conv2d_11_pointwise': tf.random_uniform([4, 16, 16, 512], dtype=tf.float32), 'Conv2d_13_pointwise': tf.random_uniform([4, 8, 8, 1024], dtype=tf.float32), } feature_map_generator = self._build_feature_map_generator( feature_map_layout=EMBEDDED_SSD_MOBILENET_V1_LAYOUT, use_keras=use_keras ) feature_maps = feature_map_generator(image_features) expected_feature_map_shapes = { 'Conv2d_11_pointwise': (4, 16, 16, 512), 'Conv2d_13_pointwise': (4, 8, 8, 1024), 'Conv2d_13_pointwise_2_Conv2d_2_3x3_s2_512': (4, 4, 4, 512), 'Conv2d_13_pointwise_2_Conv2d_3_3x3_s2_256': (4, 2, 2, 256), 'Conv2d_13_pointwise_2_Conv2d_4_2x2_s2_256': (4, 1, 1, 256)} init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = dict( (key, value.shape) for key, value in out_feature_maps.items()) self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes) def test_feature_map_shapes_with_pool_residual_ssd_mobilenet_v1( self, use_keras): image_features = { 'Conv2d_13_pointwise': tf.random_uniform([4, 8, 8, 1024], dtype=tf.float32), } feature_map_generator = self._build_feature_map_generator( feature_map_layout=SSD_MOBILENET_V1_WEIGHT_SHARED_LAYOUT, use_keras=use_keras, pool_residual=True ) feature_maps = feature_map_generator(image_features) expected_feature_map_shapes = { 'Conv2d_13_pointwise': (4, 8, 8, 1024), 'Conv2d_13_pointwise_2_Conv2d_1_3x3_s2_256': (4, 4, 4, 256), 'Conv2d_13_pointwise_2_Conv2d_2_3x3_s2_256': (4, 2, 2, 256), 'Conv2d_13_pointwise_2_Conv2d_3_3x3_s2_256': (4, 1, 1, 256)} init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = dict( (key, value.shape) for key, value in out_feature_maps.items()) self.assertDictEqual(expected_feature_map_shapes, out_feature_map_shapes) def test_get_expected_variable_names_with_inception_v2(self, use_keras): image_features = { 'Mixed_3c': tf.random_uniform([4, 28, 28, 256], dtype=tf.float32), 'Mixed_4c': tf.random_uniform([4, 14, 14, 576], dtype=tf.float32), 'Mixed_5c': tf.random_uniform([4, 7, 7, 1024], dtype=tf.float32) } feature_map_generator = self._build_feature_map_generator( feature_map_layout=INCEPTION_V2_LAYOUT, use_keras=use_keras ) feature_maps = feature_map_generator(image_features) expected_slim_variables = set([ 'Mixed_5c_1_Conv2d_3_1x1_256/weights', 'Mixed_5c_1_Conv2d_3_1x1_256/biases', 'Mixed_5c_2_Conv2d_3_3x3_s2_512/weights', 'Mixed_5c_2_Conv2d_3_3x3_s2_512/biases', 'Mixed_5c_1_Conv2d_4_1x1_128/weights', 'Mixed_5c_1_Conv2d_4_1x1_128/biases', 'Mixed_5c_2_Conv2d_4_3x3_s2_256/weights', 'Mixed_5c_2_Conv2d_4_3x3_s2_256/biases', 'Mixed_5c_1_Conv2d_5_1x1_128/weights', 'Mixed_5c_1_Conv2d_5_1x1_128/biases', 'Mixed_5c_2_Conv2d_5_3x3_s2_256/weights', 'Mixed_5c_2_Conv2d_5_3x3_s2_256/biases', ]) expected_keras_variables = set([ 'FeatureMaps/Mixed_5c_1_Conv2d_3_1x1_256_conv/kernel', 'FeatureMaps/Mixed_5c_1_Conv2d_3_1x1_256_conv/bias', 'FeatureMaps/Mixed_5c_2_Conv2d_3_3x3_s2_512_conv/kernel', 'FeatureMaps/Mixed_5c_2_Conv2d_3_3x3_s2_512_conv/bias', 'FeatureMaps/Mixed_5c_1_Conv2d_4_1x1_128_conv/kernel', 'FeatureMaps/Mixed_5c_1_Conv2d_4_1x1_128_conv/bias', 'FeatureMaps/Mixed_5c_2_Conv2d_4_3x3_s2_256_conv/kernel', 'FeatureMaps/Mixed_5c_2_Conv2d_4_3x3_s2_256_conv/bias', 'FeatureMaps/Mixed_5c_1_Conv2d_5_1x1_128_conv/kernel', 'FeatureMaps/Mixed_5c_1_Conv2d_5_1x1_128_conv/bias', 'FeatureMaps/Mixed_5c_2_Conv2d_5_3x3_s2_256_conv/kernel', 'FeatureMaps/Mixed_5c_2_Conv2d_5_3x3_s2_256_conv/bias', ]) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) sess.run(feature_maps) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) if use_keras: self.assertSetEqual(expected_keras_variables, actual_variable_set) else: self.assertSetEqual(expected_slim_variables, actual_variable_set) # TODO(kaftan): Remove conditional after CMLE moves to TF 1.10 class FPNFeatureMapGeneratorTest(tf.test.TestCase): def test_get_expected_feature_map_shapes(self): image_features = [ ('block2', tf.random_uniform([4, 8, 8, 256], dtype=tf.float32)), ('block3', tf.random_uniform([4, 4, 4, 256], dtype=tf.float32)), ('block4', tf.random_uniform([4, 2, 2, 256], dtype=tf.float32)), ('block5', tf.random_uniform([4, 1, 1, 256], dtype=tf.float32)) ] feature_maps = feature_map_generators.fpn_top_down_feature_maps( image_features=image_features, depth=128) expected_feature_map_shapes = { 'top_down_block2': (4, 8, 8, 128), 'top_down_block3': (4, 4, 4, 128), 'top_down_block4': (4, 2, 2, 128), 'top_down_block5': (4, 1, 1, 128) } init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = {key: value.shape for key, value in out_feature_maps.items()} self.assertDictEqual(out_feature_map_shapes, expected_feature_map_shapes) def test_get_expected_feature_map_shapes_with_depthwise(self): image_features = [ ('block2', tf.random_uniform([4, 8, 8, 256], dtype=tf.float32)), ('block3', tf.random_uniform([4, 4, 4, 256], dtype=tf.float32)), ('block4', tf.random_uniform([4, 2, 2, 256], dtype=tf.float32)), ('block5', tf.random_uniform([4, 1, 1, 256], dtype=tf.float32)) ] feature_maps = feature_map_generators.fpn_top_down_feature_maps( image_features=image_features, depth=128, use_depthwise=True) expected_feature_map_shapes = { 'top_down_block2': (4, 8, 8, 128), 'top_down_block3': (4, 4, 4, 128), 'top_down_block4': (4, 2, 2, 128), 'top_down_block5': (4, 1, 1, 128) } init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = {key: value.shape for key, value in out_feature_maps.items()} self.assertDictEqual(out_feature_map_shapes, expected_feature_map_shapes) class GetDepthFunctionTest(tf.test.TestCase): def test_return_min_depth_when_multiplier_is_small(self): depth_fn = feature_map_generators.get_depth_fn(depth_multiplier=0.5, min_depth=16) self.assertEqual(depth_fn(16), 16) def test_return_correct_depth_with_multiplier(self): depth_fn = feature_map_generators.get_depth_fn(depth_multiplier=0.5, min_depth=16) self.assertEqual(depth_fn(64), 32) @parameterized.parameters( {'replace_pool_with_conv': False}, {'replace_pool_with_conv': True}, ) class PoolingPyramidFeatureMapGeneratorTest(tf.test.TestCase): def test_get_expected_feature_map_shapes(self, replace_pool_with_conv): image_features = { 'image_features': tf.random_uniform([4, 19, 19, 1024]) } feature_maps = feature_map_generators.pooling_pyramid_feature_maps( base_feature_map_depth=1024, num_layers=6, image_features=image_features, replace_pool_with_conv=replace_pool_with_conv) expected_pool_feature_map_shapes = { 'Base_Conv2d_1x1_1024': (4, 19, 19, 1024), 'MaxPool2d_0_2x2': (4, 10, 10, 1024), 'MaxPool2d_1_2x2': (4, 5, 5, 1024), 'MaxPool2d_2_2x2': (4, 3, 3, 1024), 'MaxPool2d_3_2x2': (4, 2, 2, 1024), 'MaxPool2d_4_2x2': (4, 1, 1, 1024), } expected_conv_feature_map_shapes = { 'Base_Conv2d_1x1_1024': (4, 19, 19, 1024), 'Conv2d_0_3x3_s2_1024': (4, 10, 10, 1024), 'Conv2d_1_3x3_s2_1024': (4, 5, 5, 1024), 'Conv2d_2_3x3_s2_1024': (4, 3, 3, 1024), 'Conv2d_3_3x3_s2_1024': (4, 2, 2, 1024), 'Conv2d_4_3x3_s2_1024': (4, 1, 1, 1024), } init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) out_feature_maps = sess.run(feature_maps) out_feature_map_shapes = {key: value.shape for key, value in out_feature_maps.items()} if replace_pool_with_conv: self.assertDictEqual(expected_conv_feature_map_shapes, out_feature_map_shapes) else: self.assertDictEqual(expected_pool_feature_map_shapes, out_feature_map_shapes) def test_get_expected_variable_names(self, replace_pool_with_conv): image_features = { 'image_features': tf.random_uniform([4, 19, 19, 1024]) } feature_maps = feature_map_generators.pooling_pyramid_feature_maps( base_feature_map_depth=1024, num_layers=6, image_features=image_features, replace_pool_with_conv=replace_pool_with_conv) expected_pool_variables = set([ 'Base_Conv2d_1x1_1024/weights', 'Base_Conv2d_1x1_1024/biases', ]) expected_conv_variables = set([ 'Base_Conv2d_1x1_1024/weights', 'Base_Conv2d_1x1_1024/biases', 'Conv2d_0_3x3_s2_1024/weights', 'Conv2d_0_3x3_s2_1024/biases', 'Conv2d_1_3x3_s2_1024/weights', 'Conv2d_1_3x3_s2_1024/biases', 'Conv2d_2_3x3_s2_1024/weights', 'Conv2d_2_3x3_s2_1024/biases', 'Conv2d_3_3x3_s2_1024/weights', 'Conv2d_3_3x3_s2_1024/biases', 'Conv2d_4_3x3_s2_1024/weights', 'Conv2d_4_3x3_s2_1024/biases', ]) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) sess.run(feature_maps) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) if replace_pool_with_conv: self.assertSetEqual(expected_conv_variables, actual_variable_set) else: self.assertSetEqual(expected_pool_variables, actual_variable_set) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/feature_map_generators_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSDFeatureExtractor for InceptionV2 features.""" import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import ops from object_detection.utils import shape_utils from nets import inception_v2 slim = tf.contrib.slim class SSDInceptionV2FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD Feature Extractor using InceptionV2 features.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """InceptionV2 Feature Extractor for SSD Models. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. Raises: ValueError: If `override_base_feature_extractor_hyperparams` is False. """ super(SSDInceptionV2FeatureExtractor, self).__init__( is_training=is_training, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams_fn=conv_hyperparams_fn, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) if not self._override_base_feature_extractor_hyperparams: raise ValueError('SSD Inception V2 feature extractor always uses' 'scope returned by `conv_hyperparams_fn` for both the ' 'base feature extractor and the additional layers ' 'added since there is no arg_scope defined for the base ' 'feature extractor.') def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) feature_map_layout = { 'from_layer': ['Mixed_4c', 'Mixed_5c', '', '', '', ''], 'layer_depth': [-1, -1, 512, 256, 256, 128], 'use_explicit_padding': self._use_explicit_padding, 'use_depthwise': self._use_depthwise, } with slim.arg_scope(self._conv_hyperparams_fn()): with tf.variable_scope('InceptionV2', reuse=self._reuse_weights) as scope: _, image_features = inception_v2.inception_v2_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Mixed_5c', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, scope=scope) feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_inception_v2_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSD Feature Pyramid Network (FPN) feature extractors based on Resnet v1. See https://arxiv.org/abs/1708.02002 for details. """ import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from object_detection.utils import shape_utils from nets import resnet_v1 slim = tf.contrib.slim class _SSDResnetV1FpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD FPN feature extractor based on Resnet v1 architecture.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_base_fn, resnet_scope_name, fpn_scope_name, fpn_min_level=3, fpn_max_level=7, additional_layer_depth=256, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """SSD FPN feature extractor based on Resnet v1 architecture. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. UNUSED currently. min_depth: minimum feature extractor depth. UNUSED Currently. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. resnet_base_fn: base resnet network to use. resnet_scope_name: scope name under which to construct resnet fpn_scope_name: scope name under which to construct the feature pyramid network. fpn_min_level: the highest resolution feature map to use in FPN. The valid values are {2, 3, 4, 5} which map to Resnet blocks {1, 2, 3, 4} respectively. fpn_max_level: the smallest resolution feature map to construct or use in FPN. FPN constructions uses features maps starting from fpn_min_level upto the fpn_max_level. In the case that there are not enough feature maps in the backbone network, additional feature maps are created by applying stride 2 convolutions until we get the desired number of fpn levels. additional_layer_depth: additional feature map layer channel depth. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. UNUSED currently. use_depthwise: Whether to use depthwise convolutions. UNUSED currently. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. Raises: ValueError: On supplying invalid arguments for unused arguments. """ super(_SSDResnetV1FpnFeatureExtractor, self).__init__( is_training=is_training, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams_fn=conv_hyperparams_fn, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) if self._depth_multiplier != 1.0: raise ValueError('Only depth 1.0 is supported, found: {}'. format(self._depth_multiplier)) if self._use_explicit_padding is True: raise ValueError('Explicit padding is not a valid option.') self._resnet_base_fn = resnet_base_fn self._resnet_scope_name = resnet_scope_name self._fpn_scope_name = fpn_scope_name self._fpn_min_level = fpn_min_level self._fpn_max_level = fpn_max_level self._additional_layer_depth = additional_layer_depth def preprocess(self, resized_inputs): """SSD preprocessing. VGG style channel mean subtraction as described here: https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-mdnge. Note that if the number of channels is not equal to 3, the mean subtraction will be skipped and the original resized_inputs will be returned. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ if resized_inputs.shape.as_list()[3] == 3: channel_means = [123.68, 116.779, 103.939] return resized_inputs - [[channel_means]] else: return resized_inputs def _filter_features(self, image_features): # TODO(rathodv): Change resnet endpoint to strip scope prefixes instead # of munging the scope here. filtered_image_features = dict({}) for key, feature in image_features.items(): feature_name = key.split('/')[-1] if feature_name in ['block1', 'block2', 'block3', 'block4']: filtered_image_features[feature_name] = feature return filtered_image_features def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] Raises: ValueError: depth multiplier is not supported. """ if self._depth_multiplier != 1.0: raise ValueError('Depth multiplier not supported.') preprocessed_inputs = shape_utils.check_min_image_dim( 129, preprocessed_inputs) with tf.variable_scope( self._resnet_scope_name, reuse=self._reuse_weights) as scope: with slim.arg_scope(resnet_v1.resnet_arg_scope()): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = self._resnet_base_fn( inputs=ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), num_classes=None, is_training=None, global_pool=False, output_stride=None, store_non_strided_activations=True, scope=scope) image_features = self._filter_features(image_features) with slim.arg_scope(self._conv_hyperparams_fn()): with tf.variable_scope(self._fpn_scope_name, reuse=self._reuse_weights): base_fpn_max_level = min(self._fpn_max_level, 5) feature_block_list = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_block_list.append('block{}'.format(level - 1)) fpn_features = feature_map_generators.fpn_top_down_feature_maps( [(key, image_features[key]) for key in feature_block_list], depth=self._additional_layer_depth) feature_maps = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_maps.append( fpn_features['top_down_block{}'.format(level - 1)]) last_feature_map = fpn_features['top_down_block{}'.format( base_fpn_max_level - 1)] # Construct coarse features for i in range(base_fpn_max_level, self._fpn_max_level): last_feature_map = slim.conv2d( last_feature_map, num_outputs=self._additional_layer_depth, kernel_size=[3, 3], stride=2, padding='SAME', scope='bottom_up_block{}'.format(i)) feature_maps.append(last_feature_map) return feature_maps class SSDResnet50V1FpnFeatureExtractor(_SSDResnetV1FpnFeatureExtractor): """SSD Resnet50 V1 FPN feature extractor.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, fpn_min_level=3, fpn_max_level=7, additional_layer_depth=256, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """SSD Resnet50 V1 FPN feature extractor based on Resnet v1 architecture. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. UNUSED currently. min_depth: minimum feature extractor depth. UNUSED Currently. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. fpn_min_level: the minimum level in feature pyramid networks. fpn_max_level: the maximum level in feature pyramid networks. additional_layer_depth: additional feature map layer channel depth. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. UNUSED currently. use_depthwise: Whether to use depthwise convolutions. UNUSED currently. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDResnet50V1FpnFeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_v1.resnet_v1_50, 'resnet_v1_50', 'fpn', fpn_min_level, fpn_max_level, additional_layer_depth, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) class SSDResnet101V1FpnFeatureExtractor(_SSDResnetV1FpnFeatureExtractor): """SSD Resnet101 V1 FPN feature extractor.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, fpn_min_level=3, fpn_max_level=7, additional_layer_depth=256, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """SSD Resnet101 V1 FPN feature extractor based on Resnet v1 architecture. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. UNUSED currently. min_depth: minimum feature extractor depth. UNUSED Currently. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. fpn_min_level: the minimum level in feature pyramid networks. fpn_max_level: the maximum level in feature pyramid networks. additional_layer_depth: additional feature map layer channel depth. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. UNUSED currently. use_depthwise: Whether to use depthwise convolutions. UNUSED currently. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDResnet101V1FpnFeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_v1.resnet_v1_101, 'resnet_v1_101', 'fpn', fpn_min_level, fpn_max_level, additional_layer_depth, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) class SSDResnet152V1FpnFeatureExtractor(_SSDResnetV1FpnFeatureExtractor): """SSD Resnet152 V1 FPN feature extractor.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, fpn_min_level=3, fpn_max_level=7, additional_layer_depth=256, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """SSD Resnet152 V1 FPN feature extractor based on Resnet v1 architecture. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. UNUSED currently. min_depth: minimum feature extractor depth. UNUSED Currently. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. fpn_min_level: the minimum level in feature pyramid networks. fpn_max_level: the maximum level in feature pyramid networks. additional_layer_depth: additional feature map layer channel depth. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. UNUSED currently. use_depthwise: Whether to use depthwise convolutions. UNUSED currently. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDResnet152V1FpnFeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_v1.resnet_v1_152, 'resnet_v1_152', 'fpn', fpn_min_level, fpn_max_level, additional_layer_depth, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_resnet_v1_fpn_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for models.faster_rcnn_inception_resnet_v2_feature_extractor.""" import tensorflow as tf from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res class FasterRcnnInceptionResnetV2FeatureExtractorTest(tf.test.TestCase): def _build_feature_extractor(self, first_stage_features_stride): return frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor( is_training=False, first_stage_features_stride=first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0) def test_extract_proposal_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 299, 299, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 19, 19, 1088]) def test_extract_proposal_features_stride_eight(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=8) preprocessed_inputs = tf.random_uniform( [1, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 28, 28, 1088]) def test_extract_proposal_features_half_size_input(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 112, 112, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 7, 7, 1088]) def test_extract_proposal_features_dies_on_invalid_stride(self): with self.assertRaises(ValueError): self._build_feature_extractor(first_stage_features_stride=99) def test_extract_proposal_features_dies_with_incorrect_rank_inputs(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [224, 224, 3], maxval=255, dtype=tf.float32) with self.assertRaises(ValueError): feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') def test_extract_box_classifier_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) proposal_feature_maps = tf.random_uniform( [2, 17, 17, 1088], maxval=255, dtype=tf.float32) proposal_classifier_features = ( feature_extractor.extract_box_classifier_features( proposal_feature_maps, scope='TestScope')) features_shape = tf.shape(proposal_classifier_features) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [2, 8, 8, 1536]) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_inception_resnet_v2_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """PNASNet Faster R-CNN implementation. Based on PNASNet model: https://arxiv.org/abs/1712.00559 """ import tensorflow as tf from object_detection.meta_architectures import faster_rcnn_meta_arch from nets.nasnet import nasnet_utils from nets.nasnet import pnasnet arg_scope = tf.contrib.framework.arg_scope slim = tf.contrib.slim def pnasnet_large_arg_scope_for_detection(is_batch_norm_training=False): """Defines the default arg scope for the PNASNet Large for object detection. This provides a small edit to switch batch norm training on and off. Args: is_batch_norm_training: Boolean indicating whether to train with batch norm. Returns: An `arg_scope` to use for the PNASNet Large Model. """ imagenet_scope = pnasnet.pnasnet_large_arg_scope() with arg_scope(imagenet_scope): with arg_scope([slim.batch_norm], is_training=is_batch_norm_training) as sc: return sc def _filter_scaling(reduction_indices, start_cell_num): """Compute the expected filter scaling at given PNASNet cell start_cell_num. In the pnasnet.py code, filter_scaling starts at 1.0. We instead adapt filter scaling to depend on the starting cell. At first cells, before any reduction, filter_scalling is 1.0. With passing any reduction cell, the filter_scaling is multiplied by 2. Args: reduction_indices: list of int indices. start_cell_num: int. Returns: filter_scaling: float. """ filter_scaling = 1.0 for ind in reduction_indices: if ind < start_cell_num: filter_scaling *= 2.0 return filter_scaling # Note: This is largely a copy of _build_pnasnet_base inside pnasnet.py but # with special edits to remove instantiation of the stem and the special # ability to receive as input a pair of hidden states. It constructs only # a sub-network from the original PNASNet model, starting from the # start_cell_num cell and with modified final layer. def _build_pnasnet_base( hidden_previous, hidden, normal_cell, hparams, true_cell_num, start_cell_num): """Constructs a PNASNet image model for proposal classifier features.""" # Find where to place the reduction cells or stride normal cells reduction_indices = nasnet_utils.calc_reduction_layers( hparams.num_cells, hparams.num_reduction_layers) filter_scaling = _filter_scaling(reduction_indices, start_cell_num) # Note: The None is prepended to match the behavior of _imagenet_stem() cell_outputs = [None, hidden_previous, hidden] net = hidden # Run the cells for cell_num in range(start_cell_num, hparams.num_cells): is_reduction = cell_num in reduction_indices stride = 2 if is_reduction else 1 if is_reduction: filter_scaling *= hparams.filter_scaling_rate prev_layer = cell_outputs[-2] net = normal_cell( net, scope='cell_{}'.format(cell_num), filter_scaling=filter_scaling, stride=stride, prev_layer=prev_layer, cell_num=true_cell_num) true_cell_num += 1 cell_outputs.append(net) # Final nonlinearity. # Note that we have dropped the final pooling, dropout and softmax layers # from the default pnasnet version. with tf.variable_scope('final_layer'): net = tf.nn.relu(net) return net # TODO(shlens): Only fixed_shape_resizer is currently supported for PNASNet # featurization. The reason for this is that pnasnet.py only supports # inputs with fully known shapes. We need to update pnasnet.py to handle # shapes not known at compile time. class FasterRCNNPNASFeatureExtractor( faster_rcnn_meta_arch.FasterRCNNFeatureExtractor): """Faster R-CNN with PNASNet feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 16. """ if first_stage_features_stride != 16: raise ValueError('`first_stage_features_stride` must be 16.') super(FasterRCNNPNASFeatureExtractor, self).__init__( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) def preprocess(self, resized_inputs): """Faster R-CNN with PNAS preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: A [batch, height_in, width_in, channels] float32 tensor representing a batch of images with values between 0 and 255.0. Returns: preprocessed_inputs: A [batch, height_out, width_out, channels] float32 tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def _extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features. Extracts features using the first half of the PNASNet network. We construct the network in `align_feature_maps=True` mode, which means that all VALID paddings in the network are changed to SAME padding so that the feature maps are aligned. Args: preprocessed_inputs: A [batch, height, width, channels] float32 tensor representing a batch of images. scope: A scope name. Returns: rpn_feature_map: A tensor with shape [batch, height, width, depth] end_points: A dictionary mapping feature extractor tensor names to tensors Raises: ValueError: If the created network is missing the required activation. """ del scope if len(preprocessed_inputs.get_shape().as_list()) != 4: raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a ' 'tensor of shape %s' % preprocessed_inputs.get_shape()) with slim.arg_scope(pnasnet_large_arg_scope_for_detection( is_batch_norm_training=self._train_batch_norm)): with arg_scope([slim.conv2d, slim.batch_norm, slim.separable_conv2d], reuse=self._reuse_weights): _, end_points = pnasnet.build_pnasnet_large( preprocessed_inputs, num_classes=None, is_training=self._is_training, final_endpoint='Cell_7') # Note that both 'Cell_6' and 'Cell_7' have equal depth = 2160. # Cell_7 is the last cell before second reduction. rpn_feature_map = tf.concat([end_points['Cell_6'], end_points['Cell_7']], 3) # pnasnet.py does not maintain the batch size in the first dimension. # This work around permits us retaining the batch for below. batch = preprocessed_inputs.get_shape().as_list()[0] shape_without_batch = rpn_feature_map.get_shape().as_list()[1:] rpn_feature_map_shape = [batch] + shape_without_batch rpn_feature_map.set_shape(rpn_feature_map_shape) return rpn_feature_map, end_points def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. This function reconstructs the "second half" of the PNASNet network after the part defined in `_extract_proposal_features`. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name. Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ del scope # Number of used stem cells. num_stem_cells = 2 # Note that we always feed into 2 layers of equal depth # where the first N channels corresponds to previous hidden layer # and the second N channels correspond to the final hidden layer. hidden_previous, hidden = tf.split(proposal_feature_maps, 2, axis=3) # Note that what follows is largely a copy of build_pnasnet_large() within # pnasnet.py. We are copying to minimize code pollution in slim. # TODO(shlens,skornblith): Determine the appropriate drop path schedule. # For now the schedule is the default (1.0->0.7 over 250,000 train steps). hparams = pnasnet.large_imagenet_config() if not self._is_training: hparams.set_hparam('drop_path_keep_prob', 1.0) # Calculate the total number of cells in the network total_num_cells = hparams.num_cells + num_stem_cells normal_cell = pnasnet.PNasNetNormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps) with arg_scope([slim.dropout, nasnet_utils.drop_path], is_training=self._is_training): with arg_scope([slim.batch_norm], is_training=self._train_batch_norm): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): # This corresponds to the cell number just past 'Cell_7' used by # _extract_proposal_features(). start_cell_num = 8 true_cell_num = start_cell_num + num_stem_cells with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): net = _build_pnasnet_base( hidden_previous, hidden, normal_cell=normal_cell, hparams=hparams, true_cell_num=true_cell_num, start_cell_num=start_cell_num) proposal_classifier_features = net return proposal_classifier_features def restore_from_classification_checkpoint_fn( self, first_stage_feature_extractor_scope, second_stage_feature_extractor_scope): """Returns a map of variables to load from a foreign checkpoint. Note that this overrides the default implementation in faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for PNASNet checkpoints. Args: first_stage_feature_extractor_scope: A scope name for the first stage feature extractor. second_stage_feature_extractor_scope: A scope name for the second stage feature extractor. Returns: A dict mapping variable names (to load from a checkpoint) to variables in the model graph. """ variables_to_restore = {} for variable in tf.global_variables(): if variable.op.name.startswith( first_stage_feature_extractor_scope): var_name = variable.op.name.replace( first_stage_feature_extractor_scope + '/', '') var_name += '/ExponentialMovingAverage' variables_to_restore[var_name] = variable if variable.op.name.startswith( second_stage_feature_extractor_scope): var_name = variable.op.name.replace( second_stage_feature_extractor_scope + '/', '') var_name += '/ExponentialMovingAverage' variables_to_restore[var_name] = variable return variables_to_restore
