python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.pnasnet.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets.nasnet import pnasnet slim = tf.contrib.slim class PNASNetTest(tf.test.TestCase): def testBuildLogitsLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): logits, end_points = pnasnet.build_pnasnet_large(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes]) def testBuildLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): logits, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes]) def testBuildNonExistingLayerLargeModel(self): """Tests that the model is built correctly without unnecessary layers.""" inputs = tf.random_uniform((5, 331, 331, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): pnasnet.build_pnasnet_large(inputs, 1000) vars_names = [x.op.name for x in tf.trainable_variables()] self.assertIn('cell_stem_0/1x1/weights', vars_names) self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names) def testBuildNonExistingLayerMobileModel(self): """Tests that the model is built correctly without unnecessary layers.""" inputs = tf.random_uniform((5, 224, 224, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): pnasnet.build_pnasnet_mobile(inputs, 1000) vars_names = [x.op.name for x in tf.trainable_variables()] self.assertIn('cell_stem_0/1x1/weights', vars_names) self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names) def testBuildPreLogitsLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = None inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): net, end_points = pnasnet.build_pnasnet_large(inputs, num_classes) self.assertFalse('AuxLogits' in end_points) self.assertFalse('Predictions' in end_points) self.assertTrue(net.op.name.startswith('final_layer/Mean')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 4320]) def testBuildPreLogitsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = None inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): net, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes) self.assertFalse('AuxLogits' in end_points) self.assertFalse('Predictions' in end_points) self.assertTrue(net.op.name.startswith('final_layer/Mean')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 1080]) def testAllEndPointsShapesLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes) endpoints_shapes = {'Stem': [batch_size, 42, 42, 540], 'Cell_0': [batch_size, 42, 42, 1080], 'Cell_1': [batch_size, 42, 42, 1080], 'Cell_2': [batch_size, 42, 42, 1080], 'Cell_3': [batch_size, 42, 42, 1080], 'Cell_4': [batch_size, 21, 21, 2160], 'Cell_5': [batch_size, 21, 21, 2160], 'Cell_6': [batch_size, 21, 21, 2160], 'Cell_7': [batch_size, 21, 21, 2160], 'Cell_8': [batch_size, 11, 11, 4320], 'Cell_9': [batch_size, 11, 11, 4320], 'Cell_10': [batch_size, 11, 11, 4320], 'Cell_11': [batch_size, 11, 11, 4320], 'global_pool': [batch_size, 4320], # Logits and predictions 'AuxLogits': [batch_size, 1000], 'Predictions': [batch_size, 1000], 'Logits': [batch_size, 1000], } self.assertEqual(len(end_points), 17) self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: tf.logging.info('Endpoint name: {}'.format(endpoint_name)) expected_shape = endpoints_shapes[endpoint_name] self.assertIn(endpoint_name, end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testAllEndPointsShapesMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes) endpoints_shapes = { 'Stem': [batch_size, 28, 28, 135], 'Cell_0': [batch_size, 28, 28, 270], 'Cell_1': [batch_size, 28, 28, 270], 'Cell_2': [batch_size, 28, 28, 270], 'Cell_3': [batch_size, 14, 14, 540], 'Cell_4': [batch_size, 14, 14, 540], 'Cell_5': [batch_size, 14, 14, 540], 'Cell_6': [batch_size, 7, 7, 1080], 'Cell_7': [batch_size, 7, 7, 1080], 'Cell_8': [batch_size, 7, 7, 1080], 'global_pool': [batch_size, 1080], # Logits and predictions 'AuxLogits': [batch_size, num_classes], 'Predictions': [batch_size, num_classes], 'Logits': [batch_size, num_classes], } self.assertEqual(len(end_points), 14) self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: tf.logging.info('Endpoint name: {}'.format(endpoint_name)) expected_shape = endpoints_shapes[endpoint_name] self.assertIn(endpoint_name, end_points) self.assertListEqual(end_points[endpoint_name].get_shape().as_list(), expected_shape) def testNoAuxHeadLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 for use_aux_head in (True, False): tf.reset_default_graph() inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() config = pnasnet.large_imagenet_config() config.set_hparam('use_aux_head', int(use_aux_head)) with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes, config=config) self.assertEqual('AuxLogits' in end_points, use_aux_head) def testNoAuxHeadMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 for use_aux_head in (True, False): tf.reset_default_graph() inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() config = pnasnet.mobile_imagenet_config() config.set_hparam('use_aux_head', int(use_aux_head)) with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, end_points = pnasnet.build_pnasnet_mobile( inputs, num_classes, config=config) self.assertEqual('AuxLogits' in end_points, use_aux_head) def testOverrideHParamsLargeModel(self): batch_size = 5 height, width = 331, 331 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() config = pnasnet.large_imagenet_config() config.set_hparam('data_format', 'NCHW') with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()): _, end_points = pnasnet.build_pnasnet_large( inputs, num_classes, config=config) self.assertListEqual( end_points['Stem'].shape.as_list(), [batch_size, 540, 42, 42]) def testOverrideHParamsMobileModel(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() config = pnasnet.mobile_imagenet_config() config.set_hparam('data_format', 'NCHW') with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, end_points = pnasnet.build_pnasnet_mobile( inputs, num_classes, config=config) self.assertListEqual(end_points['Stem'].shape.as_list(), [batch_size, 135, 28, 28]) def testUseBoundedAcitvationMobileModel(self): batch_size = 1 height, width = 224, 224 num_classes = 1000 for use_bounded_activation in (True, False): tf.reset_default_graph() inputs = tf.random_uniform((batch_size, height, width, 3)) config = pnasnet.mobile_imagenet_config() config.set_hparam('use_bounded_activation', use_bounded_activation) with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()): _, _ = pnasnet.build_pnasnet_mobile( inputs, num_classes, config=config) for node in tf.get_default_graph().as_graph_def().node: if node.op.startswith('Relu'): self.assertEqual(node.op == 'Relu6', use_bounded_activation) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/nets/nasnet/pnasnet_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the definition for the NASNet classification networks. Paper: https://arxiv.org/abs/1707.07012 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import tensorflow as tf from nets.nasnet import nasnet_utils arg_scope = tf.contrib.framework.arg_scope slim = tf.contrib.slim # Notes for training NASNet Cifar Model # ------------------------------------- # batch_size: 32 # learning rate: 0.025 # cosine (single period) learning rate decay # auxiliary head loss weighting: 0.4 # clip global norm of all gradients by 5 def cifar_config(): return tf.contrib.training.HParams( stem_multiplier=3.0, drop_path_keep_prob=0.6, num_cells=18, use_aux_head=1, num_conv_filters=32, dense_dropout_keep_prob=1.0, filter_scaling_rate=2.0, num_reduction_layers=2, data_format='NHWC', skip_reduction_layer_input=0, # 600 epochs with a batch size of 32 # This is used for the drop path probabilities since it needs to increase # the drop out probability over the course of training. total_training_steps=937500, use_bounded_activation=False, ) # Notes for training large NASNet model on ImageNet # ------------------------------------- # batch size (per replica): 16 # learning rate: 0.015 * 100 # learning rate decay factor: 0.97 # num epochs per decay: 2.4 # sync sgd with 100 replicas # auxiliary head loss weighting: 0.4 # label smoothing: 0.1 # clip global norm of all gradients by 10 def large_imagenet_config(): return tf.contrib.training.HParams( stem_multiplier=3.0, dense_dropout_keep_prob=0.5, num_cells=18, filter_scaling_rate=2.0, num_conv_filters=168, drop_path_keep_prob=0.7, use_aux_head=1, num_reduction_layers=2, data_format='NHWC', skip_reduction_layer_input=1, total_training_steps=250000, use_bounded_activation=False, ) # Notes for training the mobile NASNet ImageNet model # ------------------------------------- # batch size (per replica): 32 # learning rate: 0.04 * 50 # learning rate scaling factor: 0.97 # num epochs per decay: 2.4 # sync sgd with 50 replicas # auxiliary head weighting: 0.4 # label smoothing: 0.1 # clip global norm of all gradients by 10 def mobile_imagenet_config(): return tf.contrib.training.HParams( stem_multiplier=1.0, dense_dropout_keep_prob=0.5, num_cells=12, filter_scaling_rate=2.0, drop_path_keep_prob=1.0, num_conv_filters=44, use_aux_head=1, num_reduction_layers=2, data_format='NHWC', skip_reduction_layer_input=0, total_training_steps=250000, use_bounded_activation=False, ) def _update_hparams(hparams, is_training): """Update hparams for given is_training option.""" if not is_training: hparams.set_hparam('drop_path_keep_prob', 1.0) def nasnet_cifar_arg_scope(weight_decay=5e-4, batch_norm_decay=0.9, batch_norm_epsilon=1e-5): """Defines the default arg scope for the NASNet-A Cifar model. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. Returns: An `arg_scope` to use for the NASNet Cifar Model. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, 'scale': True, 'fused': True, } weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay) weights_initializer = tf.contrib.layers.variance_scaling_initializer( mode='FAN_OUT') with arg_scope([slim.fully_connected, slim.conv2d, slim.separable_conv2d], weights_regularizer=weights_regularizer, weights_initializer=weights_initializer): with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'): with arg_scope([slim.conv2d, slim.separable_conv2d], activation_fn=None, biases_initializer=None): with arg_scope([slim.batch_norm], **batch_norm_params) as sc: return sc def nasnet_mobile_arg_scope(weight_decay=4e-5, batch_norm_decay=0.9997, batch_norm_epsilon=1e-3): """Defines the default arg scope for the NASNet-A Mobile ImageNet model. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. Returns: An `arg_scope` to use for the NASNet Mobile Model. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, 'scale': True, 'fused': True, } weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay) weights_initializer = tf.contrib.layers.variance_scaling_initializer( mode='FAN_OUT') with arg_scope([slim.fully_connected, slim.conv2d, slim.separable_conv2d], weights_regularizer=weights_regularizer, weights_initializer=weights_initializer): with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'): with arg_scope([slim.conv2d, slim.separable_conv2d], activation_fn=None, biases_initializer=None): with arg_scope([slim.batch_norm], **batch_norm_params) as sc: return sc def nasnet_large_arg_scope(weight_decay=5e-5, batch_norm_decay=0.9997, batch_norm_epsilon=1e-3): """Defines the default arg scope for the NASNet-A Large ImageNet model. Args: weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: Decay for batch norm moving average. batch_norm_epsilon: Small float added to variance to avoid dividing by zero in batch norm. Returns: An `arg_scope` to use for the NASNet Large Model. """ batch_norm_params = { # Decay for the moving averages. 'decay': batch_norm_decay, # epsilon to prevent 0s in variance. 'epsilon': batch_norm_epsilon, 'scale': True, 'fused': True, } weights_regularizer = tf.contrib.layers.l2_regularizer(weight_decay) weights_initializer = tf.contrib.layers.variance_scaling_initializer( mode='FAN_OUT') with arg_scope([slim.fully_connected, slim.conv2d, slim.separable_conv2d], weights_regularizer=weights_regularizer, weights_initializer=weights_initializer): with arg_scope([slim.fully_connected], activation_fn=None, scope='FC'): with arg_scope([slim.conv2d, slim.separable_conv2d], activation_fn=None, biases_initializer=None): with arg_scope([slim.batch_norm], **batch_norm_params) as sc: return sc def _build_aux_head(net, end_points, num_classes, hparams, scope): """Auxiliary head used for all models across all datasets.""" activation_fn = tf.nn.relu6 if hparams.use_bounded_activation else tf.nn.relu with tf.variable_scope(scope): aux_logits = tf.identity(net) with tf.variable_scope('aux_logits'): aux_logits = slim.avg_pool2d( aux_logits, [5, 5], stride=3, padding='VALID') aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='proj') aux_logits = slim.batch_norm(aux_logits, scope='aux_bn0') aux_logits = activation_fn(aux_logits) # Shape of feature map before the final layer. shape = aux_logits.shape if hparams.data_format == 'NHWC': shape = shape[1:3] else: shape = shape[2:4] aux_logits = slim.conv2d(aux_logits, 768, shape, padding='VALID') aux_logits = slim.batch_norm(aux_logits, scope='aux_bn1') aux_logits = activation_fn(aux_logits) aux_logits = tf.contrib.layers.flatten(aux_logits) aux_logits = slim.fully_connected(aux_logits, num_classes) end_points['AuxLogits'] = aux_logits def _imagenet_stem(inputs, hparams, stem_cell, current_step=None): """Stem used for models trained on ImageNet.""" num_stem_cells = 2 # 149 x 149 x 32 num_stem_filters = int(32 * hparams.stem_multiplier) net = slim.conv2d( inputs, num_stem_filters, [3, 3], stride=2, scope='conv0', padding='VALID') net = slim.batch_norm(net, scope='conv0_bn') # Run the reduction cells cell_outputs = [None, net] filter_scaling = 1.0 / (hparams.filter_scaling_rate**num_stem_cells) for cell_num in range(num_stem_cells): net = stem_cell( net, scope='cell_stem_{}'.format(cell_num), filter_scaling=filter_scaling, stride=2, prev_layer=cell_outputs[-2], cell_num=cell_num, current_step=current_step) cell_outputs.append(net) filter_scaling *= hparams.filter_scaling_rate return net, cell_outputs def _cifar_stem(inputs, hparams): """Stem used for models trained on Cifar.""" num_stem_filters = int(hparams.num_conv_filters * hparams.stem_multiplier) net = slim.conv2d( inputs, num_stem_filters, 3, scope='l1_stem_3x3') net = slim.batch_norm(net, scope='l1_stem_bn') return net, [None, net] def build_nasnet_cifar(images, num_classes, is_training=True, config=None, current_step=None): """Build NASNet model for the Cifar Dataset.""" hparams = cifar_config() if config is None else copy.deepcopy(config) _update_hparams(hparams, is_training) if tf.test.is_gpu_available() and hparams.data_format == 'NHWC': tf.logging.info('A GPU is available on the machine, consider using NCHW ' 'data format for increased speed on GPU.') if hparams.data_format == 'NCHW': images = tf.transpose(images, [0, 3, 1, 2]) # Calculate the total number of cells in the network # Add 2 for the reduction cells total_num_cells = hparams.num_cells + 2 normal_cell = nasnet_utils.NasNetANormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) reduction_cell = nasnet_utils.NasNetAReductionCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm], is_training=is_training): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): return _build_nasnet_base(images, normal_cell=normal_cell, reduction_cell=reduction_cell, num_classes=num_classes, hparams=hparams, is_training=is_training, stem_type='cifar', current_step=current_step) build_nasnet_cifar.default_image_size = 32 def build_nasnet_mobile(images, num_classes, is_training=True, final_endpoint=None, config=None, current_step=None): """Build NASNet Mobile model for the ImageNet Dataset.""" hparams = (mobile_imagenet_config() if config is None else copy.deepcopy(config)) _update_hparams(hparams, is_training) if tf.test.is_gpu_available() and hparams.data_format == 'NHWC': tf.logging.info('A GPU is available on the machine, consider using NCHW ' 'data format for increased speed on GPU.') if hparams.data_format == 'NCHW': images = tf.transpose(images, [0, 3, 1, 2]) # Calculate the total number of cells in the network # Add 2 for the reduction cells total_num_cells = hparams.num_cells + 2 # If ImageNet, then add an additional two for the stem cells total_num_cells += 2 normal_cell = nasnet_utils.NasNetANormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) reduction_cell = nasnet_utils.NasNetAReductionCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm], is_training=is_training): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): return _build_nasnet_base(images, normal_cell=normal_cell, reduction_cell=reduction_cell, num_classes=num_classes, hparams=hparams, is_training=is_training, stem_type='imagenet', final_endpoint=final_endpoint, current_step=current_step) build_nasnet_mobile.default_image_size = 224 def build_nasnet_large(images, num_classes, is_training=True, final_endpoint=None, config=None, current_step=None): """Build NASNet Large model for the ImageNet Dataset.""" hparams = (large_imagenet_config() if config is None else copy.deepcopy(config)) _update_hparams(hparams, is_training) if tf.test.is_gpu_available() and hparams.data_format == 'NHWC': tf.logging.info('A GPU is available on the machine, consider using NCHW ' 'data format for increased speed on GPU.') if hparams.data_format == 'NCHW': images = tf.transpose(images, [0, 3, 1, 2]) # Calculate the total number of cells in the network # Add 2 for the reduction cells total_num_cells = hparams.num_cells + 2 # If ImageNet, then add an additional two for the stem cells total_num_cells += 2 normal_cell = nasnet_utils.NasNetANormalCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) reduction_cell = nasnet_utils.NasNetAReductionCell( hparams.num_conv_filters, hparams.drop_path_keep_prob, total_num_cells, hparams.total_training_steps, hparams.use_bounded_activation) with arg_scope([slim.dropout, nasnet_utils.drop_path, slim.batch_norm], is_training=is_training): with arg_scope([slim.avg_pool2d, slim.max_pool2d, slim.conv2d, slim.batch_norm, slim.separable_conv2d, nasnet_utils.factorized_reduction, nasnet_utils.global_avg_pool, nasnet_utils.get_channel_index, nasnet_utils.get_channel_dim], data_format=hparams.data_format): return _build_nasnet_base(images, normal_cell=normal_cell, reduction_cell=reduction_cell, num_classes=num_classes, hparams=hparams, is_training=is_training, stem_type='imagenet', final_endpoint=final_endpoint, current_step=current_step) build_nasnet_large.default_image_size = 331 def _build_nasnet_base(images, normal_cell, reduction_cell, num_classes, hparams, is_training, stem_type, final_endpoint=None, current_step=None): """Constructs a NASNet image model.""" end_points = {} def add_and_check_endpoint(endpoint_name, net): end_points[endpoint_name] = net return final_endpoint and (endpoint_name == final_endpoint) # Find where to place the reduction cells or stride normal cells reduction_indices = nasnet_utils.calc_reduction_layers( hparams.num_cells, hparams.num_reduction_layers) stem_cell = reduction_cell if stem_type == 'imagenet': stem = lambda: _imagenet_stem(images, hparams, stem_cell) elif stem_type == 'cifar': stem = lambda: _cifar_stem(images, hparams) else: raise ValueError('Unknown stem_type: ', stem_type) net, cell_outputs = stem() if add_and_check_endpoint('Stem', net): return net, end_points # Setup for building in the auxiliary head. aux_head_cell_idxes = [] if len(reduction_indices) >= 2: aux_head_cell_idxes.append(reduction_indices[1] - 1) # Run the cells filter_scaling = 1.0 # true_cell_num accounts for the stem cells true_cell_num = 2 if stem_type == 'imagenet' else 0 activation_fn = tf.nn.relu6 if hparams.use_bounded_activation else tf.nn.relu for cell_num in range(hparams.num_cells): stride = 1 if hparams.skip_reduction_layer_input: prev_layer = cell_outputs[-2] if cell_num in reduction_indices: filter_scaling *= hparams.filter_scaling_rate net = reduction_cell( net, scope='reduction_cell_{}'.format(reduction_indices.index(cell_num)), filter_scaling=filter_scaling, stride=2, prev_layer=cell_outputs[-2], cell_num=true_cell_num, current_step=current_step) if add_and_check_endpoint( 'Reduction_Cell_{}'.format(reduction_indices.index(cell_num)), net): return net, end_points true_cell_num += 1 cell_outputs.append(net) if not hparams.skip_reduction_layer_input: prev_layer = cell_outputs[-2] net = normal_cell( net, scope='cell_{}'.format(cell_num), filter_scaling=filter_scaling, stride=stride, prev_layer=prev_layer, cell_num=true_cell_num, current_step=current_step) if add_and_check_endpoint('Cell_{}'.format(cell_num), net): return net, end_points true_cell_num += 1 if (hparams.use_aux_head and cell_num in aux_head_cell_idxes and num_classes and is_training): aux_net = activation_fn(net) _build_aux_head(aux_net, end_points, num_classes, hparams, scope='aux_{}'.format(cell_num)) cell_outputs.append(net) # Final softmax layer with tf.variable_scope('final_layer'): net = activation_fn(net) net = nasnet_utils.global_avg_pool(net) if add_and_check_endpoint('global_pool', net) or not num_classes: return net, end_points net = slim.dropout(net, hparams.dense_dropout_keep_prob, scope='dropout') logits = slim.fully_connected(net, num_classes) if add_and_check_endpoint('Logits', logits): return net, end_points predictions = tf.nn.softmax(logits, name='predictions') if add_and_check_endpoint('Predictions', predictions): return net, end_points return logits, end_points
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/nets/nasnet/nasnet.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A custom module for some common operations used by NASNet. Functions exposed in this file: - calc_reduction_layers - get_channel_index - get_channel_dim - global_avg_pool - factorized_reduction - drop_path Classes exposed in this file: - NasNetABaseCell - NasNetANormalCell - NasNetAReductionCell """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf arg_scope = tf.contrib.framework.arg_scope slim = tf.contrib.slim DATA_FORMAT_NCHW = 'NCHW' DATA_FORMAT_NHWC = 'NHWC' INVALID = 'null' # The cap for tf.clip_by_value, it's hinted from the activation distribution # that the majority of activation values are in the range [-6, 6]. CLIP_BY_VALUE_CAP = 6 def calc_reduction_layers(num_cells, num_reduction_layers): """Figure out what layers should have reductions.""" reduction_layers = [] for pool_num in range(1, num_reduction_layers + 1): layer_num = (float(pool_num) / (num_reduction_layers + 1)) * num_cells layer_num = int(layer_num) reduction_layers.append(layer_num) return reduction_layers @tf.contrib.framework.add_arg_scope def get_channel_index(data_format=INVALID): assert data_format != INVALID axis = 3 if data_format == 'NHWC' else 1 return axis @tf.contrib.framework.add_arg_scope def get_channel_dim(shape, data_format=INVALID): assert data_format != INVALID assert len(shape) == 4 if data_format == 'NHWC': return int(shape[3]) elif data_format == 'NCHW': return int(shape[1]) else: raise ValueError('Not a valid data_format', data_format) @tf.contrib.framework.add_arg_scope def global_avg_pool(x, data_format=INVALID): """Average pool away the height and width spatial dimensions of x.""" assert data_format != INVALID assert data_format in ['NHWC', 'NCHW'] assert x.shape.ndims == 4 if data_format == 'NHWC': return tf.reduce_mean(x, [1, 2]) else: return tf.reduce_mean(x, [2, 3]) @tf.contrib.framework.add_arg_scope def factorized_reduction(net, output_filters, stride, data_format=INVALID): """Reduces the shape of net without information loss due to striding.""" assert data_format != INVALID if stride == 1: net = slim.conv2d(net, output_filters, 1, scope='path_conv') net = slim.batch_norm(net, scope='path_bn') return net if data_format == 'NHWC': stride_spec = [1, stride, stride, 1] else: stride_spec = [1, 1, stride, stride] # Skip path 1 path1 = tf.nn.avg_pool( net, [1, 1, 1, 1], stride_spec, 'VALID', data_format=data_format) path1 = slim.conv2d(path1, int(output_filters / 2), 1, scope='path1_conv') # Skip path 2 # First pad with 0's on the right and bottom, then shift the filter to # include those 0's that were added. if data_format == 'NHWC': pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]] path2 = tf.pad(net, pad_arr)[:, 1:, 1:, :] concat_axis = 3 else: pad_arr = [[0, 0], [0, 0], [0, 1], [0, 1]] path2 = tf.pad(net, pad_arr)[:, :, 1:, 1:] concat_axis = 1 path2 = tf.nn.avg_pool( path2, [1, 1, 1, 1], stride_spec, 'VALID', data_format=data_format) # If odd number of filters, add an additional one to the second path. final_filter_size = int(output_filters / 2) + int(output_filters % 2) path2 = slim.conv2d(path2, final_filter_size, 1, scope='path2_conv') # Concat and apply BN final_path = tf.concat(values=[path1, path2], axis=concat_axis) final_path = slim.batch_norm(final_path, scope='final_path_bn') return final_path @tf.contrib.framework.add_arg_scope def drop_path(net, keep_prob, is_training=True): """Drops out a whole example hiddenstate with the specified probability.""" if is_training: batch_size = tf.shape(net)[0] noise_shape = [batch_size, 1, 1, 1] random_tensor = keep_prob random_tensor += tf.random_uniform(noise_shape, dtype=tf.float32) binary_tensor = tf.cast(tf.floor(random_tensor), net.dtype) keep_prob_inv = tf.cast(1.0 / keep_prob, net.dtype) net = net * keep_prob_inv * binary_tensor return net def _operation_to_filter_shape(operation): splitted_operation = operation.split('x') filter_shape = int(splitted_operation[0][-1]) assert filter_shape == int( splitted_operation[1][0]), 'Rectangular filters not supported.' return filter_shape def _operation_to_num_layers(operation): splitted_operation = operation.split('_') if 'x' in splitted_operation[-1]: return 1 return int(splitted_operation[-1]) def _operation_to_info(operation): """Takes in operation name and returns meta information. An example would be 'separable_3x3_4' -> (3, 4). Args: operation: String that corresponds to convolution operation. Returns: Tuple of (filter shape, num layers). """ num_layers = _operation_to_num_layers(operation) filter_shape = _operation_to_filter_shape(operation) return num_layers, filter_shape def _stacked_separable_conv(net, stride, operation, filter_size, use_bounded_activation): """Takes in an operations and parses it to the correct sep operation.""" num_layers, kernel_size = _operation_to_info(operation) activation_fn = tf.nn.relu6 if use_bounded_activation else tf.nn.relu for layer_num in range(num_layers - 1): net = activation_fn(net) net = slim.separable_conv2d( net, filter_size, kernel_size, depth_multiplier=1, scope='separable_{0}x{0}_{1}'.format(kernel_size, layer_num + 1), stride=stride) net = slim.batch_norm( net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, layer_num + 1)) stride = 1 net = activation_fn(net) net = slim.separable_conv2d( net, filter_size, kernel_size, depth_multiplier=1, scope='separable_{0}x{0}_{1}'.format(kernel_size, num_layers), stride=stride) net = slim.batch_norm( net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, num_layers)) return net def _operation_to_pooling_type(operation): """Takes in the operation string and returns the pooling type.""" splitted_operation = operation.split('_') return splitted_operation[0] def _operation_to_pooling_shape(operation): """Takes in the operation string and returns the pooling kernel shape.""" splitted_operation = operation.split('_') shape = splitted_operation[-1] assert 'x' in shape filter_height, filter_width = shape.split('x') assert filter_height == filter_width return int(filter_height) def _operation_to_pooling_info(operation): """Parses the pooling operation string to return its type and shape.""" pooling_type = _operation_to_pooling_type(operation) pooling_shape = _operation_to_pooling_shape(operation) return pooling_type, pooling_shape def _pooling(net, stride, operation, use_bounded_activation): """Parses operation and performs the correct pooling operation on net.""" padding = 'SAME' pooling_type, pooling_shape = _operation_to_pooling_info(operation) if use_bounded_activation: net = tf.nn.relu6(net) if pooling_type == 'avg': net = slim.avg_pool2d(net, pooling_shape, stride=stride, padding=padding) elif pooling_type == 'max': net = slim.max_pool2d(net, pooling_shape, stride=stride, padding=padding) else: raise NotImplementedError('Unimplemented pooling type: ', pooling_type) return net class NasNetABaseCell(object): """NASNet Cell class that is used as a 'layer' in image architectures. Args: num_conv_filters: The number of filters for each convolution operation. operations: List of operations that are performed in the NASNet Cell in order. used_hiddenstates: Binary array that signals if the hiddenstate was used within the cell. This is used to determine what outputs of the cell should be concatenated together. hiddenstate_indices: Determines what hiddenstates should be combined together with the specified operations to create the NASNet cell. use_bounded_activation: Whether or not to use bounded activations. Bounded activations better lend themselves to quantized inference. """ def __init__(self, num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation=False): self._num_conv_filters = num_conv_filters self._operations = operations self._used_hiddenstates = used_hiddenstates self._hiddenstate_indices = hiddenstate_indices self._drop_path_keep_prob = drop_path_keep_prob self._total_num_cells = total_num_cells self._total_training_steps = total_training_steps self._use_bounded_activation = use_bounded_activation def _reduce_prev_layer(self, prev_layer, curr_layer): """Matches dimension of prev_layer to the curr_layer.""" # Set the prev layer to the current layer if it is none if prev_layer is None: return curr_layer curr_num_filters = self._filter_size prev_num_filters = get_channel_dim(prev_layer.shape) curr_filter_shape = int(curr_layer.shape[2]) prev_filter_shape = int(prev_layer.shape[2]) activation_fn = tf.nn.relu6 if self._use_bounded_activation else tf.nn.relu if curr_filter_shape != prev_filter_shape: prev_layer = activation_fn(prev_layer) prev_layer = factorized_reduction( prev_layer, curr_num_filters, stride=2) elif curr_num_filters != prev_num_filters: prev_layer = activation_fn(prev_layer) prev_layer = slim.conv2d( prev_layer, curr_num_filters, 1, scope='prev_1x1') prev_layer = slim.batch_norm(prev_layer, scope='prev_bn') return prev_layer def _cell_base(self, net, prev_layer): """Runs the beginning of the conv cell before the predicted ops are run.""" num_filters = self._filter_size # Check to be sure prev layer stuff is setup correctly prev_layer = self._reduce_prev_layer(prev_layer, net) net = tf.nn.relu6(net) if self._use_bounded_activation else tf.nn.relu(net) net = slim.conv2d(net, num_filters, 1, scope='1x1') net = slim.batch_norm(net, scope='beginning_bn') # num_or_size_splits=1 net = [net] net.append(prev_layer) return net def __call__(self, net, scope=None, filter_scaling=1, stride=1, prev_layer=None, cell_num=-1, current_step=None): """Runs the conv cell.""" self._cell_num = cell_num self._filter_scaling = filter_scaling self._filter_size = int(self._num_conv_filters * filter_scaling) i = 0 with tf.variable_scope(scope): net = self._cell_base(net, prev_layer) for iteration in range(5): with tf.variable_scope('comb_iter_{}'.format(iteration)): left_hiddenstate_idx, right_hiddenstate_idx = ( self._hiddenstate_indices[i], self._hiddenstate_indices[i + 1]) original_input_left = left_hiddenstate_idx < 2 original_input_right = right_hiddenstate_idx < 2 h1 = net[left_hiddenstate_idx] h2 = net[right_hiddenstate_idx] operation_left = self._operations[i] operation_right = self._operations[i+1] i += 2 # Apply conv operations with tf.variable_scope('left'): h1 = self._apply_conv_operation(h1, operation_left, stride, original_input_left, current_step) with tf.variable_scope('right'): h2 = self._apply_conv_operation(h2, operation_right, stride, original_input_right, current_step) # Combine hidden states using 'add'. with tf.variable_scope('combine'): h = h1 + h2 if self._use_bounded_activation: h = tf.nn.relu6(h) # Add hiddenstate to the list of hiddenstates we can choose from net.append(h) with tf.variable_scope('cell_output'): net = self._combine_unused_states(net) return net def _apply_conv_operation(self, net, operation, stride, is_from_original_input, current_step): """Applies the predicted conv operation to net.""" # Dont stride if this is not one of the original hiddenstates if stride > 1 and not is_from_original_input: stride = 1 input_filters = get_channel_dim(net.shape) filter_size = self._filter_size if 'separable' in operation: net = _stacked_separable_conv(net, stride, operation, filter_size, self._use_bounded_activation) if self._use_bounded_activation: net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP) elif operation in ['none']: if self._use_bounded_activation: net = tf.nn.relu6(net) # Check if a stride is needed, then use a strided 1x1 here if stride > 1 or (input_filters != filter_size): if not self._use_bounded_activation: net = tf.nn.relu(net) net = slim.conv2d(net, filter_size, 1, stride=stride, scope='1x1') net = slim.batch_norm(net, scope='bn_1') if self._use_bounded_activation: net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP) elif 'pool' in operation: net = _pooling(net, stride, operation, self._use_bounded_activation) if input_filters != filter_size: net = slim.conv2d(net, filter_size, 1, stride=1, scope='1x1') net = slim.batch_norm(net, scope='bn_1') if self._use_bounded_activation: net = tf.clip_by_value(net, -CLIP_BY_VALUE_CAP, CLIP_BY_VALUE_CAP) else: raise ValueError('Unimplemented operation', operation) if operation != 'none': net = self._apply_drop_path(net, current_step=current_step) return net def _combine_unused_states(self, net): """Concatenate the unused hidden states of the cell.""" used_hiddenstates = self._used_hiddenstates final_height = int(net[-1].shape[2]) final_num_filters = get_channel_dim(net[-1].shape) assert len(used_hiddenstates) == len(net) for idx, used_h in enumerate(used_hiddenstates): curr_height = int(net[idx].shape[2]) curr_num_filters = get_channel_dim(net[idx].shape) # Determine if a reduction should be applied to make the number of # filters match. should_reduce = final_num_filters != curr_num_filters should_reduce = (final_height != curr_height) or should_reduce should_reduce = should_reduce and not used_h if should_reduce: stride = 2 if final_height != curr_height else 1 with tf.variable_scope('reduction_{}'.format(idx)): net[idx] = factorized_reduction( net[idx], final_num_filters, stride) states_to_combine = ( [h for h, is_used in zip(net, used_hiddenstates) if not is_used]) # Return the concat of all the states concat_axis = get_channel_index() net = tf.concat(values=states_to_combine, axis=concat_axis) return net @tf.contrib.framework.add_arg_scope # No public API. For internal use only. def _apply_drop_path(self, net, current_step=None, use_summaries=False, drop_connect_version='v3'): """Apply drop_path regularization. Args: net: the Tensor that gets drop_path regularization applied. current_step: a float32 Tensor with the current global_step value, to be divided by hparams.total_training_steps. Usually None, which defaults to tf.train.get_or_create_global_step() properly casted. use_summaries: a Python boolean. If set to False, no summaries are output. drop_connect_version: one of 'v1', 'v2', 'v3', controlling whether the dropout rate is scaled by current_step (v1), layer (v2), or both (v3, the default). Returns: The dropped-out value of `net`. """ drop_path_keep_prob = self._drop_path_keep_prob if drop_path_keep_prob < 1.0: assert drop_connect_version in ['v1', 'v2', 'v3'] if drop_connect_version in ['v2', 'v3']: # Scale keep prob by layer number assert self._cell_num != -1 # The added 2 is for the reduction cells num_cells = self._total_num_cells layer_ratio = (self._cell_num + 1)/float(num_cells) if use_summaries: with tf.device('/cpu:0'): tf.summary.scalar('layer_ratio', layer_ratio) drop_path_keep_prob = 1 - layer_ratio * (1 - drop_path_keep_prob) if drop_connect_version in ['v1', 'v3']: # Decrease the keep probability over time if current_step is None: current_step = tf.train.get_or_create_global_step() current_step = tf.cast(current_step, tf.float32) drop_path_burn_in_steps = self._total_training_steps current_ratio = current_step / drop_path_burn_in_steps current_ratio = tf.minimum(1.0, current_ratio) if use_summaries: with tf.device('/cpu:0'): tf.summary.scalar('current_ratio', current_ratio) drop_path_keep_prob = (1 - current_ratio * (1 - drop_path_keep_prob)) if use_summaries: with tf.device('/cpu:0'): tf.summary.scalar('drop_path_keep_prob', drop_path_keep_prob) net = drop_path(net, drop_path_keep_prob) return net class NasNetANormalCell(NasNetABaseCell): """NASNetA Normal Cell.""" def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation=False): operations = ['separable_5x5_2', 'separable_3x3_2', 'separable_5x5_2', 'separable_3x3_2', 'avg_pool_3x3', 'none', 'avg_pool_3x3', 'avg_pool_3x3', 'separable_3x3_2', 'none'] used_hiddenstates = [1, 0, 0, 0, 0, 0, 0] hiddenstate_indices = [0, 1, 1, 1, 0, 1, 1, 1, 0, 0] super(NasNetANormalCell, self).__init__(num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation) class NasNetAReductionCell(NasNetABaseCell): """NASNetA Reduction Cell.""" def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation=False): operations = ['separable_5x5_2', 'separable_7x7_2', 'max_pool_3x3', 'separable_7x7_2', 'avg_pool_3x3', 'separable_5x5_2', 'none', 'avg_pool_3x3', 'separable_3x3_2', 'max_pool_3x3'] used_hiddenstates = [1, 1, 1, 0, 0, 0, 0] hiddenstate_indices = [0, 1, 0, 1, 0, 1, 3, 2, 2, 0] super(NasNetAReductionCell, self).__init__(num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, drop_path_keep_prob, total_num_cells, total_training_steps, use_bounded_activation)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/nets/nasnet/nasnet_utils.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Deploy Slim models across multiple clones and replicas. # TODO(sguada) docstring paragraph by (a) motivating the need for the file and # (b) defining clones. # TODO(sguada) describe the high-level components of model deployment. # E.g. "each model deployment is composed of several parts: a DeploymentConfig, # which captures A, B and C, an input_fn which loads data.. etc To easily train a model on multiple GPUs or across multiple machines this module provides a set of helper functions: `create_clones`, `optimize_clones` and `deploy`. Usage: g = tf.Graph() # Set up DeploymentConfig config = model_deploy.DeploymentConfig(num_clones=2, clone_on_cpu=True) # Create the global step on the device storing the variables. with tf.device(config.variables_device()): global_step = slim.create_global_step() # Define the inputs with tf.device(config.inputs_device()): images, labels = LoadData(...) inputs_queue = slim.data.prefetch_queue((images, labels)) # Define the optimizer. with tf.device(config.optimizer_device()): optimizer = tf.train.MomentumOptimizer(FLAGS.learning_rate, FLAGS.momentum) # Define the model including the loss. def model_fn(inputs_queue): images, labels = inputs_queue.dequeue() predictions = CreateNetwork(images) slim.losses.log_loss(predictions, labels) model_dp = model_deploy.deploy(config, model_fn, [inputs_queue], optimizer=optimizer) # Run training. slim.learning.train(model_dp.train_op, my_log_dir, summary_op=model_dp.summary_op) The Clone namedtuple holds together the values associated with each call to model_fn: * outputs: The return values of the calls to `model_fn()`. * scope: The scope used to create the clone. * device: The device used to create the clone. DeployedModel namedtuple, holds together the values needed to train multiple clones: * train_op: An operation that run the optimizer training op and include all the update ops created by `model_fn`. Present only if an optimizer was specified. * summary_op: An operation that run the summaries created by `model_fn` and process_gradients. * total_loss: A `Tensor` that contains the sum of all losses created by `model_fn` plus the regularization losses. * clones: List of `Clone` tuples returned by `create_clones()`. DeploymentConfig parameters: * num_clones: Number of model clones to deploy in each replica. * clone_on_cpu: True if clones should be placed on CPU. * replica_id: Integer. Index of the replica for which the model is deployed. Usually 0 for the chief replica. * num_replicas: Number of replicas to use. * num_ps_tasks: Number of tasks for the `ps` job. 0 to not use replicas. * worker_job_name: A name for the worker job. * ps_job_name: A name for the parameter server job. TODO(sguada): - describe side effect to the graph. - what happens to summaries and update_ops. - which graph collections are altered. - write a tutorial on how to use this. - analyze the possibility of calling deploy more than once. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import tensorflow as tf slim = tf.contrib.slim __all__ = ['create_clones', 'deploy', 'optimize_clones', 'DeployedModel', 'DeploymentConfig', 'Clone', ] # Namedtuple used to represent a clone during deployment. Clone = collections.namedtuple('Clone', ['outputs', # Whatever model_fn() returned. 'scope', # The scope used to create it. 'device', # The device used to create. ]) # Namedtuple used to represent a DeployedModel, returned by deploy(). DeployedModel = collections.namedtuple('DeployedModel', ['train_op', # The `train_op` 'summary_op', # The `summary_op` 'total_loss', # The loss `Tensor` 'clones', # A list of `Clones` tuples. ]) # Default parameters for DeploymentConfig _deployment_params = {'num_clones': 1, 'clone_on_cpu': False, 'replica_id': 0, 'num_replicas': 1, 'num_ps_tasks': 0, 'worker_job_name': 'worker', 'ps_job_name': 'ps'} def create_clones(config, model_fn, args=None, kwargs=None): """Creates multiple clones according to config using a `model_fn`. The returned values of `model_fn(*args, **kwargs)` are collected along with the scope and device used to created it in a namedtuple `Clone(outputs, scope, device)` Note: it is assumed that any loss created by `model_fn` is collected at the tf.GraphKeys.LOSSES collection. To recover the losses, summaries or update_ops created by the clone use: ```python losses = tf.get_collection(tf.GraphKeys.LOSSES, clone.scope) summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, clone.scope) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, clone.scope) ``` The deployment options are specified by the config object and support deploying one or several clones on different GPUs and one or several replicas of such clones. The argument `model_fn` is called `config.num_clones` times to create the model clones as `model_fn(*args, **kwargs)`. If `config` specifies deployment on multiple replicas then the default tensorflow device is set appropriatly for each call to `model_fn` and for the slim variable creation functions: model and global variables will be created on the `ps` device, the clone operations will be on the `worker` device. Args: config: A DeploymentConfig object. model_fn: A callable. Called as `model_fn(*args, **kwargs)` args: Optional list of arguments to pass to `model_fn`. kwargs: Optional list of keyword arguments to pass to `model_fn`. Returns: A list of namedtuples `Clone`. """ clones = [] args = args or [] kwargs = kwargs or {} with slim.arg_scope([slim.model_variable, slim.variable], device=config.variables_device()): # Create clones. for i in range(0, config.num_clones): with tf.name_scope(config.clone_scope(i)) as clone_scope: clone_device = config.clone_device(i) with tf.device(clone_device): with tf.variable_scope(tf.get_variable_scope(), reuse=True if i > 0 else None): outputs = model_fn(*args, **kwargs) clones.append(Clone(outputs, clone_scope, clone_device)) return clones def _gather_clone_loss(clone, num_clones, regularization_losses): """Gather the loss for a single clone. Args: clone: A Clone namedtuple. num_clones: The number of clones being deployed. regularization_losses: Possibly empty list of regularization_losses to add to the clone losses. Returns: A tensor for the total loss for the clone. Can be None. """ # The return value. sum_loss = None # Individual components of the loss that will need summaries. clone_loss = None regularization_loss = None # Compute and aggregate losses on the clone device. with tf.device(clone.device): all_losses = [] clone_losses = tf.get_collection(tf.GraphKeys.LOSSES, clone.scope) if clone_losses: clone_loss = tf.add_n(clone_losses, name='clone_loss') if num_clones > 1: clone_loss = tf.div(clone_loss, 1.0 * num_clones, name='scaled_clone_loss') all_losses.append(clone_loss) if regularization_losses: regularization_loss = tf.add_n(regularization_losses, name='regularization_loss') all_losses.append(regularization_loss) if all_losses: sum_loss = tf.add_n(all_losses) # Add the summaries out of the clone device block. if clone_loss is not None: tf.summary.scalar('/'.join(filter(None, ['Losses', clone.scope, 'clone_loss'])), clone_loss) if regularization_loss is not None: tf.summary.scalar('Losses/regularization_loss', regularization_loss) return sum_loss def _optimize_clone(optimizer, clone, num_clones, regularization_losses, **kwargs): """Compute losses and gradients for a single clone. Args: optimizer: A tf.Optimizer object. clone: A Clone namedtuple. num_clones: The number of clones being deployed. regularization_losses: Possibly empty list of regularization_losses to add to the clone losses. **kwargs: Dict of kwarg to pass to compute_gradients(). Returns: A tuple (clone_loss, clone_grads_and_vars). - clone_loss: A tensor for the total loss for the clone. Can be None. - clone_grads_and_vars: List of (gradient, variable) for the clone. Can be empty. """ sum_loss = _gather_clone_loss(clone, num_clones, regularization_losses) clone_grad = None if sum_loss is not None: with tf.device(clone.device): clone_grad = optimizer.compute_gradients(sum_loss, **kwargs) return sum_loss, clone_grad def optimize_clones(clones, optimizer, regularization_losses=None, **kwargs): """Compute clone losses and gradients for the given list of `Clones`. Note: The regularization_losses are added to the first clone losses. Args: clones: List of `Clones` created by `create_clones()`. optimizer: An `Optimizer` object. regularization_losses: Optional list of regularization losses. If None it will gather them from tf.GraphKeys.REGULARIZATION_LOSSES. Pass `[]` to exclude them. **kwargs: Optional list of keyword arguments to pass to `compute_gradients`. Returns: A tuple (total_loss, grads_and_vars). - total_loss: A Tensor containing the average of the clone losses including the regularization loss. - grads_and_vars: A List of tuples (gradient, variable) containing the sum of the gradients for each variable. """ grads_and_vars = [] clones_losses = [] num_clones = len(clones) if regularization_losses is None: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) for clone in clones: with tf.name_scope(clone.scope): clone_loss, clone_grad = _optimize_clone( optimizer, clone, num_clones, regularization_losses, **kwargs) if clone_loss is not None: clones_losses.append(clone_loss) grads_and_vars.append(clone_grad) # Only use regularization_losses for the first clone regularization_losses = None # Compute the total_loss summing all the clones_losses. total_loss = tf.add_n(clones_losses, name='total_loss') # Sum the gradients across clones. grads_and_vars = _sum_clones_gradients(grads_and_vars) return total_loss, grads_and_vars def deploy(config, model_fn, args=None, kwargs=None, optimizer=None, summarize_gradients=False): """Deploys a Slim-constructed model across multiple clones. The deployment options are specified by the config object and support deploying one or several clones on different GPUs and one or several replicas of such clones. The argument `model_fn` is called `config.num_clones` times to create the model clones as `model_fn(*args, **kwargs)`. The optional argument `optimizer` is an `Optimizer` object. If not `None`, the deployed model is configured for training with that optimizer. If `config` specifies deployment on multiple replicas then the default tensorflow device is set appropriatly for each call to `model_fn` and for the slim variable creation functions: model and global variables will be created on the `ps` device, the clone operations will be on the `worker` device. Args: config: A `DeploymentConfig` object. model_fn: A callable. Called as `model_fn(*args, **kwargs)` args: Optional list of arguments to pass to `model_fn`. kwargs: Optional list of keyword arguments to pass to `model_fn`. optimizer: Optional `Optimizer` object. If passed the model is deployed for training with that optimizer. summarize_gradients: Whether or not add summaries to the gradients. Returns: A `DeployedModel` namedtuple. """ # Gather initial summaries. summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES)) # Create Clones. clones = create_clones(config, model_fn, args, kwargs) first_clone = clones[0] # Gather update_ops from the first clone. These contain, for example, # the updates for the batch_norm variables created by model_fn. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone.scope) train_op = None total_loss = None with tf.device(config.optimizer_device()): if optimizer: # Place the global step on the device storing the variables. with tf.device(config.variables_device()): global_step = slim.get_or_create_global_step() # Compute the gradients for the clones. total_loss, clones_gradients = optimize_clones(clones, optimizer) if clones_gradients: if summarize_gradients: # Add summaries to the gradients. summaries |= set(_add_gradients_summaries(clones_gradients)) # Create gradient updates. grad_updates = optimizer.apply_gradients(clones_gradients, global_step=global_step) update_ops.append(grad_updates) update_op = tf.group(*update_ops) with tf.control_dependencies([update_op]): train_op = tf.identity(total_loss, name='train_op') else: clones_losses = [] regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) for clone in clones: with tf.name_scope(clone.scope): clone_loss = _gather_clone_loss(clone, len(clones), regularization_losses) if clone_loss is not None: clones_losses.append(clone_loss) # Only use regularization_losses for the first clone regularization_losses = None if clones_losses: total_loss = tf.add_n(clones_losses, name='total_loss') # Add the summaries from the first clone. These contain the summaries # created by model_fn and either optimize_clones() or _gather_clone_loss(). summaries |= set(tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone.scope)) if total_loss is not None: # Add total_loss to summary. summaries.add(tf.summary.scalar('total_loss', total_loss)) if summaries: # Merge all summaries together. summary_op = tf.summary.merge(list(summaries), name='summary_op') else: summary_op = None return DeployedModel(train_op, summary_op, total_loss, clones) def _sum_clones_gradients(clone_grads): """Calculate the sum gradient for each shared variable across all clones. This function assumes that the clone_grads has been scaled appropriately by 1 / num_clones. Args: clone_grads: A List of List of tuples (gradient, variable), one list per `Clone`. Returns: List of tuples of (gradient, variable) where the gradient has been summed across all clones. """ sum_grads = [] for grad_and_vars in zip(*clone_grads): # Note that each grad_and_vars looks like the following: # ((grad_var0_clone0, var0), ... (grad_varN_cloneN, varN)) grads = [] var = grad_and_vars[0][1] for g, v in grad_and_vars: assert v == var if g is not None: grads.append(g) if grads: if len(grads) > 1: sum_grad = tf.add_n(grads, name=var.op.name + '/sum_grads') else: sum_grad = grads[0] sum_grads.append((sum_grad, var)) return sum_grads def _add_gradients_summaries(grads_and_vars): """Add histogram summaries to gradients. Note: The summaries are also added to the SUMMARIES collection. Args: grads_and_vars: A list of gradient to variable pairs (tuples). Returns: The _list_ of the added summaries for grads_and_vars. """ summaries = [] for grad, var in grads_and_vars: if grad is not None: if isinstance(grad, tf.IndexedSlices): grad_values = grad.values else: grad_values = grad summaries.append(tf.summary.histogram(var.op.name + ':gradient', grad_values)) summaries.append(tf.summary.histogram(var.op.name + ':gradient_norm', tf.global_norm([grad_values]))) else: tf.logging.info('Var %s has no gradient', var.op.name) return summaries class DeploymentConfig(object): """Configuration for deploying a model with `deploy()`. You can pass an instance of this class to `deploy()` to specify exactly how to deploy the model to build. If you do not pass one, an instance built from the default deployment_hparams will be used. """ def __init__(self, num_clones=1, clone_on_cpu=False, replica_id=0, num_replicas=1, num_ps_tasks=0, worker_job_name='worker', ps_job_name='ps'): """Create a DeploymentConfig. The config describes how to deploy a model across multiple clones and replicas. The model will be replicated `num_clones` times in each replica. If `clone_on_cpu` is True, each clone will placed on CPU. If `num_replicas` is 1, the model is deployed via a single process. In that case `worker_device`, `num_ps_tasks`, and `ps_device` are ignored. If `num_replicas` is greater than 1, then `worker_device` and `ps_device` must specify TensorFlow devices for the `worker` and `ps` jobs and `num_ps_tasks` must be positive. Args: num_clones: Number of model clones to deploy in each replica. clone_on_cpu: If True clones would be placed on CPU. replica_id: Integer. Index of the replica for which the model is deployed. Usually 0 for the chief replica. num_replicas: Number of replicas to use. num_ps_tasks: Number of tasks for the `ps` job. 0 to not use replicas. worker_job_name: A name for the worker job. ps_job_name: A name for the parameter server job. Raises: ValueError: If the arguments are invalid. """ if num_replicas > 1: if num_ps_tasks < 1: raise ValueError('When using replicas num_ps_tasks must be positive') if num_replicas > 1 or num_ps_tasks > 0: if not worker_job_name: raise ValueError('Must specify worker_job_name when using replicas') if not ps_job_name: raise ValueError('Must specify ps_job_name when using parameter server') if replica_id >= num_replicas: raise ValueError('replica_id must be less than num_replicas') self._num_clones = num_clones self._clone_on_cpu = clone_on_cpu self._replica_id = replica_id self._num_replicas = num_replicas self._num_ps_tasks = num_ps_tasks self._ps_device = '/job:' + ps_job_name if num_ps_tasks > 0 else '' self._worker_device = '/job:' + worker_job_name if num_ps_tasks > 0 else '' @property def num_clones(self): return self._num_clones @property def clone_on_cpu(self): return self._clone_on_cpu @property def replica_id(self): return self._replica_id @property def num_replicas(self): return self._num_replicas @property def num_ps_tasks(self): return self._num_ps_tasks @property def ps_device(self): return self._ps_device @property def worker_device(self): return self._worker_device def caching_device(self): """Returns the device to use for caching variables. Variables are cached on the worker CPU when using replicas. Returns: A device string or None if the variables do not need to be cached. """ if self._num_ps_tasks > 0: return lambda op: op.device else: return None def clone_device(self, clone_index): """Device used to create the clone and all the ops inside the clone. Args: clone_index: Int, representing the clone_index. Returns: A value suitable for `tf.device()`. Raises: ValueError: if `clone_index` is greater or equal to the number of clones". """ if clone_index >= self._num_clones: raise ValueError('clone_index must be less than num_clones') device = '' if self._num_ps_tasks > 0: device += self._worker_device if self._clone_on_cpu: device += '/device:CPU:0' else: device += '/device:GPU:%d' % clone_index return device def clone_scope(self, clone_index): """Name scope to create the clone. Args: clone_index: Int, representing the clone_index. Returns: A name_scope suitable for `tf.name_scope()`. Raises: ValueError: if `clone_index` is greater or equal to the number of clones". """ if clone_index >= self._num_clones: raise ValueError('clone_index must be less than num_clones') scope = '' if self._num_clones > 1: scope = 'clone_%d' % clone_index return scope def optimizer_device(self): """Device to use with the optimizer. Returns: A value suitable for `tf.device()`. """ if self._num_ps_tasks > 0 or self._num_clones > 0: return self._worker_device + '/device:CPU:0' else: return '' def inputs_device(self): """Device to use to build the inputs. Returns: A value suitable for `tf.device()`. """ device = '' if self._num_ps_tasks > 0: device += self._worker_device device += '/device:CPU:0' return device def variables_device(self): """Returns the device to use for variables created inside the clone. Returns: A value suitable for `tf.device()`. """ device = '' if self._num_ps_tasks > 0: device += self._ps_device device += '/device:CPU:0' class _PSDeviceChooser(object): """Slim device chooser for variables when using PS.""" def __init__(self, device, tasks): self._device = device self._tasks = tasks self._task = 0 def choose(self, op): if op.device: return op.device node_def = op if isinstance(op, tf.NodeDef) else op.node_def if node_def.op.startswith('Variable'): t = self._task self._task = (self._task + 1) % self._tasks d = '%s/task:%d' % (self._device, t) return d else: return op.device if not self._num_ps_tasks: return device else: chooser = _PSDeviceChooser(device, self._num_ps_tasks) return chooser.choose
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/deployment/model_deploy.py