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_pnas_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Inception V2 Faster R-CNN implementation. See "Rethinking the Inception Architecture for Computer Vision" https://arxiv.org/abs/1512.00567 """ import tensorflow as tf from object_detection.meta_architectures import faster_rcnn_meta_arch from nets import inception_v2 slim = tf.contrib.slim def _batch_norm_arg_scope(list_ops, use_batch_norm=True, batch_norm_decay=0.9997, batch_norm_epsilon=0.001, batch_norm_scale=False, train_batch_norm=False): """Slim arg scope for InceptionV2 batch norm.""" if use_batch_norm: batch_norm_params = { 'is_training': train_batch_norm, 'scale': batch_norm_scale, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon } normalizer_fn = slim.batch_norm else: normalizer_fn = None batch_norm_params = None return slim.arg_scope(list_ops, normalizer_fn=normalizer_fn, normalizer_params=batch_norm_params) class FasterRCNNInceptionV2FeatureExtractor( faster_rcnn_meta_arch.FasterRCNNFeatureExtractor): """Faster R-CNN Inception V2 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0, depth_multiplier=1.0, min_depth=16): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16. """ if first_stage_features_stride != 8 and first_stage_features_stride != 16: raise ValueError('`first_stage_features_stride` must be 8 or 16.') self._depth_multiplier = depth_multiplier self._min_depth = min_depth super(FasterRCNNInceptionV2FeatureExtractor, self).__init__( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) def preprocess(self, resized_inputs): """Faster R-CNN Inception V2 preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def _extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features. Args: preprocessed_inputs: A [batch, height, width, channels] float32 tensor representing a batch of images. scope: A scope name. Returns: rpn_feature_map: A tensor with shape [batch, height, width, depth] activations: A dictionary mapping feature extractor tensor names to tensors Raises: InvalidArgumentError: If the spatial size of `preprocessed_inputs` (height or width) is less than 33. ValueError: If the created network is missing the required activation. """ preprocessed_inputs.get_shape().assert_has_rank(4) shape_assert = tf.Assert( tf.logical_and(tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33), tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)), ['image size must at least be 33 in both height and width.']) with tf.control_dependencies([shape_assert]): with tf.variable_scope('InceptionV2', reuse=self._reuse_weights) as scope: with _batch_norm_arg_scope([slim.conv2d, slim.separable_conv2d], batch_norm_scale=True, train_batch_norm=self._train_batch_norm): _, activations = inception_v2.inception_v2_base( preprocessed_inputs, final_endpoint='Mixed_4e', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, scope=scope) return activations['Mixed_4e'], activations def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ net = proposal_feature_maps depth = lambda d: max(int(d * self._depth_multiplier), self._min_depth) trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev) data_format = 'NHWC' concat_dim = 3 if data_format == 'NHWC' else 1 with tf.variable_scope('InceptionV2', reuse=self._reuse_weights): with slim.arg_scope( [slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME', data_format=data_format): with _batch_norm_arg_scope([slim.conv2d, slim.separable_conv2d], batch_norm_scale=True, train_batch_norm=self._train_batch_norm): with tf.variable_scope('Mixed_5a'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, depth(128), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_0 = slim.conv2d(branch_0, depth(192), [3, 3], stride=2, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], scope='Conv2d_0b_3x3') branch_1 = slim.conv2d(branch_1, depth(256), [3, 3], stride=2, scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.max_pool2d(net, [3, 3], stride=2, scope='MaxPool_1a_3x3') net = tf.concat([branch_0, branch_1, branch_2], concat_dim) with tf.variable_scope('Mixed_5b'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(160), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') net = tf.concat([branch_0, branch_1, branch_2, branch_3], concat_dim) with tf.variable_scope('Mixed_5c'): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d(net, depth(352), [1, 1], scope='Conv2d_0a_1x1') with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_1 = slim.conv2d(branch_1, depth(320), [3, 3], scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, depth(192), [1, 1], weights_initializer=trunc_normal(0.09), scope='Conv2d_0a_1x1') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0b_3x3') branch_2 = slim.conv2d(branch_2, depth(224), [3, 3], scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3') branch_3 = slim.conv2d( branch_3, depth(128), [1, 1], weights_initializer=trunc_normal(0.1), scope='Conv2d_0b_1x1') proposal_classifier_features = tf.concat( [branch_0, branch_1, branch_2, branch_3], concat_dim) return proposal_classifier_features
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_inception_v2_feature_extractor.py
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Mobilenet v1 Faster R-CNN implementation.""" import numpy as np import tensorflow as tf from object_detection.meta_architectures import faster_rcnn_meta_arch from object_detection.utils import shape_utils from nets import mobilenet_v1 slim = tf.contrib.slim def _get_mobilenet_conv_no_last_stride_defs(conv_depth_ratio_in_percentage): if conv_depth_ratio_in_percentage not in [25, 50, 75, 100]: raise ValueError( 'Only the following ratio percentages are supported: 25, 50, 75, 100') conv_depth_ratio_in_percentage = float(conv_depth_ratio_in_percentage) / 100.0 channels = np.array([ 32, 64, 128, 128, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024 ], dtype=np.float32) channels = (channels * conv_depth_ratio_in_percentage).astype(np.int32) return [ mobilenet_v1.Conv(kernel=[3, 3], stride=2, depth=channels[0]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[1]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=channels[2]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[3]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=channels[4]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[5]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=channels[6]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[7]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[8]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[9]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[10]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[11]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[12]), mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=channels[13]) ] class FasterRCNNMobilenetV1FeatureExtractor( faster_rcnn_meta_arch.FasterRCNNFeatureExtractor): """Faster R-CNN Mobilenet V1 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0, depth_multiplier=1.0, min_depth=16, skip_last_stride=False, conv_depth_ratio_in_percentage=100): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. skip_last_stride: Skip the last stride if True. conv_depth_ratio_in_percentage: Conv depth ratio in percentage. Only applied if skip_last_stride is True. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16. """ if first_stage_features_stride != 8 and first_stage_features_stride != 16: raise ValueError('`first_stage_features_stride` must be 8 or 16.') self._depth_multiplier = depth_multiplier self._min_depth = min_depth self._skip_last_stride = skip_last_stride self._conv_depth_ratio_in_percentage = conv_depth_ratio_in_percentage super(FasterRCNNMobilenetV1FeatureExtractor, self).__init__( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) def preprocess(self, resized_inputs): """Faster R-CNN Mobilenet V1 preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def _extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features. Args: preprocessed_inputs: A [batch, height, width, channels] float32 tensor representing a batch of images. scope: A scope name. Returns: rpn_feature_map: A tensor with shape [batch, height, width, depth] activations: A dictionary mapping feature extractor tensor names to tensors Raises: InvalidArgumentError: If the spatial size of `preprocessed_inputs` (height or width) is less than 33. ValueError: If the created network is missing the required activation. """ preprocessed_inputs.get_shape().assert_has_rank(4) preprocessed_inputs = shape_utils.check_min_image_dim( min_dim=33, image_tensor=preprocessed_inputs) with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope( is_training=self._train_batch_norm, weight_decay=self._weight_decay)): with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: params = {} if self._skip_last_stride: params['conv_defs'] = _get_mobilenet_conv_no_last_stride_defs( conv_depth_ratio_in_percentage=self. _conv_depth_ratio_in_percentage) _, activations = mobilenet_v1.mobilenet_v1_base( preprocessed_inputs, final_endpoint='Conv2d_11_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, scope=scope, **params) return activations['Conv2d_11_pointwise'], activations def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ net = proposal_feature_maps conv_depth = 1024 if self._skip_last_stride: conv_depth_ratio = float(self._conv_depth_ratio_in_percentage) / 100.0 conv_depth = int(float(conv_depth) * conv_depth_ratio) depth = lambda d: max(int(d * 1.0), 16) with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights): with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope( is_training=self._train_batch_norm, weight_decay=self._weight_decay)): with slim.arg_scope( [slim.conv2d, slim.separable_conv2d], padding='SAME'): net = slim.separable_conv2d( net, depth(conv_depth), [3, 3], depth_multiplier=1, stride=2, scope='Conv2d_12_pointwise') return slim.separable_conv2d( net, depth(conv_depth), [3, 3], depth_multiplier=1, stride=1, scope='Conv2d_13_pointwise')
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_mobilenet_v1_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Inception Resnet v2 Faster R-CNN implementation. See "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning" by Szegedy et al. (https://arxiv.org/abs/1602.07261) as well as "Speed/accuracy trade-offs for modern convolutional object detectors" by Huang et al. (https://arxiv.org/abs/1611.10012) """ import tensorflow as tf from object_detection.meta_architectures import faster_rcnn_meta_arch from nets import inception_resnet_v2 slim = tf.contrib.slim class FasterRCNNInceptionResnetV2FeatureExtractor( faster_rcnn_meta_arch.FasterRCNNFeatureExtractor): """Faster R-CNN with Inception Resnet v2 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16. """ if first_stage_features_stride != 8 and first_stage_features_stride != 16: raise ValueError('`first_stage_features_stride` must be 8 or 16.') super(FasterRCNNInceptionResnetV2FeatureExtractor, self).__init__( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) def preprocess(self, resized_inputs): """Faster R-CNN with Inception Resnet v2 preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: A [batch, height_in, width_in, channels] float32 tensor representing a batch of images with values between 0 and 255.0. Returns: preprocessed_inputs: A [batch, height_out, width_out, channels] float32 tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def _extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features. Extracts features using the first half of the Inception Resnet v2 network. We construct the network in `align_feature_maps=True` mode, which means that all VALID paddings in the network are changed to SAME padding so that the feature maps are aligned. Args: preprocessed_inputs: A [batch, height, width, channels] float32 tensor representing a batch of images. scope: A scope name. Returns: rpn_feature_map: A tensor with shape [batch, height, width, depth] Raises: InvalidArgumentError: If the spatial size of `preprocessed_inputs` (height or width) is less than 33. ValueError: If the created network is missing the required activation. """ if len(preprocessed_inputs.get_shape().as_list()) != 4: raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a ' 'tensor of shape %s' % preprocessed_inputs.get_shape()) with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope( weight_decay=self._weight_decay)): # Forces is_training to False to disable batch norm update. with slim.arg_scope([slim.batch_norm], is_training=self._train_batch_norm): with tf.variable_scope('InceptionResnetV2', reuse=self._reuse_weights) as scope: return inception_resnet_v2.inception_resnet_v2_base( preprocessed_inputs, final_endpoint='PreAuxLogits', scope=scope, output_stride=self._first_stage_features_stride, align_feature_maps=True) def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. This function reconstructs the "second half" of the Inception ResNet v2 network after the part defined in `_extract_proposal_features`. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name. Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope('InceptionResnetV2', reuse=self._reuse_weights): with slim.arg_scope(inception_resnet_v2.inception_resnet_v2_arg_scope( weight_decay=self._weight_decay)): # Forces is_training to False to disable batch norm update. with slim.arg_scope([slim.batch_norm], is_training=self._train_batch_norm): with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): with tf.variable_scope('Mixed_7a'): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(proposal_feature_maps, 256, 1, scope='Conv2d_0a_1x1') tower_conv_1 = slim.conv2d( tower_conv, 384, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): tower_conv1 = slim.conv2d( proposal_feature_maps, 256, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d( tower_conv1, 288, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): tower_conv2 = slim.conv2d( proposal_feature_maps, 256, 1, scope='Conv2d_0a_1x1') tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3, scope='Conv2d_0b_3x3') tower_conv2_2 = slim.conv2d( tower_conv2_1, 320, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_3'): tower_pool = slim.max_pool2d( proposal_feature_maps, 3, stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat( [tower_conv_1, tower_conv1_1, tower_conv2_2, tower_pool], 3) net = slim.repeat(net, 9, inception_resnet_v2.block8, scale=0.20) net = inception_resnet_v2.block8(net, activation_fn=None) proposal_classifier_features = slim.conv2d( net, 1536, 1, scope='Conv2d_7b_1x1') return proposal_classifier_features def restore_from_classification_checkpoint_fn( self, first_stage_feature_extractor_scope, second_stage_feature_extractor_scope): """Returns a map of variables to load from a foreign checkpoint. Note that this overrides the default implementation in faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for InceptionResnetV2 checkpoints. TODO(jonathanhuang,rathodv): revisit whether it's possible to force the `Repeat` namescope as created in `_extract_box_classifier_features` to start counting at 2 (e.g. `Repeat_2`) so that the default restore_fn can be used. Args: first_stage_feature_extractor_scope: A scope name for the first stage feature extractor. second_stage_feature_extractor_scope: A scope name for the second stage feature extractor. Returns: A dict mapping variable names (to load from a checkpoint) to variables in the model graph. """ variables_to_restore = {} for variable in tf.global_variables(): if variable.op.name.startswith( first_stage_feature_extractor_scope): var_name = variable.op.name.replace( first_stage_feature_extractor_scope + '/', '') variables_to_restore[var_name] = variable if variable.op.name.startswith( second_stage_feature_extractor_scope): var_name = variable.op.name.replace( second_stage_feature_extractor_scope + '/InceptionResnetV2/Repeat', 'InceptionResnetV2/Repeat_2') var_name = var_name.replace( second_stage_feature_extractor_scope + '/', '') variables_to_restore[var_name] = variable return variables_to_restore
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_inception_resnet_v2_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for faster_rcnn_inception_v2_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import faster_rcnn_inception_v2_feature_extractor as faster_rcnn_inception_v2 class FasterRcnnInceptionV2FeatureExtractorTest(tf.test.TestCase): def _build_feature_extractor(self, first_stage_features_stride): return faster_rcnn_inception_v2.FasterRCNNInceptionV2FeatureExtractor( is_training=False, first_stage_features_stride=first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0) def test_extract_proposal_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [4, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [4, 14, 14, 576]) def test_extract_proposal_features_stride_eight(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=8) preprocessed_inputs = tf.random_uniform( [4, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [4, 14, 14, 576]) def test_extract_proposal_features_half_size_input(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 112, 112, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 7, 7, 576]) def test_extract_proposal_features_dies_on_invalid_stride(self): with self.assertRaises(ValueError): self._build_feature_extractor(first_stage_features_stride=99) def test_extract_proposal_features_dies_on_very_small_images(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.placeholder(tf.float32, (4, None, None, 3)) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) with self.assertRaises(tf.errors.InvalidArgumentError): sess.run( features_shape, feed_dict={preprocessed_inputs: np.random.rand(4, 32, 32, 3)}) def test_extract_proposal_features_dies_with_incorrect_rank_inputs(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [224, 224, 3], maxval=255, dtype=tf.float32) with self.assertRaises(ValueError): feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') def test_extract_box_classifier_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) proposal_feature_maps = tf.random_uniform( [3, 14, 14, 576], maxval=255, dtype=tf.float32) proposal_classifier_features = ( feature_extractor.extract_box_classifier_features( proposal_feature_maps, scope='TestScope')) features_shape = tf.shape(proposal_classifier_features) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [3, 7, 7, 1024]) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_inception_v2_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for embedded_ssd_mobilenet_v1_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import embedded_ssd_mobilenet_v1_feature_extractor from object_detection.models import ssd_feature_extractor_test class EmbeddedSSDMobileNetV1FeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a new feature extractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_meta_arch.SSDFeatureExtractor object. """ min_depth = 32 return (embedded_ssd_mobilenet_v1_feature_extractor. EmbeddedSSDMobileNetV1FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True)) def test_extract_features_returns_correct_shapes_256(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 16, 16, 512), (2, 8, 8, 1024), (2, 4, 4, 512), (2, 2, 2, 256), (2, 1, 1, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_dynamic_inputs(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 16, 16, 512), (2, 8, 8, 1024), (2, 4, 4, 512), (2, 2, 2, 256), (2, 1, 1, 256)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_enforcing_min_depth(self): image_height = 256 image_width = 256 depth_multiplier = 0.5**12 pad_to_multiple = 1 expected_feature_map_shape = [(2, 16, 16, 32), (2, 8, 8, 32), (2, 4, 4, 32), (2, 2, 2, 32), (2, 1, 1, 32)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_pad_to_multiple_of_1( self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 16, 16, 512), (2, 8, 8, 1024), (2, 4, 4, 512), (2, 2, 2, 256), (2, 1, 1, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_raises_error_with_pad_to_multiple_not_1(self): depth_multiplier = 1.0 pad_to_multiple = 2 with self.assertRaises(ValueError): _ = self._create_feature_extractor(depth_multiplier, pad_to_multiple) def test_extract_features_raises_error_with_invalid_image_size(self): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple) def test_preprocess_returns_correct_value_range(self): image_height = 256 image_width = 256 depth_multiplier = 1 pad_to_multiple = 1 test_image = np.random.rand(4, image_height, image_width, 3) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) def test_variables_only_created_in_scope(self): depth_multiplier = 1 pad_to_multiple = 1 scope_name = 'MobilenetV1' self.check_feature_extractor_variables_under_scope( depth_multiplier, pad_to_multiple, scope_name) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/embedded_ssd_mobilenet_v1_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd resnet v1 FPN feature extractors.""" import abc import numpy as np import tensorflow as tf from object_detection.models import ssd_feature_extractor_test class SSDResnetFPNFeatureExtractorTestBase( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): """Helper test class for SSD Resnet v1 FPN feature extractors.""" @abc.abstractmethod def _resnet_scope_name(self): pass @abc.abstractmethod def _fpn_scope_name(self): return 'fpn' def test_extract_features_returns_correct_shapes_256(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 32, 32, 256), (2, 16, 16, 256), (2, 8, 8, 256), (2, 4, 4, 256), (2, 2, 2, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_dynamic_inputs(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 32, 32, 256), (2, 16, 16, 256), (2, 8, 8, 256), (2, 4, 4, 256), (2, 2, 2, 256)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_pad_to_multiple(self): image_height = 254 image_width = 254 depth_multiplier = 1.0 pad_to_multiple = 32 expected_feature_map_shape = [(2, 32, 32, 256), (2, 16, 16, 256), (2, 8, 8, 256), (2, 4, 4, 256), (2, 2, 2, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_raises_error_with_invalid_image_size(self): image_height = 32 image_width = 32 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple) def test_preprocess_returns_correct_value_range(self): image_height = 128 image_width = 128 depth_multiplier = 1 pad_to_multiple = 1 test_image = tf.constant(np.random.rand(4, image_height, image_width, 3)) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) with self.test_session() as sess: test_image_out, preprocessed_image_out = sess.run( [test_image, preprocessed_image]) self.assertAllClose(preprocessed_image_out, test_image_out - [[123.68, 116.779, 103.939]]) def test_variables_only_created_in_scope(self): depth_multiplier = 1 pad_to_multiple = 1 g = tf.Graph() with g.as_default(): feature_extractor = self._create_feature_extractor( depth_multiplier, pad_to_multiple) preprocessed_inputs = tf.placeholder(tf.float32, (4, None, None, 3)) feature_extractor.extract_features(preprocessed_inputs) variables = g.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) for variable in variables: self.assertTrue( variable.name.startswith(self._resnet_scope_name()) or variable.name.startswith(self._fpn_scope_name()))
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_resnet_v1_fpn_feature_extractor_testbase.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """NASNet Faster R-CNN implementation. Learning Transferable Architectures for Scalable Image Recognition Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le https://arxiv.org/abs/1707.07012 """ import tensorflow as tf from object_detection.meta_architectures import faster_rcnn_meta_arch from nets.nasnet import nasnet from nets.nasnet import nasnet_utils arg_scope = tf.contrib.framework.arg_scope slim = tf.contrib.slim def nasnet_large_arg_scope_for_detection(is_batch_norm_training=False): """Defines the default arg scope for the NASNet-A Large for object detection. This provides a small edit to switch batch norm training on and off. Args: is_batch_norm_training: Boolean indicating whether to train with batch norm. Returns: An `arg_scope` to use for the NASNet Large Model. """ imagenet_scope = nasnet.nasnet_large_arg_scope() with arg_scope(imagenet_scope): with arg_scope([slim.batch_norm], is_training=is_batch_norm_training) as sc: return sc # Note: This is largely a copy of _build_nasnet_base inside nasnet.py but # with special edits to remove instantiation of the stem and the special # ability to receive as input a pair of hidden states. def _build_nasnet_base(hidden_previous, hidden, normal_cell, reduction_cell, hparams, true_cell_num, start_cell_num): """Constructs a NASNet image model.""" # Find where to place the reduction cells or stride normal cells reduction_indices = nasnet_utils.calc_reduction_layers( hparams.num_cells, hparams.num_reduction_layers) # Note: The None is prepended to match the behavior of _imagenet_stem() cell_outputs = [None, hidden_previous, hidden] net = hidden # NOTE: In the nasnet.py code, filter_scaling starts at 1.0. We instead # start at 2.0 because 1 reduction cell has been created which would # update the filter_scaling to 2.0. filter_scaling = 2.0 # Run the cells for cell_num in range(start_cell_num, hparams.num_cells): stride = 1 if hparams.skip_reduction_layer_input: prev_layer = cell_outputs[-2] if cell_num in reduction_indices: filter_scaling *= hparams.filter_scaling_rate net = reduction_cell( net, scope='reduction_cell_{}'.format(reduction_indices.index(cell_num)), filter_scaling=filter_scaling, stride=2, prev_layer=cell_outputs[-2], cell_num=true_cell_num) true_cell_num += 1 cell_outputs.append(net) if not hparams.skip_reduction_layer_input: prev_layer = cell_outputs[-2] net = normal_cell( net, scope='cell_{}'.format(cell_num), filter_scaling=filter_scaling, stride=stride, prev_layer=prev_layer, cell_num=true_cell_num) true_cell_num += 1 cell_outputs.append(net) # Final nonlinearity. # Note that we have dropped the final pooling, dropout and softmax layers # from the default nasnet version. with tf.variable_scope('final_layer'): net = tf.nn.relu(net) return net # TODO(shlens): Only fixed_shape_resizer is currently supported for NASNet # featurization. The reason for this is that nasnet.py only supports # inputs with fully known shapes. We need to update nasnet.py to handle # shapes not known at compile time. class FasterRCNNNASFeatureExtractor( faster_rcnn_meta_arch.FasterRCNNFeatureExtractor): """Faster R-CNN with NASNet-A feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 16. """ if first_stage_features_stride != 16: raise ValueError('`first_stage_features_stride` must be 16.') super(FasterRCNNNASFeatureExtractor, self).__init__( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) def preprocess(self, resized_inputs): """Faster R-CNN with NAS preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: A [batch, height_in, width_in, channels] float32 tensor representing a batch of images with values between 0 and 255.0. Returns: preprocessed_inputs: A [batch, height_out, width_out, channels] float32 tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def _extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features. Extracts features using the first half of the NASNet network. We construct the network in `align_feature_maps=True` mode, which means that all VALID paddings in the network are changed to SAME padding so that the feature maps are aligned. Args: preprocessed_inputs: A [batch, height, width, channels] float32 tensor representing a batch of images. scope: A scope name. Returns: rpn_feature_map: A tensor with shape [batch, height, width, depth] end_points: A dictionary mapping feature extractor tensor names to tensors Raises: ValueError: If the created network is missing the required activation. """ del scope if len(preprocessed_inputs.get_shape().as_list()) != 4: raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a ' 'tensor of shape %s' % preprocessed_inputs.get_shape()) with slim.arg_scope(nasnet_large_arg_scope_for_detection( is_batch_norm_training=self._train_batch_norm)): with arg_scope([slim.conv2d, slim.batch_norm, slim.separable_conv2d], reuse=self._reuse_weights): _, end_points = nasnet.build_nasnet_large( preprocessed_inputs, num_classes=None, is_training=self._is_training, final_endpoint='Cell_11') # Note that both 'Cell_10' and 'Cell_11' have equal depth = 2016. rpn_feature_map = tf.concat([end_points['Cell_10'], end_points['Cell_11']], 3) # nasnet.py does not maintain the batch size in the first dimension. # This work around permits us retaining the batch for below. batch = preprocessed_inputs.get_shape().as_list()[0] shape_without_batch = rpn_feature_map.get_shape().as_list()[1:] rpn_feature_map_shape = [batch] + shape_without_batch rpn_feature_map.set_shape(rpn_feature_map_shape) return rpn_feature_map, end_points def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. This function reconstructs the "second half" of the NASNet-A network after the part defined in `_extract_proposal_features`. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name. Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ del scope # Note that we always feed into 2 layers of equal depth # where the first N channels corresponds to previous hidden layer # and the second N channels correspond to the final hidden layer. hidden_previous, hidden = tf.split(proposal_feature_maps, 2, axis=3) # Note that what follows is largely a copy of build_nasnet_large() within # nasnet.py. We are copying to minimize code pollution in slim. # TODO(shlens,skornblith): Determine the appropriate drop path schedule. # For now the schedule is the default (1.0->0.7 over 250,000 train steps). hparams = nasnet.large_imagenet_config() if not self._is_training: hparams.set_hparam('drop_path_keep_prob', 1.0) # Calculate the total number of cells in the network # -- Add 2 for the reduction cells. total_num_cells = hparams.num_cells + 2 # -- And add 2 for the stem cells for ImageNet training. total_num_cells += 2 normal_cell = nasnet_utils.NasNetANormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps) reduction_cell = nasnet_utils.NasNetAReductionCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps) with arg_scope([slim.dropout, nasnet_utils.drop_path], is_training=self._is_training): with arg_scope([slim.batch_norm], is_training=self._train_batch_norm): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): # This corresponds to the cell number just past 'Cell_11' used by # by _extract_proposal_features(). start_cell_num = 12 # Note that this number equals: # start_cell_num + 2 stem cells + 1 reduction cell true_cell_num = 15 with slim.arg_scope(nasnet.nasnet_large_arg_scope()): net = _build_nasnet_base(hidden_previous, hidden, normal_cell=normal_cell, reduction_cell=reduction_cell, hparams=hparams, true_cell_num=true_cell_num, start_cell_num=start_cell_num) proposal_classifier_features = net return proposal_classifier_features def restore_from_classification_checkpoint_fn( self, first_stage_feature_extractor_scope, second_stage_feature_extractor_scope): """Returns a map of variables to load from a foreign checkpoint. Note that this overrides the default implementation in faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for NASNet-A checkpoints. Args: first_stage_feature_extractor_scope: A scope name for the first stage feature extractor. second_stage_feature_extractor_scope: A scope name for the second stage feature extractor. Returns: A dict mapping variable names (to load from a checkpoint) to variables in the model graph. """ # Note that the NAS checkpoint only contains the moving average version of # the Variables so we need to generate an appropriate dictionary mapping. variables_to_restore = {} for variable in tf.global_variables(): if variable.op.name.startswith( first_stage_feature_extractor_scope): var_name = variable.op.name.replace( first_stage_feature_extractor_scope + '/', '') var_name += '/ExponentialMovingAverage' variables_to_restore[var_name] = variable if variable.op.name.startswith( second_stage_feature_extractor_scope): var_name = variable.op.name.replace( second_stage_feature_extractor_scope + '/', '') var_name += '/ExponentialMovingAverage' variables_to_restore[var_name] = variable return variables_to_restore
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_nas_feature_extractor.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd_mobilenet_v1_ppn_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import ssd_feature_extractor_test from object_detection.models import ssd_mobilenet_v1_ppn_feature_extractor slim = tf.contrib.slim class SsdMobilenetV1PpnFeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, use_explicit_padding=False): """Constructs a new feature extractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. Returns: an ssd_meta_arch.SSDFeatureExtractor object. """ min_depth = 32 return (ssd_mobilenet_v1_ppn_feature_extractor. SSDMobileNetV1PpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding)) def test_extract_features_returns_correct_shapes_320(self): image_height = 320 image_width = 320 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 20, 20, 512), (2, 10, 10, 512), (2, 5, 5, 512), (2, 3, 3, 512), (2, 2, 2, 512), (2, 1, 1, 512)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_300(self): image_height = 300 image_width = 300 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 19, 19, 512), (2, 10, 10, 512), (2, 5, 5, 512), (2, 3, 3, 512), (2, 2, 2, 512), (2, 1, 1, 512)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_640(self): image_height = 640 image_width = 640 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 40, 40, 512), (2, 20, 20, 512), (2, 10, 10, 512), (2, 5, 5, 512), (2, 3, 3, 512), (2, 2, 2, 512)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_with_dynamic_image_shape(self): image_height = 320 image_width = 320 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 20, 20, 512), (2, 10, 10, 512), (2, 5, 5, 512), (2, 3, 3, 512), (2, 2, 2, 512), (2, 1, 1, 512)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_with_pad_to_multiple(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 32 expected_feature_map_shape = [(2, 20, 20, 512), (2, 10, 10, 512), (2, 5, 5, 512), (2, 3, 3, 512), (2, 2, 2, 512)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_enforcing_min_depth(self): image_height = 256 image_width = 256 depth_multiplier = 0.5**12 pad_to_multiple = 1 expected_feature_map_shape = [(2, 16, 16, 32), (2, 8, 8, 32), (2, 4, 4, 32), (2, 2, 2, 32), (2, 1, 1, 32)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_raises_error_with_invalid_image_size(self): image_height = 32 image_width = 32 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple) def test_preprocess_returns_correct_value_range(self): image_height = 128 image_width = 128 depth_multiplier = 1 pad_to_multiple = 1 test_image = np.random.rand(2, image_height, image_width, 3) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) def test_variables_only_created_in_scope(self): depth_multiplier = 1 pad_to_multiple = 1 scope_name = 'MobilenetV1' self.check_feature_extractor_variables_under_scope( depth_multiplier, pad_to_multiple, scope_name) def test_has_fused_batchnorm(self): image_height = 320 image_width = 320 depth_multiplier = 1 pad_to_multiple = 1 image_placeholder = tf.placeholder(tf.float32, [1, image_height, image_width, 3]) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(image_placeholder) _ = feature_extractor.extract_features(preprocessed_image) self.assertTrue(any(op.type == 'FusedBatchNorm' for op in tf.get_default_graph().get_operations())) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v1_ppn_feature_extractor_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSD feature extractors based on Resnet v1 and PPN architectures.""" import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from object_detection.utils import shape_utils from nets import resnet_v1 slim = tf.contrib.slim class _SSDResnetPpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD feature extractor based on resnet architecture and PPN.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_base_fn, resnet_scope_name, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, base_feature_map_depth=1024, num_layers=6, override_base_feature_extractor_hyperparams=False, use_bounded_activations=False): """Resnet based PPN Feature Extractor for SSD Models. See go/pooling-pyramid for more details about PPN. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. resnet_base_fn: base resnet network to use. resnet_scope_name: scope name to construct resnet reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. base_feature_map_depth: Depth of the base feature before the max pooling. num_layers: Number of layers used to make predictions. They are pooled from the base feature. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. use_bounded_activations: Whether or not to use bounded activations for resnet v1 bottleneck residual unit. Bounded activations better lend themselves to quantized inference. """ super(_SSDResnetPpnFeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights, use_explicit_padding, use_depthwise, override_base_feature_extractor_hyperparams) self._resnet_base_fn = resnet_base_fn self._resnet_scope_name = resnet_scope_name self._base_feature_map_depth = base_feature_map_depth self._num_layers = num_layers self._use_bounded_activations = use_bounded_activations def _filter_features(self, image_features): # TODO(rathodv): Change resnet endpoint to strip scope prefixes instead # of munging the scope here. filtered_image_features = dict({}) for key, feature in image_features.items(): feature_name = key.split('/')[-1] if feature_name in ['block2', 'block3', 'block4']: filtered_image_features[feature_name] = feature return filtered_image_features def preprocess(self, resized_inputs): """SSD preprocessing. VGG style channel mean subtraction as described here: https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-mdnge. Note that if the number of channels is not equal to 3, the mean subtraction will be skipped and the original resized_inputs will be returned. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ if resized_inputs.shape.as_list()[3] == 3: channel_means = [123.68, 116.779, 103.939] return resized_inputs - [[channel_means]] else: return resized_inputs def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] Raises: ValueError: depth multiplier is not supported. """ if self._depth_multiplier != 1.0: raise ValueError('Depth multiplier not supported.') preprocessed_inputs = shape_utils.check_min_image_dim( 129, preprocessed_inputs) with tf.variable_scope( self._resnet_scope_name, reuse=self._reuse_weights) as scope: with slim.arg_scope(resnet_v1.resnet_arg_scope()): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): with slim.arg_scope( [resnet_v1.bottleneck], use_bounded_activations=self._use_bounded_activations): _, activations = self._resnet_base_fn( inputs=ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), num_classes=None, is_training=None, global_pool=False, output_stride=None, store_non_strided_activations=True, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.pooling_pyramid_feature_maps( base_feature_map_depth=self._base_feature_map_depth, num_layers=self._num_layers, image_features={ 'image_features': self._filter_features(activations)['block3'] }) return feature_maps.values() class SSDResnet50V1PpnFeatureExtractor(_SSDResnetPpnFeatureExtractor): """PPN Resnet50 v1 Feature Extractor.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """Resnet50 v1 Feature Extractor for SSD Models. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDResnet50V1PpnFeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_v1.resnet_v1_50, 'resnet_v1_50', reuse_weights, use_explicit_padding, use_depthwise, override_base_feature_extractor_hyperparams=( override_base_feature_extractor_hyperparams)) class SSDResnet101V1PpnFeatureExtractor(_SSDResnetPpnFeatureExtractor): """PPN Resnet101 v1 Feature Extractor.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """Resnet101 v1 Feature Extractor for SSD Models. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDResnet101V1PpnFeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_v1.resnet_v1_101, 'resnet_v1_101', reuse_weights, use_explicit_padding, use_depthwise, override_base_feature_extractor_hyperparams=( override_base_feature_extractor_hyperparams)) class SSDResnet152V1PpnFeatureExtractor(_SSDResnetPpnFeatureExtractor): """PPN Resnet152 v1 Feature Extractor.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """Resnet152 v1 Feature Extractor for SSD Models. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDResnet152V1PpnFeatureExtractor, self).__init__( is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, resnet_v1.resnet_v1_152, 'resnet_v1_152', reuse_weights, use_explicit_padding, use_depthwise, override_base_feature_extractor_hyperparams=( override_base_feature_extractor_hyperparams))
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_resnet_v1_ppn_feature_extractor.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd resnet v1 feature extractors.""" import abc import numpy as np import tensorflow as tf from object_detection.models import ssd_feature_extractor_test class SSDResnetPpnFeatureExtractorTestBase( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): """Helper test class for SSD Resnet PPN feature extractors.""" @abc.abstractmethod def _scope_name(self): pass def test_extract_features_returns_correct_shapes_289(self): image_height = 289 image_width = 289 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 19, 19, 1024), (2, 10, 10, 1024), (2, 5, 5, 1024), (2, 3, 3, 1024), (2, 2, 2, 1024), (2, 1, 1, 1024)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_dynamic_inputs(self): image_height = 289 image_width = 289 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 19, 19, 1024), (2, 10, 10, 1024), (2, 5, 5, 1024), (2, 3, 3, 1024), (2, 2, 2, 1024), (2, 1, 1, 1024)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_raises_error_with_invalid_image_size(self): image_height = 32 image_width = 32 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple) def test_preprocess_returns_correct_value_range(self): image_height = 128 image_width = 128 depth_multiplier = 1 pad_to_multiple = 1 test_image = tf.constant(np.random.rand(4, image_height, image_width, 3)) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) with self.test_session() as sess: test_image_out, preprocessed_image_out = sess.run( [test_image, preprocessed_image]) self.assertAllClose(preprocessed_image_out, test_image_out - [[123.68, 116.779, 103.939]]) def test_variables_only_created_in_scope(self): depth_multiplier = 1 pad_to_multiple = 1 self.check_feature_extractor_variables_under_scope( depth_multiplier, pad_to_multiple, self._scope_name())
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_resnet_v1_ppn_feature_extractor_testbase.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd resnet v1 feature extractors.""" import tensorflow as tf from object_detection.models import ssd_resnet_v1_ppn_feature_extractor from object_detection.models import ssd_resnet_v1_ppn_feature_extractor_testbase class SSDResnet50V1PpnFeatureExtractorTest( ssd_resnet_v1_ppn_feature_extractor_testbase. SSDResnetPpnFeatureExtractorTestBase): """SSDResnet50v1 feature extractor test.""" def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False): min_depth = 32 is_training = True return ssd_resnet_v1_ppn_feature_extractor.SSDResnet50V1PpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding) def _scope_name(self): return 'resnet_v1_50' class SSDResnet101V1PpnFeatureExtractorTest( ssd_resnet_v1_ppn_feature_extractor_testbase. SSDResnetPpnFeatureExtractorTestBase): """SSDResnet101v1 feature extractor test.""" def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False): min_depth = 32 is_training = True return ( ssd_resnet_v1_ppn_feature_extractor.SSDResnet101V1PpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding)) def _scope_name(self): return 'resnet_v1_101' class SSDResnet152V1PpnFeatureExtractorTest( ssd_resnet_v1_ppn_feature_extractor_testbase. SSDResnetPpnFeatureExtractorTestBase): """SSDResnet152v1 feature extractor test.""" def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False): min_depth = 32 is_training = True return ( ssd_resnet_v1_ppn_feature_extractor.SSDResnet152V1PpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding)) def _scope_name(self): return 'resnet_v1_152' if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_resnet_v1_ppn_feature_extractor_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSDFeatureExtractor for MobilenetV2 features.""" import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from object_detection.utils import shape_utils from nets.mobilenet import mobilenet from nets.mobilenet import mobilenet_v2 slim = tf.contrib.slim class SSDMobileNetV2FeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD Feature Extractor using MobilenetV2 features.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """MobileNetV2 Feature Extractor for SSD Models. Mobilenet v2 (experimental), designed by sandler@. More details can be found in //knowledge/cerebra/brain/compression/mobilenet/mobilenet_experimental.py Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. reuse_weights: Whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDMobileNetV2FeatureExtractor, self).__init__( is_training=is_training, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams_fn=conv_hyperparams_fn, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) feature_map_layout = { 'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''], 'layer_depth': [-1, -1, 512, 256, 256, 128], 'use_depthwise': self._use_depthwise, 'use_explicit_padding': self._use_explicit_padding, } with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \ slim.arg_scope( [mobilenet.depth_multiplier], min_depth=self._min_depth): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v2.mobilenet_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='layer_19', depth_multiplier=self._depth_multiplier, use_explicit_padding=self._use_explicit_padding, scope=scope) with slim.arg_scope(self._conv_hyperparams_fn()): feature_maps = feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, image_features=image_features) return feature_maps.values()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v2_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.models.ssd_inception_v2_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import ssd_feature_extractor_test from object_detection.models import ssd_inception_v2_feature_extractor class SsdInceptionV2FeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True): """Constructs a SsdInceptionV2FeatureExtractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. Returns: an ssd_inception_v2_feature_extractor.SsdInceptionV2FeatureExtractor. """ min_depth = 32 return ssd_inception_v2_feature_extractor.SSDInceptionV2FeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, override_base_feature_extractor_hyperparams=True) def test_extract_features_returns_correct_shapes_128(self): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 8, 8, 576), (2, 4, 4, 1024), (2, 2, 2, 512), (2, 1, 1, 256), (2, 1, 1, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_dynamic_inputs(self): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 8, 8, 576), (2, 4, 4, 1024), (2, 2, 2, 512), (2, 1, 1, 256), (2, 1, 1, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_299(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 19, 19, 576), (2, 10, 10, 1024), (2, 5, 5, 512), (2, 3, 3, 256), (2, 2, 2, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_enforcing_min_depth(self): image_height = 299 image_width = 299 depth_multiplier = 0.5**12 pad_to_multiple = 1 expected_feature_map_shape = [(2, 19, 19, 128), (2, 10, 10, 128), (2, 5, 5, 32), (2, 3, 3, 32), (2, 2, 2, 32), (2, 1, 1, 32)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_returns_correct_shapes_with_pad_to_multiple(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 32 expected_feature_map_shape = [(2, 20, 20, 576), (2, 10, 10, 1024), (2, 5, 5, 512), (2, 3, 3, 256), (2, 2, 2, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape) def test_extract_features_raises_error_with_invalid_image_size(self): image_height = 32 image_width = 32 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple) def test_preprocess_returns_correct_value_range(self): image_height = 128 image_width = 128 depth_multiplier = 1 pad_to_multiple = 1 test_image = np.random.rand(4, image_height, image_width, 3) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) def test_variables_only_created_in_scope(self): depth_multiplier = 1 pad_to_multiple = 1 scope_name = 'InceptionV2' self.check_feature_extractor_variables_under_scope( depth_multiplier, pad_to_multiple, scope_name) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_inception_v2_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to generate a list of feature maps based on image features. Provides several feature map generators that can be used to build object detection feature extractors. Object detection feature extractors usually are built by stacking two components - A base feature extractor such as Inception V3 and a feature map generator. Feature map generators build on the base feature extractors and produce a list of final feature maps. """ import collections import functools import tensorflow as tf from object_detection.utils import ops slim = tf.contrib.slim def get_depth_fn(depth_multiplier, min_depth): """Builds a callable to compute depth (output channels) of conv filters. Args: depth_multiplier: a multiplier for the nominal depth. min_depth: a lower bound on the depth of filters. Returns: A callable that takes in a nominal depth and returns the depth to use. """ def multiply_depth(depth): new_depth = int(depth * depth_multiplier) return max(new_depth, min_depth) return multiply_depth class KerasMultiResolutionFeatureMaps(tf.keras.Model): """Generates multi resolution feature maps from input image features. A Keras model that generates multi-scale feature maps for detection as in the SSD papers by Liu et al: https://arxiv.org/pdf/1512.02325v2.pdf, See Sec 2.1. More specifically, when called on inputs it performs the following two tasks: 1) If a layer name is provided in the configuration, returns that layer as a feature map. 2) If a layer name is left as an empty string, constructs a new feature map based on the spatial shape and depth configuration. Note that the current implementation only supports generating new layers using convolution of stride 2 resulting in a spatial resolution reduction by a factor of 2. By default convolution kernel size is set to 3, and it can be customized by caller. An example of the configuration for Inception V3: { 'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 128] } When this feature generator object is called on input image_features: Args: image_features: A dictionary of handles to activation tensors from the base feature extractor. Returns: feature_maps: an OrderedDict mapping keys (feature map names) to tensors where each tensor has shape [batch, height_i, width_i, depth_i]. """ def __init__(self, feature_map_layout, depth_multiplier, min_depth, insert_1x1_conv, is_training, conv_hyperparams, freeze_batchnorm, name=None): """Constructor. Args: feature_map_layout: Dictionary of specifications for the feature map layouts in the following format (Inception V2/V3 respectively): { 'from_layer': ['Mixed_3c', 'Mixed_4c', 'Mixed_5c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 128] } or { 'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 128] } If 'from_layer' is specified, the specified feature map is directly used as a box predictor layer, and the layer_depth is directly infered from the feature map (instead of using the provided 'layer_depth' parameter). In this case, our convention is to set 'layer_depth' to -1 for clarity. Otherwise, if 'from_layer' is an empty string, then the box predictor layer will be built from the previous layer using convolution operations. Note that the current implementation only supports generating new layers using convolutions of stride 2 (resulting in a spatial resolution reduction by a factor of 2), and will be extended to a more flexible design. Convolution kernel size is set to 3 by default, and can be customized by 'conv_kernel_size' parameter (similarily, 'conv_kernel_size' should be set to -1 if 'from_layer' is specified). The created convolution operation will be a normal 2D convolution by default, and a depthwise convolution followed by 1x1 convolution if 'use_depthwise' is set to True. depth_multiplier: Depth multiplier for convolutional layers. min_depth: Minimum depth for convolutional layers. insert_1x1_conv: A boolean indicating whether an additional 1x1 convolution should be inserted before shrinking the feature map. is_training: Indicates whether the feature generator is in training mode. conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object containing hyperparameters for convolution ops. freeze_batchnorm: Bool. Whether to freeze batch norm parameters during training or not. When training with a small batch size (e.g. 1), it is desirable to freeze batch norm update and use pretrained batch norm params. name: A string name scope to assign to the model. If 'None', Keras will auto-generate one from the class name. """ super(KerasMultiResolutionFeatureMaps, self).