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/deployment/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for model_deploy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from deployment import model_deploy slim = tf.contrib.slim class DeploymentConfigTest(tf.test.TestCase): def testDefaults(self): deploy_config = model_deploy.DeploymentConfig() self.assertEqual(slim.get_variables(), []) self.assertEqual(deploy_config.caching_device(), None) self.assertDeviceEqual(deploy_config.clone_device(0), 'GPU:0') self.assertEqual(deploy_config.clone_scope(0), '') self.assertDeviceEqual(deploy_config.optimizer_device(), 'CPU:0') self.assertDeviceEqual(deploy_config.inputs_device(), 'CPU:0') self.assertDeviceEqual(deploy_config.variables_device(), 'CPU:0') def testCPUonly(self): deploy_config = model_deploy.DeploymentConfig(clone_on_cpu=True) self.assertEqual(deploy_config.caching_device(), None) self.assertDeviceEqual(deploy_config.clone_device(0), 'CPU:0') self.assertEqual(deploy_config.clone_scope(0), '') self.assertDeviceEqual(deploy_config.optimizer_device(), 'CPU:0') self.assertDeviceEqual(deploy_config.inputs_device(), 'CPU:0') self.assertDeviceEqual(deploy_config.variables_device(), 'CPU:0') def testMultiGPU(self): deploy_config = model_deploy.DeploymentConfig(num_clones=2) self.assertEqual(deploy_config.caching_device(), None) self.assertDeviceEqual(deploy_config.clone_device(0), 'GPU:0') self.assertDeviceEqual(deploy_config.clone_device(1), 'GPU:1') self.assertEqual(deploy_config.clone_scope(0), 'clone_0') self.assertEqual(deploy_config.clone_scope(1), 'clone_1') self.assertDeviceEqual(deploy_config.optimizer_device(), 'CPU:0') self.assertDeviceEqual(deploy_config.inputs_device(), 'CPU:0') self.assertDeviceEqual(deploy_config.variables_device(), 'CPU:0') def testPS(self): deploy_config = model_deploy.DeploymentConfig(num_clones=1, num_ps_tasks=1) self.assertDeviceEqual(deploy_config.clone_device(0), '/job:worker/device:GPU:0') self.assertEqual(deploy_config.clone_scope(0), '') self.assertDeviceEqual(deploy_config.optimizer_device(), '/job:worker/device:CPU:0') self.assertDeviceEqual(deploy_config.inputs_device(), '/job:worker/device:CPU:0') with tf.device(deploy_config.variables_device()): a = tf.Variable(0) b = tf.Variable(0) c = tf.no_op() d = slim.variable('a', [], caching_device=deploy_config.caching_device()) self.assertDeviceEqual(a.device, '/job:ps/task:0/device:CPU:0') self.assertDeviceEqual(a.device, a.value().device) self.assertDeviceEqual(b.device, '/job:ps/task:0/device:CPU:0') self.assertDeviceEqual(b.device, b.value().device) self.assertDeviceEqual(c.device, '') self.assertDeviceEqual(d.device, '/job:ps/task:0/device:CPU:0') self.assertDeviceEqual(d.value().device, '') def testMultiGPUPS(self): deploy_config = model_deploy.DeploymentConfig(num_clones=2, num_ps_tasks=1) self.assertEqual(deploy_config.caching_device()(tf.no_op()), '') self.assertDeviceEqual(deploy_config.clone_device(0), '/job:worker/device:GPU:0') self.assertDeviceEqual(deploy_config.clone_device(1), '/job:worker/device:GPU:1') self.assertEqual(deploy_config.clone_scope(0), 'clone_0') self.assertEqual(deploy_config.clone_scope(1), 'clone_1') self.assertDeviceEqual(deploy_config.optimizer_device(), '/job:worker/device:CPU:0') self.assertDeviceEqual(deploy_config.inputs_device(), '/job:worker/device:CPU:0') def testReplicasPS(self): deploy_config = model_deploy.DeploymentConfig(num_replicas=2, num_ps_tasks=2) self.assertDeviceEqual(deploy_config.clone_device(0), '/job:worker/device:GPU:0') self.assertEqual(deploy_config.clone_scope(0), '') self.assertDeviceEqual(deploy_config.optimizer_device(), '/job:worker/device:CPU:0') self.assertDeviceEqual(deploy_config.inputs_device(), '/job:worker/device:CPU:0') def testReplicasMultiGPUPS(self): deploy_config = model_deploy.DeploymentConfig(num_replicas=2, num_clones=2, num_ps_tasks=2) self.assertDeviceEqual(deploy_config.clone_device(0), '/job:worker/device:GPU:0') self.assertDeviceEqual(deploy_config.clone_device(1), '/job:worker/device:GPU:1') self.assertEqual(deploy_config.clone_scope(0), 'clone_0') self.assertEqual(deploy_config.clone_scope(1), 'clone_1') self.assertDeviceEqual(deploy_config.optimizer_device(), '/job:worker/device:CPU:0') self.assertDeviceEqual(deploy_config.inputs_device(), '/job:worker/device:CPU:0') def testVariablesPS(self): deploy_config = model_deploy.DeploymentConfig(num_ps_tasks=2) with tf.device(deploy_config.variables_device()): a = tf.Variable(0) b = tf.Variable(0) c = tf.no_op() d = slim.variable('a', [], caching_device=deploy_config.caching_device()) self.assertDeviceEqual(a.device, '/job:ps/task:0/device:CPU:0') self.assertDeviceEqual(a.device, a.value().device) self.assertDeviceEqual(b.device, '/job:ps/task:1/device:CPU:0') self.assertDeviceEqual(b.device, b.value().device) self.assertDeviceEqual(c.device, '') self.assertDeviceEqual(d.device, '/job:ps/task:0/device:CPU:0') self.assertDeviceEqual(d.value().device, '') def LogisticClassifier(inputs, labels, scope=None, reuse=None): with tf.variable_scope(scope, 'LogisticClassifier', [inputs, labels], reuse=reuse): predictions = slim.fully_connected(inputs, 1, activation_fn=tf.sigmoid, scope='fully_connected') slim.losses.log_loss(predictions, labels) return predictions def BatchNormClassifier(inputs, labels, scope=None, reuse=None): with tf.variable_scope(scope, 'BatchNormClassifier', [inputs, labels], reuse=reuse): inputs = slim.batch_norm(inputs, decay=0.1, fused=True) predictions = slim.fully_connected(inputs, 1, activation_fn=tf.sigmoid, scope='fully_connected') slim.losses.log_loss(predictions, labels) return predictions class CreatecloneTest(tf.test.TestCase): def setUp(self): # Create an easy training set: np.random.seed(0) self._inputs = np.zeros((16, 4)) self._labels = np.random.randint(0, 2, size=(16, 1)).astype(np.float32) self._logdir = self.get_temp_dir() for i in range(16): j = int(2 * self._labels[i] + np.random.randint(0, 2)) self._inputs[i, j] = 1 def testCreateLogisticClassifier(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = LogisticClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) clone = clones[0] self.assertEqual(len(slim.get_variables()), 2) for v in slim.get_variables(): self.assertDeviceEqual(v.device, 'CPU:0') self.assertDeviceEqual(v.value().device, 'CPU:0') self.assertEqual(clone.outputs.op.name, 'LogisticClassifier/fully_connected/Sigmoid') self.assertEqual(clone.scope, '') self.assertDeviceEqual(clone.device, 'GPU:0') self.assertEqual(len(slim.losses.get_losses()), 1) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(update_ops, []) def testCreateSingleclone(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) clone = clones[0] self.assertEqual(len(slim.get_variables()), 5) for v in slim.get_variables(): self.assertDeviceEqual(v.device, 'CPU:0') self.assertDeviceEqual(v.value().device, 'CPU:0') self.assertEqual(clone.outputs.op.name, 'BatchNormClassifier/fully_connected/Sigmoid') self.assertEqual(clone.scope, '') self.assertDeviceEqual(clone.device, 'GPU:0') self.assertEqual(len(slim.losses.get_losses()), 1) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(len(update_ops), 2) def testCreateMulticlone(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier clone_args = (tf_inputs, tf_labels) num_clones = 4 deploy_config = model_deploy.DeploymentConfig(num_clones=num_clones) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) self.assertEqual(len(slim.get_variables()), 5) for v in slim.get_variables(): self.assertDeviceEqual(v.device, 'CPU:0') self.assertDeviceEqual(v.value().device, 'CPU:0') self.assertEqual(len(clones), num_clones) for i, clone in enumerate(clones): self.assertEqual( clone.outputs.op.name, 'clone_%d/BatchNormClassifier/fully_connected/Sigmoid' % i) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, clone.scope) self.assertEqual(len(update_ops), 2) self.assertEqual(clone.scope, 'clone_%d/' % i) self.assertDeviceEqual(clone.device, 'GPU:%d' % i) def testCreateOnecloneWithPS(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1, num_ps_tasks=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) self.assertEqual(len(clones), 1) clone = clones[0] self.assertEqual(clone.outputs.op.name, 'BatchNormClassifier/fully_connected/Sigmoid') self.assertDeviceEqual(clone.device, '/job:worker/device:GPU:0') self.assertEqual(clone.scope, '') self.assertEqual(len(slim.get_variables()), 5) for v in slim.get_variables(): self.assertDeviceEqual(v.device, '/job:ps/task:0/CPU:0') self.assertDeviceEqual(v.device, v.value().device) def testCreateMulticloneWithPS(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=2, num_ps_tasks=2) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) self.assertEqual(len(slim.get_variables()), 5) for i, v in enumerate(slim.get_variables()): t = i % 2 self.assertDeviceEqual(v.device, '/job:ps/task:%d/device:CPU:0' % t) self.assertDeviceEqual(v.device, v.value().device) self.assertEqual(len(clones), 2) for i, clone in enumerate(clones): self.assertEqual( clone.outputs.op.name, 'clone_%d/BatchNormClassifier/fully_connected/Sigmoid' % i) self.assertEqual(clone.scope, 'clone_%d/' % i) self.assertDeviceEqual(clone.device, '/job:worker/device:GPU:%d' % i) class OptimizeclonesTest(tf.test.TestCase): def setUp(self): # Create an easy training set: np.random.seed(0) self._inputs = np.zeros((16, 4)) self._labels = np.random.randint(0, 2, size=(16, 1)).astype(np.float32) self._logdir = self.get_temp_dir() for i in range(16): j = int(2 * self._labels[i] + np.random.randint(0, 2)) self._inputs[i, j] = 1 def testCreateLogisticClassifier(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = LogisticClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) self.assertEqual(len(slim.get_variables()), 2) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(update_ops, []) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) total_loss, grads_and_vars = model_deploy.optimize_clones(clones, optimizer) self.assertEqual(len(grads_and_vars), len(tf.trainable_variables())) self.assertEqual(total_loss.op.name, 'total_loss') for g, v in grads_and_vars: self.assertDeviceEqual(g.device, 'GPU:0') self.assertDeviceEqual(v.device, 'CPU:0') def testCreateSingleclone(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier clone_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) self.assertEqual(len(slim.get_variables()), 5) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(len(update_ops), 2) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) total_loss, grads_and_vars = model_deploy.optimize_clones(clones, optimizer) self.assertEqual(len(grads_and_vars), len(tf.trainable_variables())) self.assertEqual(total_loss.op.name, 'total_loss') for g, v in grads_and_vars: self.assertDeviceEqual(g.device, 'GPU:0') self.assertDeviceEqual(v.device, 'CPU:0') def testCreateMulticlone(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier clone_args = (tf_inputs, tf_labels) num_clones = 4 deploy_config = model_deploy.DeploymentConfig(num_clones=num_clones) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, clone_args) self.assertEqual(len(slim.get_variables()), 5) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(len(update_ops), num_clones * 2) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) total_loss, grads_and_vars = model_deploy.optimize_clones(clones, optimizer) self.assertEqual(len(grads_and_vars), len(tf.trainable_variables())) self.assertEqual(total_loss.op.name, 'total_loss') for g, v in grads_and_vars: self.assertDeviceEqual(g.device, '') self.assertDeviceEqual(v.device, 'CPU:0') def testCreateMulticloneCPU(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier model_args = (tf_inputs, tf_labels) num_clones = 4 deploy_config = model_deploy.DeploymentConfig(num_clones=num_clones, clone_on_cpu=True) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, model_args) self.assertEqual(len(slim.get_variables()), 5) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(len(update_ops), num_clones * 2) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) total_loss, grads_and_vars = model_deploy.optimize_clones(clones, optimizer) self.assertEqual(len(grads_and_vars), len(tf.trainable_variables())) self.assertEqual(total_loss.op.name, 'total_loss') for g, v in grads_and_vars: self.assertDeviceEqual(g.device, '') self.assertDeviceEqual(v.device, 'CPU:0') def testCreateOnecloneWithPS(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier model_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=1, num_ps_tasks=1) self.assertEqual(slim.get_variables(), []) clones = model_deploy.create_clones(deploy_config, model_fn, model_args) self.assertEqual(len(slim.get_variables()), 5) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(len(update_ops), 2) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) total_loss, grads_and_vars = model_deploy.optimize_clones(clones, optimizer) self.assertEqual(len(grads_and_vars), len(tf.trainable_variables())) self.assertEqual(total_loss.op.name, 'total_loss') for g, v in grads_and_vars: self.assertDeviceEqual(g.device, '/job:worker/device:GPU:0') self.assertDeviceEqual(v.device, '/job:ps/task:0/CPU:0') class DeployTest(tf.test.TestCase): def setUp(self): # Create an easy training set: np.random.seed(0) self._inputs = np.zeros((16, 4)) self._labels = np.random.randint(0, 2, size=(16, 1)).astype(np.float32) self._logdir = self.get_temp_dir() for i in range(16): j = int(2 * self._labels[i] + np.random.randint(0, 2)) self._inputs[i, j] = 1 def _addBesselsCorrection(self, sample_size, expected_var): correction_factor = sample_size / (sample_size - 1) expected_var *= correction_factor return expected_var def testLocalTrainOp(self): g = tf.Graph() with g.as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) model_fn = BatchNormClassifier model_args = (tf_inputs, tf_labels) deploy_config = model_deploy.DeploymentConfig(num_clones=2, clone_on_cpu=True) optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) self.assertEqual(slim.get_variables(), []) model = model_deploy.deploy(deploy_config, model_fn, model_args, optimizer=optimizer) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) self.assertEqual(len(update_ops), 4) self.assertEqual(len(model.clones), 2) self.assertEqual(model.total_loss.op.name, 'total_loss') self.assertEqual(model.summary_op.op.name, 'summary_op/summary_op') self.assertEqual(model.train_op.op.name, 'train_op') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) moving_mean = tf.contrib.framework.get_variables_by_name( 'moving_mean')[0] moving_variance = tf.contrib.framework.get_variables_by_name( 'moving_variance')[0] initial_loss = sess.run(model.total_loss) initial_mean, initial_variance = sess.run([moving_mean, moving_variance]) self.assertAllClose(initial_mean, [0.0, 0.0, 0.0, 0.0]) self.assertAllClose(initial_variance, [1.0, 1.0, 1.0, 1.0]) for _ in range(10): sess.run(model.train_op) final_loss = sess.run(model.total_loss) self.assertLess(final_loss, initial_loss / 5.0) final_mean, final_variance = sess.run([moving_mean, moving_variance]) expected_mean = np.array([0.125, 0.25, 0.375, 0.25]) expected_var = np.array([0.109375, 0.1875, 0.234375, 0.1875]) expected_var = self._addBesselsCorrection(16, expected_var) self.assertAllClose(final_mean, expected_mean) self.assertAllClose(final_variance, expected_var) def testNoSummariesOnGPU(self): with tf.Graph().as_default(): deploy_config = model_deploy.DeploymentConfig(num_clones=2) # clone function creates a fully_connected layer with a regularizer loss. def ModelFn(): inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32) reg = tf.contrib.layers.l2_regularizer(0.001) tf.contrib.layers.fully_connected(inputs, 30, weights_regularizer=reg) model = model_deploy.deploy( deploy_config, ModelFn, optimizer=tf.train.GradientDescentOptimizer(1.0)) # The model summary op should have a few summary inputs and all of them # should be on the CPU. self.assertTrue(model.summary_op.op.inputs) for inp in model.summary_op.op.inputs: self.assertEqual('/device:CPU:0', inp.device) def testNoSummariesOnGPUForEvals(self): with tf.Graph().as_default(): deploy_config = model_deploy.DeploymentConfig(num_clones=2) # clone function creates a fully_connected layer with a regularizer loss. def ModelFn(): inputs = tf.constant(1.0, shape=(10, 20), dtype=tf.float32) reg = tf.contrib.layers.l2_regularizer(0.001) tf.contrib.layers.fully_connected(inputs, 30, weights_regularizer=reg) # No optimizer here, it's an eval. model = model_deploy.deploy(deploy_config, ModelFn) # The model summary op should have a few summary inputs and all of them # should be on the CPU. self.assertTrue(model.summary_op.op.inputs) for inp in model.summary_op.op.inputs: self.assertEqual('/device:CPU:0', inp.device) if __name__ == '__main__': tf.test.main()
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/deployment/model_deploy_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains a factory for building various models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from preprocessing import cifarnet_preprocessing from preprocessing import inception_preprocessing from preprocessing import lenet_preprocessing from preprocessing import vgg_preprocessing slim = tf.contrib.slim def get_preprocessing(name, is_training=False): """Returns preprocessing_fn(image, height, width, **kwargs). Args: name: The name of the preprocessing function. is_training: `True` if the model is being used for training and `False` otherwise. Returns: preprocessing_fn: A function that preprocessing a single image (pre-batch). It has the following signature: image = preprocessing_fn(image, output_height, output_width, ...). Raises: ValueError: If Preprocessing `name` is not recognized. """ preprocessing_fn_map = { 'cifarnet': cifarnet_preprocessing, 'inception': inception_preprocessing, 'inception_v1': inception_preprocessing, 'inception_v2': inception_preprocessing, 'inception_v3': inception_preprocessing, 'inception_v4': inception_preprocessing, 'inception_resnet_v2': inception_preprocessing, 'lenet': lenet_preprocessing, 'mobilenet_v1': inception_preprocessing, 'mobilenet_v2': inception_preprocessing, 'mobilenet_v2_035': inception_preprocessing, 'mobilenet_v2_140': inception_preprocessing, 'nasnet_mobile': inception_preprocessing, 'nasnet_large': inception_preprocessing, 'pnasnet_mobile': inception_preprocessing, 'pnasnet_large': inception_preprocessing, 'resnet_v1_50': vgg_preprocessing, 'resnet_v1_101': vgg_preprocessing, 'resnet_v1_152': vgg_preprocessing, 'resnet_v1_200': vgg_preprocessing, 'resnet_v2_50': vgg_preprocessing, 'resnet_v2_101': vgg_preprocessing, 'resnet_v2_152': vgg_preprocessing, 'resnet_v2_200': vgg_preprocessing, 'vgg': vgg_preprocessing, 'vgg_a': vgg_preprocessing, 'vgg_16': vgg_preprocessing, 'vgg_19': vgg_preprocessing, } if name not in preprocessing_fn_map: raise ValueError('Preprocessing name [%s] was not recognized' % name) def preprocessing_fn(image, output_height, output_width, **kwargs): return preprocessing_fn_map[name].preprocess_image( image, output_height, output_width, is_training=is_training, **kwargs) return preprocessing_fn
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/preprocessing/preprocessing_factory.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides utilities to preprocess images in CIFAR-10. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf _PADDING = 4 slim = tf.contrib.slim def preprocess_for_train(image, output_height, output_width, padding=_PADDING, add_image_summaries=True): """Preprocesses the given image for training. Note that the actual resizing scale is sampled from [`resize_size_min`, `resize_size_max`]. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. padding: The amound of padding before and after each dimension of the image. add_image_summaries: Enable image summaries. Returns: A preprocessed image. """ if add_image_summaries: tf.summary.image('image', tf.expand_dims(image, 0)) # Transform the image to floats. image = tf.to_float(image) if padding > 0: image = tf.pad(image, [[padding, padding], [padding, padding], [0, 0]]) # Randomly crop a [height, width] section of the image. distorted_image = tf.random_crop(image, [output_height, output_width, 3]) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) if add_image_summaries: tf.summary.image('distorted_image', tf.expand_dims(distorted_image, 0)) # Because these operations are not commutative, consider randomizing # the order their operation. distorted_image = tf.image.random_brightness(distorted_image, max_delta=63) distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels. return tf.image.per_image_standardization(distorted_image) def preprocess_for_eval(image, output_height, output_width, add_image_summaries=True): """Preprocesses the given image for evaluation. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. add_image_summaries: Enable image summaries. Returns: A preprocessed image. """ if add_image_summaries: tf.summary.image('image', tf.expand_dims(image, 0)) # Transform the image to floats. image = tf.to_float(image) # Resize and crop if needed. resized_image = tf.image.resize_image_with_crop_or_pad(image, output_width, output_height) if add_image_summaries: tf.summary.image('resized_image', tf.expand_dims(resized_image, 0)) # Subtract off the mean and divide by the variance of the pixels. return tf.image.per_image_standardization(resized_image) def preprocess_image(image, output_height, output_width, is_training=False, add_image_summaries=True): """Preprocesses the given image. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. is_training: `True` if we're preprocessing the image for training and `False` otherwise. add_image_summaries: Enable image summaries. Returns: A preprocessed image. """ if is_training: return preprocess_for_train( image, output_height, output_width, add_image_summaries=add_image_summaries) else: return preprocess_for_eval( image, output_height, output_width, add_image_summaries=add_image_summaries)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/preprocessing/cifarnet_preprocessing.py
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/preprocessing/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides utilities to preprocess images. The preprocessing steps for VGG were introduced in the following technical report: Very Deep Convolutional Networks For Large-Scale Image Recognition Karen Simonyan and Andrew Zisserman arXiv technical report, 2015 PDF: http://arxiv.org/pdf/1409.1556.pdf ILSVRC 2014 Slides: http://www.robots.ox.ac.uk/~karen/pdf/ILSVRC_2014.pdf CC-BY-4.0 More information can be obtained from the VGG website: www.robots.ox.ac.uk/~vgg/research/very_deep/ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim _R_MEAN = 123.68 _G_MEAN = 116.78 _B_MEAN = 103.94 _RESIZE_SIDE_MIN = 256 _RESIZE_SIDE_MAX = 512 def _crop(image, offset_height, offset_width, crop_height, crop_width): """Crops the given image using the provided offsets and sizes. Note that the method doesn't assume we know the input image size but it does assume we know the input image rank. Args: image: an image of shape [height, width, channels]. offset_height: a scalar tensor indicating the height offset. offset_width: a scalar tensor indicating the width offset. crop_height: the height of the cropped image. crop_width: the width of the cropped image. Returns: the cropped (and resized) image. Raises: InvalidArgumentError: if the rank is not 3 or if the image dimensions are less than the crop size. """ original_shape = tf.shape(image) rank_assertion = tf.Assert( tf.equal(tf.rank(image), 3), ['Rank of image must be equal to 3.']) with tf.control_dependencies([rank_assertion]): cropped_shape = tf.stack([crop_height, crop_width, original_shape[2]]) size_assertion = tf.Assert( tf.logical_and( tf.greater_equal(original_shape[0], crop_height), tf.greater_equal(original_shape[1], crop_width)), ['Crop size greater than the image size.']) offsets = tf.to_int32(tf.stack([offset_height, offset_width, 0])) # Use tf.slice instead of crop_to_bounding box as it accepts tensors to # define the crop size. with tf.control_dependencies([size_assertion]): image = tf.slice(image, offsets, cropped_shape) return tf.reshape(image, cropped_shape) def _random_crop(image_list, crop_height, crop_width): """Crops the given list of images. The function applies the same crop to each image in the list. This can be effectively applied when there are multiple image inputs of the same dimension such as: image, depths, normals = _random_crop([image, depths, normals], 120, 150) Args: image_list: a list of image tensors of the same dimension but possibly varying channel. crop_height: the new height. crop_width: the new width. Returns: the image_list with cropped images. Raises: ValueError: if there are multiple image inputs provided with different size or the images are smaller than the crop dimensions. """ if not image_list: raise ValueError('Empty image_list.') # Compute the rank assertions. rank_assertions = [] for i in range(len(image_list)): image_rank = tf.rank(image_list[i]) rank_assert = tf.Assert( tf.equal(image_rank, 3), ['Wrong rank for tensor %s [expected] [actual]', image_list[i].name, 3, image_rank]) rank_assertions.append(rank_assert) with tf.control_dependencies([rank_assertions[0]]): image_shape = tf.shape(image_list[0]) image_height = image_shape[0] image_width = image_shape[1] crop_size_assert = tf.Assert( tf.logical_and( tf.greater_equal(image_height, crop_height), tf.greater_equal(image_width, crop_width)), ['Crop size greater than the image size.']) asserts = [rank_assertions[0], crop_size_assert] for i in range(1, len(image_list)): image = image_list[i] asserts.append(rank_assertions[i]) with tf.control_dependencies([rank_assertions[i]]): shape = tf.shape(image) height = shape[0] width = shape[1] height_assert = tf.Assert( tf.equal(height, image_height), ['Wrong height for tensor %s [expected][actual]', image.name, height, image_height]) width_assert = tf.Assert( tf.equal(width, image_width), ['Wrong width for tensor %s [expected][actual]', image.name, width, image_width]) asserts.extend([height_assert, width_assert]) # Create a random bounding box. # # Use tf.random_uniform and not numpy.random.rand as doing the former would # generate random numbers at graph eval time, unlike the latter which # generates random numbers at graph definition time. with tf.control_dependencies(asserts): max_offset_height = tf.reshape(image_height - crop_height + 1, []) with tf.control_dependencies(asserts): max_offset_width = tf.reshape(image_width - crop_width + 1, []) offset_height = tf.random_uniform( [], maxval=max_offset_height, dtype=tf.int32) offset_width = tf.random_uniform( [], maxval=max_offset_width, dtype=tf.int32) return [_crop(image, offset_height, offset_width, crop_height, crop_width) for image in image_list] def _central_crop(image_list, crop_height, crop_width): """Performs central crops of the given image list. Args: image_list: a list of image tensors of the same dimension but possibly varying channel. crop_height: the height of the image following the crop. crop_width: the width of the image following the crop. Returns: the list of cropped images. """ outputs = [] for image in image_list: image_height = tf.shape(image)[0] image_width = tf.shape(image)[1] offset_height = (image_height - crop_height) / 2 offset_width = (image_width - crop_width) / 2 outputs.append(_crop(image, offset_height, offset_width, crop_height, crop_width)) return outputs def _mean_image_subtraction(image, means): """Subtracts the given means from each image channel. For example: means = [123.68, 116.779, 103.939] image = _mean_image_subtraction(image, means) Note that the rank of `image` must be known. Args: image: a tensor of size [height, width, C]. means: a C-vector of values to subtract from each channel. Returns: the centered image. Raises: ValueError: If the rank of `image` is unknown, if `image` has a rank other than three or if the number of channels in `image` doesn't match the number of values in `means`. """ if image.get_shape().ndims != 3: raise ValueError('Input must be of size [height, width, C>0]') num_channels = image.get_shape().as_list()[-1] if len(means) != num_channels: raise ValueError('len(means) must match the number of channels') channels = tf.split(axis=2, num_or_size_splits=num_channels, value=image) for i in range(num_channels): channels[i] -= means[i] return tf.concat(axis=2, values=channels) def _smallest_size_at_least(height, width, smallest_side): """Computes new shape with the smallest side equal to `smallest_side`. Computes new shape with the smallest side equal to `smallest_side` while preserving the original aspect ratio. Args: height: an int32 scalar tensor indicating the current height. width: an int32 scalar tensor indicating the current width. smallest_side: A python integer or scalar `Tensor` indicating the size of the smallest side after resize. Returns: new_height: an int32 scalar tensor indicating the new height. new_width: and int32 scalar tensor indicating the new width. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) height = tf.to_float(height) width = tf.to_float(width) smallest_side = tf.to_float(smallest_side) scale = tf.cond(tf.greater(height, width), lambda: smallest_side / width, lambda: smallest_side / height) new_height = tf.to_int32(tf.rint(height * scale)) new_width = tf.to_int32(tf.rint(width * scale)) return new_height, new_width def _aspect_preserving_resize(image, smallest_side): """Resize images preserving the original aspect ratio. Args: image: A 3-D image `Tensor`. smallest_side: A python integer or scalar `Tensor` indicating the size of the smallest side after resize. Returns: resized_image: A 3-D tensor containing the resized image. """ smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32) shape = tf.shape(image) height = shape[0] width = shape[1] new_height, new_width = _smallest_size_at_least(height, width, smallest_side) image = tf.expand_dims(image, 0) resized_image = tf.image.resize_bilinear(image, [new_height, new_width], align_corners=False) resized_image = tf.squeeze(resized_image) resized_image.set_shape([None, None, 3]) return resized_image def preprocess_for_train(image, output_height, output_width, resize_side_min=_RESIZE_SIDE_MIN, resize_side_max=_RESIZE_SIDE_MAX): """Preprocesses the given image for training. Note that the actual resizing scale is sampled from [`resize_size_min`, `resize_size_max`]. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. resize_side_min: The lower bound for the smallest side of the image for aspect-preserving resizing. resize_side_max: The upper bound for the smallest side of the image for aspect-preserving resizing. Returns: A preprocessed image. """ resize_side = tf.random_uniform( [], minval=resize_side_min, maxval=resize_side_max+1, dtype=tf.int32) image = _aspect_preserving_resize(image, resize_side) image = _random_crop([image], output_height, output_width)[0] image.set_shape([output_height, output_width, 3]) image = tf.to_float(image) image = tf.image.random_flip_left_right(image) return _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN]) def preprocess_for_eval(image, output_height, output_width, resize_side): """Preprocesses the given image for evaluation. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. resize_side: The smallest side of the image for aspect-preserving resizing. Returns: A preprocessed image. """ image = _aspect_preserving_resize(image, resize_side) image = _central_crop([image], output_height, output_width)[0] image.set_shape([output_height, output_width, 3]) image = tf.to_float(image) return _mean_image_subtraction(image, [_R_MEAN, _G_MEAN, _B_MEAN]) def preprocess_image(image, output_height, output_width, is_training=False, resize_side_min=_RESIZE_SIDE_MIN, resize_side_max=_RESIZE_SIDE_MAX): """Preprocesses the given image. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. is_training: `True` if we're preprocessing the image for training and `False` otherwise. resize_side_min: The lower bound for the smallest side of the image for aspect-preserving resizing. If `is_training` is `False`, then this value is used for rescaling. resize_side_max: The upper bound for the smallest side of the image for aspect-preserving resizing. If `is_training` is `False`, this value is ignored. Otherwise, the resize side is sampled from [resize_size_min, resize_size_max]. Returns: A preprocessed image. """ if is_training: return preprocess_for_train(image, output_height, output_width, resize_side_min, resize_side_max) else: return preprocess_for_eval(image, output_height, output_width, resize_side_min)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/preprocessing/vgg_preprocessing.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides utilities to preprocess images for the Inception networks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.ops import control_flow_ops def apply_with_random_selector(x, func, num_cases): """Computes func(x, sel), with sel sampled from [0...num_cases-1]. Args: x: input Tensor. func: Python function to apply. num_cases: Python int32, number of cases to sample sel from. Returns: The result of func(x, sel), where func receives the value of the selector as a python integer, but sel is sampled dynamically. """ sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32) # Pass the real x only to one of the func calls. return control_flow_ops.merge([ func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case) for case in range(num_cases)])[0] def distort_color(image, color_ordering=0, fast_mode=True, scope=None): """Distort the color of a Tensor image. Each color distortion is non-commutative and thus ordering of the color ops matters. Ideally we would randomly permute the ordering of the color ops. Rather then adding that level of complication, we select a distinct ordering of color ops for each preprocessing thread. Args: image: 3-D Tensor containing single image in [0, 1]. color_ordering: Python int, a type of distortion (valid values: 0-3). fast_mode: Avoids slower ops (random_hue and random_contrast) scope: Optional scope for name_scope. Returns: 3-D Tensor color-distorted image on range [0, 1] Raises: ValueError: if color_ordering not in [0, 3] """ with tf.name_scope(scope, 'distort_color', [image]): if fast_mode: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) else: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) elif color_ordering == 2: image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) elif color_ordering == 3: image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: raise ValueError('color_ordering must be in [0, 3]') # The random_* ops do not necessarily clamp. return tf.clip_by_value(image, 0.0, 1.0) def distorted_bounding_box_crop(image, bbox, min_object_covered=0.1, aspect_ratio_range=(0.75, 1.33), area_range=(0.05, 1.0), max_attempts=100, scope=None): """Generates cropped_image using a one of the bboxes randomly distorted. See `tf.image.sample_distorted_bounding_box` for more documentation. Args: image: 3-D Tensor of image (it will be converted to floats in [0, 1]). bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. If num_boxes is 0 then it would use the whole image. min_object_covered: An optional `float`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. aspect_ratio_range: An optional list of `floats`. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: An optional list of `floats`. The cropped area of the image must contain a fraction of the supplied image within in this range. max_attempts: An optional `int`. Number of attempts at generating a cropped region of the image of the specified constraints. After `max_attempts` failures, return the entire image. scope: Optional scope for name_scope. Returns: A tuple, a 3-D Tensor cropped_image and the distorted bbox """ with tf.name_scope(scope, 'distorted_bounding_box_crop', [image, bbox]): # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. # A large fraction of image datasets contain a human-annotated bounding # box delineating the region of the image containing the object of interest. # We choose to create a new bounding box for the object which is a randomly # distorted version of the human-annotated bounding box that obeys an # allowed range of aspect ratios, sizes and overlap with the human-annotated # bounding box. If no box is supplied, then we assume the bounding box is # the entire image. sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box # Crop the image to the specified bounding box. cropped_image = tf.slice(image, bbox_begin, bbox_size) return cropped_image, distort_bbox def preprocess_for_train(image, height, width, bbox, fast_mode=True, scope=None, add_image_summaries=True): """Distort one image for training a network. Distorting images provides a useful technique for augmenting the data set during training in order to make the network invariant to aspects of the image that do not effect the label. Additionally it would create image_summaries to display the different transformations applied to the image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer width: integer bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. fast_mode: Optional boolean, if True avoids slower transformations (i.e. bi-cubic resizing, random_hue or random_contrast). scope: Optional scope for name_scope. add_image_summaries: Enable image summaries. Returns: 3-D float Tensor of distorted image used for training with range [-1, 1]. """ with tf.name_scope(scope, 'distort_image', [image, height, width, bbox]): if bbox is None: bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bbox) if add_image_summaries: tf.summary.image('image_with_bounding_boxes', image_with_box) distorted_image, distorted_bbox = distorted_bounding_box_crop(image, bbox) # Restore the shape since the dynamic slice based upon the bbox_size loses # the third dimension. distorted_image.set_shape([None, None, 3]) image_with_distorted_box = tf.image.draw_bounding_boxes( tf.expand_dims(image, 0), distorted_bbox) if add_image_summaries: tf.summary.image('images_with_distorted_bounding_box', image_with_distorted_box) # This resizing operation may distort the images because the aspect # ratio is not respected. We select a resize method in a round robin # fashion based on the thread number. # Note that ResizeMethod contains 4 enumerated resizing methods. # We select only 1 case for fast_mode bilinear. num_resize_cases = 1 if fast_mode else 4 distorted_image = apply_with_random_selector( distorted_image, lambda x, method: tf.image.resize_images(x, [height, width], method), num_cases=num_resize_cases) if add_image_summaries: tf.summary.image('cropped_resized_image', tf.expand_dims(distorted_image, 0)) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Randomly distort the colors. There are 1 or 4 ways to do it. num_distort_cases = 1 if fast_mode else 4 distorted_image = apply_with_random_selector( distorted_image, lambda x, ordering: distort_color(x, ordering, fast_mode), num_cases=num_distort_cases) if add_image_summaries: tf.summary.image('final_distorted_image', tf.expand_dims(distorted_image, 0)) distorted_image = tf.subtract(distorted_image, 0.5) distorted_image = tf.multiply(distorted_image, 2.0) return distorted_image def preprocess_for_eval(image, height, width, central_fraction=0.875, scope=None): """Prepare one image for evaluation. If height and width are specified it would output an image with that size by applying resize_bilinear. If central_fraction is specified it would crop the central fraction of the input image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer width: integer central_fraction: Optional Float, fraction of the image to crop. scope: Optional scope for name_scope. Returns: 3-D float Tensor of prepared image. """ with tf.name_scope(scope, 'eval_image', [image, height, width]): if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) # Crop the central region of the image with an area containing 87.5% of # the original image. if central_fraction: image = tf.image.central_crop(image, central_fraction=central_fraction) if height and width: # Resize the image to the specified height and width. image = tf.expand_dims(image, 0) image = tf.image.resize_bilinear(image, [height, width], align_corners=False) image = tf.squeeze(image, [0]) image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) return image def preprocess_image(image, height, width, is_training=False, bbox=None, fast_mode=True, add_image_summaries=True): """Pre-process one image for training or evaluation. Args: image: 3-D Tensor [height, width, channels] with the image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer, image expected height. width: integer, image expected width. is_training: Boolean. If true it would transform an image for train, otherwise it would transform it for evaluation. bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. fast_mode: Optional boolean, if True avoids slower transformations. add_image_summaries: Enable image summaries. Returns: 3-D float Tensor containing an appropriately scaled image Raises: ValueError: if user does not provide bounding box """ if is_training: return preprocess_for_train(image, height, width, bbox, fast_mode, add_image_summaries=add_image_summaries) else: return preprocess_for_eval(image, height, width)
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/preprocessing/inception_preprocessing.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides utilities for preprocessing.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim def preprocess_image(image, output_height, output_width, is_training): """Preprocesses the given image. Args: image: A `Tensor` representing an image of arbitrary size. output_height: The height of the image after preprocessing. output_width: The width of the image after preprocessing. is_training: `True` if we're preprocessing the image for training and `False` otherwise. Returns: A preprocessed image. """ image = tf.to_float(image) image = tf.image.resize_image_with_crop_or_pad( image, output_width, output_height) image = tf.subtract(image, 128.0) image = tf.div(image, 128.0) return image
DeepLearningExamples-master
TensorFlow/Detection/SSD/models/research/slim/preprocessing/lenet_preprocessing.py
# # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from absl import flags from time import time import tensorflow as tf import dllogger from object_detection import model_hparams from object_detection import model_lib from object_detection.utils.exp_utils import setup_dllogger import numpy as np flags.DEFINE_string('checkpoint_dir', None, 'Path to directory holding a checkpoint. If ' '`checkpoint_dir` is not provided, benchmark is running on random model') flags.DEFINE_string('pipeline_config_path', None, 'Path to pipeline config file.') flags.DEFINE_string("raport_file", default="summary.json", help="Path to dlloger json") flags.DEFINE_integer('warmup_iters', 100, 'Number of iterations skipped during benchmark') flags.DEFINE_integer('benchmark_iters', 300, 'Number of iterations measured by benchmark') flags.DEFINE_integer('batch_size', 1, 'Number of inputs processed paralelly') flags.DEFINE_list("percentiles", default=['90', '95', '99'], help="percentiles for latency confidence intervals") FLAGS = flags.FLAGS flags.mark_flag_as_required('pipeline_config_path') def build_estimator(): session_config = tf.ConfigProto() config = tf.estimator.RunConfig(session_config=session_config) train_and_eval_dict = model_lib.create_estimator_and_inputs( run_config=config, hparams=model_hparams.create_hparams(None), pipeline_config_path=FLAGS.pipeline_config_path) estimator = train_and_eval_dict['estimator'] eval_input_fns = train_and_eval_dict['eval_input_fns'] return estimator, eval_input_fns[0] def build_benchmark_input_fn(input_fn): def benchmark_input_fn(params={}): params['batch_size'] = FLAGS.batch_size return input_fn(params).repeat().take(FLAGS.warmup_iters + FLAGS.benchmark_iters) return benchmark_input_fn class TimingHook(tf.train.SessionRunHook): def __init__(self): super(TimingHook, self).__init__() setup_dllogger(enabled=True, filename=FLAGS.raport_file) self.times = [] def before_run(self, *args, **kwargs): super(TimingHook, self).before_run(*args, **kwargs) self.start_time = time() def log_progress(self): if sys.stdout.isatty(): print(len(self.times) - FLAGS.warmup_iters, '/', FLAGS.benchmark_iters, ' '*10, end='\r') def after_run(self, *args, **kwargs): super(TimingHook, self).after_run(*args, **kwargs) self.times.append(time() - self.start_time) self.log_progress() def end(self, *args, **kwargs): super(TimingHook, self).end(*args, **kwargs) throughput = sum([1/x for x in self.times[FLAGS.warmup_iters:]]) * FLAGS.batch_size / FLAGS.benchmark_iters latency_avg = 1000 * sum(self.times[FLAGS.warmup_iters:]) / FLAGS.benchmark_iters latency_data = 1000 * np.array(self.times[FLAGS.warmup_iters:]) summary = { 'infer_throughput': throughput, 'eval_avg_latency': latency_avg } print() print('Benchmark result:', throughput, 'img/s') for p in FLAGS.percentiles: p = int(p) tf.logging.info("Latency {}%: {:>4.2f} ms".format( p, np.percentile(latency_data, p))) summary[f'eval_{p}%_latency'] = np.percentile(latency_data, p) dllogger.log(step=tuple(), data=summary) def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) estimator, eval_input_fn = build_estimator() checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_dir) \ if FLAGS.checkpoint_dir \ else None results = estimator.predict( input_fn=build_benchmark_input_fn(eval_input_fn), checkpoint_path=checkpoint_path, hooks=[ TimingHook() ], yield_single_examples=False ) list(results) if __name__ == '__main__': tf.app.run()
DeepLearningExamples-master
TensorFlow/Detection/SSD/examples/SSD320_inference.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup setup( name='moflow_pyt', packages=[ 'moflow', 'moflow.data', 'moflow.model', 'moflow.runtime' ], version='0.0.1', description='MoFlow: an invertible flow model for generating molecular graphs', )
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/setup.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import asdict, dataclass, field import json from typing import Dict, List, Optional from rdkit import Chem _VALID_IDX_FILE = 'valid_idx_{}.json' _CSV_FILE = '{}.csv' _DATASET_FILE = '{}_relgcn_kekulized_ggnp.npz' DUMMY_CODE = 0 CODE_TO_BOND = dict(enumerate([ 'DUMMY', Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE, ])) BOND_TO_CODE = {v: k for k, v in CODE_TO_BOND.items()} ATOM_VALENCY = {6: 4, 7: 3, 8: 2, 9: 1, 15: 3, 16: 2, 17: 1, 35: 1, 53: 1} @dataclass class DatasetConfig: dataset_name: str atomic_num_list: List[int] max_num_atoms: int labels: List[str] smiles_col: str code_to_atomic: Dict[int, int] = field(init=False) atomic_to_code: Dict[int, int] = field(init=False) valid_idx_file: str = field(init=False) csv_file: str = field(init=False) dataset_file: str = field(init=False) def __post_init__(self): self.valid_idx_file = _VALID_IDX_FILE.format(self.dataset_name) self.csv_file = _CSV_FILE.format(self.dataset_name) self.dataset_file = _DATASET_FILE.format(self.dataset_name) self.code_to_atomic = dict(enumerate(sorted([DUMMY_CODE] + self.atomic_num_list))) self.atomic_to_code = {v: k for k, v in self.code_to_atomic.items()} @dataclass class AtomFlowConfig: n_flow: int hidden_gnn: List[int] hidden_lin: List[int] n_block: int = 1 mask_row_size_list: List[int] = field(default_factory=lambda: [1]) mask_row_stride_list: List[int] = field(default_factory=lambda: [1]) @dataclass class BondFlowConfig: hidden_ch: List[int] conv_lu: int n_squeeze: int n_block: int = 1 n_flow: int = 10 @dataclass class ModelConfig: atom_config: AtomFlowConfig bond_config: BondFlowConfig noise_scale: float = 0.6 learn_dist: bool = True @dataclass class Config: dataset_config: DatasetConfig model_config: ModelConfig max_num_nodes: Optional[int] = None num_node_features: Optional[int] = None num_edge_features: int = len(CODE_TO_BOND) z_dim: int = field(init=False) def __post_init__(self): if self.max_num_nodes is None: self.max_num_nodes = self.dataset_config.max_num_atoms if self.num_node_features is None: self.num_node_features = len(self.dataset_config.code_to_atomic) bonds_dim = self.max_num_nodes * self.max_num_nodes * self.num_edge_features atoms_dim = self.max_num_nodes * self.num_node_features self.z_dim = bonds_dim + atoms_dim def save(self, path): self.path = path with open(path, 'w') as f: json.dump(asdict(self), f, indent=4, sort_keys=True) @classmethod def load(cls, path): with open(path, 'r') as f: data = json.load(f) return cls(**data) def __repr__(self) -> str: return json.dumps(asdict(self), indent=4, separators=(',', ': ')) ZINC250K_CONFIG = Config( max_num_nodes=40, dataset_config=DatasetConfig( dataset_name='zinc250k', atomic_num_list=[6, 7, 8, 9, 15, 16, 17, 35, 53], max_num_atoms=38, labels=['logP', 'qed', 'SAS'], smiles_col='smiles', ), model_config=ModelConfig( AtomFlowConfig( n_flow=38, hidden_gnn=[256], hidden_lin=[512, 64], ), BondFlowConfig( n_squeeze=20, hidden_ch=[512, 512], conv_lu=2 ), ) ) CONFIGS = {'zinc250k': ZINC250K_CONFIG}
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/config.py
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import re from typing import Dict, List, Optional, Tuple, Union import numpy as np from rdkit import Chem import torch from moflow.config import Config, ATOM_VALENCY, CODE_TO_BOND, DUMMY_CODE def postprocess_predictions(x: Union[torch.Tensor, np.ndarray], adj: Union[torch.Tensor, np.ndarray], config: Config) -> Tuple[np.ndarray, np.ndarray]: assert x.ndim == 3 and adj.ndim == 4, 'expected batched predictions' n = config.dataset_config.max_num_atoms adj = adj[:, :, :n, :n] x = x[:, :n] atoms = torch.argmax(x, dim=2) atoms = _to_numpy_array(atoms) adj = torch.argmax(adj, dim=1) adj = _to_numpy_array(adj) decoded = np.zeros_like(atoms) for code, atomic_num in config.dataset_config.code_to_atomic.items(): decoded[atoms == code] = atomic_num return decoded, adj def convert_predictions_to_mols(adj: np.ndarray, x: np.ndarray, correct_validity: bool = False) -> List[Chem.Mol]: molecules = [construct_mol(x_elem, adj_elem) for x_elem, adj_elem in zip(x, adj)] if correct_validity: molecules = [correct_mol(mol) for mol in molecules] return molecules def construct_mol(atoms: np.ndarray, adj: np.ndarray) -> Chem.Mol: from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') atoms_exist = (atoms != 0) atoms = atoms[atoms_exist] adj = adj[atoms_exist][:, atoms_exist] mol = Chem.RWMol() for atom in atoms: mol.AddAtom(Chem.Atom(int(atom))) for start, end in zip(*np.where(adj != DUMMY_CODE)): if start > end: mol.AddBond(int(start), int(end), CODE_TO_BOND[int(adj[start, end])]) # add formal charge to atom: e.g. [O+], [N+] [S+] # not support [O-], [N-] [S-] [NH+] etc. flag, atomid_valence = check_valency(mol) if flag: continue else: assert len(atomid_valence) == 2 idx = atomid_valence[0] v = atomid_valence[1] an = mol.GetAtomWithIdx(idx).GetAtomicNum() if an in (7, 8, 16) and (v - ATOM_VALENCY[an]) == 1: mol.GetAtomWithIdx(idx).SetFormalCharge(1) return mol def valid_mol(x: Optional[Chem.Mol]) -> Optional[Chem.Mol]: if x is None: # RDKit wasn't able to create the mol return None smi = Chem.MolToSmiles(x, isomericSmiles=True) if len(smi) == 0 or '.' in smi: # Mol is empty or fragmented return None reloaded = Chem.MolFromSmiles(smi) # if smiles is invalid - it will be None, otherwise mol is valid return reloaded def check_valency(mol: Chem.Mol) -> Tuple[bool, List[int]]: """Checks that no atoms in the mol have exceeded their possible valency. Returns True if no valency issues, False otherwise plus information about problematic atom. """ try: Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES) return True, None except ValueError as e: e = str(e) p = e.find('#') e_sub = e[p:] atomid_valence = list(map(int, re.findall(r'\d+', e_sub))) return False, atomid_valence def correct_mol(mol: Chem.Mol) -> Chem.Mol: flag, atomid_valence = check_valency(mol) while not flag: assert len(atomid_valence) == 2 idx = atomid_valence[0] v = atomid_valence[1] queue = [] for b in mol.GetAtomWithIdx(idx).GetBonds(): queue.append( (b.GetIdx(), int(b.GetBondType()), b.GetBeginAtomIdx(), b.GetEndAtomIdx()) ) queue.sort(key=lambda tup: tup[1], reverse=True) if len(queue) > 0: start = queue[0][2] end = queue[0][3] t = queue[0][1] - 1 mol.RemoveBond(start, end) if t >= 1: mol.AddBond(start, end, CODE_TO_BOND[t]) flag, atomid_valence = check_valency(mol) # if mol is fragmented, select the largest fragment mols = Chem.GetMolFrags(mol, asMols=True) mol = max(mols, key=lambda m: m.GetNumAtoms()) return mol def predictions_to_smiles(adj: torch.Tensor, x: torch.Tensor, config: Config) -> List[str]: x, adj = postprocess_predictions(x, adj, config=config) valid = [Chem.MolToSmiles(construct_mol(x_elem, adj_elem), isomericSmiles=True) for x_elem, adj_elem in zip(x, adj)] return valid def check_validity(molecules: List[Chem.Mol]) -> dict: valid = [valid_mol(mol) for mol in molecules] valid = [mol for mol in valid if mol is not None] n_mols = len(molecules) valid_ratio = len(valid) / n_mols valid_smiles = [Chem.MolToSmiles(mol, isomericSmiles=False) for mol in valid] unique_smiles = list(set(valid_smiles)) unique_ratio = 0. if len(valid) > 0: unique_ratio = len(unique_smiles) / len(valid) valid_mols = [Chem.MolFromSmiles(s) for s in valid_smiles] abs_unique_ratio = len(unique_smiles) / n_mols results = dict() results['valid_mols'] = valid_mols results['valid_smiles'] = valid_smiles results['valid_ratio'] = valid_ratio * 100 results['unique_ratio'] = unique_ratio * 100 results['abs_unique_ratio'] = abs_unique_ratio * 100 return results def check_novelty(gen_smiles: List[str], train_smiles: List[str], n_generated_mols: int): if len(gen_smiles) == 0: novel_ratio = 0. abs_novel_ratio = 0. else: duplicates = [1 for mol in gen_smiles if mol in train_smiles] novel = len(gen_smiles) - sum(duplicates) novel_ratio = novel * 100. / len(gen_smiles) abs_novel_ratio = novel * 100. / n_generated_mols return novel_ratio, abs_novel_ratio def _to_numpy_array(a): if isinstance(a, torch.Tensor): a = a.cpu().detach().numpy() elif isinstance(a, np.ndarray): pass else: raise TypeError("a ({}) is not a torch.Tensor".format(type(a))) return a
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import numpy as np from torch.cuda.amp import autocast import torch from moflow.config import CONFIGS, Config from moflow.model.model import MoFlow from moflow.utils import convert_predictions_to_mols, postprocess_predictions from moflow.runtime.arguments import PARSER from moflow.runtime.common import get_newest_checkpoint, load_state from moflow.runtime.distributed_utils import get_device from moflow.runtime.logger import PerformanceLogger, setup_logging def infer(model: MoFlow, config: Config, device: torch.device, *, ln_var: float = 0, temp: float = 0.6, mu: Optional[torch.Tensor] = None, batch_size: int = 20) -> Tuple[np.ndarray, np.ndarray]: if mu is None: mu = torch.zeros(config.z_dim, dtype=torch.float32, device=device) sigma = temp * np.sqrt(np.exp(ln_var)) with torch.no_grad(): z = torch.normal(mu.reshape(-1, config.z_dim).repeat((batch_size, 1)), sigma) adj, x = model.reverse(z) x, adj = postprocess_predictions(x, adj, config=config) return adj, x if __name__ == '__main__': from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') args = PARSER.parse_args() logger = setup_logging(args) perf_logger = PerformanceLogger(logger, args.batch_size, args.warmup_steps, mode='generate') if args.predictions_path: from rdkit.Chem import SmilesWriter smiles_writer = SmilesWriter(args.predictions_path) snapshot_path = get_newest_checkpoint(args.results_dir) config = CONFIGS[args.config_name] model = MoFlow(config) device = get_device(args.local_rank) if snapshot_path is not None: epoch, ln_var = load_state(snapshot_path, model, device=device) elif args.allow_untrained: epoch, ln_var = 0, 0 else: raise RuntimeError('Generating molecules from an untrained network! ' 'If this was intentional, pass --allow_untrained flag.') model.to(device=device, memory_format=torch.channels_last) model.eval() if args.jit: model.atom_model = torch.jit.script(model.atom_model) model.bond_model = torch.jit.script(model.bond_model) if args.steps == -1: args.steps = 1 with autocast(enabled=args.amp): for i in range(args.steps): perf_logger.update() results = infer( model, config, ln_var=ln_var, temp=args.temperature, batch_size=args.batch_size, device=device) if (i + 1) % args.log_interval == 0: perf_logger.summarize(step=(0, i, i)) if args.predictions_path: mols_batch = convert_predictions_to_mols(*results, correct_validity=args.correct_validity) for mol in mols_batch: smiles_writer.write(mol) perf_logger.summarize(step=tuple()) if args.predictions_path: smiles_writer.close()
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/runtime/generate.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from moflow.config import CONFIGS from moflow.runtime.logger import LOGGING_LEVELS PARSER = argparse.ArgumentParser() PARSER.add_argument('--data_dir', type=str, default='/data', help='Location for the dataset.') PARSER.add_argument('--config_name', type=str, default='zinc250k', choices=list(CONFIGS), help='The config to choose. This parameter allows one to switch between different datasets ' 'and their dedicated configurations of the neural network. By default, a pre-defined "zinc250k" config is used.') PARSER.add_argument('--results_dir', type=str, default='/results', help='Directory where checkpoints are stored.') PARSER.add_argument('--predictions_path', type=str, default='/results/predictions.smi', help='Path to store generated molecules. If an empty string is provided, predictions will not be ' 'saved (useful for benchmarking and debugging).') PARSER.add_argument('--log_path', type=str, default=None, help='Path for DLLogger log. This file will contain information about the speed and ' 'accuracy of the model during training and inference. Note that if the file ' 'already exists, new logs will be added at the end.') PARSER.add_argument('--log_interval', type=int, default=20, help='Frequency for writing logs, expressed in steps.') PARSER.add_argument('--warmup_steps', type=int, default=20, help='Number of warmup steps. This value is used for benchmarking and for CUDA graph capture.') PARSER.add_argument('--steps', type=int, default=-1, help='Number of steps used for training/inference. This parameter allows finishing ' 'training earlier than the specified number of epochs. If used with inference, ' 'it allows generating more molecules (by default only a single batch of molecules is generated).') PARSER.add_argument('--save_epochs', type=int, default=5, help='Frequency for saving checkpoints, expressed in epochs. If -1 is provided, checkpoints will not be saved.') PARSER.add_argument('--eval_epochs', type=int, default=5, help='Evaluation frequency, expressed in epochs. If -1 is provided, an evaluation will not be performed.') PARSER.add_argument('--learning_rate', type=float, default=0.0005, help='Base learning rate.') PARSER.add_argument('--beta1', type=float, default=0.9, help='beta1 parameter for the optimizer.') PARSER.add_argument('--beta2', type=float, default=0.99, help='beta2 parameter for the optimizer.') PARSER.add_argument('--clip', type=float, default=1, help='Gradient clipping norm.') PARSER.add_argument('--epochs', type=int, default=300, help='Number of training epochs. Note that you can finish training mid-epoch by using "--steps" flag.') PARSER.add_argument('--batch_size', type=int, default=512, help='Batch size per GPU.') PARSER.add_argument('--num_workers', type=int, default=4, help='Number of workers in the data loader.') PARSER.add_argument('--seed', type=int, default=1, help='Random seed used to initialize the distributed loaders.') PARSER.add_argument('--local_rank', default=os.environ.get('LOCAL_RANK', 0), type=int, help='rank of the GPU, used to launch distributed training. This argument is specified ' 'automatically by `torchrun` and does not have to be provided by the user.') PARSER.add_argument('--temperature', type=float, default=0.3, help='Temperature used for sampling.') PARSER.add_argument('--val_batch_size', type=int, default=100, help='Number of molecules to generate during validation step.') PARSER.add_argument('--allow_untrained', action='store_true', help='Allow sampling molecules from an untrained network. Useful for performance benchmarking or debugging purposes.') PARSER.add_argument('--correct_validity', action='store_true', help='Apply validity correction after the generation of the molecules.') PARSER.add_argument('--amp', action='store_true', help='Use Automatic Mixed Precision.') PARSER.add_argument('--cuda_graph', action='store_true', help='Capture GPU kernels with CUDA graphs. This option allows to speed up training.') PARSER.add_argument('--jit', action='store_true', help='Compile the model with `torch.jit.script`. Can be used to speed up training or inference.') PARSER.add_argument('--verbosity', type=int, default=1, choices=list(LOGGING_LEVELS), help='Verbosity level. Specify the following values: 0, 1, 2, 3, where 0 means minimal ' 'verbosity (errors only) and 3 - maximal (debugging).')
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/runtime/arguments.py
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/runtime/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod import logging import time import dllogger from dllogger import JSONStreamBackend, StdOutBackend, Verbosity import numpy as np LOGGING_LEVELS = dict(enumerate([logging.ERROR, logging.WARNING, logging.INFO, logging.DEBUG])) def get_dllogger(args): backends = [] if args.local_rank == 0: backends.append(StdOutBackend(Verbosity.VERBOSE)) if args.log_path is not None: backends.append(JSONStreamBackend(Verbosity.VERBOSE, args.log_path, append=True)) dllogger.init(backends=backends) return dllogger def setup_logging(args): logging.basicConfig( format='%(asctime)s %(levelname)s:\t%(message)s', datefmt='%H:%M:%S', level=LOGGING_LEVELS[args.verbosity], force=True ) return get_dllogger(args) class BaseLogger(ABC): @abstractmethod def update(self, **kwargs) -> None: pass @abstractmethod def process_stats(self) -> dict: return {} @abstractmethod def reset(self) -> None: pass def summarize(self, step: tuple) -> None: stats = self.process_stats() if len(stats) == 0: logging.warn('Empty stats for logging, skipping') return self.logger.log(step=step, data=stats) self.logger.flush() class PerformanceLogger(BaseLogger): def __init__(self, logger, batch_size: int, warmup_steps: int = 100, mode: str = 'train'): self.logger = logger self.batch_size = batch_size self.warmup_steps = warmup_steps self._step = 0 self._timestamps = [] self.mode = mode def update(self, **kwargs) -> None: self._step += 1 if self._step >= self.warmup_steps: self._timestamps.append(time.time()) def reset(self) -> None: self._step = 0 self._timestamps = [] def process_stats(self) -> dict: if len(self._timestamps) < 2: logging.warn('Cannot process performance stats - less than 2 measurements collected') return {} timestamps = np.asarray(self._timestamps) deltas = np.diff(timestamps) throughput = (self.batch_size / deltas).mean() stats = { f'throughput_{self.mode}': throughput, f'latency_{self.mode}_mean': deltas.mean(), f'total_time_{self.mode}': timestamps[-1] - timestamps[0], } for level in [90, 95, 99]: stats.update({f'latency_{self.mode}_{level}': np.percentile(deltas, level)}) return stats class MetricsLogger(BaseLogger): def __init__(self, logger, mode: str = 'train'): self.logger = logger self.mode = mode self._metrics_dict = {} def update(self, metrics: dict, **kwargs) -> None: for metrics_name, metric_val in metrics.items(): if metrics_name not in self._metrics_dict: self._metrics_dict[metrics_name] = [] self._metrics_dict[metrics_name].append(float(metric_val)) def reset(self) -> None: self._metrics_dict = {} def process_stats(self) -> dict: stats = {} for metric_name, metric_val in self._metrics_dict.items(): stats[metric_name] = np.mean(metric_val) return stats
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/runtime/logger.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from glob import glob import logging import os from typing import List, Optional, Tuple import torch from moflow.model.model import MoFlow CHECKPOINT_PATTERN = 'model_snapshot_epoch_%s' def _sort_checkpoints(paths: List[str]) -> List[str]: return sorted(paths, key=lambda x: int(x.split('_')[-1])) def save_state(dir: str, model: MoFlow, optimizer: torch.optim.Optimizer, ln_var: float, epoch: int, keep: int = 1) -> None: """Save training state in a given dir. This checkpoint can be used to resume training or run inference with the trained model. This function will keep up to <keep> newest checkpoints and remove the oldest ones. """ save_path = os.path.join(dir, CHECKPOINT_PATTERN % (epoch + 1)) state = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'ln_var': ln_var, 'epoch': epoch, } torch.save(state, save_path) if keep > 0: filenames = glob(os.path.join(dir, CHECKPOINT_PATTERN % '*')) if len(filenames) <= keep: return to_del = _sort_checkpoints(filenames)[:-keep] for path in to_del: os.remove(path) def load_state(path: str, model: MoFlow, device: torch.device, optimizer: Optional[torch.optim.Optimizer] = None) -> Tuple[int, float]: """Load model's and optimizer's state from a given file. This function returns the number of epochs the model was trained for and natural logarithm of variance the for the distribution of the latent space. """ state = torch.load(path, map_location=device) model.load_state_dict(state['model']) if optimizer is not None: optimizer.load_state_dict(state['optimizer']) return state['epoch'], state['ln_var'] def get_newest_checkpoint(model_dir: str, validate: bool = True) -> str: """Find newest checkpoint in a given directory. If validate is set to True, this function will also verify that the file can be loaded and select older checkpoint if neccessary. """ filenames = glob(os.path.join(model_dir, CHECKPOINT_PATTERN % '*')) if len(filenames) == 0: logging.info(f'No checkpoints available') return None paths = _sort_checkpoints(filenames) if validate: for latest_path in paths[::-1]: try: torch.load(latest_path, map_location='cpu') break except: logging.info(f'Checkpoint {latest_path} is corrupted') else: logging.info(f'All available checkpoints were corrupted') return None else: latest_path = paths[-1] logging.info(f'Found checkpoint {latest_path}') return latest_path
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/runtime/common.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import torch import torch.distributed as dist def get_device(local_rank: int) -> torch.device: if torch.cuda.is_available(): torch.cuda.set_device(local_rank % torch.cuda.device_count()) device = torch.device("cuda") else: device = torch.device("cpu") logging.warning("not using a(ny) GPU(s)!") return device def get_world_size() -> int: return int(os.environ.get("WORLD_SIZE", 1)) def reduce_tensor(tensor: torch.Tensor, num_gpus: int) -> torch.Tensor: if num_gpus > 1: rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) if rt.is_floating_point(): rt = rt / num_gpus else: rt = rt // num_gpus return rt return tensor def init_distributed() -> bool: world_size = int(os.environ.get("WORLD_SIZE", 1)) distributed = world_size > 1 if distributed: backend = "nccl" if torch.cuda.is_available() else "gloo" os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0" # Needed for CUDA graphs dist.init_process_group(backend=backend, init_method="env://") assert dist.is_initialized() if get_rank() == 0: logging.info(f"Distributed initialized. World size: {world_size}") return distributed def get_rank() -> int: """ Gets distributed rank or returns zero if distributed is not initialized. """ if torch.distributed.is_available() and torch.distributed.is_initialized(): rank = torch.distributed.get_rank() else: rank = 0 return rank