__init__(name=name) self.feature_map_layout = feature_map_layout self.convolutions = [] depth_fn = get_depth_fn(depth_multiplier, min_depth) base_from_layer = '' use_explicit_padding = False if 'use_explicit_padding' in feature_map_layout: use_explicit_padding = feature_map_layout['use_explicit_padding'] use_depthwise = False if 'use_depthwise' in feature_map_layout: use_depthwise = feature_map_layout['use_depthwise'] for index, from_layer in enumerate(feature_map_layout['from_layer']): net = [] layer_depth = feature_map_layout['layer_depth'][index] conv_kernel_size = 3 if 'conv_kernel_size' in feature_map_layout: conv_kernel_size = feature_map_layout['conv_kernel_size'][index] if from_layer: base_from_layer = from_layer else: if insert_1x1_conv: layer_name = '{}_1_Conv2d_{}_1x1_{}'.format( base_from_layer, index, depth_fn(layer_depth / 2)) net.append(tf.keras.layers.Conv2D(depth_fn(layer_depth / 2), [1, 1], padding='SAME', strides=1, name=layer_name + '_conv', **conv_hyperparams.params())) net.append( conv_hyperparams.build_batch_norm( training=(is_training and not freeze_batchnorm), name=layer_name + '_batchnorm')) net.append( conv_hyperparams.build_activation_layer( name=layer_name)) layer_name = '{}_2_Conv2d_{}_{}x{}_s2_{}'.format( base_from_layer, index, conv_kernel_size, conv_kernel_size, depth_fn(layer_depth)) stride = 2 padding = 'SAME' if use_explicit_padding: padding = 'VALID' # We define this function here while capturing the value of # conv_kernel_size, to avoid holding a reference to the loop variable # conv_kernel_size inside of a lambda function def fixed_padding(features, kernel_size=conv_kernel_size): return ops.fixed_padding(features, kernel_size) net.append(tf.keras.layers.Lambda(fixed_padding)) # TODO(rathodv): Add some utilities to simplify the creation of # Depthwise & non-depthwise convolutions w/ normalization & activations if use_depthwise: net.append(tf.keras.layers.DepthwiseConv2D( [conv_kernel_size, conv_kernel_size], depth_multiplier=1, padding=padding, strides=stride, name=layer_name + '_depthwise_conv', **conv_hyperparams.params())) net.append( conv_hyperparams.build_batch_norm( training=(is_training and not freeze_batchnorm), name=layer_name + '_depthwise_batchnorm')) net.append( conv_hyperparams.build_activation_layer( name=layer_name + '_depthwise')) net.append(tf.keras.layers.Conv2D(depth_fn(layer_depth), [1, 1], padding='SAME', strides=1, name=layer_name + '_conv', **conv_hyperparams.params())) net.append( conv_hyperparams.build_batch_norm( training=(is_training and not freeze_batchnorm), name=layer_name + '_batchnorm')) net.append( conv_hyperparams.build_activation_layer( name=layer_name)) else: net.append(tf.keras.layers.Conv2D( depth_fn(layer_depth), [conv_kernel_size, conv_kernel_size], padding=padding, strides=stride, name=layer_name + '_conv', **conv_hyperparams.params())) net.append( conv_hyperparams.build_batch_norm( training=(is_training and not freeze_batchnorm), name=layer_name + '_batchnorm')) net.append( conv_hyperparams.build_activation_layer( name=layer_name)) # Until certain bugs are fixed in checkpointable lists, # this net must be appended only once it's been filled with layers self.convolutions.append(net) def call(self, image_features): """Generate the multi-resolution feature maps. Executed when calling the `.__call__` method on input. Args: image_features: A dictionary of handles to activation tensors from the base feature extractor. Returns: feature_maps: an OrderedDict mapping keys (feature map names) to tensors where each tensor has shape [batch, height_i, width_i, depth_i]. """ feature_maps = [] feature_map_keys = [] for index, from_layer in enumerate(self.feature_map_layout['from_layer']): if from_layer: feature_map = image_features[from_layer] feature_map_keys.append(from_layer) else: feature_map = feature_maps[-1] for layer in self.convolutions[index]: feature_map = layer(feature_map) layer_name = self.convolutions[index][-1].name feature_map_keys.append(layer_name) feature_maps.append(feature_map) return collections.OrderedDict( [(x, y) for (x, y) in zip(feature_map_keys, feature_maps)]) def multi_resolution_feature_maps(feature_map_layout, depth_multiplier, min_depth, insert_1x1_conv, image_features, pool_residual=False): """Generates multi resolution feature maps from input image features. Generates multi-scale feature maps for detection as in the SSD papers by Liu et al: https://arxiv.org/pdf/1512.02325v2.pdf, See Sec 2.1. More specifically, it performs the following two tasks: 1) If a layer name is provided in the configuration, returns that layer as a feature map. 2) If a layer name is left as an empty string, constructs a new feature map based on the spatial shape and depth configuration. Note that the current implementation only supports generating new layers using convolution of stride 2 resulting in a spatial resolution reduction by a factor of 2. By default convolution kernel size is set to 3, and it can be customized by caller. An example of the configuration for Inception V3: { 'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 128] } Args: feature_map_layout: Dictionary of specifications for the feature map layouts in the following format (Inception V2/V3 respectively): { 'from_layer': ['Mixed_3c', 'Mixed_4c', 'Mixed_5c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 128] } or { 'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''], 'layer_depth': [-1, -1, -1, 512, 256, 128] } If 'from_layer' is specified, the specified feature map is directly used as a box predictor layer, and the layer_depth is directly infered from the feature map (instead of using the provided 'layer_depth' parameter). In this case, our convention is to set 'layer_depth' to -1 for clarity. Otherwise, if 'from_layer' is an empty string, then the box predictor layer will be built from the previous layer using convolution operations. Note that the current implementation only supports generating new layers using convolutions of stride 2 (resulting in a spatial resolution reduction by a factor of 2), and will be extended to a more flexible design. Convolution kernel size is set to 3 by default, and can be customized by 'conv_kernel_size' parameter (similarily, 'conv_kernel_size' should be set to -1 if 'from_layer' is specified). The created convolution operation will be a normal 2D convolution by default, and a depthwise convolution followed by 1x1 convolution if 'use_depthwise' is set to True. depth_multiplier: Depth multiplier for convolutional layers. min_depth: Minimum depth for convolutional layers. insert_1x1_conv: A boolean indicating whether an additional 1x1 convolution should be inserted before shrinking the feature map. image_features: A dictionary of handles to activation tensors from the base feature extractor. pool_residual: Whether to add an average pooling layer followed by a residual connection between subsequent feature maps when the channel depth match. For example, with option 'layer_depth': [-1, 512, 256, 256], a pooling and residual layer is added between the third and forth feature map. This option is better used with Weight Shared Convolution Box Predictor when all feature maps have the same channel depth to encourage more consistent features across multi-scale feature maps. Returns: feature_maps: an OrderedDict mapping keys (feature map names) to tensors where each tensor has shape [batch, height_i, width_i, depth_i]. Raises: ValueError: if the number entries in 'from_layer' and 'layer_depth' do not match. ValueError: if the generated layer does not have the same resolution as specified. """ depth_fn = get_depth_fn(depth_multiplier, min_depth) feature_map_keys = [] feature_maps = [] base_from_layer = '' use_explicit_padding = False if 'use_explicit_padding' in feature_map_layout: use_explicit_padding = feature_map_layout['use_explicit_padding'] use_depthwise = False if 'use_depthwise' in feature_map_layout: use_depthwise = feature_map_layout['use_depthwise'] for index, from_layer in enumerate(feature_map_layout['from_layer']): layer_depth = feature_map_layout['layer_depth'][index] conv_kernel_size = 3 if 'conv_kernel_size' in feature_map_layout: conv_kernel_size = feature_map_layout['conv_kernel_size'][index] if from_layer: feature_map = image_features[from_layer] base_from_layer = from_layer feature_map_keys.append(from_layer) else: pre_layer = feature_maps[-1] pre_layer_depth = pre_layer.get_shape().as_list()[3] intermediate_layer = pre_layer if insert_1x1_conv: layer_name = '{}_1_Conv2d_{}_1x1_{}'.format( base_from_layer, index, depth_fn(layer_depth / 2)) intermediate_layer = slim.conv2d( pre_layer, depth_fn(layer_depth / 2), [1, 1], padding='SAME', stride=1, scope=layer_name) layer_name = '{}_2_Conv2d_{}_{}x{}_s2_{}'.format( base_from_layer, index, conv_kernel_size, conv_kernel_size, depth_fn(layer_depth)) stride = 2 padding = 'SAME' if use_explicit_padding: padding = 'VALID' intermediate_layer = ops.fixed_padding( intermediate_layer, conv_kernel_size) if use_depthwise: feature_map = slim.separable_conv2d( intermediate_layer, None, [conv_kernel_size, conv_kernel_size], depth_multiplier=1, padding=padding, stride=stride, scope=layer_name + '_depthwise') feature_map = slim.conv2d( feature_map, depth_fn(layer_depth), [1, 1], padding='SAME', stride=1, scope=layer_name) if pool_residual and pre_layer_depth == depth_fn(layer_depth): feature_map += slim.avg_pool2d( pre_layer, [3, 3], padding='SAME', stride=2, scope=layer_name + '_pool') else: feature_map = slim.conv2d( intermediate_layer, depth_fn(layer_depth), [conv_kernel_size, conv_kernel_size], padding=padding, stride=stride, scope=layer_name) feature_map_keys.append(layer_name) feature_maps.append(feature_map) return collections.OrderedDict( [(x, y) for (x, y) in zip(feature_map_keys, feature_maps)]) def fpn_top_down_feature_maps(image_features, depth, use_depthwise=False, use_explicit_padding=False, scope=None): """Generates `top-down` feature maps for Feature Pyramid Networks. See https://arxiv.org/abs/1612.03144 for details. Args: image_features: list of tuples of (tensor_name, image_feature_tensor). Spatial resolutions of succesive tensors must reduce exactly by a factor of 2. depth: depth of output feature maps. use_depthwise: whether to use depthwise separable conv instead of regular conv. use_explicit_padding: whether to use explicit padding. scope: A scope name to wrap this op under. Returns: feature_maps: an OrderedDict mapping keys (feature map names) to tensors where each tensor has shape [batch, height_i, width_i, depth_i]. """ with tf.name_scope(scope, 'top_down'): num_levels = len(image_features) output_feature_maps_list = [] output_feature_map_keys = [] padding = 'VALID' if use_explicit_padding else 'SAME' kernel_size = 3 with slim.arg_scope( [slim.conv2d, slim.separable_conv2d], padding=padding, stride=1): top_down = slim.conv2d( image_features[-1][1], depth, [1, 1], activation_fn=None, normalizer_fn=None, scope='projection_%d' % num_levels) output_feature_maps_list.append(top_down) output_feature_map_keys.append( 'top_down_%s' % image_features[-1][0]) for level in reversed(range(num_levels - 1)): top_down = ops.nearest_neighbor_upsampling(top_down, 2) residual = slim.conv2d( image_features[level][1], depth, [1, 1], activation_fn=None, normalizer_fn=None, scope='projection_%d' % (level + 1)) if use_explicit_padding: # slice top_down to the same shape as residual residual_shape = tf.shape(residual) top_down = top_down[:, :residual_shape[1], :residual_shape[2], :] top_down += residual if use_depthwise: conv_op = functools.partial(slim.separable_conv2d, depth_multiplier=1) else: conv_op = slim.conv2d if use_explicit_padding: top_down = ops.fixed_padding(top_down, kernel_size) output_feature_maps_list.append(conv_op( top_down, depth, [kernel_size, kernel_size], scope='smoothing_%d' % (level + 1))) output_feature_map_keys.append('top_down_%s' % image_features[level][0]) return collections.OrderedDict(reversed( list(zip(output_feature_map_keys, output_feature_maps_list)))) def pooling_pyramid_feature_maps(base_feature_map_depth, num_layers, image_features, replace_pool_with_conv=False): """Generates pooling pyramid feature maps. The pooling pyramid feature maps is motivated by multi_resolution_feature_maps. The main difference are that it is simpler and reduces the number of free parameters. More specifically: - Instead of using convolutions to shrink the feature map, it uses max pooling, therefore totally gets rid of the parameters in convolution. - By pooling feature from larger map up to a single cell, it generates features in the same feature space. - Instead of independently making box predictions from individual maps, it shares the same classifier across different feature maps, therefore reduces the "mis-calibration" across different scales. See go/ppn-detection for more details. Args: base_feature_map_depth: Depth of the base feature before the max pooling. num_layers: Number of layers used to make predictions. They are pooled from the base feature. image_features: A dictionary of handles to activation tensors from the feature extractor. replace_pool_with_conv: Whether or not to replace pooling operations with convolutions in the PPN. Default is False. Returns: feature_maps: an OrderedDict mapping keys (feature map names) to tensors where each tensor has shape [batch, height_i, width_i, depth_i]. Raises: ValueError: image_features does not contain exactly one entry """ if len(image_features) != 1: raise ValueError('image_features should be a dictionary of length 1.') image_features = image_features[image_features.keys()[0]] feature_map_keys = [] feature_maps = [] feature_map_key = 'Base_Conv2d_1x1_%d' % base_feature_map_depth if base_feature_map_depth > 0: image_features = slim.conv2d( image_features, base_feature_map_depth, [1, 1], # kernel size padding='SAME', stride=1, scope=feature_map_key) # Add a 1x1 max-pooling node (a no op node) immediately after the conv2d for # TPU v1 compatibility. Without the following dummy op, TPU runtime # compiler will combine the convolution with one max-pooling below into a # single cycle, so getting the conv2d feature becomes impossible. image_features = slim.max_pool2d( image_features, [1, 1], padding='SAME', stride=1, scope=feature_map_key) feature_map_keys.append(feature_map_key) feature_maps.append(image_features) feature_map = image_features if replace_pool_with_conv: with slim.arg_scope([slim.conv2d], padding='SAME', stride=2): for i in range(num_layers - 1): feature_map_key = 'Conv2d_{}_3x3_s2_{}'.format(i, base_feature_map_depth) feature_map = slim.conv2d( feature_map, base_feature_map_depth, [3, 3], scope=feature_map_key) feature_map_keys.append(feature_map_key) feature_maps.append(feature_map) else: with slim.arg_scope([slim.max_pool2d], padding='SAME', stride=2): for i in range(num_layers - 1): feature_map_key = 'MaxPool2d_%d_2x2' % i feature_map = slim.max_pool2d( feature_map, [2, 2], padding='SAME', scope=feature_map_key) feature_map_keys.append(feature_map_key) feature_maps.append(feature_map) return collections.OrderedDict( [(x, y) for (x, y) in zip(feature_map_keys, feature_maps)])
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/feature_map_generators.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base test class SSDFeatureExtractors.""" from abc import abstractmethod import itertools import numpy as np import tensorflow as tf from google.protobuf import text_format from object_detection.builders import hyperparams_builder from object_detection.protos import hyperparams_pb2 from object_detection.utils import test_case class SsdFeatureExtractorTestBase(test_case.TestCase): def _build_conv_hyperparams(self): conv_hyperparams = hyperparams_pb2.Hyperparams() conv_hyperparams_text_proto = """ activation: RELU_6 regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } batch_norm { scale: false } """ text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams) return hyperparams_builder.KerasLayerHyperparams(conv_hyperparams) def conv_hyperparams_fn(self): with tf.contrib.slim.arg_scope([]) as sc: return sc @abstractmethod def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False, use_keras=False): """Constructs a new feature extractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. use_explicit_padding: use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. use_keras: if True builds a keras-based feature extractor, if False builds a slim-based one. Returns: an ssd_meta_arch.SSDFeatureExtractor or an ssd_meta_arch.SSDKerasFeatureExtractor object. """ pass def _extract_features(self, image_tensor, depth_multiplier, pad_to_multiple, use_explicit_padding=False, use_keras=False): try: feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple, use_explicit_padding, use_keras=use_keras) # If the unit test does not support a use_keras arg, it raises an error: except TypeError: feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple, use_explicit_padding) if use_keras: feature_maps = feature_extractor(image_tensor) else: feature_maps = feature_extractor.extract_features(image_tensor) return feature_maps def check_extract_features_returns_correct_shape( self, batch_size, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shapes, use_explicit_padding=False, use_keras=False): def graph_fn(image_tensor): return self._extract_features(image_tensor, depth_multiplier, pad_to_multiple, use_explicit_padding, use_keras=use_keras) image_tensor = np.random.rand(batch_size, image_height, image_width, 3).astype(np.float32) feature_maps = self.execute(graph_fn, [image_tensor]) for feature_map, expected_shape in itertools.izip( feature_maps, expected_feature_map_shapes): self.assertAllEqual(feature_map.shape, expected_shape) def check_extract_features_returns_correct_shapes_with_dynamic_inputs( self, batch_size, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shapes, use_explicit_padding=False, use_keras=False): def graph_fn(image_height, image_width): image_tensor = tf.random_uniform([batch_size, image_height, image_width, 3], dtype=tf.float32) return self._extract_features(image_tensor, depth_multiplier, pad_to_multiple, use_explicit_padding, use_keras=use_keras) feature_maps = self.execute_cpu(graph_fn, [ np.array(image_height, dtype=np.int32), np.array(image_width, dtype=np.int32) ]) for feature_map, expected_shape in itertools.izip( feature_maps, expected_feature_map_shapes): self.assertAllEqual(feature_map.shape, expected_shape) def check_extract_features_raises_error_with_invalid_image_size( self, image_height, image_width, depth_multiplier, pad_to_multiple, use_keras=False): preprocessed_inputs = tf.placeholder(tf.float32, (4, None, None, 3)) feature_maps = self._extract_features(preprocessed_inputs, depth_multiplier, pad_to_multiple, use_keras=use_keras) test_preprocessed_image = np.random.rand(4, image_height, image_width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(feature_maps, feed_dict={preprocessed_inputs: test_preprocessed_image}) def check_feature_extractor_variables_under_scope( self, depth_multiplier, pad_to_multiple, scope_name, use_keras=False): variables = self.get_feature_extractor_variables( depth_multiplier, pad_to_multiple, use_keras) for variable in variables: self.assertTrue(variable.name.startswith(scope_name)) def get_feature_extractor_variables( self, depth_multiplier, pad_to_multiple, use_keras=False): g = tf.Graph() with g.as_default(): preprocessed_inputs = tf.placeholder(tf.float32, (4, None, None, 3)) self._extract_features(preprocessed_inputs, depth_multiplier, pad_to_multiple, use_keras=use_keras) return g.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_feature_extractor_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd_mobilenet_v1_fpn_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import ssd_feature_extractor_test from object_detection.models import ssd_mobilenet_v1_fpn_feature_extractor slim = tf.contrib.slim class SsdMobilenetV1FpnFeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, is_training=True, use_explicit_padding=False): """Constructs a new feature extractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. is_training: whether the network is in training mode. use_explicit_padding: Use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. Returns: an ssd_meta_arch.SSDFeatureExtractor object. """ min_depth = 32 return (ssd_mobilenet_v1_fpn_feature_extractor. SSDMobileNetV1FpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding)) def test_extract_features_returns_correct_shapes_256(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 32, 32, 256), (2, 16, 16, 256), (2, 8, 8, 256), (2, 4, 4, 256), (2, 2, 2, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_384(self): image_height = 320 image_width = 320 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 40, 40, 256), (2, 20, 20, 256), (2, 10, 10, 256), (2, 5, 5, 256), (2, 3, 3, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_with_dynamic_image_shape(self): image_height = 256 image_width = 256 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 32, 32, 256), (2, 16, 16, 256), (2, 8, 8, 256), (2, 4, 4, 256), (2, 2, 2, 256)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_with_pad_to_multiple(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 32 expected_feature_map_shape = [(2, 40, 40, 256), (2, 20, 20, 256), (2, 10, 10, 256), (2, 5, 5, 256), (2, 3, 3, 256)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_returns_correct_shapes_enforcing_min_depth(self): image_height = 256 image_width = 256 depth_multiplier = 0.5**12 pad_to_multiple = 1 expected_feature_map_shape = [(2, 32, 32, 32), (2, 16, 16, 32), (2, 8, 8, 32), (2, 4, 4, 32), (2, 2, 2, 32)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=False) self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True) def test_extract_features_raises_error_with_invalid_image_size(self): image_height = 32 image_width = 32 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple) def test_preprocess_returns_correct_value_range(self): image_height = 256 image_width = 256 depth_multiplier = 1 pad_to_multiple = 1 test_image = np.random.rand(2, image_height, image_width, 3) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) def test_variables_only_created_in_scope(self): depth_multiplier = 1 pad_to_multiple = 1 scope_name = 'MobilenetV1' self.check_feature_extractor_variables_under_scope( depth_multiplier, pad_to_multiple, scope_name) def test_fused_batchnorm(self): image_height = 256 image_width = 256 depth_multiplier = 1 pad_to_multiple = 1 image_placeholder = tf.placeholder(tf.float32, [1, image_height, image_width, 3]) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple) preprocessed_image = feature_extractor.preprocess(image_placeholder) _ = feature_extractor.extract_features(preprocessed_image) self.assertTrue( any(op.type == 'FusedBatchNorm' for op in tf.get_default_graph().get_operations())) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v1_fpn_feature_extractor_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd_mobilenet_v2_feature_extractor.""" from absl.testing import parameterized import numpy as np import tensorflow as tf from object_detection.models import ssd_feature_extractor_test from object_detection.models import ssd_mobilenet_v2_feature_extractor from object_detection.models import ssd_mobilenet_v2_keras_feature_extractor slim = tf.contrib.slim @parameterized.parameters( {'use_keras': False}, {'use_keras': True}, ) class SsdMobilenetV2FeatureExtractorTest( ssd_feature_extractor_test.SsdFeatureExtractorTestBase): def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False, use_keras=False): """Constructs a new feature extractor. Args: depth_multiplier: float depth multiplier for feature extractor pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. use_explicit_padding: use 'VALID' padding for convolutions, but prepad inputs so that the output dimensions are the same as if 'SAME' padding were used. use_keras: if True builds a keras-based feature extractor, if False builds a slim-based one. Returns: an ssd_meta_arch.SSDFeatureExtractor object. """ min_depth = 32 if use_keras: return (ssd_mobilenet_v2_keras_feature_extractor. SSDMobileNetV2KerasFeatureExtractor( is_training=False, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams=self._build_conv_hyperparams(), freeze_batchnorm=False, inplace_batchnorm_update=False, use_explicit_padding=use_explicit_padding, name='MobilenetV2')) else: return ssd_mobilenet_v2_feature_extractor.SSDMobileNetV2FeatureExtractor( False, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding) def test_extract_features_returns_correct_shapes_128(self, use_keras): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 8, 8, 576), (2, 4, 4, 1280), (2, 2, 2, 512), (2, 1, 1, 256), (2, 1, 1, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_keras=use_keras) def test_extract_features_returns_correct_shapes_128_explicit_padding( self, use_keras): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 8, 8, 576), (2, 4, 4, 1280), (2, 2, 2, 512), (2, 1, 1, 256), (2, 1, 1, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_explicit_padding=True, use_keras=use_keras) def test_extract_features_returns_correct_shapes_with_dynamic_inputs( self, use_keras): image_height = 128 image_width = 128 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 8, 8, 576), (2, 4, 4, 1280), (2, 2, 2, 512), (2, 1, 1, 256), (2, 1, 1, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_keras=use_keras) def test_extract_features_returns_correct_shapes_299(self, use_keras): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 1 expected_feature_map_shape = [(2, 19, 19, 576), (2, 10, 10, 1280), (2, 5, 5, 512), (2, 3, 3, 256), (2, 2, 2, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_keras=use_keras) def test_extract_features_returns_correct_shapes_enforcing_min_depth( self, use_keras): image_height = 299 image_width = 299 depth_multiplier = 0.5**12 pad_to_multiple = 1 expected_feature_map_shape = [(2, 19, 19, 192), (2, 10, 10, 32), (2, 5, 5, 32), (2, 3, 3, 32), (2, 2, 2, 32), (2, 1, 1, 32)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_keras=use_keras) def test_extract_features_returns_correct_shapes_with_pad_to_multiple( self, use_keras): image_height = 299 image_width = 299 depth_multiplier = 1.0 pad_to_multiple = 32 expected_feature_map_shape = [(2, 20, 20, 576), (2, 10, 10, 1280), (2, 5, 5, 512), (2, 3, 3, 256), (2, 2, 2, 256), (2, 1, 1, 128)] self.check_extract_features_returns_correct_shape( 2, image_height, image_width, depth_multiplier, pad_to_multiple, expected_feature_map_shape, use_keras=use_keras) def test_extract_features_raises_error_with_invalid_image_size( self, use_keras): image_height = 32 image_width = 32 depth_multiplier = 1.0 pad_to_multiple = 1 self.check_extract_features_raises_error_with_invalid_image_size( image_height, image_width, depth_multiplier, pad_to_multiple, use_keras=use_keras) def test_preprocess_returns_correct_value_range(self, use_keras): image_height = 128 image_width = 128 depth_multiplier = 1 pad_to_multiple = 1 test_image = np.random.rand(4, image_height, image_width, 3) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple, use_keras=use_keras) preprocessed_image = feature_extractor.preprocess(test_image) self.assertTrue(np.all(np.less_equal(np.abs(preprocessed_image), 1.0))) def test_variables_only_created_in_scope(self, use_keras): depth_multiplier = 1 pad_to_multiple = 1 scope_name = 'MobilenetV2' self.check_feature_extractor_variables_under_scope( depth_multiplier, pad_to_multiple, scope_name, use_keras=use_keras) def test_variable_count(self, use_keras): depth_multiplier = 1 pad_to_multiple = 1 variables = self.get_feature_extractor_variables( depth_multiplier, pad_to_multiple, use_keras=use_keras) self.assertEqual(len(variables), 292) def test_has_fused_batchnorm(self, use_keras): image_height = 40 image_width = 40 depth_multiplier = 1 pad_to_multiple = 1 image_placeholder = tf.placeholder(tf.float32, [1, image_height, image_width, 3]) feature_extractor = self._create_feature_extractor(depth_multiplier, pad_to_multiple, use_keras=use_keras) preprocessed_image = feature_extractor.preprocess(image_placeholder) if use_keras: _ = feature_extractor(preprocessed_image) else: _ = feature_extractor.extract_features(preprocessed_image) self.assertTrue(any(op.type == 'FusedBatchNorm' for op in tf.get_default_graph().get_operations())) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v2_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.models.faster_rcnn_resnet_v1_feature_extractor.""" import numpy as np import tensorflow as tf from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as faster_rcnn_resnet_v1 class FasterRcnnResnetV1FeatureExtractorTest(tf.test.TestCase): def _build_feature_extractor(self, first_stage_features_stride, architecture='resnet_v1_101'): feature_extractor_map = { 'resnet_v1_50': faster_rcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor, 'resnet_v1_101': faster_rcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor, 'resnet_v1_152': faster_rcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor } return feature_extractor_map[architecture]( is_training=False, first_stage_features_stride=first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0) def test_extract_proposal_features_returns_expected_size(self): for architecture in ['resnet_v1_50', 'resnet_v1_101', 'resnet_v1_152']: feature_extractor = self._build_feature_extractor( first_stage_features_stride=16, architecture=architecture) preprocessed_inputs = tf.random_uniform( [4, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [4, 14, 14, 1024]) def test_extract_proposal_features_stride_eight(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=8) preprocessed_inputs = tf.random_uniform( [4, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [4, 28, 28, 1024]) def test_extract_proposal_features_half_size_input(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 112, 112, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 7, 7, 1024]) def test_extract_proposal_features_dies_on_invalid_stride(self): with self.assertRaises(ValueError): self._build_feature_extractor(first_stage_features_stride=99) def test_extract_proposal_features_dies_on_very_small_images(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.placeholder(tf.float32, (4, None, None, 3)) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) with self.assertRaises(tf.errors.InvalidArgumentError): sess.run( features_shape, feed_dict={preprocessed_inputs: np.random.rand(4, 32, 32, 3)}) def test_extract_proposal_features_dies_with_incorrect_rank_inputs(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [224, 224, 3], maxval=255, dtype=tf.float32) with self.assertRaises(ValueError): feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') def test_extract_box_classifier_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) proposal_feature_maps = tf.random_uniform( [3, 7, 7, 1024], maxval=255, dtype=tf.float32) proposal_classifier_features = ( feature_extractor.extract_box_classifier_features( proposal_feature_maps, scope='TestScope')) features_shape = tf.shape(proposal_classifier_features) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [3, 7, 7, 2048]) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_resnet_v1_feature_extractor_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SSD MobilenetV1 FPN Feature Extractor.""" import copy import functools import tensorflow as tf from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import feature_map_generators from object_detection.utils import context_manager from object_detection.utils import ops from object_detection.utils import shape_utils from nets import mobilenet_v1 slim = tf.contrib.slim # A modified config of mobilenet v1 that makes it more detection friendly, def _create_modified_mobilenet_config(): conv_defs = copy.deepcopy(mobilenet_v1.MOBILENETV1_CONV_DEFS) conv_defs[-2] = mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=2, depth=512) conv_defs[-1] = mobilenet_v1.DepthSepConv(kernel=[3, 3], stride=1, depth=256) return conv_defs class SSDMobileNetV1FpnFeatureExtractor(ssd_meta_arch.SSDFeatureExtractor): """SSD Feature Extractor using MobilenetV1 FPN features.""" def __init__(self, is_training, depth_multiplier, min_depth, pad_to_multiple, conv_hyperparams_fn, fpn_min_level=3, fpn_max_level=7, additional_layer_depth=256, reuse_weights=None, use_explicit_padding=False, use_depthwise=False, override_base_feature_extractor_hyperparams=False): """SSD FPN feature extractor based on Mobilenet v1 architecture. Args: is_training: whether the network is in training mode. depth_multiplier: float depth multiplier for feature extractor. min_depth: minimum feature extractor depth. pad_to_multiple: the nearest multiple to zero pad the input height and width dimensions to. conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d and separable_conv2d ops in the layers that are added on top of the base feature extractor. fpn_min_level: the highest resolution feature map to use in FPN. The valid values are {2, 3, 4, 5} which map to MobileNet v1 layers {Conv2d_3_pointwise, Conv2d_5_pointwise, Conv2d_11_pointwise, Conv2d_13_pointwise}, respectively. fpn_max_level: the smallest resolution feature map to construct or use in FPN. FPN constructions uses features maps starting from fpn_min_level upto the fpn_max_level. In the case that there are not enough feature maps in the backbone network, additional feature maps are created by applying stride 2 convolutions until we get the desired number of fpn levels. additional_layer_depth: additional feature map layer channel depth. reuse_weights: whether to reuse variables. Default is None. use_explicit_padding: Whether to use explicit padding when extracting features. Default is False. use_depthwise: Whether to use depthwise convolutions. Default is False. override_base_feature_extractor_hyperparams: Whether to override hyperparameters of the base feature extractor with the one from `conv_hyperparams_fn`. """ super(SSDMobileNetV1FpnFeatureExtractor, self).__init__( is_training=is_training, depth_multiplier=depth_multiplier, min_depth=min_depth, pad_to_multiple=pad_to_multiple, conv_hyperparams_fn=conv_hyperparams_fn, reuse_weights=reuse_weights, use_explicit_padding=use_explicit_padding, use_depthwise=use_depthwise, override_base_feature_extractor_hyperparams= override_base_feature_extractor_hyperparams) self._fpn_min_level = fpn_min_level self._fpn_max_level = fpn_max_level self._additional_layer_depth = additional_layer_depth self._conv_defs = None if self._use_depthwise: self._conv_defs = _create_modified_mobilenet_config() def preprocess(self, resized_inputs): """SSD preprocessing. Maps pixel values to the range [-1, 1]. Args: resized_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. """ return (2.0 / 255.0) * resized_inputs - 1.0 def extract_features(self, preprocessed_inputs): """Extract features from preprocessed inputs. Args: preprocessed_inputs: a [batch, height, width, channels] float tensor representing a batch of images. Returns: feature_maps: a list of tensors where the ith tensor has shape [batch, height_i, width_i, depth_i] """ preprocessed_inputs = shape_utils.check_min_image_dim( 33, preprocessed_inputs) with tf.variable_scope('MobilenetV1', reuse=self._reuse_weights) as scope: with slim.arg_scope( mobilenet_v1.mobilenet_v1_arg_scope( is_training=None, regularize_depthwise=True)): with (slim.arg_scope(self._conv_hyperparams_fn()) if self._override_base_feature_extractor_hyperparams else context_manager.IdentityContextManager()): _, image_features = mobilenet_v1.mobilenet_v1_base( ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple), final_endpoint='Conv2d_13_pointwise', min_depth=self._min_depth, depth_multiplier=self._depth_multiplier, conv_defs=self._conv_defs, use_explicit_padding=self._use_explicit_padding, scope=scope) depth_fn = lambda d: max(int(d * self._depth_multiplier), self._min_depth) with slim.arg_scope(self._conv_hyperparams_fn()): with tf.variable_scope('fpn', reuse=self._reuse_weights): feature_blocks = [ 'Conv2d_3_pointwise', 'Conv2d_5_pointwise', 'Conv2d_11_pointwise', 'Conv2d_13_pointwise' ] base_fpn_max_level = min(self._fpn_max_level, 5) feature_block_list = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_block_list.append(feature_blocks[level - 2]) fpn_features = feature_map_generators.fpn_top_down_feature_maps( [(key, image_features[key]) for key in feature_block_list], depth=depth_fn(self._additional_layer_depth), use_depthwise=self._use_depthwise, use_explicit_padding=self._use_explicit_padding) feature_maps = [] for level in range(self._fpn_min_level, base_fpn_max_level + 1): feature_maps.append(fpn_features['top_down_{}'.format( feature_blocks[level - 2])]) last_feature_map = fpn_features['top_down_{}'.format( feature_blocks[base_fpn_max_level - 2])] # Construct coarse features padding = 'VALID' if self._use_explicit_padding else 'SAME' kernel_size = 3 for i in range(base_fpn_max_level + 1, self._fpn_max_level + 1): if self._use_depthwise: conv_op = functools.partial( slim.separable_conv2d, depth_multiplier=1) else: conv_op = slim.conv2d if self._use_explicit_padding: last_feature_map = ops.fixed_padding( last_feature_map, kernel_size) last_feature_map = conv_op( last_feature_map, num_outputs=depth_fn(self._additional_layer_depth), kernel_size=[kernel_size, kernel_size], stride=2, padding=padding, scope='bottom_up_Conv2d_{}'.format(i - base_fpn_max_level + 13)) feature_maps.append(last_feature_map) return feature_maps
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_mobilenet_v1_fpn_feature_extractor.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for models.faster_rcnn_nas_feature_extractor.""" import tensorflow as tf from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas class FasterRcnnNASFeatureExtractorTest(tf.test.TestCase): def _build_feature_extractor(self, first_stage_features_stride): return frcnn_nas.FasterRCNNNASFeatureExtractor( is_training=False, first_stage_features_stride=first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0) def test_extract_proposal_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 299, 299, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 19, 19, 4032]) def test_extract_proposal_features_input_size_224(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 224, 224, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 14, 14, 4032]) def test_extract_proposal_features_input_size_112(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [1, 112, 112, 3], maxval=255, dtype=tf.float32) rpn_feature_map, _ = feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') features_shape = tf.shape(rpn_feature_map) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [1, 7, 7, 4032]) def test_extract_proposal_features_dies_on_invalid_stride(self): with self.assertRaises(ValueError): self._build_feature_extractor(first_stage_features_stride=99) def test_extract_proposal_features_dies_with_incorrect_rank_inputs(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) preprocessed_inputs = tf.random_uniform( [224, 224, 3], maxval=255, dtype=tf.float32) with self.assertRaises(ValueError): feature_extractor.extract_proposal_features( preprocessed_inputs, scope='TestScope') def test_extract_box_classifier_features_returns_expected_size(self): feature_extractor = self._build_feature_extractor( first_stage_features_stride=16) proposal_feature_maps = tf.random_uniform( [2, 17, 17, 1088], maxval=255, dtype=tf.float32) proposal_classifier_features = ( feature_extractor.extract_box_classifier_features( proposal_feature_maps, scope='TestScope')) features_shape = tf.shape(proposal_classifier_features) init_op = tf.global_variables_initializer() with self.test_session() as sess: sess.run(init_op) features_shape_out = sess.run(features_shape) self.assertAllEqual(features_shape_out, [2, 9, 9, 4032]) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/faster_rcnn_nas_feature_extractor_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ssd resnet v1 FPN feature extractors.""" import tensorflow as tf from object_detection.models import ssd_resnet_v1_fpn_feature_extractor from object_detection.models import ssd_resnet_v1_fpn_feature_extractor_testbase class SSDResnet50V1FeatureExtractorTest( ssd_resnet_v1_fpn_feature_extractor_testbase. SSDResnetFPNFeatureExtractorTestBase): """SSDResnet50v1Fpn feature extractor test.""" def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False): min_depth = 32 is_training = True return ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding) def _resnet_scope_name(self): return 'resnet_v1_50' class SSDResnet101V1FeatureExtractorTest( ssd_resnet_v1_fpn_feature_extractor_testbase. SSDResnetFPNFeatureExtractorTestBase): """SSDResnet101v1Fpn feature extractor test.""" def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False): min_depth = 32 is_training = True return ( ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding)) def _resnet_scope_name(self): return 'resnet_v1_101' class SSDResnet152V1FeatureExtractorTest( ssd_resnet_v1_fpn_feature_extractor_testbase. SSDResnetFPNFeatureExtractorTestBase): """SSDResnet152v1Fpn feature extractor test.""" def _create_feature_extractor(self, depth_multiplier, pad_to_multiple, use_explicit_padding=False): min_depth = 32 is_training = True return ( ssd_resnet_v1_fpn_feature_extractor.SSDResnet152V1FpnFeatureExtractor( is_training, depth_multiplier, min_depth, pad_to_multiple, self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding)) def _resnet_scope_name(self): return 'resnet_v1_152' if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/ssd_resnet_v1_fpn_feature_extractor_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A wrapper around the MobileNet v2 models for Keras, for object detection.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from object_detection.core import freezable_batch_norm from object_detection.utils import ops # pylint: disable=invalid-name # This method copied from the slim mobilenet base network code (same license) def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class _LayersOverride(object): """Alternative Keras layers interface for the Keras MobileNetV2.""" def __init__(self, batchnorm_training, default_batchnorm_momentum=0.999, conv_hyperparams=None, use_explicit_padding=False, alpha=1.0, min_depth=None): """Alternative tf.keras.layers interface, for use by the Keras MobileNetV2. It is used by the Keras applications kwargs injection API to modify the Mobilenet v2 Keras application with changes required by the Object Detection API. These injected interfaces make the following changes to the network: - Applies the Object Detection hyperparameter configuration - Supports FreezableBatchNorms - Adds support for a min number of filters for each layer - Makes the `alpha` parameter affect the final convolution block even if it is less than 1.0 - Adds support for explicit padding of convolutions Args: batchnorm_training: Bool. Assigned to Batch norm layer `training` param when constructing `freezable_batch_norm.FreezableBatchNorm` layers. default_batchnorm_momentum: Float. When 'conv_hyperparams' is None, batch norm layers will be constructed using this value as the momentum. conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object containing hyperparameters for convolution ops. Optionally set to `None` to use default mobilenet_v2 layer builders. use_explicit_padding: If True, use 'valid' padding for convolutions, but explicitly pre-pads inputs so that the output dimensions are the same as if 'same' padding were used. Off by default. alpha: The width multiplier referenced in the MobileNetV2 paper. It modifies the number of filters in each convolutional layer. min_depth: Minimum number of filters in the convolutional layers. """ self._alpha = alpha self._batchnorm_training = batchnorm_training self._default_batchnorm_momentum = default_batchnorm_momentum self._conv_hyperparams = conv_hyperparams self._use_explicit_padding = use_explicit_padding self._min_depth = min_depth self.regularizer = tf.keras.regularizers.l2(0.00004 * 0.5) self.initializer = tf.truncated_normal_initializer(stddev=0.09) def _FixedPaddingLayer(self, kernel_size): return tf.keras.layers.Lambda(lambda x: ops.fixed_padding(x, kernel_size)) def Conv2D(self, filters, **kwargs): """Builds a Conv2D layer according to the current Object Detection config. Overrides the Keras MobileNetV2 application's convolutions with ones that follow the spec specified by the Object Detection hyperparameters. Args: filters: The number of filters to use for the convolution. **kwargs: Keyword args specified by the Keras application for constructing the convolution. Returns: A one-arg callable that will either directly apply a Keras Conv2D layer to the input argument, or that will first pad the input then apply a Conv2D layer. """ # Make sure 'alpha' is always applied to the last convolution block's size # (This overrides the Keras application's functionality) if kwargs.get('name') == 'Conv_1' and self._alpha < 1.0: filters = _make_divisible(1280 * self._alpha, 8) # Apply the minimum depth to the convolution layers if (self._min_depth and (filters < self._min_depth) and not kwargs.get('name').endswith('expand')): filters = self._min_depth if self._conv_hyperparams: kwargs = self._conv_hyperparams.params(**kwargs) else: kwargs['kernel_regularizer'] = self.regularizer kwargs['kernel_initializer'] = self.initializer kwargs['padding'] = 'same' kernel_size = kwargs.get('kernel_size') if self._use_explicit_padding and kernel_size > 1: kwargs['padding'] = 'valid' def padded_conv(features): padded_features = self._FixedPaddingLayer(kernel_size)(features) return tf.keras.layers.Conv2D(filters, **kwargs)(padded_features) return padded_conv else: return tf.keras.layers.Conv2D(filters, **kwargs) def DepthwiseConv2D(self, **kwargs): """Builds a DepthwiseConv2D according to the Object Detection config. Overrides the Keras MobileNetV2 application's convolutions with ones that follow the spec specified by the Object Detection hyperparameters. Args: **kwargs: Keyword args specified by the Keras application for constructing the convolution. Returns: A one-arg callable that will either directly apply a Keras DepthwiseConv2D layer to the input argument, or that will first pad the input then apply the depthwise convolution. """ if self._conv_hyperparams: kwargs = self._conv_hyperparams.params(**kwargs) else: kwargs['depthwise_initializer'] = self.initializer kwargs['padding'] = 'same' kernel_size = kwargs.get('kernel_size') if self._use_explicit_padding and kernel_size > 1: kwargs['padding'] = 'valid' def padded_depthwise_conv(features): padded_features = self._FixedPaddingLayer(kernel_size)(features) return tf.keras.layers.DepthwiseConv2D(**kwargs)(padded_features) return padded_depthwise_conv else: return tf.keras.layers.DepthwiseConv2D(**kwargs) def BatchNormalization(self, **kwargs): """Builds a normalization layer. Overrides the Keras application batch norm with the norm specified by the Object Detection configuration. Args: **kwargs: Only the name is used, all other params ignored. Required for matching `layers.BatchNormalization` calls in the Keras application. Returns: A normalization layer specified by the Object Detection hyperparameter configurations. """ name = kwargs.get('name') if self._conv_hyperparams: return self._conv_hyperparams.build_batch_norm( training=self._batchnorm_training, name=name) else: return freezable_batch_norm.FreezableBatchNorm( training=self._batchnorm_training, epsilon=1e-3, momentum=self._default_batchnorm_momentum, name=name) def Input(self, shape): """Builds an Input layer. Overrides the Keras application Input layer with one that uses a tf.placeholder_with_default instead of a tf.placeholder. This is necessary to ensure the application works when run on a TPU. Args: shape: The shape for the input layer to use. (Does not include a dimension for the batch size). Returns: An input layer for the specified shape that internally uses a placeholder_with_default. """ default_size = 224 default_batch_size = 1 shape = list(shape) default_shape = [default_size if dim is None else dim for dim in shape] input_tensor = tf.constant(0.0, shape=[default_batch_size] + default_shape) placeholder_with_default = tf.placeholder_with_default( input=input_tensor, shape=[None] + shape) return tf.keras.layers.Input(tensor=placeholder_with_default) # pylint: disable=unused-argument def ReLU(self, *args, **kwargs): """Builds an activation layer. Overrides the Keras application ReLU with the activation specified by the Object Detection configuration. Args: *args: Ignored, required to match the `tf.keras.ReLU` interface **kwargs: Only the name is used, required to match `tf.keras.ReLU` interface Returns: An activation layer specified by the Object Detection hyperparameter configurations. """ name = kwargs.get('name') if self._conv_hyperparams: return self._conv_hyperparams.build_activation_layer(name=name) else: return tf.keras.layers.Lambda(tf.nn.relu6, name=name) # pylint: enable=unused-argument # pylint: disable=unused-argument def ZeroPadding2D(self, **kwargs): """Replaces explicit padding in the Keras application with a no-op. Args: **kwargs: Ignored, required to match the Keras applications usage. Returns: A no-op identity lambda. """ return lambda x: x # pylint: enable=unused-argument # Forward all non-overridden methods to the keras layers def __getattr__(self, item): return getattr(tf.keras.layers, item) def mobilenet_v2(batchnorm_training, default_batchnorm_momentum=0.9997, conv_hyperparams=None, use_explicit_padding=False, alpha=1.0, min_depth=None, **kwargs): """Instantiates the MobileNetV2 architecture, modified for object detection. This wraps the MobileNetV2 tensorflow Keras application, but uses the Keras application's kwargs-based monkey-patching API to override the Keras architecture with the following changes: - Changes the default batchnorm momentum to 0.9997 - Applies the Object Detection hyperparameter configuration - Supports FreezableBatchNorms - Adds support for a min number of filters for each layer - Makes the `alpha` parameter affect the final convolution block even if it is less than 1.0 - Adds support for explicit padding of convolutions - Makes the Input layer use a tf.placeholder_with_default instead of a tf.placeholder, to work on TPUs. Args: batchnorm_training: Bool. Assigned to Batch norm layer `training` param when constructing `freezable_batch_norm.FreezableBatchNorm` layers. default_batchnorm_momentum: Float. When 'conv_hyperparams' is None, batch norm layers will be constructed using this value as the momentum. conv_hyperparams: A `hyperparams_builder.KerasLayerHyperparams` object containing hyperparameters for convolution ops. Optionally set to `None` to use default mobilenet_v2 layer builders. use_explicit_padding: If True, use 'valid' padding for convolutions, but explicitly pre-pads inputs so that the output dimensions are the same as if 'same' padding were used. Off by default. alpha: The width multiplier referenced in the MobileNetV2 paper. It modifies the number of filters in each convolutional layer. min_depth: Minimum number of filters in the convolutional layers. **kwargs: Keyword arguments forwarded directly to the `tf.keras.applications.MobilenetV2` method that constructs the Keras model. Returns: A Keras model instance. """ layers_override = _LayersOverride( batchnorm_training, default_batchnorm_momentum=default_batchnorm_momentum, conv_hyperparams=conv_hyperparams, use_explicit_padding=use_explicit_padding, min_depth=min_depth, alpha=alpha) return tf.keras.applications.MobileNetV2(alpha=alpha, layers=layers_override, **kwargs) # pylint: enable=invalid-name
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/keras_applications/mobilenet_v2.py
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/keras_applications/__init__.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for mobilenet_v2.""" import itertools import numpy as np import tensorflow as tf from google.protobuf import text_format from object_detection.builders import hyperparams_builder from object_detection.models.keras_applications import mobilenet_v2 from object_detection.protos import hyperparams_pb2 from object_detection.utils import test_case _layers_to_check = [ 'Conv1_relu', 'block_1_expand_relu', 'block_1_depthwise_relu', 'block_1_project_BN', 'block_2_expand_relu', 'block_2_depthwise_relu', 'block_2_project_BN', 'block_3_expand_relu', 'block_3_depthwise_relu', 'block_3_project_BN', 'block_4_expand_relu', 'block_4_depthwise_relu', 'block_4_project_BN', 'block_5_expand_relu', 'block_5_depthwise_relu', 'block_5_project_BN', 'block_6_expand_relu', 'block_6_depthwise_relu', 'block_6_project_BN', 'block_7_expand_relu', 'block_7_depthwise_relu', 'block_7_project_BN', 'block_8_expand_relu', 'block_8_depthwise_relu', 'block_8_project_BN', 'block_9_expand_relu', 'block_9_depthwise_relu', 'block_9_project_BN', 'block_10_expand_relu', 'block_10_depthwise_relu', 'block_10_project_BN', 'block_11_expand_relu', 'block_11_depthwise_relu', 'block_11_project_BN', 'block_12_expand_relu', 'block_12_depthwise_relu', 'block_12_project_BN', 'block_13_expand_relu', 'block_13_depthwise_relu', 'block_13_project_BN', 'block_14_expand_relu', 'block_14_depthwise_relu', 'block_14_project_BN', 'block_15_expand_relu', 'block_15_depthwise_relu', 'block_15_project_BN', 'block_16_expand_relu', 'block_16_depthwise_relu', 'block_16_project_BN', 'out_relu'] class MobilenetV2Test(test_case.TestCase): def _build_conv_hyperparams(self): conv_hyperparams = hyperparams_pb2.Hyperparams() conv_hyperparams_text_proto = """ activation: RELU_6 regularizer { l2_regularizer { } } initializer { truncated_normal_initializer { } } batch_norm { train: true, scale: false, center: true, decay: 0.2, epsilon: 0.1, } """ text_format.Merge(conv_hyperparams_text_proto, conv_hyperparams) return hyperparams_builder.KerasLayerHyperparams(conv_hyperparams) def _create_application_with_layer_outputs( self, layer_names, batchnorm_training, conv_hyperparams=None, use_explicit_padding=False, alpha=1.0, min_depth=None): """Constructs Keras mobilenetv2 that extracts intermediate layer outputs.""" if not layer_names: layer_names = _layers_to_check full_model = mobilenet_v2.mobilenet_v2( batchnorm_training=batchnorm_training, conv_hyperparams=conv_hyperparams, weights=None, use_explicit_padding=use_explicit_padding, alpha=alpha, min_depth=min_depth, include_top=False) layer_outputs = [full_model.get_layer(name=layer).output for layer in layer_names] return tf.keras.Model( inputs=full_model.inputs, outputs=layer_outputs) def _check_returns_correct_shape( self, batch_size, image_height, image_width, depth_multiplier, expected_feature_map_shapes, use_explicit_padding=False, min_depth=None, layer_names=None): def graph_fn(image_tensor): model = self._create_application_with_layer_outputs( layer_names=layer_names, batchnorm_training=False, use_explicit_padding=use_explicit_padding, min_depth=min_depth, alpha=depth_multiplier) return model(image_tensor) image_tensor = np.random.rand(batch_size, image_height, image_width, 3).astype(np.float32) feature_maps = self.execute(graph_fn, [image_tensor]) for feature_map, expected_shape in itertools.izip( feature_maps, expected_feature_map_shapes): self.assertAllEqual(feature_map.shape, expected_shape) def _check_returns_correct_shapes_with_dynamic_inputs( self, batch_size, image_height, image_width, depth_multiplier, expected_feature_map_shapes, use_explicit_padding=False, layer_names=None): def graph_fn(image_height, image_width): image_tensor = tf.random_uniform([batch_size, image_height, image_width, 3], dtype=tf.float32) model = self._create_application_with_layer_outputs( layer_names=layer_names, batchnorm_training=False, use_explicit_padding=use_explicit_padding, alpha=depth_multiplier) return model(image_tensor) feature_maps = self.execute_cpu(graph_fn, [ np.array(image_height, dtype=np.int32), np.array(image_width, dtype=np.int32) ]) for feature_map, expected_shape in itertools.izip( feature_maps, expected_feature_map_shapes): self.assertAllEqual(feature_map.shape, expected_shape) def _get_variables(self, depth_multiplier, layer_names=None): g = tf.Graph() with g.as_default(): preprocessed_inputs = tf.placeholder(tf.float32, (4, None, None, 3)) model = self._create_application_with_layer_outputs( layer_names=layer_names, batchnorm_training=False, use_explicit_padding=False, alpha=depth_multiplier) model(preprocessed_inputs) return g.