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/runtime/distributed_utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import argparse import functools import json import logging import os import signal from typing import Dict from apex.contrib.clip_grad import clip_grad_norm_ from apex.optimizers import FusedAdam as Adam import torch from torch.cuda.amp import autocast, GradScaler from torch.utils.data.distributed import DistributedSampler from moflow.config import CONFIGS, Config from moflow.data.data_loader import NumpyTupleDataset from moflow.data import transform from moflow.model.model import MoFlow, MoFlowLoss from moflow.model.utils import initialize from moflow.runtime.logger import MetricsLogger, PerformanceLogger, setup_logging from moflow.runtime.arguments import PARSER from moflow.runtime.common import get_newest_checkpoint, load_state, save_state from moflow.runtime.distributed_utils import ( get_device, get_rank, get_world_size, init_distributed, reduce_tensor ) from moflow.runtime.generate import infer from moflow.utils import check_validity, convert_predictions_to_mols torch._C._jit_set_autocast_mode(True) def run_validation(model: MoFlow, config: Config, ln_var: float, args: argparse.Namespace, is_distributed: bool, world_size: int, device: torch.device) -> Dict[str, float]: model.eval() if is_distributed: model_callable = model.module else: model_callable = model result = infer(model_callable, config, device=device, ln_var=ln_var, batch_size=args.val_batch_size, temp=args.temperature) mols = convert_predictions_to_mols(*result, correct_validity=args.correct_validity) validity_info = check_validity(mols) valid_ratio = torch.tensor(validity_info['valid_ratio'], dtype=torch.float32, device=device) unique_ratio = torch.tensor(validity_info['unique_ratio'], dtype=torch.float32, device=device) valid_value = reduce_tensor(valid_ratio, world_size).detach().cpu().numpy() unique_value = reduce_tensor(unique_ratio, world_size).detach().cpu().numpy() model.train() return {'valid': valid_value, 'unique': unique_value} def train(args: argparse.Namespace) -> None: os.makedirs(args.results_dir, exist_ok=True) # Device configuration device = get_device(args.local_rank) torch.cuda.set_stream(torch.cuda.Stream()) is_distributed = init_distributed() world_size = get_world_size() local_rank = get_rank() logger = setup_logging(args) if local_rank == 0: perf_logger = PerformanceLogger(logger, args.batch_size * world_size, args.warmup_steps) acc_logger = MetricsLogger(logger) if local_rank == 0: logging.info('Input args:') logging.info(json.dumps(vars(args), indent=4, separators=(',', ':'))) # Model configuration assert args.config_name in CONFIGS config = CONFIGS[args.config_name] data_file = config.dataset_config.dataset_file transform_fn = functools.partial(transform.transform_fn, config=config) valid_idx = transform.get_val_ids(config, args.data_dir) if local_rank == 0: logging.info('Config:') logging.info(str(config)) model = MoFlow(config) model.to(device) loss_module = MoFlowLoss(config) loss_module.to(device) # Datasets: dataset = NumpyTupleDataset.load( os.path.join(args.data_dir, data_file), transform=transform_fn, ) if len(valid_idx) == 0: raise ValueError('Empty validation set!') train_idx = [t for t in range(len(dataset)) if t not in valid_idx] train = torch.utils.data.Subset(dataset, train_idx) test = torch.utils.data.Subset(dataset, valid_idx) if world_size > 1: sampler = DistributedSampler(train, seed=args.seed, drop_last=False) else: sampler = None train_dataloader = torch.utils.data.DataLoader( train, batch_size=args.batch_size, shuffle=sampler is None, sampler=sampler, num_workers=args.num_workers, drop_last=True, ) if local_rank == 0: logging.info(f'Using {world_size} GPUs') logging.info(f'Num training samples: {len(train)}') logging.info(f'Minibatch-size: {args.batch_size}') logging.info(f'Num Iter/Epoch: {len(train_dataloader)}') logging.info(f'Num epoch: {args.epochs}') if is_distributed: train_dataloader.sampler.set_epoch(-1) x, adj, *_ = next(iter(train_dataloader)) x = x.to(device) adj = adj.to(device) with autocast(enabled=args.amp): initialize(model, (adj, x)) model.to(memory_format=torch.channels_last) adj.to(memory_format=torch.channels_last) if args.jit: model.bond_model = torch.jit.script(model.bond_model) model.atom_model = torch.jit.script(model.atom_model) # make one pass in both directions to make sure that model works with torch.no_grad(): _ = model(adj, x) _ = model.reverse(torch.randn(args.batch_size, config.z_dim, device=device)) if is_distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], output_device=local_rank, ) loss_module = torch.nn.parallel.DistributedDataParallel( loss_module, device_ids=[local_rank], output_device=local_rank, ) model_callable = model.module loss_callable = loss_module.module else: model_callable = model loss_callable = loss_module # Loss and optimizer optimizer = Adam((*model.parameters(), *loss_module.parameters()), lr=args.learning_rate, betas=(args.beta1, args.beta2)) scaler = GradScaler() if args.save_epochs == -1: args.save_epochs = args.epochs if args.eval_epochs == -1: args.eval_epochs = args.epochs if args.steps == -1: args.steps = args.epochs * len(train_dataloader) snapshot_path = get_newest_checkpoint(args.results_dir) if snapshot_path is not None: snapshot_epoch, ln_var = load_state(snapshot_path, model_callable, optimizer=optimizer, device=device) loss_callable.ln_var = torch.nn.Parameter(torch.tensor(ln_var)) first_epoch = snapshot_epoch + 1 step = first_epoch * len(train_dataloader) else: first_epoch = 0 step = 0 if first_epoch >= args.epochs: logging.info(f'Model was already trained for {first_epoch} epochs') exit(0) for epoch in range(first_epoch, args.epochs): if local_rank == 0: acc_logger.reset() if is_distributed: train_dataloader.sampler.set_epoch(epoch) for i, batch in enumerate(train_dataloader): if local_rank == 0: perf_logger.update() step += 1 optimizer.zero_grad() x = batch[0].to(device) adj = batch[1].to(device=device,memory_format=torch.channels_last) # Forward, backward and optimize with_cuda_graph = ( args.cuda_graph and step >= args.warmup_steps and x.size(0) == args.batch_size ) with autocast(enabled=args.amp, cache_enabled=not with_cuda_graph): output = model(adj, x, with_cuda_graph=with_cuda_graph) nll_x, nll_adj = loss_module(*output) loss = nll_x + nll_adj if args.amp: scaler.scale(loss).backward() scaler.unscale_(optimizer) clip_grad_norm_(model.parameters(), args.clip) scaler.step(optimizer) scaler.update() else: loss.backward() clip_grad_norm_(model.parameters(), args.clip) optimizer.step() # Print log info if (i + 1) % args.log_interval == 0: nll_x_value = reduce_tensor(nll_x, world_size).item() nll_adj_value = reduce_tensor(nll_adj, world_size).item() loss_value = nll_x_value + nll_adj_value if local_rank == 0: acc_logger.update({ 'loglik': loss_value, 'nll_x': nll_x_value, 'nll_adj': nll_adj_value }) acc_logger.summarize(step=(epoch, i, i)) perf_logger.summarize(step=(epoch, i, i)) if step >= args.steps: break if (epoch + 1) % args.eval_epochs == 0: with autocast(enabled=args.amp): metrics = run_validation(model, config, loss_callable.ln_var.item(), args, is_distributed, world_size, device) if local_rank == 0: acc_logger.update(metrics) # The same report for each epoch if local_rank == 0: acc_logger.summarize(step=(epoch,)) perf_logger.summarize(step=(epoch,)) # Save the model checkpoints if (epoch + 1) % args.save_epochs == 0: if local_rank == 0 or not is_distributed: save_state(args.results_dir, model_callable, optimizer, loss_callable.ln_var.item(), epoch, keep=5) if step >= args.steps: break if local_rank == 0: acc_logger.summarize(step=tuple()) perf_logger.summarize(step=tuple()) if __name__ == '__main__': from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') args = PARSER.parse_args() train(args)
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/runtime/train.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import os import numpy as np import torch from torch.cuda.amp import autocast from moflow.config import CONFIGS from moflow.data import transform from moflow.data.data_loader import NumpyTupleDataset from moflow.model.model import MoFlow from moflow.utils import check_validity, convert_predictions_to_mols, predictions_to_smiles, check_novelty from moflow.runtime.arguments import PARSER from moflow.runtime.common import get_newest_checkpoint, load_state from moflow.runtime.distributed_utils import get_device from moflow.runtime.generate import infer from moflow.runtime.logger import MetricsLogger, setup_logging if __name__ == '__main__': from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') args = PARSER.parse_args() logger = setup_logging(args) snapshot_path = get_newest_checkpoint(args.results_dir) config = CONFIGS[args.config_name] model = MoFlow(config) device = get_device(args.local_rank) if snapshot_path is not None: epoch, ln_var = load_state(snapshot_path, model, device=device) elif args.allow_untrained: epoch, ln_var = 0, 0 else: raise RuntimeError('Generating molecules from an untrained network! ' 'If this was intentional, pass --allow_untrained flag.') model.to(device) model.eval() if args.steps == -1: args.steps = 1 acc_logger = MetricsLogger(logger) valid_idx = transform.get_val_ids(config, args.data_dir) dataset = NumpyTupleDataset.load( os.path.join(args.data_dir, config.dataset_config.dataset_file), transform=partial(transform.transform_fn, config=config), ) train_idx = [t for t in range(len(dataset)) if t not in valid_idx] n_train = len(train_idx) train_dataset = torch.utils.data.Subset(dataset, train_idx) train_x = torch.Tensor(np.array([a[0] for a in train_dataset])) train_adj = torch.Tensor(np.array([a[1] for a in train_dataset])) train_smiles = set(predictions_to_smiles(train_adj, train_x, config)) with autocast(enabled=args.amp): for i in range(args.steps): results = infer( model, config, ln_var=ln_var, temp=args.temperature, batch_size=args.batch_size, device=device) mols_batch = convert_predictions_to_mols(*results, correct_validity=args.correct_validity) validity_info = check_validity(mols_batch) novel_r, abs_novel_r = check_novelty(validity_info['valid_smiles'], train_smiles, len(mols_batch)) _, nuv = check_novelty(list(set(validity_info['valid_smiles'])), train_smiles, len(mols_batch)) metrics = { 'validity': validity_info['valid_ratio'], 'novelty': novel_r, 'uniqueness': validity_info['unique_ratio'], 'abs_novelty': abs_novel_r, 'abs_uniqueness': validity_info['abs_unique_ratio'], 'nuv': nuv, } acc_logger.update(metrics) acc_logger.summarize(step=tuple())
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/runtime/evaluate.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from typing import Tuple import torch import torch.nn as nn from moflow.model.basic import ActNorm, InvConv2dLU, InvConv2d from moflow.model.coupling import AffineCoupling, GraphAffineCoupling class Flow(nn.Module): def __init__(self, in_channel, hidden_channels, conv_lu=2, mask_swap=False): super(Flow, self).__init__() # More stable to support more flows self.actnorm = ActNorm(num_channels=in_channel, num_dims=4) if conv_lu == 0: self.invconv = InvConv2d(in_channel) elif conv_lu == 1: self.invconv = InvConv2dLU(in_channel) elif conv_lu == 2: self.invconv = None else: raise ValueError("conv_lu in {0,1,2}, 0:InvConv2d, 1:InvConv2dLU, 2:none-just swap to update in coupling") self.coupling = AffineCoupling(in_channel, hidden_channels, mask_swap=mask_swap) def forward(self, input: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: out, logdet = self.actnorm(input) if self.invconv is not None: out, det1 = self.invconv(out) else: det1 = 0 out, det2 = self.coupling(out) logdet = logdet + det1 if det2 is not None: logdet = logdet + det2 return out, logdet @torch.jit.export def reverse(self, output: torch.Tensor) -> torch.Tensor: input = self.coupling.reverse(output) if self.invconv is not None: input = self.invconv.reverse(input) input = self.actnorm.reverse(input) return input class FlowOnGraph(nn.Module): def __init__(self, n_node, in_dim, hidden_dim_dict, masked_row): super(FlowOnGraph, self).__init__() self.n_node = n_node self.in_dim = in_dim self.hidden_dim_dict = hidden_dim_dict self.masked_row = masked_row self.actnorm = ActNorm(num_channels=n_node, num_dims=3) self.coupling = GraphAffineCoupling(n_node, in_dim, hidden_dim_dict, masked_row) def forward(self, graph: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: adj, input = graph out, logdet = self.actnorm(input) det1 = 0 out, det2 = self.coupling((adj, out)) logdet = logdet + det1 if det2 is not None: logdet = logdet + det2 return out, logdet @torch.jit.export def reverse(self, graph: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor: adj, output = graph input = self.coupling.reverse((adj, output)) input = self.actnorm.reverse(input) return input class Block(nn.Module): def __init__(self, in_channel, n_flow, squeeze_fold, hidden_channels, conv_lu=2): super(Block, self).__init__() self.squeeze_fold = squeeze_fold squeeze_dim = in_channel * self.squeeze_fold * self.squeeze_fold self.flows = nn.ModuleList() for i in range(n_flow): if conv_lu in (0, 1): self.flows.append(Flow(squeeze_dim, hidden_channels, conv_lu=conv_lu, mask_swap=False)) else: self.flows.append(Flow(squeeze_dim, hidden_channels, conv_lu=2, mask_swap=bool(i % 2))) def forward(self, input: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: out = self._squeeze(input) logdet = 0 for flow in self.flows: out, det = flow(out) logdet = logdet + det out = self._unsqueeze(out) return out, logdet @torch.jit.export def reverse(self, output: torch.Tensor) -> torch.Tensor: input = self._squeeze(output) for flow in self.flows[::-1]: input = flow.reverse(input) unsqueezed = self._unsqueeze(input) return unsqueezed def _squeeze(self, x: torch.Tensor) -> torch.Tensor: """Trade spatial extent for channels. In forward direction, convert each 1x4x4 volume of input into a 4x1x1 volume of output. Args: x (torch.Tensor): Input to squeeze or unsqueeze. reverse (bool): Reverse the operation, i.e., unsqueeze. Returns: x (torch.Tensor): Squeezed or unsqueezed tensor. """ assert len(x.shape) == 4 b_size, n_channel, height, width = x.shape fold = self.squeeze_fold squeezed = x.view(b_size, n_channel, height // fold, fold, width // fold, fold) squeezed = squeezed.permute(0, 1, 3, 5, 2, 4).contiguous() out = squeezed.view(b_size, n_channel * fold * fold, height // fold, width // fold) return out def _unsqueeze(self, x: torch.Tensor) -> torch.Tensor: assert len(x.shape) == 4 b_size, n_channel, height, width = x.shape fold = self.squeeze_fold unsqueezed = x.view(b_size, n_channel // (fold * fold), fold, fold, height, width) unsqueezed = unsqueezed.permute(0, 1, 4, 2, 5, 3).contiguous() out = unsqueezed.view(b_size, n_channel // (fold * fold), height * fold, width * fold) return out class BlockOnGraph(nn.Module): def __init__(self, n_node, in_dim, hidden_dim_dict, n_flow, mask_row_size=1, mask_row_stride=1): super(BlockOnGraph, self).__init__() assert 0 < mask_row_size < n_node self.flows = nn.ModuleList() for i in range(n_flow): start = i * mask_row_stride masked_row =[r % n_node for r in range(start, start+mask_row_size)] self.flows.append(FlowOnGraph(n_node, in_dim, hidden_dim_dict, masked_row=masked_row)) def forward(self, graph: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: adj, input = graph out = input logdet = 0 for flow in self.flows: out, det = flow((adj, out)) logdet = logdet + det return out, logdet @torch.jit.export def reverse(self, graph: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor: adj, output = graph input = output for flow in self.flows[::-1]: input = flow.reverse((adj, input)) return input class Glow(nn.Module): def __init__(self, in_channel, n_flow, n_block, squeeze_fold, hidden_channel, conv_lu=2): super(Glow, self).__init__() self.blocks = nn.ModuleList() n_channel = in_channel for i in range(n_block): self.blocks.append(Block(n_channel, n_flow, squeeze_fold, hidden_channel, conv_lu=conv_lu)) def forward(self, input: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: logdet = 0 out = input for block in self.blocks: out, det = block(out) logdet = logdet + det return out, logdet @torch.jit.export def reverse(self, z: torch.Tensor) -> torch.Tensor: h = z for i, block in enumerate(self.blocks[::-1]): h = block.reverse(h) return h class GlowOnGraph(nn.Module): def __init__(self, n_node, in_dim, hidden_dim_dict, n_flow, n_block, mask_row_size_list=(2,), mask_row_stride_list=(1,)): super(GlowOnGraph, self).__init__() assert len(mask_row_size_list) == n_block or len(mask_row_size_list) == 1 assert len(mask_row_stride_list) == n_block or len(mask_row_stride_list) == 1 if len(mask_row_size_list) == 1: mask_row_size_list = mask_row_size_list * n_block if len(mask_row_stride_list) == 1: mask_row_stride_list = mask_row_stride_list * n_block self.blocks = nn.ModuleList() for i in range(n_block): mask_row_size = mask_row_size_list[i] mask_row_stride = mask_row_stride_list[i] self.blocks.append(BlockOnGraph(n_node, in_dim, hidden_dim_dict, n_flow, mask_row_size, mask_row_stride)) def forward(self, adj: torch.Tensor, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: logdet = 0 out = x for block in self.blocks: out, det = block((adj, out)) logdet = logdet + det return out, logdet @torch.jit.export def reverse(self, graph: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor: adj, z = graph input = z for i, block in enumerate(self.blocks[::-1]): input = block.reverse((adj, input)) return input
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/model/glow.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from typing import Tuple import torch import torch.nn as nn from torch.nn.functional import logsigmoid from moflow.model.basic import GraphConv def sigmoid_inverse(x): """Calculates 1/sigmoid(x) in a more numerically stable way""" return 1 + torch.exp(-x) class AffineCoupling(nn.Module): # delete def __init__(self, in_channel, hidden_channels, mask_swap=False): # filter_size=512, --> hidden_channels =(512, 512) super(AffineCoupling, self).__init__() self.mask_swap=mask_swap # self.norms_in = nn.ModuleList() last_h = in_channel // 2 vh = tuple(hidden_channels) layers = [] for h in vh: layers.append(nn.Conv2d(last_h, h, kernel_size=3, padding=1)) layers.append(nn.BatchNorm2d(h)) layers.append(nn.ReLU(inplace=True)) last_h = h layers.append(nn.Conv2d(last_h, in_channel, kernel_size=3, padding=1)) self.layers = nn.Sequential(*layers) def forward(self, input: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: in_a, in_b = input.chunk(2, 1) # (2,12,32,32) --> (2,6,32,32), (2,6,32,32) if self.mask_swap: in_a, in_b = in_b, in_a s_logits, t = self._s_t_function(in_a) s = torch.sigmoid(s_logits) out_b = (in_b + t) * s logdet = torch.sum(logsigmoid(s_logits).reshape(input.shape[0], -1), 1) if self.mask_swap: result = torch.cat([out_b, in_a], 1) else: result = torch.cat([in_a, out_b], 1) return result, logdet @torch.jit.export def reverse(self, output: torch.Tensor) -> torch.Tensor: out_a, out_b = output.chunk(2, 1) if self.mask_swap: out_a, out_b = out_b, out_a s_logits, t = self._s_t_function(out_a) s_inverse = sigmoid_inverse(s_logits) in_b = out_b * s_inverse - t if self.mask_swap: result = torch.cat([in_b, out_a], 1) else: result = torch.cat([out_a, in_b], 1) return result def _s_t_function(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: h = self.layers(x) s_logits, t = h.chunk(2, 1) return s_logits, t class ConvCouplingBlock(nn.Module): def __init__(self, in_dim: int, out_dim: int, n_node: int) -> None: super().__init__() self.graph_conv = GraphConv(in_dim, out_dim, n_node) self.bn = nn.BatchNorm2d(n_node) self.relu = nn.ReLU(inplace=True) def forward(self, graph: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: adj, nodes = graph h = self.graph_conv(graph) h = h.to(memory_format=torch.channels_last) h = self.bn(h) h = self.relu(h) return adj, h class LinCouplingBlock(nn.Module): def __init__(self, in_dim: int, out_dim: int, n_node: int) -> None: super().__init__() self.lin = nn.Linear(in_dim, out_dim) self.bn = nn.BatchNorm2d(n_node) self.relu = nn.ReLU(inplace=True) def forward(self, x: torch.Tensor) -> torch.Tensor: h = self.lin(x) h = h.to(memory_format=torch.channels_last) h = self.bn(h) h = self.relu(h) return h class GraphAffineCoupling(nn.Module): def __init__(self, n_node, in_dim, hidden_dim_dict, masked_row): super(GraphAffineCoupling, self).__init__() self.n_node = n_node self.in_dim = in_dim self.hidden_dim_dict = hidden_dim_dict self.masked_row = masked_row self.hidden_dim_gnn = hidden_dim_dict['gnn'] self.hidden_dim_linear = hidden_dim_dict['linear'] conv_layers = [] last_dim = in_dim for out_dim in self.hidden_dim_gnn: conv_layers.append(ConvCouplingBlock(last_dim, out_dim, n_node)) last_dim = out_dim self.net_conv = nn.ModuleList(conv_layers) lin_layers = [] for out_dim in self.hidden_dim_linear: lin_layers.append(LinCouplingBlock(last_dim, out_dim, n_node)) last_dim = out_dim lin_layers.append(nn.Linear(last_dim, in_dim*2)) self.net_lin = nn.Sequential(*lin_layers) mask = torch.ones(n_node, in_dim) mask[masked_row, :] = 0 # masked_row are kept same, and used for _s_t for updating the left rows self.register_buffer('mask', mask) def forward(self, graph: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: adj, input = graph masked_x = self.mask * input masked_x_sq = masked_x.unsqueeze(2) s_logits, t = self._s_t_function((adj, masked_x_sq)) s = torch.sigmoid(s_logits) out = masked_x + (1-self.mask) * (input + t) * s logdet = torch.sum(logsigmoid(s_logits).reshape(input.shape[0], -1), 1) return out, logdet @torch.jit.export def reverse(self, graph: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor: adj, output = graph masked_y = self.mask * output masked_y_sq = masked_y.unsqueeze(2) s_logits, t = self._s_t_function((adj, masked_y_sq)) s_inverse = sigmoid_inverse(s_logits) input = masked_y + (1 - self.mask) * (output * s_inverse - t) return input def _s_t_function(self, graph: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: for l in self.net_conv: graph = l(graph) adj, h = graph h = self.net_lin(h) h = h.squeeze(2) s_logits, t = h.chunk(2, dim=-1) return s_logits, t
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/model/coupling.py
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/model/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import math import torch import torch.nn as nn from moflow.config import Config from moflow.model.glow import Glow, GlowOnGraph def gaussian_nll(x, mean, ln_var): """Computes the negative log-likelihood of a Gaussian distribution. Given two variable ``mean`` representing :math:`\\mu` and ``ln_var`` representing :math:`\\log(\\sigma^2)`, this function computes in elementwise manner the negative log-likelihood of :math:`x` on a Gaussian distribution :math:`N(\\mu, S)`, .. math:: -\\log N(x; \\mu, \\sigma^2) = \\log\\left(\\sqrt{(2\\pi)^D |S|}\\right) + \\frac{1}{2}(x - \\mu)^\\top S^{-1}(x - \\mu), where :math:`D` is a dimension of :math:`x` and :math:`S` is a diagonal matrix where :math:`S_{ii} = \\sigma_i^2`. Args: x: Input variable. mean: Mean of a Gaussian distribution, :math:`\\mu`. ln_var: Logarithm of variance of a Gaussian distribution, :math:`\\log(\\sigma^2)`. Returns: torch.Tensor: Negative log-likelihood. """ x_prec = torch.exp(-ln_var) x_diff = x - mean x_power = (x_diff * x_diff) * x_prec * -0.5 loss = (ln_var + math.log(2 * (math.pi))) / 2 - x_power return loss class MoFlowLoss(nn.Module): def __init__(self, config: Config) -> None: super().__init__() self.b_n_type = config.num_edge_features self.a_n_node = config.max_num_nodes self.a_n_type = config.num_node_features self.b_size = self.a_n_node * self.a_n_node * self.b_n_type self.a_size = self.a_n_node * self.a_n_type if config.model_config.learn_dist: self.ln_var = nn.Parameter(torch.zeros(1)) else: self.register_buffer('ln_var', torch.zeros(1)) def forward(self, h, adj_h, sum_log_det_jacs_x, sum_log_det_jacs_adj): z = [h, adj_h] logdet = [sum_log_det_jacs_x, sum_log_det_jacs_adj] device = z[0].device dtype = z[0].dtype z[0] = z[0].reshape(z[0].shape[0],-1) z[1] = z[1].reshape(z[1].shape[0], -1) logdet[0] = logdet[0] - self.a_size * math.log(2.) logdet[1] = logdet[1] - self.b_size * math.log(2.) ln_var_adj = self.ln_var * torch.ones([self.b_size], device=device, dtype=dtype) ln_var_x = self.ln_var * torch.ones([self.a_size], device=device, dtype=dtype) nll_adj = torch.mean( torch.sum(gaussian_nll(z[1], torch.zeros(self.b_size, device=device, dtype=dtype), ln_var_adj), dim=1) - logdet[1]) nll_adj = nll_adj / (self.b_size * math.log(2.)) # the negative log likelihood per dim with log base 2 nll_x = torch.mean(torch.sum( gaussian_nll(z[0], torch.zeros(self.a_size, device=device, dtype=dtype), ln_var_x), dim=1) - logdet[0]) nll_x = nll_x / (self.a_size * math.log(2.)) # the negative log likelihood per dim with log base 2 return nll_x, nll_adj class MoFlow(nn.Module): def __init__(self, config: Config): super(MoFlow, self).__init__() self.config = config self.b_n_type = config.num_edge_features self.a_n_node = config.max_num_nodes self.a_n_type = config.num_node_features self.b_size = self.a_n_node * self.a_n_node * self.b_n_type self.a_size = self.a_n_node * self.a_n_type self.noise_scale = config.model_config.noise_scale self.bond_model = Glow( in_channel=self.b_n_type, n_flow=config.model_config.bond_config.n_flow, n_block=config.model_config.bond_config.n_block, squeeze_fold=config.model_config.bond_config.n_squeeze, hidden_channel=config.model_config.bond_config.hidden_ch, conv_lu=config.model_config.bond_config.conv_lu ) self.atom_model = GlowOnGraph( n_node=self.a_n_node, in_dim=self.a_n_type, hidden_dim_dict={ 'gnn': config.model_config.atom_config.hidden_gnn, 'linear': config.model_config.atom_config.hidden_lin }, n_flow=config.model_config.atom_config.n_flow, n_block=config.model_config.atom_config.n_block, mask_row_size_list=config.model_config.atom_config.mask_row_size_list, mask_row_stride_list=config.model_config.atom_config.mask_row_stride_list, ) self._cuda_graphs = dict() self.atom_stream = None self.bond_stream = None @torch.jit.ignore def forward(self, adj: torch.Tensor, x: torch.Tensor, with_cuda_graph: bool = False): """ :param adj: (256,4,9,9) :param x: (256,9,5) :return: """ if with_cuda_graph and self.atom_stream is None: self.atom_stream = torch.cuda.Stream() self.bond_stream = torch.cuda.Stream() h = x # add uniform noise to node feature matrices if self.training: if self.noise_scale == 0: h = h/2.0 - 0.5 + torch.rand_like(x) * 0.4 else: h = h + torch.rand_like(x) * self.noise_scale if with_cuda_graph: if self.atom_model not in self._cuda_graphs: h, sum_log_det_jacs_x = self._forward_graph(self.atom_model, adj, h) else: self.atom_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.atom_stream): h, sum_log_det_jacs_x = self._forward_graph(self.atom_model, adj, h) else: h, sum_log_det_jacs_x = self.atom_model(adj, h) # add uniform noise to adjacency tensors if self.training: if self.noise_scale == 0: adj_bond = adj/2.0 - 0.5 + torch.rand_like(adj) * 0.4 else: adj_bond = adj + torch.rand_like(adj) * self.noise_scale else: adj_bond = adj if with_cuda_graph: if self.bond_model not in self._cuda_graphs: adj_h, sum_log_det_jacs_adj = self._forward_graph(self.bond_model, adj_bond) else: self.bond_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.bond_stream): adj_h, sum_log_det_jacs_adj = self._forward_graph(self.bond_model, adj_bond) else: adj_h, sum_log_det_jacs_adj = self.bond_model(adj_bond) if with_cuda_graph: torch.cuda.current_stream().wait_stream(self.atom_stream) torch.cuda.current_stream().wait_stream(self.bond_stream) return h, adj_h, sum_log_det_jacs_x, sum_log_det_jacs_adj @torch.jit.export def reverse(self, z): """ Returns a molecule, given its latent vector. :param z: latent vector. Shape: [B, N*N*M + N*T] B = Batch size, N = number of atoms, M = number of bond types, T = number of atom types (Carbon, Oxygen etc.) :return: adjacency matrix and feature matrix of a molecule """ batch_size = z.shape[0] z_x = z[:, :self.a_size] z_adj = z[:, self.a_size:] h_adj = z_adj.reshape(batch_size, self.b_n_type, self.a_n_node, self.a_n_node) h_adj = h_adj.to(memory_format=torch.channels_last) h_adj = self.bond_model.reverse(h_adj) if self.noise_scale == 0: h_adj = (h_adj + 0.5) * 2 adj = h_adj adj = adj + adj.permute(0, 1, 3, 2) adj = adj / 2 adj = adj.softmax(dim=1) max_bond = adj.max(dim=1).values.reshape(batch_size, -1, self.a_n_node, self.a_n_node) adj = torch.floor(adj / max_bond) adj = adj.to(memory_format=torch.channels_last) h_x = z_x.reshape(batch_size, self.a_n_node, self.a_n_type) h_x = self.atom_model.reverse((adj, h_x)) if self.noise_scale == 0: h_x = (h_x + 0.5) * 2 return adj, h_x @torch.jit.ignore def _forward_graph(self, model, *args): if model not in self._cuda_graphs: if torch.distributed.is_initialized(): torch.distributed.barrier() torch.cuda.synchronize() self._cuda_graphs[model] = torch.cuda.make_graphed_callables( model, args, ) torch.cuda.synchronize() if torch.distributed.is_initialized(): torch.distributed.barrier() return self._cuda_graphs[model](*args)
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/model/model.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import math from typing import Tuple import numpy as np from scipy import linalg as la import torch from torch import nn from torch.nn import functional as F from moflow.runtime.distributed_utils import get_world_size, reduce_tensor class ActNorm(nn.Module): def __init__(self, num_channels, num_dims, channels_dim=1): super().__init__() self.num_channels = num_channels self.num_dims = num_dims self.channels_dim = channels_dim self.shape = [1] * num_dims self.shape[channels_dim] = num_channels self.loc = nn.Parameter(torch.zeros(*self.shape)) self.scale = nn.Parameter(torch.ones(*self.shape)) self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8)) self.register_buffer('num_elements', torch.tensor(0, dtype=torch.uint8)) @torch.jit.ignore def initialize(self, input): if self.initialized.item() == 1: return dims = list(input.shape[1:]) del dims[self.channels_dim -1] num_elems = math.prod(dims) permutation = [self.channels_dim] + [i for i in range(self.num_dims) if i != self.channels_dim] with torch.no_grad(): flatten = input.permute(*permutation).contiguous().view(self.num_channels, -1) mean = flatten.mean(1).view(self.shape) std = flatten.std(1).view(self.shape) num_gpus = get_world_size() mean = reduce_tensor(mean, num_gpus) std = reduce_tensor(std, num_gpus) self.loc.data.copy_(-mean) self.scale.data.copy_(1 / (std + 1e-6)) self.initialized.fill_(1) self.num_elements.fill_(num_elems) def forward(self, input): log_abs = torch.log(torch.abs(self.scale)) logdet = self.num_elements * torch.sum(log_abs) return self.scale * (input + self.loc), logdet @torch.jit.export def reverse(self, output): return output / self.scale - self.loc class InvConv2d(nn.Module): def __init__(self, in_channel): super().__init__() weight = torch.randn(in_channel, in_channel) q, _ = torch.qr(weight) weight = q.unsqueeze(2).unsqueeze(3) self.weight = nn.Parameter(weight) def forward(self, input): _, _, height, width = input.shape out = F.conv2d(input, self.weight) logdet = ( height * width * torch.slogdet(self.weight.squeeze().double())[1].float() ) return out, logdet def reverse(self, output): return F.conv2d( output, self.weight.squeeze().inverse().unsqueeze(2).unsqueeze(3) ) class InvConv2dLU(nn.Module): def __init__(self, in_channel): super().__init__() weight = np.random.randn(in_channel, in_channel) q, _ = la.qr(weight) w_p, w_l, w_u = la.lu(q.astype(np.float32)) w_s = np.diag(w_u) w_u = np.triu(w_u, 1) u_mask = np.triu(np.ones_like(w_u), 1) l_mask = u_mask.T w_p = torch.from_numpy(w_p) w_l = torch.from_numpy(w_l).contiguous() w_s = torch.from_numpy(w_s) w_u = torch.from_numpy(w_u) self.register_buffer('w_p', w_p) self.register_buffer('u_mask', torch.from_numpy(u_mask)) self.register_buffer('l_mask', torch.from_numpy(l_mask)) self.register_buffer('s_sign', torch.sign(w_s)) self.register_buffer('l_eye', torch.eye(l_mask.shape[0])) self.w_l = nn.Parameter(w_l) self.w_s = nn.Parameter(torch.log(torch.abs(w_s))) self.w_u = nn.Parameter(w_u) def forward(self, input): _, _, height, width = input.shape weight = self.calc_weight() out = F.conv2d(input, weight) logdet = height * width * torch.sum(self.w_s) return out, logdet def calc_weight(self): weight = ( self.w_p @ (self.w_l * self.l_mask + self.l_eye) @ ((self.w_u * self.u_mask) + torch.diag(self.s_sign * torch.exp(self.w_s))) ) return weight.unsqueeze(2).unsqueeze(3) def reverse(self, output): weight = self.calc_weight() dtype = weight.dtype weight = weight.float() weight_inv = weight.squeeze().inverse().unsqueeze(2).unsqueeze(3) weight_inv = weight_inv.to(dtype=dtype) return F.conv2d(output, weight_inv) class GraphConv(nn.Module): def __init__(self, in_channels, out_channels, num_atoms, num_edge_type=4): super(GraphConv, self).__init__() self.graph_linear_self = nn.Linear(in_channels, out_channels) self.graph_linear_edge = nn.Linear(in_channels, out_channels * num_edge_type) self.num_edge_type = num_edge_type self.in_ch = in_channels self.out_ch = out_channels self.num_atoms = num_atoms def forward(self, graph: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor: adj, nodes = graph hs = self.graph_linear_self(nodes) m = self.graph_linear_edge(nodes) m = m.view(-1, self.num_atoms, self.out_ch, self.num_edge_type) hr = torch.einsum('bemn,bnce->bmc', adj, m) hr = hr.unsqueeze(2) return hs + hr
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/model/basic.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from typing import Iterable import torch def initialize_module(module: torch.nn.Module, inputs: Iterable[torch.Tensor]) -> None: """Use given sample input to initialize the module. Module must implement method called `initialize` which takes list of input tensors """ assert hasattr(module, 'initialize') assert len(inputs) == 1, f'{len(inputs)} inputs' assert module.initialized.item() == 0, 'initialized' module.initialize(*inputs) assert module.initialized.item() == 1, 'not initialized' def initialize(model: torch.nn.Module, single_batch: Iterable[torch.Tensor]) -> None: """Initialize all sub-modules in the model given the sample input batch.""" hooks = [] for name, module in model.named_modules(): if hasattr(module, 'initialize'): logging.info(f'marking {name} for initialization') hook = module.register_forward_pre_hook(initialize_module) hooks.append(hook) _ = model(*single_batch) logging.info('all modules initialized, removing hooks') for hook in hooks: hook.remove()
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/model/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from typing import Tuple import numpy as np from rdkit import Chem from moflow.config import BOND_TO_CODE, DUMMY_CODE class MolEncoder: """Encodes atoms and adjecency matrix. Args: out_size (int): It specifies the size of array returned by `get_input_features`. If the number of atoms in the molecule is less than this value, the returned arrays is padded to have fixed size. """ def __init__(self, out_size: int): super(MolEncoder, self).__init__() self.out_size = out_size def encode_mol(self, mol: Chem.Mol) -> Tuple[np.ndarray, np.ndarray]: """get input features Args: mol (Mol): Returns: """ mol = self._standardize_mol(mol) self._check_num_atoms(mol) atom_array = self.construct_atomic_number_array(mol) adj_array = self.construct_discrete_edge_matrix(mol) return atom_array, adj_array def _standardize_mol(self, mol: Chem.Mol) -> Chem.Mol: canonical_smiles = Chem.MolToSmiles(mol, isomericSmiles=False, canonical=True) mol = Chem.MolFromSmiles(canonical_smiles) Chem.Kekulize(mol) return mol def _check_num_atoms(self, mol: Chem.Mol) -> None: """Check number of atoms in `mol` does not exceed `out_size`""" num_atoms = mol.GetNumAtoms() if num_atoms > self.out_size: raise EncodingError(f'Number of atoms in mol {num_atoms} exceeds num_max_atoms {self.out_size}') def construct_atomic_number_array(self, mol: Chem.Mol) -> np.ndarray: """Returns atomic numbers of atoms consisting a molecule. Args: mol (rdkit.Chem.Mol): Input molecule. Returns: numpy.ndarray: an array consisting of atomic numbers of atoms in the molecule. """ atom_list = [a.GetAtomicNum() for a in mol.GetAtoms()] n_atom = len(atom_list) if self.out_size < n_atom: raise EncodingError(f'out_size {self.out_size} is smaller than number of atoms in mol {n_atom}') atom_array = np.full(self.out_size, DUMMY_CODE, dtype=np.uint8) atom_array[:n_atom] = atom_list return atom_array def construct_discrete_edge_matrix(self, mol: Chem.Mol) -> np.ndarray: """Returns the edge-type dependent adjacency matrix of the given molecule. Args: mol (rdkit.Chem.Mol): Input molecule. Returns: adj_array (numpy.ndarray): The adjacent matrix of the input molecule. It is symmetrical 2-dimensional array with shape (out_size, out_size), filled with integers representing bond types. It two atoms are not conncted, DUMMY_CODE is used instead. """ if mol is None: raise EncodingError('mol is None') n_atom = mol.GetNumAtoms() if self.out_size < n_atom: raise EncodingError(f'out_size {self.out_size} is smaller than number of atoms in mol {n_atom}') adjs = np.full((self.out_size, self.out_size), DUMMY_CODE, dtype=np.uint8) for bond in mol.GetBonds(): bond_type = bond.GetBondType() # we need to use code here - bond types are rdkit objects code = BOND_TO_CODE[bond_type] i = bond.GetBeginAtomIdx() j = bond.GetEndAtomIdx() adjs[[i, j], [j, i]] = code return adjs class EncodingError(Exception): pass
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/data/encoding.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import os import logging from typing import Any, Callable, Iterable, Optional, Tuple import numpy as np from torch.utils.data import Dataset class NumpyTupleDataset(Dataset): """Dataset of a tuple of datasets. It combines multiple datasets into one dataset. Each example is represented by a tuple whose ``i``-th item corresponds to the i-th dataset. And each ``i``-th dataset is expected to be an instance of numpy.ndarray. Args: datasets: Underlying datasets. The ``i``-th one is used for the ``i``-th item of each example. All datasets must have the same length. transform: An optional function applied to an item bofre returning """ def __init__(self, datasets: Iterable[np.ndarray], transform: Optional[Callable] = None) -> None: if not datasets: raise ValueError('no datasets are given') length = len(datasets[0]) for i, dataset in enumerate(datasets): if len(dataset) != length: raise ValueError( 'dataset of the index {} has a wrong length'.format(i)) self._datasets = datasets self._length = length self.transform = transform def __len__(self) -> int: return self._length def __getitem__(self, index: int) -> Tuple[Any]: item = [dataset[index] for dataset in self._datasets] if self.transform: item = self.transform(item) return item def get_datasets(self) -> Tuple[np.ndarray]: return self._datasets def save(self, filepath: str) -> None: """save the dataset to filepath in npz format Args: filepath (str): filepath to save dataset. It is recommended to end with '.npz' extension. """ np.savez(filepath, *self._datasets) logging.info('Save {} done.'.format(filepath)) @classmethod def load(cls, filepath: str, transform: Optional[Callable] = None): logging.info('Loading file {}'.format(filepath)) if not os.path.exists(filepath): raise ValueError('Invalid filepath {} for dataset'.format(filepath)) load_data = np.load(filepath) result = [] i = 0 while True: key = 'arr_{}'.format(i) if key in load_data.keys(): result.append(load_data[key]) i += 1 else: break return cls(result, transform)
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/data/data_loader.py
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/data/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import json import logging import numpy as np import os from typing import Dict, Tuple from moflow.config import CODE_TO_BOND, DUMMY_CODE, Config def _onehot(data: np.ndarray, codes_dict: Dict[int, int], dtype=np.float32) -> np.ndarray: shape = [len(codes_dict), *data.shape] encoded = np.zeros(shape, dtype=dtype) for obj_key, code in codes_dict.items(): encoded[code, data == obj_key] = 1 return encoded def encode_nodes(atomic_nums: np.ndarray, config: Config) -> np.ndarray: padded_data = np.full(config.max_num_nodes, DUMMY_CODE, dtype=np.uint8) padded_data[:len(atomic_nums)] = atomic_nums encoded = _onehot(padded_data, config.dataset_config.atomic_to_code).T return encoded def encode_edges(adj: np.ndarray, config: Config) -> np.ndarray: padded_data = np.full((config.max_num_nodes, config.max_num_nodes), DUMMY_CODE, dtype=np.uint8) n, m = adj.shape assert n == m, 'adjecency matrix should be square' padded_data[:n, :n] = adj # we already store codes in the file - bond types are rdkit objects encoded = _onehot(padded_data, {k:k for k in CODE_TO_BOND}) return encoded def transform_fn(data: Tuple[np.ndarray], config: Config) -> Tuple[np.ndarray]: node, adj, *labels = data node = encode_nodes(node, config) adj = encode_edges(adj, config) return (node, adj, *labels) def get_val_ids(config: Config, data_dir: str): file_path = os.path.join(data_dir, config.dataset_config.valid_idx_file) logging.info('loading train/valid split information from: {}'.format(file_path)) with open(file_path) as json_data: data = json.load(json_data) val_ids = [int(idx)-1 for idx in data] return val_ids
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/data/transform.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from logging import getLogger import traceback from typing import List import numpy as np import pandas as pd from rdkit import Chem from tqdm import tqdm from moflow.data.encoding import MolEncoder, EncodingError from moflow.data.data_loader import NumpyTupleDataset class DataFrameParser: """ This DataFrameParser parses pandas dataframe containing SMILES and, optionally, some additional features. Args: encoder (MolEncoder): encoder instance labels (list): labels column that should be loaded smiles_col (str): smiles column """ def __init__(self, encoder: MolEncoder, labels: List[str], smiles_col: str = 'smiles'): super(DataFrameParser, self).__init__() self.labels = labels self.smiles_col = smiles_col self.logger = getLogger(__name__) self.encoder = encoder def parse(self, df: pd.DataFrame) -> NumpyTupleDataset: """Parse DataFrame using `encoder` and prepare a dataset instance Labels are extracted from `labels` columns and input features are extracted from smiles information in `smiles` column. """ all_nodes = [] all_edges = [] total_count = df.shape[0] fail_count = 0 success_count = 0 for smiles in tqdm(df[self.smiles_col], total=df.shape[0]): try: mol = Chem.MolFromSmiles(smiles) if mol is None: fail_count += 1 continue # Note that smiles expression is not unique. # we obtain canonical smiles nodes, edges = self.encoder.encode_mol(mol) except EncodingError as e: fail_count += 1 continue except Exception as e: self.logger.warning('parse(), type: {}, {}' .format(type(e).__name__, e.args)) self.logger.info(traceback.format_exc()) fail_count += 1 continue all_nodes.append(nodes) all_edges.append(edges) success_count += 1 result = [np.array(all_nodes), np.array(all_edges), *(df[label_col].values for label_col in self.labels)] self.logger.info('Preprocess finished. FAIL {}, SUCCESS {}, TOTAL {}' .format(fail_count, success_count, total_count)) dataset = NumpyTupleDataset(result) return dataset
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/moflow/data/data_frame_parser.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2020 Chengxi Zang # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import os import pandas as pd import argparse import time from moflow.config import CONFIGS from moflow.data.data_frame_parser import DataFrameParser from moflow.data.encoding import MolEncoder def parse_args(): parser = argparse.ArgumentParser(description='') parser.add_argument('--data_name', type=str, choices=list(CONFIGS), help='dataset to be downloaded') parser.add_argument('--data_dir', type=str, default='/data') args = parser.parse_args() return args def main(args): start_time = time.time() args = parse_args() print('args', vars(args)) assert args.data_name in CONFIGS dataset_config = CONFIGS[args.data_name].dataset_config preprocessor = MolEncoder(out_size=dataset_config.max_num_atoms) input_path = os.path.join(args.data_dir, dataset_config.csv_file) output_path = os.path.join(args.data_dir, dataset_config.dataset_file) print(f'Preprocessing {args.data_name} data:') df = pd.read_csv(input_path, index_col=0) parser = DataFrameParser(preprocessor, labels=dataset_config.labels, smiles_col=dataset_config.smiles_col) dataset = parser.parse(df) dataset.save(output_path) print('Total time:', time.strftime("%H:%M:%S", time.gmtime(time.time() - start_time))) if __name__ == '__main__': args = parse_args() main(args)
DeepLearningExamples-master
PyTorch/DrugDiscovery/MoFlow/scripts/data_preprocess.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse from pathlib import Path import torch import tqdm import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from torch.utils.data import DataLoader from fastpitch.data_function import TTSCollate, TTSDataset def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-d', '--dataset-path', type=str, default='./', help='Path to dataset') parser.add_argument('--wav-text-filelists', required=True, nargs='+', type=str, help='Files with audio paths and text') parser.add_argument('--extract-mels', action='store_true', help='Calculate spectrograms from .wav files') parser.add_argument('--extract-pitch', action='store_true', help='Extract pitch') parser.add_argument('--log-file', type=str, default='preproc_log.json', help='Filename for logging') parser.add_argument('--n-speakers', type=int, default=1) # Mel extraction parser.add_argument('--max-wav-value', default=32768.0, type=float, help='Maximum audiowave value') parser.add_argument('--sampling-rate', default=22050, type=int, help='Sampling rate') parser.add_argument('--filter-length', default=1024, type=int, help='Filter length') parser.add_argument('--hop-length', default=256, type=int, help='Hop (stride) length') parser.add_argument('--win-length', default=1024, type=int, help='Window length') parser.add_argument('--mel-fmin', default=0.0, type=float, help='Minimum mel frequency') parser.add_argument('--mel-fmax', default=8000.0, type=float, help='Maximum mel frequency') parser.add_argument('--n-mel-channels', type=int, default=80) # Pitch extraction parser.add_argument('--f0-method', default='pyin', type=str, choices=('pyin',), help='F0 estimation method') # Performance parser.add_argument('-b', '--batch-size', default=1, type=int) parser.add_argument('--n-workers', type=int, default=16) return parser def main(): parser = argparse.ArgumentParser(description='TTS Data Pre-processing') parser = parse_args(parser) args, unk_args = parser.parse_known_args() if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') DLLogger.init(backends=[ JSONStreamBackend(Verbosity.DEFAULT, Path(args.dataset_path, args.log_file)), StdOutBackend(Verbosity.VERBOSE)]) for k, v in vars(args).items(): DLLogger.log(step="PARAMETER", data={k: v}) DLLogger.flush() if args.extract_mels: Path(args.dataset_path, 'mels').mkdir(parents=False, exist_ok=True) if args.extract_pitch: Path(args.dataset_path, 'pitch').mkdir(parents=False, exist_ok=True) for filelist in args.wav_text_filelists: print(f'Processing {filelist}...') dataset = TTSDataset( args.dataset_path, filelist, text_cleaners=['english_cleaners_v2'], n_mel_channels=args.n_mel_channels, p_arpabet=0.0, n_speakers=args.n_speakers, load_mel_from_disk=False, load_pitch_from_disk=False, pitch_mean=None, pitch_std=None, max_wav_value=args.max_wav_value, sampling_rate=args.sampling_rate, filter_length=args.filter_length, hop_length=args.hop_length, win_length=args.win_length, mel_fmin=args.mel_fmin, mel_fmax=args.mel_fmax, betabinomial_online_dir=None, pitch_online_dir=None, pitch_online_method=args.f0_method if args.extract_pitch else None) data_loader = DataLoader( dataset, batch_size=args.batch_size, shuffle=False, sampler=None, num_workers=args.n_workers, collate_fn=TTSCollate(), pin_memory=False, drop_last=False) all_filenames = set() for i, batch in enumerate(tqdm.tqdm(data_loader)): _, input_lens, mels, mel_lens, _, pitch, _, _, attn_prior, fpaths = batch # Ensure filenames are unique for p in fpaths: fname = Path(p).name if fname in all_filenames: raise ValueError(f'Filename is not unique: {fname}') all_filenames.add(fname) if args.extract_mels: for j, mel in enumerate(mels): fname = Path(fpaths[j]).with_suffix('.pt').name fpath = Path(args.dataset_path, 'mels', fname) torch.save(mel[:, :mel_lens[j]], fpath) if args.extract_pitch: for j, p in enumerate(pitch): fname = Path(fpaths[j]).with_suffix('.pt').name fpath = Path(args.dataset_path, 'pitch', fname) torch.save(p[:mel_lens[j]], fpath) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/prepare_dataset.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import re import sys import torch from common.text.symbols import get_symbols, get_pad_idx from common.utils import DefaultAttrDict, AttrDict from fastpitch.model import FastPitch from fastpitch.model_jit import FastPitchJIT from hifigan.models import Generator try: from waveglow.model import WaveGlow from waveglow import model as glow from waveglow.denoiser import Denoiser sys.modules['glow'] = glow except ImportError: print("WARNING: Couldn't import WaveGlow") def parse_model_args(model_name, parser, add_help=False): if model_name == 'FastPitch': from fastpitch import arg_parser return arg_parser.parse_fastpitch_args(parser, add_help) elif model_name == 'HiFi-GAN': from hifigan import arg_parser return arg_parser.parse_hifigan_args(parser, add_help) elif model_name == 'WaveGlow': from waveglow.arg_parser import parse_waveglow_args return parse_waveglow_args(parser, add_help) else: raise NotImplementedError(model_name) def get_model(model_name, model_config, device, bn_uniform_init=False, forward_is_infer=False, jitable=False): """Chooses a model based on name""" del bn_uniform_init # unused (old name: uniform_initialize_bn_weight) if model_name == 'FastPitch': if jitable: model = FastPitchJIT(**model_config) else: model = FastPitch(**model_config) elif model_name == 'HiFi-GAN': model = Generator(model_config) elif model_name == 'WaveGlow': model = WaveGlow(**model_config) else: raise NotImplementedError(model_name) if forward_is_infer and hasattr(model, 'infer'): model.forward = model.infer return model.to(device) def get_model_config(model_name, args, ckpt_config=None): """ Get config needed to instantiate the model """ # Mark keys missing in `args` with an object (None is ambiguous) _missing = object() args = DefaultAttrDict(lambda: _missing, vars(args)) # `ckpt_config` is loaded from the checkpoint and has the priority # `model_config` is based on args and fills empty slots in `ckpt_config` if model_name == 'FastPitch': model_config = dict( # io n_mel_channels=args.n_mel_channels, # symbols n_symbols=(len(get_symbols(args.symbol_set)) if args.symbol_set is not _missing else _missing), padding_idx=(get_pad_idx(args.symbol_set) if args.symbol_set is not _missing else _missing), symbols_embedding_dim=args.symbols_embedding_dim, # input FFT in_fft_n_layers=args.in_fft_n_layers, in_fft_n_heads=args.in_fft_n_heads, in_fft_d_head=args.in_fft_d_head, in_fft_conv1d_kernel_size=args.in_fft_conv1d_kernel_size, in_fft_conv1d_filter_size=args.in_fft_conv1d_filter_size, in_fft_output_size=args.in_fft_output_size, p_in_fft_dropout=args.p_in_fft_dropout, p_in_fft_dropatt=args.p_in_fft_dropatt, p_in_fft_dropemb=args.p_in_fft_dropemb, # output FFT out_fft_n_layers=args.out_fft_n_layers, out_fft_n_heads=args.out_fft_n_heads, out_fft_d_head=args.out_fft_d_head, out_fft_conv1d_kernel_size=args.out_fft_conv1d_kernel_size, out_fft_conv1d_filter_size=args.out_fft_conv1d_filter_size, out_fft_output_size=args.out_fft_output_size, p_out_fft_dropout=args.p_out_fft_dropout, p_out_fft_dropatt=args.p_out_fft_dropatt, p_out_fft_dropemb=args.p_out_fft_dropemb, # duration predictor dur_predictor_kernel_size=args.dur_predictor_kernel_size, dur_predictor_filter_size=args.dur_predictor_filter_size, p_dur_predictor_dropout=args.p_dur_predictor_dropout, dur_predictor_n_layers=args.dur_predictor_n_layers, # pitch predictor pitch_predictor_kernel_size=args.pitch_predictor_kernel_size, pitch_predictor_filter_size=args.pitch_predictor_filter_size, p_pitch_predictor_dropout=args.p_pitch_predictor_dropout, pitch_predictor_n_layers=args.pitch_predictor_n_layers, # pitch conditioning pitch_embedding_kernel_size=args.pitch_embedding_kernel_size, # speakers parameters n_speakers=args.n_speakers, speaker_emb_weight=args.speaker_emb_weight, # energy predictor energy_predictor_kernel_size=args.energy_predictor_kernel_size, energy_predictor_filter_size=args.energy_predictor_filter_size, p_energy_predictor_dropout=args.p_energy_predictor_dropout, energy_predictor_n_layers=args.energy_predictor_n_layers, # energy conditioning energy_conditioning=args.energy_conditioning, energy_embedding_kernel_size=args.energy_embedding_kernel_size, ) elif model_name == 'HiFi-GAN': if args.hifigan_config is not None: assert ckpt_config is None, ( "Supplied --hifigan-config, but the checkpoint has a config. " "Drop the flag or remove the config from the checkpoint file.") print(f'HiFi-GAN: Reading model config from {args.hifigan_config}') with open(args.hifigan_config) as f: args = AttrDict(json.load(f)) model_config = dict( # generator architecture upsample_rates=args.upsample_rates, upsample_kernel_sizes=args.upsample_kernel_sizes, upsample_initial_channel=args.upsample_initial_channel, resblock=args.resblock, resblock_kernel_sizes=args.resblock_kernel_sizes, resblock_dilation_sizes=args.resblock_dilation_sizes, ) elif model_name == 'WaveGlow': model_config = dict( n_mel_channels=args.n_mel_channels, n_flows=args.flows, n_group=args.groups, n_early_every=args.early_every, n_early_size=args.early_size, WN_config=dict( n_layers=args.wn_layers, kernel_size=args.wn_kernel_size, n_channels=args.wn_channels ) ) else: raise NotImplementedError(model_name) # Start with ckpt_config, and fill missing keys from model_config final_config = {} if ckpt_config is None else ckpt_config.copy() missing_keys = set(model_config.keys()) - set(final_config.keys()) final_config.update({k: model_config[k] for k in missing_keys}) # If there was a ckpt_config, it should have had all args if ckpt_config is not None and len(missing_keys) > 0: print(f'WARNING: Keys {missing_keys} missing from the loaded config; ' 'using args instead.') assert all(v is not _missing for v in final_config.values()) return final_config def get_model_train_setup(model_name, args): """ Dump train setup for documentation purposes """ if model_name == 'FastPitch': return dict() elif model_name == 'HiFi-GAN': return dict( # audio segment_size=args.segment_size, filter_length=args.filter_length, num_mels=args.num_mels, hop_length=args.hop_length, win_length=args.win_length, sampling_rate=args.sampling_rate, mel_fmin=args.mel_fmin, mel_fmax=args.mel_fmax, mel_fmax_loss=args.mel_fmax_loss, max_wav_value=args.max_wav_value, # other seed=args.seed, # optimization base_lr=args.learning_rate, lr_decay=args.lr_decay, epochs_all=args.epochs, ) elif model_name == 'WaveGlow': return dict() else: raise NotImplementedError(model_name) def load_model_from_ckpt(checkpoint_data, model, key='state_dict'): if key is None: return checkpoint_data['model'], None sd = checkpoint_data[key] sd = {re.sub('^module\.', '', k): v for k, v in sd.items()} status = model.load_state_dict(sd, strict=False) return model, status def load_and_setup_model(model_name, parser, checkpoint, amp, device, unk_args=[], forward_is_infer=False, jitable=False): if checkpoint is not None: ckpt_data = torch.load(checkpoint) print(f'{model_name}: Loading {checkpoint}...') ckpt_config = ckpt_data.get('config') if ckpt_config is None: print(f'{model_name}: No model config in the checkpoint; using args.') else: print(f'{model_name}: Found model config saved in the checkpoint.') else: ckpt_config = None ckpt_data = {} model_parser = parse_model_args(model_name, parser, add_help=False) model_args, model_unk_args = model_parser.parse_known_args() unk_args[:] = list(set(unk_args) & set(model_unk_args)) model_config = get_model_config(model_name, model_args, ckpt_config) model = get_model(model_name, model_config, device, forward_is_infer=forward_is_infer, jitable=jitable) if checkpoint is not None: key = 'generator' if model_name == 'HiFi-GAN' else 'state_dict' model, status = load_model_from_ckpt(ckpt_data, model, key) missing = [] if status is None else status.missing_keys unexpected = [] if status is None else status.unexpected_keys # Attention is only used during training, we won't miss it if model_name == 'FastPitch': missing = [k for k in missing if not k.startswith('attention.')] unexpected = [k for k in unexpected if not k.startswith('attention.')] assert len(missing) == 0 and len(unexpected) == 0, ( f'Mismatched keys when loading parameters. Missing: {missing}, ' f'unexpected: {unexpected}.') if model_name == "WaveGlow": for k, m in model.named_modules(): m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability model = model.remove_weightnorm(model) elif model_name == 'HiFi-GAN': assert model_args.hifigan_config is not None or ckpt_config is not None, ( 'Use a HiFi-GAN checkpoint from NVIDIA DeepLearningExamples with ' 'saved config or supply --hifigan-config <json_file>.') model.remove_weight_norm() if amp: model.half() model.eval() return model.to(device), model_config, ckpt_data.get('train_setup', {}) def load_and_setup_ts_model(model_name, checkpoint, amp, device=None): print(f'{model_name}: Loading TorchScript checkpoint {checkpoint}...') model = torch.jit.load(checkpoint).eval() if device is not None: model = model.to(device) if amp: model.half() elif next(model.parameters()).dtype == torch.float16: raise ValueError('Trying to load FP32 model,' 'TS checkpoint is in FP16 precision.') return model def convert_ts_to_trt(model_name, ts_model, parser, amp, unk_args=[]): trt_parser = _parse_trt_compilation_args(model_name, parser, add_help=False) trt_args, trt_unk_args = trt_parser.parse_known_args() unk_args[:] = list(set(unk_args) & set(trt_unk_args)) if model_name == 'HiFi-GAN': return _convert_ts_to_trt_hifigan( ts_model, amp, trt_args.trt_min_opt_max_batch, trt_args.trt_min_opt_max_hifigan_length) else: raise NotImplementedError def _parse_trt_compilation_args(model_name, parent, add_help=False): """ Parse model and inference specific commandline arguments. """ parser = argparse.ArgumentParser(parents=[parent], add_help=add_help, allow_abbrev=False) trt = parser.add_argument_group(f'{model_name} Torch-TensorRT compilation parameters') trt.add_argument('--trt-min-opt-max-batch', nargs=3, type=int, default=(1, 8, 16), help='Torch-TensorRT min, optimal and max batch size') if model_name == 'HiFi-GAN': trt.add_argument('--trt-min-opt-max-hifigan-length', nargs=3, type=int, default=(100, 800, 1200), help='Torch-TensorRT min, optimal and max audio length (in frames)') return parser def _convert_ts_to_trt_hifigan(ts_model, amp, trt_min_opt_max_batch, trt_min_opt_max_hifigan_length, num_mels=80): import torch_tensorrt trt_dtype = torch.half if amp else torch.float print(f'Torch TensorRT: compiling HiFi-GAN for dtype {trt_dtype}.') min_shp, opt_shp, max_shp = zip(trt_min_opt_max_batch, (num_mels,) * 3, trt_min_opt_max_hifigan_length) compile_settings = { "inputs": [torch_tensorrt.Input( min_shape=min_shp, opt_shape=opt_shp, max_shape=max_shp, dtype=trt_dtype, )], "enabled_precisions": {trt_dtype}, "require_full_compilation": True, } trt_model = torch_tensorrt.compile(ts_model, **compile_settings) print('Torch TensorRT: compilation successful.') return trt_model