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) def test_returns_correct_shapes_128(self): image_height = 128 image_width = 128 depth_multiplier = 1.0 expected_feature_map_shape = [(2, 64, 64, 32), (2, 64, 64, 96), (2, 32, 32, 96), (2, 32, 32, 24), (2, 32, 32, 144), (2, 32, 32, 144), (2, 32, 32, 24), (2, 32, 32, 144), (2, 16, 16, 144), (2, 16, 16, 32), (2, 16, 16, 192), (2, 16, 16, 192), (2, 16, 16, 32), (2, 16, 16, 192), (2, 16, 16, 192), (2, 16, 16, 32), (2, 16, 16, 192), (2, 8, 8, 192), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 96), (2, 8, 8, 576), (2, 8, 8, 576), (2, 8, 8, 96), (2, 8, 8, 576), (2, 8, 8, 576), (2, 8, 8, 96), (2, 8, 8, 576), (2, 4, 4, 576), (2, 4, 4, 160), (2, 4, 4, 960), (2, 4, 4, 960), (2, 4, 4, 160), (2, 4, 4, 960), (2, 4, 4, 960), (2, 4, 4, 160), (2, 4, 4, 960), (2, 4, 4, 960), (2, 4, 4, 320), (2, 4, 4, 1280)] self._check_returns_correct_shape( 2, image_height, image_width, depth_multiplier, expected_feature_map_shape) def test_returns_correct_shapes_128_explicit_padding( self): image_height = 128 image_width = 128 depth_multiplier = 1.0 expected_feature_map_shape = [(2, 64, 64, 32), (2, 64, 64, 96), (2, 32, 32, 96), (2, 32, 32, 24), (2, 32, 32, 144), (2, 32, 32, 144), (2, 32, 32, 24), (2, 32, 32, 144), (2, 16, 16, 144), (2, 16, 16, 32), (2, 16, 16, 192), (2, 16, 16, 192), (2, 16, 16, 32), (2, 16, 16, 192), (2, 16, 16, 192), (2, 16, 16, 32), (2, 16, 16, 192), (2, 8, 8, 192), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 96), (2, 8, 8, 576), (2, 8, 8, 576), (2, 8, 8, 96), (2, 8, 8, 576), (2, 8, 8, 576), (2, 8, 8, 96), (2, 8, 8, 576), (2, 4, 4, 576), (2, 4, 4, 160), (2, 4, 4, 960), (2, 4, 4, 960), (2, 4, 4, 160), (2, 4, 4, 960), (2, 4, 4, 960), (2, 4, 4, 160), (2, 4, 4, 960), (2, 4, 4, 960), (2, 4, 4, 320), (2, 4, 4, 1280)] self._check_returns_correct_shape( 2, image_height, image_width, depth_multiplier, expected_feature_map_shape, use_explicit_padding=True) def test_returns_correct_shapes_with_dynamic_inputs( self): image_height = 128 image_width = 128 depth_multiplier = 1.0 expected_feature_map_shape = [(2, 64, 64, 32), (2, 64, 64, 96), (2, 32, 32, 96), (2, 32, 32, 24), (2, 32, 32, 144), (2, 32, 32, 144), (2, 32, 32, 24), (2, 32, 32, 144), (2, 16, 16, 144), (2, 16, 16, 32), (2, 16, 16, 192), (2, 16, 16, 192), (2, 16, 16, 32), (2, 16, 16, 192), (2, 16, 16, 192), (2, 16, 16, 32), (2, 16, 16, 192), (2, 8, 8, 192), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 64), (2, 8, 8, 384), (2, 8, 8, 384), (2, 8, 8, 96), (2, 8, 8, 576), (2, 8, 8, 576), (2, 8, 8, 96), (2, 8, 8, 576), (2, 8, 8, 576), (2, 8, 8, 96), (2, 8, 8, 576), (2, 4, 4, 576), (2, 4, 4, 160), (2, 4, 4, 960), (2, 4, 4, 960), (2, 4, 4, 160), (2, 4, 4, 960), (2, 4, 4, 960), (2, 4, 4, 160), (2, 4, 4, 960), (2, 4, 4, 960), (2, 4, 4, 320), (2, 4, 4, 1280)] self._check_returns_correct_shapes_with_dynamic_inputs( 2, image_height, image_width, depth_multiplier, expected_feature_map_shape) def test_returns_correct_shapes_299(self): image_height = 299 image_width = 299 depth_multiplier = 1.0 expected_feature_map_shape = [(2, 150, 150, 32), (2, 150, 150, 96), (2, 75, 75, 96), (2, 75, 75, 24), (2, 75, 75, 144), (2, 75, 75, 144), (2, 75, 75, 24), (2, 75, 75, 144), (2, 38, 38, 144), (2, 38, 38, 32), (2, 38, 38, 192), (2, 38, 38, 192), (2, 38, 38, 32), (2, 38, 38, 192), (2, 38, 38, 192), (2, 38, 38, 32), (2, 38, 38, 192), (2, 19, 19, 192), (2, 19, 19, 64), (2, 19, 19, 384), (2, 19, 19, 384), (2, 19, 19, 64), (2, 19, 19, 384), (2, 19, 19, 384), (2, 19, 19, 64), (2, 19, 19, 384), (2, 19, 19, 384), (2, 19, 19, 64), (2, 19, 19, 384), (2, 19, 19, 384), (2, 19, 19, 96), (2, 19, 19, 576), (2, 19, 19, 576), (2, 19, 19, 96), (2, 19, 19, 576), (2, 19, 19, 576), (2, 19, 19, 96), (2, 19, 19, 576), (2, 10, 10, 576), (2, 10, 10, 160), (2, 10, 10, 960), (2, 10, 10, 960), (2, 10, 10, 160), (2, 10, 10, 960), (2, 10, 10, 960), (2, 10, 10, 160), (2, 10, 10, 960), (2, 10, 10, 960), (2, 10, 10, 320), (2, 10, 10, 1280)] self._check_returns_correct_shape( 2, image_height, image_width, depth_multiplier, expected_feature_map_shape) def test_returns_correct_shapes_enforcing_min_depth( self): image_height = 299 image_width = 299 depth_multiplier = 0.5**12 expected_feature_map_shape = [(2, 150, 150, 32), (2, 150, 150, 192), (2, 75, 75, 192), (2, 75, 75, 32), (2, 75, 75, 192), (2, 75, 75, 192), (2, 75, 75, 32), (2, 75, 75, 192), (2, 38, 38, 192), (2, 38, 38, 32), (2, 38, 38, 192), (2, 38, 38, 192), (2, 38, 38, 32), (2, 38, 38, 192), (2, 38, 38, 192), (2, 38, 38, 32), (2, 38, 38, 192), (2, 19, 19, 192), (2, 19, 19, 32), (2, 19, 19, 192), (2, 19, 19, 192), (2, 19, 19, 32), (2, 19, 19, 192), (2, 19, 19, 192), (2, 19, 19, 32), (2, 19, 19, 192), (2, 19, 19, 192), (2, 19, 19, 32), (2, 19, 19, 192), (2, 19, 19, 192), (2, 19, 19, 32), (2, 19, 19, 192), (2, 19, 19, 192), (2, 19, 19, 32), (2, 19, 19, 192), (2, 19, 19, 192), (2, 19, 19, 32), (2, 19, 19, 192), (2, 10, 10, 192), (2, 10, 10, 32), (2, 10, 10, 192), (2, 10, 10, 192), (2, 10, 10, 32), (2, 10, 10, 192), (2, 10, 10, 192), (2, 10, 10, 32), (2, 10, 10, 192), (2, 10, 10, 192), (2, 10, 10, 32), (2, 10, 10, 32)] self._check_returns_correct_shape( 2, image_height, image_width, depth_multiplier, expected_feature_map_shape, min_depth=32) def test_hyperparam_override(self): hyperparams = self._build_conv_hyperparams() model = mobilenet_v2.mobilenet_v2( batchnorm_training=True, conv_hyperparams=hyperparams, weights=None, use_explicit_padding=False, alpha=1.0, min_depth=32, include_top=False) hyperparams.params() bn_layer = model.get_layer(name='block_5_project_BN') self.assertAllClose(bn_layer.momentum, 0.2) self.assertAllClose(bn_layer.epsilon, 0.1) def test_variable_count(self): depth_multiplier = 1 variables = self._get_variables(depth_multiplier) self.assertEqual(len(variables), 260) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/models/keras_applications/mobilenet_v2_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for anchor_generators.multiscale_grid_anchor_generator_test.py.""" import numpy as np import tensorflow as tf from object_detection.anchor_generators import multiscale_grid_anchor_generator as mg from object_detection.utils import test_case class MultiscaleGridAnchorGeneratorTest(test_case.TestCase): def test_construct_single_anchor(self): min_level = 5 max_level = 5 anchor_scale = 4.0 aspect_ratios = [1.0] scales_per_octave = 1 im_height = 64 im_width = 64 feature_map_shape_list = [(2, 2)] exp_anchor_corners = [[-48, -48, 80, 80], [-48, -16, 80, 112], [-16, -48, 112, 80], [-16, -16, 112, 112]] anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=False) anchors_list = anchor_generator.generate( feature_map_shape_list, im_height=im_height, im_width=im_width) anchor_corners = anchors_list[0].get() with self.test_session(): anchor_corners_out = anchor_corners.eval() self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_single_anchor_unit_dimensions(self): min_level = 5 max_level = 5 anchor_scale = 1.0 aspect_ratios = [1.0] scales_per_octave = 1 im_height = 1 im_width = 1 feature_map_shape_list = [(2, 2)] # Positive offsets are produced. exp_anchor_corners = [[0, 0, 32, 32], [0, 32, 32, 64], [32, 0, 64, 32], [32, 32, 64, 64]] anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=False) anchors_list = anchor_generator.generate( feature_map_shape_list, im_height=im_height, im_width=im_width) anchor_corners = anchors_list[0].get() with self.test_session(): anchor_corners_out = anchor_corners.eval() self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_normalized_anchors_fails_with_unit_dimensions(self): anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level=5, max_level=5, anchor_scale=1.0, aspect_ratios=[1.0], scales_per_octave=1, normalize_coordinates=True) with self.assertRaisesRegexp(ValueError, 'Normalized coordinates'): anchor_generator.generate( feature_map_shape_list=[(2, 2)], im_height=1, im_width=1) def test_construct_single_anchor_in_normalized_coordinates(self): min_level = 5 max_level = 5 anchor_scale = 4.0 aspect_ratios = [1.0] scales_per_octave = 1 im_height = 64 im_width = 128 feature_map_shape_list = [(2, 2)] exp_anchor_corners = [[-48./64, -48./128, 80./64, 80./128], [-48./64, -16./128, 80./64, 112./128], [-16./64, -48./128, 112./64, 80./128], [-16./64, -16./128, 112./64, 112./128]] anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=True) anchors_list = anchor_generator.generate( feature_map_shape_list, im_height=im_height, im_width=im_width) anchor_corners = anchors_list[0].get() with self.test_session(): anchor_corners_out = anchor_corners.eval() self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_num_anchors_per_location(self): min_level = 5 max_level = 6 anchor_scale = 4.0 aspect_ratios = [1.0, 2.0] scales_per_octave = 3 anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=False) self.assertEqual(anchor_generator.num_anchors_per_location(), [6, 6]) def test_construct_single_anchor_dynamic_size(self): min_level = 5 max_level = 5 anchor_scale = 4.0 aspect_ratios = [1.0] scales_per_octave = 1 im_height = tf.constant(64) im_width = tf.constant(64) feature_map_shape_list = [(2, 2)] # Zero offsets are used. exp_anchor_corners = [[-64, -64, 64, 64], [-64, -32, 64, 96], [-32, -64, 96, 64], [-32, -32, 96, 96]] anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=False) anchors_list = anchor_generator.generate( feature_map_shape_list, im_height=im_height, im_width=im_width) anchor_corners = anchors_list[0].get() with self.test_session(): anchor_corners_out = anchor_corners.eval() self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_single_anchor_with_odd_input_dimension(self): def graph_fn(): min_level = 5 max_level = 5 anchor_scale = 4.0 aspect_ratios = [1.0] scales_per_octave = 1 im_height = 65 im_width = 65 feature_map_shape_list = [(3, 3)] anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=False) anchors_list = anchor_generator.generate( feature_map_shape_list, im_height=im_height, im_width=im_width) anchor_corners = anchors_list[0].get() return (anchor_corners,) anchor_corners_out = self.execute(graph_fn, []) exp_anchor_corners = [[-64, -64, 64, 64], [-64, -32, 64, 96], [-64, 0, 64, 128], [-32, -64, 96, 64], [-32, -32, 96, 96], [-32, 0, 96, 128], [0, -64, 128, 64], [0, -32, 128, 96], [0, 0, 128, 128]] self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_single_anchor_on_two_feature_maps(self): def graph_fn(): min_level = 5 max_level = 6 anchor_scale = 4.0 aspect_ratios = [1.0] scales_per_octave = 1 im_height = 64 im_width = 64 feature_map_shape_list = [(2, 2), (1, 1)] anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=False) anchors_list = anchor_generator.generate(feature_map_shape_list, im_height=im_height, im_width=im_width) anchor_corners = [anchors.get() for anchors in anchors_list] return anchor_corners anchor_corners_out = np.concatenate(self.execute(graph_fn, []), axis=0) exp_anchor_corners = [[-48, -48, 80, 80], [-48, -16, 80, 112], [-16, -48, 112, 80], [-16, -16, 112, 112], [-96, -96, 160, 160]] self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_single_anchor_with_two_scales_per_octave(self): def graph_fn(): min_level = 6 max_level = 6 anchor_scale = 4.0 aspect_ratios = [1.0] scales_per_octave = 2 im_height = 64 im_width = 64 feature_map_shape_list = [(1, 1)] anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=False) anchors_list = anchor_generator.generate(feature_map_shape_list, im_height=im_height, im_width=im_width) anchor_corners = [anchors.get() for anchors in anchors_list] return anchor_corners # There are 4 set of anchors in this configuration. The order is: # [[2**0.0 intermediate scale + 1.0 aspect], # [2**0.5 intermediate scale + 1.0 aspect]] exp_anchor_corners = [[-96., -96., 160., 160.], [-149.0193, -149.0193, 213.0193, 213.0193]] anchor_corners_out = self.execute(graph_fn, []) self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_single_anchor_with_two_scales_per_octave_and_aspect(self): def graph_fn(): min_level = 6 max_level = 6 anchor_scale = 4.0 aspect_ratios = [1.0, 2.0] scales_per_octave = 2 im_height = 64 im_width = 64 feature_map_shape_list = [(1, 1)] anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=False) anchors_list = anchor_generator.generate(feature_map_shape_list, im_height=im_height, im_width=im_width) anchor_corners = [anchors.get() for anchors in anchors_list] return anchor_corners # There are 4 set of anchors in this configuration. The order is: # [[2**0.0 intermediate scale + 1.0 aspect], # [2**0.5 intermediate scale + 1.0 aspect], # [2**0.0 intermediate scale + 2.0 aspect], # [2**0.5 intermediate scale + 2.0 aspect]] exp_anchor_corners = [[-96., -96., 160., 160.], [-149.0193, -149.0193, 213.0193, 213.0193], [-58.50967, -149.0193, 122.50967, 213.0193], [-96., -224., 160., 288.]] anchor_corners_out = self.execute(graph_fn, []) self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_single_anchors_on_feature_maps_with_dynamic_shape(self): def graph_fn(feature_map1_height, feature_map1_width, feature_map2_height, feature_map2_width): min_level = 5 max_level = 6 anchor_scale = 4.0 aspect_ratios = [1.0] scales_per_octave = 1 im_height = 64 im_width = 64 feature_map_shape_list = [(feature_map1_height, feature_map1_width), (feature_map2_height, feature_map2_width)] anchor_generator = mg.MultiscaleGridAnchorGenerator( min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=False) anchors_list = anchor_generator.generate(feature_map_shape_list, im_height=im_height, im_width=im_width) anchor_corners = [anchors.get() for anchors in anchors_list] return anchor_corners anchor_corners_out = np.concatenate( self.execute_cpu(graph_fn, [ np.array(2, dtype=np.int32), np.array(2, dtype=np.int32), np.array(1, dtype=np.int32), np.array(1, dtype=np.int32) ]), axis=0) exp_anchor_corners = [[-48, -48, 80, 80], [-48, -16, 80, 112], [-16, -48, 112, 80], [-16, -16, 112, 112], [-96, -96, 160, 160]] self.assertAllClose(anchor_corners_out, exp_anchor_corners) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/anchor_generators/multiscale_grid_anchor_generator_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.grid_anchor_generator.""" import numpy as np import tensorflow as tf from object_detection.anchor_generators import grid_anchor_generator from object_detection.utils import test_case class GridAnchorGeneratorTest(test_case.TestCase): def test_construct_single_anchor(self): """Builds a 1x1 anchor grid to test the size of the output boxes.""" def graph_fn(): scales = [0.5, 1.0, 2.0] aspect_ratios = [0.25, 1.0, 4.0] anchor_offset = [7, -3] anchor_generator = grid_anchor_generator.GridAnchorGenerator( scales, aspect_ratios, anchor_offset=anchor_offset) anchors_list = anchor_generator.generate(feature_map_shape_list=[(1, 1)]) anchor_corners = anchors_list[0].get() return (anchor_corners,) exp_anchor_corners = [[-121, -35, 135, 29], [-249, -67, 263, 61], [-505, -131, 519, 125], [-57, -67, 71, 61], [-121, -131, 135, 125], [-249, -259, 263, 253], [-25, -131, 39, 125], [-57, -259, 71, 253], [-121, -515, 135, 509]] anchor_corners_out = self.execute(graph_fn, []) self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_anchor_grid(self): def graph_fn(): base_anchor_size = [10, 10] anchor_stride = [19, 19] anchor_offset = [0, 0] scales = [0.5, 1.0, 2.0] aspect_ratios = [1.0] anchor_generator = grid_anchor_generator.GridAnchorGenerator( scales, aspect_ratios, base_anchor_size=base_anchor_size, anchor_stride=anchor_stride, anchor_offset=anchor_offset) anchors_list = anchor_generator.generate(feature_map_shape_list=[(2, 2)]) anchor_corners = anchors_list[0].get() return (anchor_corners,) exp_anchor_corners = [[-2.5, -2.5, 2.5, 2.5], [-5., -5., 5., 5.], [-10., -10., 10., 10.], [-2.5, 16.5, 2.5, 21.5], [-5., 14., 5, 24], [-10., 9., 10, 29], [16.5, -2.5, 21.5, 2.5], [14., -5., 24, 5], [9., -10., 29, 10], [16.5, 16.5, 21.5, 21.5], [14., 14., 24, 24], [9., 9., 29, 29]] anchor_corners_out = self.execute(graph_fn, []) self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_anchor_grid_with_dynamic_feature_map_shapes(self): def graph_fn(feature_map_height, feature_map_width): base_anchor_size = [10, 10] anchor_stride = [19, 19] anchor_offset = [0, 0] scales = [0.5, 1.0, 2.0] aspect_ratios = [1.0] anchor_generator = grid_anchor_generator.GridAnchorGenerator( scales, aspect_ratios, base_anchor_size=base_anchor_size, anchor_stride=anchor_stride, anchor_offset=anchor_offset) anchors_list = anchor_generator.generate( feature_map_shape_list=[(feature_map_height, feature_map_width)]) anchor_corners = anchors_list[0].get() return (anchor_corners,) exp_anchor_corners = [[-2.5, -2.5, 2.5, 2.5], [-5., -5., 5., 5.], [-10., -10., 10., 10.], [-2.5, 16.5, 2.5, 21.5], [-5., 14., 5, 24], [-10., 9., 10, 29], [16.5, -2.5, 21.5, 2.5], [14., -5., 24, 5], [9., -10., 29, 10], [16.5, 16.5, 21.5, 21.5], [14., 14., 24, 24], [9., 9., 29, 29]] anchor_corners_out = self.execute_cpu(graph_fn, [np.array(2, dtype=np.int32), np.array(2, dtype=np.int32)]) self.assertAllClose(anchor_corners_out, exp_anchor_corners) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/anchor_generators/grid_anchor_generator_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generates grid anchors on the fly corresponding to multiple CNN layers. Generates grid anchors on the fly corresponding to multiple CNN layers as described in: "Focal Loss for Dense Object Detection" (https://arxiv.org/abs/1708.02002) T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar """ from object_detection.anchor_generators import grid_anchor_generator from object_detection.core import anchor_generator from object_detection.core import box_list_ops class MultiscaleGridAnchorGenerator(anchor_generator.AnchorGenerator): """Generate a grid of anchors for multiple CNN layers of different scale.""" def __init__(self, min_level, max_level, anchor_scale, aspect_ratios, scales_per_octave, normalize_coordinates=True): """Constructs a MultiscaleGridAnchorGenerator. To construct anchors, at multiple scale resolutions, one must provide a the minimum level and maximum levels on a scale pyramid. To define the size of anchor, the anchor scale is provided to decide the size relatively to the stride of the corresponding feature map. The generator allows one pixel location on feature map maps to multiple anchors, that have different aspect ratios and intermediate scales. Args: min_level: minimum level in feature pyramid. max_level: maximum level in feature pyramid. anchor_scale: anchor scale and feature stride define the size of the base anchor on an image. For example, given a feature pyramid with strides [2^3, ..., 2^7] and anchor scale 4. The base anchor size is 4 * [2^3, ..., 2^7]. aspect_ratios: list or tuple of (float) aspect ratios to place on each grid point. scales_per_octave: integer number of intermediate scales per scale octave. normalize_coordinates: whether to produce anchors in normalized coordinates. (defaults to True). """ self._anchor_grid_info = [] self._aspect_ratios = aspect_ratios self._scales_per_octave = scales_per_octave self._normalize_coordinates = normalize_coordinates scales = [2**(float(scale) / scales_per_octave) for scale in range(scales_per_octave)] aspects = list(aspect_ratios) for level in range(min_level, max_level + 1): anchor_stride = [2**level, 2**level] base_anchor_size = [2**level * anchor_scale, 2**level * anchor_scale] self._anchor_grid_info.append({ 'level': level, 'info': [scales, aspects, base_anchor_size, anchor_stride] }) def name_scope(self): return 'MultiscaleGridAnchorGenerator' def num_anchors_per_location(self): """Returns the number of anchors per spatial location. Returns: a list of integers, one for each expected feature map to be passed to the Generate function. """ return len(self._anchor_grid_info) * [ len(self._aspect_ratios) * self._scales_per_octave] def _generate(self, feature_map_shape_list, im_height=1, im_width=1): """Generates a collection of bounding boxes to be used as anchors. Currently we require the input image shape to be statically defined. That is, im_height and im_width should be integers rather than tensors. Args: feature_map_shape_list: list of pairs of convnet layer resolutions in the format [(height_0, width_0), (height_1, width_1), ...]. For example, setting feature_map_shape_list=[(8, 8), (7, 7)] asks for anchors that correspond to an 8x8 layer followed by a 7x7 layer. im_height: the height of the image to generate the grid for. If both im_height and im_width are 1, anchors can only be generated in absolute coordinates. im_width: the width of the image to generate the grid for. If both im_height and im_width are 1, anchors can only be generated in absolute coordinates. Returns: boxes_list: a list of BoxLists each holding anchor boxes corresponding to the input feature map shapes. Raises: ValueError: if im_height and im_width are not integers. ValueError: if im_height and im_width are 1, but normalized coordinates were requested. """ anchor_grid_list = [] for feat_shape, grid_info in zip(feature_map_shape_list, self._anchor_grid_info): # TODO(rathodv) check the feature_map_shape_list is consistent with # self._anchor_grid_info level = grid_info['level'] stride = 2**level scales, aspect_ratios, base_anchor_size, anchor_stride = grid_info['info'] feat_h = feat_shape[0] feat_w = feat_shape[1] anchor_offset = [0, 0] if isinstance(im_height, int) and isinstance(im_width, int): if im_height % 2.0**level == 0 or im_height == 1: anchor_offset[0] = stride / 2.0 if im_width % 2.0**level == 0 or im_width == 1: anchor_offset[1] = stride / 2.0 ag = grid_anchor_generator.GridAnchorGenerator( scales, aspect_ratios, base_anchor_size=base_anchor_size, anchor_stride=anchor_stride, anchor_offset=anchor_offset) (anchor_grid,) = ag.generate(feature_map_shape_list=[(feat_h, feat_w)]) if self._normalize_coordinates: if im_height == 1 or im_width == 1: raise ValueError( 'Normalized coordinates were requested upon construction of the ' 'MultiscaleGridAnchorGenerator, but a subsequent call to ' 'generate did not supply dimension information.') anchor_grid = box_list_ops.to_normalized_coordinates( anchor_grid, im_height, im_width, check_range=False) anchor_grid_list.append(anchor_grid) return anchor_grid_list
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/anchor_generators/multiscale_grid_anchor_generator.py
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/anchor_generators/__init__.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for anchor_generators.multiple_grid_anchor_generator_test.py.""" import numpy as np import tensorflow as tf from object_detection.anchor_generators import multiple_grid_anchor_generator as ag from object_detection.utils import test_case class MultipleGridAnchorGeneratorTest(test_case.TestCase): def test_construct_single_anchor_grid(self): """Builds a 1x1 anchor grid to test the size of the output boxes.""" def graph_fn(): box_specs_list = [[(.5, .25), (1.0, .25), (2.0, .25), (.5, 1.0), (1.0, 1.0), (2.0, 1.0), (.5, 4.0), (1.0, 4.0), (2.0, 4.0)]] anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([256, 256], dtype=tf.float32), anchor_strides=[(16, 16)], anchor_offsets=[(7, -3)]) anchors_list = anchor_generator.generate(feature_map_shape_list=[(1, 1)]) return anchors_list[0].get() exp_anchor_corners = [[-121, -35, 135, 29], [-249, -67, 263, 61], [-505, -131, 519, 125], [-57, -67, 71, 61], [-121, -131, 135, 125], [-249, -259, 263, 253], [-25, -131, 39, 125], [-57, -259, 71, 253], [-121, -515, 135, 509]] anchor_corners_out = self.execute(graph_fn, []) self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_anchor_grid(self): def graph_fn(): box_specs_list = [[(0.5, 1.0), (1.0, 1.0), (2.0, 1.0)]] anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([10, 10], dtype=tf.float32), anchor_strides=[(19, 19)], anchor_offsets=[(0, 0)]) anchors_list = anchor_generator.generate(feature_map_shape_list=[(2, 2)]) return anchors_list[0].get() exp_anchor_corners = [[-2.5, -2.5, 2.5, 2.5], [-5., -5., 5., 5.], [-10., -10., 10., 10.], [-2.5, 16.5, 2.5, 21.5], [-5., 14., 5, 24], [-10., 9., 10, 29], [16.5, -2.5, 21.5, 2.5], [14., -5., 24, 5], [9., -10., 29, 10], [16.5, 16.5, 21.5, 21.5], [14., 14., 24, 24], [9., 9., 29, 29]] anchor_corners_out = self.execute(graph_fn, []) self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_anchor_grid_non_square(self): def graph_fn(): box_specs_list = [[(1.0, 1.0)]] anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1, 1], dtype=tf.float32)) anchors_list = anchor_generator.generate(feature_map_shape_list=[( tf.constant(1, dtype=tf.int32), tf.constant(2, dtype=tf.int32))]) return anchors_list[0].get() exp_anchor_corners = [[0., -0.25, 1., 0.75], [0., 0.25, 1., 1.25]] anchor_corners_out = self.execute(graph_fn, []) self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_dynamic_size_anchor_grid(self): def graph_fn(height, width): box_specs_list = [[(1.0, 1.0)]] anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1, 1], dtype=tf.float32)) anchors_list = anchor_generator.generate(feature_map_shape_list=[(height, width)]) return anchors_list[0].get() exp_anchor_corners = [[0., -0.25, 1., 0.75], [0., 0.25, 1., 1.25]] anchor_corners_out = self.execute_cpu(graph_fn, [np.array(1, dtype=np.int32), np.array(2, dtype=np.int32)]) self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_anchor_grid_normalized(self): def graph_fn(): box_specs_list = [[(1.0, 1.0)]] anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1, 1], dtype=tf.float32)) anchors_list = anchor_generator.generate( feature_map_shape_list=[(tf.constant(1, dtype=tf.int32), tf.constant( 2, dtype=tf.int32))], im_height=320, im_width=640) return anchors_list[0].get() exp_anchor_corners = [[0., 0., 1., 0.5], [0., 0.5, 1., 1.]] anchor_corners_out = self.execute(graph_fn, []) self.assertAllClose(anchor_corners_out, exp_anchor_corners) def test_construct_multiple_grids(self): def graph_fn(): box_specs_list = [[(1.0, 1.0), (2.0, 1.0), (1.0, 0.5)], [(1.0, 1.0), (1.0, 0.5)]] anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1.0, 1.0], dtype=tf.float32), anchor_strides=[(.25, .25), (.5, .5)], anchor_offsets=[(.125, .125), (.25, .25)]) anchors_list = anchor_generator.generate(feature_map_shape_list=[(4, 4), ( 2, 2)]) return [anchors.get() for anchors in anchors_list] # height and width of box with .5 aspect ratio h = np.sqrt(2) w = 1.0/np.sqrt(2) exp_small_grid_corners = [[-.25, -.25, .75, .75], [.25-.5*h, .25-.5*w, .25+.5*h, .25+.5*w], [-.25, .25, .75, 1.25], [.25-.5*h, .75-.5*w, .25+.5*h, .75+.5*w], [.25, -.25, 1.25, .75], [.75-.5*h, .25-.5*w, .75+.5*h, .25+.5*w], [.25, .25, 1.25, 1.25], [.75-.5*h, .75-.5*w, .75+.5*h, .75+.5*w]] # only test first entry of larger set of anchors exp_big_grid_corners = [[.125-.5, .125-.5, .125+.5, .125+.5], [.125-1.0, .125-1.0, .125+1.0, .125+1.0], [.125-.5*h, .125-.5*w, .125+.5*h, .125+.5*w],] anchor_corners_out = np.concatenate(self.execute(graph_fn, []), axis=0) self.assertEquals(anchor_corners_out.shape, (56, 4)) big_grid_corners = anchor_corners_out[0:3, :] small_grid_corners = anchor_corners_out[48:, :] self.assertAllClose(small_grid_corners, exp_small_grid_corners) self.assertAllClose(big_grid_corners, exp_big_grid_corners) def test_construct_multiple_grids_with_clipping(self): def graph_fn(): box_specs_list = [[(1.0, 1.0), (2.0, 1.0), (1.0, 0.5)], [(1.0, 1.0), (1.0, 0.5)]] clip_window = tf.constant([0, 0, 1, 1], dtype=tf.float32) anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1.0, 1.0], dtype=tf.float32), clip_window=clip_window) anchors_list = anchor_generator.generate(feature_map_shape_list=[(4, 4), ( 2, 2)]) return [anchors.get() for anchors in anchors_list] # height and width of box with .5 aspect ratio h = np.sqrt(2) w = 1.0/np.sqrt(2) exp_small_grid_corners = [[0, 0, .75, .75], [0, 0, .25+.5*h, .25+.5*w], [0, .25, .75, 1], [0, .75-.5*w, .25+.5*h, 1], [.25, 0, 1, .75], [.75-.5*h, 0, 1, .25+.5*w], [.25, .25, 1, 1], [.75-.5*h, .75-.5*w, 1, 1]] anchor_corners_out = np.concatenate(self.execute(graph_fn, []), axis=0) small_grid_corners = anchor_corners_out[48:, :] self.assertAllClose(small_grid_corners, exp_small_grid_corners) def test_invalid_box_specs(self): # not all box specs are pairs box_specs_list = [[(1.0, 1.0), (2.0, 1.0), (1.0, 0.5)], [(1.0, 1.0), (1.0, 0.5, .3)]] with self.assertRaises(ValueError): ag.MultipleGridAnchorGenerator(box_specs_list) # box_specs_list is not a list of lists box_specs_list = [(1.0, 1.0), (2.0, 1.0), (1.0, 0.5)] with self.assertRaises(ValueError): ag.MultipleGridAnchorGenerator(box_specs_list) def test_invalid_generate_arguments(self): box_specs_list = [[(1.0, 1.0), (2.0, 1.0), (1.0, 0.5)], [(1.0, 1.0), (1.0, 0.5)]] # incompatible lengths with box_specs_list with self.assertRaises(ValueError): anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1.0, 1.0], dtype=tf.float32), anchor_strides=[(.25, .25)], anchor_offsets=[(.125, .125), (.25, .25)]) anchor_generator.generate(feature_map_shape_list=[(4, 4), (2, 2)]) with self.assertRaises(ValueError): anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1.0, 1.0], dtype=tf.float32), anchor_strides=[(.25, .25), (.5, .5)], anchor_offsets=[(.125, .125), (.25, .25)]) anchor_generator.generate(feature_map_shape_list=[(4, 4), (2, 2), (1, 1)]) with self.assertRaises(ValueError): anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1.0, 1.0], dtype=tf.float32), anchor_strides=[(.5, .5)], anchor_offsets=[(.25, .25)]) anchor_generator.generate(feature_map_shape_list=[(4, 4), (2, 2)]) # not pairs with self.assertRaises(ValueError): anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1.0, 1.0], dtype=tf.float32), anchor_strides=[(.25, .25), (.5, .5)], anchor_offsets=[(.125, .125), (.25, .25)]) anchor_generator.generate(feature_map_shape_list=[(4, 4, 4), (2, 2)]) with self.assertRaises(ValueError): anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1.0, 1.0], dtype=tf.float32), anchor_strides=[(.25, .25, .1), (.5, .5)], anchor_offsets=[(.125, .125), (.25, .25)]) anchor_generator.generate(feature_map_shape_list=[(4, 4), (2, 2)]) with self.assertRaises(ValueError): anchor_generator = ag.MultipleGridAnchorGenerator( box_specs_list, base_anchor_size=tf.constant([1.0, 1.0], dtype=tf.float32), anchor_strides=[(.25, .25), (.5, .5)], anchor_offsets=[(.125, .125), (.25, .25)]) anchor_generator.generate(feature_map_shape_list=[(4), (2, 2)]) class CreateSSDAnchorsTest(test_case.TestCase): def test_create_ssd_anchors_returns_correct_shape(self): def graph_fn1(): anchor_generator = ag.create_ssd_anchors( num_layers=6, min_scale=0.2, max_scale=0.95, aspect_ratios=(1.0, 2.0, 3.0, 1.0 / 2, 1.0 / 3), reduce_boxes_in_lowest_layer=True) feature_map_shape_list = [(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)] anchors_list = anchor_generator.generate( feature_map_shape_list=feature_map_shape_list) return [anchors.get() for anchors in anchors_list] anchor_corners_out = np.concatenate(self.execute(graph_fn1, []), axis=0) self.assertEquals(anchor_corners_out.shape, (7308, 4)) def graph_fn2(): anchor_generator = ag.create_ssd_anchors( num_layers=6, min_scale=0.2, max_scale=0.95, aspect_ratios=(1.0, 2.0, 3.0, 1.0/2, 1.0/3), reduce_boxes_in_lowest_layer=False) feature_map_shape_list = [(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)] anchors_list = anchor_generator.generate( feature_map_shape_list=feature_map_shape_list) return [anchors.get() for anchors in anchors_list] anchor_corners_out = np.concatenate(self.execute(graph_fn2, []), axis=0) self.assertEquals(anchor_corners_out.shape, (11640, 4)) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/anchor_generators/multiple_grid_anchor_generator_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generates grid anchors on the fly corresponding to multiple CNN layers. Generates grid anchors on the fly corresponding to multiple CNN layers as described in: "SSD: Single Shot MultiBox Detector" Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg (see Section 2.2: Choosing scales and aspect ratios for default boxes) """ import numpy as np import tensorflow as tf from object_detection.anchor_generators import grid_anchor_generator from object_detection.core import anchor_generator from object_detection.core import box_list_ops class MultipleGridAnchorGenerator(anchor_generator.AnchorGenerator): """Generate a grid of anchors for multiple CNN layers.""" def __init__(self, box_specs_list, base_anchor_size=None, anchor_strides=None, anchor_offsets=None, clip_window=None): """Constructs a MultipleGridAnchorGenerator. To construct anchors, at multiple grid resolutions, one must provide a list of feature_map_shape_list (e.g., [(8, 8), (4, 4)]), and for each grid size, a corresponding list of (scale, aspect ratio) box specifications. For example: box_specs_list = [[(.1, 1.0), (.1, 2.0)], # for 8x8 grid [(.2, 1.0), (.3, 1.0), (.2, 2.0)]] # for 4x4 grid To support the fully convolutional setting, we pass grid sizes in at generation time, while scale and aspect ratios are fixed at construction time. Args: box_specs_list: list of list of (scale, aspect ratio) pairs with the outside list having the same number of entries as feature_map_shape_list (which is passed in at generation time). base_anchor_size: base anchor size as [height, width] (length-2 float tensor, default=[1.0, 1.0]). The height and width values are normalized to the minimum dimension of the input height and width, so that when the base anchor height equals the base anchor width, the resulting anchor is square even if the input image is not square. anchor_strides: list of pairs of strides in pixels (in y and x directions respectively). For example, setting anchor_strides=[(25, 25), (50, 50)] means that we want the anchors corresponding to the first layer to be strided by 25 pixels and those in the second layer to be strided by 50 pixels in both y and x directions. If anchor_strides=None, they are set to be the reciprocal of the corresponding feature map shapes. anchor_offsets: list of pairs of offsets in pixels (in y and x directions respectively). The offset specifies where we want the center of the (0, 0)-th anchor to lie for each layer. For example, setting anchor_offsets=[(10, 10), (20, 20)]) means that we want the (0, 0)-th anchor of the first layer to lie at (10, 10) in pixel space and likewise that we want the (0, 0)-th anchor of the second layer to lie at (25, 25) in pixel space. If anchor_offsets=None, then they are set to be half of the corresponding anchor stride. clip_window: a tensor of shape [4] specifying a window to which all anchors should be clipped. If clip_window is None, then no clipping is performed. Raises: ValueError: if box_specs_list is not a list of list of pairs ValueError: if clip_window is not either None or a tensor of shape [4] """ if isinstance(box_specs_list, list) and all( [isinstance(list_item, list) for list_item in box_specs_list]): self._box_specs = box_specs_list else: raise ValueError('box_specs_list is expected to be a ' 'list of lists of pairs') if base_anchor_size is None: base_anchor_size = tf.constant([256, 256], dtype=tf.float32) self._base_anchor_size = base_anchor_size self._anchor_strides = anchor_strides self._anchor_offsets = anchor_offsets if clip_window is not None and clip_window.get_shape().as_list() != [4]: raise ValueError('clip_window must either be None or a shape [4] tensor') self._clip_window = clip_window self._scales = [] self._aspect_ratios = [] for box_spec in self._box_specs: if not all([isinstance(entry, tuple) and len(entry) == 2 for entry in box_spec]): raise ValueError('box_specs_list is expected to be a ' 'list of lists of pairs') scales, aspect_ratios = zip(*box_spec) self._scales.append(scales) self._aspect_ratios.append(aspect_ratios) for arg, arg_name in zip([self._anchor_strides, self._anchor_offsets], ['anchor_strides', 'anchor_offsets']): if arg and not (isinstance(arg, list) and len(arg) == len(self._box_specs)): raise ValueError('%s must be a list with the same length ' 'as self._box_specs' % arg_name) if arg and not all([ isinstance(list_item, tuple) and len(list_item) == 2 for list_item in arg ]): raise ValueError('%s must be a list of pairs.' % arg_name) def name_scope(self): return 'MultipleGridAnchorGenerator' def num_anchors_per_location(self): """Returns the number of anchors per spatial location. Returns: a list of integers, one for each expected feature map to be passed to the Generate function. """ return [len(box_specs) for box_specs in self._box_specs] def _generate(self, feature_map_shape_list, im_height=1, im_width=1): """Generates a collection of bounding boxes to be used as anchors. The number of anchors generated for a single grid with shape MxM where we place k boxes over each grid center is k*M^2 and thus the total number of anchors is the sum over all grids. In our box_specs_list example (see the constructor docstring), we would place two boxes over each grid point on an 8x8 grid and three boxes over each grid point on a 4x4 grid and thus end up with 2*8^2 + 3*4^2 = 176 anchors in total. The layout of the output anchors follows the order of how the grid sizes and box_specs are specified (with box_spec index varying the fastest, followed by width index, then height index, then grid index). Args: feature_map_shape_list: list of pairs of convnet layer resolutions in the format [(height_0, width_0), (height_1, width_1), ...]. For example, setting feature_map_shape_list=[(8, 8), (7, 7)] asks for anchors that correspond to an 8x8 layer followed by a 7x7 layer. im_height: the height of the image to generate the grid for. If both im_height and im_width are 1, the generated anchors default to absolute coordinates, otherwise normalized coordinates are produced. im_width: the width of the image to generate the grid for. If both im_height and im_width are 1, the generated anchors default to absolute coordinates, otherwise normalized coordinates are produced. Returns: boxes_list: a list of BoxLists each holding anchor boxes corresponding to the input feature map shapes. Raises: ValueError: if feature_map_shape_list, box_specs_list do not have the same length. ValueError: if feature_map_shape_list does not consist of pairs of integers """ if not (isinstance(feature_map_shape_list, list) and len(feature_map_shape_list) == len(self._box_specs)): raise ValueError('feature_map_shape_list must be a list with the same ' 'length as self._box_specs') if not all([isinstance(list_item, tuple) and len(list_item) == 2 for list_item in feature_map_shape_list]): raise ValueError('feature_map_shape_list must be a list of pairs.') im_height = tf.to_float(im_height) im_width = tf.to_float(im_width) if not self._anchor_strides: anchor_strides = [(1.0 / tf.to_float(pair[0]), 1.0 / tf.to_float(pair[1])) for pair in feature_map_shape_list] else: anchor_strides = [(tf.to_float(stride[0]) / im_height, tf.to_float(stride[1]) / im_width) for stride in self._anchor_strides] if not self._anchor_offsets: anchor_offsets = [(0.5 * stride[0], 0.5 * stride[1]) for stride in anchor_strides] else: anchor_offsets = [(tf.to_float(offset[0]) / im_height, tf.to_float(offset[1]) / im_width) for offset in self._anchor_offsets] for arg, arg_name in zip([anchor_strides, anchor_offsets], ['anchor_strides', 'anchor_offsets']): if not (isinstance(arg, list) and len(arg) == len(self._box_specs)): raise ValueError('%s must be a list with the same length ' 'as self._box_specs' % arg_name) if not all([isinstance(list_item, tuple) and len(list_item) == 2 for list_item in arg]): raise ValueError('%s must be a list of pairs.' % arg_name) anchor_grid_list = [] min_im_shape = tf.minimum(im_height, im_width) scale_height = min_im_shape / im_height scale_width = min_im_shape / im_width base_anchor_size = [ scale_height * self._base_anchor_size[0], scale_width * self._base_anchor_size[1] ] for feature_map_index, (grid_size, scales, aspect_ratios, stride, offset) in enumerate( zip(feature_map_shape_list, self._scales, self._aspect_ratios, anchor_strides, anchor_offsets)): tiled_anchors = grid_anchor_generator.tile_anchors( grid_height=grid_size[0], grid_width=grid_size[1], scales=scales, aspect_ratios=aspect_ratios, base_anchor_size=base_anchor_size, anchor_stride=stride, anchor_offset=offset) if self._clip_window is not None: tiled_anchors = box_list_ops.clip_to_window( tiled_anchors, self._clip_window, filter_nonoverlapping=False) num_anchors_in_layer = tiled_anchors.num_boxes_static() if num_anchors_in_layer is None: num_anchors_in_layer = tiled_anchors.num_boxes() anchor_indices = feature_map_index * tf.ones([num_anchors_in_layer]) tiled_anchors.add_field('feature_map_index', anchor_indices) anchor_grid_list.append(tiled_anchors) return anchor_grid_list def create_ssd_anchors(num_layers=6, min_scale=0.2, max_scale=0.95, scales=None, aspect_ratios=(1.0, 2.0, 3.0, 1.0 / 2, 1.0 / 3), interpolated_scale_aspect_ratio=1.0, base_anchor_size=None, anchor_strides=None, anchor_offsets=None, reduce_boxes_in_lowest_layer=True): """Creates MultipleGridAnchorGenerator for SSD anchors. This function instantiates a MultipleGridAnchorGenerator that reproduces ``default box`` construction proposed by Liu et al in the SSD paper. See Section 2.2 for details. Grid sizes are assumed to be passed in at generation time from finest resolution to coarsest resolution --- this is used to (linearly) interpolate scales of anchor boxes corresponding to the intermediate grid sizes. Anchors that are returned by calling the `generate` method on the returned MultipleGridAnchorGenerator object are always in normalized coordinates and clipped to the unit square: (i.e. all coordinates lie in [0, 1]x[0, 1]). Args: num_layers: integer number of grid layers to create anchors for (actual grid sizes passed in at generation time) min_scale: scale of anchors corresponding to finest resolution (float) max_scale: scale of anchors corresponding to coarsest resolution (float) scales: As list of anchor scales to use. When not None and not empty, min_scale and max_scale are not used. aspect_ratios: list or tuple of (float) aspect ratios to place on each grid point. interpolated_scale_aspect_ratio: An additional anchor is added with this aspect ratio and a scale interpolated between the scale for a layer and the scale for the next layer (1.0 for the last layer). This anchor is not included if this value is 0. base_anchor_size: base anchor size as [height, width]. The height and width values are normalized to the minimum dimension of the input height and width, so that when the base anchor height equals the base anchor width, the resulting anchor is square even if the input image is not square. anchor_strides: list of pairs of strides in pixels (in y and x directions respectively). For example, setting anchor_strides=[(25, 25), (50, 50)] means that we want the anchors corresponding to the first layer to be strided by 25 pixels and those in the second layer to be strided by 50 pixels in both y and x directions. If anchor_strides=None, they are set to be the reciprocal of the corresponding feature map shapes. anchor_offsets: list of pairs of offsets in pixels (in y and x directions respectively). The offset specifies where we want the center of the (0, 0)-th anchor to lie for each layer. For example, setting anchor_offsets=[(10, 10), (20, 20)]) means that we want the (0, 0)-th anchor of the first layer to lie at (10, 10) in pixel space and likewise that we want the (0, 0)-th anchor of the second layer to lie at (25, 25) in pixel space. If anchor_offsets=None, then they are set to be half of the corresponding anchor stride. reduce_boxes_in_lowest_layer: a boolean to indicate whether the fixed 3 boxes per location is used in the lowest layer. Returns: a MultipleGridAnchorGenerator """ if base_anchor_size is None: base_anchor_size = [1.0, 1.0] base_anchor_size = tf.constant(base_anchor_size, dtype=tf.float32) box_specs_list = [] if scales is None or not scales: scales = [min_scale + (max_scale - min_scale) * i / (num_layers - 1) for i in range(num_layers)] + [1.0] else: # Add 1.0 to the end, which will only be used in scale_next below and used # for computing an interpolated scale for the largest scale in the list. scales += [1.0] for layer, scale, scale_next in zip( range(num_layers), scales[:-1], scales[1:]): layer_box_specs = [] if layer == 0 and reduce_boxes_in_lowest_layer: layer_box_specs = [(0.1, 1.0), (scale, 2.0), (scale, 0.5)] else: for aspect_ratio in aspect_ratios: layer_box_specs.append((scale, aspect_ratio)) # Add one more anchor, with a scale between the current scale, and the # scale for the next layer, with a specified aspect ratio (1.0 by # default). if interpolated_scale_aspect_ratio > 0.0: layer_box_specs.append((np.sqrt(scale*scale_next), interpolated_scale_aspect_ratio)) box_specs_list.append(layer_box_specs) return MultipleGridAnchorGenerator(box_specs_list, base_anchor_size, anchor_strides, anchor_offsets)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/anchor_generators/multiple_grid_anchor_generator.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generates grid anchors on the fly as used in Faster RCNN. Generates grid anchors on the fly as described in: "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. """ import tensorflow as tf from object_detection.core import anchor_generator from object_detection.core import box_list from object_detection.utils import ops class GridAnchorGenerator(anchor_generator.AnchorGenerator): """Generates a grid of anchors at given scales and aspect ratios.""" def __init__(self, scales=(0.5, 1.0, 2.0), aspect_ratios=(0.5, 1.0, 2.0), base_anchor_size=None, anchor_stride=None, anchor_offset=None): """Constructs a GridAnchorGenerator. Args: scales: a list of (float) scales, default=(0.5, 1.0, 2.0) aspect_ratios: a list of (float) aspect ratios, default=(0.5, 1.0, 2.0) base_anchor_size: base anchor size as height, width ( (length-2 float32 list or tensor, default=[256, 256]) anchor_stride: difference in centers between base anchors for adjacent grid positions (length-2 float32 list or tensor, default=[16, 16]) anchor_offset: center of the anchor with scale and aspect ratio 1 for the upper left element of the grid, this should be zero for feature networks with only VALID padding and even receptive field size, but may need additional calculation if other padding is used (length-2 float32 list or tensor, default=[0, 0]) """ # Handle argument defaults if base_anchor_size is None: base_anchor_size = [256, 256] base_anchor_size = tf.to_float(tf.convert_to_tensor(base_anchor_size)) if anchor_stride is None: anchor_stride = [16, 16] anchor_stride = tf.to_float(tf.convert_to_tensor(anchor_stride)) if anchor_offset is None: anchor_offset = [0, 0] anchor_offset = tf.to_float(tf.convert_to_tensor(anchor_offset)) self._scales = scales self._aspect_ratios = aspect_ratios self._base_anchor_size = base_anchor_size self._anchor_stride = anchor_stride self._anchor_offset = anchor_offset def name_scope(self): return 'GridAnchorGenerator' def num_anchors_per_location(self): """Returns the number of anchors per spatial location. Returns: a list of integers, one for each expected feature map to be passed to the `generate` function. """ return [len(self._scales) * len(self._aspect_ratios)] def _generate(self, feature_map_shape_list): """Generates a collection of bounding boxes to be used as anchors. Args: feature_map_shape_list: list of pairs of convnet layer resolutions in the format [(height_0, width_0)]. For example, setting feature_map_shape_list=[(8, 8)] asks for anchors that correspond to an 8x8 layer. For this anchor generator, only lists of length 1 are allowed. Returns: boxes_list: a list of BoxLists each holding anchor boxes corresponding to the input feature map shapes. Raises: ValueError: if feature_map_shape_list, box_specs_list do not have the same length. ValueError: if feature_map_shape_list does not consist of pairs of integers """ if not (isinstance(feature_map_shape_list, list) and len(feature_map_shape_list) == 1): raise ValueError('feature_map_shape_list must be a list of length 1.') if not all([isinstance(list_item, tuple) and len(list_item) == 2 for list_item in feature_map_shape_list]): raise ValueError('feature_map_shape_list must be a list of pairs.') grid_height, grid_width = feature_map_shape_list[0] scales_grid, aspect_ratios_grid = ops.meshgrid(self._scales, self._aspect_ratios) scales_grid = tf.reshape(scales_grid, [-1]) aspect_ratios_grid = tf.reshape(aspect_ratios_grid, [-1]) anchors = tile_anchors(grid_height, grid_width, scales_grid, aspect_ratios_grid, self._base_anchor_size, self._anchor_stride, self._anchor_offset) num_anchors = anchors.num_boxes_static() if num_anchors is None: num_anchors = anchors.num_boxes() anchor_indices = tf.zeros([num_anchors]) anchors.add_field('feature_map_index', anchor_indices) return [anchors] def tile_anchors(grid_height, grid_width, scales, aspect_ratios, base_anchor_size, anchor_stride, anchor_offset): """Create a tiled set of anchors strided along a grid in image space. This op creates a set of anchor boxes by placing a "basis" collection of boxes with user-specified scales and aspect ratios centered at evenly distributed points along a grid. The basis collection is specified via the scale and aspect_ratios arguments. For example, setting scales=[.1, .2, .2] and aspect ratios = [2,2,1/2] means that we create three boxes: one with scale .1, aspect ratio 2, one with scale .2, aspect ratio 2, and one with scale .2 and aspect ratio 1/2. Each box is multiplied by "base_anchor_size" before placing it over its respective center. Grid points are specified via grid_height, grid_width parameters as well as the anchor_stride and anchor_offset parameters. Args: grid_height: size of the grid in the y direction (int or int scalar tensor) grid_width: size of the grid in the x direction (int or int scalar tensor) scales: a 1-d (float) tensor representing the scale of each box in the basis set. aspect_ratios: a 1-d (float) tensor representing the aspect ratio of each box in the basis set. The length of the scales and aspect_ratios tensors must be equal. base_anchor_size: base anchor size as [height, width] (float tensor of shape [2]) anchor_stride: difference in centers between base anchors for adjacent grid positions (float tensor of shape [2]) anchor_offset: center of the anchor with scale and aspect ratio 1 for the upper left element of the grid, this should be zero for feature networks with only VALID padding and even receptive field size, but may need some additional calculation if other padding is used (float tensor of shape [2]) Returns: a BoxList holding a collection of N anchor boxes """ ratio_sqrts = tf.sqrt(aspect_ratios) heights = scales / ratio_sqrts * base_anchor_size[0] widths = scales * ratio_sqrts * base_anchor_size[1] # Get a grid of box centers y_centers = tf.to_float(tf.range(grid_height)) y_centers = y_centers * anchor_stride[0] + anchor_offset[0] x_centers = tf.to_float(tf.range(grid_width)) x_centers = x_centers * anchor_stride[1] + anchor_offset[1] x_centers, y_centers = ops.meshgrid(x_centers, y_centers) widths_grid, x_centers_grid = ops.meshgrid(widths, x_centers) heights_grid, y_centers_grid = ops.meshgrid(heights, y_centers) bbox_centers = tf.stack([y_centers_grid, x_centers_grid], axis=3) bbox_sizes = tf.stack([heights_grid, widths_grid], axis=3) bbox_centers = tf.reshape(bbox_centers, [-1, 2]) bbox_sizes = tf.reshape(bbox_sizes, [-1, 2]) bbox_corners = _center_size_bbox_to_corners_bbox(bbox_centers, bbox_sizes) return box_list.BoxList(bbox_corners) def _center_size_bbox_to_corners_bbox(centers, sizes): """Converts bbox center-size representation to corners representation. Args: centers: a tensor with shape [N, 2] representing bounding box centers sizes: a tensor with shape [N, 2] representing bounding boxes Returns: corners: tensor with shape [N, 4] representing bounding boxes in corners representation """ return tf.concat([centers - .5 * sizes, centers + .5 * sizes], 1)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/anchor_generators/grid_anchor_generator.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the OpenImages label expansion (OIDHierarchicalLabelsExpansion).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from object_detection.dataset_tools import oid_hierarchical_labels_expansion def create_test_data(): hierarchy = { 'LabelName': 'a', 'Subcategory': [{ 'LabelName': 'b' }, { 'LabelName': 'c', 'Subcategory': [{ 'LabelName': 'd' }, { 'LabelName': 'e' }] }, { 'LabelName': 'f', 'Subcategory': [{ 'LabelName': 'd' },] }] } bbox_rows = [ '123,xclick,b,1,0.1,0.2,0.1,0.2,1,1,0,0,0', '123,xclick,d,1,0.2,0.3,0.1,0.2,1,1,0,0,0' ] label_rows = [ '123,verification,b,0', '123,verification,c,0', '124,verification,d,1' ] return hierarchy, bbox_rows, label_rows class HierarchicalLabelsExpansionTest(tf.test.TestCase): def test_bbox_expansion(self): hierarchy, bbox_rows, _ = create_test_data() expansion_generator = ( oid_hierarchical_labels_expansion.OIDHierarchicalLabelsExpansion( hierarchy)) all_result_rows = [] for row in bbox_rows: all_result_rows.extend(expansion_generator.expand_boxes_from_csv(row)) self.assertItemsEqual([ '123,xclick,b,1,0.1,0.2,0.1,0.2,1,1,0,0,0', '123,xclick,d,1,0.2,0.3,0.1,0.2,1,1,0,0,0', '123,xclick,f,1,0.2,0.3,0.1,0.2,1,1,0,0,0', '123,xclick,c,1,0.2,0.3,0.1,0.2,1,1,0,0,0' ], all_result_rows) def test_labels_expansion(self): hierarchy, _, label_rows = create_test_data() expansion_generator = ( oid_hierarchical_labels_expansion.OIDHierarchicalLabelsExpansion( hierarchy)) all_result_rows = [] for row in label_rows: all_result_rows.extend(expansion_generator.expand_labels_from_csv(row)) self.assertItemsEqual([ '123,verification,b,0', '123,verification,c,0', '123,verification,d,0', '123,verification,e,0', '124,verification,d,1', '124,verification,f,1', '124,verification,c,1' ], all_result_rows) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools/oid_hierarchical_labels_expansion_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Convert raw PASCAL dataset to TFRecord for object_detection. Example usage: python object_detection/dataset_tools/create_pascal_tf_record.py \ --data_dir=/home/user/VOCdevkit \ --year=VOC2012 \ --output_path=/home/user/pascal.record """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import io import logging import os from lxml import etree import PIL.Image import tensorflow as tf from object_detection.utils import dataset_util from object_detection.utils import label_map_util flags = tf.app.flags flags.DEFINE_string('data_dir', '', 'Root directory to raw PASCAL VOC dataset.') flags.DEFINE_string('set', 'train', 'Convert training set, validation set or ' 'merged set.') flags.DEFINE_string('annotations_dir', 'Annotations', '(Relative) path to annotations directory.') flags.DEFINE_string('year', 'VOC2007', 'Desired challenge year.') flags.DEFINE_string('output_path', '', 'Path to output TFRecord') flags.DEFINE_string('label_map_path', 'data/pascal_label_map.pbtxt', 'Path to label map proto') flags.DEFINE_boolean('ignore_difficult_instances', False, 'Whether to ignore ' 'difficult instances') FLAGS = flags.FLAGS SETS = ['train', 'val', 'trainval', 'test'] YEARS = ['VOC2007', 'VOC2012', 'merged'] def dict_to_tf_example(data, dataset_directory, label_map_dict, ignore_difficult_instances=False, image_subdirectory='JPEGImages'): """Convert XML derived dict to tf.Example proto. Notice that this function normalizes the bounding box coordinates provided by the raw data. Args: data: dict holding PASCAL XML fields for a single image (obtained by running dataset_util.recursive_parse_xml_to_dict) dataset_directory: Path to root directory holding PASCAL dataset label_map_dict: A map from string label names to integers ids. ignore_difficult_instances: Whether to skip difficult instances in the dataset (default: False). image_subdirectory: String specifying subdirectory within the PASCAL dataset directory holding the actual image data. Returns: example: The converted tf.Example. Raises: ValueError: if the image pointed to by data['filename'] is not a valid JPEG """ img_path = os.path.join(data['folder'], image_subdirectory, data['filename']) full_path = os.path.join(dataset_directory, img_path) with tf.gfile.GFile(full_path, 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = PIL.Image.open(encoded_jpg_io) if image.format != 'JPEG': raise ValueError('Image format not JPEG') key = hashlib.sha256(encoded_jpg).hexdigest() width = int(data['size']['width']) height = int(data['size']['height']) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] truncated = [] poses = [] difficult_obj = [] if 'object' in data: for obj in data['object']: difficult = bool(int(obj['difficult'])) if ignore_difficult_instances and difficult: continue difficult_obj.append(int(difficult)) xmin.append(float(obj['bndbox']['xmin']) / width) ymin.append(float(obj['bndbox']['ymin']) / height) xmax.append(float(obj['bndbox']['xmax']) / width) ymax.append(float(obj['bndbox']['ymax']) / height) classes_text.append(obj['name'].encode('utf8')) classes.append(label_map_dict[obj['name']]) truncated.append(int(obj['truncated'])) poses.append(obj['pose'].encode('utf8')) example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/source_id': dataset_util.bytes_feature( data['filename'].encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.int64_list_feature(truncated), 'image/object/view': dataset_util.bytes_list_feature(poses), })) return example def main(_): if FLAGS.set not in SETS: raise ValueError('set must be in : {}'.format(SETS)) if FLAGS.year not in YEARS: raise ValueError('year must be in : {}'.format(YEARS)) data_dir = FLAGS.data_dir years = ['VOC2007', 'VOC2012'] if FLAGS.year != 'merged': years = [FLAGS.year] writer = tf.python_io.TFRecordWriter(FLAGS.output_path) label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path) for year in years: logging.info('Reading from PASCAL %s dataset.', year) examples_path = os.path.join(data_dir, year, 'ImageSets', 'Main', 'aeroplane_' + FLAGS.set + '.txt') annotations_dir = os.path.join(data_dir, year, FLAGS.annotations_dir) examples_list = dataset_util.read_examples_list(examples_path) for idx, example in enumerate(examples_list): if idx % 100 == 0: logging.info('On image %d of %d', idx, len(examples_list)) path = os.path.join(annotations_dir, example + '.xml') with tf.gfile.GFile(path, 'r') as fid: xml_str = fid.read() xml = etree.fromstring(xml_str) data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation'] tf_example = dict_to_tf_example(data, FLAGS.data_dir, label_map_dict, FLAGS.ignore_difficult_instances) writer.write(tf_example.SerializeToString()) writer.close() if __name__ == '__main__': tf.app.run()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools/create_pascal_tf_record.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Utilities for creating TFRecords of TF examples for the Open Images dataset. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from object_detection.core import standard_fields from object_detection.utils import dataset_util def tf_example_from_annotations_data_frame(annotations_data_frame, label_map, encoded_image): """Populates a TF Example message with image annotations from a data frame. Args: annotations_data_frame: Data frame containing the annotations for a single image. label_map: String to integer label map. encoded_image: The encoded image string Returns: The populated TF Example, if the label of at least one object is present in label_map. Otherwise, returns None. """ filtered_data_frame = annotations_data_frame[ annotations_data_frame.LabelName.isin(label_map)] filtered_data_frame_boxes = filtered_data_frame[ ~filtered_data_frame.YMin.isnull()] filtered_data_frame_labels = filtered_data_frame[ filtered_data_frame.YMin.isnull()] image_id = annotations_data_frame.ImageID.iloc[0] feature_map = { standard_fields.TfExampleFields.object_bbox_ymin: dataset_util.float_list_feature( filtered_data_frame_boxes.YMin.as_matrix()), standard_fields.TfExampleFields.object_bbox_xmin: dataset_util.float_list_feature( filtered_data_frame_boxes.XMin.as_matrix()), standard_fields.TfExampleFields.object_bbox_ymax: dataset_util.float_list_feature( filtered_data_frame_boxes.YMax.as_matrix()), standard_fields.TfExampleFields.object_bbox_xmax: dataset_util.float_list_feature( filtered_data_frame_boxes.XMax.as_matrix()), standard_fields.TfExampleFields.object_class_text: dataset_util.bytes_list_feature( filtered_data_frame_boxes.LabelName.as_matrix()), standard_fields.TfExampleFields.object_class_label: dataset_util.int64_list_feature( filtered_data_frame_boxes.LabelName.map(lambda x: label_map[x]) .as_matrix()), standard_fields.TfExampleFields.filename: dataset_util.bytes_feature('{}.jpg'.format(image_id)), standard_fields.TfExampleFields.source_id: dataset_util.bytes_feature(image_id), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } if 'IsGroupOf' in filtered_data_frame.columns: feature_map[standard_fields.TfExampleFields. object_group_of] = dataset_util.int64_list_feature( filtered_data_frame_boxes.IsGroupOf.as_matrix().astype(int)) if 'IsOccluded' in filtered_data_frame.columns: feature_map[standard_fields.TfExampleFields. object_occluded] = dataset_util.int64_list_feature( filtered_data_frame_boxes.IsOccluded.as_matrix().astype( int)) if 'IsTruncated' in filtered_data_frame.columns: feature_map[standard_fields.TfExampleFields. object_truncated] = dataset_util.int64_list_feature( filtered_data_frame_boxes.IsTruncated.as_matrix().astype( int)) if 'IsDepiction' in filtered_data_frame.columns: feature_map[standard_fields.TfExampleFields. object_depiction] = dataset_util.int64_list_feature( filtered_data_frame_boxes.IsDepiction.as_matrix().astype( int)) if 'ConfidenceImageLabel' in filtered_data_frame_labels.columns: feature_map[standard_fields.TfExampleFields. image_class_label] = dataset_util.int64_list_feature( filtered_data_frame_labels.LabelName.map( lambda x: label_map[x]).as_matrix()) feature_map[standard_fields.TfExampleFields. image_class_text] = dataset_util.bytes_list_feature( filtered_data_frame_labels.LabelName.as_matrix()), return tf.train.Example(features=tf.train.Features(feature=feature_map))