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/models.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch import models def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('model_name', type=str, choices=['HiFi-GAN', 'FastPitch'], help='Name of the converted model') parser.add_argument('input_ckpt', type=str, help='Path to the input checkpoint') parser.add_argument('output_ckpt', default=None, help='Path to save the output checkpoint to') parser.add_argument('--cuda', action='store_true', help='Move model weights to GPU before export') parser.add_argument('--amp', action='store_true', help='Convert model to FP16 prior to saving') parser.add_argument('--load-from', type=str, default='pyt', choices=['pyt', 'ts'], help='Source checkpoint format') parser.add_argument('--convert-to', type=str, default='ts', choices=['ts', 'ttrt'], help='Output checkpoint format') return parser def main(): """ Exports PyT or TorchScript checkpoint to TorchScript or Torch-TensorRT. """ parser = argparse.ArgumentParser(description='PyTorch model export', allow_abbrev=False) parser = parse_args(parser) args, unk_args = parser.parse_known_args() device = torch.device('cuda' if args.cuda else 'cpu') assert args.load_from != args.convert_to, \ 'Load and convert formats must be different' print(f'Converting {args.model_name} from "{args.load_from}"' f' to "{args.convert_to}" ({device}).') if args.load_from == 'ts': ts_model, _ = models.load_and_setup_ts_model(args.model_name, args.input_ckpt, args.amp, device) else: assert args.load_from == 'pyt' pyt_model, _ = models.load_pyt_model_for_infer( args.model_name, parser, args.input_ckpt, args.amp, device, unk_args=unk_args, jitable=True) ts_model = torch.jit.script(pyt_model) if args.convert_to == 'ts': torch.jit.save(ts_model, args.output_ckpt) else: assert args.convert_to == 'ttrt' trt_model = models.convert_ts_to_trt('HiFi-GAN', ts_model, parser, args.amp, unk_args) torch.jit.save(trt_model, args.output_ckpt) print(f'{args.model_name}: checkpoint saved to {args.output_ckpt}.') if unk_args: print(f'Warning: encountered unknown program options: {unk_args}') if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/export.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import itertools import os from functools import partial from itertools import islice import numpy as np import torch import torch.nn.functional as F from torch.cuda import amp from torch.cuda.amp import autocast from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import AdamW from torch.optim.lr_scheduler import ExponentialLR from apex.optimizers import FusedAdam, FusedLAMB import models from common import tb_dllogger as logger, utils, gpu_affinity from common.utils import (Checkpointer, freeze, init_distributed, print_once, reduce_tensor, unfreeze, l2_promote) from hifigan.data_function import get_data_loader, mel_spectrogram from hifigan.logging import init_logger, Metrics from hifigan.models import (MultiPeriodDiscriminator, MultiScaleDiscriminator, feature_loss, generator_loss, discriminator_loss) def parse_args(parser): parser.add_argument('-o', '--output', type=str, required=True, help='Directory to save checkpoints') parser.add_argument('--log_file', type=str, default=None, help='Path to a DLLogger log file') train = parser.add_argument_group('training setup') train.add_argument('--epochs', type=int, required=True, help='Number of total epochs to run') train.add_argument('--epochs_this_job', type=int, default=None, help='Number of epochs in partial training run') train.add_argument('--keep_milestones', type=int, nargs='+', default=[1000, 2000, 3000, 4000, 5000, 6000], help='Milestone checkpoints to keep from removing') train.add_argument('--checkpoint_interval', type=int, default=50, help='Saving checkpoints frequency (in epochs)') train.add_argument('--step_logs_interval', default=1, type=int, help='Step logs dumping frequency (in steps)') train.add_argument('--validation_interval', default=10, type=int, help='Validation frequency (in epochs)') train.add_argument('--samples_interval', default=100, type=int, help='Dumping audio samples frequency (in epochs)') train.add_argument('--resume', action='store_true', help='Resume training from the last checkpoint') train.add_argument('--checkpoint_path_gen', type=str, default=None, help='Resume training from a selected checkpoint') train.add_argument('--checkpoint_path_discrim', type=str, default=None, help='Resume training from a selected checkpoint') train.add_argument('--seed', type=int, default=1234, help='Seed for PyTorch random number generators') train.add_argument('--amp', action='store_true', help='Enable AMP') train.add_argument('--autocast_spectrogram', action='store_true', help='Enable autocast while computing spectrograms') train.add_argument('--cuda', action='store_true', help='Run on GPU using CUDA') train.add_argument('--disable_cudnn_benchmark', action='store_true', help='Disable cudnn benchmark mode') train.add_argument('--ema_decay', type=float, default=0, help='Discounting factor for training weights EMA') train.add_argument('--grad_accumulation', type=int, default=1, help='Training steps to accumulate gradients for') train.add_argument('--num_workers', type=int, default=1, help='Data loader workers number') train.add_argument('--fine_tuning', action='store_true', help='Enable fine-tuning') train.add_argument('--input_mels_dir', type=str, default=None, help='Directory with mels for fine-tuning') train.add_argument('--benchmark_epochs_num', type=int, default=5) train.add_argument('--no_amp_grouped_conv', action='store_true', help='Disable AMP on certain convs for better perf') opt = parser.add_argument_group('optimization setup') opt.add_argument('--optimizer', type=str, default='adamw', help='Optimization algorithm') opt.add_argument('--lr_decay', type=float, default=0.9998, help='Learning rate decay') opt.add_argument('-lr', '--learning_rate', type=float, required=True, help='Learning rate') opt.add_argument('--fine_tune_lr_factor', type=float, default=1., help='Learning rate multiplier for fine-tuning') opt.add_argument('--adam_betas', type=float, nargs=2, default=(0.8, 0.99), help='Adam Beta coefficients') opt.add_argument('--grad_clip_thresh', default=1000.0, type=float, help='Clip threshold for gradients') opt.add_argument('-bs', '--batch_size', type=int, required=True, help=('Batch size per training iter. ' 'May be split into grad accumulation steps.')) opt.add_argument('--warmup_steps', type=int, default=1000, help='Number of steps for lr warmup') data = parser.add_argument_group('dataset parameters') data.add_argument('-d', '--dataset_path', default='data/LJSpeech-1.1', help='Path to dataset', type=str) data.add_argument('--training_files', type=str, required=True, nargs='+', help='Paths to training filelists.') data.add_argument('--validation_files', type=str, required=True, nargs='+', help='Paths to validation filelists.') audio = parser.add_argument_group('audio parameters') audio.add_argument('--max_wav_value', default=32768.0, type=float, help='Maximum audiowave value') audio.add_argument('--sampling_rate', default=22050, type=int, help='Sampling rate') audio.add_argument('--filter_length', default=1024, type=int, help='Filter length') audio.add_argument('--num_mels', default=80, type=int, help='number of Mel bands') audio.add_argument('--hop_length', default=256, type=int, help='Hop (stride) length') audio.add_argument('--win_length', default=1024, type=int, help='Window length') audio.add_argument('--mel_fmin', default=0.0, type=float, help='Minimum mel frequency') audio.add_argument('--mel_fmax', default=8000.0, type=float, help='Maximum mel frequency') audio.add_argument('--mel_fmax_loss', default=None, type=float, help='Maximum mel frequency used for computing loss') audio.add_argument('--segment_size', default=8192, type=int, help='Training segment size') dist = parser.add_argument_group('distributed setup') dist.add_argument( '--local_rank', type=int, default=os.getenv('LOCAL_RANK', 0), help='Rank of the process for multiproc. Do not set manually.') dist.add_argument( '--world_size', type=int, default=os.getenv('WORLD_SIZE', 1), help='Number of processes for multiproc. Do not set manually.') dist.add_argument('--affinity', type=str, default='socket_unique_interleaved', choices=['socket', 'single', 'single_unique', 'socket_unique_interleaved', 'socket_unique_continuous', 'disabled'], help='type of CPU affinity') return parser def validate(args, gen, mel_spec, mpd, msd, val_loader, val_metrics): gen.eval() val_metrics.start_val() with torch.no_grad(): for i, batch in enumerate(val_loader): x, y, _, y_mel = batch x = x.cuda(non_blocking=True) y = y.cuda(non_blocking=True).unsqueeze(1) y_mel = y_mel.cuda(non_blocking=True) with autocast(enabled=args.amp): y_g_hat = gen(x) with autocast(enabled=args.amp and args.autocast_spectrogram): y_g_hat_mel = mel_spec(y_g_hat.float().squeeze(1), fmax=args.mel_fmax_loss) with autocast(enabled=args.amp): # val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() * 45 # NOTE: Scale by 45.0 to match train loss magnitude loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 # MPD y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) loss_disc_f = discriminator_loss(y_df_hat_r, y_df_hat_g) # MSD y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) loss_disc_s = discriminator_loss(y_ds_hat_r, y_ds_hat_g) y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel val_metrics['loss_discrim'] = reduce_tensor( loss_disc_s + loss_disc_f, args.world_size) val_metrics['loss_gen'] = reduce_tensor(loss_gen_all, args.world_size) val_metrics['loss_mel'] = reduce_tensor(loss_mel, args.world_size) val_metrics['frames'] = x.size(0) * x.size(1) * args.world_size val_metrics.accumulate(scopes=['val']) val_metrics.finish_val() gen.train() def main(): parser = argparse.ArgumentParser(description='PyTorch HiFi-GAN Training', allow_abbrev=False) parser = models.parse_model_args('HiFi-GAN', parse_args(parser)) args, unk_args = parser.parse_known_args() if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') if args.affinity != 'disabled': nproc_per_node = torch.cuda.device_count() print(nproc_per_node) affinity = gpu_affinity.set_affinity( args.local_rank, nproc_per_node, args.affinity ) print(f'{args.local_rank}: thread affinity: {affinity}') # seeds, distributed init, logging, cuDNN distributed_run = args.world_size > 1 torch.manual_seed(args.seed + args.local_rank) np.random.seed(args.seed + args.local_rank) if distributed_run: init_distributed(args, args.world_size, args.local_rank) metrics = Metrics(scopes=['train', 'train_avg'], benchmark_epochs=args.benchmark_epochs_num, cuda=args.cuda) val_metrics = Metrics(scopes=['val'], cuda=args.cuda) init_logger(args.output, args.log_file, args.ema_decay) logger.parameters(vars(args), tb_subset='train') l2_promote() torch.backends.cudnn.benchmark = not args.disable_cudnn_benchmark train_setup = models.get_model_train_setup('HiFi-GAN', args) gen_config = models.get_model_config('HiFi-GAN', args) gen = models.get_model('HiFi-GAN', gen_config, 'cuda') mpd = MultiPeriodDiscriminator(periods=args.mpd_periods, concat_fwd=args.concat_fwd).cuda() assert args.amp or not args.no_amp_grouped_conv, \ "--no-amp-grouped-conv is applicable only when AMP is enabled" msd = MultiScaleDiscriminator(concat_fwd=args.concat_fwd, no_amp_grouped_conv=args.no_amp_grouped_conv) msd = msd.cuda() mel_spec = partial(mel_spectrogram, n_fft=args.filter_length, num_mels=args.num_mels, sampling_rate=args.sampling_rate, hop_size=args.hop_length, win_size=args.win_length, fmin=args.mel_fmin) kw = {'lr': args.learning_rate, 'betas': args.adam_betas} proto = {'adam': FusedAdam, 'lamb': FusedLAMB, 'adamw': AdamW }[args.optimizer] optim_g = proto(gen.parameters(), **kw) optim_d = proto(itertools.chain(msd.parameters(), mpd.parameters()), **kw) scaler_g = amp.GradScaler(enabled=args.amp) scaler_d = amp.GradScaler(enabled=args.amp) # setup EMA if args.ema_decay > 0: # burried import, requires apex from common.ema_utils import (apply_multi_tensor_ema, init_multi_tensor_ema) gen_ema = models.get_model('HiFi-GAN', gen_config, 'cuda').cuda() mpd_ema = MultiPeriodDiscriminator( periods=args.mpd_periods, concat_fwd=args.concat_fwd).cuda() msd_ema = MultiScaleDiscriminator( concat_fwd=args.concat_fwd, no_amp_grouped_conv=args.no_amp_grouped_conv).cuda() else: gen_ema, mpd_ema, msd_ema = None, None, None # setup DDP if distributed_run: kw = {'device_ids': [args.local_rank], 'output_device': args.local_rank} gen = DDP(gen, **kw) msd = DDP(msd, **kw) # DDP needs nonempty model mpd = DDP(mpd, **kw) if len(args.mpd_periods) else mpd # resume from last / load a checkpoint train_state = {} checkpointer = Checkpointer(args.output, args.keep_milestones) checkpointer.maybe_load( gen, mpd, msd, optim_g, optim_d, scaler_g, scaler_d, train_state, args, gen_ema=None, mpd_ema=None, msd_ema=None) iters_all = train_state.get('iters_all', 0) last_epoch = train_state['epoch'] + 1 if 'epoch' in train_state else -1 sched_g = ExponentialLR(optim_g, gamma=args.lr_decay, last_epoch=last_epoch) sched_d = ExponentialLR(optim_d, gamma=args.lr_decay, last_epoch=last_epoch) if args.fine_tuning: print_once('Doing fine-tuning') train_loader = get_data_loader(args, distributed_run, train=True) val_loader = get_data_loader(args, distributed_run, train=False, val_kwargs=dict(repeat=5, split=True)) val_samples_loader = get_data_loader(args, False, train=False, val_kwargs=dict(split=False), batch_size=1) if args.ema_decay > 0.0: gen_ema_params = init_multi_tensor_ema(gen, gen_ema) mpd_ema_params = init_multi_tensor_ema(mpd, mpd_ema) msd_ema_params = init_multi_tensor_ema(msd, msd_ema) epochs_done = 0 for epoch in range(max(1, last_epoch), args.epochs + 1): metrics.start_epoch(epoch) if distributed_run: train_loader.sampler.set_epoch(epoch) gen.train() mpd.train() msd.train() iter_ = 0 iters_num = len(train_loader) // args.grad_accumulation for step, batch in enumerate(train_loader): if step // args.grad_accumulation >= iters_num: break # only full effective batches is_first_accum_step = step % args.grad_accumulation == 0 is_last_accum_step = (step + 1) % args.grad_accumulation == 0 assert (args.grad_accumulation > 1 or (is_first_accum_step and is_last_accum_step)) if is_first_accum_step: iter_ += 1 iters_all += 1 metrics.start_iter(iter_) accum_batches = [] optim_d.zero_grad(set_to_none=True) optim_g.zero_grad(set_to_none=True) x, y, _, y_mel = batch x = x.cuda(non_blocking=True) y = y.cuda(non_blocking=True).unsqueeze(1) y_mel = y_mel.cuda(non_blocking=True) accum_batches.append((x, y, y_mel)) with torch.set_grad_enabled(is_last_accum_step), \ autocast(enabled=args.amp): y_g_hat = gen(x) unfreeze(mpd) unfreeze(msd) with autocast(enabled=args.amp): # MPD y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) loss_disc_f = discriminator_loss(y_df_hat_r, y_df_hat_g) # MSD y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) loss_disc_s = discriminator_loss(y_ds_hat_r, y_ds_hat_g) loss_disc_all = loss_disc_s + loss_disc_f metrics['loss_discrim'] = reduce_tensor(loss_disc_all, args.world_size) metrics['frames'] = x.size(0) * x.size(1) * args.world_size metrics.accumulate() loss_disc_all /= args.grad_accumulation scaler_d.scale(loss_disc_all).backward() if not is_last_accum_step: continue scaler_d.step(optim_d) scaler_d.update() # generator freeze(mpd) freeze(msd) for _i, (x, y, y_mel) in enumerate(reversed(accum_batches)): if _i != 0: # first `y_g_hat` can be reused with autocast(enabled=args.amp): y_g_hat = gen(x) with autocast(enabled=args.amp and args.autocast_spectrogram): y_g_hat_mel = mel_spec(y_g_hat.float().squeeze(1), fmax=args.mel_fmax_loss) # L1 mel-spectrogram Loss with autocast(enabled=args.amp): loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel metrics['loss_gen'] = reduce_tensor(loss_gen_all, args.world_size) metrics['loss_mel'] = reduce_tensor(loss_mel, args.world_size) metrics.accumulate() loss_gen_all /= args.grad_accumulation scaler_g.scale(loss_gen_all).backward() scaler_g.step(optim_g) scaler_g.update() metrics['lrate_gen'] = optim_g.param_groups[0]['lr'] metrics['lrate_discrim'] = optim_d.param_groups[0]['lr'] metrics.accumulate() if args.ema_decay > 0.0: apply_multi_tensor_ema(args.ema_decay, *gen_ema_params) apply_multi_tensor_ema(args.ema_decay, *mpd_ema_params) apply_multi_tensor_ema(args.ema_decay, *msd_ema_params) metrics.finish_iter() # done accumulating if iters_all % args.step_logs_interval == 0: logger.log((epoch, iter_, iters_num), metrics, scope='train', tb_iter=iters_all, flush_log=True) assert is_last_accum_step metrics.finish_epoch() logger.log((epoch,), metrics, scope='train_avg', flush_log=True) if epoch % args.validation_interval == 0: validate(args, gen, mel_spec, mpd, msd, val_loader, val_metrics) logger.log((epoch,), val_metrics, scope='val', tb_iter=iters_all, flush_log=True) # validation samples if epoch % args.samples_interval == 0 and args.local_rank == 0: gen.eval() with torch.no_grad(): for i, batch in enumerate(islice(val_samples_loader, 5)): x, y, _, _ = batch x = x.cuda(non_blocking=True) y = y.cuda(non_blocking=True).unsqueeze(1) with autocast(enabled=args.amp): y_g_hat = gen(x) with autocast(enabled=args.amp and args.autocast_spectrogram): # args.fmax instead of args.max_for_inference y_hat_spec = mel_spec(y_g_hat.float().squeeze(1), fmax=args.mel_fmax) logger.log_samples_tb(iters_all, i, y_g_hat, y_hat_spec, args.sampling_rate) if epoch == args.samples_interval: # ground truth logger.log_samples_tb(0, i, y, x, args.sampling_rate) gen.train() train_state.update({'epoch': epoch, 'iters_all': iters_all}) # save before making sched.step() for proper loading of LR checkpointer.maybe_save( gen, mpd, msd, optim_g, optim_d, scaler_g, scaler_d, epoch, train_state, args, gen_config, train_setup, gen_ema=gen_ema, mpd_ema=mpd_ema, msd_ema=msd_ema) logger.flush() sched_g.step() sched_d.step() epochs_done += 1 if (args.epochs_this_job is not None and epochs_done == args.epochs_this_job): break # finished training if epochs_done > 0: logger.log((), metrics, scope='train_benchmark', flush_log=True) if epoch % args.validation_interval != 0: # val metrics are not up-to-date validate(args, gen, mel_spec, mpd, msd, val_loader, val_metrics) logger.log((), val_metrics, scope='val', flush_log=True) else: print_once(f'Finished without training after epoch {args.epochs}.') if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/train.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import itertools import sys import time import warnings from pathlib import Path from tqdm import tqdm import torch import numpy as np from scipy.stats import norm from scipy.io.wavfile import write from torch.nn.functional import l1_loss from torch.nn.utils.rnn import pad_sequence import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity import models from common import gpu_affinity from common.tb_dllogger import stdout_metric_format, unique_log_fpath from common.text import cmudict from common.text.text_processing import TextProcessing from common.utils import l2_promote from fastpitch.pitch_transform import pitch_transform_custom from hifigan.data_function import MAX_WAV_VALUE, mel_spectrogram from hifigan.logging import init_inference_metadata from hifigan.models import Denoiser CHECKPOINT_SPECIFIC_ARGS = [ 'sampling_rate', 'hop_length', 'win_length', 'p_arpabet', 'text_cleaners', 'symbol_set', 'max_wav_value', 'prepend_space_to_text', 'append_space_to_text'] def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-i', '--input', type=str, required=True, help='Full path to the input text ' '(phareses separated by newlines)') parser.add_argument('-o', '--output', default=None, help='Output folder to save audio (file per phrase)') parser.add_argument('--log-file', type=str, default=None, help='Path to a DLLogger log file') parser.add_argument('--save-mels', action='store_true', help='Save generator outputs to disk') parser.add_argument('--cuda', action='store_true', help='Run inference on a GPU using CUDA') parser.add_argument('--cudnn-benchmark', action='store_true', help='Enable cudnn benchmark mode') parser.add_argument('--l2-promote', action='store_true', help='Increase max fetch granularity of GPU L2 cache') parser.add_argument('--fastpitch', type=str, default=None, required=False, help='Full path to the spectrogram generator .pt file ' '(skip to synthesize from ground truth mels)') parser.add_argument('--waveglow', type=str, default=None, required=False, help='Full path to a WaveGlow model .pt file') parser.add_argument('-s', '--waveglow-sigma-infer', default=0.9, type=float, help='WaveGlow sigma') parser.add_argument('--hifigan', type=str, default=None, required=False, help='Full path to a HiFi-GAN model .pt file') parser.add_argument('-d', '--denoising-strength', default=0.0, type=float, help='Capture and subtract model bias to enhance audio') parser.add_argument('--hop-length', type=int, default=256, help='STFT hop length for estimating audio length from mel size') parser.add_argument('--win-length', type=int, default=1024, help='STFT win length for denoiser and mel loss') parser.add_argument('-sr', '--sampling-rate', default=22050, type=int, choices=[22050, 44100], help='Sampling rate') parser.add_argument('--max_wav_value', default=32768.0, type=float, help='Maximum audiowave value') parser.add_argument('--amp', action='store_true', help='Inference with AMP') parser.add_argument('-bs', '--batch-size', type=int, default=64) parser.add_argument('--warmup-steps', type=int, default=0, help='Warmup iterations before measuring performance') parser.add_argument('--repeats', type=int, default=1, help='Repeat inference for benchmarking') parser.add_argument('--torchscript', action='store_true', help='Run inference with TorchScript model (convert to TS if needed)') parser.add_argument('--checkpoint-format', type=str, choices=['pyt', 'ts'], default='pyt', help='Input checkpoint format (PyT or TorchScript)') parser.add_argument('--torch-tensorrt', action='store_true', help='Run inference with Torch-TensorRT model (compile beforehand)') parser.add_argument('--report-mel-loss', action='store_true', help='Report mel loss in metrics') parser.add_argument('--ema', action='store_true', help='Use EMA averaged model (if saved in checkpoints)') parser.add_argument('--dataset-path', type=str, help='Path to dataset (for loading extra data fields)') parser.add_argument('--speaker', type=int, default=0, help='Speaker ID for a multi-speaker model') parser.add_argument('--affinity', type=str, default='single', choices=['socket', 'single', 'single_unique', 'socket_unique_interleaved', 'socket_unique_continuous', 'disabled'], help='type of CPU affinity') transf = parser.add_argument_group('transform') transf.add_argument('--fade-out', type=int, default=6, help='Number of fadeout frames at the end') transf.add_argument('--pace', type=float, default=1.0, help='Adjust the pace of speech') transf.add_argument('--pitch-transform-flatten', action='store_true', help='Flatten the pitch') transf.add_argument('--pitch-transform-invert', action='store_true', help='Invert the pitch wrt mean value') transf.add_argument('--pitch-transform-amplify', type=float, default=1.0, help='Multiplicative amplification of pitch variability. ' 'Typical values are in the range (1.0, 3.0).') transf.add_argument('--pitch-transform-shift', type=float, default=0.0, help='Raise/lower the pitch by <hz>') transf.add_argument('--pitch-transform-custom', action='store_true', help='Apply the transform from pitch_transform.py') txt = parser.add_argument_group('Text processing parameters') txt.add_argument('--text-cleaners', type=str, nargs='*', default=['english_cleaners_v2'], help='Type of text cleaners for input text') txt.add_argument('--symbol-set', type=str, default='english_basic', help='Define symbol set for input text') txt.add_argument('--p-arpabet', type=float, default=0.0, help='') txt.add_argument('--heteronyms-path', type=str, default='data/cmudict/heteronyms', help='') txt.add_argument('--cmudict-path', type=str, default='data/cmudict/cmudict-0.7b', help='') return parser def load_fields(fpath): lines = [l.strip() for l in open(fpath, encoding='utf-8')] if fpath.endswith('.tsv'): columns = lines[0].split('\t') fields = list(zip(*[t.split('\t') for t in lines[1:]])) else: columns = ['text'] fields = [lines] return {c: f for c, f in zip(columns, fields)} def prepare_input_sequence(fields, device, symbol_set, text_cleaners, batch_size=128, dataset=None, load_mels=False, load_pitch=False, p_arpabet=0.0): tp = TextProcessing(symbol_set, text_cleaners, p_arpabet=p_arpabet) fields['text'] = [torch.LongTensor(tp.encode_text(text)) for text in fields['text']] order = np.argsort([-t.size(0) for t in fields['text']]) fields['text'] = [fields['text'][i] for i in order] fields['text_lens'] = torch.LongTensor([t.size(0) for t in fields['text']]) for t in fields['text']: print(tp.sequence_to_text(t.numpy())) if load_mels: assert 'mel' in fields assert dataset is not None fields['mel'] = [ torch.load(Path(dataset, fields['mel'][i])).t() for i in order] fields['mel_lens'] = torch.LongTensor([t.size(0) for t in fields['mel']]) if load_pitch: assert 'pitch' in fields fields['pitch'] = [ torch.load(Path(dataset, fields['pitch'][i])) for i in order] fields['pitch_lens'] = torch.LongTensor([t.size(0) for t in fields['pitch']]) if 'output' in fields: fields['output'] = [fields['output'][i] for i in order] # cut into batches & pad batches = [] for b in range(0, len(order), batch_size): batch = {f: values[b:b+batch_size] for f, values in fields.items()} for f in batch: if f == 'text': batch[f] = pad_sequence(batch[f], batch_first=True) elif f == 'mel' and load_mels: batch[f] = pad_sequence(batch[f], batch_first=True).permute(0, 2, 1) elif f == 'pitch' and load_pitch: batch[f] = pad_sequence(batch[f], batch_first=True) if type(batch[f]) is torch.Tensor: batch[f] = batch[f].to(device) batches.append(batch) return batches def build_pitch_transformation(args): if args.pitch_transform_custom: def custom_(pitch, pitch_lens, mean, std): return (pitch_transform_custom(pitch * std + mean, pitch_lens) - mean) / std return custom_ fun = 'pitch' if args.pitch_transform_flatten: fun = f'({fun}) * 0.0' if args.pitch_transform_invert: fun = f'({fun}) * -1.0' if args.pitch_transform_amplify != 1.0: ampl = args.pitch_transform_amplify fun = f'({fun}) * {ampl}' if args.pitch_transform_shift != 0.0: hz = args.pitch_transform_shift fun = f'({fun}) + {hz} / std' if fun == 'pitch': return None return eval(f'lambda pitch, pitch_lens, mean, std: {fun}') def setup_mel_loss_reporting(args, voc_train_setup): if args.denoising_strength > 0.0: print('WARNING: denoising will be included in vocoder mel loss') num_mels = voc_train_setup.get('num_mels', 80) fmin = voc_train_setup.get('mel_fmin', 0) fmax = voc_train_setup.get('mel_fmax', 8000) # not mel_fmax_loss def compute_audio_mel_loss(gen_audios, gt_mels, mel_lens): gen_audios /= MAX_WAV_VALUE total_loss = 0 for gen_audio, gt_mel, mel_len in zip(gen_audios, gt_mels, mel_lens): mel_len = mel_len.item() gen_audio = gen_audio[None, :mel_len * args.hop_length] gen_mel = mel_spectrogram(gen_audio, args.win_length, num_mels, args.sampling_rate, args.hop_length, args.win_length, fmin, fmax)[0] total_loss += l1_loss(gen_mel, gt_mel[:, :mel_len]) return total_loss.item() return compute_audio_mel_loss def compute_mel_loss(mels, lens, gt_mels, gt_lens): total_loss = 0 for mel, len_, gt_mel, gt_len in zip(mels, lens, gt_mels, gt_lens): min_len = min(len_, gt_len) total_loss += l1_loss(gt_mel[:, :min_len], mel[:, :min_len]) return total_loss.item() class MeasureTime(list): def __init__(self, *args, cuda=True, **kwargs): super(MeasureTime, self).__init__(*args, **kwargs) self.cuda = cuda def __enter__(self): if self.cuda: torch.cuda.synchronize() self.t0 = time.time() def __exit__(self, exc_type, exc_value, exc_traceback): if self.cuda: torch.cuda.synchronize() self.append(time.time() - self.t0) def __add__(self, other): assert len(self) == len(other) return MeasureTime((sum(ab) for ab in zip(self, other)), cuda=self.cuda) def main(): """ Launches text-to-speech inference on a single GPU. """ parser = argparse.ArgumentParser(description='PyTorch FastPitch Inference', allow_abbrev=False) parser = parse_args(parser) args, unk_args = parser.parse_known_args() if args.affinity != 'disabled': nproc_per_node = torch.cuda.device_count() # print(nproc_per_node) affinity = gpu_affinity.set_affinity( 0, nproc_per_node, args.affinity ) print(f'Thread affinity: {affinity}') if args.l2_promote: l2_promote() torch.backends.cudnn.benchmark = args.cudnn_benchmark if args.output is not None: Path(args.output).mkdir(parents=False, exist_ok=True) log_fpath = args.log_file or str(Path(args.output, 'nvlog_infer.json')) DLLogger.init(backends=[ JSONStreamBackend(Verbosity.DEFAULT, log_fpath, append=True), JSONStreamBackend(Verbosity.DEFAULT, unique_log_fpath(log_fpath)), StdOutBackend(Verbosity.VERBOSE, metric_format=stdout_metric_format) ]) init_inference_metadata(args.batch_size) [DLLogger.log("PARAMETER", {k: v}) for k, v in vars(args).items()] device = torch.device('cuda' if args.cuda else 'cpu') gen_train_setup = {} voc_train_setup = {} generator = None vocoder = None denoiser = None is_ts_based_infer = args.torch_tensorrt or args.torchscript assert args.checkpoint_format == 'pyt' or is_ts_based_infer, \ 'TorchScript checkpoint can be used only for TS or Torch-TRT' \ ' inference. Please set --torchscript or --torch-tensorrt flag.' assert args.waveglow is None or args.hifigan is None, \ "Specify a single vocoder model" def _load_pyt_or_ts_model(model_name, ckpt_path): if args.checkpoint_format == 'ts': model = models.load_and_setup_ts_model(model_name, ckpt_path, args.amp, device) model_train_setup = {} return model, model_train_setup model, _, model_train_setup = models.load_and_setup_model( model_name, parser, ckpt_path, args.amp, device, unk_args=unk_args, forward_is_infer=True, jitable=is_ts_based_infer) if is_ts_based_infer: model = torch.jit.script(model) return model, model_train_setup if args.fastpitch is not None: gen_name = 'fastpitch' generator, gen_train_setup = _load_pyt_or_ts_model('FastPitch', args.fastpitch) if args.waveglow is not None: voc_name = 'waveglow' with warnings.catch_warnings(): warnings.simplefilter("ignore") vocoder, _, voc_train_setup = models.load_and_setup_model( 'WaveGlow', parser, args.waveglow, args.amp, device, unk_args=unk_args, forward_is_infer=True, jitable=False) if args.denoising_strength > 0.0: denoiser = Denoiser(vocoder, sigma=0.0, win_length=args.win_length).to(device) # if args.torchscript: # vocoder = torch.jit.script(vocoder) def generate_audio(mel): audios = vocoder(mel, sigma=args.waveglow_sigma_infer) if denoiser is not None: audios = denoiser(audios.float(), args.denoising_strength).squeeze(1) return audios elif args.hifigan is not None: voc_name = 'hifigan' vocoder, voc_train_setup = _load_pyt_or_ts_model('HiFi-GAN', args.hifigan) if args.denoising_strength > 0.0: denoiser = Denoiser(vocoder, win_length=args.win_length).to(device) if args.torch_tensorrt: vocoder = models.convert_ts_to_trt('HiFi-GAN', vocoder, parser, args.amp, unk_args) def generate_audio(mel): audios = vocoder(mel).float() if denoiser is not None: audios = denoiser(audios.squeeze(1), args.denoising_strength) return audios.squeeze(1) * args.max_wav_value if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') for k in CHECKPOINT_SPECIFIC_ARGS: v1 = gen_train_setup.get(k, None) v2 = voc_train_setup.get(k, None) assert v1 is None or v2 is None or v1 == v2, \ f'{k} mismatch in spectrogram generator and vocoder' val = v1 or v2 if val and getattr(args, k) != val: src = 'generator' if v2 is None else 'vocoder' print(f'Overwriting args.{k}={getattr(args, k)} with {val} ' f'from {src} checkpoint.') setattr(args, k, val) gen_kw = {'pace': args.pace, 'speaker': args.speaker, 'pitch_tgt': None, 'pitch_transform': build_pitch_transformation(args)} if is_ts_based_infer and generator is not None: gen_kw.pop('pitch_transform') print('Note: --pitch-transform-* args are disabled with TorchScript. ' 'To condition on pitch, pass pitch_tgt as input.') if args.p_arpabet > 0.0: cmudict.initialize(args.cmudict_path, args.heteronyms_path) if args.report_mel_loss: mel_loss_fn = setup_mel_loss_reporting(args, voc_train_setup) fields = load_fields(args.input) batches = prepare_input_sequence( fields, device, args.symbol_set, args.text_cleaners, args.batch_size, args.dataset_path, load_mels=(generator is None or args.report_mel_loss), p_arpabet=args.p_arpabet) cycle = itertools.cycle(batches) # Use real data rather than synthetic - FastPitch predicts len for _ in tqdm(range(args.warmup_steps), 'Warmup'): with torch.no_grad(): b = next(cycle) if generator is not None: mel, *_ = generator(b['text']) else: mel, mel_lens = b['mel'], b['mel_lens'] if args.amp: mel = mel.half() if vocoder is not None: audios = generate_audio(mel) gen_measures = MeasureTime(cuda=args.cuda) vocoder_measures = MeasureTime(cuda=args.cuda) all_utterances = 0 all_samples = 0 all_batches = 0 all_letters = 0 all_frames = 0 gen_mel_loss_sum = 0 voc_mel_loss_sum = 0 reps = args.repeats log_enabled = reps == 1 log = lambda s, d: DLLogger.log(step=s, data=d) if log_enabled else None for rep in (tqdm(range(reps), 'Inference') if reps > 1 else range(reps)): for b in batches: if generator is None: mel, mel_lens = b['mel'], b['mel_lens'] if args.amp: mel = mel.half() else: with torch.no_grad(), gen_measures: mel, mel_lens, *_ = generator(b['text'], **gen_kw) if args.report_mel_loss: gen_mel_loss_sum += compute_mel_loss( mel, mel_lens, b['mel'], b['mel_lens']) gen_infer_perf = mel.size(0) * mel.size(2) / gen_measures[-1] all_letters += b['text_lens'].sum().item() all_frames += mel.size(0) * mel.size(2) log(rep, {f"{gen_name}_frames/s": gen_infer_perf}) log(rep, {f"{gen_name}_latency": gen_measures[-1]}) if args.save_mels: for i, mel_ in enumerate(mel): m = mel_[:, :mel_lens[i].item()].permute(1, 0) fname = b['output'][i] if 'output' in b else f'mel_{i}.npy' mel_path = Path(args.output, Path(fname).stem + '.npy') np.save(mel_path, m.cpu().numpy()) if vocoder is not None: with torch.no_grad(), vocoder_measures: audios = generate_audio(mel) vocoder_infer_perf = ( audios.size(0) * audios.size(1) / vocoder_measures[-1]) log(rep, {f"{voc_name}_samples/s": vocoder_infer_perf}) log(rep, {f"{voc_name}_latency": vocoder_measures[-1]}) if args.report_mel_loss: voc_mel_loss_sum += mel_loss_fn(audios, mel, mel_lens) if args.output is not None and reps == 1: for i, audio in enumerate(audios): audio = audio[:mel_lens[i].item() * args.hop_length] if args.fade_out: fade_len = args.fade_out * args.hop_length fade_w = torch.linspace(1.0, 0.0, fade_len) audio[-fade_len:] *= fade_w.to(audio.device) audio = audio / torch.max(torch.abs(audio)) fname = b['output'][i] if 'output' in b else f'audio_{i}.wav' audio_path = Path(args.output, fname) write(audio_path, args.sampling_rate, audio.cpu().numpy()) if generator is not None: log(rep, {"latency": (gen_measures[-1] + vocoder_measures[-1])}) all_utterances += mel.size(0) all_samples += mel_lens.sum().item() * args.hop_length all_batches += 1 log_enabled = True if generator is not None: gm = np.sort(np.asarray(gen_measures)) rtf = all_samples / (all_utterances * gm.mean() * args.sampling_rate) rtf_at = all_samples / (all_batches * gm.mean() * args.sampling_rate) log((), {f"avg_{gen_name}_tokens/s": all_letters / gm.sum()}) log((), {f"avg_{gen_name}_frames/s": all_frames / gm.sum()}) log((), {f"avg_{gen_name}_latency": gm.mean()}) log((), {f"avg_{gen_name}_RTF": rtf}) log((), {f"avg_{gen_name}_RTF@{args.batch_size}": rtf_at}) log((), {f"90%_{gen_name}_latency": gm.mean() + norm.ppf((1.0 + 0.90) / 2) * gm.std()}) log((), {f"95%_{gen_name}_latency": gm.mean() + norm.ppf((1.0 + 0.95) / 2) * gm.std()}) log((), {f"99%_{gen_name}_latency": gm.mean() + norm.ppf((1.0 + 0.99) / 2) * gm.std()}) if args.report_mel_loss: log((), {f"avg_{gen_name}_mel-loss": gen_mel_loss_sum / all_utterances}) if vocoder is not None: vm = np.sort(np.asarray(vocoder_measures)) rtf = all_samples / (all_utterances * vm.mean() * args.sampling_rate) rtf_at = all_samples / (all_batches * vm.mean() * args.sampling_rate) log((), {f"avg_{voc_name}_samples/s": all_samples / vm.sum()}) log((), {f"avg_{voc_name}_latency": vm.mean()}) log((), {f"avg_{voc_name}_RTF": rtf}) log((), {f"avg_{voc_name}_RTF@{args.batch_size}": rtf_at}) log((), {f"90%_{voc_name}_latency": vm.mean() + norm.ppf((1.0 + 0.90) / 2) * vm.std()}) log((), {f"95%_{voc_name}_latency": vm.mean() + norm.ppf((1.0 + 0.95) / 2) * vm.std()}) log((), {f"99%_{voc_name}_latency": vm.mean() + norm.ppf((1.0 + 0.99) / 2) * vm.std()}) if args.report_mel_loss: log((), {f"avg_{voc_name}_mel-loss": voc_mel_loss_sum / all_utterances}) if generator is not None and vocoder is not None: m = gm + vm rtf = all_samples / (all_utterances * m.mean() * args.sampling_rate) rtf_at = all_samples / (all_batches * m.mean() * args.sampling_rate) log((), {"avg_samples/s": all_samples / m.sum()}) log((), {"avg_letters/s": all_letters / m.sum()}) log((), {"avg_latency": m.mean()}) log((), {"avg_RTF": rtf}) log((), {f"avg_RTF@{args.batch_size}": rtf_at}) log((), {"90%_latency": m.mean() + norm.ppf((1.0 + 0.90) / 2) * m.std()}) log((), {"95%_latency": m.mean() + norm.ppf((1.0 + 0.95) / 2) * m.std()}) log((), {"99%_latency": m.mean() + norm.ppf((1.0 + 0.99) / 2) * m.std()}) DLLogger.flush() if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/inference.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from collections import OrderedDict from copy import copy from itertools import product from pathlib import Path import dllogger import numpy as np import torch.distributed as dist import torch from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from common import tb_dllogger from common.tb_dllogger import (stdout_metric_format, stdout_step_format, unique_log_fpath, TBLogger) def init_logger(output_dir, log_file, ema_decay=0.0): local_rank = 0 if not dist.is_initialized() else dist.get_rank() if local_rank == 0: Path(output_dir).mkdir(parents=False, exist_ok=True) log_fpath = log_file or Path(output_dir, 'nvlog.json') dllogger.init(backends=[ JSONStreamBackend(Verbosity.DEFAULT, log_fpath, append=True), JSONStreamBackend(Verbosity.DEFAULT, unique_log_fpath(log_fpath)), StdOutBackend(Verbosity.VERBOSE, step_format=stdout_step_format, metric_format=stdout_metric_format) ]) init_train_metadata() else: dllogger.init(backends=[]) tb_train = ['train'] tb_val = ['val'] tb_ema = [k + '_ema' for k in tb_val] if ema_decay > 0.0 else [] tb_dllogger.tb_loggers = { s: TBLogger(enabled=(local_rank == 0), log_dir=output_dir, name=s) for s in tb_train + tb_val + tb_ema} def init_train_metadata(): dllogger.metadata("train_lrate_gen", {"name": "g lr", "unit": None, "format": ":>3.2e"}) dllogger.metadata("train_lrate_discrim", {"name": "d lr", "unit": None, "format": ":>3.2e"}) dllogger.metadata("train_avg_lrate_gen", {"name": "avg g lr", "unit": None, "format": ":>3.2e"}) dllogger.metadata("train_avg_lrate_discrim", {"name": "avg d lr", "unit": None, "format": ":>3.2e"}) for id_, pref in [('train', ''), ('train_avg', 'avg train '), ('val', ' avg val '), ('val_ema', ' EMA val ')]: dllogger.metadata(f"{id_}_loss_gen", {"name": f"{pref}g loss", "unit": None, "format": ":>6.3f"}) dllogger.metadata(f"{id_}_loss_discrim", {"name": f"{pref}d loss", "unit": None, "format": ":>6.3f"}) dllogger.metadata(f"{id_}_loss_mel", {"name": f"{pref}mel loss", "unit": None, "format": ":>6.3f"}) dllogger.metadata(f"{id_}_frames/s", {"name": None, "unit": "frames/s", "format": ":>8.2f"}) dllogger.metadata(f"{id_}_took", {"name": "took", "unit": "s", "format": ":>3.2f"}) def init_inference_metadata(batch_size=None): modalities = [('latency', 's', ':>10.5f'), ('RTF', 'x', ':>10.2f'), ('frames/s', 'frames/s', ':>10.2f'), ('samples/s', 'samples/s', ':>10.2f'), ('letters/s', 'letters/s', ':>10.2f'), ('tokens/s', 'tokens/s', ':>10.2f'), ('mel-loss', None, ':>10.5f')] if batch_size is not None: modalities.append((f'RTF@{batch_size}', 'x', ':>10.2f')) percs = ['', 'avg', '90%', '95%', '99%'] models = ['', 'fastpitch', 'waveglow', 'hifigan'] for perc, model, (mod, unit, fmt) in product(percs, models, modalities): name = f'{perc} {model} {mod}'.strip().replace(' ', ' ') dllogger.metadata(name.replace(' ', '_'), {'name': f'{name: <26}', 'unit': unit, 'format': fmt}) class defaultdict(OrderedDict): """A simple, ordered defaultdict.""" def __init__(self, type_, *args, **kwargs): self.type_ = type_ super().__init__(*args, **kwargs) def __getitem__(self, key): if key not in self: self.__setitem__(key, self.type_()) return super().__getitem__(key) def __copy__(self): return defaultdict(self.type_, self) class Metrics(dict): def __init__(self, scopes=['train', 'train_avg'], dll_keys=['loss_gen', 'loss_discrim', 'loss_mel', 'frames/s', 'took', 'lrate_gen', 'lrate_discrim'], benchmark_epochs=0, cuda=True): super().__init__() self.dll_keys = dll_keys self.metrics = {scope: defaultdict(float) for scope in scopes} self.metric_counts = {scope: defaultdict(int) for scope in scopes} self.start_time = {scope: None for scope in scopes} self.benchmark_epochs = benchmark_epochs if benchmark_epochs > 0: self.metrics['train_benchmark'] = defaultdict(list) self.cuda = cuda def __setitem__(self, key, val): if type(val) is dict: for k, v in val.items(): super().__setitem__(k, v) else: super().__setitem__(key, val) def __getitem__(self, key): if key not in self: self.__setitem__(key, 0.0) return super().__getitem__(key) def start_accumulating(self, step, start_timer=True, scope='train'): del step # unused self.clear() self.metrics[scope].clear() self.metric_counts[scope].clear() if start_timer: self.start_time[scope] = time.time() def accumulate(self, scopes=['train', 'train_avg']): for scope in scopes: for k, v in self.items(): self.metrics[scope][k] += v self.metric_counts[scope][k] += 1 self.clear() def finish_accumulating(self, stop_timer=True, scope='train'): metr = self.metrics[scope] counts = self.metric_counts[scope] for k, v in metr.items(): if type(v) is torch.Tensor: v = v.item() metr[k] = v / counts[k] if stop_timer: took = time.time() - self.start_time[scope] if 'frames' in metr: metr['frames/s'] = metr.pop('frames') * counts['frames'] / took metr['took'] = took def start_iter(self, iter, start_timer=True): self.start_accumulating(iter, start_timer, 'train') def start_epoch(self, epoch, start_timer=True): if self.cuda: torch.cuda.synchronize() self.start_accumulating(epoch, start_timer, 'train_avg') def start_val(self, start_timer=True): if self.cuda: torch.cuda.synchronize() self.start_accumulating(None, start_timer, 'val') def finish_iter(self, stop_timer=True): self.finish_accumulating(stop_timer, 'train') def finish_epoch(self, stop_timer=True): if self.cuda: torch.cuda.synchronize() self.finish_accumulating(stop_timer, 'train_avg') metr = self.metrics['train_benchmark'] for k in ('took', 'frames/s', 'loss_gen', 'loss_discrim', 'loss_mel'): metr[k].append(self.metrics['train_avg'][k]) if len(metr[k]) > self.benchmark_epochs: metr[k].pop(0) def finish_val(self, stop_timer=True): if self.cuda: torch.cuda.synchronize() self.finish_accumulating(stop_timer, 'val') def get_metrics(self, scope='train', target='dll'): if scope == 'train_benchmark': metr = self.metrics[scope] ret = {'train_' + k: np.mean(v) for k, v in metr.items()} ret['benchmark_epochs_num'] = len(list(metr.values())[0]) return ret ret = copy(self.metrics[scope]) if scope == 'train': ret.update(self) if target == 'dll': ret = {f'{scope}_{k}': v for k, v in ret.items() if k in self.dll_keys} elif target == 'tb': # Rename keys so they would group nicely inside TensorBoard def split_key(k): pos = k.rfind('_') return k[:pos] + '/' + k[pos+1:] if pos >= 0 else k ret = {split_key(k): v for k, v in ret.items()} return ret
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/hifigan/logging.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # The following functions/classes were based on code from https://github.com/jik876/hifi-gan: # ResBlock1, ResBlock2, Generator, DiscriminatorP, DiscriminatorS, MultiScaleDiscriminator, # MultiPeriodDiscriminator, feature_loss, discriminator_loss, generator_loss, # init_weights, get_padding import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm from common import filter_warnings from common.stft import STFT from common.utils import AttrDict, init_weights, get_padding LRELU_SLOPE = 0.1 class NoAMPConv1d(Conv1d): def __init__(self, *args, no_amp=False, **kwargs): super().__init__(*args, **kwargs) self.no_amp = no_amp def _cast(self, x, dtype): if isinstance(x, (list, tuple)): return [self._cast(t, dtype) for t in x] else: return x.to(dtype) def forward(self, *args): if not self.no_amp: return super().forward(*args) with torch.cuda.amp.autocast(enabled=False): return self._cast( super().forward(*self._cast(args, torch.float)), args[0].dtype) class ResBlock1(nn.Module): __constants__ = ['lrelu_slope'] def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3, 5)): super().__init__() self.conf = conf self.lrelu_slope = LRELU_SLOPE ch, ks = channels, kernel_size self.convs1 = nn.Sequential(*[ weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[0]), dilation[0])), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[1]), dilation[1])), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[2]), dilation[2])), ]) self.convs2 = nn.Sequential(*[ weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), ]) self.convs1.apply(init_weights) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, self.lrelu_slope) xt = c1(xt) xt = F.leaky_relu(xt, self.lrelu_slope) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(nn.Module): __constants__ = ['lrelu_slope'] def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3)): super().__init__() self.conf = conf ch, ks = channels, kernel_size self.convs = nn.ModuleList([ weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[0]), dilation[0])), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[1]), dilation[1])), ]) self.convs.apply(init_weights) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, self.lrelu_slope) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Generator(nn.Module): __constants__ = ['lrelu_slope', 'num_kernels', 'num_upsamples'] def __init__(self, conf): super().__init__() conf = AttrDict(conf) self.conf = conf self.num_kernels = len(conf.resblock_kernel_sizes) self.num_upsamples = len(conf.upsample_rates) self.conv_pre = weight_norm( Conv1d(80, conf.upsample_initial_channel, 7, 1, padding=3)) self.lrelu_slope = LRELU_SLOPE resblock = ResBlock1 if conf.resblock == '1' else ResBlock2 self.ups = [] for i, (u, k) in enumerate(zip(conf.upsample_rates, conf.upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d(conf.upsample_initial_channel // (2 ** i), conf.upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k-u)//2))) self.ups = nn.Sequential(*self.ups) self.resblocks = [] for i in range(len(self.ups)): resblock_list = [] ch = conf.upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate(zip(conf.resblock_kernel_sizes, conf.resblock_dilation_sizes)): resblock_list.append(resblock(conf, ch, k, d)) resblock_list = nn.Sequential(*resblock_list) self.resblocks.append(resblock_list) self.resblocks = nn.Sequential(*self.resblocks) self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def load_state_dict(self, state_dict, strict=True): # Fallback for old checkpoints (pre-ONNX fix) new_sd = {} for k, v in state_dict.items(): new_k = k if 'resblocks' in k: parts = k.split(".") # only do this is the checkpoint type is older if len(parts) == 5: layer = int(parts[1]) new_layer = f"{layer//3}.{layer%3}" new_k = f"resblocks.{new_layer}.{'.'.join(parts[2:])}" new_sd[new_k] = v # Fix for conv1d/conv2d/NHWC curr_sd = self.state_dict() for key in new_sd: len_diff = len(new_sd[key].size()) - len(curr_sd[key].size()) if len_diff == -1: new_sd[key] = new_sd[key].unsqueeze(-1) elif len_diff == 1: new_sd[key] = new_sd[key].squeeze(-1) super().load_state_dict(new_sd, strict=strict) def forward(self, x): x = self.conv_pre(x) for upsample_layer, resblock_group in zip(self.ups, self.resblocks): x = F.leaky_relu(x, self.lrelu_slope) x = upsample_layer(x) xs = 0 for resblock in resblock_group: xs += resblock(x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print('HiFi-GAN: Removing weight norm.') for l in self.ups: remove_weight_norm(l) for group in self.resblocks: for block in group: block.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class Denoiser(nn.Module): """ Removes model bias from audio produced with hifigan """ def __init__(self, hifigan, filter_length=1024, n_overlap=4, win_length=1024, mode='zeros', **infer_kw): super().__init__() w = next(p for name, p in hifigan.named_parameters() if name.endswith('.weight')) self.stft = STFT(filter_length=filter_length, hop_length=int(filter_length/n_overlap), win_length=win_length).to(w.device) mel_init = {'zeros': torch.zeros, 'normal': torch.randn}[mode] mel_input = mel_init((1, 80, 88), dtype=w.dtype, device=w.device) with torch.no_grad(): bias_audio = hifigan(mel_input, **infer_kw).float() if len(bias_audio.size()) > 2: bias_audio = bias_audio.squeeze(0) elif len(bias_audio.size()) < 2: bias_audio = bias_audio.unsqueeze(0) assert len(bias_audio.size()) == 2 bias_spec, _ = self.stft.transform(bias_audio) self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) def forward(self, audio, strength=0.1): audio_spec, audio_angles = self.stft.transform(audio.float()) audio_spec_denoised = audio_spec - self.bias_spec * strength audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) return audio_denoised class DiscriminatorP(nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super().__init__() self.period = period norm_f = spectral_norm if use_spectral_norm else weight_norm ks = kernel_size self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(32, 128, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(128, 512, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(512, 1024, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(1024, 1024, (ks, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap def share_params_of(self, dp): assert len(self.convs) == len(dp.convs) for c1, c2 in zip(self.convs, dp.convs): c1.weight = c2.weight c1.bias = c2.bias class MultiPeriodDiscriminator(nn.Module): def __init__(self, periods, concat_fwd=False): super().__init__() layers = [DiscriminatorP(p) for p in periods] self.discriminators = nn.ModuleList(layers) self.concat_fwd = concat_fwd def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if self.concat_fwd: y_ds, fmaps = d(concat_discr_input(y, y_hat)) y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps) else: y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(nn.Module): def __init__(self, use_spectral_norm=False, no_amp_grouped_conv=False): super().__init__() norm_f = spectral_norm if use_spectral_norm else weight_norm self.convs = nn.ModuleList([ norm_f(Conv1d(1, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(NoAMPConv1d(128, 256, 41, 2, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(NoAMPConv1d(256, 512, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(NoAMPConv1d(512, 1024, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(NoAMPConv1d(1024, 1024, 41, 1, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: # x = l(x.unsqueeze(-1)).squeeze(-1) x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(nn.Module): def __init__(self, no_amp_grouped_conv=False, concat_fwd=False): super().__init__() self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True, no_amp_grouped_conv=no_amp_grouped_conv), DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv), DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv), ]) self.meanpools = nn.ModuleList([ AvgPool1d(4, 2, padding=1), AvgPool1d(4, 2, padding=1) ]) self.concat_fwd = concat_fwd def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if self.concat_fwd: ys = concat_discr_input(y, y_hat) if i != 0: ys = self.meanpools[i-1](ys) y_ds, fmaps = d(ys) y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps) else: if i != 0: y = self.meanpools[i-1](y) y_hat = self.meanpools[i-1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs def concat_discr_input(y, y_hat): return torch.cat((y, y_hat), dim=0) def split_discr_output(y_ds, fmaps): y_d_r, y_d_g = torch.chunk(y_ds, 2, dim=0) fmap_r, fmap_g = zip(*(torch.chunk(f, 2, dim=0) for f in fmaps)) return y_d_r, y_d_g, fmap_r, fmap_g def feature_loss(fmap_r, fmap_g): loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss*2 def discriminator_loss(disc_real_outputs, disc_generated_outputs): loss = 0 for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1-dr)**2) g_loss = torch.mean(dg**2) loss += (r_loss + g_loss) return loss def generator_loss(disc_outputs): loss = 0 gen_losses = [] for dg in disc_outputs: l = torch.mean((1-dg)**2) gen_losses.append(l) loss += l return loss, gen_losses
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/hifigan/models.py
from .entrypoints import nvidia_hifigan
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/hifigan/__init__.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # The following functions/classes were based on code from https://github.com/jik876/hifi-gan: # mel_spectrogram, MelDataset import math import os import numpy as np import torch import torch.nn.functional as F import torch.utils.data from librosa.filters import mel as librosa_mel_fn from librosa.util import normalize from numpy import random from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from common.audio_processing import dynamic_range_compression from common.utils import load_filepaths_and_text, load_wav MAX_WAV_VALUE = 32768.0 mel_basis = {} hann_window = {} def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): if torch.min(y) < -1.: print('min value is ', torch.min(y)) if torch.max(y) > 1.: print('max value is ', torch.max(y)) global mel_basis, hann_window fmax_key = f'{fmax}_{y.device}' if fmax_key not in mel_basis: mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) mel_basis[fmax_key] = torch.from_numpy(mel).float().to(y.device) hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) pad = int((n_fft-hop_size)/2) y = F.pad(y.unsqueeze(1), (pad, pad), mode='reflect') y = y.squeeze(1) spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) spec = dynamic_range_compression(spec) # spectral normalize return spec class MelDataset(torch.utils.data.Dataset): def __init__(self, training_files, segment_size, n_fft, num_mels, hop_size, win_size, sampling_rate, fmin, fmax, split=True, device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None, repeat=1, deterministic=False, max_wav_value=MAX_WAV_VALUE): self.audio_files = training_files self.segment_size = segment_size self.sampling_rate = sampling_rate self.split = split self.n_fft = n_fft self.num_mels = num_mels self.hop_size = hop_size self.win_size = win_size self.fmin = fmin self.fmax = fmax self.fmax_loss = fmax_loss self.max_wav_value = max_wav_value self.fine_tuning = fine_tuning self.base_mels_path = base_mels_path self.repeat = repeat self.deterministic = deterministic self.rng = random.default_rng() def __getitem__(self, index): if index >= len(self): raise IndexError('Dataset index out of range') rng = random.default_rng(index) if self.deterministic else self.rng index = index % len(self.audio_files) # collapse **after** setting seed filename = self.audio_files[index] audio, sampling_rate = load_wav(filename) audio = audio / self.max_wav_value if not self.fine_tuning: audio = normalize(audio) * 0.95 if sampling_rate != self.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.sampling_rate)) audio = torch.FloatTensor(audio) audio = audio.unsqueeze(0) if not self.fine_tuning: if self.split: if audio.size(1) >= self.segment_size: max_audio_start = audio.size(1) - self.segment_size audio_start = rng.integers(0, max_audio_start) audio = audio[:, audio_start:audio_start+self.segment_size] else: audio = F.pad(audio, (0, self.segment_size - audio.size(1))) mel = mel_spectrogram(audio, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, center=False) else: mel = np.load( os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy')) mel = torch.from_numpy(mel).float() if len(mel.shape) < 3: mel = mel.unsqueeze(0) if self.split: frames_per_seg = math.ceil(self.segment_size / self.hop_size) if audio.size(1) >= self.segment_size: mel_start = rng.integers(0, mel.size(2) - frames_per_seg) mel = mel[:, :, mel_start:mel_start + frames_per_seg] a = mel_start * self.hop_size b = (mel_start + frames_per_seg) * self.hop_size audio = audio[:, a:b] else: mel = F.pad(mel, (0, frames_per_seg - mel.size(2))) audio = F.pad(audio, (0, self.segment_size - audio.size(1))) mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss, center=False) return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) def __len__(self): return len(self.audio_files) * self.repeat def get_data_loader(args, distributed_run, train=True, batch_size=None, val_kwargs=None): filelists = args.training_files if train else args.validation_files files = load_filepaths_and_text(args.dataset_path, filelists) files = list(zip(*files))[0] dataset_kw = { 'segment_size': args.segment_size, 'n_fft': args.filter_length, 'num_mels': args.num_mels, 'hop_size': args.hop_length, 'win_size': args.win_length, 'sampling_rate': args.sampling_rate, 'fmin': args.mel_fmin, 'fmax': args.mel_fmax, 'fmax_loss': args.mel_fmax_loss, 'max_wav_value': args.max_wav_value, 'fine_tuning': args.fine_tuning, 'base_mels_path': args.input_mels_dir, 'deterministic': not train } if train: dataset = MelDataset(files, **dataset_kw) sampler = DistributedSampler(dataset) if distributed_run else None else: dataset_kw.update(val_kwargs or {}) dataset = MelDataset(files, **dataset_kw) sampler = (DistributedSampler(dataset, shuffle=False) if distributed_run else None) loader = DataLoader(dataset, num_workers=args.num_workers if train else 1, shuffle=(train and not distributed_run), sampler=sampler, batch_size=batch_size or args.batch_size, pin_memory=True, persistent_workers=True, drop_last=train) return loader
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/hifigan/data_function.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ast import literal_eval def parse_hifigan_args(parent, add_help=False): """Parse model specific commandline arguments.""" parser = argparse.ArgumentParser(parents=[parent], add_help=add_help, allow_abbrev=False) hfg = parser.add_argument_group('HiFi-GAN generator parameters') hfg.add_argument('--upsample_rates', default=[8, 8, 2, 2], type=literal_eval_arg, help='Upsample rates') hfg.add_argument('--upsample_kernel_sizes', default=[16, 16, 4, 4], type=literal_eval_arg, help='Upsample kernel sizes') hfg.add_argument('--upsample_initial_channel', default=512, type=int, help='Upsample initial channel') hfg.add_argument('--resblock', default='1', type=str, help='Resblock module version') hfg.add_argument('--resblock_kernel_sizes', default=[11, 7, 3], type=literal_eval_arg, help='Resblock kernel sizes') hfg.add_argument('--resblock_dilation_sizes', type=literal_eval_arg, default=[[1, 3, 5], [1, 3, 5], [1, 3, 5]], help='Resblock dilation sizes'), hfg = parser.add_argument_group('HiFi-GAN discriminator parameters') hfg.add_argument('--mpd_periods', default=[2, 3, 5, 7, 11], type=literal_eval_arg, help='Periods of MultiPeriodDiscriminator') hfg.add_argument('--concat_fwd', action='store_true', help='Faster Discriminators (requires more GPU memory)') hfg.add_argument('--hifigan-config', type=str, default=None, required=False, help='Path to a HiFi-GAN config .json' ' (if provided, overrides model architecture flags)') return parser def literal_eval_arg(val): try: return literal_eval(val) except SyntaxError as e: # Argparse does not handle SyntaxError raise ValueError(str(e)) from e
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/hifigan/arg_parser.py
# ***************************************************************************** # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import urllib.request import torch import os import sys #from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/inference.py def checkpoint_from_distributed(state_dict): """ Checks whether checkpoint was generated by DistributedDataParallel. DDP wraps model in additional "module.", it needs to be unwrapped for single GPU inference. :param state_dict: model's state dict """ ret = False for key, _ in state_dict.items(): if key.find('module.') != -1: ret = True break return ret # from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/inference.py def unwrap_distributed(state_dict): """ Unwraps model from DistributedDataParallel. DDP wraps model in additional "module.", it needs to be removed for single GPU inference. :param state_dict: model's state dict """ new_state_dict = {} for key, value in state_dict.items(): new_key = key.replace('module.1.', '') new_key = new_key.replace('module.', '') new_state_dict[new_key] = value return new_state_dict def _download_checkpoint(checkpoint, force_reload): model_dir = os.path.join(torch.hub._get_torch_home(), 'checkpoints') if not os.path.exists(model_dir): os.makedirs(model_dir) ckpt_file = os.path.join(model_dir, os.path.basename(checkpoint)) if not os.path.exists(ckpt_file) or force_reload: sys.stderr.write('Downloading checkpoint from {}\n'.format(checkpoint)) urllib.request.urlretrieve(checkpoint, ckpt_file) return ckpt_file def nvidia_hifigan(pretrained=True, **kwargs): """TODO """ from hifigan import models as vocoder force_reload = "force_reload" in kwargs and kwargs["force_reload"] fp16 = "model_math" in kwargs and kwargs["model_math"] == "fp16" if pretrained: checkpoint = 'https://api.ngc.nvidia.com/v2/models/nvidia/dle/hifigan__pyt_ckpt_mode-finetune_ds-ljs22khz/versions/21.08.0_amp/files/hifigan_gen_checkpoint_10000_ft.pt' ckpt_file = _download_checkpoint(checkpoint, force_reload) ckpt = torch.load(ckpt_file) state_dict = ckpt['generator'] if checkpoint_from_distributed(state_dict): state_dict = unwrap_distributed(state_dict) config = ckpt['config'] train_setup = ckpt.get('train_setup', {}) else: config = {'upsample_rates': [8, 8, 2, 2], 'upsample_kernel_sizes': [16, 16, 4, 4], 'upsample_initial_channel': 512, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]]} for k,v in kwargs.items(): if k in config.keys(): config[k] = v train_setup = {} hifigan = vocoder.Generator(config) denoiser = None if pretrained: hifigan.load_state_dict(state_dict) hifigan.remove_weight_norm() denoiser = vocoder.Denoiser(hifigan, win_length=1024) if fp16: hifigan.half() denoiser.half() return hifigan, train_setup, denoiser
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/hifigan/entrypoints.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from torch import nn from torch.nn import functional as F class ConvNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain='linear'): super(ConvNorm, self).__init__() if padding is None: assert(kernel_size % 2 == 1) padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): conv_signal = self.conv(signal) return conv_signal class Invertible1x1ConvLUS(torch.nn.Module): def __init__(self, c): super(Invertible1x1ConvLUS, self).__init__() # Sample a random orthonormal matrix to initialize weights W, _ = torch.linalg.qr(torch.randn(c, c)) # Ensure determinant is 1.0 not -1.0 if torch.det(W) < 0: W[:, 0] = -1*W[:, 0] p, lower, upper = torch.lu_unpack(*torch.lu(W)) self.register_buffer('p', p) # diagonals of lower will always be 1s anyway lower = torch.tril(lower, -1) lower_diag = torch.diag(torch.eye(c, c)) self.register_buffer('lower_diag', lower_diag) self.lower = nn.Parameter(lower) self.upper_diag = nn.Parameter(torch.diag(upper)) self.upper = nn.Parameter(torch.triu(upper, 1)) def forward(self, z, reverse=False): U = torch.triu(self.upper, 1) + torch.diag(self.upper_diag) L = torch.tril(self.lower, -1) + torch.diag(self.lower_diag) W = torch.mm(self.p, torch.mm(L, U)) if reverse: if not hasattr(self, 'W_inverse'): # Reverse computation W_inverse = W.float().inverse() if z.type() == 'torch.cuda.HalfTensor': W_inverse = W_inverse.half() self.W_inverse = W_inverse[..., None] z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) return z else: W = W[..., None] z = F.conv1d(z, W, bias=None, stride=1, padding=0) log_det_W = torch.sum(torch.log(torch.abs(self.upper_diag))) return z, log_det_W class ConvAttention(torch.nn.Module): def __init__(self, n_mel_channels=80, n_speaker_dim=128, n_text_channels=512, n_att_channels=80, temperature=1.0, n_mel_convs=2, align_query_enc_type='3xconv', use_query_proj=True): super(ConvAttention, self).__init__() self.temperature = temperature self.att_scaling_factor = np.sqrt(n_att_channels) self.softmax = torch.nn.Softmax(dim=3) self.log_softmax = torch.nn.LogSoftmax(dim=3) self.query_proj = Invertible1x1ConvLUS(n_mel_channels) self.attn_proj = torch.nn.Conv2d(n_att_channels, 1, kernel_size=1) self.align_query_enc_type = align_query_enc_type self.use_query_proj = bool(use_query_proj) self.key_proj = nn.Sequential( ConvNorm(n_text_channels, n_text_channels * 2, kernel_size=3, bias=True, w_init_gain='relu'), torch.nn.ReLU(), ConvNorm(n_text_channels * 2, n_att_channels, kernel_size=1, bias=True)) self.align_query_enc_type = align_query_enc_type if align_query_enc_type == "inv_conv": self.query_proj = Invertible1x1ConvLUS(n_mel_channels) elif align_query_enc_type == "3xconv": self.query_proj = nn.Sequential( ConvNorm(n_mel_channels, n_mel_channels * 2, kernel_size=3, bias=True, w_init_gain='relu'), torch.nn.ReLU(), ConvNorm(n_mel_channels * 2, n_mel_channels, kernel_size=1, bias=True), torch.nn.ReLU(), ConvNorm(n_mel_channels, n_att_channels, kernel_size=1, bias=True)) else: raise ValueError("Unknown query encoder type specified") def run_padded_sequence(self, sorted_idx, unsort_idx, lens, padded_data, recurrent_model): """Sorts input data by previded ordering (and un-ordering) and runs the packed data through the recurrent model Args: sorted_idx (torch.tensor): 1D sorting index unsort_idx (torch.tensor): 1D unsorting index (inverse of sorted_idx) lens: lengths of input data (sorted in descending order) padded_data (torch.tensor): input sequences (padded) recurrent_model (nn.Module): recurrent model to run data through Returns: hidden_vectors (torch.tensor): outputs of the RNN, in the original, unsorted, ordering """ # sort the data by decreasing length using provided index # we assume batch index is in dim=1 padded_data = padded_data[:, sorted_idx] padded_data = nn.utils.rnn.pack_padded_sequence(padded_data, lens) hidden_vectors = recurrent_model(padded_data)[0] hidden_vectors, _ = nn.utils.rnn.pad_packed_sequence(hidden_vectors) # unsort the results at dim=1 and return hidden_vectors = hidden_vectors[:, unsort_idx] return hidden_vectors def encode_query(self, query, query_lens): query = query.permute(2, 0, 1) # seq_len, batch, feature dim lens, ids = torch.sort(query_lens, descending=True) original_ids = [0] * lens.size(0) for i in range(len(ids)): original_ids[ids[i]] = i query_encoded = self.run_padded_sequence(ids, original_ids, lens, query, self.query_lstm) query_encoded = query_encoded.permute(1, 2, 0) return query_encoded def forward(self, queries, keys, query_lens, mask=None, key_lens=None, keys_encoded=None, attn_prior=None): """Attention mechanism for flowtron parallel Unlike in Flowtron, we have no restrictions such as causality etc, since we only need this during training. Args: queries (torch.tensor): B x C x T1 tensor (probably going to be mel data) keys (torch.tensor): B x C2 x T2 tensor (text data) query_lens: lengths for sorting the queries in descending order mask (torch.tensor): uint8 binary mask for variable length entries (should be in the T2 domain) Output: attn (torch.tensor): B x 1 x T1 x T2 attention mask. Final dim T2 should sum to 1 """ keys_enc = self.key_proj(keys) # B x n_attn_dims x T2 # Beware can only do this since query_dim = attn_dim = n_mel_channels if self.use_query_proj: if self.align_query_enc_type == "inv_conv": queries_enc, log_det_W = self.query_proj(queries) elif self.align_query_enc_type == "3xconv": queries_enc = self.query_proj(queries) log_det_W = 0.0 else: queries_enc, log_det_W = self.query_proj(queries) else: queries_enc, log_det_W = queries, 0.0 # different ways of computing attn, # one is isotopic gaussians (per phoneme) # Simplistic Gaussian Isotopic Attention # B x n_attn_dims x T1 x T2 attn = (queries_enc[:, :, :, None] - keys_enc[:, :, None]) ** 2 # compute log likelihood from a gaussian attn = -0.0005 * attn.sum(1, keepdim=True) if attn_prior is not None: attn = self.log_softmax(attn) + torch.log(attn_prior[:, None]+1e-8) attn_logprob = attn.clone() if mask is not None: attn.data.masked_fill_(mask.permute(0, 2, 1).unsqueeze(2), -float("inf")) attn = self.softmax(attn) # Softmax along T2 return attn, attn_logprob
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/attention.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** from typing import Optional import torch from torch import nn as nn from fastpitch.model import TemporalPredictor from fastpitch.transformer_jit import FFTransformer def regulate_len(durations, enc_out, pace: float = 1.0, mel_max_len: Optional[int] = None): """If target=None, then predicted durations are applied""" reps = torch.round(durations.float() / pace).long() dec_lens = reps.sum(dim=1) max_len = dec_lens.max() bsz, _, hid = enc_out.size() reps_padded = torch.cat([reps, (max_len - dec_lens)[:, None]], dim=1) pad_vec = torch.zeros(bsz, 1, hid, dtype=enc_out.dtype, device=enc_out.device) enc_rep = torch.cat([enc_out, pad_vec], dim=1) enc_rep = torch.repeat_interleave( enc_rep.view(-1, hid), reps_padded.view(-1), dim=0 ).view(bsz, -1, hid) if mel_max_len is not None: enc_rep = enc_rep[:, :mel_max_len] dec_lens = torch.clamp_max(dec_lens, mel_max_len) return enc_rep, dec_lens class FastPitchJIT(nn.Module): __constants__ = ['energy_conditioning'] def __init__(self, n_mel_channels, n_symbols, padding_idx, symbols_embedding_dim, in_fft_n_layers, in_fft_n_heads, in_fft_d_head, in_fft_conv1d_kernel_size, in_fft_conv1d_filter_size, in_fft_output_size, p_in_fft_dropout, p_in_fft_dropatt, p_in_fft_dropemb, out_fft_n_layers, out_fft_n_heads, out_fft_d_head, out_fft_conv1d_kernel_size, out_fft_conv1d_filter_size, out_fft_output_size, p_out_fft_dropout, p_out_fft_dropatt, p_out_fft_dropemb, dur_predictor_kernel_size, dur_predictor_filter_size, p_dur_predictor_dropout, dur_predictor_n_layers, pitch_predictor_kernel_size, pitch_predictor_filter_size, p_pitch_predictor_dropout, pitch_predictor_n_layers, pitch_embedding_kernel_size, energy_conditioning, energy_predictor_kernel_size, energy_predictor_filter_size, p_energy_predictor_dropout, energy_predictor_n_layers, energy_embedding_kernel_size, n_speakers, speaker_emb_weight, pitch_conditioning_formants=1): super(FastPitchJIT, self).__init__() self.encoder = FFTransformer( n_layer=in_fft_n_layers, n_head=in_fft_n_heads, d_model=symbols_embedding_dim, d_head=in_fft_d_head, d_inner=in_fft_conv1d_filter_size, kernel_size=in_fft_conv1d_kernel_size, dropout=p_in_fft_dropout, dropatt=p_in_fft_dropatt, dropemb=p_in_fft_dropemb, embed_input=True, d_embed=symbols_embedding_dim, n_embed=n_symbols, padding_idx=padding_idx) if n_speakers > 1: self.speaker_emb = nn.Embedding(n_speakers, symbols_embedding_dim) else: self.speaker_emb = None self.speaker_emb_weight = speaker_emb_weight self.duration_predictor = TemporalPredictor( in_fft_output_size, filter_size=dur_predictor_filter_size, kernel_size=dur_predictor_kernel_size, dropout=p_dur_predictor_dropout, n_layers=dur_predictor_n_layers ) self.decoder = FFTransformer( n_layer=out_fft_n_layers, n_head=out_fft_n_heads, d_model=symbols_embedding_dim, d_head=out_fft_d_head, d_inner=out_fft_conv1d_filter_size, kernel_size=out_fft_conv1d_kernel_size, dropout=p_out_fft_dropout, dropatt=p_out_fft_dropatt, dropemb=p_out_fft_dropemb, embed_input=False, d_embed=symbols_embedding_dim ) self.pitch_predictor = TemporalPredictor( in_fft_output_size, filter_size=pitch_predictor_filter_size, kernel_size=pitch_predictor_kernel_size, dropout=p_pitch_predictor_dropout, n_layers=pitch_predictor_n_layers, n_predictions=pitch_conditioning_formants ) self.pitch_emb = nn.Conv1d( pitch_conditioning_formants, symbols_embedding_dim, kernel_size=pitch_embedding_kernel_size, padding=int((pitch_embedding_kernel_size - 1) / 2)) # Store values precomputed for training data within the model self.register_buffer('pitch_mean', torch.zeros(1)) self.register_buffer('pitch_std', torch.zeros(1)) self.energy_conditioning = energy_conditioning if energy_conditioning: self.energy_predictor = TemporalPredictor( in_fft_output_size, filter_size=energy_predictor_filter_size, kernel_size=energy_predictor_kernel_size, dropout=p_energy_predictor_dropout, n_layers=energy_predictor_n_layers, n_predictions=1 ) self.energy_emb = nn.Conv1d( 1, symbols_embedding_dim, kernel_size=energy_embedding_kernel_size, padding=int((energy_embedding_kernel_size - 1) / 2)) self.proj = nn.Linear(out_fft_output_size, n_mel_channels, bias=True) # skip self.attention (used only in training) def infer(self, inputs, pace: float = 1.0, dur_tgt: Optional[torch.Tensor] = None, pitch_tgt: Optional[torch.Tensor] = None, energy_tgt: Optional[torch.Tensor] = None, speaker: int = 0): if self.speaker_emb is None: spk_emb = None else: speaker = (torch.ones(inputs.size(0)).long().to(inputs.device) * speaker) spk_emb = self.speaker_emb(speaker).unsqueeze(1) spk_emb.mul_(self.speaker_emb_weight) # Input FFT enc_out, enc_mask = self.encoder(inputs, conditioning=spk_emb) # Predict durations log_dur_pred = self.duration_predictor(enc_out, enc_mask).squeeze(-1) dur_pred = torch.clamp(torch.exp(log_dur_pred) - 1, 0, 100.0) # Pitch over chars pitch_pred = self.pitch_predictor(enc_out, enc_mask).permute(0, 2, 1) if pitch_tgt is None: pitch_emb = self.pitch_emb(pitch_pred).transpose(1, 2) else: pitch_emb = self.pitch_emb(pitch_tgt).transpose(1, 2) enc_out = enc_out + pitch_emb # Predict energy if self.energy_conditioning: if energy_tgt is None: energy_pred = self.energy_predictor(enc_out, enc_mask).squeeze(-1) energy_emb = self.energy_emb(energy_pred.unsqueeze(1)).transpose(1, 2) else: energy_pred = None energy_emb = self.energy_emb(energy_tgt).transpose(1, 2) enc_out = enc_out + energy_emb else: energy_pred = None len_regulated, dec_lens = regulate_len( dur_pred if dur_tgt is None else dur_tgt, enc_out, pace, mel_max_len=None) dec_out, dec_mask = self.decoder(len_regulated, dec_lens) mel_out = self.proj(dec_out) # mel_lens = dec_mask.squeeze(2).sum(axis=1).long() mel_out = mel_out.permute(0, 2, 1) # For inference.py return mel_out, dec_lens, dur_pred, pitch_pred, energy_pred
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/model_jit.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from numba import jit, prange @jit(nopython=True) def mas(attn_map, width=1): # assumes mel x text opt = np.zeros_like(attn_map) attn_map = np.log(attn_map) attn_map[0, 1:] = -np.inf log_p = np.zeros_like(attn_map) log_p[0, :] = attn_map[0, :] prev_ind = np.zeros_like(attn_map, dtype=np.int64) for i in range(1, attn_map.shape[0]): for j in range(attn_map.shape[1]): # for each text dim prev_j = np.arange(max(0, j-width), j+1) prev_log = np.array([log_p[i-1, prev_idx] for prev_idx in prev_j]) ind = np.argmax(prev_log) log_p[i, j] = attn_map[i, j] + prev_log[ind] prev_ind[i, j] = prev_j[ind] # now backtrack curr_text_idx = attn_map.shape[1]-1 for i in range(attn_map.shape[0]-1, -1, -1): opt[i, curr_text_idx] = 1 curr_text_idx = prev_ind[i, curr_text_idx] opt[0, curr_text_idx] = 1 return opt @jit(nopython=True) def mas_width1(attn_map): """mas with hardcoded width=1""" # assumes mel x text opt = np.zeros_like(attn_map) attn_map = np.log(attn_map) attn_map[0, 1:] = -np.inf log_p = np.zeros_like(attn_map) log_p[0, :] = attn_map[0, :] prev_ind = np.zeros_like(attn_map, dtype=np.int64) for i in range(1, attn_map.shape[0]): for j in range(attn_map.shape[1]): # for each text dim prev_log = log_p[i-1, j] prev_j = j if j-1 >= 0 and log_p[i-1, j-1] >= log_p[i-1, j]: prev_log = log_p[i-1, j-1] prev_j = j-1 log_p[i, j] = attn_map[i, j] + prev_log prev_ind[i, j] = prev_j # now backtrack curr_text_idx = attn_map.shape[1]-1 for i in range(attn_map.shape[0]-1, -1, -1): opt[i, curr_text_idx] = 1 curr_text_idx = prev_ind[i, curr_text_idx] opt[0, curr_text_idx] = 1 return opt @jit(nopython=True, parallel=True) def b_mas(b_attn_map, in_lens, out_lens, width=1): assert width == 1 attn_out = np.zeros_like(b_attn_map) for b in prange(b_attn_map.shape[0]): out = mas_width1(b_attn_map[b, 0, :out_lens[b], :in_lens[b]]) attn_out[b, 0, :out_lens[b], :in_lens[b]] = out return attn_out
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/alignment.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch def pitch_transform_custom(pitch, pitch_lens): """Apply a custom pitch transformation to predicted pitch values. This sample modification linearly increases the pitch throughout the utterance from 0.5 of predicted pitch to 1.5 of predicted pitch. In other words, it starts low and ends high. PARAMS ------ pitch: torch.Tensor (bs, max_len) Predicted pitch values for each lexical unit, padded to max_len (in Hz). pitch_lens: torch.Tensor (bs, max_len) Number of lexical units in each utterance. RETURNS ------- pitch: torch.Tensor Modified pitch (in Hz). """ weights = torch.arange(pitch.size(1), dtype=torch.float32, device=pitch.device) # The weights increase linearly from 0.0 to 1.0 in every i-th row # in the range (0, pitch_lens[i]) weights = weights.unsqueeze(0) / pitch_lens.unsqueeze(1) # Shift the range from (0.0, 1.0) to (0.5, 1.5) weights += 0.5 return pitch * weights
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/pitch_transform.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional import torch import torch.nn as nn import torch.nn.functional as F from common.utils import mask_from_lens class PositionalEmbedding(nn.Module): def __init__(self, demb): super(PositionalEmbedding, self).__init__() self.demb = demb inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) self.register_buffer('inv_freq', inv_freq) def forward(self, pos_seq, bsz: Optional[int] = None): sinusoid_inp = torch.ger(pos_seq, self.inv_freq) pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=1) if bsz is not None: return pos_emb[None, :, :].expand(bsz, -1, -1) else: return pos_emb[None, :, :] class PositionwiseFF(nn.Module): def __init__(self, d_model, d_inner, dropout, pre_lnorm=False): super(PositionwiseFF, self).__init__() self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.CoreNet = nn.Sequential( nn.Linear(d_model, d_inner), nn.ReLU(), nn.Dropout(dropout), nn.Linear(d_inner, d_model), nn.Dropout(dropout), ) self.layer_norm = nn.LayerNorm(d_model) self.pre_lnorm = pre_lnorm def forward(self, inp): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = self.CoreNet(self.layer_norm(inp)) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = self.CoreNet(inp) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class PositionwiseConvFF(nn.Module): def __init__(self, d_model, d_inner, kernel_size, dropout, pre_lnorm=False): super(PositionwiseConvFF, self).__init__() self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.CoreNet = nn.Sequential( nn.Conv1d(d_model, d_inner, kernel_size, 1, (kernel_size // 2)), nn.ReLU(), # nn.Dropout(dropout), # worse convergence nn.Conv1d(d_inner, d_model, kernel_size, 1, (kernel_size // 2)), nn.Dropout(dropout), ) self.layer_norm = nn.LayerNorm(d_model) self.pre_lnorm = pre_lnorm def forward(self, inp): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = inp.transpose(1, 2) core_out = self.CoreNet(self.layer_norm(core_out)) core_out = core_out.transpose(1, 2) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = inp.transpose(1, 2) core_out = self.CoreNet(core_out) core_out = core_out.transpose(1, 2) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class MultiHeadAttn(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super(MultiHeadAttn, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / (d_head ** 0.5) self.dropout = dropout self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def forward(self, inp, attn_mask: Optional[torch.Tensor] = None): residual = inp if self.pre_lnorm: # layer normalization inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=-1) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask, -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view( inp.size(0), inp.size(1), n_head * d_head) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: # residual connection output = residual + attn_out else: # residual connection + layer normalization # XXX Running TorchScript on 20.02 and 20.03 containers crashes here # XXX Works well with 20.01-py3 container. # XXX dirty fix is: # XXX output = self.layer_norm(residual + attn_out).half() output = self.layer_norm(residual + attn_out) return output class TransformerLayer(nn.Module): def __init__(self, n_head, d_model, d_head, d_inner, kernel_size, dropout, **kwargs): super(TransformerLayer, self).__init__() self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs) self.pos_ff = PositionwiseConvFF(d_model, d_inner, kernel_size, dropout, pre_lnorm=kwargs.get('pre_lnorm')) def forward(self, dec_inp, mask): output = self.dec_attn(dec_inp, attn_mask=~mask.squeeze(2)) output *= mask output = self.pos_ff(output) output *= mask return output class FFTransformer(nn.Module): def __init__(self, n_layer, n_head, d_model, d_head, d_inner, kernel_size, dropout, dropatt, dropemb=0.0, embed_input=True, n_embed=None, d_embed=None, padding_idx=0, pre_lnorm=False): super(FFTransformer, self).__init__() self.d_model = d_model self.n_head = n_head self.d_head = d_head self.padding_idx = padding_idx self.n_embed = n_embed self.embed_input = embed_input if embed_input: self.word_emb = nn.Embedding(n_embed, d_embed or d_model, padding_idx=self.padding_idx) else: self.word_emb = nn.Identity() self.pos_emb = PositionalEmbedding(self.d_model) self.drop = nn.Dropout(dropemb) self.layers = nn.ModuleList() for _ in range(n_layer): self.layers.append( TransformerLayer( n_head, d_model, d_head, d_inner, kernel_size, dropout, dropatt=dropatt, pre_lnorm=pre_lnorm) ) def forward(self, dec_inp, seq_lens: Optional[torch.Tensor] = None, conditioning: Optional[torch.Tensor] = None): if not self.embed_input: inp = dec_inp assert seq_lens is not None mask = mask_from_lens(seq_lens).unsqueeze(2) else: inp = self.word_emb(dec_inp) # [bsz x L x 1] mask = (dec_inp != self.padding_idx).unsqueeze(2) pos_seq = torch.arange(inp.size(1), device=inp.device, dtype=inp.dtype) pos_emb = self.pos_emb(pos_seq) * mask if conditioning is not None: out = self.drop(inp + pos_emb + conditioning) else: out = self.drop(inp + pos_emb) for layer in self.layers: out = layer(out, mask=mask) # out = self.drop(out) return out, mask
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/transformer_jit.py
from .entrypoints import nvidia_fastpitch, nvidia_textprocessing_utils
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/__init__.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from pathlib import Path import numpy as np import torch from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm from common.text import cmudict from common.utils import init_distributed, prepare_tmp from fastpitch.data_function import batch_to_gpu, TTSCollate, TTSDataset from inference import CHECKPOINT_SPECIFIC_ARGS from models import load_and_setup_model def parse_args(parser): parser.add_argument('-o', '--output', type=str, required=True, help='Directory to save checkpoints') parser.add_argument('-d', '--dataset-path', type=str, default='./', help='Path to dataset') general = parser.add_argument_group('general setup') general.add_argument('--checkpoint-path', type=str, required=True, help='Checkpoint path to fastpitch model') general.add_argument('--resume', action='store_true', help='Load last checkpoint from training') general.add_argument('--amp', action='store_true', help='Enable AMP') general.add_argument('--cuda', action='store_true', help='Run on GPU using CUDA') general.add_argument('--cudnn-benchmark', action='store_true', help='Enable cudnn benchmark mode') general.add_argument('-bs', '--batch-size', type=int, required=True, help='Batch size per GPU') data = parser.add_argument_group('dataset parameters') data.add_argument('--dataset-files', type=str, nargs='*', required=True, help='Paths to dataset filelists.') data.add_argument('--text-cleaners', nargs='*', default=['english_cleaners'], type=str, help='Type of text cleaners for input text') data.add_argument('--symbol-set', type=str, default='english_basic', help='Define symbol set for input text') data.add_argument('--p-arpabet', type=float, default=0.0, help='Probability of using arpabets instead of graphemes ' 'for each word; set 0 for pure grapheme training') data.add_argument('--heteronyms-path', type=str, default='data/cmudict/heteronyms', help='Path to the list of heteronyms') data.add_argument('--cmudict-path', type=str, default='data/cmudict/cmudict-0.7b', help='Path to the pronouncing dictionary') data.add_argument('--prepend-space-to-text', action='store_true', help='Capture leading silence with a space token') data.add_argument('--append-space-to-text', action='store_true', help='Capture trailing silence with a space token') cond = parser.add_argument_group('data for conditioning') cond.add_argument('--load-pitch-from-disk', action='store_true', help='Use pitch cached on disk with prepare_dataset.py') cond.add_argument('--pitch-online-method', default='pyin', choices=['pyin'], help='Calculate pitch on the fly during trainig') cond.add_argument('--pitch-online-dir', type=str, default=None, help='A directory for storing pitch calculated on-line') audio = parser.add_argument_group('audio parameters') audio.add_argument('--max-wav-value', default=32768.0, type=float, help='Maximum audiowave value') audio.add_argument('--sampling-rate', default=22050, type=int, help='Sampling rate') audio.add_argument('--filter-length', default=1024, type=int, help='Filter length') audio.add_argument('--hop-length', default=256, type=int, help='Hop (stride) length') audio.add_argument('--win-length', default=1024, type=int, help='Window length') audio.add_argument('--mel-fmin', default=0.0, type=float, help='Minimum mel frequency') audio.add_argument('--mel-fmax', default=8000.0, type=float, help='Maximum mel frequency') dist = parser.add_argument_group('distributed setup') dist.add_argument('--local_rank', type=int, default=os.getenv('LOCAL_RANK', 0), help='Rank of the process for multiproc; do not set manually') dist.add_argument('--world_size', type=int, default=os.getenv('WORLD_SIZE', 1), help='Number of processes for multiproc; do not set manually') return parser def main(): parser = argparse.ArgumentParser( description='FastPitch spectrogram extraction', allow_abbrev=False) parser = parse_args(parser) args, unk_args = parser.parse_known_args() torch.backends.cudnn.benchmark = args.cudnn_benchmark model, model_config, train_setup = load_and_setup_model( 'FastPitch', parser, args.checkpoint_path, args.amp, unk_args=unk_args, device=torch.device('cuda' if args.cuda else 'cpu')) if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') # use train_setup loaded from the checkpoint (sampling_rate, symbol_set, etc.) for k in CHECKPOINT_SPECIFIC_ARGS: if k in train_setup and getattr(args, k) != train_setup[k]: v = train_setup[k] print(f'Overwriting args.{k}={getattr(args, k)} with {v} ' f'from {args.checkpoint_path} checkpoint') setattr(args, k, v) if args.p_arpabet > 0.0: cmudict.initialize(args.cmudict_path, args.heteronyms_path) distributed_run = args.world_size > 1 if distributed_run: init_distributed(args, args.world_size, args.local_rank) model = DDP(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) if args.local_rank == 0: Path(args.output).mkdir(exist_ok=True, parents=True) prepare_tmp(args.pitch_online_dir) args.n_speakers = model_config['n_speakers'] args.n_mel_channels = model_config['n_mel_channels'] trainset = TTSDataset(audiopaths_and_text=args.dataset_files, load_mel_from_disk=False, **vars(args)) dataset_loader = DataLoader( trainset, num_workers=16, shuffle=False, batch_size=args.batch_size, sampler=(DistributedSampler(trainset) if distributed_run else None), pin_memory=True, drop_last=False, collate_fn=TTSCollate()) with torch.no_grad(): for batch in tqdm(dataset_loader, 'Extracting mels'): x, y, num_frames = batch_to_gpu(batch) _, _, _, mel_lens, *_, audiopaths = x with torch.cuda.amp.autocast(enabled=args.amp): mel_out, *_ = model(x, use_gt_pitch=True) mel_out = mel_out.transpose(1, 2) assert mel_out.size(1) == args.n_mel_channels, mel_out.shape for apath, mel, len_ in zip(audiopaths, mel_out, mel_lens): np.save(Path(args.output, Path(apath).stem + '.npy'), mel[:, :len_.item()].cpu().numpy()) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/extract_mels.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import functools import json import re from pathlib import Path import librosa import numpy as np import torch import torch.nn.functional as F from scipy import ndimage from scipy.stats import betabinom import common.layers as layers from common.text.text_processing import TextProcessing from common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu class BetaBinomialInterpolator: """Interpolates alignment prior matrices to save computation. Calculating beta-binomial priors is costly. Instead cache popular sizes and use img interpolation to get priors faster. """ def __init__(self, round_mel_len_to=100, round_text_len_to=20): self.round_mel_len_to = round_mel_len_to self.round_text_len_to = round_text_len_to self.bank = functools.lru_cache(beta_binomial_prior_distribution) def round(self, val, to): return max(1, int(np.round((val + 1) / to))) * to def __call__(self, w, h): bw = self.round(w, to=self.round_mel_len_to) bh = self.round(h, to=self.round_text_len_to) ret = ndimage.zoom(self.bank(bw, bh).T, zoom=(w / bw, h / bh), order=1) assert ret.shape[0] == w, ret.shape assert ret.shape[1] == h, ret.shape return ret def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling=1.0): P = phoneme_count M = mel_count x = np.arange(0, P) mel_text_probs = [] for i in range(1, M+1): a, b = scaling * i, scaling * (M + 1 - i) rv = betabinom(P, a, b) mel_i_prob = rv.pmf(x) mel_text_probs.append(mel_i_prob) return torch.tensor(np.array(mel_text_probs)) def estimate_pitch(wav, mel_len, method='pyin', normalize_mean=None, normalize_std=None, n_formants=1): if type(normalize_mean) is float or type(normalize_mean) is list: normalize_mean = torch.tensor(normalize_mean) if type(normalize_std) is float or type(normalize_std) is list: normalize_std = torch.tensor(normalize_std) if method == 'pyin': snd, sr = librosa.load(wav) pitch_mel, voiced_flag, voiced_probs = librosa.pyin( snd, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'), frame_length=1024) assert np.abs(mel_len - pitch_mel.shape[0]) <= 1.0 pitch_mel = np.where(np.isnan(pitch_mel), 0.0, pitch_mel) pitch_mel = torch.from_numpy(pitch_mel).unsqueeze(0) pitch_mel = F.pad(pitch_mel, (0, mel_len - pitch_mel.size(1))) if n_formants > 1: raise NotImplementedError else: raise ValueError pitch_mel = pitch_mel.float() if normalize_mean is not None: assert normalize_std is not None pitch_mel = normalize_pitch(pitch_mel, normalize_mean, normalize_std) return pitch_mel def normalize_pitch(pitch, mean, std): zeros = (pitch == 0.0) pitch -= mean[:, None] pitch /= std[:, None] pitch[zeros] = 0.0 return pitch class TTSDataset(torch.utils.data.Dataset): """ 1) loads audio,text pairs 2) normalizes text and converts them to sequences of one-hot vectors 3) computes mel-spectrograms from audio files. """ def __init__(self, dataset_path, audiopaths_and_text, text_cleaners, n_mel_channels, symbol_set='english_basic', p_arpabet=1.0, n_speakers=1, load_mel_from_disk=True, load_pitch_from_disk=True, pitch_mean=214.72203, # LJSpeech defaults pitch_std=65.72038, max_wav_value=None, sampling_rate=None, filter_length=None, hop_length=None, win_length=None, mel_fmin=None, mel_fmax=None, prepend_space_to_text=False, append_space_to_text=False, pitch_online_dir=None, betabinomial_online_dir=None, use_betabinomial_interpolator=True, pitch_online_method='pyin', **ignored): # Expect a list of filenames if type(audiopaths_and_text) is str: audiopaths_and_text = [audiopaths_and_text] self.dataset_path = dataset_path self.audiopaths_and_text = load_filepaths_and_text( dataset_path, audiopaths_and_text, has_speakers=(n_speakers > 1)) self.load_mel_from_disk = load_mel_from_disk if not load_mel_from_disk: self.max_wav_value = max_wav_value self.sampling_rate = sampling_rate self.stft = layers.TacotronSTFT( filter_length, hop_length, win_length, n_mel_channels, sampling_rate, mel_fmin, mel_fmax) self.load_pitch_from_disk = load_pitch_from_disk self.prepend_space_to_text = prepend_space_to_text self.append_space_to_text = append_space_to_text assert p_arpabet == 0.0 or p_arpabet == 1.0, ( 'Only 0.0 and 1.0 p_arpabet is currently supported. ' 'Variable probability breaks caching of betabinomial matrices.') self.tp = TextProcessing(symbol_set, text_cleaners, p_arpabet=p_arpabet) self.n_speakers = n_speakers self.pitch_tmp_dir = pitch_online_dir self.f0_method = pitch_online_method self.betabinomial_tmp_dir = betabinomial_online_dir self.use_betabinomial_interpolator = use_betabinomial_interpolator if use_betabinomial_interpolator: self.betabinomial_interpolator = BetaBinomialInterpolator() expected_columns = (2 + int(load_pitch_from_disk) + (n_speakers > 1)) assert not (load_pitch_from_disk and self.pitch_tmp_dir is not None) if len(self.audiopaths_and_text[0]) < expected_columns: raise ValueError(f'Expected {expected_columns} columns in audiopaths file. ' 'The format is <mel_or_wav>|[<pitch>|]<text>[|<speaker_id>]') if len(self.audiopaths_and_text[0]) > expected_columns: print('WARNING: Audiopaths file has more columns than expected') to_tensor = lambda x: torch.Tensor([x]) if type(x) is float else x self.pitch_mean = to_tensor(pitch_mean) self.pitch_std = to_tensor(pitch_std) def __getitem__(self, index): # Separate filename and text if self.n_speakers > 1: audiopath, *extra, text, speaker = self.audiopaths_and_text[index] speaker = int(speaker) else: audiopath, *extra, text = self.audiopaths_and_text[index] speaker = None pitch = None mel = self.get_mel(audiopath) text = self.get_text(text) energy = torch.norm(mel.float(), dim=0, p=2) attn_prior = self.get_prior(index, mel.shape[1], text.shape[0]) if self.f0_method is not None: pitch = self.get_pitch(index, mel.size(-1)) assert pitch.size(-1) == mel.size(-1) # No higher formants? if len(pitch.size()) == 1: pitch = pitch[None, :] return (text, mel, len(text), pitch, energy, speaker, attn_prior, audiopath) def __len__(self): return len(self.audiopaths_and_text) def get_mel(self, filename): if not self.load_mel_from_disk: audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate)) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) melspec = self.stft.mel_spectrogram(audio_norm) melspec = torch.squeeze(melspec, 0) else: melspec = torch.load(filename) # assert melspec.size(0) == self.stft.n_mel_channels, ( # 'Mel dimension mismatch: given {}, expected {}'.format( # melspec.size(0), self.stft.n_mel_channels)) return melspec def get_text(self, text): text = self.tp.encode_text(text) space = [self.tp.encode_text("A A")[1]] if self.prepend_space_to_text: text = space + text if self.append_space_to_text: text = text + space return torch.LongTensor(text) def get_prior(self, index, mel_len, text_len): if self.use_betabinomial_interpolator: return torch.from_numpy(self.betabinomial_interpolator(mel_len, text_len)) if self.betabinomial_tmp_dir is not None: audiopath, *_ = self.audiopaths_and_text[index] fname = Path(audiopath).relative_to(self.dataset_path) fname = fname.with_suffix('.pt') cached_fpath = Path(self.betabinomial_tmp_dir, fname) if cached_fpath.is_file(): return torch.load(cached_fpath) attn_prior = beta_binomial_prior_distribution(text_len, mel_len) if self.betabinomial_tmp_dir is not None: cached_fpath.parent.mkdir(parents=True, exist_ok=True) torch.save(attn_prior, cached_fpath) return attn_prior def get_pitch(self, index, mel_len=None): audiopath, *fields = self.audiopaths_and_text[index] if self.n_speakers > 1: spk = int(fields[-1]) else: spk = 0 if self.load_pitch_from_disk: pitchpath = fields[0] pitch = torch.load(pitchpath) if self.pitch_mean is not None: assert self.pitch_std is not None pitch = normalize_pitch(pitch, self.pitch_mean, self.pitch_std) return pitch if self.pitch_tmp_dir is not None: fname = Path(audiopath).relative_to(self.dataset_path) fname_method = fname.with_suffix('.pt') cached_fpath = Path(self.pitch_tmp_dir, fname_method) if cached_fpath.is_file(): return torch.load(cached_fpath) # No luck so far - calculate wav = audiopath if not wav.endswith('.wav'): wav = re.sub('/mels/', '/wavs/', wav) wav = re.sub('.pt$', '.wav', wav) pitch_mel = estimate_pitch(wav, mel_len, self.f0_method, self.pitch_mean, self.pitch_std) if self.pitch_tmp_dir is not None and not cached_fpath.is_file(): cached_fpath.parent.mkdir(parents=True, exist_ok=True) torch.save(pitch_mel, cached_fpath) return pitch_mel class TTSCollate: """Zero-pads model inputs and targets based on number of frames per step""" def __call__(self, batch): """Collate training batch from normalized text and mel-spec""" # Right zero-pad all one-hot text sequences to max input length input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([len(x[0]) for x in batch]), dim=0, descending=True) max_input_len = input_lengths[0] text_padded = torch.LongTensor(len(batch), max_input_len) text_padded.zero_() for i in range(len(ids_sorted_decreasing)): text = batch[ids_sorted_decreasing[i]][0] text_padded[i, :text.size(0)] = text # Right zero-pad mel-spec num_mels = batch[0][1].size(0) max_target_len = max([x[1].size(1) for x in batch]) # Include mel padded and gate padded mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len) mel_padded.zero_() output_lengths = torch.LongTensor(len(batch)) for i in range(len(ids_sorted_decreasing)): mel = batch[ids_sorted_decreasing[i]][1] mel_padded[i, :, :mel.size(1)] = mel output_lengths[i] = mel.size(1) has_pitch = batch[0][3] is not None if has_pitch: n_formants = batch[0][3].shape[0] pitch_padded = torch.zeros(mel_padded.size(0), n_formants, mel_padded.size(2), dtype=batch[0][3].dtype) else: pitch_padded = None energy_padded = torch.zeros(mel_padded.size(0), mel_padded.size(2), dtype=mel_padded.dtype) for i in range(len(ids_sorted_decreasing)): if has_pitch: pitch = batch[ids_sorted_decreasing[i]][3] pitch_padded[i, :, :pitch.shape[1]] = pitch energy = batch[ids_sorted_decreasing[i]][4] energy_padded[i, :energy.shape[0]] = energy if batch[0][5] is not None: speaker = torch.zeros_like(input_lengths) for i in range(len(ids_sorted_decreasing)): speaker[i] = batch[ids_sorted_decreasing[i]][5] else: speaker = None attn_prior_padded = torch.zeros(len(batch), max_target_len, max_input_len) attn_prior_padded.zero_() for i in range(len(ids_sorted_decreasing)): prior = batch[ids_sorted_decreasing[i]][6] attn_prior_padded[i, :prior.size(0), :prior.size(1)] = prior # Count number of items - characters in text len_x = [x[2] for x in batch] len_x = torch.Tensor(len_x) audiopaths = [batch[i][7] for i in ids_sorted_decreasing] return (text_padded, input_lengths, mel_padded, output_lengths, len_x, pitch_padded, energy_padded, speaker, attn_prior_padded, audiopaths) def batch_to_gpu(batch): (text_padded, input_lengths, mel_padded, output_lengths, len_x, pitch_padded, energy_padded, speaker, attn_prior, audiopaths) = batch text_padded = to_gpu(text_padded).long() input_lengths = to_gpu(input_lengths).long() mel_padded = to_gpu(mel_padded).float() output_lengths = to_gpu(output_lengths).long() if pitch_padded is not None: pitch_padded = to_gpu(pitch_padded).float() energy_padded = to_gpu(energy_padded).float() attn_prior = to_gpu(attn_prior).float() if speaker is not None: speaker = to_gpu(speaker).long() # Alignments act as both inputs and targets - pass shallow copies x = [text_padded, input_lengths, mel_padded, output_lengths, pitch_padded, energy_padded, speaker, attn_prior, audiopaths] y = [mel_padded, input_lengths, output_lengths] len_x = torch.sum(output_lengths) return (x, y, len_x)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/data_function.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from common.layers import ConvReLUNorm from common.utils import mask_from_lens from fastpitch.alignment import b_mas, mas_width1 from fastpitch.attention import ConvAttention from fastpitch.transformer import FFTransformer def regulate_len(durations, enc_out, pace: float = 1.0, mel_max_len: Optional[int] = None): """If target=None, then predicted durations are applied""" dtype = enc_out.dtype reps = durations.float() / pace reps = (reps + 0.5).long() dec_lens = reps.sum(dim=1) max_len = dec_lens.max() reps_cumsum = torch.cumsum(F.pad(reps, (1, 0, 0, 0), value=0.0), dim=1)[:, None, :] reps_cumsum = reps_cumsum.to(dtype) range_ = torch.arange(max_len).to(enc_out.device)[None, :, None] mult = ((reps_cumsum[:, :, :-1] <= range_) & (reps_cumsum[:, :, 1:] > range_)) mult = mult.to(dtype) enc_rep = torch.matmul(mult, enc_out) if mel_max_len is not None: enc_rep = enc_rep[:, :mel_max_len] dec_lens = torch.clamp_max(dec_lens, mel_max_len) return enc_rep, dec_lens def average_pitch(pitch, durs): durs_cums_ends = torch.cumsum(durs, dim=1).long() durs_cums_starts = F.pad(durs_cums_ends[:, :-1], (1, 0)) pitch_nonzero_cums = F.pad(torch.cumsum(pitch != 0.0, dim=2), (1, 0)) pitch_cums = F.pad(torch.cumsum(pitch, dim=2), (1, 0)) bs, l = durs_cums_ends.size() n_formants = pitch.size(1) dcs = durs_cums_starts[:, None, :].expand(bs, n_formants, l) dce = durs_cums_ends[:, None, :].expand(bs, n_formants, l) pitch_sums = (torch.gather(pitch_cums, 2, dce) - torch.gather(pitch_cums, 2, dcs)).float() pitch_nelems = (torch.gather(pitch_nonzero_cums, 2, dce) - torch.gather(pitch_nonzero_cums, 2, dcs)).float() pitch_avg = torch.where(pitch_nelems == 0.0, pitch_nelems, pitch_sums / pitch_nelems) return pitch_avg class TemporalPredictor(nn.Module): """Predicts a single float per each temporal location""" def __init__(self, input_size, filter_size, kernel_size, dropout, n_layers=2, n_predictions=1): super(TemporalPredictor, self).__init__() self.layers = nn.Sequential(*[ ConvReLUNorm(input_size if i == 0 else filter_size, filter_size, kernel_size=kernel_size, dropout=dropout) for i in range(n_layers)] ) self.n_predictions = n_predictions self.fc = nn.Linear(filter_size, self.n_predictions, bias=True) def forward(self, enc_out, enc_out_mask): out = enc_out * enc_out_mask out = self.layers(out.transpose(1, 2)).transpose(1, 2) out = self.fc(out) * enc_out_mask return out class FastPitch(nn.Module): def __init__(self, n_mel_channels, n_symbols, padding_idx, symbols_embedding_dim, in_fft_n_layers, in_fft_n_heads, in_fft_d_head, in_fft_conv1d_kernel_size, in_fft_conv1d_filter_size, in_fft_output_size, p_in_fft_dropout, p_in_fft_dropatt, p_in_fft_dropemb, out_fft_n_layers, out_fft_n_heads, out_fft_d_head, out_fft_conv1d_kernel_size, out_fft_conv1d_filter_size, out_fft_output_size, p_out_fft_dropout, p_out_fft_dropatt, p_out_fft_dropemb, dur_predictor_kernel_size, dur_predictor_filter_size, p_dur_predictor_dropout, dur_predictor_n_layers, pitch_predictor_kernel_size, pitch_predictor_filter_size, p_pitch_predictor_dropout, pitch_predictor_n_layers, pitch_embedding_kernel_size, energy_conditioning, energy_predictor_kernel_size, energy_predictor_filter_size, p_energy_predictor_dropout, energy_predictor_n_layers, energy_embedding_kernel_size, n_speakers, speaker_emb_weight, pitch_conditioning_formants=1): super(FastPitch, self).__init__() self.encoder = FFTransformer( n_layer=in_fft_n_layers, n_head=in_fft_n_heads, d_model=symbols_embedding_dim, d_head=in_fft_d_head, d_inner=in_fft_conv1d_filter_size, kernel_size=in_fft_conv1d_kernel_size, dropout=p_in_fft_dropout, dropatt=p_in_fft_dropatt, dropemb=p_in_fft_dropemb, embed_input=True, d_embed=symbols_embedding_dim, n_embed=n_symbols, padding_idx=padding_idx) if n_speakers > 1: self.speaker_emb = nn.Embedding(n_speakers, symbols_embedding_dim) else: self.speaker_emb = None self.speaker_emb_weight = speaker_emb_weight self.duration_predictor = TemporalPredictor( in_fft_output_size, filter_size=dur_predictor_filter_size, kernel_size=dur_predictor_kernel_size, dropout=p_dur_predictor_dropout, n_layers=dur_predictor_n_layers ) self.decoder = FFTransformer( n_layer=out_fft_n_layers, n_head=out_fft_n_heads, d_model=symbols_embedding_dim, d_head=out_fft_d_head, d_inner=out_fft_conv1d_filter_size, kernel_size=out_fft_conv1d_kernel_size, dropout=p_out_fft_dropout, dropatt=p_out_fft_dropatt, dropemb=p_out_fft_dropemb, embed_input=False, d_embed=symbols_embedding_dim ) self.pitch_predictor = TemporalPredictor( in_fft_output_size, filter_size=pitch_predictor_filter_size, kernel_size=pitch_predictor_kernel_size, dropout=p_pitch_predictor_dropout, n_layers=pitch_predictor_n_layers, n_predictions=pitch_conditioning_formants ) self.pitch_emb = nn.Conv1d( pitch_conditioning_formants, symbols_embedding_dim, kernel_size=pitch_embedding_kernel_size, padding=int((pitch_embedding_kernel_size - 1) / 2)) # Store values precomputed for training data within the model self.register_buffer('pitch_mean', torch.zeros(1)) self.register_buffer('pitch_std', torch.zeros(1)) self.energy_conditioning = energy_conditioning if energy_conditioning: self.energy_predictor = TemporalPredictor( in_fft_output_size, filter_size=energy_predictor_filter_size, kernel_size=energy_predictor_kernel_size, dropout=p_energy_predictor_dropout, n_layers=energy_predictor_n_layers, n_predictions=1 ) self.energy_emb = nn.Conv1d( 1, symbols_embedding_dim, kernel_size=energy_embedding_kernel_size, padding=int((energy_embedding_kernel_size - 1) / 2)) self.proj = nn.Linear(out_fft_output_size, n_mel_channels, bias=True) self.attention = ConvAttention( n_mel_channels, 0, symbols_embedding_dim, use_query_proj=True, align_query_enc_type='3xconv') def binarize_attention(self, attn, in_lens, out_lens): """For training purposes only. Binarizes attention with MAS. These will no longer recieve a gradient. Args: attn: B x 1 x max_mel_len x max_text_len """ b_size = attn.shape[0] with torch.no_grad(): attn_cpu = attn.data.cpu().numpy() attn_out = torch.zeros_like(attn) for ind in range(b_size): hard_attn = mas_width1( attn_cpu[ind, 0, :out_lens[ind], :in_lens[ind]]) attn_out[ind, 0, :out_lens[ind], :in_lens[ind]] = torch.tensor( hard_attn, device=attn.get_device()) return attn_out def binarize_attention_parallel(self, attn, in_lens, out_lens): """For training purposes only. Binarizes attention with MAS. These will no longer recieve a gradient. Args: attn: B x 1 x max_mel_len x max_text_len """ with torch.no_grad(): attn_cpu = attn.data.cpu().numpy() attn_out = b_mas(attn_cpu, in_lens.cpu().numpy(), out_lens.cpu().numpy(), width=1) return torch.from_numpy(attn_out).to(attn.get_device()) def forward(self, inputs, use_gt_pitch=True, pace=1.0, max_duration=75): (inputs, input_lens, mel_tgt, mel_lens, pitch_dense, energy_dense, speaker, attn_prior, audiopaths) = inputs mel_max_len = mel_tgt.size(2) # Calculate speaker embedding if self.speaker_emb is None: spk_emb = 0 else: spk_emb = self.speaker_emb(speaker).unsqueeze(1) spk_emb.mul_(self.speaker_emb_weight) # Input FFT enc_out, enc_mask = self.encoder(inputs, conditioning=spk_emb) # Alignment text_emb = self.encoder.word_emb(inputs) # make sure to do the alignments before folding attn_mask = mask_from_lens(input_lens)[..., None] == 0 # attn_mask should be 1 for unused timesteps in the text_enc_w_spkvec tensor attn_soft, attn_logprob = self.attention( mel_tgt, text_emb.permute(0, 2, 1), mel_lens, attn_mask, key_lens=input_lens, keys_encoded=enc_out, attn_prior=attn_prior) attn_hard = self.binarize_attention_parallel( attn_soft, input_lens, mel_lens) # Viterbi --> durations attn_hard_dur = attn_hard.sum(2)[:, 0, :] dur_tgt = attn_hard_dur assert torch.all(torch.eq(dur_tgt.sum(dim=1), mel_lens)) # Predict durations log_dur_pred = self.duration_predictor(enc_out, enc_mask).squeeze(-1) dur_pred = torch.clamp(torch.exp(log_dur_pred) - 1, 0, max_duration) # Predict pitch pitch_pred = self.pitch_predictor(enc_out, enc_mask).permute(0, 2, 1) # Average pitch over characters pitch_tgt = average_pitch(pitch_dense, dur_tgt) if use_gt_pitch and pitch_tgt is not None: pitch_emb = self.pitch_emb(pitch_tgt) else: pitch_emb = self.pitch_emb(pitch_pred) enc_out = enc_out + pitch_emb.transpose(1, 2) # Predict energy if self.energy_conditioning: energy_pred = self.energy_predictor(enc_out, enc_mask).squeeze(-1) # Average energy over characters energy_tgt = average_pitch(energy_dense.unsqueeze(1), dur_tgt) energy_tgt = torch.log(1.0 + energy_tgt) energy_emb = self.energy_emb(energy_tgt) energy_tgt = energy_tgt.squeeze(1) enc_out = enc_out + energy_emb.transpose(1, 2) else: energy_pred = None energy_tgt = None len_regulated, dec_lens = regulate_len( dur_tgt, enc_out, pace, mel_max_len) # Output FFT dec_out, dec_mask = self.decoder(len_regulated, dec_lens) mel_out = self.proj(dec_out) return (mel_out, dec_mask, dur_pred, log_dur_pred, pitch_pred, pitch_tgt, energy_pred, energy_tgt, attn_soft, attn_hard, attn_hard_dur, attn_logprob) def infer(self, inputs, pace=1.0, dur_tgt=None, pitch_tgt=None, energy_tgt=None, pitch_transform=None, max_duration=75, speaker=0): if self.speaker_emb is None: spk_emb = 0 else: speaker = (torch.ones(inputs.size(0)).long().to(inputs.device) * speaker) spk_emb = self.speaker_emb(speaker).unsqueeze(1) spk_emb.mul_(self.speaker_emb_weight) # Input FFT enc_out, enc_mask = self.encoder(inputs, conditioning=spk_emb) # Predict durations log_dur_pred = self.duration_predictor(enc_out, enc_mask).squeeze(-1) dur_pred = torch.clamp(torch.exp(log_dur_pred) - 1, 0, max_duration) # Pitch over chars pitch_pred = self.pitch_predictor(enc_out, enc_mask).permute(0, 2, 1) if pitch_transform is not None: if self.pitch_std[0] == 0.0: # XXX LJSpeech-1.1 defaults mean, std = 218.14, 67.24 else: mean, std = self.pitch_mean[0], self.pitch_std[0] pitch_pred = pitch_transform(pitch_pred, enc_mask.sum(dim=(1,2)), mean, std) if pitch_tgt is None: pitch_emb = self.pitch_emb(pitch_pred).transpose(1, 2) else: pitch_emb = self.pitch_emb(pitch_tgt).transpose(1, 2) enc_out = enc_out + pitch_emb # Predict energy if self.energy_conditioning: if energy_tgt is None: energy_pred = self.energy_predictor(enc_out, enc_mask).squeeze(-1) energy_emb = self.energy_emb(energy_pred.unsqueeze(1)).transpose(1, 2) else: energy_emb = self.energy_emb(energy_tgt).transpose(1, 2) enc_out = enc_out + energy_emb else: energy_pred = None len_regulated, dec_lens = regulate_len( dur_pred if dur_tgt is None else dur_tgt, enc_out, pace, mel_max_len=None) dec_out, dec_mask = self.decoder(len_regulated, dec_lens) mel_out = self.proj(dec_out) # mel_lens = dec_mask.squeeze(2).sum(axis=1).long() mel_out = mel_out.permute(0, 2, 1) # For inference.py return mel_out, dec_lens, dur_pred, pitch_pred, energy_pred
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/model.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import torch.nn.functional as F from torch import nn from common.utils import mask_from_lens from fastpitch.attn_loss_function import AttentionCTCLoss class FastPitchLoss(nn.Module): def __init__(self, dur_predictor_loss_scale=1.0, pitch_predictor_loss_scale=1.0, attn_loss_scale=1.0, energy_predictor_loss_scale=0.1): super(FastPitchLoss, self).__init__() self.dur_predictor_loss_scale = dur_predictor_loss_scale self.pitch_predictor_loss_scale = pitch_predictor_loss_scale self.energy_predictor_loss_scale = energy_predictor_loss_scale self.attn_loss_scale = attn_loss_scale self.attn_ctc_loss = AttentionCTCLoss() def forward(self, model_out, targets, is_training=True, meta_agg='mean'): (mel_out, dec_mask, dur_pred, log_dur_pred, pitch_pred, pitch_tgt, energy_pred, energy_tgt, attn_soft, attn_hard, attn_dur, attn_logprob) = model_out (mel_tgt, in_lens, out_lens) = targets dur_tgt = attn_dur dur_lens = in_lens mel_tgt.requires_grad = False # (B,H,T) => (B,T,H) mel_tgt = mel_tgt.transpose(1, 2) dur_mask = mask_from_lens(dur_lens, max_len=dur_tgt.size(1)) log_dur_tgt = torch.log(dur_tgt.float() + 1) loss_fn = F.mse_loss dur_pred_loss = loss_fn(log_dur_pred, log_dur_tgt, reduction='none') dur_pred_loss = (dur_pred_loss * dur_mask).sum() / dur_mask.sum() ldiff = mel_tgt.size(1) - mel_out.size(1) mel_out = F.pad(mel_out, (0, 0, 0, ldiff, 0, 0), value=0.0) mel_mask = mel_tgt.ne(0).float() loss_fn = F.mse_loss mel_loss = loss_fn(mel_out, mel_tgt, reduction='none') mel_loss = (mel_loss * mel_mask).sum() / mel_mask.sum() ldiff = pitch_tgt.size(2) - pitch_pred.size(2) pitch_pred = F.pad(pitch_pred, (0, ldiff, 0, 0, 0, 0), value=0.0) pitch_loss = F.mse_loss(pitch_tgt, pitch_pred, reduction='none') pitch_loss = (pitch_loss * dur_mask.unsqueeze(1)).sum() / dur_mask.sum() if energy_pred is not None: energy_pred = F.pad(energy_pred, (0, ldiff, 0, 0), value=0.0) energy_loss = F.mse_loss(energy_tgt, energy_pred, reduction='none') energy_loss = (energy_loss * dur_mask).sum() / dur_mask.sum() else: energy_loss = 0 # Attention loss attn_loss = self.attn_ctc_loss(attn_logprob, in_lens, out_lens) loss = (mel_loss + dur_pred_loss * self.dur_predictor_loss_scale + pitch_loss * self.pitch_predictor_loss_scale + energy_loss * self.energy_predictor_loss_scale + attn_loss * self.attn_loss_scale) meta = { 'loss': loss.clone().detach(), 'mel_loss': mel_loss.clone().detach(), 'duration_predictor_loss': dur_pred_loss.clone().detach(), 'pitch_loss': pitch_loss.clone().detach(), 'attn_loss': attn_loss.clone().detach(), 'dur_error': (torch.abs(dur_pred - dur_tgt).sum() / dur_mask.sum()).detach(), } if energy_pred is not None: meta['energy_loss'] = energy_loss.clone().detach() assert meta_agg in ('sum', 'mean') if meta_agg == 'sum': bsz = mel_out.size(0) meta = {k: v * bsz for k, v in meta.items()} return loss, meta
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/loss_function.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse def parse_fastpitch_args(parent, add_help=False): """ Parse commandline arguments. """ parser = argparse.ArgumentParser(parents=[parent], add_help=add_help, allow_abbrev=False) io = parser.add_argument_group('io parameters') io.add_argument('--n-mel-channels', default=80, type=int, help='Number of bins in mel-spectrograms') io.add_argument('--max-seq-len', default=2048, type=int, help='') symbols = parser.add_argument_group('symbols parameters') symbols.add_argument('--n-symbols', default=148, type=int, help='Number of symbols in dictionary') symbols.add_argument('--padding-idx', default=0, type=int, help='Index of padding symbol in dictionary') symbols.add_argument('--symbols-embedding-dim', default=384, type=int, help='Input embedding dimension') in_fft = parser.add_argument_group('input FFT parameters') in_fft.add_argument('--in-fft-n-layers', default=6, type=int, help='Number of FFT blocks') in_fft.add_argument('--in-fft-n-heads', default=1, type=int, help='Number of attention heads') in_fft.add_argument('--in-fft-d-head', default=64, type=int, help='Dim of attention heads') in_fft.add_argument('--in-fft-conv1d-kernel-size', default=3, type=int, help='Conv-1D kernel size') in_fft.add_argument('--in-fft-conv1d-filter-size', default=1536, type=int, help='Conv-1D filter size') in_fft.add_argument('--in-fft-output-size', default=384, type=int, help='Output dim') in_fft.add_argument('--p-in-fft-dropout', default=0.1, type=float, help='Dropout probability') in_fft.add_argument('--p-in-fft-dropatt', default=0.1, type=float, help='Multi-head attention dropout') in_fft.add_argument('--p-in-fft-dropemb', default=0.0, type=float, help='Dropout added to word+positional embeddings') out_fft = parser.add_argument_group('output FFT parameters') out_fft.add_argument('--out-fft-n-layers', default=6, type=int, help='Number of FFT blocks') out_fft.add_argument('--out-fft-n-heads', default=1, type=int, help='Number of attention heads') out_fft.add_argument('--out-fft-d-head', default=64, type=int, help='Dim of attention head') out_fft.add_argument('--out-fft-conv1d-kernel-size', default=3, type=int, help='Conv-1D kernel size') out_fft.add_argument('--out-fft-conv1d-filter-size', default=1536, type=int, help='Conv-1D filter size') out_fft.add_argument('--out-fft-output-size', default=384, type=int, help='Output dim') out_fft.add_argument('--p-out-fft-dropout', default=0.1, type=float, help='Dropout probability for out_fft') out_fft.add_argument('--p-out-fft-dropatt', default=0.1, type=float, help='Multi-head attention dropout') out_fft.add_argument('--p-out-fft-dropemb', default=0.0, type=float, help='Dropout added to word+positional embeddings') dur_pred = parser.add_argument_group('duration predictor parameters') dur_pred.add_argument('--dur-predictor-kernel-size', default=3, type=int, help='Duration predictor conv-1D kernel size') dur_pred.add_argument('--dur-predictor-filter-size', default=256, type=int, help='Duration predictor conv-1D filter size') dur_pred.add_argument('--p-dur-predictor-dropout', default=0.1, type=float, help='Dropout probability for duration predictor') dur_pred.add_argument('--dur-predictor-n-layers', default=2, type=int, help='Number of conv-1D layers') pitch_pred = parser.add_argument_group('pitch predictor parameters') pitch_pred.add_argument('--pitch-predictor-kernel-size', default=3, type=int, help='Pitch predictor conv-1D kernel size') pitch_pred.add_argument('--pitch-predictor-filter-size', default=256, type=int, help='Pitch predictor conv-1D filter size') pitch_pred.add_argument('--p-pitch-predictor-dropout', default=0.1, type=float, help='Pitch probability for pitch predictor') pitch_pred.add_argument('--pitch-predictor-n-layers', default=2, type=int, help='Number of conv-1D layers') energy_pred = parser.add_argument_group('energy predictor parameters') energy_pred.add_argument('--energy-conditioning', action='store_true') energy_pred.add_argument('--energy-predictor-kernel-size', default=3, type=int, help='Pitch predictor conv-1D kernel size') energy_pred.add_argument('--energy-predictor-filter-size', default=256, type=int, help='Pitch predictor conv-1D filter size') energy_pred.add_argument('--p-energy-predictor-dropout', default=0.1, type=float, help='Pitch probability for energy predictor') energy_pred.add_argument('--energy-predictor-n-layers', default=2, type=int, help='Number of conv-1D layers') cond = parser.add_argument_group('conditioning parameters') cond.add_argument('--pitch-embedding-kernel-size', default=3, type=int, help='Pitch embedding conv-1D kernel size') cond.add_argument('--energy-embedding-kernel-size', default=3, type=int, help='Pitch embedding conv-1D kernel size') cond.add_argument('--speaker-emb-weight', type=float, default=1.0, help='Scale speaker embedding') return parser
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/arg_parser.py
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F from common.utils import mask_from_lens class PositionalEmbedding(nn.Module): def __init__(self, demb): super(PositionalEmbedding, self).__init__() self.demb = demb inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) self.register_buffer('inv_freq', inv_freq) def forward(self, pos_seq, bsz=None): sinusoid_inp = torch.matmul(torch.unsqueeze(pos_seq, -1), torch.unsqueeze(self.inv_freq, 0)) pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=1) if bsz is not None: return pos_emb[None, :, :].expand(bsz, -1, -1) else: return pos_emb[None, :, :] class PositionwiseConvFF(nn.Module): def __init__(self, d_model, d_inner, kernel_size, dropout, pre_lnorm=False): super(PositionwiseConvFF, self).__init__() self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.CoreNet = nn.Sequential( nn.Conv1d(d_model, d_inner, kernel_size, 1, (kernel_size // 2)), nn.ReLU(), # nn.Dropout(dropout), # worse convergence nn.Conv1d(d_inner, d_model, kernel_size, 1, (kernel_size // 2)), nn.Dropout(dropout), ) self.layer_norm = nn.LayerNorm(d_model) self.pre_lnorm = pre_lnorm def forward(self, inp): return self._forward(inp) def _forward(self, inp): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = inp.transpose(1, 2) core_out = self.CoreNet(self.layer_norm(core_out).to(inp.dtype)) core_out = core_out.transpose(1, 2) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = inp.transpose(1, 2) core_out = self.CoreNet(core_out) core_out = core_out.transpose(1, 2) # residual connection + layer normalization output = self.layer_norm(inp + core_out).to(inp.dtype) return output class MultiHeadAttn(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super(MultiHeadAttn, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / (d_head ** 0.5) self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def forward(self, inp, attn_mask=None): return self._forward(inp, attn_mask) def _forward(self, inp, attn_mask=None): residual = inp if self.pre_lnorm: # layer normalization inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=2) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1).to(attn_score.dtype) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask.to(torch.bool), -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view( inp.size(0), inp.size(1), n_head * d_head) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: # residual connection output = residual + attn_out else: # residual connection + layer normalization output = self.layer_norm(residual + attn_out) output = output.to(attn_out.dtype) return output class TransformerLayer(nn.Module): def __init__(self, n_head, d_model, d_head, d_inner, kernel_size, dropout, **kwargs): super(TransformerLayer, self).__init__() self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs) self.pos_ff = PositionwiseConvFF(d_model, d_inner, kernel_size, dropout, pre_lnorm=kwargs.get('pre_lnorm')) def forward(self, dec_inp, mask=None): output = self.dec_attn(dec_inp, attn_mask=~mask.squeeze(2)) output *= mask output = self.pos_ff(output) output *= mask return output class FFTransformer(nn.Module): def __init__(self, n_layer, n_head, d_model, d_head, d_inner, kernel_size, dropout, dropatt, dropemb=0.0, embed_input=True, n_embed=None, d_embed=None, padding_idx=0, pre_lnorm=False): super(FFTransformer, self).__init__() self.d_model = d_model self.n_head = n_head self.d_head = d_head self.padding_idx = padding_idx if embed_input: self.word_emb = nn.Embedding(n_embed, d_embed or d_model, padding_idx=self.padding_idx) else: self.word_emb = None self.pos_emb = PositionalEmbedding(self.d_model) self.drop = nn.Dropout(dropemb) self.layers = nn.ModuleList() for _ in range(n_layer): self.layers.append( TransformerLayer( n_head, d_model, d_head, d_inner, kernel_size, dropout, dropatt=dropatt, pre_lnorm=pre_lnorm) ) def forward(self, dec_inp, seq_lens=None, conditioning=0): if self.word_emb is None: inp = dec_inp mask = mask_from_lens(seq_lens).unsqueeze(2) else: inp = self.word_emb(dec_inp) # [bsz x L x 1] mask = (dec_inp != self.padding_idx).unsqueeze(2) pos_seq = torch.arange(inp.size(1), device=inp.device).to(inp.dtype) pos_emb = self.pos_emb(pos_seq) * mask out = self.drop(inp + pos_emb + conditioning) for layer in self.layers: out = layer(out, mask=mask) # out = self.drop(out) return out, mask
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/transformer.py
# ***************************************************************************** # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import urllib.request import torch import os import sys #from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/inference.py def checkpoint_from_distributed(state_dict): """ Checks whether checkpoint was generated by DistributedDataParallel. DDP wraps model in additional "module.", it needs to be unwrapped for single GPU inference. :param state_dict: model's state dict """ ret = False for key, _ in state_dict.items(): if key.find('module.') != -1: ret = True break return ret # from https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/SpeechSynthesis/Tacotron2/inference.py def unwrap_distributed(state_dict): """ Unwraps model from DistributedDataParallel. DDP wraps model in additional "module.", it needs to be removed for single GPU inference. :param state_dict: model's state dict """ new_state_dict = {} for key, value in state_dict.items(): new_key = key.replace('module.1.', '') new_key = new_key.replace('module.', '') new_state_dict[new_key] = value return new_state_dict def _download_checkpoint(checkpoint, force_reload): model_dir = os.path.join(torch.hub._get_torch_home(), 'checkpoints') if not os.path.exists(model_dir): os.makedirs(model_dir) ckpt_file = os.path.join(model_dir, os.path.basename(checkpoint)) if not os.path.exists(ckpt_file) or force_reload: sys.stderr.write('Downloading checkpoint from {}\n'.format(checkpoint)) urllib.request.urlretrieve(checkpoint, ckpt_file) return ckpt_file def nvidia_fastpitch(pretrained=True, **kwargs): """TODO """ from fastpitch import model as fastpitch force_reload = "force_reload" in kwargs and kwargs["force_reload"] fp16 = "model_math" in kwargs and kwargs["model_math"] == "fp16" if pretrained: checkpoint = 'https://api.ngc.nvidia.com/v2/models/nvidia/dle/fastpitch__pyt_ckpt/versions/21.12.1_amp/files/nvidia_fastpitch_210824+cfg.pt' ckpt_file = _download_checkpoint(checkpoint, force_reload) ckpt = torch.load(ckpt_file) state_dict = ckpt['state_dict'] if checkpoint_from_distributed(state_dict): state_dict = unwrap_distributed(state_dict) config = ckpt['config'] train_setup = ckpt.get('train_setup', {}) else: config = {'n_mel_channels': 80, 'n_symbols': 148, 'padding_idx': 0, 'symbols_embedding_dim': 384, 'in_fft_n_layers': 6, 'in_fft_n_heads': 1, 'in_fft_d_head': 64, 'in_fft_conv1d_kernel_size': 3, 'in_fft_conv1d_filter_size': 1536, 'in_fft_output_size': 384, 'p_in_fft_dropout': 0.1, 'p_in_fft_dropatt': 0.1, 'p_in_fft_dropemb': 0.0, 'out_fft_n_layers': 6, 'out_fft_n_heads': 1, 'out_fft_d_head': 64, 'out_fft_conv1d_kernel_size': 3, 'out_fft_conv1d_filter_size': 1536, 'out_fft_output_size': 384, 'p_out_fft_dropout': 0.1, 'p_out_fft_dropatt': 0.1, 'p_out_fft_dropemb': 0.0, 'dur_predictor_kernel_size': 3, 'dur_predictor_filter_size': 256, 'p_dur_predictor_dropout': 0.1, 'dur_predictor_n_layers': 2, 'pitch_predictor_kernel_size': 3, 'pitch_predictor_filter_size': 256, 'p_pitch_predictor_dropout': 0.1, 'pitch_predictor_n_layers': 2, 'pitch_embedding_kernel_size': 3, 'n_speakers': 1, 'speaker_emb_weight': 1.0, 'energy_predictor_kernel_size': 3, 'energy_predictor_filter_size': 256, 'p_energy_predictor_dropout': 0.1, 'energy_predictor_n_layers': 2, 'energy_conditioning': True, 'energy_embedding_kernel_size': 3} for k,v in kwargs.items(): if k in config.keys(): config[k] = v train_setup = {} model = fastpitch.FastPitch(**config) if pretrained: model.load_state_dict(state_dict) if fp16: model.half() model.forward = model.infer return model, train_setup def nvidia_textprocessing_utils(cmudict_path, heteronyms_path, **kwargs): from common.text.text_processing import TextProcessing import numpy as np from torch.nn.utils.rnn import pad_sequence from common.text import cmudict class TextPreProcessing: @staticmethod def prepare_input_sequence(texts, batch_size=1, device='cpu'): cmudict.initialize(cmudict_path, heteronyms_path) tp = TextProcessing(symbol_set='english_basic', cleaner_names=['english_cleaners_v2'], p_arpabet=1.0) fields={} fields['text'] = [torch.LongTensor(tp.encode_text(text)) for text in texts] order = np.argsort([-t.size(0) for t in fields['text']]) fields['text'] = [fields['text'][i] for i in order] fields['text_lens'] = torch.LongTensor([t.size(0) for t in fields['text']]) for t in fields['text']: print(tp.sequence_to_text(t.numpy())) # cut into batches & pad batches = [] for b in range(0, len(order), batch_size): batch = {f: values[b:b+batch_size] for f, values in fields.items()} for f in batch: if f == 'text': batch[f] = pad_sequence(batch[f], batch_first=True) if type(batch[f]) is torch.Tensor: batch[f] = batch[f].to(device) batches.append(batch) return batches return TextPreProcessing() # # from tacotron2.text import text_to_sequence # @staticmethod # def pad_sequences(batch): # # Right zero-pad all one-hot text sequences to max input length # input_lengths, ids_sorted_decreasing = torch.sort( # torch.LongTensor([len(x) for x in batch]), # dim=0, descending=True) # max_input_len = input_lengths[0] # text_padded = torch.LongTensor(len(batch), max_input_len) # text_padded.zero_() # for i in range(len(ids_sorted_decreasing)): # text = batch[ids_sorted_decreasing[i]] # text_padded[i, :text.size(0)] = text # return text_padded, input_lengths # @staticmethod # def prepare_input_sequence(texts, cpu_run=False): # d = [] # # for i,text in enumerate(texts): # # d.append(torch.IntTensor( # # Processing.text_to_sequence(text, ['english_cleaners'])[:])) # text_padded, input_lengths = Processing.pad_sequences(d) # if not cpu_run: # text_padded = text_padded.cuda().long() # input_lengths = input_lengths.cuda().long() # else: # text_padded = text_padded.long() # input_lengths = input_lengths.long() # return text_padded, input_lengths # return Processing()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/entrypoints.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class AttentionCTCLoss(torch.nn.Module): def __init__(self, blank_logprob=-1): super(AttentionCTCLoss, self).__init__() self.log_softmax = torch.nn.LogSoftmax(dim=3) self.blank_logprob = blank_logprob self.CTCLoss = nn.CTCLoss(zero_infinity=True) def forward(self, attn_logprob, in_lens, out_lens): key_lens = in_lens query_lens = out_lens attn_logprob_padded = F.pad(input=attn_logprob, pad=(1, 0, 0, 0, 0, 0, 0, 0), value=self.blank_logprob) cost_total = 0.0 for bid in range(attn_logprob.shape[0]): target_seq = torch.arange(1, key_lens[bid]+1).unsqueeze(0) curr_logprob = attn_logprob_padded[bid].permute(1, 0, 2) curr_logprob = curr_logprob[:query_lens[bid], :, :key_lens[bid]+1] curr_logprob = self.log_softmax(curr_logprob[None])[0] ctc_cost = self.CTCLoss( curr_logprob, target_seq, input_lengths=query_lens[bid:bid+1], target_lengths=key_lens[bid:bid+1]) cost_total += ctc_cost cost = cost_total/attn_logprob.shape[0] return cost class AttentionBinarizationLoss(torch.nn.Module): def __init__(self): super(AttentionBinarizationLoss, self).__init__() def forward(self, hard_attention, soft_attention, eps=1e-12): log_sum = torch.log(torch.clamp(soft_attention[hard_attention == 1], min=eps)).sum() return -log_sum / hard_attention.sum()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/fastpitch/attn_loss_function.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import atexit import glob import re from pathlib import Path import numpy as np import torch from torch.utils.tensorboard import SummaryWriter import dllogger from common.utils import plot_spectrogram tb_loggers = {} class TBLogger: """ xyz_dummies: stretch the screen with empty plots so the legend would always fit for other plots """ def __init__(self, enabled, log_dir, name, interval=1, dummies=True): self.enabled = enabled self.interval = interval self.cache = {} if self.enabled: self.summary_writer = SummaryWriter( log_dir=Path(log_dir, name), flush_secs=120, max_queue=200) atexit.register(self.summary_writer.close) if dummies: for key in ('_', '✕'): self.summary_writer.add_scalar(key, 0.0, 1) def log(self, step, data): for k, v in data.items(): self.log_value(step, k, v.item() if type(v) is torch.Tensor else v) def log_value(self, step, key, val, stat='mean'): if self.enabled: if key not in self.cache: self.cache[key] = [] self.cache[key].append(val) if len(self.cache[key]) == self.interval: agg_val = getattr(np, stat)(self.cache[key]) self.summary_writer.add_scalar(key, agg_val, step) del self.cache[key] def log_grads(self, step, model): if self.enabled: norms = [p.grad.norm().item() for p in model.parameters() if p.grad is not None] for stat in ('max', 'min', 'mean'): self.log_value(step, f'grad_{stat}', getattr(np, stat)(norms), stat=stat) def log_samples(self, step, sample_ind, audio, spec, rate): if self.enabled: log_prefix = 'gt/y' if step == 0 else 'generated/y_hat' self.summary_writer.add_audio( f'{log_prefix}_{sample_ind}', audio[0], step, rate) self.summary_writer.add_figure( f'{log_prefix}_spec_{sample_ind}', plot_spectrogram(spec[0].cpu().numpy()), step) def unique_log_fpath(fpath): """Have a unique log filename for every separate run""" log_num = max([0] + [int(re.search("\.(\d+)", Path(f).suffix).group(1)) for f in glob.glob(f"{fpath}.*")]) return f"{fpath}.{log_num + 1}" def stdout_step_format(step): if isinstance(step, str): return step fields = [] if len(step) > 0: fields.append("epoch {:>4}".format(step[0])) if len(step) > 1: fields.append("iter {:>3}".format(step[1])) if len(step) > 2: fields[-1] += "/{}".format(step[2]) return " | ".join(fields) def stdout_metric_format(metric, metadata, value): name = metadata.get("name", metric + " : ") unit = metadata.get("unit", None) format = f'{{{metadata.get("format", "")}}}' fields = [name, format.format(value) if value is not None else value, unit] fields = [f for f in fields if f is not None] return "| " + " ".join(fields) def log(when, metrics={}, scope='train', flush_log=False, tb_iter=None): dllogger.log(when, data=metrics.get_metrics(scope, 'dll')) if tb_iter is not None: tb_loggers[scope].log(tb_iter, metrics.get_metrics(scope, 'tb')) if flush_log: flush() def log_grads_tb(tb_total_steps, grads, tb_subset='train'): tb_loggers[tb_subset].log_grads(tb_total_steps, grads) def log_samples_tb(tb_total_steps, sample_i, y, y_spec, rate, tb_subset='val',): tb_loggers[tb_subset].log_samples(tb_total_steps, sample_i, y, y_spec, rate) def parameters(data, verbosity=0, tb_subset=None): for k, v in data.items(): dllogger.log(step="PARAMETER", data={k: v}, verbosity=verbosity) if tb_subset is not None and tb_loggers[tb_subset].enabled: tb_data = {k: v for k, v in data.items() if type(v) in (str, bool, int, float)} tb_loggers[tb_subset].summary_writer.add_hparams(tb_data, {}) def flush(): dllogger.flush() for tbl in tb_loggers.values(): if tbl.enabled: tbl.summary_writer.flush()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/tb_dllogger.