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools/oid_tfrecord_creation.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Convert raw KITTI detection dataset to TFRecord for object_detection. Converts KITTI detection dataset to TFRecords with a standard format allowing to use this dataset to train object detectors. The raw dataset can be downloaded from: http://kitti.is.tue.mpg.de/kitti/data_object_image_2.zip. http://kitti.is.tue.mpg.de/kitti/data_object_label_2.zip Permission can be requested at the main website. KITTI detection dataset contains 7481 training images. Using this code with the default settings will set aside the first 500 images as a validation set. This can be altered using the flags, see details below. Example usage: python object_detection/dataset_tools/create_kitti_tf_record.py \ --data_dir=/home/user/kitti \ --output_path=/home/user/kitti.record """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import io import os import numpy as np import PIL.Image as pil import tensorflow as tf from object_detection.utils import dataset_util from object_detection.utils import label_map_util from object_detection.utils.np_box_ops import iou tf.app.flags.DEFINE_string('data_dir', '', 'Location of root directory for the ' 'data. Folder structure is assumed to be:' '<data_dir>/training/label_2 (annotations) and' '<data_dir>/data_object_image_2/training/image_2' '(images).') tf.app.flags.DEFINE_string('output_path', '', 'Path to which TFRecord files' 'will be written. The TFRecord with the training set' 'will be located at: <output_path>_train.tfrecord.' 'And the TFRecord with the validation set will be' 'located at: <output_path>_val.tfrecord') tf.app.flags.DEFINE_string('classes_to_use', 'car,pedestrian,dontcare', 'Comma separated list of class names that will be' 'used. Adding the dontcare class will remove all' 'bboxs in the dontcare regions.') tf.app.flags.DEFINE_string('label_map_path', 'data/kitti_label_map.pbtxt', 'Path to label map proto.') tf.app.flags.DEFINE_integer('validation_set_size', '500', 'Number of images to' 'be used as a validation set.') FLAGS = tf.app.flags.FLAGS def convert_kitti_to_tfrecords(data_dir, output_path, classes_to_use, label_map_path, validation_set_size): """Convert the KITTI detection dataset to TFRecords. Args: data_dir: The full path to the unzipped folder containing the unzipped data from data_object_image_2 and data_object_label_2.zip. Folder structure is assumed to be: data_dir/training/label_2 (annotations) and data_dir/data_object_image_2/training/image_2 (images). output_path: The path to which TFRecord files will be written. The TFRecord with the training set will be located at: <output_path>_train.tfrecord And the TFRecord with the validation set will be located at: <output_path>_val.tfrecord classes_to_use: List of strings naming the classes for which data should be converted. Use the same names as presented in the KIITI README file. Adding dontcare class will remove all other bounding boxes that overlap with areas marked as dontcare regions. label_map_path: Path to label map proto validation_set_size: How many images should be left as the validation set. (Ffirst `validation_set_size` examples are selected to be in the validation set). """ label_map_dict = label_map_util.get_label_map_dict(label_map_path) train_count = 0 val_count = 0 annotation_dir = os.path.join(data_dir, 'training', 'label_2') image_dir = os.path.join(data_dir, 'data_object_image_2', 'training', 'image_2') train_writer = tf.python_io.TFRecordWriter('%s_train.tfrecord'% output_path) val_writer = tf.python_io.TFRecordWriter('%s_val.tfrecord'% output_path) images = sorted(tf.gfile.ListDirectory(image_dir)) for img_name in images: img_num = int(img_name.split('.')[0]) is_validation_img = img_num < validation_set_size img_anno = read_annotation_file(os.path.join(annotation_dir, str(img_num).zfill(6)+'.txt')) image_path = os.path.join(image_dir, img_name) # Filter all bounding boxes of this frame that are of a legal class, and # don't overlap with a dontcare region. # TODO(talremez) filter out targets that are truncated or heavily occluded. annotation_for_image = filter_annotations(img_anno, classes_to_use) example = prepare_example(image_path, annotation_for_image, label_map_dict) if is_validation_img: val_writer.write(example.SerializeToString()) val_count += 1 else: train_writer.write(example.SerializeToString()) train_count += 1 train_writer.close() val_writer.close() def prepare_example(image_path, annotations, label_map_dict): """Converts a dictionary with annotations for an image to tf.Example proto. Args: image_path: The complete path to image. annotations: A dictionary representing the annotation of a single object that appears in the image. label_map_dict: A map from string label names to integer ids. Returns: example: The converted tf.Example. """ with tf.gfile.GFile(image_path, 'rb') as fid: encoded_png = fid.read() encoded_png_io = io.BytesIO(encoded_png) image = pil.open(encoded_png_io) image = np.asarray(image) key = hashlib.sha256(encoded_png).hexdigest() width = int(image.shape[1]) height = int(image.shape[0]) xmin_norm = annotations['2d_bbox_left'] / float(width) ymin_norm = annotations['2d_bbox_top'] / float(height) xmax_norm = annotations['2d_bbox_right'] / float(width) ymax_norm = annotations['2d_bbox_bottom'] / float(height) difficult_obj = [0]*len(xmin_norm) example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(image_path.encode('utf8')), 'image/source_id': dataset_util.bytes_feature(image_path.encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_png), 'image/format': dataset_util.bytes_feature('png'.encode('utf8')), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmin_norm), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmax_norm), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymin_norm), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymax_norm), 'image/object/class/text': dataset_util.bytes_list_feature( [x.encode('utf8') for x in annotations['type']]), 'image/object/class/label': dataset_util.int64_list_feature( [label_map_dict[x] for x in annotations['type']]), 'image/object/difficult': dataset_util.int64_list_feature(difficult_obj), 'image/object/truncated': dataset_util.float_list_feature( annotations['truncated']), 'image/object/alpha': dataset_util.float_list_feature( annotations['alpha']), 'image/object/3d_bbox/height': dataset_util.float_list_feature( annotations['3d_bbox_height']), 'image/object/3d_bbox/width': dataset_util.float_list_feature( annotations['3d_bbox_width']), 'image/object/3d_bbox/length': dataset_util.float_list_feature( annotations['3d_bbox_length']), 'image/object/3d_bbox/x': dataset_util.float_list_feature( annotations['3d_bbox_x']), 'image/object/3d_bbox/y': dataset_util.float_list_feature( annotations['3d_bbox_y']), 'image/object/3d_bbox/z': dataset_util.float_list_feature( annotations['3d_bbox_z']), 'image/object/3d_bbox/rot_y': dataset_util.float_list_feature( annotations['3d_bbox_rot_y']), })) return example def filter_annotations(img_all_annotations, used_classes): """Filters out annotations from the unused classes and dontcare regions. Filters out the annotations that belong to classes we do now wish to use and (optionally) also removes all boxes that overlap with dontcare regions. Args: img_all_annotations: A list of annotation dictionaries. See documentation of read_annotation_file for more details about the format of the annotations. used_classes: A list of strings listing the classes we want to keep, if the list contains "dontcare", all bounding boxes with overlapping with dont care regions will also be filtered out. Returns: img_filtered_annotations: A list of annotation dictionaries that have passed the filtering. """ img_filtered_annotations = {} # Filter the type of the objects. relevant_annotation_indices = [ i for i, x in enumerate(img_all_annotations['type']) if x in used_classes ] for key in img_all_annotations.keys(): img_filtered_annotations[key] = ( img_all_annotations[key][relevant_annotation_indices]) if 'dontcare' in used_classes: dont_care_indices = [i for i, x in enumerate(img_filtered_annotations['type']) if x == 'dontcare'] # bounding box format [y_min, x_min, y_max, x_max] all_boxes = np.stack([img_filtered_annotations['2d_bbox_top'], img_filtered_annotations['2d_bbox_left'], img_filtered_annotations['2d_bbox_bottom'], img_filtered_annotations['2d_bbox_right']], axis=1) ious = iou(boxes1=all_boxes, boxes2=all_boxes[dont_care_indices]) # Remove all bounding boxes that overlap with a dontcare region. if ious.size > 0: boxes_to_remove = np.amax(ious, axis=1) > 0.0 for key in img_all_annotations.keys(): img_filtered_annotations[key] = ( img_filtered_annotations[key][np.logical_not(boxes_to_remove)]) return img_filtered_annotations def read_annotation_file(filename): """Reads a KITTI annotation file. Converts a KITTI annotation file into a dictionary containing all the relevant information. Args: filename: the path to the annotataion text file. Returns: anno: A dictionary with the converted annotation information. See annotation README file for details on the different fields. """ with open(filename) as f: content = f.readlines() content = [x.strip().split(' ') for x in content] anno = {} anno['type'] = np.array([x[0].lower() for x in content]) anno['truncated'] = np.array([float(x[1]) for x in content]) anno['occluded'] = np.array([int(x[2]) for x in content]) anno['alpha'] = np.array([float(x[3]) for x in content]) anno['2d_bbox_left'] = np.array([float(x[4]) for x in content]) anno['2d_bbox_top'] = np.array([float(x[5]) for x in content]) anno['2d_bbox_right'] = np.array([float(x[6]) for x in content]) anno['2d_bbox_bottom'] = np.array([float(x[7]) for x in content]) anno['3d_bbox_height'] = np.array([float(x[8]) for x in content]) anno['3d_bbox_width'] = np.array([float(x[9]) for x in content]) anno['3d_bbox_length'] = np.array([float(x[10]) for x in content]) anno['3d_bbox_x'] = np.array([float(x[11]) for x in content]) anno['3d_bbox_y'] = np.array([float(x[12]) for x in content]) anno['3d_bbox_z'] = np.array([float(x[13]) for x in content]) anno['3d_bbox_rot_y'] = np.array([float(x[14]) for x in content]) return anno def main(_): convert_kitti_to_tfrecords( data_dir=FLAGS.data_dir, output_path=FLAGS.output_path, classes_to_use=FLAGS.classes_to_use.split(','), label_map_path=FLAGS.label_map_path, validation_set_size=FLAGS.validation_set_size) if __name__ == '__main__': tf.app.run()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools/create_kitti_tf_record.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""An executable to expand hierarchically image-level labels and boxes. Example usage: python models/research/object_detection/dataset_tools/\ oid_hierarchical_labels_expansion.py \ --json_hierarchy_file=<path to JSON hierarchy> \ --input_annotations=<input csv file> \ --output_annotations=<output csv file> \ --annotation_type=<1 (for boxes) or 2 (for image-level labels)> """ from __future__ import print_function import argparse import json def _update_dict(initial_dict, update): """Updates dictionary with update content. Args: initial_dict: initial dictionary. update: updated dictionary. """ for key, value_list in update.iteritems(): if key in initial_dict: initial_dict[key].extend(value_list) else: initial_dict[key] = value_list def _build_plain_hierarchy(hierarchy, skip_root=False): """Expands tree hierarchy representation to parent-child dictionary. Args: hierarchy: labels hierarchy as JSON file. skip_root: if true skips root from the processing (done for the case when all classes under hierarchy are collected under virtual node). Returns: keyed_parent - dictionary of parent - all its children nodes. keyed_child - dictionary of children - all its parent nodes children - all children of the current node. """ all_children = [] all_keyed_parent = {} all_keyed_child = {} if 'Subcategory' in hierarchy: for node in hierarchy['Subcategory']: keyed_parent, keyed_child, children = _build_plain_hierarchy(node) # Update is not done through dict.update() since some children have multi- # ple parents in the hiearchy. _update_dict(all_keyed_parent, keyed_parent) _update_dict(all_keyed_child, keyed_child) all_children.extend(children) if not skip_root: all_keyed_parent[hierarchy['LabelName']] = all_children all_children = [hierarchy['LabelName']] + all_children for child, _ in all_keyed_child.iteritems(): all_keyed_child[child].append(hierarchy['LabelName']) all_keyed_child[hierarchy['LabelName']] = [] return all_keyed_parent, all_keyed_child, all_children class OIDHierarchicalLabelsExpansion(object): """ Main class to perform labels hierachical expansion.""" def __init__(self, hierarchy): """Constructor. Args: hierarchy: labels hierarchy as JSON object. """ self._hierarchy_keyed_parent, self._hierarchy_keyed_child, _ = ( _build_plain_hierarchy(hierarchy, skip_root=True)) def expand_boxes_from_csv(self, csv_row): """Expands a row containing bounding boxes from CSV file. Args: csv_row: a single row of Open Images released groundtruth file. Returns: a list of strings (including the initial row) corresponding to the ground truth expanded to multiple annotation for evaluation with Open Images Challenge 2018 metric. """ # Row header is expected to be exactly: # ImageID,Source,LabelName,Confidence,XMin,XMax,YMin,YMax,IsOccluded, # IsTruncated,IsGroupOf,IsDepiction,IsInside cvs_row_splitted = csv_row.split(',') assert len(cvs_row_splitted) == 13 result = [csv_row] assert cvs_row_splitted[2] in self._hierarchy_keyed_child parent_nodes = self._hierarchy_keyed_child[cvs_row_splitted[2]] for parent_node in parent_nodes: cvs_row_splitted[2] = parent_node result.append(','.join(cvs_row_splitted)) return result def expand_labels_from_csv(self, csv_row): """Expands a row containing bounding boxes from CSV file. Args: csv_row: a single row of Open Images released groundtruth file. Returns: a list of strings (including the initial row) corresponding to the ground truth expanded to multiple annotation for evaluation with Open Images Challenge 2018 metric. """ # Row header is expected to be exactly: # ImageID,Source,LabelName,Confidence cvs_row_splited = csv_row.split(',') assert len(cvs_row_splited) == 4 result = [csv_row] if int(cvs_row_splited[3]) == 1: assert cvs_row_splited[2] in self._hierarchy_keyed_child parent_nodes = self._hierarchy_keyed_child[cvs_row_splited[2]] for parent_node in parent_nodes: cvs_row_splited[2] = parent_node result.append(','.join(cvs_row_splited)) else: assert cvs_row_splited[2] in self._hierarchy_keyed_parent child_nodes = self._hierarchy_keyed_parent[cvs_row_splited[2]] for child_node in child_nodes: cvs_row_splited[2] = child_node result.append(','.join(cvs_row_splited)) return result def main(parsed_args): with open(parsed_args.json_hierarchy_file) as f: hierarchy = json.load(f) expansion_generator = OIDHierarchicalLabelsExpansion(hierarchy) labels_file = False if parsed_args.annotation_type == 2: labels_file = True elif parsed_args.annotation_type != 1: print('--annotation_type expected value is 1 or 2.') return -1 with open(parsed_args.input_annotations, 'r') as source: with open(parsed_args.output_annotations, 'w') as target: header = None for line in source: if not header: header = line target.writelines(header) continue if labels_file: expanded_lines = expansion_generator.expand_labels_from_csv(line) else: expanded_lines = expansion_generator.expand_boxes_from_csv(line) target.writelines(expanded_lines) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Hierarchically expand annotations (excluding root node).') parser.add_argument( '--json_hierarchy_file', required=True, help='Path to the file containing label hierarchy in JSON format.') parser.add_argument( '--input_annotations', required=True, help="""Path to Open Images annotations file (either bounding boxes or image-level labels).""") parser.add_argument( '--output_annotations', required=True, help="""Path to the output file.""") parser.add_argument( '--annotation_type', type=int, required=True, help="""Type of the input annotations: 1 - boxes, 2 - image-level labels""" ) args = parser.parse_args() main(args)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools/oid_hierarchical_labels_expansion.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Utilities for creating TFRecords of TF examples for the Open Images dataset. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf def open_sharded_output_tfrecords(exit_stack, base_path, num_shards): """Opens all TFRecord shards for writing and adds them to an exit stack. Args: exit_stack: A context2.ExitStack used to automatically closed the TFRecords opened in this function. base_path: The base path for all shards num_shards: The number of shards Returns: The list of opened TFRecords. Position k in the list corresponds to shard k. """ tf_record_output_filenames = [ '{}-{:05d}-of-{:05d}'.format(base_path, idx, num_shards) for idx in range(num_shards) ] tfrecords = [ exit_stack.enter_context(tf.python_io.TFRecordWriter(file_name)) for file_name in tf_record_output_filenames ] return tfrecords
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools/tf_record_creation_util.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for create_pascal_tf_record.py.""" import os import numpy as np import PIL.Image import tensorflow as tf from object_detection.dataset_tools import create_pascal_tf_record class CreatePascalTFRecordTest(tf.test.TestCase): def _assertProtoEqual(self, proto_field, expectation): """Helper function to assert if a proto field equals some value. Args: proto_field: The protobuf field to compare. expectation: The expected value of the protobuf field. """ proto_list = [p for p in proto_field] self.assertListEqual(proto_list, expectation) def test_dict_to_tf_example(self): image_file_name = 'tmp_image.jpg' image_data = np.random.rand(256, 256, 3) save_path = os.path.join(self.get_temp_dir(), image_file_name) image = PIL.Image.fromarray(image_data, 'RGB') image.save(save_path) data = { 'folder': '', 'filename': image_file_name, 'size': { 'height': 256, 'width': 256, }, 'object': [ { 'difficult': 1, 'bndbox': { 'xmin': 64, 'ymin': 64, 'xmax': 192, 'ymax': 192, }, 'name': 'person', 'truncated': 0, 'pose': '', }, ], } label_map_dict = { 'background': 0, 'person': 1, 'notperson': 2, } example = create_pascal_tf_record.dict_to_tf_example( data, self.get_temp_dir(), label_map_dict, image_subdirectory='') self._assertProtoEqual( example.features.feature['image/height'].int64_list.value, [256]) self._assertProtoEqual( example.features.feature['image/width'].int64_list.value, [256]) self._assertProtoEqual( example.features.feature['image/filename'].bytes_list.value, [image_file_name]) self._assertProtoEqual( example.features.feature['image/source_id'].bytes_list.value, [image_file_name]) self._assertProtoEqual( example.features.feature['image/format'].bytes_list.value, ['jpeg']) self._assertProtoEqual( example.features.feature['image/object/bbox/xmin'].float_list.value, [0.25]) self._assertProtoEqual( example.features.feature['image/object/bbox/ymin'].float_list.value, [0.25]) self._assertProtoEqual( example.features.feature['image/object/bbox/xmax'].float_list.value, [0.75]) self._assertProtoEqual( example.features.feature['image/object/bbox/ymax'].float_list.value, [0.75]) self._assertProtoEqual( example.features.feature['image/object/class/text'].bytes_list.value, ['person']) self._assertProtoEqual( example.features.feature['image/object/class/label'].int64_list.value, [1]) self._assertProtoEqual( example.features.feature['image/object/difficult'].int64_list.value, [1]) self._assertProtoEqual( example.features.feature['image/object/truncated'].int64_list.value, [0]) self._assertProtoEqual( example.features.feature['image/object/view'].bytes_list.value, ['']) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools/create_pascal_tf_record_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Creates TFRecords of Open Images dataset for object detection. Example usage: python object_detection/dataset_tools/create_oid_tf_record.py \ --input_box_annotations_csv=/path/to/input/annotations-human-bbox.csv \ --input_image_label_annotations_csv=/path/to/input/annotations-label.csv \ --input_images_directory=/path/to/input/image_pixels_directory \ --input_label_map=/path/to/input/labels_bbox_545.labelmap \ --output_tf_record_path_prefix=/path/to/output/prefix.tfrecord CSVs with bounding box annotations and image metadata (including the image URLs) can be downloaded from the Open Images GitHub repository: https://github.com/openimages/dataset This script will include every image found in the input_images_directory in the output TFRecord, even if the image has no corresponding bounding box annotations in the input_annotations_csv. If input_image_label_annotations_csv is specified, it will add image-level labels as well. Note that the information of whether a label is positivelly or negativelly verified is NOT added to tfrecord. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import contextlib2 import pandas as pd import tensorflow as tf from object_detection.dataset_tools import oid_tfrecord_creation from object_detection.dataset_tools import tf_record_creation_util from object_detection.utils import label_map_util tf.flags.DEFINE_string('input_box_annotations_csv', None, 'Path to CSV containing image bounding box annotations') tf.flags.DEFINE_string('input_images_directory', None, 'Directory containing the image pixels ' 'downloaded from the OpenImages GitHub repository.') tf.flags.DEFINE_string('input_image_label_annotations_csv', None, 'Path to CSV containing image-level labels annotations') tf.flags.DEFINE_string('input_label_map', None, 'Path to the label map proto') tf.flags.DEFINE_string( 'output_tf_record_path_prefix', None, 'Path to the output TFRecord. The shard index and the number of shards ' 'will be appended for each output shard.') tf.flags.DEFINE_integer('num_shards', 100, 'Number of TFRecord shards') FLAGS = tf.flags.FLAGS def main(_): tf.logging.set_verbosity(tf.logging.INFO) required_flags = [ 'input_box_annotations_csv', 'input_images_directory', 'input_label_map', 'output_tf_record_path_prefix' ] for flag_name in required_flags: if not getattr(FLAGS, flag_name): raise ValueError('Flag --{} is required'.format(flag_name)) label_map = label_map_util.get_label_map_dict(FLAGS.input_label_map) all_box_annotations = pd.read_csv(FLAGS.input_box_annotations_csv) if FLAGS.input_image_label_annotations_csv: all_label_annotations = pd.read_csv(FLAGS.input_image_label_annotations_csv) all_label_annotations.rename( columns={'Confidence': 'ConfidenceImageLabel'}, inplace=True) else: all_label_annotations = None all_images = tf.gfile.Glob( os.path.join(FLAGS.input_images_directory, '*.jpg')) all_image_ids = [os.path.splitext(os.path.basename(v))[0] for v in all_images] all_image_ids = pd.DataFrame({'ImageID': all_image_ids}) all_annotations = pd.concat( [all_box_annotations, all_image_ids, all_label_annotations]) tf.logging.log(tf.logging.INFO, 'Found %d images...', len(all_image_ids)) with contextlib2.ExitStack() as tf_record_close_stack: output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords( tf_record_close_stack, FLAGS.output_tf_record_path_prefix, FLAGS.num_shards) for counter, image_data in enumerate(all_annotations.groupby('ImageID')): tf.logging.log_every_n(tf.logging.INFO, 'Processed %d images...', 1000, counter) image_id, image_annotations = image_data # In OID image file names are formed by appending ".jpg" to the image ID. image_path = os.path.join(FLAGS.input_images_directory, image_id + '.jpg') with tf.gfile.Open(image_path) as image_file: encoded_image = image_file.read() tf_example = oid_tfrecord_creation.tf_example_from_annotations_data_frame( image_annotations, label_map, encoded_image) if tf_example: shard_idx = int(image_id, 16) % FLAGS.num_shards output_tfrecords[shard_idx].write(tf_example.SerializeToString()) if __name__ == '__main__': tf.app.run()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/object_detection/dataset_tools/create_oid_tf_record.py