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from csv import QUOTE_NONE from pathlib import Path import pandas as pd def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-d', '--metadata-path', type=str, default='./metadata.csv', help='Path to LJSpeech dataset metadata') parser.add_argument('--filelists-path', default='data/filelists', type=str, help='Directory to generate filelists to') parser.add_argument('--log-file', type=str, default='split_log.json', help='Filename for logging') parser.add_argument('--subsets', type=str, nargs='+', choices=['all', 'train', 'val', 'test'], default=['all', 'train', 'val'], help='Subsets to generate') parser.add_argument('--add-transcript', action='store_true', help='Add text columns to filelists') parser.add_argument('--add-pitch', action='store_true', help='Add pitch columns to filelists') parser.add_argument('-v', '--verbose', action='store_true', help='Increase verbosity') parser.add_argument('--dry-run', action='store_true', help='Do not create actual files') return parser def generate_filelist(subset, meta, base_fname, cols_to_dump, args): subset_suffix = f'_{subset}' if subset != 'all' else '' fpath = Path(args.filelists_path) / f'{base_fname}{subset_suffix}.txt' if subset == 'all': subset_meta = meta[meta.index.map( lambda fname: fname not in discard_train_ids_v3)] elif subset == 'val': subset_meta = meta[meta.index.map(lambda fname: fname in val_ids)] elif subset == 'test': subset_meta = meta[meta.index.map(lambda fname: fname in test_ids)] elif subset == 'train': subset_meta = meta[meta.index.map( lambda fname: (fname not in val_ids and fname not in test_ids and fname not in discard_train_ids_v3) )] else: raise ValueError(f'Unknown subset: {subset}') print(f'Writing {len(subset_meta)} rows to {fpath}') if args.verbose: print(subset_meta.reset_index()[cols_to_dump].head()) if not args.dry_run: fpath.parent.mkdir(parents=True, exist_ok=True) subset_meta.to_csv(fpath, sep='|', header=None, quoting=QUOTE_NONE, index=None, columns=cols_to_dump) def main(): parser = argparse.ArgumentParser( description='LJSpeech filelists generation') parser = parse_args(parser) args, unk_args = parser.parse_known_args() if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') meta = pd.read_csv(args.metadata_path, sep='|', index_col='fname', names=['fname', 'txt', 'norm_txt'], quoting=QUOTE_NONE) meta['wav_fname'] = meta.index.map(lambda stem: f'wavs/{stem}.wav') meta['pitch_fname'] = meta.index.map(lambda stem: f'pitch/{stem}.pt') cols_to_dump = ['wav_fname'] filelist_base_name = 'ljs_audio' if args.add_pitch: cols_to_dump.append('pitch_fname') filelist_base_name += '_pitch' if args.add_transcript: cols_to_dump.append('norm_txt') filelist_base_name += '_text' # Fix incrrect transcripts if args.add_transcript: for lj_id, txt in corrected_transcripts.items(): print('Trying to correct', lj_id) meta.loc[meta['wav_fname'].str.contains(lj_id), 'norm_txt'] = txt for subset in args.subsets: generate_filelist(subset, meta, filelist_base_name, cols_to_dump, args) corrected_transcripts = { 'LJ031-0175': "O'Donnell tried to persuade Mrs. Kennedy to leave the area, but she refused. She said that she intended to stay with her husband.", 'LJ034-0138': "they saw and heard Brennan describing what he had seen. Norman stated, quote,", } # ASR-recognized French words that could hinder generalization discard_train_ids_v3 = { 'LJ011-0058', 'LJ012-0205', 'LJ016-0257', 'LJ018-0396', } val_ids = { 'LJ001-0110', 'LJ002-0018', 'LJ002-0043', 'LJ003-0111', 'LJ003-0345', 'LJ004-0045', 'LJ004-0096', 'LJ004-0152', 'LJ005-0014', 'LJ005-0079', 'LJ005-0201', 'LJ007-0154', 'LJ008-0111', 'LJ008-0258', 'LJ008-0278', 'LJ008-0294', 'LJ008-0307', 'LJ009-0076', 'LJ009-0114', 'LJ009-0238', 'LJ011-0096', 'LJ012-0035', 'LJ012-0042', 'LJ012-0161', 'LJ012-0235', 'LJ012-0250', 'LJ013-0164', 'LJ014-0010', 'LJ014-0020', 'LJ014-0030', 'LJ014-0076', 'LJ014-0110', 'LJ014-0263', 'LJ015-0203', 'LJ016-0020', 'LJ016-0138', 'LJ016-0179', 'LJ016-0288', 'LJ016-0318', 'LJ017-0044', 'LJ017-0070', 'LJ017-0131', 'LJ018-0081', 'LJ018-0098', 'LJ018-0239', 'LJ019-0186', 'LJ019-0257', 'LJ019-0273', 'LJ021-0066', 'LJ021-0145', 'LJ022-0023', 'LJ024-0083', 'LJ026-0068', 'LJ027-0052', 'LJ027-0141', 'LJ028-0008', 'LJ028-0081', 'LJ028-0093', 'LJ028-0275', 'LJ028-0307', 'LJ028-0335', 'LJ028-0506', 'LJ029-0022', 'LJ029-0032', 'LJ031-0038', 'LJ031-0070', 'LJ031-0134', 'LJ031-0202', 'LJ033-0047', 'LJ034-0042', 'LJ034-0053', 'LJ034-0160', 'LJ034-0198', 'LJ035-0019', 'LJ035-0129', 'LJ036-0077', 'LJ036-0103', 'LJ036-0174', 'LJ037-0234', 'LJ038-0199', 'LJ039-0075', 'LJ039-0223', 'LJ040-0002', 'LJ040-0027', 'LJ042-0096', 'LJ042-0129', 'LJ043-0002', 'LJ043-0030', 'LJ045-0140', 'LJ045-0230', 'LJ046-0058', 'LJ046-0146', 'LJ046-0184', 'LJ047-0044', 'LJ047-0148', 'LJ048-0194', 'LJ048-0228', 'LJ049-0026', 'LJ049-0050', 'LJ050-0168' } test_ids = { 'LJ001-0015', 'LJ001-0051', 'LJ001-0063', 'LJ001-0072', 'LJ001-0079', 'LJ001-0094', 'LJ001-0096', 'LJ001-0102', 'LJ001-0153', 'LJ001-0173', 'LJ001-0186', 'LJ002-0096', 'LJ002-0105', 'LJ002-0106', 'LJ002-0171', 'LJ002-0174', 'LJ002-0220', 'LJ002-0225', 'LJ002-0253', 'LJ002-0260', 'LJ002-0261', 'LJ002-0289', 'LJ002-0298', 'LJ002-0299', 'LJ003-0011', 'LJ003-0088', 'LJ003-0107', 'LJ003-0140', 'LJ003-0159', 'LJ003-0211', 'LJ003-0230', 'LJ003-0282', 'LJ003-0299', 'LJ003-0319', 'LJ003-0324', 'LJ004-0009', 'LJ004-0024', 'LJ004-0036', 'LJ004-0077', 'LJ004-0083', 'LJ004-0239', 'LJ005-0019', 'LJ005-0072', 'LJ005-0086', 'LJ005-0099', 'LJ005-0248', 'LJ005-0252', 'LJ005-0253', 'LJ005-0257', 'LJ005-0264', 'LJ005-0265', 'LJ005-0294', 'LJ006-0021', 'LJ006-0040', 'LJ006-0043', 'LJ006-0044', 'LJ006-0082', 'LJ006-0084', 'LJ006-0088', 'LJ006-0137', 'LJ006-0149', 'LJ006-0202', 'LJ006-0268', 'LJ007-0071', 'LJ007-0075', 'LJ007-0076', 'LJ007-0085', 'LJ007-0090', 'LJ007-0112', 'LJ007-0125', 'LJ007-0130', 'LJ007-0150', 'LJ007-0158', 'LJ007-0170', 'LJ007-0233', 'LJ008-0054', 'LJ008-0085', 'LJ008-0098', 'LJ008-0121', 'LJ008-0181', 'LJ008-0182', 'LJ008-0206', 'LJ008-0215', 'LJ008-0228', 'LJ008-0266', 'LJ009-0037', 'LJ009-0041', 'LJ009-0061', 'LJ009-0074', 'LJ009-0084', 'LJ009-0106', 'LJ009-0124', 'LJ009-0126', 'LJ009-0172', 'LJ009-0184', 'LJ009-0192', 'LJ009-0194', 'LJ009-0276', 'LJ009-0280', 'LJ009-0286', 'LJ010-0027', 'LJ010-0030', 'LJ010-0038', 'LJ010-0062', 'LJ010-0065', 'LJ010-0083', 'LJ010-0157', 'LJ010-0158', 'LJ010-0219', 'LJ010-0228', 'LJ010-0257', 'LJ010-0281', 'LJ010-0297', 'LJ011-0041', 'LJ011-0048', 'LJ011-0118', 'LJ011-0141', 'LJ011-0245', 'LJ012-0015', 'LJ012-0021', 'LJ012-0049', 'LJ012-0054', 'LJ012-0067', 'LJ012-0188', 'LJ012-0189', 'LJ012-0194', 'LJ012-0219', 'LJ012-0230', 'LJ012-0257', 'LJ012-0271', 'LJ013-0005', 'LJ013-0045', 'LJ013-0055', 'LJ013-0091', 'LJ013-0098', 'LJ013-0104', 'LJ013-0109', 'LJ013-0213', 'LJ014-0029', 'LJ014-0094', 'LJ014-0121', 'LJ014-0128', 'LJ014-0142', 'LJ014-0146', 'LJ014-0171', 'LJ014-0186', 'LJ014-0194', 'LJ014-0199', 'LJ014-0224', 'LJ014-0233', 'LJ014-0265', 'LJ014-0306', 'LJ014-0326', 'LJ015-0001', 'LJ015-0005', 'LJ015-0007', 'LJ015-0025', 'LJ015-0027', 'LJ015-0036', 'LJ015-0043', 'LJ015-0052', 'LJ015-0144', 'LJ015-0194', 'LJ015-0218', 'LJ015-0231', 'LJ015-0266', 'LJ015-0289', 'LJ015-0308', 'LJ016-0007', 'LJ016-0049', 'LJ016-0054', 'LJ016-0077', 'LJ016-0089', 'LJ016-0117', 'LJ016-0125', 'LJ016-0137', 'LJ016-0192', 'LJ016-0205', 'LJ016-0233', 'LJ016-0238', 'LJ016-0241', 'LJ016-0248', 'LJ016-0264', 'LJ016-0274', 'LJ016-0277', 'LJ016-0283', 'LJ016-0314', 'LJ016-0347', 'LJ016-0367', 'LJ016-0380', 'LJ016-0417', 'LJ016-0426', 'LJ017-0035', 'LJ017-0050', 'LJ017-0059', 'LJ017-0102', 'LJ017-0108', 'LJ017-0133', 'LJ017-0134', 'LJ017-0164', 'LJ017-0183', 'LJ017-0189', 'LJ017-0190', 'LJ017-0226', 'LJ017-0231', 'LJ018-0031', 'LJ018-0129', 'LJ018-0130', 'LJ018-0159', 'LJ018-0206', 'LJ018-0211', 'LJ018-0215', 'LJ018-0218', 'LJ018-0231', 'LJ018-0244', 'LJ018-0262', 'LJ018-0276', 'LJ018-0278', 'LJ018-0288', 'LJ018-0309', 'LJ018-0349', 'LJ018-0354', 'LJ019-0042', 'LJ019-0052', 'LJ019-0055', 'LJ019-0129', 'LJ019-0145', 'LJ019-0161', 'LJ019-0169', 'LJ019-0179', 'LJ019-0180', 'LJ019-0201', 'LJ019-0202', 'LJ019-0221', 'LJ019-0241', 'LJ019-0248', 'LJ019-0270', 'LJ019-0289', 'LJ019-0317', 'LJ019-0318', 'LJ019-0335', 'LJ019-0344', 'LJ019-0348', 'LJ019-0355', 'LJ019-0368', 'LJ019-0371', 'LJ020-0085', 'LJ020-0092', 'LJ020-0093', 'LJ021-0012', 'LJ021-0025', 'LJ021-0026', 'LJ021-0040', 'LJ021-0078', 'LJ021-0091', 'LJ021-0110', 'LJ021-0115', 'LJ021-0139', 'LJ021-0140', 'LJ023-0016', 'LJ023-0033', 'LJ023-0047', 'LJ023-0056', 'LJ023-0089', 'LJ023-0122', 'LJ024-0018', 'LJ024-0019', 'LJ024-0034', 'LJ024-0054', 'LJ024-0102', 'LJ025-0081', 'LJ025-0098', 'LJ025-0118', 'LJ025-0129', 'LJ025-0157', 'LJ026-0034', 'LJ026-0052', 'LJ026-0054', 'LJ026-0108', 'LJ026-0140', 'LJ026-0148', 'LJ027-0006', 'LJ027-0176', 'LJ027-0178', 'LJ028-0023', 'LJ028-0136', 'LJ028-0138', 'LJ028-0145', 'LJ028-0168', 'LJ028-0212', 'LJ028-0226', 'LJ028-0278', 'LJ028-0289', 'LJ028-0340', 'LJ028-0349', 'LJ028-0357', 'LJ028-0410', 'LJ028-0416', 'LJ028-0421', 'LJ028-0459', 'LJ028-0462', 'LJ028-0494', 'LJ028-0502', 'LJ029-0004', 'LJ029-0052', 'LJ029-0060', 'LJ029-0096', 'LJ029-0114', 'LJ029-0197', 'LJ030-0006', 'LJ030-0014', 'LJ030-0021', 'LJ030-0032', 'LJ030-0035', 'LJ030-0063', 'LJ030-0084', 'LJ030-0105', 'LJ030-0125', 'LJ030-0162', 'LJ030-0196', 'LJ030-0197', 'LJ030-0238', 'LJ031-0008', 'LJ031-0014', 'LJ031-0041', 'LJ031-0058', 'LJ031-0109', 'LJ031-0122', 'LJ031-0165', 'LJ031-0185', 'LJ031-0189', 'LJ032-0012', 'LJ032-0025', 'LJ032-0027', 'LJ032-0045', 'LJ032-0085', 'LJ032-0103', 'LJ032-0164', 'LJ032-0180', 'LJ032-0204', 'LJ032-0206', 'LJ032-0261', 'LJ033-0042', 'LJ033-0055', 'LJ033-0056', 'LJ033-0072', 'LJ033-0093', 'LJ033-0120', 'LJ033-0152', 'LJ033-0159', 'LJ033-0174', 'LJ033-0183', 'LJ033-0205', 'LJ034-0035', 'LJ034-0041', 'LJ034-0072', 'LJ034-0097', 'LJ034-0117', 'LJ034-0123', 'LJ034-0134', 'LJ034-0166', 'LJ034-0197', 'LJ035-0014', 'LJ035-0082', 'LJ035-0155', 'LJ035-0164', 'LJ036-0067', 'LJ036-0104', 'LJ036-0169', 'LJ037-0001', 'LJ037-0002', 'LJ037-0007', 'LJ037-0053', 'LJ037-0061', 'LJ037-0081', 'LJ037-0208', 'LJ037-0248', 'LJ037-0249', 'LJ037-0252', 'LJ038-0035', 'LJ038-0047', 'LJ038-0264', 'LJ039-0027', 'LJ039-0059', 'LJ039-0076', 'LJ039-0088', 'LJ039-0096', 'LJ039-0118', 'LJ039-0125', 'LJ039-0139', 'LJ039-0148', 'LJ039-0154', 'LJ039-0192', 'LJ039-0207', 'LJ039-0227', 'LJ040-0018', 'LJ040-0052', 'LJ040-0097', 'LJ040-0110', 'LJ040-0176', 'LJ040-0201', 'LJ041-0022', 'LJ041-0070', 'LJ041-0195', 'LJ041-0199', 'LJ042-0097', 'LJ042-0130', 'LJ042-0133', 'LJ042-0135', 'LJ042-0194', 'LJ042-0198', 'LJ042-0219', 'LJ042-0221', 'LJ042-0230', 'LJ043-0010', 'LJ043-0016', 'LJ043-0047', 'LJ043-0107', 'LJ043-0140', 'LJ043-0188', 'LJ044-0004', 'LJ044-0013', 'LJ044-0047', 'LJ044-0105', 'LJ044-0125', 'LJ044-0135', 'LJ044-0137', 'LJ044-0139', 'LJ044-0158', 'LJ044-0224', 'LJ044-0237', 'LJ045-0015', 'LJ045-0033', 'LJ045-0045', 'LJ045-0082', 'LJ045-0090', 'LJ045-0092', 'LJ045-0096', 'LJ045-0177', 'LJ045-0178', 'LJ045-0190', 'LJ045-0194', 'LJ045-0216', 'LJ045-0228', 'LJ045-0234', 'LJ046-0016', 'LJ046-0033', 'LJ046-0055', 'LJ046-0092', 'LJ046-0105', 'LJ046-0111', 'LJ046-0113', 'LJ046-0179', 'LJ046-0191', 'LJ046-0226', 'LJ047-0015', 'LJ047-0022', 'LJ047-0049', 'LJ047-0056', 'LJ047-0073', 'LJ047-0075', 'LJ047-0093', 'LJ047-0097', 'LJ047-0126', 'LJ047-0158', 'LJ047-0197', 'LJ047-0202', 'LJ047-0240', 'LJ048-0033', 'LJ048-0053', 'LJ048-0069', 'LJ048-0112', 'LJ048-0143', 'LJ048-0197', 'LJ048-0200', 'LJ048-0222', 'LJ048-0252', 'LJ048-0288', 'LJ048-0289', 'LJ049-0022', 'LJ049-0115', 'LJ049-0154', 'LJ049-0196', 'LJ049-0202', 'LJ050-0004', 'LJ050-0022', 'LJ050-0029', 'LJ050-0031', 'LJ050-0056', 'LJ050-0069', 'LJ050-0084', 'LJ050-0090', 'LJ050-0118', 'LJ050-0137', 'LJ050-0161', 'LJ050-0162', 'LJ050-0188', 'LJ050-0209', 'LJ050-0223', 'LJ050-0235' } if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/split_lj.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import math import os import pathlib import re import pynvml pynvml.nvmlInit() def systemGetDriverVersion(): return pynvml.nvmlSystemGetDriverVersion() def deviceGetCount(): return pynvml.nvmlDeviceGetCount() class device: # assume nvml returns list of 64 bit ints _nvml_affinity_elements = math.ceil(os.cpu_count() / 64) def __init__(self, device_idx): super().__init__() self.handle = pynvml.nvmlDeviceGetHandleByIndex(device_idx) def getName(self): return pynvml.nvmlDeviceGetName(self.handle) def getCpuAffinity(self): affinity_string = '' for j in pynvml.nvmlDeviceGetCpuAffinity( self.handle, device._nvml_affinity_elements ): # assume nvml returns list of 64 bit ints affinity_string = '{:064b}'.format(j) + affinity_string affinity_list = [int(x) for x in affinity_string] affinity_list.reverse() # so core 0 is in 0th element of list ret = [i for i, e in enumerate(affinity_list) if e != 0] return ret def set_socket_affinity(gpu_id): dev = device(gpu_id) affinity = dev.getCpuAffinity() os.sched_setaffinity(0, affinity) def set_single_affinity(gpu_id): dev = device(gpu_id) affinity = dev.getCpuAffinity() os.sched_setaffinity(0, affinity[:1]) def set_single_unique_affinity(gpu_id, nproc_per_node): devices = [device(i) for i in range(nproc_per_node)] socket_affinities = [dev.getCpuAffinity() for dev in devices] siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) affinities = [] assigned = [] for socket_affinity in socket_affinities: for core in socket_affinity: if core not in assigned: affinities.append([core]) assigned.append(core) break os.sched_setaffinity(0, affinities[gpu_id]) def set_socket_unique_affinity(gpu_id, nproc_per_node, mode): device_ids = [device(i) for i in range(nproc_per_node)] socket_affinities = [dev.getCpuAffinity() for dev in device_ids] siblings_list = get_thread_siblings_list() siblings_dict = dict(siblings_list) # remove siblings for idx, socket_affinity in enumerate(socket_affinities): socket_affinities[idx] = list(set(socket_affinity) - set(siblings_dict.values())) socket_affinities_to_device_ids = collections.defaultdict(list) for idx, socket_affinity in enumerate(socket_affinities): socket_affinities_to_device_ids[tuple(socket_affinity)].append(idx) for socket_affinity, device_ids in socket_affinities_to_device_ids.items(): devices_per_group = len(device_ids) cores_per_device = len(socket_affinity) // devices_per_group for group_id, device_id in enumerate(device_ids): if device_id == gpu_id: if mode == 'interleaved': affinity = list(socket_affinity[group_id::devices_per_group]) elif mode == 'continuous': affinity = list(socket_affinity[group_id*cores_per_device:(group_id+1)*cores_per_device]) else: raise RuntimeError('Unknown set_socket_unique_affinity mode') # reintroduce siblings affinity += [siblings_dict[aff] for aff in affinity if aff in siblings_dict] os.sched_setaffinity(0, affinity) def get_thread_siblings_list(): path = '/sys/devices/system/cpu/cpu*/topology/thread_siblings_list' thread_siblings_list = [] pattern = re.compile(r'(\d+)\D(\d+)') for fname in pathlib.Path(path[0]).glob(path[1:]): with open(fname) as f: content = f.read().strip() res = pattern.findall(content) if res: pair = tuple(map(int, res[0])) thread_siblings_list.append(pair) return thread_siblings_list def set_affinity(gpu_id, nproc_per_node, mode='socket'): if mode == 'socket': set_socket_affinity(gpu_id) elif mode == 'single': set_single_affinity(gpu_id) elif mode == 'single_unique': set_single_unique_affinity(gpu_id, nproc_per_node) elif mode == 'socket_unique_interleaved': set_socket_unique_affinity(gpu_id, nproc_per_node, 'interleaved') elif mode == 'socket_unique_continuous': set_socket_unique_affinity(gpu_id, nproc_per_node, 'continuous') else: raise RuntimeError('Unknown affinity mode') affinity = os.sched_getaffinity(0) return affinity
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/gpu_affinity.py
import amp_C import torch def apply_ema_decay(model, ema_model, decay): if not decay: return st = model.state_dict() add_module = hasattr(model, 'module') and not hasattr(ema_model, 'module') for k, v in ema_model.state_dict().items(): if add_module and not k.startswith('module.'): k = 'module.' + k v.copy_(decay * v + (1 - decay) * st[k]) def init_multi_tensor_ema(model, ema_model): model_weights = list(model.state_dict().values()) ema_model_weights = list(ema_model.state_dict().values()) ema_overflow_buf = torch.cuda.IntTensor([0]) return model_weights, ema_model_weights, ema_overflow_buf def apply_multi_tensor_ema(decay, model_weights, ema_weights, overflow_buf): amp_C.multi_tensor_axpby( 65536, overflow_buf, [ema_weights, model_weights, ema_weights], decay, 1-decay, -1)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/ema_utils.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mutes known and unrelated PyTorch warnings. The warnings module keeps a list of filters. Importing it as late as possible prevents its filters from being overriden. """ import warnings # NGC 22.04-py3 container (PyTorch 1.12.0a0+bd13bc6) warnings.filterwarnings( "ignore", message='positional arguments and argument "destination" are deprecated.' ' nn.Module.state_dict will not accept them in the future.') # 22.08-py3 container warnings.filterwarnings( "ignore", message="is_namedtuple is deprecated, please use the python checks")
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/filter_warnings.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import librosa.util as librosa_util import numpy as np import torch from scipy.signal import get_window def window_sumsquare(window, n_frames, hop_length=200, win_length=800, n_fft=800, dtype=np.float32, norm=None): """ # from librosa 0.6 Compute the sum-square envelope of a window function at a given hop length. This is used to estimate modulation effects induced by windowing observations in short-time fourier transforms. Parameters ---------- window : string, tuple, number, callable, or list-like Window specification, as in `get_window` n_frames : int > 0 The number of analysis frames hop_length : int > 0 The number of samples to advance between frames win_length : [optional] The length of the window function. By default, this matches `n_fft`. n_fft : int > 0 The length of each analysis frame. dtype : np.dtype The data type of the output Returns ------- wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` The sum-squared envelope of the window function """ if win_length is None: win_length = n_fft n = n_fft + hop_length * (n_frames - 1) x = np.zeros(n, dtype=dtype) # Compute the squared window at the desired length win_sq = get_window(window, win_length, fftbins=True) win_sq = librosa_util.normalize(win_sq, norm=norm)**2 win_sq = librosa_util.pad_center(win_sq, size=n_fft) # Fill the envelope for i in range(n_frames): sample = i * hop_length x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))] return x def griffin_lim(magnitudes, stft_fn, n_iters=30): """ PARAMS ------ magnitudes: spectrogram magnitudes stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods """ angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size()))) angles = angles.astype(np.float32) angles = torch.autograd.Variable(torch.from_numpy(angles)) signal = stft_fn.inverse(magnitudes, angles).squeeze(1) for i in range(n_iters): _, angles = stft_fn.transform(signal) signal = stft_fn.inverse(magnitudes, angles).squeeze(1) return signal def dynamic_range_compression(x, C=1, clip_val=1e-5): """ PARAMS ------ C: compression factor """ return torch.log(torch.clamp(x, min=clip_val) * C) def dynamic_range_decompression(x, C=1): """ PARAMS ------ C: compression factor used to compress """ return torch.exp(x) / C
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/audio_processing.py
""" BSD 3-Clause License Copyright (c) 2017, Prem Seetharaman All rights reserved. * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import numpy as np import torch import torch.nn.functional as F from librosa.util import pad_center, tiny from scipy.signal import get_window from torch.autograd import Variable from common.audio_processing import window_sumsquare class STFT(torch.nn.Module): """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'): super(STFT, self).__init__() self.filter_length = filter_length self.hop_length = hop_length self.win_length = win_length self.window = window self.forward_transform = None scale = self.filter_length / self.hop_length fourier_basis = np.fft.fft(np.eye(self.filter_length)) cutoff = int((self.filter_length / 2 + 1)) fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]) forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) inverse_basis = torch.FloatTensor( np.linalg.pinv(scale * fourier_basis).T[:, None, :].copy()) if window is not None: assert(filter_length >= win_length) # get window and zero center pad it to filter_length fft_window = get_window(window, win_length, fftbins=True) fft_window = pad_center(fft_window, size=filter_length) fft_window = torch.from_numpy(fft_window).float() # window the bases forward_basis *= fft_window inverse_basis *= fft_window self.register_buffer('forward_basis', forward_basis.float()) self.register_buffer('inverse_basis', inverse_basis.float()) def transform(self, input_data): num_batches = input_data.size(0) num_samples = input_data.size(1) self.num_samples = num_samples # similar to librosa, reflect-pad the input input_data = input_data.view(num_batches, 1, num_samples) input_data = F.pad( input_data.unsqueeze(1), (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0), mode='reflect') input_data = input_data.squeeze(1) forward_transform = F.conv1d( input_data, Variable(self.forward_basis, requires_grad=False), stride=self.hop_length, padding=0) cutoff = int((self.filter_length / 2) + 1) real_part = forward_transform[:, :cutoff, :] imag_part = forward_transform[:, cutoff:, :] magnitude = torch.sqrt(real_part**2 + imag_part**2) phase = torch.autograd.Variable( torch.atan2(imag_part.data, real_part.data)) return magnitude, phase def inverse(self, magnitude, phase): recombine_magnitude_phase = torch.cat( [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1) with torch.no_grad(): inverse_transform = F.conv_transpose1d( recombine_magnitude_phase, self.inverse_basis, stride=self.hop_length, padding=0) if self.window is not None: window_sum = window_sumsquare( self.window, magnitude.size(-1), hop_length=self.hop_length, win_length=self.win_length, n_fft=self.filter_length, dtype=np.float32) # remove modulation effects approx_nonzero_indices = torch.from_numpy( np.where(window_sum > tiny(window_sum))[0]) window_sum = torch.autograd.Variable( torch.from_numpy(window_sum), requires_grad=False) window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices] # scale by hop ratio inverse_transform *= float(self.filter_length) / self.hop_length inverse_transform = inverse_transform[:, :, int(self.filter_length/2):] inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):] return inverse_transform def forward(self, input_data): self.magnitude, self.phase = self.transform(input_data) reconstruction = self.inverse(self.magnitude, self.phase) return reconstruction
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/stft.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # The following functions/classes were based on code from https://github.com/jik876/hifi-gan: # plot_spectrogram, init_weights, get_padding, AttrDict import ctypes import glob import os import re import shutil import warnings from collections import defaultdict, OrderedDict from pathlib import Path from typing import Optional import soundfile # flac import matplotlib import numpy as np import torch import torch.distributed as dist def mask_from_lens(lens, max_len: Optional[int] = None): if max_len is None: max_len = lens.max() ids = torch.arange(0, max_len, device=lens.device, dtype=lens.dtype) mask = torch.lt(ids, lens.unsqueeze(1)) return mask def freeze(model): for p in model.parameters(): p.requires_grad = False def unfreeze(model): for p in model.parameters(): p.requires_grad = True def reduce_tensor(tensor, world_size): if world_size == 1: return tensor rt = tensor.detach().clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) return rt.true_divide(world_size) def adjust_fine_tuning_lr(args, ckpt_d): assert args.fine_tuning if args.fine_tune_lr_factor == 1.: return for k in ['optim_d', 'optim_g']: for param_group in ckpt_d[k]['param_groups']: old_v = param_group['lr'] new_v = old_v * args.fine_tune_lr_factor print(f'Init fine-tuning: changing {k} lr: {old_v} --> {new_v}') param_group['lr'] = new_v def init_distributed(args, world_size, rank): assert torch.cuda.is_available(), "Distributed mode requires CUDA." print(f"{args.local_rank}: Initializing distributed training") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) # Initialize distributed communication dist.init_process_group(backend=('nccl' if args.cuda else 'gloo'), init_method='env://') print(f"{args.local_rank}: Done initializing distributed training") def load_wav(full_path, torch_tensor=False): data, sampling_rate = soundfile.read(full_path, dtype='int16') if torch_tensor: return torch.FloatTensor(data.astype(np.float32)), sampling_rate else: return data, sampling_rate def load_wav_to_torch(full_path, force_sampling_rate=None): if force_sampling_rate is not None: raise NotImplementedError return load_wav(full_path, True) def load_filepaths_and_text(dataset_path, fnames, has_speakers=False, split="|"): def split_line(root, line): parts = line.strip().split(split) if len(parts) == 1: paths, non_paths = parts, [] else: if has_speakers: paths, non_paths = parts[:-2], parts[-2:] else: paths, non_paths = parts[:-1], parts[-1:] return tuple(str(Path(root, p)) for p in paths) + tuple(non_paths) fpaths_and_text = [] for fname in fnames: with open(fname, encoding='utf-8') as f: fpaths_and_text += [split_line(dataset_path, line) for line in f] return fpaths_and_text def to_gpu(x): x = x.contiguous() return x.cuda(non_blocking=True) if torch.cuda.is_available() else x def l2_promote(): _libcudart = ctypes.CDLL('libcudart.so') # Set device limit on the current device # cudaLimitMaxL2FetchGranularity = 0x05 pValue = ctypes.cast((ctypes.c_int*1)(), ctypes.POINTER(ctypes.c_int)) _libcudart.cudaDeviceSetLimit(ctypes.c_int(0x05), ctypes.c_int(128)) _libcudart.cudaDeviceGetLimit(pValue, ctypes.c_int(0x05)) assert pValue.contents.value == 128 def prepare_tmp(path): if path is None: return p = Path(path) if p.is_dir(): warnings.warn(f'{p} exists. Removing...') shutil.rmtree(p, ignore_errors=True) p.mkdir(parents=False, exist_ok=False) def print_once(*msg): if not dist.is_initialized() or dist.get_rank() == 0: print(*msg) def plot_spectrogram(spectrogram): matplotlib.use("Agg") import matplotlib.pylab as plt fig, ax = plt.subplots(figsize=(10, 2)) im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation='none') plt.colorbar(im, ax=ax) fig.canvas.draw() plt.close() return fig def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self class DefaultAttrDict(defaultdict): def __init__(self, *args, **kwargs): super(DefaultAttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def __getattr__(self, item): return self[item] class Checkpointer: def __init__(self, save_dir, keep_milestones=[1000, 2000, 3000, 4000, 5000, 6000]): self.save_dir = save_dir self.keep_milestones = keep_milestones find = lambda name: {int(re.search('_(\d+).pt', fn).group(1)): fn for fn in glob.glob(f'{save_dir}/{name}_checkpoint_*.pt')} saved_g = find('hifigan_gen') saved_d = find('hifigan_discrim') common_epochs = sorted(set(saved_g.keys()) & set(saved_d.keys())) self.tracked = OrderedDict([(ep, (saved_g[ep], saved_d[ep])) for ep in common_epochs]) def maybe_load(self, gen, mpd, msd, optim_g, optim_d, scaler_g, scaler_d, train_state, args, gen_ema=None, mpd_ema=None, msd_ema=None): fpath_g = args.checkpoint_path_gen fpath_d = args.checkpoint_path_discrim assert (fpath_g is None) == (fpath_d is None) if fpath_g is not None: ckpt_paths = [(fpath_g, fpath_d)] self.tracked = OrderedDict() # Do not track/delete prev ckpts elif args.resume: ckpt_paths = list(reversed(self.tracked.values()))[:2] else: return ckpt_g = None ckpt_d = None for fpath_g, fpath_d in ckpt_paths: if args.local_rank == 0: print(f'Loading models from {fpath_g} {fpath_d}') try: ckpt_g = torch.load(fpath_g, map_location='cpu') ckpt_d = torch.load(fpath_d, map_location='cpu') break except: print(f'WARNING: Cannot load {fpath_g} and {fpath_d}') if ckpt_g is None or ckpt_d is None: return ep_g = ckpt_g.get('train_state', ckpt_g).get('epoch', None) ep_d = ckpt_d.get('train_state', ckpt_d).get('epoch', None) assert ep_g == ep_d, \ f'Mismatched epochs of gen and discrim ({ep_g} != {ep_d})' train_state.update(ckpt_g['train_state']) fine_tune_epoch_start = train_state.get('fine_tune_epoch_start') if args.fine_tuning and fine_tune_epoch_start is None: # Fine-tuning just began train_state['fine_tune_epoch_start'] = train_state['epoch'] + 1 train_state['fine_tune_lr_factor'] = args.fine_tune_lr_factor adjust_fine_tuning_lr(args, ckpt_d) unwrap = lambda m: getattr(m, 'module', m) unwrap(gen).load_state_dict(ckpt_g.get('gen', ckpt_g['generator'])) unwrap(mpd).load_state_dict(ckpt_d['mpd']) unwrap(msd).load_state_dict(ckpt_d['msd']) optim_g.load_state_dict(ckpt_d['optim_g']) optim_d.load_state_dict(ckpt_d['optim_d']) if 'scaler_g' in ckpt_d: scaler_g.load_state_dict(ckpt_d['scaler_g']) scaler_d.load_state_dict(ckpt_d['scaler_d']) else: warnings.warn('No grad scaler state found in the checkpoint.') if gen_ema is not None: gen_ema.load_state_dict(ckpt_g['gen_ema']) if mpd_ema is not None: mpd_ema.load_state_dict(ckpt_d['mpd_ema']) if msd_ema is not None: msd_ema.load_state_dict(ckpt_d['msd_ema']) def maybe_save(self, gen, mpd, msd, optim_g, optim_d, scaler_g, scaler_d, epoch, train_state, args, gen_config, train_setup, gen_ema=None, mpd_ema=None, msd_ema=None): rank = 0 if dist.is_initialized(): dist.barrier() rank = dist.get_rank() if rank != 0: return if epoch == 0: return if epoch < args.epochs and (args.checkpoint_interval == 0 or epoch % args.checkpoint_interval > 0): return unwrap = lambda m: getattr(m, 'module', m) fpath_g = Path(self.save_dir, f'hifigan_gen_checkpoint_{epoch}.pt') ckpt_g = { 'generator': unwrap(gen).state_dict(), 'gen_ema': gen_ema.state_dict() if gen_ema is not None else None, 'config': gen_config, 'train_setup': train_setup, 'train_state': train_state, } fpath_d = Path(self.save_dir, f'hifigan_discrim_checkpoint_{epoch}.pt') ckpt_d = { 'mpd': unwrap(mpd).state_dict(), 'msd': unwrap(msd).state_dict(), 'mpd_ema': mpd_ema.state_dict() if mpd_ema is not None else None, 'msd_ema': msd_ema.state_dict() if msd_ema is not None else None, 'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'scaler_g': scaler_g.state_dict(), 'scaler_d': scaler_d.state_dict(), 'train_state': train_state, # compat with original code 'steps': train_state['iters_all'], 'epoch': epoch, } print(f"Saving model and optimizer state to {fpath_g} and {fpath_d}") torch.save(ckpt_g, fpath_g) torch.save(ckpt_d, fpath_d) # Remove old checkpoints; keep milestones and the last two self.tracked[epoch] = (fpath_g, fpath_d) for epoch in set(list(self.tracked)[:-2]) - set(self.keep_milestones): try: os.remove(self.tracked[epoch][0]) os.remove(self.tracked[epoch][1]) del self.tracked[epoch] except: pass
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/utils.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import torch.nn.functional as F from librosa.filters import mel as librosa_mel_fn from common.audio_processing import (dynamic_range_compression, dynamic_range_decompression) from common.stft import STFT class LinearNorm(torch.nn.Module): def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): super(LinearNorm, self).__init__() self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) torch.nn.init.xavier_uniform_( self.linear_layer.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, x): return self.linear_layer(x) class ConvNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=None, dilation=1, bias=True, w_init_gain='linear', batch_norm=False): super(ConvNorm, self).__init__() if padding is None: assert(kernel_size % 2 == 1) padding = int(dilation * (kernel_size - 1) / 2) self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) self.norm = torch.nn.BatchNorm1D(out_channels) if batch_norm else None torch.nn.init.xavier_uniform_( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): if self.norm is None: return self.conv(signal) else: return self.norm(self.conv(signal)) class ConvReLUNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, dropout=0.0): super(ConvReLUNorm, self).__init__() self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, padding=(kernel_size // 2)) self.norm = torch.nn.LayerNorm(out_channels) self.dropout = torch.nn.Dropout(dropout) def forward(self, signal): out = F.relu(self.conv(signal)) out = self.norm(out.transpose(1, 2)).transpose(1, 2).to(signal.dtype) return self.dropout(out) class TacotronSTFT(torch.nn.Module): def __init__(self, filter_length=1024, hop_length=256, win_length=1024, n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, mel_fmax=8000.0): super(TacotronSTFT, self).__init__() self.n_mel_channels = n_mel_channels self.sampling_rate = sampling_rate self.stft_fn = STFT(filter_length, hop_length, win_length) mel_basis = librosa_mel_fn( sr=sampling_rate, n_fft=filter_length, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax ) mel_basis = torch.from_numpy(mel_basis).float() self.register_buffer('mel_basis', mel_basis) def spectral_normalize(self, magnitudes): output = dynamic_range_compression(magnitudes) return output def spectral_de_normalize(self, magnitudes): output = dynamic_range_decompression(magnitudes) return output def mel_spectrogram(self, y): """Computes mel-spectrograms from a batch of waves PARAMS ------ y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] RETURNS ------- mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) """ assert(torch.min(y.data) >= -1) assert(torch.max(y.data) <= 1) magnitudes, phases = self.stft_fn.transform(y) magnitudes = magnitudes.data mel_output = torch.matmul(self.mel_basis, magnitudes) mel_output = self.spectral_normalize(mel_output) return mel_output
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/layers.py
import re _letters_and_numbers_re = re.compile( r"((?:[a-zA-Z]+[0-9]|[0-9]+[a-zA-Z])[a-zA-Z0-9']*)", re.IGNORECASE) _hardware_re = re.compile( '([0-9]+(?:[.,][0-9]+)?)(?:\s?)(tb|gb|mb|kb|ghz|mhz|khz|hz|mm)', re.IGNORECASE) _hardware_key = {'tb': 'terabyte', 'gb': 'gigabyte', 'mb': 'megabyte', 'kb': 'kilobyte', 'ghz': 'gigahertz', 'mhz': 'megahertz', 'khz': 'kilohertz', 'hz': 'hertz', 'mm': 'millimeter', 'cm': 'centimeter', 'km': 'kilometer'} _dimension_re = re.compile( r'\b(\d+(?:[,.]\d+)?\s*[xX]\s*\d+(?:[,.]\d+)?\s*[xX]\s*\d+(?:[,.]\d+)?(?:in|inch|m)?)\b|\b(\d+(?:[,.]\d+)?\s*[xX]\s*\d+(?:[,.]\d+)?(?:in|inch|m)?)\b') _dimension_key = {'m': 'meter', 'in': 'inch', 'inch': 'inch'} def _expand_letters_and_numbers(m): text = re.split(r'(\d+)', m.group(0)) # remove trailing space if text[-1] == '': text = text[:-1] elif text[0] == '': text = text[1:] # if not like 1920s, or AK47's , 20th, 1st, 2nd, 3rd, etc... if text[-1] in ("'s", "s", "th", "nd", "st", "rd") and text[-2].isdigit(): text[-2] = text[-2] + text[-1] text = text[:-1] # for combining digits 2 by 2 new_text = [] for i in range(len(text)): string = text[i] if string.isdigit() and len(string) < 5: # heuristics if len(string) > 2 and string[-2] == '0': if string[-1] == '0': string = [string] else: string = [string[:-2], string[-2], string[-1]] elif len(string) % 2 == 0: string = [string[i:i+2] for i in range(0, len(string), 2)] elif len(string) > 2: string = [string[0]] + [string[i:i+2] for i in range(1, len(string), 2)] new_text.extend(string) else: new_text.append(string) text = new_text text = " ".join(text) return text def _expand_hardware(m): quantity, measure = m.groups(0) measure = _hardware_key[measure.lower()] if measure[-1] != 'z' and float(quantity.replace(',', '')) > 1: return "{} {}s".format(quantity, measure) return "{} {}".format(quantity, measure) def _expand_dimension(m): text = "".join([x for x in m.groups(0) if x != 0]) text = text.replace(' x ', ' by ') text = text.replace('x', ' by ') if text.endswith(tuple(_dimension_key.keys())): if text[-2].isdigit(): text = "{} {}".format(text[:-1], _dimension_key[text[-1:]]) elif text[-3].isdigit(): text = "{} {}".format(text[:-2], _dimension_key[text[-2:]]) return text def normalize_letters_and_numbers(text): text = re.sub(_hardware_re, _expand_hardware, text) text = re.sub(_dimension_re, _expand_dimension, text) text = re.sub(_letters_and_numbers_re, _expand_letters_and_numbers, text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/letters_and_numbers.py
""" from https://github.com/keithito/tacotron """ import re import sys import urllib.request from pathlib import Path valid_symbols = [ 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2', 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2', 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY', 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1', 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0', 'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH' ] _valid_symbol_set = set(valid_symbols) class CMUDict: '''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict''' def __init__(self, file_or_path=None, heteronyms_path=None, keep_ambiguous=True): self._entries = {} self.heteronyms = [] if file_or_path is not None: self.initialize(file_or_path, heteronyms_path, keep_ambiguous) def initialize(self, file_or_path, heteronyms_path, keep_ambiguous=True): if isinstance(file_or_path, str): if not Path(file_or_path).exists(): print("CMUdict missing. Downloading to data/cmudict/.") self.download() with open(file_or_path, encoding='latin-1') as f: entries = _parse_cmudict(f) else: entries = _parse_cmudict(file_or_path) if not keep_ambiguous: entries = {word: pron for word, pron in entries.items() if len(pron) == 1} self._entries = entries if heteronyms_path is not None: with open(heteronyms_path, encoding='utf-8') as f: self.heteronyms = [l.rstrip() for l in f] def __len__(self): if len(self._entries) == 0: raise ValueError("CMUDict not initialized") return len(self._entries) def lookup(self, word): '''Returns list of ARPAbet pronunciations of the given word.''' if len(self._entries) == 0: raise ValueError("CMUDict not initialized") return self._entries.get(word.upper()) def download(self): url = 'https://github.com/Alexir/CMUdict/raw/master/cmudict-0.7b' try: Path('data/cmudict').mkdir(parents=False, exist_ok=True) urllib.request.urlretrieve(url, filename='data/cmudict/cmudict-0.7b') except: print("Automatic download of CMUdict failed. Try manually with:") print() print(" bash scripts/download_cmudict.sh") print() print("and re-run the script.") sys.exit(0) _alt_re = re.compile(r'\([0-9]+\)') def _parse_cmudict(file): cmudict = {} for line in file: if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"): parts = line.split(' ') word = re.sub(_alt_re, '', parts[0]) pronunciation = _get_pronunciation(parts[1]) if pronunciation: if word in cmudict: cmudict[word].append(pronunciation) else: cmudict[word] = [pronunciation] return cmudict def _get_pronunciation(s): parts = s.strip().split(' ') for part in parts: if part not in _valid_symbol_set: return None return ' '.join(parts)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/cmudict.py
import re _no_period_re = re.compile(r'(No[.])(?=[ ]?[0-9])') _percent_re = re.compile(r'([ ]?[%])') _half_re = re.compile('([0-9]½)|(½)') _url_re = re.compile(r'([a-zA-Z])\.(com|gov|org)') # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ ('mrs', 'misess'), ('ms', 'miss'), ('mr', 'mister'), ('dr', 'doctor'), ('st', 'saint'), ('co', 'company'), ('jr', 'junior'), ('maj', 'major'), ('gen', 'general'), ('drs', 'doctors'), ('rev', 'reverend'), ('lt', 'lieutenant'), ('hon', 'honorable'), ('sgt', 'sergeant'), ('capt', 'captain'), ('esq', 'esquire'), ('ltd', 'limited'), ('col', 'colonel'), ('ft', 'fort'), ('sen', 'senator'), ('etc', 'et cetera'), ]] def _expand_no_period(m): word = m.group(0) if word[0] == 'N': return 'Number' return 'number' def _expand_percent(m): return ' percent' def _expand_half(m): word = m.group(1) if word is None: return 'half' return word[0] + ' and a half' def _expand_urls(m): return f'{m.group(1)} dot {m.group(2)}' def normalize_abbreviations(text): text = re.sub(_no_period_re, _expand_no_period, text) text = re.sub(_percent_re, _expand_percent, text) text = re.sub(_half_re, _expand_half, text) text = re.sub('&', ' and ', text) text = re.sub('@', ' at ', text) text = re.sub(_url_re, _expand_urls, text) for regex, replacement in _abbreviations: text = re.sub(regex, replacement, text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/abbreviations.py
""" adapted from https://github.com/keithito/tacotron """ import re import numpy as np from . import cleaners from .symbols import get_symbols from . import cmudict from .numerical import _currency_re, _expand_currency ######### # REGEX # ######### # Regular expression matching text enclosed in curly braces for encoding _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)') # Regular expression matching words and not words _words_re = re.compile(r"([a-zA-ZÀ-ž]+['][a-zA-ZÀ-ž]{1,2}|[a-zA-ZÀ-ž]+)|([{][^}]+[}]|[^a-zA-ZÀ-ž{}]+)") # Regular expression separating words enclosed in curly braces for cleaning _arpa_re = re.compile(r'{[^}]+}|\S+') class TextProcessing(object): def __init__(self, symbol_set, cleaner_names, p_arpabet=0.0, handle_arpabet='word', handle_arpabet_ambiguous='ignore', expand_currency=True): self.symbols = get_symbols(symbol_set) self.cleaner_names = cleaner_names # Mappings from symbol to numeric ID and vice versa: self.symbol_to_id = {s: i for i, s in enumerate(self.symbols)} self.id_to_symbol = {i: s for i, s in enumerate(self.symbols)} self.expand_currency = expand_currency # cmudict self.p_arpabet = p_arpabet self.handle_arpabet = handle_arpabet self.handle_arpabet_ambiguous = handle_arpabet_ambiguous def text_to_sequence(self, text): sequence = [] # Check for curly braces and treat their contents as ARPAbet: while len(text): m = _curly_re.match(text) if not m: sequence += self.symbols_to_sequence(text) break sequence += self.symbols_to_sequence(m.group(1)) sequence += self.arpabet_to_sequence(m.group(2)) text = m.group(3) return sequence def sequence_to_text(self, sequence): result = '' for symbol_id in sequence: if symbol_id in self.id_to_symbol: s = self.id_to_symbol[symbol_id] # Enclose ARPAbet back in curly braces: if len(s) > 1 and s[0] == '@': s = '{%s}' % s[1:] result += s return result.replace('}{', ' ') def clean_text(self, text): for name in self.cleaner_names: cleaner = getattr(cleaners, name) if not cleaner: raise Exception('Unknown cleaner: %s' % name) text = cleaner(text) return text def symbols_to_sequence(self, symbols): return [self.symbol_to_id[s] for s in symbols if s in self.symbol_to_id] def arpabet_to_sequence(self, text): return self.symbols_to_sequence(['@' + s for s in text.split()]) def get_arpabet(self, word): arpabet_suffix = '' if word.lower() in cmudict.heteronyms: return word if len(word) > 2 and word.endswith("'s"): arpabet = cmudict.lookup(word) if arpabet is None: arpabet = self.get_arpabet(word[:-2]) arpabet_suffix = ' Z' elif len(word) > 1 and word.endswith("s"): arpabet = cmudict.lookup(word) if arpabet is None: arpabet = self.get_arpabet(word[:-1]) arpabet_suffix = ' Z' else: arpabet = cmudict.lookup(word) if arpabet is None: return word elif arpabet[0] == '{': arpabet = [arpabet[1:-1]] # XXX arpabet might not be a list here if type(arpabet) is not list: return word if len(arpabet) > 1: if self.handle_arpabet_ambiguous == 'first': arpabet = arpabet[0] elif self.handle_arpabet_ambiguous == 'random': arpabet = np.random.choice(arpabet) elif self.handle_arpabet_ambiguous == 'ignore': return word else: arpabet = arpabet[0] arpabet = "{" + arpabet + arpabet_suffix + "}" return arpabet def encode_text(self, text, return_all=False): if self.expand_currency: text = re.sub(_currency_re, _expand_currency, text) text_clean = [self.clean_text(split) if split[0] != '{' else split for split in _arpa_re.findall(text)] text_clean = ' '.join(text_clean) text_clean = cleaners.collapse_whitespace(text_clean) text = text_clean text_arpabet = '' if self.p_arpabet > 0: if self.handle_arpabet == 'sentence': if np.random.uniform() < self.p_arpabet: words = _words_re.findall(text) text_arpabet = [ self.get_arpabet(word[0]) if (word[0] != '') else word[1] for word in words] text_arpabet = ''.join(text_arpabet) text = text_arpabet elif self.handle_arpabet == 'word': words = _words_re.findall(text) text_arpabet = [ word[1] if word[0] == '' else ( self.get_arpabet(word[0]) if np.random.uniform() < self.p_arpabet else word[0]) for word in words] text_arpabet = ''.join(text_arpabet) text = text_arpabet elif self.handle_arpabet != '': raise Exception("{} handle_arpabet is not supported".format( self.handle_arpabet)) text_encoded = self.text_to_sequence(text) if return_all: return text_encoded, text_clean, text_arpabet return text_encoded
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/text_processing.py
from .cmudict import CMUDict cmudict = CMUDict()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/__init__.py
""" adapted from https://github.com/keithito/tacotron """ import inflect import re _magnitudes = ['trillion', 'billion', 'million', 'thousand', 'hundred', 'm', 'b', 't'] _magnitudes_key = {'m': 'million', 'b': 'billion', 't': 'trillion'} _measurements = '(f|c|k|d|m)' _measurements_key = {'f': 'fahrenheit', 'c': 'celsius', 'k': 'thousand', 'm': 'meters'} _currency_key = {'$': 'dollar', '£': 'pound', '€': 'euro', '₩': 'won'} _inflect = inflect.engine() _comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])') _decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)') _currency_re = re.compile(r'([\$€£₩])([0-9\.\,]*[0-9]+)(?:[ ]?({})(?=[^a-zA-Z]|$))?'.format("|".join(_magnitudes)), re.IGNORECASE) _measurement_re = re.compile(r'([0-9\.\,]*[0-9]+(\s)?{}\b)'.format(_measurements), re.IGNORECASE) _ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)') # _range_re = re.compile(r'(?<=[0-9])+(-)(?=[0-9])+.*?') _roman_re = re.compile(r'\b(?=[MDCLXVI]+\b)M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{2,3})\b') # avoid I _multiply_re = re.compile(r'(\b[0-9]+)(x)([0-9]+)') _number_re = re.compile(r"[0-9]+'s|[0-9]+s|[0-9]+") def _remove_commas(m): return m.group(1).replace(',', '') def _expand_decimal_point(m): return m.group(1).replace('.', ' point ') def _expand_currency(m): currency = _currency_key[m.group(1)] quantity = m.group(2) magnitude = m.group(3) # remove commas from quantity to be able to convert to numerical quantity = quantity.replace(',', '') # check for million, billion, etc... if magnitude is not None and magnitude.lower() in _magnitudes: if len(magnitude) == 1: magnitude = _magnitudes_key[magnitude.lower()] return "{} {} {}".format(_expand_hundreds(quantity), magnitude, currency+'s') parts = quantity.split('.') if len(parts) > 2: return quantity + " " + currency + "s" # Unexpected format dollars = int(parts[0]) if parts[0] else 0 cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0 if dollars and cents: dollar_unit = currency if dollars == 1 else currency+'s' cent_unit = 'cent' if cents == 1 else 'cents' return "{} {}, {} {}".format( _expand_hundreds(dollars), dollar_unit, _inflect.number_to_words(cents), cent_unit) elif dollars: dollar_unit = currency if dollars == 1 else currency+'s' return "{} {}".format(_expand_hundreds(dollars), dollar_unit) elif cents: cent_unit = 'cent' if cents == 1 else 'cents' return "{} {}".format(_inflect.number_to_words(cents), cent_unit) else: return 'zero' + ' ' + currency + 's' def _expand_hundreds(text): number = float(text) if 1000 < number < 10000 and (number % 100 == 0) and (number % 1000 != 0): return _inflect.number_to_words(int(number / 100)) + " hundred" else: return _inflect.number_to_words(text) def _expand_ordinal(m): return _inflect.number_to_words(m.group(0)) def _expand_measurement(m): _, number, measurement = re.split('(\d+(?:\.\d+)?)', m.group(0)) number = _inflect.number_to_words(number) measurement = "".join(measurement.split()) measurement = _measurements_key[measurement.lower()] return "{} {}".format(number, measurement) def _expand_range(m): return ' to ' def _expand_multiply(m): left = m.group(1) right = m.group(3) return "{} by {}".format(left, right) def _expand_roman(m): # from https://stackoverflow.com/questions/19308177/converting-roman-numerals-to-integers-in-python roman_numerals = {'I':1, 'V':5, 'X':10, 'L':50, 'C':100, 'D':500, 'M':1000} result = 0 num = m.group(0) for i, c in enumerate(num): if (i+1) == len(num) or roman_numerals[c] >= roman_numerals[num[i+1]]: result += roman_numerals[c] else: result -= roman_numerals[c] return str(result) def _expand_number(m): _, number, suffix = re.split(r"(\d+(?:'?\d+)?)", m.group(0)) number = int(number) if number > 1000 < 10000 and (number % 100 == 0) and (number % 1000 != 0): text = _inflect.number_to_words(number // 100) + " hundred" elif number > 1000 and number < 3000: if number == 2000: text = 'two thousand' elif number > 2000 and number < 2010: text = 'two thousand ' + _inflect.number_to_words(number % 100) elif number % 100 == 0: text = _inflect.number_to_words(number // 100) + ' hundred' else: number = _inflect.number_to_words(number, andword='', zero='oh', group=2).replace(', ', ' ') number = re.sub(r'-', ' ', number) text = number else: number = _inflect.number_to_words(number, andword='and') number = re.sub(r'-', ' ', number) number = re.sub(r',', '', number) text = number if suffix in ("'s", "s"): if text[-1] == 'y': text = text[:-1] + 'ies' else: text = text + suffix return text def normalize_numbers(text): text = re.sub(_comma_number_re, _remove_commas, text) text = re.sub(_currency_re, _expand_currency, text) text = re.sub(_decimal_number_re, _expand_decimal_point, text) text = re.sub(_ordinal_re, _expand_ordinal, text) # text = re.sub(_range_re, _expand_range, text) # text = re.sub(_measurement_re, _expand_measurement, text) text = re.sub(_roman_re, _expand_roman, text) text = re.sub(_multiply_re, _expand_multiply, text) text = re.sub(_number_re, _expand_number, text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/numerical.py
""" from https://github.com/keithito/tacotron """ ''' Defines the set of symbols used in text input to the model. The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. ''' from .cmudict import valid_symbols # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters): _arpabet = ['@' + s for s in valid_symbols] def get_symbols(symbol_set='english_basic'): if symbol_set == 'english_basic': _pad = '_' _punctuation = '!\'(),.:;? ' _special = '-' _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' symbols = list(_pad + _special + _punctuation + _letters) + _arpabet elif symbol_set == 'english_basic_lowercase': _pad = '_' _punctuation = '!\'"(),.:;? ' _special = '-' _letters = 'abcdefghijklmnopqrstuvwxyz' symbols = list(_pad + _special + _punctuation + _letters) + _arpabet elif symbol_set == 'english_expanded': _punctuation = '!\'",.:;? ' _math = '#%&*+-/[]()' _special = '_@©°½—₩€$' _accented = 'áçéêëñöøćž' _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' symbols = list(_punctuation + _math + _special + _accented + _letters) + _arpabet else: raise Exception("{} symbol set does not exist".format(symbol_set)) return symbols def get_pad_idx(symbol_set='english_basic'): if symbol_set in {'english_basic', 'english_basic_lowercase'}: return 0 else: raise Exception("{} symbol set not used yet".format(symbol_set))
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/symbols.py
""" adapted from https://github.com/keithito/tacotron """ ''' Cleaners are transformations that run over the input text at both training and eval time. Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" hyperparameter. Some cleaners are English-specific. You'll typically want to use: 1. "english_cleaners" for English text 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using the Unidecode library (https://pypi.python.org/pypi/Unidecode) 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update the symbols in symbols.py to match your data). ''' import re from .abbreviations import normalize_abbreviations from .acronyms import normalize_acronyms, spell_acronyms from .datestime import normalize_datestime from .letters_and_numbers import normalize_letters_and_numbers from .numerical import normalize_numbers from .unidecoder import unidecoder # Regular expression matching whitespace: _whitespace_re = re.compile(r'\s+') def expand_abbreviations(text): return normalize_abbreviations(text) def expand_numbers(text): return normalize_numbers(text) def expand_acronyms(text): return normalize_acronyms(text) def expand_datestime(text): return normalize_datestime(text) def expand_letters_and_numbers(text): return normalize_letters_and_numbers(text) def lowercase(text): return text.lower() def collapse_whitespace(text): return re.sub(_whitespace_re, ' ', text) def separate_acronyms(text): text = re.sub(r"([0-9]+)([a-zA-Z]+)", r"\1 \2", text) text = re.sub(r"([a-zA-Z]+)([0-9]+)", r"\1 \2", text) return text def convert_to_ascii(text): return unidecoder(text) def basic_cleaners(text): '''Basic pipeline that collapses whitespace without transliteration.''' text = lowercase(text) text = collapse_whitespace(text) return text def transliteration_cleaners(text): '''Pipeline for non-English text that transliterates to ASCII.''' text = convert_to_ascii(text) text = lowercase(text) text = collapse_whitespace(text) return text def english_cleaners(text): '''Pipeline for English text, with number and abbreviation expansion.''' text = convert_to_ascii(text) text = lowercase(text) text = expand_numbers(text) text = expand_abbreviations(text) text = collapse_whitespace(text) return text def english_cleaners_v2(text): text = convert_to_ascii(text) text = expand_datestime(text) text = expand_letters_and_numbers(text) text = expand_numbers(text) text = expand_abbreviations(text) text = spell_acronyms(text) text = lowercase(text) text = collapse_whitespace(text) # compatibility with basic_english symbol set text = re.sub(r'/+', ' ', text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/cleaners.py
import re _ampm_re = re.compile( r'([0-9]|0[0-9]|1[0-9]|2[0-3]):?([0-5][0-9])?\s*([AaPp][Mm]\b)') def _expand_ampm(m): matches = list(m.groups(0)) txt = matches[0] txt = txt if int(matches[1]) == 0 else txt + ' ' + matches[1] if matches[2][0].lower() == 'a': txt += ' a.m.' elif matches[2][0].lower() == 'p': txt += ' p.m.' return txt def normalize_datestime(text): text = re.sub(_ampm_re, _expand_ampm, text) #text = re.sub(r"([0-9]|0[0-9]|1[0-9]|2[0-3]):([0-5][0-9])?", r"\1 \2", text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/datestime.py
import re from . import cmudict _letter_to_arpabet = { 'A': 'EY1', 'B': 'B IY1', 'C': 'S IY1', 'D': 'D IY1', 'E': 'IY1', 'F': 'EH1 F', 'G': 'JH IY1', 'H': 'EY1 CH', 'I': 'AY1', 'J': 'JH EY1', 'K': 'K EY1', 'L': 'EH1 L', 'M': 'EH1 M', 'N': 'EH1 N', 'O': 'OW1', 'P': 'P IY1', 'Q': 'K Y UW1', 'R': 'AA1 R', 'S': 'EH1 S', 'T': 'T IY1', 'U': 'Y UW1', 'V': 'V IY1', 'X': 'EH1 K S', 'Y': 'W AY1', 'W': 'D AH1 B AH0 L Y UW0', 'Z': 'Z IY1', 's': 'Z' } # Acronyms that should not be expanded hardcoded_acronyms = [ 'BMW', 'MVD', 'WDSU', 'GOP', 'UK', 'AI', 'GPS', 'BP', 'FBI', 'HD', 'CES', 'LRA', 'PC', 'NBA', 'BBL', 'OS', 'IRS', 'SAC', 'UV', 'CEO', 'TV', 'CNN', 'MSS', 'GSA', 'USSR', 'DNA', 'PRS', 'TSA', 'US', 'GPU', 'USA', 'FPCC', 'CIA'] # Words and acronyms that should be read as regular words, e.g., NATO, HAPPY, etc. uppercase_whiteliset = [] acronyms_exceptions = { 'NVIDIA': 'N.VIDIA', } non_uppercase_exceptions = { 'email': 'e-mail', } # must ignore roman numerals _acronym_re = re.compile(r'([a-z]*[A-Z][A-Z]+)s?\.?') _non_uppercase_re = re.compile(r'\b({})\b'.format('|'.join(non_uppercase_exceptions.keys())), re.IGNORECASE) def _expand_acronyms_to_arpa(m, add_spaces=True): acronym = m.group(0) # remove dots if they exist acronym = re.sub('\.', '', acronym) acronym = "".join(acronym.split()) arpabet = cmudict.lookup(acronym) if arpabet is None: acronym = list(acronym) arpabet = ["{" + _letter_to_arpabet[letter] + "}" for letter in acronym] # temporary fix if arpabet[-1] == '{Z}' and len(arpabet) > 1: arpabet[-2] = arpabet[-2][:-1] + ' ' + arpabet[-1][1:] del arpabet[-1] arpabet = ' '.join(arpabet) elif len(arpabet) == 1: arpabet = "{" + arpabet[0] + "}" else: arpabet = acronym return arpabet def normalize_acronyms(text): text = re.sub(_acronym_re, _expand_acronyms_to_arpa, text) return text def expand_acronyms(m): text = m.group(1) if text in acronyms_exceptions: text = acronyms_exceptions[text] elif text in uppercase_whiteliset: text = text else: text = '.'.join(text) + '.' if 's' in m.group(0): text = text + '\'s' if text[-1] != '.' and m.group(0)[-1] == '.': return text + '.' else: return text def spell_acronyms(text): text = re.sub(_non_uppercase_re, lambda m: non_uppercase_exceptions[m.group(0).lower()], text) text = re.sub(_acronym_re, expand_acronyms, text) return text
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/acronyms.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) Sindre Sorhus <[email protected]> (https://sindresorhus.com) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Based on: # https://github.com/sindresorhus/transliterate/blob/main/replacements.js # replacements = [ # German umlauts ['ß', 'ss'], ['ẞ', 'Ss'], ['ä', 'ae'], ['Ä', 'Ae'], ['ö', 'oe'], ['Ö', 'Oe'], ['ü', 'ue'], ['Ü', 'Ue'], # Latin ['À', 'A'], ['Á', 'A'], ['Â', 'A'], ['Ã', 'A'], ['Ä', 'Ae'], ['Å', 'A'], ['Æ', 'AE'], ['Ç', 'C'], ['È', 'E'], ['É', 'E'], ['Ê', 'E'], ['Ë', 'E'], ['Ì', 'I'], ['Í', 'I'], ['Î', 'I'], ['Ï', 'I'], ['Ð', 'D'], ['Ñ', 'N'], ['Ò', 'O'], ['Ó', 'O'], ['Ô', 'O'], ['Õ', 'O'], ['Ö', 'Oe'], ['Ő', 'O'], ['Ø', 'O'], ['Ù', 'U'], ['Ú', 'U'], ['Û', 'U'], ['Ü', 'Ue'], ['Ű', 'U'], ['Ý', 'Y'], ['Þ', 'TH'], ['ß', 'ss'], ['à', 'a'], ['á', 'a'], ['â', 'a'], ['ã', 'a'], ['ä', 'ae'], ['å', 'a'], ['æ', 'ae'], ['ç', 'c'], ['è', 'e'], ['é', 'e'], ['ê', 'e'], ['ë', 'e'], ['ì', 'i'], ['í', 'i'], ['î', 'i'], ['ï', 'i'], ['ð', 'd'], ['ñ', 'n'], ['ò', 'o'], ['ó', 'o'], ['ô', 'o'], ['õ', 'o'], ['ö', 'oe'], ['ő', 'o'], ['ø', 'o'], ['ù', 'u'], ['ú', 'u'], ['û', 'u'], ['ü', 'ue'], ['ű', 'u'], ['ý', 'y'], ['þ', 'th'], ['ÿ', 'y'], ['ẞ', 'SS'], # Vietnamese ['à', 'a'], ['À', 'A'], ['á', 'a'], ['Á', 'A'], ['â', 'a'], ['Â', 'A'], ['ã', 'a'], ['Ã', 'A'], ['è', 'e'], ['È', 'E'], ['é', 'e'], ['É', 'E'], ['ê', 'e'], ['Ê', 'E'], ['ì', 'i'], ['Ì', 'I'], ['í', 'i'], ['Í', 'I'], ['ò', 'o'], ['Ò', 'O'], ['ó', 'o'], ['Ó', 'O'], ['ô', 'o'], ['Ô', 'O'], ['õ', 'o'], ['Õ', 'O'], ['ù', 'u'], ['Ù', 'U'], ['ú', 'u'], ['Ú', 'U'], ['ý', 'y'], ['Ý', 'Y'], ['ă', 'a'], ['Ă', 'A'], ['Đ', 'D'], ['đ', 'd'], ['ĩ', 'i'], ['Ĩ', 'I'], ['ũ', 'u'], ['Ũ', 'U'], ['ơ', 'o'], ['Ơ', 'O'], ['ư', 'u'], ['Ư', 'U'], ['ạ', 'a'], ['Ạ', 'A'], ['ả', 'a'], ['Ả', 'A'], ['ấ', 'a'], ['Ấ', 'A'], ['ầ', 'a'], ['Ầ', 'A'], ['ẩ', 'a'], ['Ẩ', 'A'], ['ẫ', 'a'], ['Ẫ', 'A'], ['ậ', 'a'], ['Ậ', 'A'], ['ắ', 'a'], ['Ắ', 'A'], ['ằ', 'a'], ['Ằ', 'A'], ['ẳ', 'a'], ['Ẳ', 'A'], ['ẵ', 'a'], ['Ẵ', 'A'], ['ặ', 'a'], ['Ặ', 'A'], ['ẹ', 'e'], ['Ẹ', 'E'], ['ẻ', 'e'], ['Ẻ', 'E'], ['ẽ', 'e'], ['Ẽ', 'E'], ['ế', 'e'], ['Ế', 'E'], ['ề', 'e'], ['Ề', 'E'], ['ể', 'e'], ['Ể', 'E'], ['ễ', 'e'], ['Ễ', 'E'], ['ệ', 'e'], ['Ệ', 'E'], ['ỉ', 'i'], ['Ỉ', 'I'], ['ị', 'i'], ['Ị', 'I'], ['ọ', 'o'], ['Ọ', 'O'], ['ỏ', 'o'], ['Ỏ', 'O'], ['ố', 'o'], ['Ố', 'O'], ['ồ', 'o'], ['Ồ', 'O'], ['ổ', 'o'], ['Ổ', 'O'], ['ỗ', 'o'], ['Ỗ', 'O'], ['ộ', 'o'], ['Ộ', 'O'], ['ớ', 'o'], ['Ớ', 'O'], ['ờ', 'o'], ['Ờ', 'O'], ['ở', 'o'], ['Ở', 'O'], ['ỡ', 'o'], ['Ỡ', 'O'], ['ợ', 'o'], ['Ợ', 'O'], ['ụ', 'u'], ['Ụ', 'U'], ['ủ', 'u'], ['Ủ', 'U'], ['ứ', 'u'], ['Ứ', 'U'], ['ừ', 'u'], ['Ừ', 'U'], ['ử', 'u'], ['Ử', 'U'], ['ữ', 'u'], ['Ữ', 'U'], ['ự', 'u'], ['Ự', 'U'], ['ỳ', 'y'], ['Ỳ', 'Y'], ['ỵ', 'y'], ['Ỵ', 'Y'], ['ỷ', 'y'], ['Ỷ', 'Y'], ['ỹ', 'y'], ['Ỹ', 'Y'], # Arabic ['ء', 'e'], ['آ', 'a'], ['أ', 'a'], ['ؤ', 'w'], ['إ', 'i'], ['ئ', 'y'], ['ا', 'a'], ['ب', 'b'], ['ة', 't'], ['ت', 't'], ['ث', 'th'], ['ج', 'j'], ['ح', 'h'], ['خ', 'kh'], ['د', 'd'], ['ذ', 'dh'], ['ر', 'r'], ['ز', 'z'], ['س', 's'], ['ش', 'sh'], ['ص', 's'], ['ض', 'd'], ['ط', 't'], ['ظ', 'z'], ['ع', 'e'], ['غ', 'gh'], ['ـ', '_'], ['ف', 'f'], ['ق', 'q'], ['ك', 'k'], ['ل', 'l'], ['م', 'm'], ['ن', 'n'], ['ه', 'h'], ['و', 'w'], ['ى', 'a'], ['ي', 'y'], ['َ‎', 'a'], ['ُ', 'u'], ['ِ‎', 'i'], ['٠', '0'], ['١', '1'], ['٢', '2'], ['٣', '3'], ['٤', '4'], ['٥', '5'], ['٦', '6'], ['٧', '7'], ['٨', '8'], ['٩', '9'], # Persian / Farsi ['چ', 'ch'], ['ک', 'k'], ['گ', 'g'], ['پ', 'p'], ['ژ', 'zh'], ['ی', 'y'], ['۰', '0'], ['۱', '1'], ['۲', '2'], ['۳', '3'], ['۴', '4'], ['۵', '5'], ['۶', '6'], ['۷', '7'], ['۸', '8'], ['۹', '9'], # Pashto ['ټ', 'p'], ['ځ', 'z'], ['څ', 'c'], ['ډ', 'd'], ['ﺫ', 'd'], ['ﺭ', 'r'], ['ړ', 'r'], ['ﺯ', 'z'], ['ږ', 'g'], ['ښ', 'x'], ['ګ', 'g'], ['ڼ', 'n'], ['ۀ', 'e'], ['ې', 'e'], ['ۍ', 'ai'], # Urdu ['ٹ', 't'], ['ڈ', 'd'], ['ڑ', 'r'], ['ں', 'n'], ['ہ', 'h'], ['ھ', 'h'], ['ے', 'e'], # Russian ['А', 'A'], ['а', 'a'], ['Б', 'B'], ['б', 'b'], ['В', 'V'], ['в', 'v'], ['Г', 'G'], ['г', 'g'], ['Д', 'D'], ['д', 'd'], ['ъе', 'ye'], ['Ъе', 'Ye'], ['ъЕ', 'yE'], ['ЪЕ', 'YE'], ['Е', 'E'], ['е', 'e'], ['Ё', 'Yo'], ['ё', 'yo'], ['Ж', 'Zh'], ['ж', 'zh'], ['З', 'Z'], ['з', 'z'], ['И', 'I'], ['и', 'i'], ['ый', 'iy'], ['Ый', 'Iy'], ['ЫЙ', 'IY'], ['ыЙ', 'iY'], ['Й', 'Y'], ['й', 'y'], ['К', 'K'], ['к', 'k'], ['Л', 'L'], ['л', 'l'], ['М', 'M'], ['м', 'm'], ['Н', 'N'], ['н', 'n'], ['О', 'O'], ['о', 'o'], ['П', 'P'], ['п', 'p'], ['Р', 'R'], ['р', 'r'], ['С', 'S'], ['с', 's'], ['Т', 'T'], ['т', 't'], ['У', 'U'], ['у', 'u'], ['Ф', 'F'], ['ф', 'f'], ['Х', 'Kh'], ['х', 'kh'], ['Ц', 'Ts'], ['ц', 'ts'], ['Ч', 'Ch'], ['ч', 'ch'], ['Ш', 'Sh'], ['ш', 'sh'], ['Щ', 'Sch'], ['щ', 'sch'], ['Ъ', ''], ['ъ', ''], ['Ы', 'Y'], ['ы', 'y'], ['Ь', ''], ['ь', ''], ['Э', 'E'], ['э', 'e'], ['Ю', 'Yu'], ['ю', 'yu'], ['Я', 'Ya'], ['я', 'ya'], # Romanian ['ă', 'a'], ['Ă', 'A'], ['ș', 's'], ['Ș', 'S'], ['ț', 't'], ['Ț', 'T'], ['ţ', 't'], ['Ţ', 'T'], # Turkish ['ş', 's'], ['Ş', 'S'], ['ç', 'c'], ['Ç', 'C'], ['ğ', 'g'], ['Ğ', 'G'], ['ı', 'i'], ['İ', 'I'], # Armenian ['ա', 'a'], ['Ա', 'A'], ['բ', 'b'], ['Բ', 'B'], ['գ', 'g'], ['Գ', 'G'], ['դ', 'd'], ['Դ', 'D'], ['ե', 'ye'], ['Ե', 'Ye'], ['զ', 'z'], ['Զ', 'Z'], ['է', 'e'], ['Է', 'E'], ['ը', 'y'], ['Ը', 'Y'], ['թ', 't'], ['Թ', 'T'], ['ժ', 'zh'], ['Ժ', 'Zh'], ['ի', 'i'], ['Ի', 'I'], ['լ', 'l'], ['Լ', 'L'], ['խ', 'kh'], ['Խ', 'Kh'], ['ծ', 'ts'], ['Ծ', 'Ts'], ['կ', 'k'], ['Կ', 'K'], ['հ', 'h'], ['Հ', 'H'], ['ձ', 'dz'], ['Ձ', 'Dz'], ['ղ', 'gh'], ['Ղ', 'Gh'], ['ճ', 'tch'], ['Ճ', 'Tch'], ['մ', 'm'], ['Մ', 'M'], ['յ', 'y'], ['Յ', 'Y'], ['ն', 'n'], ['Ն', 'N'], ['շ', 'sh'], ['Շ', 'Sh'], ['ո', 'vo'], ['Ո', 'Vo'], ['չ', 'ch'], ['Չ', 'Ch'], ['պ', 'p'], ['Պ', 'P'], ['ջ', 'j'], ['Ջ', 'J'], ['ռ', 'r'], ['Ռ', 'R'], ['ս', 's'], ['Ս', 'S'], ['վ', 'v'], ['Վ', 'V'], ['տ', 't'], ['Տ', 'T'], ['ր', 'r'], ['Ր', 'R'], ['ց', 'c'], ['Ց', 'C'], ['ու', 'u'], ['ՈՒ', 'U'], ['Ու', 'U'], ['փ', 'p'], ['Փ', 'P'], ['ք', 'q'], ['Ք', 'Q'], ['օ', 'o'], ['Օ', 'O'], ['ֆ', 'f'], ['Ֆ', 'F'], ['և', 'yev'], # Georgian ['ა', 'a'], ['ბ', 'b'], ['გ', 'g'], ['დ', 'd'], ['ე', 'e'], ['ვ', 'v'], ['ზ', 'z'], ['თ', 't'], ['ი', 'i'], ['კ', 'k'], ['ლ', 'l'], ['მ', 'm'], ['ნ', 'n'], ['ო', 'o'], ['პ', 'p'], ['ჟ', 'zh'], ['რ', 'r'], ['ს', 's'], ['ტ', 't'], ['უ', 'u'], ['ფ', 'ph'], ['ქ', 'q'], ['ღ', 'gh'], ['ყ', 'k'], ['შ', 'sh'], ['ჩ', 'ch'], ['ც', 'ts'], ['ძ', 'dz'], ['წ', 'ts'], ['ჭ', 'tch'], ['ხ', 'kh'], ['ჯ', 'j'], ['ჰ', 'h'], # Czech ['č', 'c'], ['ď', 'd'], ['ě', 'e'], ['ň', 'n'], ['ř', 'r'], ['š', 's'], ['ť', 't'], ['ů', 'u'], ['ž', 'z'], ['Č', 'C'], ['Ď', 'D'], ['Ě', 'E'], ['Ň', 'N'], ['Ř', 'R'], ['Š', 'S'], ['Ť', 'T'], ['Ů', 'U'], ['Ž', 'Z'], # Dhivehi ['ހ', 'h'], ['ށ', 'sh'], ['ނ', 'n'], ['ރ', 'r'], ['ބ', 'b'], ['ޅ', 'lh'], ['ކ', 'k'], ['އ', 'a'], ['ވ', 'v'], ['މ', 'm'], ['ފ', 'f'], ['ދ', 'dh'], ['ތ', 'th'], ['ލ', 'l'], ['ގ', 'g'], ['ޏ', 'gn'], ['ސ', 's'], ['ޑ', 'd'], ['ޒ', 'z'], ['ޓ', 't'], ['ޔ', 'y'], ['ޕ', 'p'], ['ޖ', 'j'], ['ޗ', 'ch'], ['ޘ', 'tt'], ['ޙ', 'hh'], ['ޚ', 'kh'], ['ޛ', 'th'], ['ޜ', 'z'], ['ޝ', 'sh'], ['ޞ', 's'], ['ޟ', 'd'], ['ޠ', 't'], ['ޡ', 'z'], ['ޢ', 'a'], ['ޣ', 'gh'], ['ޤ', 'q'], ['ޥ', 'w'], ['ަ', 'a'], ['ާ', 'aa'], ['ި', 'i'], ['ީ', 'ee'], ['ު', 'u'], ['ޫ', 'oo'], ['ެ', 'e'], ['ޭ', 'ey'], ['ޮ', 'o'], ['ޯ', 'oa'], ['ް', ''], # Greek ['α', 'a'], ['β', 'v'], ['γ', 'g'], ['δ', 'd'], ['ε', 'e'], ['ζ', 'z'], ['η', 'i'], ['θ', 'th'], ['ι', 'i'], ['κ', 'k'], ['λ', 'l'], ['μ', 'm'], ['ν', 'n'], ['ξ', 'ks'], ['ο', 'o'], ['π', 'p'], ['ρ', 'r'], ['σ', 's'], ['τ', 't'], ['υ', 'y'], ['φ', 'f'], ['χ', 'x'], ['ψ', 'ps'], ['ω', 'o'], ['ά', 'a'], ['έ', 'e'], ['ί', 'i'], ['ό', 'o'], ['ύ', 'y'], ['ή', 'i'], ['ώ', 'o'], ['ς', 's'], ['ϊ', 'i'], ['ΰ', 'y'], ['ϋ', 'y'], ['ΐ', 'i'], ['Α', 'A'], ['Β', 'B'], ['Γ', 'G'], ['Δ', 'D'], ['Ε', 'E'], ['Ζ', 'Z'], ['Η', 'I'], ['Θ', 'TH'], ['Ι', 'I'], ['Κ', 'K'], ['Λ', 'L'], ['Μ', 'M'], ['Ν', 'N'], ['Ξ', 'KS'], ['Ο', 'O'], ['Π', 'P'], ['Ρ', 'R'], ['Σ', 'S'], ['Τ', 'T'], ['Υ', 'Y'], ['Φ', 'F'], ['Χ', 'X'], ['Ψ', 'PS'], ['Ω', 'O'], ['Ά', 'A'], ['Έ', 'E'], ['Ί', 'I'], ['Ό', 'O'], ['Ύ', 'Y'], ['Ή', 'I'], ['Ώ', 'O'], ['Ϊ', 'I'], ['Ϋ', 'Y'], # Disabled as it conflicts with German and Latin. # Hungarian # ['ä', 'a'], # ['Ä', 'A'], # ['ö', 'o'], # ['Ö', 'O'], # ['ü', 'u'], # ['Ü', 'U'], # ['ű', 'u'], # ['Ű', 'U'], # Latvian ['ā', 'a'], ['ē', 'e'], ['ģ', 'g'], ['ī', 'i'], ['ķ', 'k'], ['ļ', 'l'], ['ņ', 'n'], ['ū', 'u'], ['Ā', 'A'], ['Ē', 'E'], ['Ģ', 'G'], ['Ī', 'I'], ['Ķ', 'K'], ['Ļ', 'L'], ['Ņ', 'N'], ['Ū', 'U'], ['č', 'c'], ['š', 's'], ['ž', 'z'], ['Č', 'C'], ['Š', 'S'], ['Ž', 'Z'], # Lithuanian ['ą', 'a'], ['č', 'c'], ['ę', 'e'], ['ė', 'e'], ['į', 'i'], ['š', 's'], ['ų', 'u'], ['ū', 'u'], ['ž', 'z'], ['Ą', 'A'], ['Č', 'C'], ['Ę', 'E'], ['Ė', 'E'], ['Į', 'I'], ['Š', 'S'], ['Ų', 'U'], ['Ū', 'U'], # Macedonian ['Ќ', 'Kj'], ['ќ', 'kj'], ['Љ', 'Lj'], ['љ', 'lj'], ['Њ', 'Nj'], ['њ', 'nj'], ['Тс', 'Ts'], ['тс', 'ts'], # Polish ['ą', 'a'], ['ć', 'c'], ['ę', 'e'], ['ł', 'l'], ['ń', 'n'], ['ś', 's'], ['ź', 'z'], ['ż', 'z'], ['Ą', 'A'], ['Ć', 'C'], ['Ę', 'E'], ['Ł', 'L'], ['Ń', 'N'], ['Ś', 'S'], ['Ź', 'Z'], ['Ż', 'Z'], # Disabled as it conflicts with Vietnamese. # Serbian # ['љ', 'lj'], # ['њ', 'nj'], # ['Љ', 'Lj'], # ['Њ', 'Nj'], # ['đ', 'dj'], # ['Đ', 'Dj'], # ['ђ', 'dj'], # ['ј', 'j'], # ['ћ', 'c'], # ['џ', 'dz'], # ['Ђ', 'Dj'], # ['Ј', 'j'], # ['Ћ', 'C'], # ['Џ', 'Dz'], # Disabled as it conflicts with German and Latin. # Slovak # ['ä', 'a'], # ['Ä', 'A'], # ['ľ', 'l'], # ['ĺ', 'l'], # ['ŕ', 'r'], # ['Ľ', 'L'], # ['Ĺ', 'L'], # ['Ŕ', 'R'], # Disabled as it conflicts with German and Latin. # Swedish # ['å', 'o'], # ['Å', 'o'], # ['ä', 'a'], # ['Ä', 'A'], # ['ë', 'e'], # ['Ë', 'E'], # ['ö', 'o'], # ['Ö', 'O'], # Ukrainian ['Є', 'Ye'], ['І', 'I'], ['Ї', 'Yi'], ['Ґ', 'G'], ['є', 'ye'], ['і', 'i'], ['ї', 'yi'], ['ґ', 'g'], # Dutch ['IJ', 'IJ'], ['ij', 'ij'], # Danish # ['Æ', 'Ae'], # ['Ø', 'Oe'], # ['Å', 'Aa'], # ['æ', 'ae'], # ['ø', 'oe'], # ['å', 'aa'] # Currencies ['¢', 'c'], ['¥', 'Y'], ['߿', 'b'], ['৳', 't'], ['૱', 'Bo'], ['฿', 'B'], ['₠', 'CE'], ['₡', 'C'], ['₢', 'Cr'], ['₣', 'F'], ['₥', 'm'], ['₦', 'N'], ['₧', 'Pt'], ['₨', 'Rs'], ['₩', 'W'], ['₫', 's'], ['€', 'E'], ['₭', 'K'], ['₮', 'T'], ['₯', 'Dp'], ['₰', 'S'], ['₱', 'P'], ['₲', 'G'], ['₳', 'A'], ['₴', 'S'], ['₵', 'C'], ['₶', 'tt'], ['₷', 'S'], ['₸', 'T'], ['₹', 'R'], ['₺', 'L'], ['₽', 'P'], ['₿', 'B'], ['﹩', '$'], ['¢', 'c'], ['¥', 'Y'], ['₩', 'W'], # Latin ['𝐀', 'A'], ['𝐁', 'B'], ['𝐂', 'C'], ['𝐃', 'D'], ['𝐄', 'E'], ['𝐅', 'F'], ['𝐆', 'G'], ['𝐇', 'H'], ['𝐈', 'I'], ['𝐉', 'J'], ['𝐊', 'K'], ['𝐋', 'L'], ['𝐌', 'M'], ['𝐍', 'N'], ['𝐎', 'O'], ['𝐏', 'P'], ['𝐐', 'Q'], ['𝐑', 'R'], ['𝐒', 'S'], ['𝐓', 'T'], ['𝐔', 'U'], ['𝐕', 'V'], ['𝐖', 'W'], ['𝐗', 'X'], ['𝐘', 'Y'], ['𝐙', 'Z'], ['𝐚', 'a'], ['𝐛', 'b'], ['𝐜', 'c'], ['𝐝', 'd'], ['𝐞', 'e'], ['𝐟', 'f'], ['𝐠', 'g'], ['𝐡', 'h'], ['𝐢', 'i'], ['𝐣', 'j'], ['𝐤', 'k'], ['𝐥', 'l'], ['𝐦', 'm'], ['𝐧', 'n'], ['𝐨', 'o'], ['𝐩', 'p'], ['𝐪', 'q'], ['𝐫', 'r'], ['𝐬', 's'], ['𝐭', 't'], ['𝐮', 'u'], ['𝐯', 'v'], ['𝐰', 'w'], ['𝐱', 'x'], ['𝐲', 'y'], ['𝐳', 'z'], ['𝐴', 'A'], ['𝐵', 'B'], ['𝐶', 'C'], ['𝐷', 'D'], ['𝐸', 'E'], ['𝐹', 'F'], ['𝐺', 'G'], ['𝐻', 'H'], ['𝐼', 'I'], ['𝐽', 'J'], ['𝐾', 'K'], ['𝐿', 'L'], ['𝑀', 'M'], ['𝑁', 'N'], ['𝑂', 'O'], ['𝑃', 'P'], ['𝑄', 'Q'], ['𝑅', 'R'], ['𝑆', 'S'], ['𝑇', 'T'], ['𝑈', 'U'], ['𝑉', 'V'], ['𝑊', 'W'], ['𝑋', 'X'], ['𝑌', 'Y'], ['𝑍', 'Z'], ['𝑎', 'a'], ['𝑏', 'b'], ['𝑐', 'c'], ['𝑑', 'd'], ['𝑒', 'e'], ['𝑓', 'f'], ['𝑔', 'g'], ['𝑖', 'i'], ['𝑗', 'j'], ['𝑘', 'k'], ['𝑙', 'l'], ['𝑚', 'm'], ['𝑛', 'n'], ['𝑜', 'o'], ['𝑝', 'p'], ['𝑞', 'q'], ['𝑟', 'r'], ['𝑠', 's'], ['𝑡', 't'], ['𝑢', 'u'], ['𝑣', 'v'], ['𝑤', 'w'], ['𝑥', 'x'], ['𝑦', 'y'], ['𝑧', 'z'], ['𝑨', 'A'], ['𝑩', 'B'], ['𝑪', 'C'], ['𝑫', 'D'], ['𝑬', 'E'], ['𝑭', 'F'], ['𝑮', 'G'], ['𝑯', 'H'], ['𝑰', 'I'], ['𝑱', 'J'], ['𝑲', 'K'], ['𝑳', 'L'], ['𝑴', 'M'], ['𝑵', 'N'], ['𝑶', 'O'], ['𝑷', 'P'], ['𝑸', 'Q'], ['𝑹', 'R'], ['𝑺', 'S'], ['𝑻', 'T'], ['𝑼', 'U'], ['𝑽', 'V'], ['𝑾', 'W'], ['𝑿', 'X'], ['𝒀', 'Y'], ['𝒁', 'Z'], ['𝒂', 'a'], ['𝒃', 'b'], ['𝒄', 'c'], ['𝒅', 'd'], ['𝒆', 'e'], ['𝒇', 'f'], ['𝒈', 'g'], ['𝒉', 'h'], ['𝒊', 'i'], ['𝒋', 'j'], ['𝒌', 'k'], ['𝒍', 'l'], ['𝒎', 'm'], ['𝒏', 'n'], ['𝒐', 'o'], ['𝒑', 'p'], ['𝒒', 'q'], ['𝒓', 'r'], ['𝒔', 's'], ['𝒕', 't'], ['𝒖', 'u'], ['𝒗', 'v'], ['𝒘', 'w'], ['𝒙', 'x'], ['𝒚', 'y'], ['𝒛', 'z'], ['𝒜', 'A'], ['𝒞', 'C'], ['𝒟', 'D'], ['𝒢', 'g'], ['𝒥', 'J'], ['𝒦', 'K'], ['𝒩', 'N'], ['𝒪', 'O'], ['𝒫', 'P'], ['𝒬', 'Q'], ['𝒮', 'S'], ['𝒯', 'T'], ['𝒰', 'U'], ['𝒱', 'V'], ['𝒲', 'W'], ['𝒳', 'X'], ['𝒴', 'Y'], ['𝒵', 'Z'], ['𝒶', 'a'], ['𝒷', 'b'], ['𝒸', 'c'], ['𝒹', 'd'], ['𝒻', 'f'], ['𝒽', 'h'], ['𝒾', 'i'], ['𝒿', 'j'], ['𝓀', 'h'], ['𝓁', 'l'], ['𝓂', 'm'], ['𝓃', 'n'], ['𝓅', 'p'], ['𝓆', 'q'], ['𝓇', 'r'], ['𝓈', 's'], ['𝓉', 't'], ['𝓊', 'u'], ['𝓋', 'v'], ['𝓌', 'w'], ['𝓍', 'x'], ['𝓎', 'y'], ['𝓏', 'z'], ['𝓐', 'A'], ['𝓑', 'B'], ['𝓒', 'C'], ['𝓓', 'D'], ['𝓔', 'E'], ['𝓕', 'F'], ['𝓖', 'G'], ['𝓗', 'H'], ['𝓘', 'I'], ['𝓙', 'J'], ['𝓚', 'K'], ['𝓛', 'L'], ['𝓜', 'M'], ['𝓝', 'N'], ['𝓞', 'O'], ['𝓟', 'P'], ['𝓠', 'Q'], ['𝓡', 'R'], ['𝓢', 'S'], ['𝓣', 'T'], ['𝓤', 'U'], ['𝓥', 'V'], ['𝓦', 'W'], ['𝓧', 'X'], ['𝓨', 'Y'], ['𝓩', 'Z'], ['𝓪', 'a'], ['𝓫', 'b'], ['𝓬', 'c'], ['𝓭', 'd'], ['𝓮', 'e'], ['𝓯', 'f'], ['𝓰', 'g'], ['𝓱', 'h'], ['𝓲', 'i'], ['𝓳', 'j'], ['𝓴', 'k'], ['𝓵', 'l'], ['𝓶', 'm'], ['𝓷', 'n'], ['𝓸', 'o'], ['𝓹', 'p'], ['𝓺', 'q'], ['𝓻', 'r'], ['𝓼', 's'], ['𝓽', 't'], ['𝓾', 'u'], ['𝓿', 'v'], ['𝔀', 'w'], ['𝔁', 'x'], ['𝔂', 'y'], ['𝔃', 'z'], ['𝔄', 'A'], ['𝔅', 'B'], ['𝔇', 'D'], ['𝔈', 'E'], ['𝔉', 'F'], ['𝔊', 'G'], ['𝔍', 'J'], ['𝔎', 'K'], ['𝔏', 'L'], ['𝔐', 'M'], ['𝔑', 'N'], ['𝔒', 'O'], ['𝔓', 'P'], ['𝔔', 'Q'], ['𝔖', 'S'], ['𝔗', 'T'], ['𝔘', 'U'], ['𝔙', 'V'], ['𝔚', 'W'], ['𝔛', 'X'], ['𝔜', 'Y'], ['𝔞', 'a'], ['𝔟', 'b'], ['𝔠', 'c'], ['𝔡', 'd'], ['𝔢', 'e'], ['𝔣', 'f'], ['𝔤', 'g'], ['𝔥', 'h'], ['𝔦', 'i'], ['𝔧', 'j'], ['𝔨', 'k'], ['𝔩', 'l'], ['𝔪', 'm'], ['𝔫', 'n'], ['𝔬', 'o'], ['𝔭', 'p'], ['𝔮', 'q'], ['𝔯', 'r'], ['𝔰', 's'], ['𝔱', 't'], ['𝔲', 'u'], ['𝔳', 'v'], ['𝔴', 'w'], ['𝔵', 'x'], ['𝔶', 'y'], ['𝔷', 'z'], ['𝔸', 'A'], ['𝔹', 'B'], ['𝔻', 'D'], ['𝔼', 'E'], ['𝔽', 'F'], ['𝔾', 'G'], ['𝕀', 'I'], ['𝕁', 'J'], ['𝕂', 'K'], ['𝕃', 'L'], ['𝕄', 'M'], ['𝕆', 'N'], ['𝕊', 'S'], ['𝕋', 'T'], ['𝕌', 'U'], ['𝕍', 'V'], ['𝕎', 'W'], ['𝕏', 'X'], ['𝕐', 'Y'], ['𝕒', 'a'], ['𝕓', 'b'], ['𝕔', 'c'], ['𝕕', 'd'], ['𝕖', 'e'], ['𝕗', 'f'], ['𝕘', 'g'], ['𝕙', 'h'], ['𝕚', 'i'], ['𝕛', 'j'], ['𝕜', 'k'], ['𝕝', 'l'], ['𝕞', 'm'], ['𝕟', 'n'], ['𝕠', 'o'], ['𝕡', 'p'], ['𝕢', 'q'], ['𝕣', 'r'], ['𝕤', 's'], ['𝕥', 't'], ['𝕦', 'u'], ['𝕧', 'v'], ['𝕨', 'w'], ['𝕩', 'x'], ['𝕪', 'y'], ['𝕫', 'z'], ['𝕬', 'A'], ['𝕭', 'B'], ['𝕮', 'C'], ['𝕯', 'D'], ['𝕰', 'E'], ['𝕱', 'F'], ['𝕲', 'G'], ['𝕳', 'H'], ['𝕴', 'I'], ['𝕵', 'J'], ['𝕶', 'K'], ['𝕷', 'L'], ['𝕸', 'M'], ['𝕹', 'N'], ['𝕺', 'O'], ['𝕻', 'P'], ['𝕼', 'Q'], ['𝕽', 'R'], ['𝕾', 'S'], ['𝕿', 'T'], ['𝖀', 'U'], ['𝖁', 'V'], ['𝖂', 'W'], ['𝖃', 'X'], ['𝖄', 'Y'], ['𝖅', 'Z'], ['𝖆', 'a'], ['𝖇', 'b'], ['𝖈', 'c'], ['𝖉', 'd'], ['𝖊', 'e'], ['𝖋', 'f'], ['𝖌', 'g'], ['𝖍', 'h'], ['𝖎', 'i'], ['𝖏', 'j'], ['𝖐', 'k'], ['𝖑', 'l'], ['𝖒', 'm'], ['𝖓', 'n'], ['𝖔', 'o'], ['𝖕', 'p'], ['𝖖', 'q'], ['𝖗', 'r'], ['𝖘', 's'], ['𝖙', 't'], ['𝖚', 'u'], ['𝖛', 'v'], ['𝖜', 'w'], ['𝖝', 'x'], ['𝖞', 'y'], ['𝖟', 'z'], ['𝖠', 'A'], ['𝖡', 'B'], ['𝖢', 'C'], ['𝖣', 'D'], ['𝖤', 'E'], ['𝖥', 'F'], ['𝖦', 'G'], ['𝖧', 'H'], ['𝖨', 'I'], ['𝖩', 'J'], ['𝖪', 'K'], ['𝖫', 'L'], ['𝖬', 'M'], ['𝖭', 'N'], ['𝖮', 'O'], ['𝖯', 'P'], ['𝖰', 'Q'], ['𝖱', 'R'], ['𝖲', 'S'], ['𝖳', 'T'], ['𝖴', 'U'], ['𝖵', 'V'], ['𝖶', 'W'], ['𝖷', 'X'], ['𝖸', 'Y'], ['𝖹', 'Z'], ['𝖺', 'a'], ['𝖻', 'b'], ['𝖼', 'c'], ['𝖽', 'd'], ['𝖾', 'e'], ['𝖿', 'f'], ['𝗀', 'g'], ['𝗁', 'h'], ['𝗂', 'i'], ['𝗃', 'j'], ['𝗄', 'k'], ['𝗅', 'l'], ['𝗆', 'm'], ['𝗇', 'n'], ['𝗈', 'o'], ['𝗉', 'p'], ['𝗊', 'q'], ['𝗋', 'r'], ['𝗌', 's'], ['𝗍', 't'], ['𝗎', 'u'], ['𝗏', 'v'], ['𝗐', 'w'], ['𝗑', 'x'], ['𝗒', 'y'], ['𝗓', 'z'], ['𝗔', 'A'], ['𝗕', 'B'], ['𝗖', 'C'], ['𝗗', 'D'], ['𝗘', 'E'], ['𝗙', 'F'], ['𝗚', 'G'], ['𝗛', 'H'], ['𝗜', 'I'], ['𝗝', 'J'], ['𝗞', 'K'], ['𝗟', 'L'], ['𝗠', 'M'], ['𝗡', 'N'], ['𝗢', 'O'], ['𝗣', 'P'], ['𝗤', 'Q'], ['𝗥', 'R'], ['𝗦', 'S'], ['𝗧', 'T'], ['𝗨', 'U'], ['𝗩', 'V'], ['𝗪', 'W'], ['𝗫', 'X'], ['𝗬', 'Y'], ['𝗭', 'Z'], ['𝗮', 'a'], ['𝗯', 'b'], ['𝗰', 'c'], ['𝗱', 'd'], ['𝗲', 'e'], ['𝗳', 'f'], ['𝗴', 'g'], ['𝗵', 'h'], ['𝗶', 'i'], ['𝗷', 'j'], ['𝗸', 'k'], ['𝗹', 'l'], ['𝗺', 'm'], ['𝗻', 'n'], ['𝗼', 'o'], ['𝗽', 'p'], ['𝗾', 'q'], ['𝗿', 'r'], ['𝘀', 's'], ['𝘁', 't'], ['𝘂', 'u'], ['𝘃', 'v'], ['𝘄', 'w'], ['𝘅', 'x'], ['𝘆', 'y'], ['𝘇', 'z'], ['𝘈', 'A'], ['𝘉', 'B'], ['𝘊', 'C'], ['𝘋', 'D'], ['𝘌', 'E'], ['𝘍', 'F'], ['𝘎', 'G'], ['𝘏', 'H'], ['𝘐', 'I'], ['𝘑', 'J'], ['𝘒', 'K'], ['𝘓', 'L'], ['𝘔', 'M'], ['𝘕', 'N'], ['𝘖', 'O'], ['𝘗', 'P'], ['𝘘', 'Q'], ['𝘙', 'R'], ['𝘚', 'S'], ['𝘛', 'T'], ['𝘜', 'U'], ['𝘝', 'V'], ['𝘞', 'W'], ['𝘟', 'X'], ['𝘠', 'Y'], ['𝘡', 'Z'], ['𝘢', 'a'], ['𝘣', 'b'], ['𝘤', 'c'], ['𝘥', 'd'], ['𝘦', 'e'], ['𝘧', 'f'], ['𝘨', 'g'], ['𝘩', 'h'], ['𝘪', 'i'], ['𝘫', 'j'], ['𝘬', 'k'], ['𝘭', 'l'], ['𝘮', 'm'], ['𝘯', 'n'], ['𝘰', 'o'], ['𝘱', 'p'], ['𝘲', 'q'], ['𝘳', 'r'], ['𝘴', 's'], ['𝘵', 't'], ['𝘶', 'u'], ['𝘷', 'v'], ['𝘸', 'w'], ['𝘹', 'x'], ['𝘺', 'y'], ['𝘻', 'z'], ['𝘼', 'A'], ['𝘽', 'B'], ['𝘾', 'C'], ['𝘿', 'D'], ['𝙀', 'E'], ['𝙁', 'F'], ['𝙂', 'G'], ['𝙃', 'H'], ['𝙄', 'I'], ['𝙅', 'J'], ['𝙆', 'K'], ['𝙇', 'L'], ['𝙈', 'M'], ['𝙉', 'N'], ['𝙊', 'O'], ['𝙋', 'P'], ['𝙌', 'Q'], ['𝙍', 'R'], ['𝙎', 'S'], ['𝙏', 'T'], ['𝙐', 'U'], ['𝙑', 'V'], ['𝙒', 'W'], ['𝙓', 'X'], ['𝙔', 'Y'], ['𝙕', 'Z'], ['𝙖', 'a'], ['𝙗', 'b'], ['𝙘', 'c'], ['𝙙', 'd'], ['𝙚', 'e'], ['𝙛', 'f'], ['𝙜', 'g'], ['𝙝', 'h'], ['𝙞', 'i'], ['𝙟', 'j'], ['𝙠', 'k'], ['𝙡', 'l'], ['𝙢', 'm'], ['𝙣', 'n'], ['𝙤', 'o'], ['𝙥', 'p'], ['𝙦', 'q'], ['𝙧', 'r'], ['𝙨', 's'], ['𝙩', 't'], ['𝙪', 'u'], ['𝙫', 'v'], ['𝙬', 'w'], ['𝙭', 'x'], ['𝙮', 'y'], ['𝙯', 'z'], ['𝙰', 'A'], ['𝙱', 'B'], ['𝙲', 'C'], ['𝙳', 'D'], ['𝙴', 'E'], ['𝙵', 'F'], ['𝙶', 'G'], ['𝙷', 'H'], ['𝙸', 'I'], ['𝙹', 'J'], ['𝙺', 'K'], ['𝙻', 'L'], ['𝙼', 'M'], ['𝙽', 'N'], ['𝙾', 'O'], ['𝙿', 'P'], ['𝚀', 'Q'], ['𝚁', 'R'], ['𝚂', 'S'], ['𝚃', 'T'], ['𝚄', 'U'], ['𝚅', 'V'], ['𝚆', 'W'], ['𝚇', 'X'], ['𝚈', 'Y'], ['𝚉', 'Z'], ['𝚊', 'a'], ['𝚋', 'b'], ['𝚌', 'c'], ['𝚍', 'd'], ['𝚎', 'e'], ['𝚏', 'f'], ['𝚐', 'g'], ['𝚑', 'h'], ['𝚒', 'i'], ['𝚓', 'j'], ['𝚔', 'k'], ['𝚕', 'l'], ['𝚖', 'm'], ['𝚗', 'n'], ['𝚘', 'o'], ['𝚙', 'p'], ['𝚚', 'q'], ['𝚛', 'r'], ['𝚜', 's'], ['𝚝', 't'], ['𝚞', 'u'], ['𝚟', 'v'], ['𝚠', 'w'], ['𝚡', 'x'], ['𝚢', 'y'], ['𝚣', 'z'], # Dotless letters ['𝚤', 'l'], ['𝚥', 'j'], # Greek ['𝛢', 'A'], ['𝛣', 'B'], ['𝛤', 'G'], ['𝛥', 'D'], ['𝛦', 'E'], ['𝛧', 'Z'], ['𝛨', 'I'], ['𝛩', 'TH'], ['𝛪', 'I'], ['𝛫', 'K'], ['𝛬', 'L'], ['𝛭', 'M'], ['𝛮', 'N'], ['𝛯', 'KS'], ['𝛰', 'O'], ['𝛱', 'P'], ['𝛲', 'R'], ['𝛳', 'TH'], ['𝛴', 'S'], ['𝛵', 'T'], ['𝛶', 'Y'], ['𝛷', 'F'], ['𝛸', 'x'], ['𝛹', 'PS'], ['𝛺', 'O'], ['𝛻', 'D'], ['𝛼', 'a'], ['𝛽', 'b'], ['𝛾', 'g'], ['𝛿', 'd'], ['𝜀', 'e'], ['𝜁', 'z'], ['𝜂', 'i'], ['𝜃', 'th'], ['𝜄', 'i'], ['𝜅', 'k'], ['𝜆', 'l'], ['𝜇', 'm'], ['𝜈', 'n'], ['𝜉', 'ks'], ['𝜊', 'o'], ['𝜋', 'p'], ['𝜌', 'r'], ['𝜍', 's'], ['𝜎', 's'], ['𝜏', 't'], ['𝜐', 'y'], ['𝜑', 'f'], ['𝜒', 'x'], ['𝜓', 'ps'], ['𝜔', 'o'], ['𝜕', 'd'], ['𝜖', 'E'], ['𝜗', 'TH'], ['𝜘', 'K'], ['𝜙', 'f'], ['𝜚', 'r'], ['𝜛', 'p'], ['𝜜', 'A'], ['𝜝', 'V'], ['𝜞', 'G'], ['𝜟', 'D'], ['𝜠', 'E'], ['𝜡', 'Z'], ['𝜢', 'I'], ['𝜣', 'TH'], ['𝜤', 'I'], ['𝜥', 'K'], ['𝜦', 'L'], ['𝜧', 'M'], ['𝜨', 'N'], ['𝜩', 'KS'], ['𝜪', 'O'], ['𝜫', 'P'], ['𝜬', 'S'], ['𝜭', 'TH'], ['𝜮', 'S'], ['𝜯', 'T'], ['𝜰', 'Y'], ['𝜱', 'F'], ['𝜲', 'X'], ['𝜳', 'PS'], ['𝜴', 'O'], ['𝜵', 'D'], ['𝜶', 'a'], ['𝜷', 'v'], ['𝜸', 'g'], ['𝜹', 'd'], ['𝜺', 'e'], ['𝜻', 'z'], ['𝜼', 'i'], ['𝜽', 'th'], ['𝜾', 'i'], ['𝜿', 'k'], ['𝝀', 'l'], ['𝝁', 'm'], ['𝝂', 'n'], ['𝝃', 'ks'], ['𝝄', 'o'], ['𝝅', 'p'], ['𝝆', 'r'], ['𝝇', 's'], ['𝝈', 's'], ['𝝉', 't'], ['𝝊', 'y'], ['𝝋', 'f'], ['𝝌', 'x'], ['𝝍', 'ps'], ['𝝎', 'o'], ['𝝏', 'a'], ['𝝐', 'e'], ['𝝑', 'i'], ['𝝒', 'k'], ['𝝓', 'f'], ['𝝔', 'r'], ['𝝕', 'p'], ['𝝖', 'A'], ['𝝗', 'B'], ['𝝘', 'G'], ['𝝙', 'D'], ['𝝚', 'E'], ['𝝛', 'Z'], ['𝝜', 'I'], ['𝝝', 'TH'], ['𝝞', 'I'], ['𝝟', 'K'], ['𝝠', 'L'], ['𝝡', 'M'], ['𝝢', 'N'], ['𝝣', 'KS'], ['𝝤', 'O'], ['𝝥', 'P'], ['𝝦', 'R'], ['𝝧', 'TH'], ['𝝨', 'S'], ['𝝩', 'T'], ['𝝪', 'Y'], ['𝝫', 'F'], ['𝝬', 'X'], ['𝝭', 'PS'], ['𝝮', 'O'], ['𝝯', 'D'], ['𝝰', 'a'], ['𝝱', 'v'], ['𝝲', 'g'], ['𝝳', 'd'], ['𝝴', 'e'], ['𝝵', 'z'], ['𝝶', 'i'], ['𝝷', 'th'], ['𝝸', 'i'], ['𝝹', 'k'], ['𝝺', 'l'], ['𝝻', 'm'], ['𝝼', 'n'], ['𝝽', 'ks'], ['𝝾', 'o'], ['𝝿', 'p'], ['𝞀', 'r'], ['𝞁', 's'], ['𝞂', 's'], ['𝞃', 't'], ['𝞄', 'y'], ['𝞅', 'f'], ['𝞆', 'x'], ['𝞇', 'ps'], ['𝞈', 'o'], ['𝞉', 'a'], ['𝞊', 'e'], ['𝞋', 'i'], ['𝞌', 'k'], ['𝞍', 'f'], ['𝞎', 'r'], ['𝞏', 'p'], ['𝞐', 'A'], ['𝞑', 'V'], ['𝞒', 'G'], ['𝞓', 'D'], ['𝞔', 'E'], ['𝞕', 'Z'], ['𝞖', 'I'], ['𝞗', 'TH'], ['𝞘', 'I'], ['𝞙', 'K'], ['𝞚', 'L'], ['𝞛', 'M'], ['𝞜', 'N'], ['𝞝', 'KS'], ['𝞞', 'O'], ['𝞟', 'P'], ['𝞠', 'S'], ['𝞡', 'TH'], ['𝞢', 'S'], ['𝞣', 'T'], ['𝞤', 'Y'], ['𝞥', 'F'], ['𝞦', 'X'], ['𝞧', 'PS'], ['𝞨', 'O'], ['𝞩', 'D'], ['𝞪', 'av'], ['𝞫', 'g'], ['𝞬', 'd'], ['𝞭', 'e'], ['𝞮', 'z'], ['𝞯', 'i'], ['𝞰', 'i'], ['𝞱', 'th'], ['𝞲', 'i'], ['𝞳', 'k'], ['𝞴', 'l'], ['𝞵', 'm'], ['𝞶', 'n'], ['𝞷', 'ks'], ['𝞸', 'o'], ['𝞹', 'p'], ['𝞺', 'r'], ['𝞻', 's'], ['𝞼', 's'], ['𝞽', 't'], ['𝞾', 'y'], ['𝞿', 'f'], ['𝟀', 'x'], ['𝟁', 'ps'], ['𝟂', 'o'], ['𝟃', 'a'], ['𝟄', 'e'], ['𝟅', 'i'], ['𝟆', 'k'], ['𝟇', 'f'], ['𝟈', 'r'], ['𝟉', 'p'], ['𝟊', 'F'], ['𝟋', 'f'], ['⒜', '(a)'], ['⒝', '(b)'], ['⒞', '(c)'], ['⒟', '(d)'], ['⒠', '(e)'], ['⒡', '(f)'], ['⒢', '(g)'], ['⒣', '(h)'], ['⒤', '(i)'], ['⒥', '(j)'], ['⒦', '(k)'], ['⒧', '(l)'], ['⒨', '(m)'], ['⒩', '(n)'], ['⒪', '(o)'], ['⒫', '(p)'], ['⒬', '(q)'], ['⒭', '(r)'], ['⒮', '(s)'], ['⒯', '(t)'], ['⒰', '(u)'], ['⒱', '(v)'], ['⒲', '(w)'], ['⒳', '(x)'], ['⒴', '(y)'], ['⒵', '(z)'], ['Ⓐ', '(A)'], ['Ⓑ', '(B)'], ['Ⓒ', '(C)'], ['Ⓓ', '(D)'], ['Ⓔ', '(E)'], ['Ⓕ', '(F)'], ['Ⓖ', '(G)'], ['Ⓗ', '(H)'], ['Ⓘ', '(I)'], ['Ⓙ', '(J)'], ['Ⓚ', '(K)'], ['Ⓛ', '(L)'], ['Ⓝ', '(N)'], ['Ⓞ', '(O)'], ['Ⓟ', '(P)'], ['Ⓠ', '(Q)'], ['Ⓡ', '(R)'], ['Ⓢ', '(S)'], ['Ⓣ', '(T)'], ['Ⓤ', '(U)'], ['Ⓥ', '(V)'], ['Ⓦ', '(W)'], ['Ⓧ', '(X)'], ['Ⓨ', '(Y)'], ['Ⓩ', '(Z)'], ['ⓐ', '(a)'], ['ⓑ', '(b)'], ['ⓒ', '(b)'], ['ⓓ', '(c)'], ['ⓔ', '(e)'], ['ⓕ', '(f)'], ['ⓖ', '(g)'], ['ⓗ', '(h)'], ['ⓘ', '(i)'], ['ⓙ', '(j)'], ['ⓚ', '(k)'], ['ⓛ', '(l)'], ['ⓜ', '(m)'], ['ⓝ', '(n)'], ['ⓞ', '(o)'], ['ⓟ', '(p)'], ['ⓠ', '(q)'], ['ⓡ', '(r)'], ['ⓢ', '(s)'], ['ⓣ', '(t)'], ['ⓤ', '(u)'], ['ⓥ', '(v)'], ['ⓦ', '(w)'], ['ⓧ', '(x)'], ['ⓨ', '(y)'], ['ⓩ', '(z)'], # Numbers ['𝟎', '0'], ['𝟏', '1'], ['𝟐', '2'], ['𝟑', '3'], ['𝟒', '4'], ['𝟓', '5'], ['𝟔', '6'], ['𝟕', '7'], ['𝟖', '8'], ['𝟗', '9'], ['𝟘', '0'], ['𝟙', '1'], ['𝟚', '2'], ['𝟛', '3'], ['𝟜', '4'], ['𝟝', '5'], ['𝟞', '6'], ['𝟟', '7'], ['𝟠', '8'], ['𝟡', '9'], ['𝟢', '0'], ['𝟣', '1'], ['𝟤', '2'], ['𝟥', '3'], ['𝟦', '4'], ['𝟧', '5'], ['𝟨', '6'], ['𝟩', '7'], ['𝟪', '8'], ['𝟫', '9'], ['𝟬', '0'], ['𝟭', '1'], ['𝟮', '2'], ['𝟯', '3'], ['𝟰', '4'], ['𝟱', '5'], ['𝟲', '6'], ['𝟳', '7'], ['𝟴', '8'], ['𝟵', '9'], ['𝟶', '0'], ['𝟷', '1'], ['𝟸', '2'], ['𝟹', '3'], ['𝟺', '4'], ['𝟻', '5'], ['𝟼', '6'], ['𝟽', '7'], ['𝟾', '8'], ['𝟿', '9'], ['①', '1'], ['②', '2'], ['③', '3'], ['④', '4'], ['⑤', '5'], ['⑥', '6'], ['⑦', '7'], ['⑧', '8'], ['⑨', '9'], ['⑩', '10'], ['⑪', '11'], ['⑫', '12'], ['⑬', '13'], ['⑭', '14'], ['⑮', '15'], ['⑯', '16'], ['⑰', '17'], ['⑱', '18'], ['⑲', '19'], ['⑳', '20'], ['⑴', '1'], ['⑵', '2'], ['⑶', '3'], ['⑷', '4'], ['⑸', '5'], ['⑹', '6'], ['⑺', '7'], ['⑻', '8'], ['⑼', '9'], ['⑽', '10'], ['⑾', '11'], ['⑿', '12'], ['⒀', '13'], ['⒁', '14'], ['⒂', '15'], ['⒃', '16'], ['⒄', '17'], ['⒅', '18'], ['⒆', '19'], ['⒇', '20'], ['⒈', '1.'], ['⒉', '2.'], ['⒊', '3.'], ['⒋', '4.'], ['⒌', '5.'], ['⒍', '6.'], ['⒎', '7.'], ['⒏', '8.'], ['⒐', '9.'], ['⒑', '10.'], ['⒒', '11.'], ['⒓', '12.'], ['⒔', '13.'], ['⒕', '14.'], ['⒖', '15.'], ['⒗', '16.'], ['⒘', '17.'], ['⒙', '18.'], ['⒚', '19.'], ['⒛', '20.'], ['⓪', '0'], ['⓫', '11'], ['⓬', '12'], ['⓭', '13'], ['⓮', '14'], ['⓯', '15'], ['⓰', '16'], ['⓱', '17'], ['⓲', '18'], ['⓳', '19'], ['⓴', '20'], ['⓵', '1'], ['⓶', '2'], ['⓷', '3'], ['⓸', '4'], ['⓹', '5'], ['⓺', '6'], ['⓻', '7'], ['⓼', '8'], ['⓽', '9'], ['⓾', '10'], ['⓿', '0'], # Punctuation ['🙰', '&'], ['🙱', '&'], ['🙲', '&'], ['🙳', '&'], ['🙴', '&'], ['🙵', '&'], ['🙶', '"'], ['🙷', '"'], ['🙸', '"'], ['‽', '?!'], ['🙹', '?!'], ['🙺', '?!'], ['🙻', '?!'], ['🙼', '/'], ['🙽', '\\'], # Alchemy ['🜇', 'AR'], ['🜈', 'V'], ['🜉', 'V'], ['🜆', 'VR'], ['🜅', 'VF'], ['🜩', '2'], ['🜪', '5'], ['🝡', 'f'], ['🝢', 'W'], ['🝣', 'U'], ['🝧', 'V'], ['🝨', 'T'], ['🝪', 'V'], ['🝫', 'MB'], ['🝬', 'VB'], ['🝲', '3B'], ['🝳', '3B'], # Emojis ['💯', '100'], ['🔙', 'BACK'], ['🔚', 'END'], ['🔛', 'ON!'], ['🔜', 'SOON'], ['🔝', 'TOP'], ['🔞', '18'], ['🔤', 'abc'], ['🔠', 'ABCD'], ['🔡', 'abcd'], ['🔢', '1234'], ['🔣', 'T&@%'], ['#️⃣', '#'], ['*️⃣', '*'], ['0️⃣', '0'], ['1️⃣', '1'], ['2️⃣', '2'], ['3️⃣', '3'], ['4️⃣', '4'], ['5️⃣', '5'], ['6️⃣', '6'], ['7️⃣', '7'], ['8️⃣', '8'], ['9️⃣', '9'], ['🔟', '10'], ['🅰️', 'A'], ['🅱️', 'B'], ['🆎', 'AB'], ['🆑', 'CL'], ['🅾️', 'O'], ['🅿', 'P'], ['🆘', 'SOS'], ['🅲', 'C'], ['🅳', 'D'], ['🅴', 'E'], ['🅵', 'F'], ['🅶', 'G'], ['🅷', 'H'], ['🅸', 'I'], ['🅹', 'J'], ['🅺', 'K'], ['🅻', 'L'], ['🅼', 'M'], ['🅽', 'N'], ['🆀', 'Q'], ['🆁', 'R'], ['🆂', 'S'], ['🆃', 'T'], ['🆄', 'U'], ['🆅', 'V'], ['🆆', 'W'], ['🆇', 'X'], ['🆈', 'Y'], ['🆉', 'Z'], ]
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/unidecoder/replacements.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import warnings from .homoglyphs import homoglyphs from .replacements import replacements _replacements = {uni: asc for uni, asc in replacements} _homoglyphs = {g: asc for asc, glyphs in homoglyphs.items() for g in glyphs} def unidecoder(s, homoglyphs=False): """Transliterate unicode Args: s (str): unicode string homoglyphs (bool): prioritize translating to homoglyphs """ warned = False # Once per utterance ret = '' for u in s: if ord(u) < 127: a = u elif homoglyphs: a = _homoglyphs.get(u, _replacements.get(u, None)) else: a = _replacements.get(u, _homoglyphs.get(u, None)) if a is None: if not warned: warnings.warn(f'Unexpected character {u}: ' 'please revise your text cleaning rules.', stacklevel=10**6) warned = True else: ret += a return ret
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/unidecoder/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The MIT License (MIT) # # Copyright (c) 2015 Rob Dawson # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Based on: # https://github.com/codebox/homoglyph/blob/master/raw_data/chars.txt # homoglyphs = { ' ': ['\xa0', '\u1680', '\u2000', '\u2001', '\u2002', '\u2003', '\u2004', '\u2005', '\u2006', '\u2007', '\u2008', '\u2009', '\u200a', '\u2028', '\u2029', '\u202f', '\u205f'], '!': ['ǃ', 'ⵑ', '!'], '$': ['$'], '%': ['%'], '&': ['ꝸ', '&'], "'": ['´', 'ʹ', 'ʻ', 'ʼ', 'ʽ', 'ʾ', 'ˈ', 'ˊ', 'ˋ', '˴', 'ʹ', '΄', '՚', '՝', 'י', '׳', 'ߴ', 'ߵ', 'ᑊ', 'ᛌ', '᾽', '᾿', '`', '´', '῾', '‘', '’', '‛', '′', '‵', 'ꞌ', ''', '`', '𖽑', '𖽒'], '"': ['¨', 'ʺ', '˝', 'ˮ', '״', '“', '”', '‟', '❝', '❞', '⠐', '⹂'], '(': ['❨', '❲', '〔', '﴾', '(', '['], ')': ['❩', '❳', '〕', '﴿', ')', ']'], '*': ['٭', '⁎', '∗', '*', '𐌟'], '+': ['᛭', '➕', '+', '𐊛'], ',': ['¸', '؍', '٫', '‚', 'ꓹ', ','], '-': ['˗', '۔', '‐', '‑', '‒', '–', '⁃', '−', '➖', 'Ⲻ', '﹘'], '.': ['٠', '۰', '܁', '܂', '․', 'ꓸ', '꘎', '.', '𐩐', '𝅭'], '/': ['᜵', '⁁', '⁄', '∕', '╱', '⟋', '⧸', 'Ⳇ', '⼃', '〳', 'ノ', '㇓', '丿', '/', '𝈺'], '2': ['Ƨ', 'Ϩ', 'ᒿ', 'Ꙅ', 'ꛯ', 'Ꝛ', '2', '𝟐', '𝟚', '𝟤', '𝟮', '𝟸', '\U0001fbf2'], '3': ['Ʒ', 'Ȝ', 'З', 'Ӡ', 'Ⳍ', 'Ꝫ', 'Ɜ', '3', '𑣊', '𖼻', '𝈆', '𝟑', '𝟛', '𝟥', '𝟯', '𝟹', '\U0001fbf3'], '4': ['Ꮞ', '4', '𑢯', '𝟒', '𝟜', '𝟦', '𝟰', '𝟺', '\U0001fbf4'], '5': ['Ƽ', '5', '𑢻', '𝟓', '𝟝', '𝟧', '𝟱', '𝟻', '\U0001fbf5'], '6': ['б', 'Ꮾ', 'Ⳓ', '6', '𑣕', '𝟔', '𝟞', '𝟨', '𝟲', '𝟼', '\U0001fbf6'], '7': ['7', '𐓒', '𑣆', '𝈒', '𝟕', '𝟟', '𝟩', '𝟳', '𝟽', '\U0001fbf7'], '8': ['Ȣ', 'ȣ', '৪', '੪', 'ଃ', '8', '𐌚', '𝟖', '𝟠', '𝟪', '𝟴', '𝟾', '𞣋', '\U0001fbf8'], '9': ['৭', '੧', '୨', '൭', 'Ⳋ', 'Ꝯ', '9', '𑢬', '𑣌', '𑣖', '𝟗', '𝟡', '𝟫', '𝟵', '𝟿', '\U0001fbf9'], ':': ['ː', '˸', '։', '׃', '܃', '܄', 'ः', 'ઃ', '᛬', '᠃', '᠉', '⁚', '∶', 'ꓽ', '꞉', '︰', ':'], ';': [';', ';'], '<': ['˂', 'ᐸ', 'ᚲ', '‹', '❮', '<', '𝈶'], '=': ['᐀', '⹀', '゠', '꓿', '='], '>': ['˃', 'ᐳ', '›', '❯', '>', '𖼿', '𝈷'], '?': ['Ɂ', 'ʔ', 'ॽ', 'Ꭾ', 'ꛫ', '?'], '@': ['@'], 'A': ['Α', 'А', 'Ꭺ', 'ᗅ', 'ᴀ', 'ꓮ', 'ꭺ', 'A', '𐊠', '𖽀', '𝐀', '𝐴', '𝑨', '𝒜', '𝓐', '𝔄', '𝔸', '𝕬', '𝖠', '𝗔', '𝘈', '𝘼', '𝙰', '𝚨', '𝛢', '𝜜', '𝝖', '𝞐'], 'B': ['ʙ', 'Β', 'В', 'в', 'Ᏼ', 'ᏼ', 'ᗷ', 'ᛒ', 'ℬ', 'ꓐ', 'Ꞵ', 'B', '𐊂', '𐊡', '𐌁', '𝐁', '𝐵', '𝑩', '𝓑', '𝔅', '𝔹', '𝕭', '𝖡', '𝗕', '𝘉', '𝘽', '𝙱', '𝚩', '𝛣', '𝜝', '𝝗', '𝞑'], 'C': ['Ϲ', 'С', 'Ꮯ', 'ᑕ', 'ℂ', 'ℭ', 'Ⅽ', '⊂', 'Ⲥ', '⸦', 'ꓚ', 'C', '𐊢', '𐌂', '𐐕', '𐔜', '𑣩', '𑣲', '𝐂', '𝐶', '𝑪', '𝒞', '𝓒', '𝕮', '𝖢', '𝗖', '𝘊', '𝘾', '𝙲', '🝌'], 'D': ['Ꭰ', 'ᗞ', 'ᗪ', 'ᴅ', 'ⅅ', 'Ⅾ', 'ꓓ', 'ꭰ', 'D', '𝐃', '𝐷', '𝑫', '𝒟', '𝓓', '𝔇', '𝔻', '𝕯', '𝖣', '𝗗', '𝘋', '𝘿', '𝙳'], 'E': ['Ε', 'Е', 'Ꭼ', 'ᴇ', 'ℰ', '⋿', 'ⴹ', 'ꓰ', 'ꭼ', 'E', '𐊆', '𑢦', '𑢮', '𝐄', '𝐸', '𝑬', '𝓔', '𝔈', '𝔼', '𝕰', '𝖤', '𝗘', '𝘌', '𝙀', '𝙴', '𝚬', '𝛦', '𝜠', '𝝚', '𝞔'], 'F': ['Ϝ', 'ᖴ', 'ℱ', 'ꓝ', 'Ꞙ', 'F', '𐊇', '𐊥', '𐔥', '𑢢', '𑣂', '𝈓', '𝐅', '𝐹', '𝑭', '𝓕', '𝔉', '𝔽', '𝕱', '𝖥', '𝗙', '𝘍', '𝙁', '𝙵', '𝟊'], 'G': ['ɢ', 'Ԍ', 'ԍ', 'Ꮐ', 'Ᏻ', 'ᏻ', 'ꓖ', 'ꮐ', 'G', '𝐆', '𝐺', '𝑮', '𝒢', '𝓖', '𝔊', '𝔾', '𝕲', '𝖦', '𝗚', '𝘎', '𝙂', '𝙶'], 'H': ['ʜ', 'Η', 'Н', 'н', 'Ꮋ', 'ᕼ', 'ℋ', 'ℌ', 'ℍ', 'Ⲏ', 'ꓧ', 'ꮋ', 'H', '𐋏', '𝐇', '𝐻', '𝑯', '𝓗', '𝕳', '𝖧', '𝗛', '𝘏', '𝙃', '𝙷', '𝚮', '𝛨', '𝜢', '𝝜', '𝞖'], 'J': ['Ϳ', 'Ј', 'Ꭻ', 'ᒍ', 'ᴊ', 'ꓙ', 'Ʝ', 'ꭻ', 'J', '𝐉', '𝐽', '𝑱', '𝒥', '𝓙', '𝔍', '𝕁', '𝕵', '𝖩', '𝗝', '𝘑', '𝙅', '𝙹'], 'K': ['Κ', 'К', 'Ꮶ', 'ᛕ', 'K', 'Ⲕ', 'ꓗ', 'K', '𐔘', '𝐊', '𝐾', '𝑲', '𝒦', '𝓚', '𝔎', '𝕂', '𝕶', '𝖪', '𝗞', '𝘒', '𝙆', '𝙺', '𝚱', '𝛫', '𝜥', '𝝟', '𝞙'], 'L': ['ʟ', 'Ꮮ', 'ᒪ', 'ℒ', 'Ⅼ', 'Ⳑ', 'ⳑ', 'ꓡ', 'ꮮ', 'L', '𐐛', '𐑃', '𐔦', '𑢣', '𑢲', '𖼖', '𝈪', '𝐋', '𝐿', '𝑳', '𝓛', '𝔏', '𝕃', '𝕷', '𝖫', '𝗟', '𝘓', '𝙇', '𝙻'], 'M': ['Μ', 'Ϻ', 'М', 'Ꮇ', 'ᗰ', 'ᛖ', 'ℳ', 'Ⅿ', 'Ⲙ', 'ꓟ', 'M', '𐊰', '𐌑', '𝐌', '𝑀', '𝑴', '𝓜', '𝔐', '𝕄', '𝕸', '𝖬', '𝗠', '𝘔', '𝙈', '𝙼', '𝚳', '𝛭', '𝜧', '𝝡', '𝞛'], 'N': ['ɴ', 'Ν', 'ℕ', 'Ⲛ', 'ꓠ', 'N', '𐔓', '𝐍', '𝑁', '𝑵', '𝒩', '𝓝', '𝔑', '𝕹', '𝖭', '𝗡', '𝘕', '𝙉', '𝙽', '𝚴', '𝛮', '𝜨', '𝝢', '𝞜'], 'P': ['Ρ', 'Р', 'Ꮲ', 'ᑭ', 'ᴘ', 'ᴩ', 'ℙ', 'Ⲣ', 'ꓑ', 'ꮲ', 'P', '𐊕', '𝐏', '𝑃', '𝑷', '𝒫', '𝓟', '𝔓', '𝕻', '𝖯', '𝗣', '𝘗', '𝙋', '𝙿', '𝚸', '𝛲', '𝜬', '𝝦', '𝞠'], 'Q': ['ℚ', 'ⵕ', 'Q', '𝐐', '𝑄', '𝑸', '𝒬', '𝓠', '𝔔', '𝕼', '𝖰', '𝗤', '𝘘', '𝙌', '𝚀'], 'R': ['Ʀ', 'ʀ', 'Ꭱ', 'Ꮢ', 'ᖇ', 'ᚱ', 'ℛ', 'ℜ', 'ℝ', 'ꓣ', 'ꭱ', 'ꮢ', 'R', '𐒴', '𖼵', '𝈖', '𝐑', '𝑅', '𝑹', '𝓡', '𝕽', '𝖱', '𝗥', '𝘙', '𝙍', '𝚁'], 'S': ['Ѕ', 'Տ', 'Ꮥ', 'Ꮪ', 'ꓢ', 'S', '𐊖', '𐐠', '𖼺', '𝐒', '𝑆', '𝑺', '𝒮', '𝓢', '𝔖', '𝕊', '𝕾', '𝖲', '𝗦', '𝘚', '𝙎', '𝚂'], 'T': ['Τ', 'τ', 'Т', 'т', 'Ꭲ', 'ᴛ', '⊤', '⟙', 'Ⲧ', 'ꓔ', 'ꭲ', 'T', '𐊗', '𐊱', '𐌕', '𑢼', '𖼊', '𝐓', '𝑇', '𝑻', '𝒯', '𝓣', '𝔗', '𝕋', '𝕿', '𝖳', '𝗧', '𝘛', '𝙏', '𝚃', '𝚻', '𝛕', '𝛵', '𝜏', '𝜯', '𝝉', '𝝩', '𝞃', '𝞣', '𝞽', '🝨'], 'U': ['Ս', 'ሀ', 'ᑌ', '∪', '⋃', 'ꓴ', 'U', '𐓎', '𑢸', '𖽂', '𝐔', '𝑈', '𝑼', '𝒰', '𝓤', '𝔘', '𝕌', '𝖀', '𝖴', '𝗨', '𝘜', '𝙐', '𝚄'], 'V': ['Ѵ', '٧', '۷', 'Ꮩ', 'ᐯ', 'Ⅴ', 'ⴸ', 'ꓦ', 'ꛟ', 'V', '𐔝', '𑢠', '𖼈', '𝈍', '𝐕', '𝑉', '𝑽', '𝒱', '𝓥', '𝔙', '𝕍', '𝖁', '𝖵', '𝗩', '𝘝', '𝙑', '𝚅'], 'W': ['Ԝ', 'Ꮃ', 'Ꮤ', 'ꓪ', 'W', '𑣦', '𑣯', '𝐖', '𝑊', '𝑾', '𝒲', '𝓦', '𝔚', '𝕎', '𝖂', '𝖶', '𝗪', '𝘞', '𝙒', '𝚆'], 'X': ['Χ', 'Х', '᙭', 'ᚷ', 'Ⅹ', '╳', 'Ⲭ', 'ⵝ', 'ꓫ', 'Ꭓ', 'X', '𐊐', '𐊴', '𐌗', '𐌢', '𐔧', '𑣬', '𝐗', '𝑋', '𝑿', '𝒳', '𝓧', '𝔛', '𝕏', '𝖃', '𝖷', '𝗫', '𝘟', '𝙓', '𝚇', '𝚾', '𝛸', '𝜲', '𝝬', '𝞦'], 'Y': ['Υ', 'ϒ', 'У', 'Ү', 'Ꭹ', 'Ꮍ', 'Ⲩ', 'ꓬ', 'Y', '𐊲', '𑢤', '𖽃', '𝐘', '𝑌', '𝒀', '𝒴', '𝓨', '𝔜', '𝕐', '𝖄', '𝖸', '𝗬', '𝘠', '𝙔', '𝚈', '𝚼', '𝛶', '𝜰', '𝝪', '𝞤'], 'Z': ['Ζ', 'Ꮓ', 'ℤ', 'ℨ', 'ꓜ', 'Z', '𐋵', '𑢩', '𑣥', '𝐙', '𝑍', '𝒁', '𝒵', '𝓩', '𝖅', '𝖹', '𝗭', '𝘡', '𝙕', '𝚉', '𝚭', '𝛧', '𝜡', '𝝛', '𝞕'], '\\': ['∖', '⟍', '⧵', '⧹', '⼂', '㇔', '丶', '﹨', '\', '𝈏', '𝈻'], '^': ['˄', 'ˆ'], '_': ['ߺ', '﹍', '﹎', '﹏', '_'], 'a': ['ɑ', 'α', 'а', '⍺', 'a', '𝐚', '𝑎', '𝒂', '𝒶', '𝓪', '𝔞', '𝕒', '𝖆', '𝖺', '𝗮', '𝘢', '𝙖', '𝚊', '𝛂', '𝛼', '𝜶', '𝝰', '𝞪'], 'b': ['Ƅ', 'Ь', 'Ꮟ', 'ᑲ', 'ᖯ', 'b', '𝐛', '𝑏', '𝒃', '𝒷', '𝓫', '𝔟', '𝕓', '𝖇', '𝖻', '𝗯', '𝘣', '𝙗', '𝚋'], 'c': ['ϲ', 'с', 'ᴄ', 'ⅽ', 'ⲥ', 'ꮯ', 'c', '𐐽', '𝐜', '𝑐', '𝒄', '𝒸', '𝓬', '𝔠', '𝕔', '𝖈', '𝖼', '𝗰', '𝘤', '𝙘', '𝚌'], 'd': ['ԁ', 'Ꮷ', 'ᑯ', 'ⅆ', 'ⅾ', 'ꓒ', 'd', '𝐝', '𝑑', '𝒅', '𝒹', '𝓭', '𝔡', '𝕕', '𝖉', '𝖽', '𝗱', '𝘥', '𝙙', '𝚍'], 'e': ['е', 'ҽ', '℮', 'ℯ', 'ⅇ', 'ꬲ', 'e', '𝐞', '𝑒', '𝒆', '𝓮', '𝔢', '𝕖', '𝖊', '𝖾', '𝗲', '𝘦', '𝙚', '𝚎'], 'f': ['ſ', 'ϝ', 'ք', 'ẝ', 'ꞙ', 'ꬵ', 'f', '𝐟', '𝑓', '𝒇', '𝒻', '𝓯', '𝔣', '𝕗', '𝖋', '𝖿', '𝗳', '𝘧', '𝙛', '𝚏', '𝟋'], 'g': ['ƍ', 'ɡ', 'ց', 'ᶃ', 'ℊ', 'g', '𝐠', '𝑔', '𝒈', '𝓰', '𝔤', '𝕘', '𝖌', '𝗀', '𝗴', '𝘨', '𝙜', '𝚐'], 'h': ['һ', 'հ', 'Ꮒ', 'ℎ', 'h', '𝐡', '𝒉', '𝒽', '𝓱', '𝔥', '𝕙', '𝖍', '𝗁', '𝗵', '𝘩', '𝙝', '𝚑'], 'i': ['ı', 'ɩ', 'ɪ', '˛', 'ͺ', 'ι', 'і', 'ӏ', 'Ꭵ', 'ι', 'ℹ', 'ⅈ', 'ⅰ', '⍳', 'ꙇ', 'ꭵ', 'i', '𑣃', '𝐢', '𝑖', '𝒊', '𝒾', '𝓲', '𝔦', '𝕚', '𝖎', '𝗂', '𝗶', '𝘪', '𝙞', '𝚒', '𝚤', '𝛊', '𝜄', '𝜾', '𝝸', '𝞲'], 'j': ['ϳ', 'ј', 'ⅉ', 'j', '𝐣', '𝑗', '𝒋', '𝒿', '𝓳', '𝔧', '𝕛', '𝖏', '𝗃', '𝗷', '𝘫', '𝙟', '𝚓'], 'k': ['k', '𝐤', '𝑘', '𝒌', '𝓀', '𝓴', '𝔨', '𝕜', '𝖐', '𝗄', '𝗸', '𝘬', '𝙠', '𝚔'], 'l': ['Ɩ', 'ǀ', 'Ι', 'І', 'Ӏ', '׀', 'ו', 'ן', 'ا', '١', '۱', 'ߊ', 'ᛁ', 'ℐ', 'ℑ', 'ℓ', 'Ⅰ', 'ⅼ', '∣', '⏽', 'Ⲓ', 'ⵏ', 'ꓲ', 'ﺍ', 'ﺎ', '1', 'I', 'l', '│', '𐊊', '𐌉', '𐌠', '𖼨', '𝐈', '𝐥', '𝐼', '𝑙', '𝑰', '𝒍', '𝓁', '𝓘', '𝓵', '𝔩', '𝕀', '𝕝', '𝕴', '𝖑', '𝖨', '𝗅', '𝗜', '𝗹', '𝘐', '𝘭', '𝙄', '𝙡', '𝙸', '𝚕', '𝚰', '𝛪', '𝜤', '𝝞', '𝞘', '𝟏', '𝟙', '𝟣', '𝟭', '𝟷', '𞣇', '𞸀', '𞺀', '\U0001fbf1'], 'm': ['m'], 'n': ['ո', 'ռ', 'n', '𝐧', '𝑛', '𝒏', '𝓃', '𝓷', '𝔫', '𝕟', '𝖓', '𝗇', '𝗻', '𝘯', '𝙣', '𝚗'], 'o': ['Ο', 'ο', 'σ', 'О', 'о', 'Օ', 'օ', 'ס', 'ه', '٥', 'ھ', 'ہ', 'ە', '۵', '߀', '०', '০', '੦', '૦', 'ଠ', '୦', '௦', 'ం', '౦', 'ಂ', '೦', 'ം', 'ഠ', '൦', 'ං', '๐', '໐', 'ဝ', '၀', 'ჿ', 'ዐ', 'ᴏ', 'ᴑ', 'ℴ', 'Ⲟ', 'ⲟ', 'ⵔ', '〇', 'ꓳ', 'ꬽ', 'ﮦ', 'ﮧ', 'ﮨ', 'ﮩ', 'ﮪ', 'ﮫ', 'ﮬ', 'ﮭ', 'ﻩ', 'ﻪ', 'ﻫ', 'ﻬ', '0', 'O', 'o', '𐊒', '𐊫', '𐐄', '𐐬', '𐓂', '𐓪', '𐔖', '𑓐', '𑢵', '𑣈', '𑣗', '𑣠', '𝐎', '𝐨', '𝑂', '𝑜', '𝑶', '𝒐', '𝒪', '𝓞', '𝓸', '𝔒', '𝔬', '𝕆', '𝕠', '𝕺', '𝖔', '𝖮', '𝗈', '𝗢', '𝗼', '𝘖', '𝘰', '𝙊', '𝙤', '𝙾', '𝚘', '𝚶', '𝛐', '𝛔', '𝛰', '𝜊', '𝜎', '𝜪', '𝝄', '𝝈', '𝝤', '𝝾', '𝞂', '𝞞', '𝞸', '𝞼', '𝟎', '𝟘', '𝟢', '𝟬', '𝟶', '𞸤', '𞹤', '𞺄', '\U0001fbf0'], 'p': ['ρ', 'ϱ', 'р', '⍴', 'ⲣ', 'p', '𝐩', '𝑝', '𝒑', '𝓅', '𝓹', '𝔭', '𝕡', '𝖕', '𝗉', '𝗽', '𝘱', '𝙥', '𝚙', '𝛒', '𝛠', '𝜌', '𝜚', '𝝆', '𝝔', '𝞀', '𝞎', '𝞺', '𝟈'], 'q': ['ԛ', 'գ', 'զ', 'q', '𝐪', '𝑞', '𝒒', '𝓆', '𝓺', '𝔮', '𝕢', '𝖖', '𝗊', '𝗾', '𝘲', '𝙦', '𝚚'], 'r': ['г', 'ᴦ', 'ⲅ', 'ꭇ', 'ꭈ', 'ꮁ', 'r', '𝐫', '𝑟', '𝒓', '𝓇', '𝓻', '𝔯', '𝕣', '𝖗', '𝗋', '𝗿', '𝘳', '𝙧', '𝚛'], 's': ['ƽ', 'ѕ', 'ꜱ', 'ꮪ', 's', '𐑈', '𑣁', '𝐬', '𝑠', '𝒔', '𝓈', '𝓼', '𝔰', '𝕤', '𝖘', '𝗌', '𝘀', '𝘴', '𝙨', '𝚜'], 't': ['t', '𝐭', '𝑡', '𝒕', '𝓉', '𝓽', '𝔱', '𝕥', '𝖙', '𝗍', '𝘁', '𝘵', '𝙩', '𝚝'], 'u': ['ʋ', 'υ', 'ս', 'ᴜ', 'ꞟ', 'ꭎ', 'ꭒ', 'u', '𐓶', '𑣘', '𝐮', '𝑢', '𝒖', '𝓊', '𝓾', '𝔲', '𝕦', '𝖚', '𝗎', '𝘂', '𝘶', '𝙪', '𝚞', '𝛖', '𝜐', '𝝊', '𝞄', '𝞾'], 'v': ['ν', 'ѵ', 'ט', 'ᴠ', 'ⅴ', '∨', '⋁', 'ꮩ', 'v', '𑜆', '𑣀', '𝐯', '𝑣', '𝒗', '𝓋', '𝓿', '𝔳', '𝕧', '𝖛', '𝗏', '𝘃', '𝘷', '𝙫', '𝚟', '𝛎', '𝜈', '𝝂', '𝝼', '𝞶'], 'w': ['ɯ', 'ѡ', 'ԝ', 'ա', 'ᴡ', 'ꮃ', 'w', '𑜊', '𑜎', '𑜏', '𝐰', '𝑤', '𝒘', '𝓌', '𝔀', '𝔴', '𝕨', '𝖜', '𝗐', '𝘄', '𝘸', '𝙬', '𝚠'], 'x': ['×', 'х', 'ᕁ', 'ᕽ', '᙮', 'ⅹ', '⤫', '⤬', '⨯', 'x', '𝐱', '𝑥', '𝒙', '𝓍', '𝔁', '𝔵', '𝕩', '𝖝', '𝗑', '𝘅', '𝘹', '𝙭', '𝚡'], 'y': ['ɣ', 'ʏ', 'γ', 'у', 'ү', 'ყ', 'ᶌ', 'ỿ', 'ℽ', 'ꭚ', 'y', '𑣜', '𝐲', '𝑦', '𝒚', '𝓎', '𝔂', '𝔶', '𝕪', '𝖞', '𝗒', '𝘆', '𝘺', '𝙮', '𝚢', '𝛄', '𝛾', '𝜸', '𝝲', '𝞬'], 'z': ['ᴢ', 'ꮓ', 'z', '𑣄', '𝐳', '𝑧', '𝒛', '𝓏', '𝔃', '𝔷', '𝕫', '𝖟', '𝗓', '𝘇', '𝘻', '𝙯', '𝚣'], '{': ['❴', '{', '𝄔'], '}': ['❵', '}'], '~': ['˜', '῀', '⁓', '∼'], }
DeepLearningExamples-master
PyTorch/SpeechSynthesis/HiFiGAN/common/text/unidecoder/homoglyphs.py
# ***************************************************************************** # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse import torch from inference import load_and_setup_model def parse_args(parser): parser.add_argument('--generator-name', type=str, required=True, choices=('Tacotron2', 'FastPitch'), help='model name') parser.add_argument('--generator-checkpoint', type=str, required=True, help='full path to the generator checkpoint file') parser.add_argument('-o', '--output', type=str, default="trtis_repo/tacotron/1/model.pt", help='filename for the Tacotron 2 TorchScript model') parser.add_argument('--amp', action='store_true', help='inference with AMP') return parser def main(): parser = argparse.ArgumentParser(description='Export models to TorchScript') parser = parse_args(parser) args = parser.parse_args() model = load_and_setup_model( args.generator_name, parser, args.generator_checkpoint, args.amp, device='cpu', forward_is_infer=True, polyak=False, jitable=True) torch.jit.save(torch.jit.script(model), args.output) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/export_torchscript.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse import time from pathlib import Path import torch import tqdm import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from torch.utils.data import DataLoader from fastpitch.data_function import TTSCollate, TTSDataset def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-d', '--dataset-path', type=str, default='./', help='Path to dataset') parser.add_argument('--wav-text-filelists', required=True, nargs='+', type=str, help='Files with audio paths and text') parser.add_argument('--extract-mels', action='store_true', help='Calculate spectrograms from .wav files') parser.add_argument('--extract-pitch', action='store_true', help='Extract pitch') parser.add_argument('--save-alignment-priors', action='store_true', help='Pre-calculate diagonal matrices of alignment of text to audio') parser.add_argument('--log-file', type=str, default='preproc_log.json', help='Filename for logging') parser.add_argument('--n-speakers', type=int, default=1) # Mel extraction parser.add_argument('--max-wav-value', default=32768.0, type=float, help='Maximum audiowave value') parser.add_argument('--sampling-rate', default=22050, type=int, help='Sampling rate') parser.add_argument('--filter-length', default=1024, type=int, help='Filter length') parser.add_argument('--hop-length', default=256, type=int, help='Hop (stride) length') parser.add_argument('--win-length', default=1024, type=int, help='Window length') parser.add_argument('--mel-fmin', default=0.0, type=float, help='Minimum mel frequency') parser.add_argument('--mel-fmax', default=8000.0, type=float, help='Maximum mel frequency') parser.add_argument('--n-mel-channels', type=int, default=80) # Pitch extraction parser.add_argument('--f0-method', default='pyin', type=str, choices=['pyin'], help='F0 estimation method') # Performance parser.add_argument('-b', '--batch-size', default=1, type=int) parser.add_argument('--n-workers', type=int, default=16) # Language parser.add_argument('--symbol_set', default='english_basic', choices=['english_basic', 'english_mandarin_basic'], help='Symbols in the dataset') return parser def main(): parser = argparse.ArgumentParser(description='FastPitch Data Pre-processing') parser = parse_args(parser) args, unk_args = parser.parse_known_args() if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') DLLogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, Path(args.dataset_path, args.log_file)), StdOutBackend(Verbosity.VERBOSE)]) for k, v in vars(args).items(): DLLogger.log(step="PARAMETER", data={k: v}) DLLogger.flush() if args.extract_mels: Path(args.dataset_path, 'mels').mkdir(parents=False, exist_ok=True) if args.extract_pitch: Path(args.dataset_path, 'pitch').mkdir(parents=False, exist_ok=True) if args.save_alignment_priors: Path(args.dataset_path, 'alignment_priors').mkdir(parents=False, exist_ok=True) for filelist in args.wav_text_filelists: print(f'Processing {filelist}...') dataset = TTSDataset( args.dataset_path, filelist, text_cleaners=['english_cleaners_v2'], n_mel_channels=args.n_mel_channels, symbol_set=args.symbol_set, p_arpabet=0.0, n_speakers=args.n_speakers, load_mel_from_disk=False, load_pitch_from_disk=False, pitch_mean=None, pitch_std=None, max_wav_value=args.max_wav_value, sampling_rate=args.sampling_rate, filter_length=args.filter_length, hop_length=args.hop_length, win_length=args.win_length, mel_fmin=args.mel_fmin, mel_fmax=args.mel_fmax, betabinomial_online_dir=None, pitch_online_dir=None, pitch_online_method=args.f0_method) data_loader = DataLoader( dataset, batch_size=args.batch_size, shuffle=False, sampler=None, num_workers=args.n_workers, collate_fn=TTSCollate(), pin_memory=False, drop_last=False) all_filenames = set() for i, batch in enumerate(tqdm.tqdm(data_loader)): tik = time.time() _, input_lens, mels, mel_lens, _, pitch, _, _, attn_prior, fpaths = batch # Ensure filenames are unique for p in fpaths: fname = Path(p).name if fname in all_filenames: raise ValueError(f'Filename is not unique: {fname}') all_filenames.add(fname) if args.extract_mels: for j, mel in enumerate(mels): fname = Path(fpaths[j]).with_suffix('.pt').name fpath = Path(args.dataset_path, 'mels', fname) torch.save(mel[:, :mel_lens[j]], fpath) if args.extract_pitch: for j, p in enumerate(pitch): fname = Path(fpaths[j]).with_suffix('.pt').name fpath = Path(args.dataset_path, 'pitch', fname) torch.save(p[:mel_lens[j]], fpath) if args.save_alignment_priors: for j, prior in enumerate(attn_prior): fname = Path(fpaths[j]).with_suffix('.pt').name fpath = Path(args.dataset_path, 'alignment_priors', fname) torch.save(prior[:mel_lens[j], :input_lens[j]], fpath) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/prepare_dataset.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import re import sys import torch from common.text.symbols import get_symbols, get_pad_idx from common.utils import DefaultAttrDict, AttrDict from fastpitch.model import FastPitch from fastpitch.model_jit import FastPitchJIT from hifigan.models import Generator try: from waveglow.model import WaveGlow from waveglow import model as glow from waveglow.denoiser import Denoiser sys.modules['glow'] = glow except ImportError: print("WARNING: Couldn't import WaveGlow") def parse_model_args(model_name, parser, add_help=False): if model_name == 'FastPitch': from fastpitch import arg_parser return arg_parser.parse_fastpitch_args(parser, add_help) elif model_name == 'HiFi-GAN': from hifigan import arg_parser return arg_parser.parse_hifigan_args(parser, add_help) elif model_name == 'WaveGlow': from waveglow.arg_parser import parse_waveglow_args return parse_waveglow_args(parser, add_help) else: raise NotImplementedError(model_name) def get_model(model_name, model_config, device, bn_uniform_init=False, forward_is_infer=False, jitable=False): """Chooses a model based on name""" del bn_uniform_init # unused (old name: uniform_initialize_bn_weight) if model_name == 'FastPitch': if jitable: model = FastPitchJIT(**model_config) else: model = FastPitch(**model_config) elif model_name == 'HiFi-GAN': model = Generator(model_config) elif model_name == 'WaveGlow': model = WaveGlow(**model_config) else: raise NotImplementedError(model_name) if forward_is_infer and hasattr(model, 'infer'): model.forward = model.infer return model.to(device) def get_model_config(model_name, args, ckpt_config=None): """ Get config needed to instantiate the model """ # Mark keys missing in `args` with an object (None is ambiguous) _missing = object() args = DefaultAttrDict(lambda: _missing, vars(args)) # `ckpt_config` is loaded from the checkpoint and has the priority # `model_config` is based on args and fills empty slots in `ckpt_config` if model_name == 'FastPitch': model_config = dict( # io n_mel_channels=args.n_mel_channels, # symbols n_symbols=(len(get_symbols(args.symbol_set)) if args.symbol_set is not _missing else _missing), padding_idx=(get_pad_idx(args.symbol_set) if args.symbol_set is not _missing else _missing), symbols_embedding_dim=args.symbols_embedding_dim, # input FFT in_fft_n_layers=args.in_fft_n_layers, in_fft_n_heads=args.in_fft_n_heads, in_fft_d_head=args.in_fft_d_head, in_fft_conv1d_kernel_size=args.in_fft_conv1d_kernel_size, in_fft_conv1d_filter_size=args.in_fft_conv1d_filter_size, in_fft_output_size=args.in_fft_output_size, p_in_fft_dropout=args.p_in_fft_dropout, p_in_fft_dropatt=args.p_in_fft_dropatt, p_in_fft_dropemb=args.p_in_fft_dropemb, # output FFT out_fft_n_layers=args.out_fft_n_layers, out_fft_n_heads=args.out_fft_n_heads, out_fft_d_head=args.out_fft_d_head, out_fft_conv1d_kernel_size=args.out_fft_conv1d_kernel_size, out_fft_conv1d_filter_size=args.out_fft_conv1d_filter_size, out_fft_output_size=args.out_fft_output_size, p_out_fft_dropout=args.p_out_fft_dropout, p_out_fft_dropatt=args.p_out_fft_dropatt, p_out_fft_dropemb=args.p_out_fft_dropemb, # duration predictor dur_predictor_kernel_size=args.dur_predictor_kernel_size, dur_predictor_filter_size=args.dur_predictor_filter_size, p_dur_predictor_dropout=args.p_dur_predictor_dropout, dur_predictor_n_layers=args.dur_predictor_n_layers, # pitch predictor pitch_predictor_kernel_size=args.pitch_predictor_kernel_size, pitch_predictor_filter_size=args.pitch_predictor_filter_size, p_pitch_predictor_dropout=args.p_pitch_predictor_dropout, pitch_predictor_n_layers=args.pitch_predictor_n_layers, # pitch conditioning pitch_embedding_kernel_size=args.pitch_embedding_kernel_size, # speakers parameters n_speakers=args.n_speakers, speaker_emb_weight=args.speaker_emb_weight, # energy predictor energy_predictor_kernel_size=args.energy_predictor_kernel_size, energy_predictor_filter_size=args.energy_predictor_filter_size, p_energy_predictor_dropout=args.p_energy_predictor_dropout, energy_predictor_n_layers=args.energy_predictor_n_layers, # energy conditioning energy_conditioning=args.energy_conditioning, energy_embedding_kernel_size=args.energy_embedding_kernel_size, ) elif model_name == 'HiFi-GAN': if args.hifigan_config is not None: assert ckpt_config is None, ( "Supplied --hifigan-config, but the checkpoint has a config. " "Drop the flag or remove the config from the checkpoint file.") print(f'HiFi-GAN: Reading model config from {args.hifigan_config}') with open(args.hifigan_config) as f: args = AttrDict(json.load(f)) model_config = dict( # generator architecture upsample_rates=args.upsample_rates, upsample_kernel_sizes=args.upsample_kernel_sizes, upsample_initial_channel=args.upsample_initial_channel, resblock=args.resblock, resblock_kernel_sizes=args.resblock_kernel_sizes, resblock_dilation_sizes=args.resblock_dilation_sizes, ) elif model_name == 'WaveGlow': model_config = dict( n_mel_channels=args.n_mel_channels, n_flows=args.flows, n_group=args.groups, n_early_every=args.early_every, n_early_size=args.early_size, WN_config=dict( n_layers=args.wn_layers, kernel_size=args.wn_kernel_size, n_channels=args.wn_channels ) ) else: raise NotImplementedError(model_name) # Start with ckpt_config, and fill missing keys from model_config final_config = {} if ckpt_config is None else ckpt_config.copy() missing_keys = set(model_config.keys()) - set(final_config.keys()) final_config.update({k: model_config[k] for k in missing_keys}) # If there was a ckpt_config, it should have had all args if ckpt_config is not None and len(missing_keys) > 0: print(f'WARNING: Keys {missing_keys} missing from the loaded config; ' 'using args instead.') assert all(v is not _missing for v in final_config.values()) return final_config def get_model_train_setup(model_name, args): """ Dump train setup for documentation purposes """ if model_name == 'FastPitch': return dict() elif model_name == 'HiFi-GAN': return dict( # audio segment_size=args.segment_size, filter_length=args.filter_length, num_mels=args.num_mels, hop_length=args.hop_length, win_length=args.win_length, sampling_rate=args.sampling_rate, mel_fmin=args.mel_fmin, mel_fmax=args.mel_fmax, mel_fmax_loss=args.mel_fmax_loss, max_wav_value=args.max_wav_value, # other seed=args.seed, # optimization base_lr=args.learning_rate, lr_decay=args.lr_decay, epochs_all=args.epochs, ) elif model_name == 'WaveGlow': return dict() else: raise NotImplementedError(model_name) def load_model_from_ckpt(checkpoint_data, model, key='state_dict'): if key is None: return checkpoint_data['model'], None sd = checkpoint_data[key] sd = {re.sub('^module\.', '', k): v for k, v in sd.items()} status = model.load_state_dict(sd, strict=False) return model, status def load_and_setup_model(model_name, parser, checkpoint, amp, device, unk_args=[], forward_is_infer=False, jitable=False): if checkpoint is not None: ckpt_data = torch.load(checkpoint) print(f'{model_name}: Loading {checkpoint}...') ckpt_config = ckpt_data.get('config') if ckpt_config is None: print(f'{model_name}: No model config in the checkpoint; using args.') else: print(f'{model_name}: Found model config saved in the checkpoint.') else: ckpt_config = None ckpt_data = {} model_parser = parse_model_args(model_name, parser, add_help=False) model_args, model_unk_args = model_parser.parse_known_args() unk_args[:] = list(set(unk_args) & set(model_unk_args)) model_config = get_model_config(model_name, model_args, ckpt_config) model = get_model(model_name, model_config, device, forward_is_infer=forward_is_infer, jitable=jitable) if checkpoint is not None: key = 'generator' if model_name == 'HiFi-GAN' else 'state_dict' model, status = load_model_from_ckpt(ckpt_data, model, key) missing = [] if status is None else status.missing_keys unexpected = [] if status is None else status.unexpected_keys # Attention is only used during training, we won't miss it if model_name == 'FastPitch': missing = [k for k in missing if not k.startswith('attention.')] unexpected = [k for k in unexpected if not k.startswith('attention.')] assert len(missing) == 0 and len(unexpected) == 0, ( f'Mismatched keys when loading parameters. Missing: {missing}, ' f'unexpected: {unexpected}.') if model_name == "WaveGlow": for k, m in model.named_modules(): m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability model = model.remove_weightnorm(model) elif model_name == 'HiFi-GAN': assert model_args.hifigan_config is not None or ckpt_config is not None, ( 'Use a HiFi-GAN checkpoint from NVIDIA DeepLearningExamples with ' 'saved config or supply --hifigan-config <json_file>.') model.remove_weight_norm() if amp: model.half() model.eval() return model.to(device), model_config, ckpt_data.get('train_setup', {}) def load_and_setup_ts_model(model_name, checkpoint, amp, device=None): print(f'{model_name}: Loading TorchScript checkpoint {checkpoint}...') model = torch.jit.load(checkpoint).eval() if device is not None: model = model.to(device) if amp: model.half() elif next(model.parameters()).dtype == torch.float16: raise ValueError('Trying to load FP32 model,' 'TS checkpoint is in FP16 precision.') return model def convert_ts_to_trt(model_name, ts_model, parser, amp, unk_args=[]): trt_parser = _parse_trt_compilation_args(model_name, parser, add_help=False) trt_args, trt_unk_args = trt_parser.parse_known_args() unk_args[:] = list(set(unk_args) & set(trt_unk_args)) if model_name == 'HiFi-GAN': return _convert_ts_to_trt_hifigan( ts_model, amp, trt_args.trt_min_opt_max_batch, trt_args.trt_min_opt_max_hifigan_length) else: raise NotImplementedError def _parse_trt_compilation_args(model_name, parent, add_help=False): """ Parse model and inference specific commandline arguments. """ parser = argparse.ArgumentParser(parents=[parent], add_help=add_help, allow_abbrev=False) trt = parser.add_argument_group(f'{model_name} Torch-TensorRT compilation parameters') trt.add_argument('--trt-min-opt-max-batch', nargs=3, type=int, default=(1, 8, 16), help='Torch-TensorRT min, optimal and max batch size') if model_name == 'HiFi-GAN': trt.add_argument('--trt-min-opt-max-hifigan-length', nargs=3, type=int, default=(100, 800, 1200), help='Torch-TensorRT min, optimal and max audio length (in frames)') return parser def _convert_ts_to_trt_hifigan(ts_model, amp, trt_min_opt_max_batch, trt_min_opt_max_hifigan_length, num_mels=80): import torch_tensorrt trt_dtype = torch.half if amp else torch.float print(f'Torch TensorRT: compiling HiFi-GAN for dtype {trt_dtype}.') min_shp, opt_shp, max_shp = zip(trt_min_opt_max_batch, (num_mels,) * 3, trt_min_opt_max_hifigan_length) compile_settings = { "inputs": [torch_tensorrt.Input( min_shape=min_shp, opt_shape=opt_shp, max_shape=max_shp, dtype=trt_dtype, )], "enabled_precisions": {trt_dtype}, "require_full_compilation": True, } trt_model = torch_tensorrt.compile(ts_model, **compile_settings) print('Torch TensorRT: compilation successful.') return trt_model
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/models.py
# ***************************************************************************** # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse import copy import os import time from collections import defaultdict, OrderedDict from itertools import cycle import numpy as np import torch import torch.distributed as dist import amp_C from apex.optimizers import FusedAdam, FusedLAMB from torch.nn.parallel import DistributedDataParallel from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler import common.tb_dllogger as logger import models from common.tb_dllogger import log from common.repeated_dataloader import (RepeatedDataLoader, RepeatedDistributedSampler) from common.text import cmudict from common.utils import (BenchmarkStats, Checkpointer, load_pretrained_weights, prepare_tmp) from fastpitch.attn_loss_function import AttentionBinarizationLoss from fastpitch.data_function import batch_to_gpu, ensure_disjoint, TTSCollate, TTSDataset from fastpitch.loss_function import FastPitchLoss def parse_args(parser): parser.add_argument('-o', '--output', type=str, required=True, help='Directory to save checkpoints') parser.add_argument('-d', '--dataset-path', type=str, default='./', help='Path to dataset') parser.add_argument('--log-file', type=str, default=None, help='Path to a DLLogger log file') train = parser.add_argument_group('training setup') train.add_argument('--epochs', type=int, required=True, help='Number of total epochs to run') train.add_argument('--epochs-per-checkpoint', type=int, default=50, help='Number of epochs per checkpoint') train.add_argument('--checkpoint-path', type=str, default=None, help='Checkpoint path to resume training') train.add_argument('--keep-milestones', default=list(range(100, 1000, 100)), type=int, nargs='+', help='Milestone checkpoints to keep from removing') train.add_argument('--resume', action='store_true', help='Resume training from the last checkpoint') train.add_argument('--seed', type=int, default=1234, help='Seed for PyTorch random number generators') train.add_argument('--amp', action='store_true', help='Enable AMP') train.add_argument('--cuda', action='store_true', help='Run on GPU using CUDA') train.add_argument('--cudnn-benchmark', action='store_true', help='Enable cudnn benchmark mode') train.add_argument('--ema-decay', type=float, default=0, help='Discounting factor for training weights EMA') train.add_argument('--grad-accumulation', type=int, default=1, help='Training steps to accumulate gradients for') train.add_argument('--kl-loss-start-epoch', type=int, default=250, help='Start adding the hard attention loss term') train.add_argument('--kl-loss-warmup-epochs', type=int, default=100, help='Gradually increase the hard attention loss term') train.add_argument('--kl-loss-weight', type=float, default=1.0, help='Gradually increase the hard attention loss term') train.add_argument('--benchmark-epochs-num', type=int, default=20, help='Number of epochs for calculating final stats') train.add_argument('--validation-freq', type=int, default=1, help='Validate every N epochs to use less compute') train.add_argument('--init-from-checkpoint', type=str, default=None, help='Initialize model weights with a pre-trained ckpt') opt = parser.add_argument_group('optimization setup') opt.add_argument('--optimizer', type=str, default='lamb', help='Optimization algorithm') opt.add_argument('-lr', '--learning-rate', type=float, required=True, help='Learing rate') opt.add_argument('--weight-decay', default=1e-6, type=float, help='Weight decay') opt.add_argument('--grad-clip-thresh', default=1000.0, type=float, help='Clip threshold for gradients') opt.add_argument('-bs', '--batch-size', type=int, required=True, help='Batch size per GPU') opt.add_argument('--warmup-steps', type=int, default=1000, help='Number of steps for lr warmup') opt.add_argument('--dur-predictor-loss-scale', type=float, default=1.0, help='Rescale duration predictor loss') opt.add_argument('--pitch-predictor-loss-scale', type=float, default=1.0, help='Rescale pitch predictor loss') opt.add_argument('--attn-loss-scale', type=float, default=1.0, help='Rescale alignment loss') data = parser.add_argument_group('dataset parameters') data.add_argument('--training-files', type=str, nargs='*', required=True, help='Paths to training filelists.') data.add_argument('--validation-files', type=str, nargs='*', required=True, help='Paths to validation filelists') data.add_argument('--text-cleaners', nargs='*', default=['english_cleaners'], type=str, help='Type of text cleaners for input text') data.add_argument('--symbol-set', type=str, default='english_basic', help='Define symbol set for input text') data.add_argument('--p-arpabet', type=float, default=0.0, help='Probability of using arpabets instead of graphemes ' 'for each word; set 0 for pure grapheme training') data.add_argument('--heteronyms-path', type=str, default='cmudict/heteronyms', help='Path to the list of heteronyms') data.add_argument('--cmudict-path', type=str, default='cmudict/cmudict-0.7b', help='Path to the pronouncing dictionary') data.add_argument('--prepend-space-to-text', action='store_true', help='Capture leading silence with a space token') data.add_argument('--append-space-to-text', action='store_true', help='Capture trailing silence with a space token') data.add_argument('--num-workers', type=int, default=6, help='Subprocesses for train and val DataLoaders') data.add_argument('--trainloader-repeats', type=int, default=100, help='Repeats the dataset to prolong epochs') cond = parser.add_argument_group('data for conditioning') cond.add_argument('--n-speakers', type=int, default=1, help='Number of speakers in the dataset. ' 'n_speakers > 1 enables speaker embeddings') cond.add_argument('--load-pitch-from-disk', action='store_true', help='Use pitch cached on disk with prepare_dataset.py') cond.add_argument('--pitch-online-method', default='pyin', choices=['pyin'], help='Calculate pitch on the fly during trainig') cond.add_argument('--pitch-online-dir', type=str, default=None, help='A directory for storing pitch calculated on-line') cond.add_argument('--pitch-mean', type=float, default=214.72203, help='Normalization value for pitch') cond.add_argument('--pitch-std', type=float, default=65.72038, help='Normalization value for pitch') cond.add_argument('--load-mel-from-disk', action='store_true', help='Use mel-spectrograms cache on the disk') # XXX audio = parser.add_argument_group('audio parameters') audio.add_argument('--max-wav-value', default=32768.0, type=float, help='Maximum audiowave value') audio.add_argument('--sampling-rate', default=22050, type=int, help='Sampling rate') audio.add_argument('--filter-length', default=1024, type=int, help='Filter length') audio.add_argument('--hop-length', default=256, type=int, help='Hop (stride) length') audio.add_argument('--win-length', default=1024, type=int, help='Window length') audio.add_argument('--mel-fmin', default=0.0, type=float, help='Minimum mel frequency') audio.add_argument('--mel-fmax', default=8000.0, type=float, help='Maximum mel frequency') dist = parser.add_argument_group('distributed setup') dist.add_argument('--local_rank', type=int, default=os.getenv('LOCAL_RANK', 0), help='Rank of the process for multiproc; do not set manually') dist.add_argument('--world_size', type=int, default=os.getenv('WORLD_SIZE', 1), help='Number of processes for multiproc; do not set manually') return parser def reduce_tensor(tensor, num_gpus): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) return rt.true_divide(num_gpus) def init_distributed(args, world_size, rank): assert torch.cuda.is_available(), "Distributed mode requires CUDA." print("Initializing distributed training") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) # Initialize distributed communication dist.init_process_group(backend=('nccl' if args.cuda else 'gloo'), init_method='env://') print("Done initializing distributed training") def validate(model, epoch, total_iter, criterion, val_loader, distributed_run, batch_to_gpu, ema=False): was_training = model.training model.eval() tik = time.perf_counter() with torch.no_grad(): val_meta = defaultdict(float) val_num_frames = 0 for i, batch in enumerate(val_loader): x, y, num_frames = batch_to_gpu(batch) y_pred = model(x) loss, meta = criterion(y_pred, y, is_training=False, meta_agg='sum') if distributed_run: for k, v in meta.items(): val_meta[k] += reduce_tensor(v, 1) val_num_frames += reduce_tensor(num_frames.data, 1).item() else: for k, v in meta.items(): val_meta[k] += v val_num_frames += num_frames.item() val_meta = {k: v / len(val_loader.dataset) for k, v in val_meta.items()} val_meta['took'] = time.perf_counter() - tik log((epoch,) if epoch is not None else (), tb_total_steps=total_iter, subset='val_ema' if ema else 'val', data=OrderedDict([ ('loss', val_meta['loss'].item()), ('mel_loss', val_meta['mel_loss'].item()), ('frames/s', val_num_frames / val_meta['took']), ('took', val_meta['took'])]), ) if was_training: model.train() return val_meta def adjust_learning_rate(total_iter, opt, learning_rate, warmup_iters=None): if warmup_iters == 0: scale = 1.0 elif total_iter > warmup_iters: scale = 1. / (total_iter ** 0.5) else: scale = total_iter / (warmup_iters ** 1.5) for param_group in opt.param_groups: param_group['lr'] = learning_rate * scale def apply_ema_decay(model, ema_model, decay): if not decay: return st = model.state_dict() add_module = hasattr(model, 'module') and not hasattr(ema_model, 'module') for k, v in ema_model.state_dict().items(): if add_module and not k.startswith('module.'): k = 'module.' + k v.copy_(decay * v + (1 - decay) * st[k]) def init_multi_tensor_ema(model, ema_model): model_weights = list(model.state_dict().values()) ema_model_weights = list(ema_model.state_dict().values()) ema_overflow_buf = torch.cuda.IntTensor([0]) return model_weights, ema_model_weights, ema_overflow_buf def apply_multi_tensor_ema(decay, model_weights, ema_weights, overflow_buf): amp_C.multi_tensor_axpby( 65536, overflow_buf, [ema_weights, model_weights, ema_weights], decay, 1-decay, -1) def main(): parser = argparse.ArgumentParser(description='PyTorch FastPitch Training', allow_abbrev=False) parser = parse_args(parser) args, _ = parser.parse_known_args() if args.p_arpabet > 0.0: cmudict.initialize(args.cmudict_path, args.heteronyms_path) distributed_run = args.world_size > 1 torch.manual_seed(args.seed + args.local_rank) np.random.seed(args.seed + args.local_rank) if args.local_rank == 0: if not os.path.exists(args.output): os.makedirs(args.output) log_fpath = args.log_file or os.path.join(args.output, 'nvlog.json') tb_subsets = ['train', 'val'] if args.ema_decay > 0.0: tb_subsets.append('val_ema') logger.init(log_fpath, args.output, enabled=(args.local_rank == 0), tb_subsets=tb_subsets) logger.parameters(vars(args), tb_subset='train') parser = models.parse_model_args('FastPitch', parser) args, unk_args = parser.parse_known_args() if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') torch.backends.cudnn.benchmark = args.cudnn_benchmark if distributed_run: init_distributed(args, args.world_size, args.local_rank) else: if args.trainloader_repeats > 1: print('WARNING: Disabled --trainloader-repeats, supported only for' ' multi-GPU data loading.') args.trainloader_repeats = 1 device = torch.device('cuda' if args.cuda else 'cpu') model_config = models.get_model_config('FastPitch', args) model = models.get_model('FastPitch', model_config, device) if args.init_from_checkpoint is not None: load_pretrained_weights(model, args.init_from_checkpoint) attention_kl_loss = AttentionBinarizationLoss() # Store pitch mean/std as params to translate from Hz during inference model.pitch_mean[0] = args.pitch_mean model.pitch_std[0] = args.pitch_std kw = dict(lr=args.learning_rate, betas=(0.9, 0.98), eps=1e-9, weight_decay=args.weight_decay) if args.optimizer == 'adam': optimizer = FusedAdam(model.parameters(), **kw) elif args.optimizer == 'lamb': optimizer = FusedLAMB(model.parameters(), **kw) else: raise ValueError scaler = torch.cuda.amp.GradScaler(enabled=args.amp) if args.ema_decay > 0: ema_model = copy.deepcopy(model) else: ema_model = None if distributed_run: model = DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) train_state = {'epoch': 1, 'total_iter': 1} checkpointer = Checkpointer(args.output, args.keep_milestones) checkpointer.maybe_load(model, optimizer, scaler, train_state, args, ema_model) start_epoch = train_state['epoch'] total_iter = train_state['total_iter'] criterion = FastPitchLoss( dur_predictor_loss_scale=args.dur_predictor_loss_scale, pitch_predictor_loss_scale=args.pitch_predictor_loss_scale, attn_loss_scale=args.attn_loss_scale) collate_fn = TTSCollate() if args.local_rank == 0: prepare_tmp(args.pitch_online_dir) trainset = TTSDataset(audiopaths_and_text=args.training_files, **vars(args)) valset = TTSDataset(audiopaths_and_text=args.validation_files, **vars(args)) ensure_disjoint(trainset, valset) if distributed_run: train_sampler = RepeatedDistributedSampler(args.trainloader_repeats, trainset, drop_last=True) val_sampler = DistributedSampler(valset) shuffle = False else: train_sampler, val_sampler, shuffle = None, None, True # 4 workers are optimal on DGX-1 (from epoch 2 onwards) kw = {'num_workers': args.num_workers, 'batch_size': args.batch_size, 'collate_fn': collate_fn} train_loader = RepeatedDataLoader(args.trainloader_repeats, trainset, shuffle=shuffle, drop_last=True, sampler=train_sampler, pin_memory=True, persistent_workers=True, **kw) val_loader = DataLoader(valset, shuffle=False, sampler=val_sampler, pin_memory=False, **kw) if args.ema_decay: mt_ema_params = init_multi_tensor_ema(model, ema_model) model.train() bmark_stats = BenchmarkStats() torch.cuda.synchronize() for epoch in range(start_epoch, args.epochs + 1): epoch_start_time = time.perf_counter() epoch_loss = 0.0 epoch_mel_loss = 0.0 epoch_num_frames = 0 epoch_frames_per_sec = 0.0 if distributed_run: train_loader.sampler.set_epoch(epoch) iter_loss = 0 iter_num_frames = 0 iter_meta = {} iter_start_time = time.perf_counter() epoch_iter = 1 for batch, accum_step in zip(train_loader, cycle(range(1, args.grad_accumulation + 1))): if accum_step == 1: adjust_learning_rate(total_iter, optimizer, args.learning_rate, args.warmup_steps) model.zero_grad(set_to_none=True) x, y, num_frames = batch_to_gpu(batch) with torch.cuda.amp.autocast(enabled=args.amp): y_pred = model(x) loss, meta = criterion(y_pred, y) if (args.kl_loss_start_epoch is not None and epoch >= args.kl_loss_start_epoch): if args.kl_loss_start_epoch == epoch and epoch_iter == 1: print('Begin hard_attn loss') _, _, _, _, _, _, _, _, attn_soft, attn_hard, _, _ = y_pred binarization_loss = attention_kl_loss(attn_hard, attn_soft) kl_weight = min((epoch - args.kl_loss_start_epoch) / args.kl_loss_warmup_epochs, 1.0) * args.kl_loss_weight meta['kl_loss'] = binarization_loss.clone().detach() * kl_weight loss += kl_weight * binarization_loss else: meta['kl_loss'] = torch.zeros_like(loss) kl_weight = 0 binarization_loss = 0 loss /= args.grad_accumulation meta = {k: v / args.grad_accumulation for k, v in meta.items()} if args.amp: scaler.scale(loss).backward() else: loss.backward() if distributed_run: reduced_loss = reduce_tensor(loss.data, args.world_size).item() reduced_num_frames = reduce_tensor(num_frames.data, 1).item() meta = {k: reduce_tensor(v, args.world_size) for k, v in meta.items()} else: reduced_loss = loss.item() reduced_num_frames = num_frames.item() if np.isnan(reduced_loss): raise Exception("loss is NaN") iter_loss += reduced_loss iter_num_frames += reduced_num_frames iter_meta = {k: iter_meta.get(k, 0) + meta.get(k, 0) for k in meta} if accum_step % args.grad_accumulation == 0: logger.log_grads_tb(total_iter, model) if args.amp: scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_( model.parameters(), args.grad_clip_thresh) scaler.step(optimizer) scaler.update() else: torch.nn.utils.clip_grad_norm_( model.parameters(), args.grad_clip_thresh) optimizer.step() if args.ema_decay > 0.0: apply_multi_tensor_ema(args.ema_decay, *mt_ema_params) iter_mel_loss = iter_meta['mel_loss'].item() iter_kl_loss = iter_meta['kl_loss'].item() iter_time = time.perf_counter() - iter_start_time epoch_frames_per_sec += iter_num_frames / iter_time epoch_loss += iter_loss epoch_num_frames += iter_num_frames epoch_mel_loss += iter_mel_loss num_iters = len(train_loader) // args.grad_accumulation log((epoch, epoch_iter, num_iters), tb_total_steps=total_iter, subset='train', data=OrderedDict([ ('loss', iter_loss), ('mel_loss', iter_mel_loss), ('kl_loss', iter_kl_loss), ('kl_weight', kl_weight), ('frames/s', iter_num_frames / iter_time), ('took', iter_time), ('lrate', optimizer.param_groups[0]['lr'])]), ) iter_loss = 0 iter_num_frames = 0 iter_meta = {} iter_start_time = time.perf_counter() if epoch_iter == num_iters: break epoch_iter += 1 total_iter += 1 # Finished epoch epoch_loss /= epoch_iter epoch_mel_loss /= epoch_iter epoch_time = time.perf_counter() - epoch_start_time log((epoch,), tb_total_steps=None, subset='train_avg', data=OrderedDict([ ('loss', epoch_loss), ('mel_loss', epoch_mel_loss), ('frames/s', epoch_num_frames / epoch_time), ('took', epoch_time)]), ) bmark_stats.update(epoch_num_frames, epoch_loss, epoch_mel_loss, epoch_time) if epoch % args.validation_freq == 0: validate(model, epoch, total_iter, criterion, val_loader, distributed_run, batch_to_gpu) if args.ema_decay > 0: validate(ema_model, epoch, total_iter, criterion, val_loader, distributed_run, batch_to_gpu, ema=True) # save before making sched.step() for proper loading of LR checkpointer.maybe_save(args, model, ema_model, optimizer, scaler, epoch, total_iter, model_config) logger.flush() # Finished training if len(bmark_stats) > 0: log((), tb_total_steps=None, subset='train_avg', data=bmark_stats.get(args.benchmark_epochs_num)) validate(model, None, total_iter, criterion, val_loader, distributed_run, batch_to_gpu) if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/train.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import itertools import sys import time import warnings from pathlib import Path from tqdm import tqdm import torch import numpy as np from scipy.stats import norm from scipy.io.wavfile import write from torch.nn.functional import l1_loss from torch.nn.utils.rnn import pad_sequence import dllogger as DLLogger from dllogger import StdOutBackend, JSONStreamBackend, Verbosity import models from common import gpu_affinity from common.tb_dllogger import (init_inference_metadata, stdout_metric_format, unique_log_fpath) from common.text import cmudict from common.text.text_processing import get_text_processing from common.utils import l2_promote from fastpitch.pitch_transform import pitch_transform_custom from hifigan.data_function import MAX_WAV_VALUE, mel_spectrogram from hifigan.models import Denoiser from waveglow import model as glow CHECKPOINT_SPECIFIC_ARGS = [ 'sampling_rate', 'hop_length', 'win_length', 'p_arpabet', 'text_cleaners', 'symbol_set', 'max_wav_value', 'prepend_space_to_text', 'append_space_to_text'] def parse_args(parser): """ Parse commandline arguments. """ parser.add_argument('-i', '--input', type=str, required=True, help='Full path to the input text (phareses separated by newlines)') parser.add_argument('-o', '--output', default=None, help='Output folder to save audio (file per phrase)') parser.add_argument('--log-file', type=str, default=None, help='Path to a DLLogger log file') parser.add_argument('--save-mels', action='store_true', help='Save generator outputs to disk') parser.add_argument('--cuda', action='store_true', help='Run inference on a GPU using CUDA') parser.add_argument('--cudnn-benchmark', action='store_true', help='Enable cudnn benchmark mode') parser.add_argument('--l2-promote', action='store_true', help='Increase max fetch granularity of GPU L2 cache') parser.add_argument('--fastpitch', type=str, default=None, required=False, help='Full path to the spectrogram generator .pt file ' '(skip to synthesize from ground truth mels)') parser.add_argument('--waveglow', type=str, default=None, required=False, help='Full path to a WaveGlow model .pt file') parser.add_argument('-s', '--waveglow-sigma-infer', default=0.9, type=float, help='WaveGlow sigma') parser.add_argument('--hifigan', type=str, default=None, required=False, help='Full path to a HiFi-GAN model .pt file') parser.add_argument('-d', '--denoising-strength', default=0.0, type=float, help='Capture and subtract model bias to enhance audio') parser.add_argument('--hop-length', type=int, default=256, help='STFT hop length for estimating audio length from mel size') parser.add_argument('--win-length', type=int, default=1024, help='STFT win length for denoiser and mel loss') parser.add_argument('-sr', '--sampling-rate', default=22050, type=int, choices=[22050, 44100], help='Sampling rate') parser.add_argument('--max_wav_value', default=32768.0, type=float, help='Maximum audiowave value') parser.add_argument('--amp', action='store_true', help='Inference with AMP') parser.add_argument('-bs', '--batch-size', type=int, default=64) parser.add_argument('--warmup-steps', type=int, default=0, help='Warmup iterations before measuring performance') parser.add_argument('--repeats', type=int, default=1, help='Repeat inference for benchmarking') parser.add_argument('--torchscript', action='store_true', help='Run inference with TorchScript model (convert to TS if needed)') parser.add_argument('--checkpoint-format', type=str, choices=['pyt', 'ts'], default='pyt', help='Input checkpoint format (PyT or TorchScript)') parser.add_argument('--torch-tensorrt', action='store_true', help='Run inference with Torch-TensorRT model (compile beforehand)') parser.add_argument('--report-mel-loss', action='store_true', help='Report mel loss in metrics') parser.add_argument('--ema', action='store_true', help='Use EMA averaged model (if saved in checkpoints)') parser.add_argument('--dataset-path', type=str, help='Path to dataset (for loading extra data fields)') parser.add_argument('--speaker', type=int, default=0, help='Speaker ID for a multi-speaker model') parser.add_argument('--affinity', type=str, default='single', choices=['socket', 'single', 'single_unique', 'socket_unique_interleaved', 'socket_unique_continuous', 'disabled'], help='type of CPU affinity') transf = parser.add_argument_group('transform') transf.add_argument('--fade-out', type=int, default=10, help='Number of fadeout frames at the end') transf.add_argument('--pace', type=float, default=1.0, help='Adjust the pace of speech') transf.add_argument('--pitch-transform-flatten', action='store_true', help='Flatten the pitch') transf.add_argument('--pitch-transform-invert', action='store_true', help='Invert the pitch wrt mean value') transf.add_argument('--pitch-transform-amplify', type=float, default=1.0, help='Multiplicative amplification of pitch variability. ' 'Typical values are in the range (1.0, 3.0).') transf.add_argument('--pitch-transform-shift', type=float, default=0.0, help='Raise/lower the pitch by <hz>') transf.add_argument('--pitch-transform-custom', action='store_true', help='Apply the transform from pitch_transform.py') txt = parser.add_argument_group('Text processing parameters') txt.add_argument('--text-cleaners', type=str, nargs='*', default=['english_cleaners_v2'], help='Type of text cleaners for input text') txt.add_argument('--symbol-set', type=str, default='english_basic', help='Define symbol set for input text') txt.add_argument('--p-arpabet', type=float, default=0.0, help='') txt.add_argument('--heteronyms-path', type=str, default='cmudict/heteronyms', help='') txt.add_argument('--cmudict-path', type=str, default='cmudict/cmudict-0.7b', help='') return parser def load_fields(fpath): lines = [l.strip() for l in open(fpath, encoding='utf-8')] if fpath.endswith('.tsv'): columns = lines[0].split('\t') fields = list(zip(*[t.split('\t') for t in lines[1:]])) else: columns = ['text'] fields = [lines] return {c: f for c, f in zip(columns, fields)} def prepare_input_sequence(fields, device, symbol_set, text_cleaners, batch_size=128, dataset=None, load_mels=False, load_pitch=False, p_arpabet=0.0): tp = get_text_processing(symbol_set, text_cleaners, p_arpabet) fields['text'] = [torch.LongTensor(tp.encode_text(text)) for text in fields['text']] order = np.argsort([-t.size(0) for t in fields['text']]) fields['text'] = [fields['text'][i] for i in order] fields['text_lens'] = torch.LongTensor([t.size(0) for t in fields['text']]) for t in fields['text']: print(tp.sequence_to_text(t.numpy())) if load_mels: assert 'mel' in fields assert dataset is not None fields['mel'] = [ torch.load(Path(dataset, fields['mel'][i])).t() for i in order] fields['mel_lens'] = torch.LongTensor([t.size(0) for t in fields['mel']]) if load_pitch: assert 'pitch' in fields fields['pitch'] = [ torch.load(Path(dataset, fields['pitch'][i])) for i in order] fields['pitch_lens'] = torch.LongTensor([t.size(0) for t in fields['pitch']]) if 'output' in fields: fields['output'] = [fields['output'][i] for i in order] # cut into batches & pad batches = [] for b in range(0, len(order), batch_size): batch = {f: values[b:b+batch_size] for f, values in fields.items()} for f in batch: if f == 'text': batch[f] = pad_sequence(batch[f], batch_first=True) elif f == 'mel' and load_mels: batch[f] = pad_sequence(batch[f], batch_first=True).permute(0, 2, 1) elif f == 'pitch' and load_pitch: batch[f] = pad_sequence(batch[f], batch_first=True) if type(batch[f]) is torch.Tensor: batch[f] = batch[f].to(device) batches.append(batch) return batches def build_pitch_transformation(args): if args.pitch_transform_custom: def custom_(pitch, pitch_lens, mean, std): return (pitch_transform_custom(pitch * std + mean, pitch_lens) - mean) / std return custom_ fun = 'pitch' if args.pitch_transform_flatten: fun = f'({fun}) * 0.0' if args.pitch_transform_invert: fun = f'({fun}) * -1.0' if args.pitch_transform_amplify != 1.0: ampl = args.pitch_transform_amplify fun = f'({fun}) * {ampl}' if args.pitch_transform_shift != 0.0: hz = args.pitch_transform_shift fun = f'({fun}) + {hz} / std' if fun == 'pitch': return None return eval(f'lambda pitch, pitch_lens, mean, std: {fun}') def setup_mel_loss_reporting(args, voc_train_setup): if args.denoising_strength > 0.0: print('WARNING: denoising will be included in vocoder mel loss') num_mels = voc_train_setup.get('num_mels', 80) fmin = voc_train_setup.get('mel_fmin', 0) fmax = voc_train_setup.get('mel_fmax', 8000) # not mel_fmax_loss def compute_audio_mel_loss(gen_audios, gt_mels, mel_lens): gen_audios /= MAX_WAV_VALUE total_loss = 0 for gen_audio, gt_mel, mel_len in zip(gen_audios, gt_mels, mel_lens): mel_len = mel_len.item() gen_audio = gen_audio[None, :mel_len * args.hop_length] gen_mel = mel_spectrogram(gen_audio, args.win_length, num_mels, args.sampling_rate, args.hop_length, args.win_length, fmin, fmax)[0] total_loss += l1_loss(gen_mel, gt_mel[:, :mel_len]) return total_loss.item() return compute_audio_mel_loss def compute_mel_loss(mels, lens, gt_mels, gt_lens): total_loss = 0 for mel, len_, gt_mel, gt_len in zip(mels, lens, gt_mels, gt_lens): min_len = min(len_, gt_len) total_loss += l1_loss(gt_mel[:, :min_len], mel[:, :min_len]) return total_loss.item() class MeasureTime(list): def __init__(self, *args, cuda=True, **kwargs): super(MeasureTime, self).__init__(*args, **kwargs) self.cuda = cuda def __enter__(self): if self.cuda: torch.cuda.synchronize() self.t0 = time.time() def __exit__(self, exc_type, exc_value, exc_traceback): if self.cuda: torch.cuda.synchronize() self.append(time.time() - self.t0) def __add__(self, other): assert len(self) == len(other) return MeasureTime((sum(ab) for ab in zip(self, other)), cuda=self.cuda) def main(): """ Launches text-to-speech inference on a single GPU. """ parser = argparse.ArgumentParser(description='PyTorch FastPitch Inference', allow_abbrev=False) parser = parse_args(parser) args, unk_args = parser.parse_known_args() if args.affinity != 'disabled': nproc_per_node = torch.cuda.device_count() # print(nproc_per_node) affinity = gpu_affinity.set_affinity( 0, nproc_per_node, args.affinity ) print(f'Thread affinity: {affinity}') if args.l2_promote: l2_promote() torch.backends.cudnn.benchmark = args.cudnn_benchmark if args.output is not None: Path(args.output).mkdir(parents=False, exist_ok=True) log_fpath = args.log_file or str(Path(args.output, 'nvlog_infer.json')) DLLogger.init(backends=[ JSONStreamBackend(Verbosity.DEFAULT, log_fpath, append=True), JSONStreamBackend(Verbosity.DEFAULT, unique_log_fpath(log_fpath)), StdOutBackend(Verbosity.VERBOSE, metric_format=stdout_metric_format) ]) init_inference_metadata(args.batch_size) [DLLogger.log("PARAMETER", {k: v}) for k, v in vars(args).items()] device = torch.device('cuda' if args.cuda else 'cpu') gen_train_setup = {} voc_train_setup = {} generator = None vocoder = None denoiser = None is_ts_based_infer = args.torch_tensorrt or args.torchscript assert args.checkpoint_format == 'pyt' or is_ts_based_infer, \ 'TorchScript checkpoint can be used only for TS or Torch-TRT' \ ' inference. Please set --torchscript or --torch-tensorrt flag.' assert args.waveglow is None or args.hifigan is None, \ "Specify a single vocoder model" def _load_pyt_or_ts_model(model_name, ckpt_path): if args.checkpoint_format == 'ts': model = models.load_and_setup_ts_model(model_name, ckpt_path, args.amp, device) model_train_setup = {} return model, model_train_setup model, _, model_train_setup = models.load_and_setup_model( model_name, parser, ckpt_path, args.amp, device, unk_args=unk_args, forward_is_infer=True, jitable=is_ts_based_infer) if is_ts_based_infer: model = torch.jit.script(model) return model, model_train_setup if args.fastpitch is not None: gen_name = 'fastpitch' generator, gen_train_setup = _load_pyt_or_ts_model('FastPitch', args.fastpitch) if args.waveglow is not None: voc_name = 'waveglow' with warnings.catch_warnings(): warnings.simplefilter("ignore") vocoder, _, voc_train_setup = models.load_and_setup_model( 'WaveGlow', parser, args.waveglow, args.amp, device, unk_args=unk_args, forward_is_infer=True, jitable=False) if args.denoising_strength > 0.0: denoiser = Denoiser(vocoder, sigma=0.0, win_length=args.win_length).to(device) # if args.torchscript: # vocoder = torch.jit.script(vocoder) def generate_audio(mel): audios = vocoder(mel, sigma=args.waveglow_sigma_infer) if denoiser is not None: audios = denoiser(audios.float(), args.denoising_strength).squeeze(1) return audios elif args.hifigan is not None: voc_name = 'hifigan' vocoder, voc_train_setup = _load_pyt_or_ts_model('HiFi-GAN', args.hifigan) if args.denoising_strength > 0.0: denoiser = Denoiser(vocoder, win_length=args.win_length).to(device) if args.torch_tensorrt: vocoder = models.convert_ts_to_trt('HiFi-GAN', vocoder, parser, args.amp, unk_args) def generate_audio(mel): audios = vocoder(mel).float() if denoiser is not None: audios = denoiser(audios.squeeze(1), args.denoising_strength) return audios.squeeze(1) * args.max_wav_value if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') for k in CHECKPOINT_SPECIFIC_ARGS: v1 = gen_train_setup.get(k, None) v2 = voc_train_setup.get(k, None) assert v1 is None or v2 is None or v1 == v2, \ f'{k} mismatch in spectrogram generator and vocoder' val = v1 or v2 if val and getattr(args, k) != val: src = 'generator' if v2 is None else 'vocoder' print(f'Overwriting args.{k}={getattr(args, k)} with {val} ' f'from {src} checkpoint.') setattr(args, k, val) gen_kw = {'pace': args.pace, 'speaker': args.speaker, 'pitch_tgt': None, 'pitch_transform': build_pitch_transformation(args)} if is_ts_based_infer and generator is not None: gen_kw.pop('pitch_transform') print('Note: --pitch-transform-* args are disabled with TorchScript. ' 'To condition on pitch, pass pitch_tgt as input.') if args.p_arpabet > 0.0: cmudict.initialize(args.cmudict_path, args.heteronyms_path) if args.report_mel_loss: mel_loss_fn = setup_mel_loss_reporting(args, voc_train_setup) fields = load_fields(args.input) batches = prepare_input_sequence( fields, device, args.symbol_set, args.text_cleaners, args.batch_size, args.dataset_path, load_mels=(generator is None or args.report_mel_loss), p_arpabet=args.p_arpabet) cycle = itertools.cycle(batches) # Use real data rather than synthetic - FastPitch predicts len for _ in tqdm(range(args.warmup_steps), 'Warmup'): with torch.no_grad(): b = next(cycle) if generator is not None: mel, *_ = generator(b['text']) else: mel, mel_lens = b['mel'], b['mel_lens'] if args.amp: mel = mel.half() if vocoder is not None: audios = generate_audio(mel) gen_measures = MeasureTime(cuda=args.cuda) vocoder_measures = MeasureTime(cuda=args.cuda) all_utterances = 0 all_samples = 0 all_batches = 0 all_letters = 0 all_frames = 0 gen_mel_loss_sum = 0 voc_mel_loss_sum = 0 reps = args.repeats log_enabled = reps == 1 log = lambda s, d: DLLogger.log(step=s, data=d) if log_enabled else None for rep in (tqdm(range(reps), 'Inference') if reps > 1 else range(reps)): for b in batches: if generator is None: mel, mel_lens = b['mel'], b['mel_lens'] if args.amp: mel = mel.half() else: with torch.no_grad(), gen_measures: mel, mel_lens, *_ = generator(b['text'], **gen_kw) if args.report_mel_loss: gen_mel_loss_sum += compute_mel_loss( mel, mel_lens, b['mel'], b['mel_lens']) gen_infer_perf = mel.size(0) * mel.size(2) / gen_measures[-1] all_letters += b['text_lens'].sum().item() all_frames += mel.size(0) * mel.size(2) log(rep, {f"{gen_name}_frames/s": gen_infer_perf}) log(rep, {f"{gen_name}_latency": gen_measures[-1]}) if args.save_mels: for i, mel_ in enumerate(mel): m = mel_[:, :mel_lens[i].item()].permute(1, 0) fname = b['output'][i] if 'output' in b else f'mel_{i}.npy' mel_path = Path(args.output, Path(fname).stem + '.npy') np.save(mel_path, m.cpu().numpy()) if vocoder is not None: with torch.no_grad(), vocoder_measures: audios = generate_audio(mel) vocoder_infer_perf = ( audios.size(0) * audios.size(1) / vocoder_measures[-1]) log(rep, {f"{voc_name}_samples/s": vocoder_infer_perf}) log(rep, {f"{voc_name}_latency": vocoder_measures[-1]}) if args.report_mel_loss: voc_mel_loss_sum += mel_loss_fn(audios, mel, mel_lens) if args.output is not None and reps == 1: for i, audio in enumerate(audios): audio = audio[:mel_lens[i].item() * args.hop_length] if args.fade_out: fade_len = args.fade_out * args.hop_length fade_w = torch.linspace(1.0, 0.0, fade_len) audio[-fade_len:] *= fade_w.to(audio.device) audio = audio / torch.max(torch.abs(audio)) fname = b['output'][i] if 'output' in b else f'audio_{all_utterances + i}.wav' audio_path = Path(args.output, fname) write(audio_path, args.sampling_rate, audio.cpu().numpy()) if generator is not None: log(rep, {"latency": (gen_measures[-1] + vocoder_measures[-1])}) all_utterances += mel.size(0) all_samples += mel_lens.sum().item() * args.hop_length all_batches += 1 log_enabled = True if generator is not None: gm = np.sort(np.asarray(gen_measures)) rtf = all_samples / (all_utterances * gm.mean() * args.sampling_rate) rtf_at = all_samples / (all_batches * gm.mean() * args.sampling_rate) log((), {f"avg_{gen_name}_tokens/s": all_letters / gm.sum()}) log((), {f"avg_{gen_name}_frames/s": all_frames / gm.sum()}) log((), {f"avg_{gen_name}_latency": gm.mean()}) log((), {f"avg_{gen_name}_RTF": rtf}) log((), {f"avg_{gen_name}_RTF@{args.batch_size}": rtf_at}) log((), {f"90%_{gen_name}_latency": gm.mean() + norm.ppf((1.0 + 0.90) / 2) * gm.std()}) log((), {f"95%_{gen_name}_latency": gm.mean() + norm.ppf((1.0 + 0.95) / 2) * gm.std()}) log((), {f"99%_{gen_name}_latency": gm.mean() + norm.ppf((1.0 + 0.99) / 2) * gm.std()}) if args.report_mel_loss: log((), {f"avg_{gen_name}_mel-loss": gen_mel_loss_sum / all_utterances}) if vocoder is not None: vm = np.sort(np.asarray(vocoder_measures)) rtf = all_samples / (all_utterances * vm.mean() * args.sampling_rate) rtf_at = all_samples / (all_batches * vm.mean() * args.sampling_rate) log((), {f"avg_{voc_name}_samples/s": all_samples / vm.sum()}) log((), {f"avg_{voc_name}_latency": vm.mean()}) log((), {f"avg_{voc_name}_RTF": rtf}) log((), {f"avg_{voc_name}_RTF@{args.batch_size}": rtf_at}) log((), {f"90%_{voc_name}_latency": vm.mean() + norm.ppf((1.0 + 0.90) / 2) * vm.std()}) log((), {f"95%_{voc_name}_latency": vm.mean() + norm.ppf((1.0 + 0.95) / 2) * vm.std()}) log((), {f"99%_{voc_name}_latency": vm.mean() + norm.ppf((1.0 + 0.99) / 2) * vm.std()}) if args.report_mel_loss: log((), {f"avg_{voc_name}_mel-loss": voc_mel_loss_sum / all_utterances}) if generator is not None and vocoder is not None: m = gm + vm rtf = all_samples / (all_utterances * m.mean() * args.sampling_rate) rtf_at = all_samples / (all_batches * m.mean() * args.sampling_rate) log((), {"avg_samples/s": all_samples / m.sum()}) log((), {"avg_letters/s": all_letters / m.sum()}) log((), {"avg_latency": m.mean()}) log((), {"avg_RTF": rtf}) log((), {f"avg_RTF@{args.batch_size}": rtf_at}) log((), {"90%_latency": m.mean() + norm.ppf((1.0 + 0.90) / 2) * m.std()}) log((), {"95%_latency": m.mean() + norm.ppf((1.0 + 0.95) / 2) * m.std()}) log((), {"99%_latency": m.mean() + norm.ppf((1.0 + 0.99) / 2) * m.std()}) DLLogger.flush() if __name__ == '__main__': main()
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/inference.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # *****************************************************************************\ import torch import random import common.layers as layers from common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu class MelAudioLoader(torch.utils.data.Dataset): """ 1) loads audio,text pairs 2) computes mel-spectrograms from audio files. """ def __init__(self, dataset_path, audiopaths_and_text, segment_length, n_mel_channels, max_wav_value, sampling_rate, filter_length, hop_length, win_length, mel_fmin, mel_fmax, args): self.audiopaths_and_text = load_filepaths_and_text(dataset_path, audiopaths_and_text) self.max_wav_value = max_wav_value self.sampling_rate = sampling_rate self.stft = layers.TacotronSTFT( filter_length, hop_length, win_length, n_mel_channels, sampling_rate, mel_fmin, mel_fmax) self.segment_length = segment_length random.seed(1234) random.shuffle(self.audiopaths_and_text) def get_mel_audio_pair(self, filename): audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError("{} {} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate)) # Take segment if audio.size(0) >= self.segment_length: max_audio_start = audio.size(0) - self.segment_length audio_start = random.randint(0, max_audio_start) audio = audio[audio_start:audio_start+self.segment_length] else: audio = torch.nn.functional.pad( audio, (0, self.segment_length - audio.size(0)), 'constant').data audio = audio / self.max_wav_value audio_norm = audio.unsqueeze(0) audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) melspec = self.stft.mel_spectrogram(audio_norm) melspec = melspec.squeeze(0) return (melspec, audio, len(audio)) def __getitem__(self, index): return self.get_mel_audio_pair(self.audiopaths_and_text[index][0]) def __len__(self): return len(self.audiopaths_and_text) def batch_to_gpu(batch): x, y, len_y = batch x = to_gpu(x).float() y = to_gpu(y).float() len_y = to_gpu(torch.sum(len_y)) return ((x, y), y, len_y)
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/waveglow/data_function.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch from torch.autograd import Variable import torch.nn.functional as F @torch.jit.script def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): n_channels_int = n_channels[0] in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels_int, :]) s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) acts = t_act * s_act return acts class Invertible1x1Conv(torch.nn.Module): """ The layer outputs both the convolution, and the log determinant of its weight matrix. If reverse=True it does convolution with inverse """ def __init__(self, c): super(Invertible1x1Conv, self).__init__() self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=0, bias=False) # Sample a random orthonormal matrix to initialize weights W = torch.qr(torch.FloatTensor(c, c).normal_())[0] # Ensure determinant is 1.0 not -1.0 if torch.det(W) < 0: W[:, 0] = -1 * W[:, 0] W = W.view(c, c, 1) W = W.contiguous() self.conv.weight.data = W def forward(self, z): # shape batch_size, group_size, n_of_groups = z.size() W = self.conv.weight.squeeze() # Forward computation log_det_W = batch_size * n_of_groups * torch.logdet(W.unsqueeze(0).float()).squeeze() z = self.conv(z) return z, log_det_W def infer(self, z): # shape batch_size, group_size, n_of_groups = z.size() W = self.conv.weight.squeeze() if not hasattr(self, 'W_inverse'): # Reverse computation W_inverse = W.float().inverse() W_inverse = Variable(W_inverse[..., None]) if z.type() == 'torch.cuda.HalfTensor' or z.type() == 'torch.HalfTensor': W_inverse = W_inverse.half() self.W_inverse = W_inverse z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) return z class WN(torch.nn.Module): """ This is the WaveNet like layer for the affine coupling. The primary difference from WaveNet is the convolutions need not be causal. There is also no dilation size reset. The dilation only doubles on each layer """ def __init__(self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size): super(WN, self).__init__() assert(kernel_size % 2 == 1) assert(n_channels % 2 == 0) self.n_layers = n_layers self.n_channels = n_channels self.in_layers = torch.nn.ModuleList() self.res_skip_layers = torch.nn.ModuleList() self.cond_layers = torch.nn.ModuleList() start = torch.nn.Conv1d(n_in_channels, n_channels, 1) start = torch.nn.utils.weight_norm(start, name='weight') self.start = start # Initializing last layer to 0 makes the affine coupling layers # do nothing at first. This helps with training stability end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1) end.weight.data.zero_() end.bias.data.zero_() self.end = end for i in range(n_layers): dilation = 2 ** i padding = int((kernel_size * dilation - dilation) / 2) in_layer = torch.nn.Conv1d(n_channels, 2 * n_channels, kernel_size, dilation=dilation, padding=padding) in_layer = torch.nn.utils.weight_norm(in_layer, name='weight') self.in_layers.append(in_layer) cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels, 1) cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight') self.cond_layers.append(cond_layer) # last one is not necessary if i < n_layers - 1: res_skip_channels = 2 * n_channels else: res_skip_channels = n_channels res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) res_skip_layer = torch.nn.utils.weight_norm( res_skip_layer, name='weight') self.res_skip_layers.append(res_skip_layer) def forward(self, forward_input): audio, spect = forward_input audio = self.start(audio) for i in range(self.n_layers): acts = fused_add_tanh_sigmoid_multiply( self.in_layers[i](audio), self.cond_layers[i](spect), torch.IntTensor([self.n_channels])) res_skip_acts = self.res_skip_layers[i](acts) if i < self.n_layers - 1: audio = res_skip_acts[:, :self.n_channels, :] + audio skip_acts = res_skip_acts[:, self.n_channels:, :] else: skip_acts = res_skip_acts if i == 0: output = skip_acts else: output = skip_acts + output return self.end(output) class WaveGlow(torch.nn.Module): def __init__(self, n_mel_channels, n_flows, n_group, n_early_every, n_early_size, WN_config): super(WaveGlow, self).__init__() self.upsample = torch.nn.ConvTranspose1d(n_mel_channels, n_mel_channels, 1024, stride=256) assert(n_group % 2 == 0) self.n_flows = n_flows self.n_group = n_group self.n_early_every = n_early_every self.n_early_size = n_early_size self.WN = torch.nn.ModuleList() self.convinv = torch.nn.ModuleList() n_half = int(n_group / 2) # Set up layers with the right sizes based on how many dimensions # have been output already n_remaining_channels = n_group for k in range(n_flows): if k % self.n_early_every == 0 and k > 0: n_half = n_half - int(self.n_early_size / 2) n_remaining_channels = n_remaining_channels - self.n_early_size self.convinv.append(Invertible1x1Conv(n_remaining_channels)) self.WN.append(WN(n_half, n_mel_channels * n_group, **WN_config)) self.n_remaining_channels = n_remaining_channels def forward(self, forward_input): """ forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames forward_input[1] = audio: batch x time """ spect, audio = forward_input # Upsample spectrogram to size of audio spect = self.upsample(spect) assert(spect.size(2) >= audio.size(1)) if spect.size(2) > audio.size(1): spect = spect[:, :, :audio.size(1)] spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) spect = spect.contiguous().view(spect.size(0), spect.size(1), -1) spect = spect.permute(0, 2, 1) audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) output_audio = [] log_s_list = [] log_det_W_list = [] for k in range(self.n_flows): if k % self.n_early_every == 0 and k > 0: output_audio.append(audio[:, :self.n_early_size, :]) audio = audio[:, self.n_early_size:, :] audio, log_det_W = self.convinv[k](audio) log_det_W_list.append(log_det_W) n_half = int(audio.size(1) / 2) audio_0 = audio[:, :n_half, :] audio_1 = audio[:, n_half:, :] output = self.WN[k]((audio_0, spect)) log_s = output[:, n_half:, :] b = output[:, :n_half, :] audio_1 = torch.exp(log_s) * audio_1 + b log_s_list.append(log_s) audio = torch.cat([audio_0, audio_1], 1) output_audio.append(audio) return torch.cat(output_audio, 1), log_s_list, log_det_W_list def infer(self, spect, sigma=1.0): spect = self.upsample(spect) # trim conv artifacts. maybe pad spec to kernel multiple time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] spect = spect[:, :, :-time_cutoff] spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) spect = spect.contiguous().view(spect.size(0), spect.size(1), -1) spect = spect.permute(0, 2, 1) audio = torch.randn(spect.size(0), self.n_remaining_channels, spect.size(2), device=spect.device).to(spect.dtype) audio = torch.autograd.Variable(sigma * audio) for k in reversed(range(self.n_flows)): n_half = int(audio.size(1) / 2) audio_0 = audio[:, :n_half, :] audio_1 = audio[:, n_half:, :] output = self.WN[k]((audio_0, spect)) s = output[:, n_half:, :] b = output[:, :n_half, :] audio_1 = (audio_1 - b) / torch.exp(s) audio = torch.cat([audio_0, audio_1], 1) audio = self.convinv[k].infer(audio) if k % self.n_early_every == 0 and k > 0: z = torch.randn(spect.size(0), self.n_early_size, spect.size( 2), device=spect.device).to(spect.dtype) audio = torch.cat((sigma * z, audio), 1) audio = audio.permute( 0, 2, 1).contiguous().view( audio.size(0), -1).data return audio def infer_onnx(self, spect, z, sigma=0.9): spect = self.upsample(spect) # trim conv artifacts. maybe pad spec to kernel multiple time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] spect = spect[:, :, :-time_cutoff] length_spect_group = spect.size(2)//8 mel_dim = 80 batch_size = spect.size(0) spect = spect.view((batch_size, mel_dim, length_spect_group, self.n_group)) spect = spect.permute(0, 2, 1, 3) spect = spect.contiguous() spect = spect.view((batch_size, length_spect_group, self.n_group*mel_dim)) spect = spect.permute(0, 2, 1) spect = spect.contiguous() audio = z[:, :self.n_remaining_channels, :] z = z[:, self.n_remaining_channels:self.n_group, :] audio = sigma*audio for k in reversed(range(self.n_flows)): n_half = int(audio.size(1) // 2) audio_0 = audio[:, :n_half, :] audio_1 = audio[:, n_half:(n_half+n_half), :] output = self.WN[k]((audio_0, spect)) s = output[:, n_half:(n_half+n_half), :] b = output[:, :n_half, :] audio_1 = (audio_1 - b) / torch.exp(s) audio = torch.cat([audio_0, audio_1], 1) audio = self.convinv[k].infer(audio) if k % self.n_early_every == 0 and k > 0: audio = torch.cat((z[:, :self.n_early_size, :], audio), 1) z = z[:, self.n_early_size:self.n_group, :] audio = audio.permute(0,2,1).contiguous().view(batch_size, (length_spect_group * self.n_group)) return audio @staticmethod def remove_weightnorm(model): waveglow = model for WN in waveglow.WN: WN.start = torch.nn.utils.remove_weight_norm(WN.start) WN.in_layers = remove(WN.in_layers) WN.cond_layers = remove(WN.cond_layers) WN.res_skip_layers = remove(WN.res_skip_layers) return waveglow def remove(conv_list): new_conv_list = torch.nn.ModuleList() for old_conv in conv_list: old_conv = torch.nn.utils.remove_weight_norm(old_conv) new_conv_list.append(old_conv) return new_conv_list
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/waveglow/model.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch from common.layers import STFT class Denoiser(torch.nn.Module): """ Removes model bias from audio produced with waveglow """ def __init__(self, waveglow, filter_length=1024, n_overlap=4, win_length=1024, mode='zeros'): super(Denoiser, self).__init__() device = waveglow.upsample.weight.device dtype = waveglow.upsample.weight.dtype self.stft = STFT(filter_length=filter_length, hop_length=int(filter_length/n_overlap), win_length=win_length).to(device) if mode == 'zeros': mel_input = torch.zeros((1, 80, 88), dtype=dtype, device=device) elif mode == 'normal': mel_input = torch.randn((1, 80, 88), dtype=dtype, device=device) else: raise Exception("Mode {} if not supported".format(mode)) with torch.no_grad(): bias_audio = waveglow.infer(mel_input, sigma=0.0).float() bias_spec, _ = self.stft.transform(bias_audio) self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) def forward(self, audio, strength=0.1): audio_spec, audio_angles = self.stft.transform(audio) audio_spec_denoised = audio_spec - self.bias_spec * strength audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) return audio_denoised
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/waveglow/denoiser.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch class WaveGlowLoss(torch.nn.Module): def __init__(self, sigma=1.0): super(WaveGlowLoss, self).__init__() self.sigma = sigma def forward(self, model_output, clean_audio): # clean_audio is unused; z, log_s_list, log_det_W_list = model_output for i, log_s in enumerate(log_s_list): if i == 0: log_s_total = torch.sum(log_s) log_det_W_total = log_det_W_list[i] else: log_s_total = log_s_total + torch.sum(log_s) log_det_W_total += log_det_W_list[i] loss = torch.sum( z * z) / (2 * self.sigma * self.sigma) - log_s_total - log_det_W_total # noqa: E501 meta = {} return loss / (z.size(0) * z.size(1) * z.size(2)), meta
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/waveglow/loss_function.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse def parse_waveglow_args(parent, add_help=False): """ Parse commandline arguments. """ parser = argparse.ArgumentParser(parents=[parent], add_help=add_help, allow_abbrev=False) # misc parameters parser.add_argument('--n-mel-channels', default=80, type=int, help='Number of bins in mel-spectrograms') # glow parameters parser.add_argument('--flows', default=12, type=int, help='Number of steps of flow') parser.add_argument('--groups', default=8, type=int, help='Number of samples in a group processed by the steps of flow') parser.add_argument('--early-every', default=4, type=int, help='Determines how often (i.e., after how many coupling layers) \ a number of channels (defined by --early-size parameter) are output\ to the loss function') parser.add_argument('--early-size', default=2, type=int, help='Number of channels output to the loss function') parser.add_argument('--sigma', default=1.0, type=float, help='Standard deviation used for sampling from Gaussian') parser.add_argument('--segment-length', default=4000, type=int, help='Segment length (audio samples) processed per iteration') # wavenet parameters wavenet = parser.add_argument_group('WaveNet parameters') wavenet.add_argument('--wn-kernel-size', default=3, type=int, help='Kernel size for dialted convolution in the affine coupling layer (WN)') wavenet.add_argument('--wn-channels', default=512, type=int, help='Number of channels in WN') wavenet.add_argument('--wn-layers', default=8, type=int, help='Number of layers in WN') return parser
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/waveglow/arg_parser.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from collections import OrderedDict from copy import copy from pathlib import Path import dllogger import numpy as np import torch.distributed as dist import torch from dllogger import StdOutBackend, JSONStreamBackend, Verbosity from common import tb_dllogger from common.tb_dllogger import (stdout_metric_format, stdout_step_format, unique_log_fpath, TBLogger) def init_logger(output_dir, log_file, ema_decay=0.0): local_rank = 0 if not dist.is_initialized() else dist.get_rank() print('logger init', local_rank) if local_rank == 0: Path(output_dir).mkdir(parents=False, exist_ok=True) log_fpath = log_file or Path(output_dir, 'nvlog.json') dllogger.init(backends=[ JSONStreamBackend(Verbosity.DEFAULT, unique_log_fpath(log_fpath)), StdOutBackend(Verbosity.VERBOSE, step_format=stdout_step_format, metric_format=stdout_metric_format)]) init_train_metadata() else: dllogger.init(backends=[]) tb_train = ['train'] tb_val = ['val'] tb_ema = [k + '_ema' for k in tb_val] if ema_decay > 0.0 else [] tb_dllogger.tb_loggers = { s: TBLogger(enabled=(local_rank == 0), log_dir=output_dir, name=s) for s in tb_train + tb_val + tb_ema} def init_train_metadata(): dllogger.metadata("train_lrate_gen", {"name": "g lr", "unit": None, "format": ":>3.2e"}) dllogger.metadata("train_lrate_discrim", {"name": "d lr", "unit": None, "format": ":>3.2e"}) dllogger.metadata("train_avg_lrate_gen", {"name": "avg g lr", "unit": None, "format": ":>3.2e"}) dllogger.metadata("train_avg_lrate_discrim", {"name": "avg d lr", "unit": None, "format": ":>3.2e"}) for id_, pref in [('train', ''), ('train_avg', 'avg train '), ('val', ' avg val '), ('val_ema', ' EMA val ')]: dllogger.metadata(f"{id_}_loss_gen", {"name": f"{pref}g loss", "unit": None, "format": ":>6.3f"}) dllogger.metadata(f"{id_}_loss_discrim", {"name": f"{pref}d loss", "unit": None, "format": ":>6.3f"}) dllogger.metadata(f"{id_}_loss_mel", {"name": f"{pref}mel loss", "unit": None, "format": ":>6.3f"}) dllogger.metadata(f"{id_}_frames/s", {"name": None, "unit": "frames/s", "format": ":>8.2f"}) dllogger.metadata(f"{id_}_took", {"name": "took", "unit": "s", "format": ":>3.2f"}) def init_infer_metadata(): raise NotImplementedError # modalities = [('latency', 's', ':>10.5f'), ('RTF', 'x', ':>10.2f'), # ('frames/s', None, ':>10.2f'), ('samples/s', None, ':>10.2f'), # ('letters/s', None, ':>10.2f')] # for perc in ['', 'avg', '90%', '95%', '99%']: # for model in ['fastpitch', 'waveglow', '']: # for mod, unit, format in modalities: # name = f'{perc} {model} {mod}'.strip().replace(' ', ' ') # dllogger.metadata( # name.replace(' ', '_'), # {'name': f'{name: <26}', 'unit': unit, 'format': format}) class defaultdict(OrderedDict): """A simple, ordered defaultdict.""" def __init__(self, type_, *args, **kwargs): self.type_ = type_ super().__init__(*args, **kwargs) def __getitem__(self, key): if key not in self: self.__setitem__(key, self.type_()) return super().__getitem__(key) def __copy__(self): return defaultdict(self.type_, self) class Metrics(dict): def __init__(self, scopes=['train', 'train_avg'], dll_keys=['loss_gen', 'loss_discrim', 'loss_mel', 'frames/s', 'took', 'lrate_gen', 'lrate_discrim'], benchmark_epochs=0): super().__init__() self.dll_keys = dll_keys self.metrics = {scope: defaultdict(float) for scope in scopes} self.metric_counts = {scope: defaultdict(int) for scope in scopes} self.start_time = {scope: None for scope in scopes} self.benchmark_epochs = benchmark_epochs if benchmark_epochs > 0: self.metrics['train_benchmark'] = defaultdict(list) def __setitem__(self, key, val): extract = lambda t: t.item() if type(t) is torch.Tensor else t if type(val) is dict: for k, v in val.items(): super().__setitem__(k, extract(v)) else: super().__setitem__(key, extract(val)) def __getitem__(self, key): if key not in self: self.__setitem__(key, 0.0) return super().__getitem__(key) def start_accumulating(self, step, start_timer=True, scope='train'): del step # unused self.clear() self.metrics[scope].clear() self.metric_counts[scope].clear() if start_timer: self.start_time[scope] = time.time() def accumulate(self, scopes=['train', 'train_avg']): for scope in scopes: for k, v in self.items(): self.metrics[scope][k] += v self.metric_counts[scope][k] += 1 self.clear() def finish_accumulating(self, stop_timer=True, scope='train'): metr = self.metrics[scope] counts = self.metric_counts[scope] for k, v in metr.items(): metr[k] = v / counts[k] if stop_timer: took = time.time() - self.start_time[scope] if 'frames' in metr: metr['frames/s'] = metr.pop('frames') * counts['frames'] / took metr['took'] = took def start_iter(self, iter, start_timer=True): self.start_accumulating(iter, start_timer, 'train') def start_epoch(self, epoch, start_timer=True): self.start_accumulating(epoch, start_timer, 'train_avg') def start_val(self, start_timer=True): self.start_accumulating(None, start_timer, 'val') def finish_iter(self, stop_timer=True): self.finish_accumulating(stop_timer, 'train') def finish_epoch(self, stop_timer=True): self.finish_accumulating(stop_timer, 'train_avg') metr = self.metrics['train_benchmark'] for k in ('took', 'frames/s', 'loss_gen', 'loss_discrim', 'loss_mel'): metr[k].append(self.metrics['train_avg'][k]) if len(metr[k]) > self.benchmark_epochs: metr[k].pop(0) def finish_val(self, stop_timer=True): self.finish_accumulating(stop_timer, 'val') def get_metrics(self, scope='train', target='dll'): if scope == 'train_benchmark': metr = self.metrics[scope] ret = {'train_' + k: np.mean(v) for k, v in metr.items()} ret['benchmark_epochs_num'] = len(list(metr.values())[0]) return ret ret = copy(self.metrics[scope]) if scope == 'train': ret.update(self) if target == 'dll': ret = {f'{scope}_{k}': v for k, v in ret.items() if k in self.dll_keys} elif target == 'tb': # Rename keys so they would group nicely inside TensorBoard def split_key(k): pos = k.rfind('_') return k[:pos] + '/' + k[pos+1:] if pos >= 0 else k ret = {split_key(k): v for k, v in ret.items()} return ret
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/hifigan/logging.py
import timer from collections import defaultdict class Metrics(defaultdict): # TODO Where to measure - gpu:0 or all gpus? def __init__(self, tb_keys=[], benchmark_epochs=10): super().__init__(float) # dll_tb_keys=['loss_gen', 'loss_discrim', 'loss_mel', 'took']: self.tb_keys = tb_keys #_ = {'dll': dll_keys, 'tb': tb_keys, 'dll+tb': dll_tb_keys} self.iter_start_time = None self.iter_metrics = defaultdict(float) self.epoch_start_time = None self.epoch_metrics = defaultdict(float) self.benchmark_epochs = benchmark_epochs def start_epoch(self, epoch, start_timer=True): self.epoch = epoch if start_timer: self.epoch_start_time = time.time() def start_iter(self, iter, start_timer=True): self.iter = iter self.accum_steps = 0 self.step_metrics.clear() if start_timer: self.iter_start_time = time.time() def update_iter(self, ...): # do stuff pass def accumulate(self, scope='step'): tgt = {'step': self.step_metrics, 'epoch': self.epoch_metrics}[scope] for k, v in self.items(): tgt[k] += v self.clear() def update_iter(self, metrics={}, stop_timer=True): is not self.started_iter: return self.accumulate(metrics) self.accumulate(self.iter_metrics, scope='epoch') if stop_timer: self.iter_metrics['took'] = time.time() - self.iter_time_start def update_epoch(self, stop_timer=True): # tb_total_steps=None, # subset='train_avg', # data=OrderedDict([ # ('loss', epoch_loss[-1]), # ('mel_loss', epoch_mel_loss[-1]), # ('frames/s', epoch_num_frames[-1] / epoch_time[-1]), # ('took', epoch_time[-1])]), # ) if stop_timer: self.['epoch_time'] = time.time() - self.epoch_time_start if steps % args.stdout_interval == 0: # with torch.no_grad(): # mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() took = time.time() - self.start_b self.sws['train'].add_scalar("gen_loss_total", loss_gen_all.item(), steps) self.sws['train'].add_scalar("mel_spec_error", mel_error.item(), steps) for key, val in meta.items(): sw_name = 'train' for name_ in keys_mpd + keys_msd: if name_ in key: sw_name = 'train_' + name_ key = key.replace('loss_', 'loss/') key = re.sub('mpd\d+', 'mpd-msd', key) key = re.sub('msd\d+', 'mpd-msd', key) self.sws[sw_name].add_scalar(key, val / h.batch_size, steps) def iter_metrics(self, target='dll+tb'): return {self.iter_metrics[k] for k in self.keys_[target]} def foo Steps : 40, Gen Loss Total : 57.993, Mel-Spec. Error : 47.374, s/b : 1.013 logger.log((epoch, epoch_iter, num_iters), tb_total_steps=total_iter, subset='train', data=OrderedDict([ ('loss', iter_loss), ('mel_loss', iter_mel_loss), ('frames/s', iter_num_frames / iter_time), ('took', iter_time), ('lrate', optimizer.param_groups[0]['lr'])]), ) class Meter: def __init__(self, sink_type, scope, downstream=None, end_points=None, verbosity=dllogger.Verbosity.DEFAULT): self.verbosity = verbosity self.sink_type = sink_type self.scope = scope self.downstream = downstream self.end_points = end_points or [] def start(self): ds = None if self.downstream is None else self.downstream.sink end_pt_fn = lambda x: list(map(lambda f: f(x), self.end_points)) # call all endpoint functions self.sink = self.sink_type(end_pt_fn, ds) def end(self): self.sink.close() def send(self, data): self.sink.send(data) def meters(self): if self.downstream is not None: downstream_meters = self.downstream.meters() else: downstream_meters = [] return [self] + downstream_meters def add_end_point(self, new_endpoint): self.end_points.append(new_endpoint) def __or__(self, other): """for easy chaining of meters""" if self.downstream is None: self.downstream = other else: self.downstream | other return self
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/hifigan/metrics.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # The following functions/classes were based on code from https://github.com/jik876/hifi-gan: # ResBlock1, ResBlock2, Generator, DiscriminatorP, DiscriminatorS, MultiScaleDiscriminator, # MultiPeriodDiscriminator, feature_loss, discriminator_loss, generator_loss, # init_weights, get_padding import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm from common.stft import STFT from common.utils import AttrDict, init_weights, get_padding LRELU_SLOPE = 0.1 class NoAMPConv1d(Conv1d): def __init__(self, *args, no_amp=False, **kwargs): super().__init__(*args, **kwargs) self.no_amp = no_amp def _cast(self, x, dtype): if isinstance(x, (list, tuple)): return [self._cast(t, dtype) for t in x] else: return x.to(dtype) def forward(self, *args): if not self.no_amp: return super().forward(*args) with torch.cuda.amp.autocast(enabled=False): return self._cast( super().forward(*self._cast(args, torch.float)), args[0].dtype) class ResBlock1(nn.Module): __constants__ = ['lrelu_slope'] def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3, 5)): super().__init__() self.conf = conf self.lrelu_slope = LRELU_SLOPE ch, ks = channels, kernel_size self.convs1 = nn.Sequential(*[ weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[0]), dilation[0])), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[1]), dilation[1])), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, dilation[2]), dilation[2])), ]) self.convs2 = nn.Sequential(*[ weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(ks, 1))), ]) self.convs1.apply(init_weights) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, self.lrelu_slope) xt = c1(xt) xt = F.leaky_relu(xt, self.lrelu_slope) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(nn.Module): __constants__ = ['lrelu_slope'] def __init__(self, conf, channels, kernel_size=3, dilation=(1, 3)): super().__init__() self.conf = conf ch, ks = channels, kernel_size self.convs = nn.ModuleList([ weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[0]), dilation[0])), weight_norm(Conv1d(ch, ch, ks, 1, get_padding(kernel_size, dilation[1]), dilation[1])), ]) self.convs.apply(init_weights) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, self.lrelu_slope) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Generator(nn.Module): __constants__ = ['lrelu_slope', 'num_kernels', 'num_upsamples'] def __init__(self, conf): super().__init__() conf = AttrDict(conf) self.conf = conf self.num_kernels = len(conf.resblock_kernel_sizes) self.num_upsamples = len(conf.upsample_rates) self.conv_pre = weight_norm( Conv1d(80, conf.upsample_initial_channel, 7, 1, padding=3)) self.lrelu_slope = LRELU_SLOPE resblock = ResBlock1 if conf.resblock == '1' else ResBlock2 self.ups = [] for i, (u, k) in enumerate(zip(conf.upsample_rates, conf.upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d(conf.upsample_initial_channel // (2 ** i), conf.upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k-u)//2))) self.ups = nn.Sequential(*self.ups) self.resblocks = [] for i in range(len(self.ups)): resblock_list = [] ch = conf.upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate(zip(conf.resblock_kernel_sizes, conf.resblock_dilation_sizes)): resblock_list.append(resblock(conf, ch, k, d)) resblock_list = nn.Sequential(*resblock_list) self.resblocks.append(resblock_list) self.resblocks = nn.Sequential(*self.resblocks) self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def load_state_dict(self, state_dict, strict=True): # Fallback for old checkpoints (pre-ONNX fix) new_sd = {} for k, v in state_dict.items(): new_k = k if 'resblocks' in k: parts = k.split(".") # only do this is the checkpoint type is older if len(parts) == 5: layer = int(parts[1]) new_layer = f"{layer//3}.{layer%3}" new_k = f"resblocks.{new_layer}.{'.'.join(parts[2:])}" new_sd[new_k] = v # Fix for conv1d/conv2d/NHWC curr_sd = self.state_dict() for key in new_sd: len_diff = len(new_sd[key].size()) - len(curr_sd[key].size()) if len_diff == -1: new_sd[key] = new_sd[key].unsqueeze(-1) elif len_diff == 1: new_sd[key] = new_sd[key].squeeze(-1) super().load_state_dict(new_sd, strict=strict) def forward(self, x): x = self.conv_pre(x) for upsample_layer, resblock_group in zip(self.ups, self.resblocks): x = F.leaky_relu(x, self.lrelu_slope) x = upsample_layer(x) xs = 0 for resblock in resblock_group: xs += resblock(x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print('HiFi-GAN: Removing weight norm.') for l in self.ups: remove_weight_norm(l) for group in self.resblocks: for block in group: block.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class Denoiser(nn.Module): """ Removes model bias from audio produced with hifigan """ def __init__(self, hifigan, filter_length=1024, n_overlap=4, win_length=1024, mode='zeros', **infer_kw): super().__init__() self.stft = STFT(filter_length=filter_length, hop_length=int(filter_length/n_overlap), win_length=win_length).cuda() for name, p in hifigan.named_parameters(): if name.endswith('.weight'): dtype = p.dtype device = p.device break mel_init = {'zeros': torch.zeros, 'normal': torch.randn}[mode] mel_input = mel_init((1, 80, 88), dtype=dtype, device=device) with torch.no_grad(): bias_audio = hifigan(mel_input, **infer_kw).float() if len(bias_audio.size()) > 2: bias_audio = bias_audio.squeeze(0) elif len(bias_audio.size()) < 2: bias_audio = bias_audio.unsqueeze(0) assert len(bias_audio.size()) == 2 bias_spec, _ = self.stft.transform(bias_audio) self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) def forward(self, audio, strength=0.1): audio_spec, audio_angles = self.stft.transform(audio.cuda().float()) audio_spec_denoised = audio_spec - self.bias_spec * strength audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) return audio_denoised class DiscriminatorP(nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super().__init__() self.period = period norm_f = spectral_norm if use_spectral_norm else weight_norm ks = kernel_size self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(32, 128, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(128, 512, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(512, 1024, (ks, 1), (stride, 1), (get_padding(5, 1), 0))), norm_f(Conv2d(1024, 1024, (ks, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap def share_params_of(self, dp): assert len(self.convs) == len(dp.convs) for c1, c2 in zip(self.convs, dp.convs): c1.weight = c2.weight c1.bias = c2.bias class MultiPeriodDiscriminator(nn.Module): def __init__(self, periods, concat_fwd=False): super().__init__() layers = [DiscriminatorP(p) for p in periods] self.discriminators = nn.ModuleList(layers) self.concat_fwd = concat_fwd def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if self.concat_fwd: y_ds, fmaps = d(concat_discr_input(y, y_hat)) y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps) else: y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(nn.Module): def __init__(self, use_spectral_norm=False, no_amp_grouped_conv=False): super().__init__() norm_f = spectral_norm if use_spectral_norm else weight_norm self.convs = nn.ModuleList([ norm_f(Conv1d(1, 128, 15, 1, padding=7)), norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)), norm_f(NoAMPConv1d(128, 256, 41, 2, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(NoAMPConv1d(256, 512, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(NoAMPConv1d(512, 1024, 41, 4, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(NoAMPConv1d(1024, 1024, 41, 1, groups=16, padding=20, no_amp=no_amp_grouped_conv)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: # x = l(x.unsqueeze(-1)).squeeze(-1) x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(nn.Module): def __init__(self, no_amp_grouped_conv=False, concat_fwd=False): super().__init__() self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True, no_amp_grouped_conv=no_amp_grouped_conv), DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv), DiscriminatorS(no_amp_grouped_conv=no_amp_grouped_conv), ]) self.meanpools = nn.ModuleList([ AvgPool1d(4, 2, padding=1), AvgPool1d(4, 2, padding=1) ]) self.concat_fwd = concat_fwd def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if self.concat_fwd: ys = concat_discr_input(y, y_hat) if i != 0: ys = self.meanpools[i-1](ys) y_ds, fmaps = d(ys) y_d_r, y_d_g, fmap_r, fmap_g = split_discr_output(y_ds, fmaps) else: if i != 0: y = self.meanpools[i-1](y) y_hat = self.meanpools[i-1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs def concat_discr_input(y, y_hat): return torch.cat((y, y_hat), dim=0) def split_discr_output(y_ds, fmaps): y_d_r, y_d_g = torch.chunk(y_ds, 2, dim=0) fmap_r, fmap_g = zip(*(torch.chunk(f, 2, dim=0) for f in fmaps)) return y_d_r, y_d_g, fmap_r, fmap_g def feature_loss(fmap_r, fmap_g): loss = 0 for dr, dg in zip(fmap_r, fmap_g): for rl, gl in zip(dr, dg): loss += torch.mean(torch.abs(rl - gl)) return loss*2 def discriminator_loss(disc_real_outputs, disc_generated_outputs): loss = 0 r_losses = [] g_losses = [] for dr, dg in zip(disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1-dr)**2) g_loss = torch.mean(dg**2) loss += (r_loss + g_loss) r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) return loss, r_losses, g_losses def generator_loss(disc_outputs): loss = 0 gen_losses = [] for dg in disc_outputs: l = torch.mean((1-dg)**2) gen_losses.append(l) loss += l return loss, gen_losses
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/hifigan/models.py
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d, ConvTranspose2d, AvgPool2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm from common.utils import init_weights, get_padding, print_once LRELU_SLOPE = 0.1 class ResBlock1(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)): super(ResBlock1, self).__init__() self.h = h self.convs1 = nn.ModuleList([ weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=(dilation[0], 1), padding=(get_padding(kernel_size, dilation[0]), 0))), weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=(dilation[1], 1), padding=(get_padding(kernel_size, dilation[1]), 0))), weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=(dilation[2], 1), padding=(get_padding(kernel_size, dilation[2]), 0))) ]) self.convs1.apply(init_weights) self.convs2 = nn.ModuleList([ weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=1, padding=(get_padding(kernel_size, 1), 0))), weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=1, padding=(get_padding(kernel_size, 1), 0))), weight_norm(Conv2d(channels, channels, (kernel_size, 1), 1, dilation=1, padding=(get_padding(kernel_size, 1), 0))) ]) self.convs2.apply(init_weights) def forward(self, x): for c1, c2 in zip(self.convs1, self.convs2): xt = F.leaky_relu(x, LRELU_SLOPE) xt = c1(xt) xt = F.leaky_relu(xt, LRELU_SLOPE) xt = c2(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs1: remove_weight_norm(l) for l in self.convs2: remove_weight_norm(l) class ResBlock2(torch.nn.Module): def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock2, self).__init__() self.h = h self.convs = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))), weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], padding=get_padding(kernel_size, dilation[1]))) ]) self.convs.apply(init_weights) def forward(self, x): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) xt = c(xt) x = xt + x return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Generator(torch.nn.Module): def __init__(self, h): super(Generator, self).__init__() self.h = h self.num_kernels = len(h.resblock_kernel_sizes) self.num_upsamples = len(h.upsample_rates) self.conv_pre = weight_norm(Conv2d(80, h.upsample_initial_channel, (7,1), (1,1), padding=(3,0))) assert h.resblock == '1', 'Only ResBlock1 currently supported for NHWC' resblock = ResBlock1 if h.resblock == '1' else ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): self.ups.append(weight_norm( # ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), # k, u, padding=(k-u)//2))) ConvTranspose2d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)), (k, 1), (u, 1), padding=((k-u)//2, 0)))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = h.upsample_initial_channel//(2**(i+1)) for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): self.resblocks.append(resblock(h, ch, k, d)) self.conv_post = weight_norm(Conv2d(ch, 1, (7,1), (1,1), padding=(3,0))) self.ups.apply(init_weights) self.conv_post.apply(init_weights) def forward(self, x): x = x.unsqueeze(-1).to(memory_format=torch.channels_last) x = self.conv_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, LRELU_SLOPE) # x = self.ups[i](x.unsqueeze(-1)).squeeze(-1) x = self.ups[i](x) xs = 0 for j in range(self.num_kernels): xs += self.resblocks[i*self.num_kernels+j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) x = x.squeeze(-1) return x def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() remove_weight_norm(self.conv_pre) remove_weight_norm(self.conv_post) class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t, unit = x.shape assert unit == 1 if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, 0, 0, n_pad), "reflect") t = t + n_pad # print_once('x pre channels last:', x.is_contiguous(memory_format=torch.channels_last)) x = x.view(b, c, t // self.period, self.period) # print_once('x post channels last:', x.is_contiguous(memory_format=torch.channels_last)) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) # x = torch.flatten(x, 1, -1) return x, fmap def share_params_of(self, dp): assert len(self.convs) == len(dp.convs) for c1, c2 in zip(self.convs, dp.convs): c1.weight = c2.weight c1.bias = c2.bias class DiscriminatorPConv1d(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorPConv1d, self).__init__() self.period = period norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0), dilation=(period, 1))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0), dilation=(period, 1))), ]) # self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1, dilation=period)) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0), dilation=(period, 1))) def forward(self, x): fmap = [] # 1d to 2d b, c, t, unit = x.shape assert unit == 1 # if t % self.period != 0: # pad first # n_pad = self.period - (t % self.period) # x = F.pad(x, (0, n_pad), "reflect") # t = t + n_pad # x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap def share_params_of(self, dp): assert len(self.convs) == len(dp.convs) for c1, c2 in zip(self.convs, dp.convs): c1.weight = c2.weight c1.bias = c2.bias class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self, periods, use_conv1d=False, shared=False): super(MultiPeriodDiscriminator, self).__init__() print('MPD PERIODS:', periods) if use_conv1d: print('Constructing dilated MPD') layers = [DiscriminatorPConv1d(p) for p in periods] else: layers = [DiscriminatorP(p) for p in periods] if shared: print('MPD HAS SHARED PARAMS') for l in layers[1:]: l.share_params_of(layers[0]) self.discriminators = nn.ModuleList(layers) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False, amp_groups=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm # self.convs = nn.ModuleList([ # norm_f(Conv1d(1, 128, 15, 1, padding=7)), # norm_f(Conv1d(128, 128, 41, 2, groups=1 if amp_groups else 4, padding=20)), # was: groups=4 # norm_f(Conv1d(128, 256, 41, 2, groups=1 if amp_groups else 16, padding=20)), # was: groups=16 # norm_f(Conv1d(256, 512, 41, 4, groups=1 if amp_groups else 16, padding=20)), # was: groups=16 # norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)), # norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)), # norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), # ]) self.convs = nn.ModuleList([ norm_f(Conv2d(1, 128, (15,1), (1,1), padding=(7 , 0))), norm_f(Conv2d(128, 128, (41,1), (2,1), groups=1 if amp_groups else 4, padding=(20, 0))), # was: groups=4 norm_f(Conv2d(128, 256, (41,1), (2,1), groups=1 if amp_groups else 16, padding=(20, 0))), # was: groups=16 norm_f(Conv2d(256, 512, (41,1), (4,1), groups=1 if amp_groups else 16, padding=(20, 0))), # was: groups=16 norm_f(Conv2d(512, 1024, (41,1), (4,1), groups=16 , padding=(20, 0))), norm_f(Conv2d(1024, 1024, (41,1), (1,1), groups=16 , padding=(20, 0))), norm_f(Conv2d(1024, 1024, ( 5,1), (1,1), padding=(2 , 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3,1), (1,1), padding=(1,0))) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) # x = x.squeeze(-1) # x = torch.flatten(x, 1, -1) return x, fmap class MultiScaleDiscriminator(torch.nn.Module): def __init__(self, amp_groups=False): super(MultiScaleDiscriminator, self).__init__() if amp_groups: print('MSD: AMP groups') self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True, amp_groups=amp_groups), DiscriminatorS(amp_groups=amp_groups), DiscriminatorS(amp_groups=amp_groups), ]) self.meanpools = nn.ModuleList([ AvgPool2d((4, 1), (2, 1), padding=(1, 0)), AvgPool2d((4, 1), (2, 1), padding=(1, 0)) ]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): if i != 0: y = self.meanpools[i-1](y) y_hat = self.meanpools[i-1](y_hat) y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs def feature_loss(fmap_r, fmap_g, keys=[]): loss = 0 meta = {} assert len(keys) == len(fmap_r) for key, dr, dg in zip(keys, fmap_r, fmap_g): k = 'loss_gen_feat_' + key meta[k] = 0 for rl, gl in zip(dr, dg): # loss += torch.mean(torch.abs(rl - gl)) diff = torch.mean(torch.abs(rl - gl)) loss += diff meta[k] += diff.item() return loss*2, meta def discriminator_loss(disc_real_outputs, disc_generated_outputs, keys=[]): loss = 0 r_losses = [] g_losses = [] meta = {} assert len(keys) == len(disc_real_outputs) for key, dr, dg in zip(keys, disc_real_outputs, disc_generated_outputs): r_loss = torch.mean((1-dr)**2) g_loss = torch.mean(dg**2) loss += (r_loss + g_loss) r_losses.append(r_loss.item()) g_losses.append(g_loss.item()) meta['loss_disc_real_' + key] = r_loss.item() meta['loss_disc_gen_' + key] = g_loss.item() return loss, r_losses, g_losses, meta def generator_loss(disc_outputs, keys=[]): loss = 0 gen_losses = [] meta = {} assert len(keys) == len(disc_outputs) for key, dg in zip(keys, disc_outputs): l = torch.mean((1-dg)**2) gen_losses.append(l) loss += l meta['loss_gen_' + key] = l.item() return loss, gen_losses, meta
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/hifigan/models_ch_last_.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # MIT License # # Copyright (c) 2020 Jungil Kong # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # The following functions/classes were based on code from https://github.com/jik876/hifi-gan: # mel_spectrogram, MelDataset import math import os import numpy as np import torch import torch.nn.functional as F import torch.utils.data from librosa.filters import mel as librosa_mel_fn from librosa.util import normalize from numpy import random from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from common.audio_processing import dynamic_range_compression from common.utils import load_filepaths_and_text, load_wav MAX_WAV_VALUE = 32768.0 mel_basis = {} hann_window = {} def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): if torch.min(y) < -1.: print('min value is ', torch.min(y)) if torch.max(y) > 1.: print('max value is ', torch.max(y)) global mel_basis, hann_window fmax_key = f'{fmax}_{y.device}' if fmax_key not in mel_basis: mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) mel_basis[fmax_key] = torch.from_numpy(mel).float().to(y.device) hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) pad = int((n_fft-hop_size)/2) y = F.pad(y.unsqueeze(1), (pad, pad), mode='reflect') y = y.squeeze(1) spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) spec = dynamic_range_compression(spec) # spectral normalize return spec class MelDataset(torch.utils.data.Dataset): def __init__(self, training_files, segment_size, n_fft, num_mels, hop_size, win_size, sampling_rate, fmin, fmax, split=True, device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None, repeat=1, deterministic=False, max_wav_value=MAX_WAV_VALUE): self.audio_files = training_files self.segment_size = segment_size self.sampling_rate = sampling_rate self.split = split self.n_fft = n_fft self.num_mels = num_mels self.hop_size = hop_size self.win_size = win_size self.fmin = fmin self.fmax = fmax self.fmax_loss = fmax_loss self.max_wav_value = max_wav_value self.fine_tuning = fine_tuning self.base_mels_path = base_mels_path self.repeat = repeat self.deterministic = deterministic self.rng = random.default_rng() def __getitem__(self, index): if index >= len(self): raise IndexError('Dataset index out of range') rng = random.default_rng(index) if self.deterministic else self.rng index = index % len(self.audio_files) # collapse **after** setting seed filename = self.audio_files[index] audio, sampling_rate = load_wav(filename) audio = audio / self.max_wav_value if not self.fine_tuning: audio = normalize(audio) * 0.95 if sampling_rate != self.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.sampling_rate)) audio = torch.FloatTensor(audio) audio = audio.unsqueeze(0) if not self.fine_tuning: if self.split: if audio.size(1) >= self.segment_size: max_audio_start = audio.size(1) - self.segment_size audio_start = rng.integers(0, max_audio_start) audio = audio[:, audio_start:audio_start+self.segment_size] else: audio = F.pad(audio, (0, self.segment_size - audio.size(1))) mel = mel_spectrogram(audio, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, center=False) else: mel = np.load( os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy')) mel = torch.from_numpy(mel).float() if len(mel.shape) < 3: mel = mel.unsqueeze(0) if self.split: frames_per_seg = math.ceil(self.segment_size / self.hop_size) if audio.size(1) >= self.segment_size: mel_start = rng.integers(0, mel.size(2) - frames_per_seg - 1) mel = mel[:, :, mel_start:mel_start + frames_per_seg] a = mel_start * self.hop_size b = (mel_start + frames_per_seg) * self.hop_size audio = audio[:, a:b] else: mel = F.pad(mel, (0, frames_per_seg - mel.size(2))) audio = F.pad(audio, (0, self.segment_size - audio.size(1))) mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels, self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss, center=False) return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) def __len__(self): return len(self.audio_files) * self.repeat def get_data_loader(args, distributed_run, train=True, batch_size=None, val_kwargs=None): filelists = args.training_files if train else args.validation_files files = load_filepaths_and_text(args.dataset_path, filelists) files = list(zip(*files))[0] dataset_kw = { 'segment_size': args.segment_size, 'n_fft': args.filter_length, 'num_mels': args.num_mels, 'hop_size': args.hop_length, 'win_size': args.win_length, 'sampling_rate': args.sampling_rate, 'fmin': args.mel_fmin, 'fmax': args.mel_fmax, 'fmax_loss': args.mel_fmax_loss, 'max_wav_value': args.max_wav_value, 'fine_tuning': args.fine_tuning, 'base_mels_path': args.input_mels_dir, 'deterministic': not train } if train: dataset = MelDataset(files, **dataset_kw) sampler = DistributedSampler(dataset) if distributed_run else None else: dataset_kw.update(val_kwargs or {}) dataset = MelDataset(files, **dataset_kw) sampler = (DistributedSampler(dataset, shuffle=False) if distributed_run else None) loader = DataLoader(dataset, # NOTE On DGX-1 and DGX A100 =1 is optimal num_workers=args.num_workers if train else 1, shuffle=(train and not distributed_run), sampler=sampler, batch_size=batch_size or args.batch_size, pin_memory=True, persistent_workers=True, drop_last=train) return loader
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/hifigan/data_function.py
import torch from .stft import STFT class Denoiser(torch.nn.Module): """ Removes model bias from audio produced with hifigan """ def __init__(self, hifigan, filter_length=1024, n_overlap=4, win_length=1024, mode='zeros'): super(Denoiser, self).__init__() self.stft = STFT(filter_length=filter_length, hop_length=int(filter_length/n_overlap), win_length=win_length).cuda() if mode == 'zeros': mel_input = torch.zeros( (1, 80, 88), dtype=hifigan.ups[0].weight.dtype, device=hifigan.ups[0].weight.device) elif mode == 'normal': mel_input = torch.randn( (1, 80, 88), dtype=hifigan.upsample.weight.dtype, device=hifigan.upsample.weight.device) else: raise Exception("Mode {} if not supported".format(mode)) with torch.no_grad(): bias_audio = hifigan(mel_input).float()[0] bias_spec, _ = self.stft.transform(bias_audio) self.register_buffer('bias_spec', bias_spec[:, :, 0][:, :, None]) def forward(self, audio, strength=0.1): audio_spec, audio_angles = self.stft.transform(audio.cuda().float()) audio_spec_denoised = audio_spec - self.bias_spec * strength audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0) audio_denoised = self.stft.inverse(audio_spec_denoised, audio_angles) return audio_denoised
DeepLearningExamples-master
PyTorch/SpeechSynthesis/FastPitch/hifigan/denoiser.py